Fatti sulle funzioni C^{∞}

Teorema (di Borel). Data una successione $(c_k)_{k\in\mathbb{N}}$, esiste una funzione $f\in C^{\infty}(\mathbb{R})$ tale che $\forall k$ $f^{(k)}(0)=c_k$.

Dimostrazione. Possiamo supporre $c_0 = 0$. Cerchiamo f della forma

$$f(x) = \sum_{k=1}^{\infty} a_k \sin^k(b_k x).$$

Notiamo intanto che, per ogni $s, i, j \in \mathbb{N}$, $D^s(\sin^j(x)\cos^k(x))$ è un polinomio omogeneo di grado al più j+k e con i coefficienti di modulo al più $(j+k)^s$ (infatti è vero per s=0 e, supponendolo vero per un certo s, considerando per semplicità i, j > 0,

$$D^{s+1}(\sin^j(x)\cos^k(x)) = D^s(j\sin^{j-1}(x)\cos^{k+1}(x) - k\sin^{j+1}(x)\cos^{k-1}(x))$$

e la tesi segue facilmente).

Quindi $|D^s(\sin^k(b_k x))| \le (k+1)k^s|b_k|^s$.

Se per ogni coppia (j, s) con j > s è $|a_j|(j+1)j^s|b_j|^s \le 2^{-j}$ (*), la serie delle derivate s-esime convergerà uniformemente e sarà $f^{(s)}(x) = \sum_{k=1}^{\infty} D^s(a_k \sin^k(b_k x))$. Notiamo poi che $D^s(\sin^k(x))$ in x = 0 vale 0 se k > s ed è diversa da 0 se k = s. Dunque se è rispettato il vincolo (*) abbiamo

$$f^{(s)}(0) = \sum_{k=1}^{s} a_k b_k^s [D^s(\sin^k(x))]_{x=0}.$$

L'idea ora è di costruire induttivamente le successioni $(a_j)_{j\in\mathbb{N}_0}$ e $(b_j)_{j\in\mathbb{N}_0}$, facendo "avanzare" j anziché s, in modo che (per ogni j) (*) si riduca a un numero finito di condizioni.

Scelti i primi n-1 valori di $(a_j)_{j\in\mathbb{N}_0}$ e $(b_j)_{j\in\mathbb{N}_0}$ in modo che per $j\leq n-1$ sia rispettato (*) e in modo che sia $c_j=\sum_{k=1}^j a_k b_k^j [D^j(\sin^k(x))]_{x=0}$, grazie al fatto (già osservato) che $[D^n(\sin^n(x))]_{x=0}\neq 0$ possiamo imporre $c_n=\sum_{k=1}^n a_k b_k^n [D^n(\sin^k(x))]_{x=0}$ e ricavarne $a_n b_n^n=u$ per qualche u fissato (per ora non abbiamo scelto né a_n né b_n). Prendendo $b_n>0$, deve valere $a_n=\frac{u}{b_n^n}$.

Rimane da imporre (*) con j = n, cioè $\forall s < n \ |a_n|(n+1)n^sb_n^s \le 2^{-n}$. Questo equivale a $\forall s < n \ |u|(n+1)n^sb_n^{s-n} \le 2^{-n}$. Essendo s-n < 0, queste disuguaglianze sono tutte vere scegliendo b_n sufficientemente grande.

Una volta scelti tutti gli $(a_k)_{k\in\mathbb{N}_0}$ e tutti i $(b_k)_{k\in\mathbb{N}_0}$, poiché (*) vale per ogni coppia (j,s), otteniamo

$$f^{(s)}(x) = \sum_{k=1}^{\infty} D^s(a_k \sin^k(b_k x)) = \sum_{k=1}^{s} a_k b_k^s [D^s(\sin^k(x))]_{x=0} = c_s$$

per costruzione.

Proposizione. Esiste una funzione C^{∞} su tutto \mathbb{R} tale che la sua serie di Taylor abbia raggio di convergenza nullo in ogni punto.

Dimostrazione. Sia, per ogni $k \in \mathbb{N}$, $f_k(x) = (k!)^{-3k+2} \cos((k!)^3 x)$. Osserviamo che $\forall s \leq k-1 \ |f_k^{(s)}(x)| \leq (k!)^{-1}$, mentre $\left(f_k^{(k)}(x)\right)^2 + \left(f_k^{(k+1)}(x)\right)^2 \geq (k!)^4 \ (**)$. Quindi almeno una tra $|f_k^{(k)}(x)| \in |f_k^{(k+1)}(x)| \in \geq \frac{(k!)^2}{2}$. Costruiamo induttivamente una successione $(k_j)_{j \in \mathbb{N}}$ tale che $\forall j \ k_{j+1} \geq k_j + 2$, in modo che $\sum_{j=0}^{\infty} f_{k_j}(x)$ abbia la proprietà cercata. La sua convergenza a una

funzione C^{∞} è assicurata in ogni caso (per ogni s $\sum_{j=0}^{\infty}f_{k_{j}}^{(s)}(x)$ converge uniformemente).

Scelti i primi n termini, basta fare in modo che la derivata k_n -esima (o $(k_n + 1)$ esima) della serie sia $\Omega((k_n!)^2)$ per garantire raggio di convergenza di Taylor nullo ovunque. Per la (**), basta fare in modo che $\sum_{j\neq n} f_{k_j}^{(k_n)}(x) = o((k_n!)^2)$ (e lo stesso per le derivate $(k_n + 1)$ -esime).

Il vincolo finora imposto sulla successione assicura che $\sum_{j>n} |f_{k_j}^{(k_n)}(x)| \leq e = O(1)$ (e lo stesso vale per $k_n + 1$), quindi basta occuparsi dei termini precedenti. Ora però $g(x) = \sum_{j < n} f_{k_j}(x)$ è una serie di potenze con raggio di convergenza infinito. Essendo anche periodica, diciamo g(x) = g(x+c) con c > 0, vale $|g(k)(x)| = |\sum_{n=0}^{\infty} \frac{g^{(n+k)}(0)}{n!} x^n| \le \sup_{s \ge k} |g^{(s)}(0)| e^c \text{ per } x \in [0, c] \text{ e quindi per }$ ogni $x \in \mathbb{R}$.

Poiché $\frac{g^{(s)}(0)}{s!} \to 0$, esiste $k \geq k_{n-1} + 2$ tale che $|g^{(k)}(0)|, |g^{(k+1)}(0)| \leq \frac{(k+1)!}{e^c}$. Dunque $g^{(k)}(x), g^{(k+1)}(x) = o((k!)^2)$ e ponendo $k_n = k$ abbiamo quanto volevamo. Per avere una funzione che sia anche monotona, basta aggiungere alla serie un multiplo sufficientemente grande di x.