
Positive matrices
We write P ≥ Q if Pij ≥ Qij for all i , j .
We write P > Q if Pij > Qij for all i , j .

(Also, P ≥ 0,P > 0.)

If A ≥ 0,B ≥ 0, then AB ≥ 0.

Strict positivity trick
If A > 0, v ≥ 0, then Av > 0, unless v = 0.
If A > 0, u ≥ w, then Au > Aw, unless u = w.
(Proof: set v = u−w above.)



Perron-Frobenius theorem

Theorem
Let P > 0 be a square matrix. Then,
1. P has an eigenvalue λ > 0 with eigenvector v > 0, i.e.,

Pv = λv.
2. λ is the largest eigenvalue in absolute value.
3. λ has multiplicity 1, and it is the only eigenvalue with

eigenvector v > 0 (up to multiples).
If P ≥ 0, 1., 2., 4. hold with ≥ instead of >, but in many cases
also the original statement holds (unless P is associated to a
‘disconnected’ or ‘periodic’ graph — we’ll see it later.)

λ = ρ(P), v are called ‘the Perron eigenvalue/eigenvector’ of P.
Also,
4. (monotonicity) If 0 ≤ P ≤ Q, then 0 ≤ ρ(P) ≤ ρ(Q).



Proof (just a sketch while you are still awake)
We say that P stretches a vector v ≥ 0 by a factor k > 0 if
Pv ≥ kv (and k is the largest possible).
Example

P =

0.2 0.7 0.1
0.3 0.4 0.5
0.1 0.7 0.2

 , v =

12
3

 , Pv =

1.92.6
2.1


P stretches v by a factor min(1.9

1 ,
2.6
2 ,

2.1
3 ) = 0.7.

Indeed, 0.7

12
3

 ≤
1.92.6
2.1

 .



Proof (cont.)
By the strict positivity trick,

kv ≤ Pv =⇒ kPv < P(Pv),

i.e., P stretches Pv by strictly more than it stretches v; unless
kv = Pv.

Hence if we take the vector vmax which has the maximum stretch
factor kmax, then it must be the case that kmaxvmax = Pvmax. This
proves 1.

2. can be proved by taking another eigenvector w and considering
the stretch factor of |w|.



Proof (cont.)
3. can be proved by contradiction: assume P has another eigenpair
Pw = µw with w > 0 in addition to the Perron one Pv = λv.

The transposed matrix PT has the same eigenvalue λ: PT u = λu,
i.e., uT P = λuT . (This is called sometimes a left eigenvector of
P). By Part 1 of the theorem, u > 0.

Compute in two ways:

λuT w = (uT P)w = uT Pw = uT (Pw) = µuT w.

4. follows by the fact that Q stretches the Perron vector v of P by
a factor at least λ.



M-matrices
Similarly, matrices with sign pattern

+ − − −
− + − −
− − + −
− − − +


(possibly with zeros) can be seen as sI − P, for some scalar s ≥ 0
and matrix P ≥ 0, and some results on their eigenvalues can be
derived from this (just a heads-up).



Markov chains
TL;DR: finite state automaton + transition probabilities.

2: device broken1: device working

0.6

0.3 0.70.4

At every (discrete) ‘time step’, we follow an arrow exiting from the
current state.

Markov property: transition probabilities do not depend on ‘what
happened earlier / where I am coming from’.

P[sk = j | s1 = i1, s2 = i2, . . . , sk−1 = ik−1] = P[sk = j | sk−1 = ik−1].

Homogeneity: transition probabilities do not change with step k.



Markov chains

2: device broken1: device working

0.6

0.3 0.70.4

Transition probability matrix: Pij = P[transition i → j], e.g.,

P =
[
0.4 0.6
0.7 0.3

]
.

P is row-stochastic, i.e.,
∑

j Pij = 1 for each row i . Or, in other
words, P1 = 1 for the vector 1 of all ones (Perron vector with
eigenvalue 1!)



Markov chain and linear algebra
Key idea: computing transition probabilities = matrix
multiplication.
If π = [π1, π2, . . . , πn] (often with π · 1 = 1) contains probabilities
of being in each state at a certain time t, then πP contains the
probabilities at time t + 1.
Proof:

P[st+1 = j] =
∑

i
P[st = i ]Pij = πP.



Markov chain and matrix products
Starting from a certain initial probability π, the probability of
observing a transition with probability P1 first, then one with
probability P2, . . . , then one with probability Pk , is

πP1P2 . . .Pk .

This is true not only when π,P1, . . . ,Pk are scalar, but also when
they are vectors / matrices.



Hitting probabilities
Example: hitting probabilities.
Markov chain with a set of nB ‘bad’ states, and nG