Positive matrices

We write P > Q if Py > Qj for all i,j.
We write P > Q if Py > Qj for all i, ;.

(Also, P> 0,P > 0.)

If A>0,B >0, then AB > 0.

Strict positivity trick

If A>0,v>0, then Av > 0, unless v = 0.

If A> 0, u>w, then Au > Aw, unless u = w.
(Proof: set v=u — w above.)



Perron-Frobenius theorem

Theorem
Let P > 0 be a square matrix. Then,
1. P has an eigenvalue A > 0 with eigenvector v > 0, i.e.,
Pv = \v.
2. X is the largest eigenvalue in absolute value.
3. X has multiplicity 1, and it is the only eigenvalue with
eigenvector v > 0 (up to multiples).

If P>0, 1., 2., 4. hold with > instead of >, but in many cases
also the original statement holds (unless P is associated to a
‘disconnected’ or ‘periodic’ graph — we'll see it later.)

A = p(P), v are called ‘the Perron eigenvalue/eigenvector’ of P.
Also,
4. (monotonicity) If 0 < P < Q, then 0 < p(P) < p(Q).



Proof (just a sketch while you are still awake)

We say that P stretches a vector v > 0 by a factor k > 0 if
Pv > kv (and k is the largest possible).

Example
0.2 0.7 0.1 1 1.9
P=103 04 05|, v=|2|, Pv= |26
0.1 0.7 0.2 3 2.1

P stretches v by a factor min(12,22 21) = 0.7.

1 1.9
Indeed, 0.7 [2]| < |2.6
3 2.1



Proof (cont.)

By the strict positivity trick,
kv < Pv. = kPv < P(Pv),

i.e., P stretches Pv by strictly more than it stretches v; unless
kv = Pv.

Hence if we take the vector va which has the maximum stretch
factor kmax, then it must be the case that knaxVimax = PVmax. This
proves 1.

2. can be proved by taking another eigenvector w and considering
the stretch factor of |w].



Proof (cont.)

3. can be proved by contradiction: assume P has another eigenpair
Pw = pw with w > 0 in addition to the Perron one Pv = Av.

The transposed matrix P has the same eigenvalue \: PTu = \u,
i.e, u’ P=\u’. (This is called sometimes a left eigenvector of
P). By Part 1 of the theorem, u > 0.

Compute in two ways:

Mw=u"Pw=u"Pw=u"(Pw)=pu"w.

4. follows by the fact that @ stretches the Perron vector v of P by
a factor at least A.



M-matrices

Similarly, matrices with sign pattern

_+__
__+_
- - -+

(possibly with zeros) can be seen as s/ — P, for some scalar s > 0
and matrix P > 0, and some results on their eigenvalues can be
derived from this (just a heads-up).



Markov chains

TL;DR: finite state automaton + transition probabilities.

0.4 0.3 0.7

’ 1: device working‘ ’2: device broken ‘

0.6

At every (discrete) ‘time step’, we follow an arrow exiting from the
current state.

Markov property: transition probabilities do not depend on ‘what
happened earlier / where | am coming from’.

Plsk =j|s1 =i, =i2,...,Sk—1 = ik—1] = P[sk = j | sk—1 = ik—1]-

Homogeneity: transition probabilities do not change with step k.



Markov chains

0.4 03 0.7

’ 1: device Working‘ ’2: device broken ‘

0.6

Transition probability matrix: Pj; = P[transition i — j], e.g.,

0.4 0.6
P= [0.7 0.3] '

P is row-stochastic, i.e., Zj Pjj = 1 for each row i. Or, in other
words, P1 =1 for the vector 1 of all ones (Perron vector with
eigenvalue 1)



Markov chain and linear algebra

Key idea: computing transition probabilities = matrix
multiplication.

If 7w = [m1,72,...,m,] (often with 7w - 1 = 1) contains probabilities
of being in each state at a certain time t, then P contains the
probabilities at time t + 1.

Proof:

P[St+1 :J] = Z]P)[St = I]P,J =7P.



Markov chain and matrix products

Starting from a certain initial probability 7, the probability of
observing a transition with probability P; first, then one with

probability Py, ..., then one with probability Py, is
wP1Ps. .. Py.
This is true not only when 7, Py, ..., Py are scalar, but also when

they are vectors / matrices.



Hitting probabilities

Example: hitting probabilities.

Markov chain with a set of ng ‘bad’ states, and n¢g ‘good’ states.
Start out in a good state (with probabilities

resp. ™ = [m1, P2, .- ., Pne]); What is the probability of reaching
(‘hitting") a bad state? Which one of them is reached first?

p_ Pcc Pcs
Pec Pss

To reach a bad state, we can either:
» transition directly to a bad state, with probability wPgg;
P transition to a good state once, then to a bad state,
wPecPes;
P transition through 2 good states, then to a bad state,
TFP%GPGB; etc.
Total probability:

71'(/ + Pge + P%G + Pg’G =+ ... )PGB = 71'(/ — ch)_lpc,‘B.



Hitting probabilities

Feg = (/ + Pce + PéG + 'DgG —+ ... )'DGB = (/ — ch)_lpg,g.

(Fep)jj gives the probabilities that the Markov chain first enters
the set of bad states B in its jth state, starting from the ith good
state.

Remarks:

» The formula (/ + M+ M? + M3 +...) = (I — M)~! holds for
each square matrix M with p(M) < 1.

» Pgc satisfies Pggl <1, and the < is not an equal (unless
Pcg = 0). So by monotonicity p(Pgg) < 1.

Also, one can prove that the ‘mean hitting time' is (/ — Pgg)™*1.



Example: a game with coins

We toss a coin repeatedly. | win if three consecutive tosses give
THH, you win if you get HHT first. Who is at an advantage?

Set up transition matrix over all 8 possible sequences of 3 tosses,
compute hitting probabilities for the set of bad states THH, HHT.

From the initial set w = [1/8,1/8,...,1.8], we get

g+ nwcFee = ...



Censoring
Censoring: rewrite transition history ‘pretending the set G does not
exist’.
b1, 81, b2, b2, 82, 83, 81, &2, b1, b3, 81,82, b2, - ..

becomes
b1, ba, by, by, b3, ba, . ..

Transition matrix of the censored chain ng X ng:
-1
Peg + Pgc(! — Peg) ~ Pcs

Interpretation: we either transition from B to B directly, or we
transition to G, stay inside it for 0,1,2,... time steps, and then
get back out to B.

Interesting interpretation: Gaussian elimination on /| — P <=
censoring states 1,2,3,... in sequence.



Stationary probabilities

Suppose P > 0 for now (we'll see what changes if there are zero
entries).

Theorem

For any initial probabilities 7, the probabilities

wP,wP?, ..., wPk, ... of being in each state after k steps
converge to a fixed vector g when k — oc.

This vector is the left eigenvector with eigenvalue p(P) =1, i.e.,
the Perron vector of PT.

Proof 1: this is simply the power method on PT.

Proof 2: if P = VAV~ is diagonalizable, recall that all other
eigenvalues apart from 1 = A\; = p(P) have modulus |\;| < 1,
hence (cont.)



1yk A3 1
w(VAV™ ) ==V V-
)\k
which converges when k — oo to
1
1\k 0 1
w(VAV ) ==xV . V™
0

which is a multiple of the first row of V1.

One can prove directly that the first row of V1 is a left
eigenvector, exactly like one proves that the columns of V' are the
right eigenvectors. Otherwise, take limits in both sides of
(mPX)P = Pk+L,



What happens if there are zeros

Some states (called transient states) are visited only a few times
and then ‘abandoned forever’, e.g.,

1/
\3

Key to understand it: doubly connected components of the graph
with adjacency matrix P.

If a DCC has outgoing edges, eventually they will be taken with
probability 1 = the DCC will be abandoned with probability 1.

Each DCC without outgoing nodes is a possible final class.



Periodic chains

Another edge case: periodic chains. Suppose P is irreducible, but
all closed paths have lengths that are multiple of a certain integer
d>1,eg.,

1 \
3
In general, their transition matrices can be written as

P12
P>3

Pa_1,4
Pa1

(These may be blocks.)



General Perron—Frobenius

Periodic chains do not have a limit distribution (easy to see also in
the example; starting from state 1 one ‘loops indefinitely’).

Another characterization: a chain is aperiodic if PX > 0 for some k.

Periodic chains have d eigenvalues with modulus 1 (at the dth
roots of 1). In particular, ‘Perron-Frobenius with strict inequalities’
does not hold for them.

The missing hypothesis

The Perron—Frobenius theorem ‘with strict inequalities’ holds for
matrices P > 0 that have a doubly-connected graph (irreducible
chains/matrices) and are aperiodic.
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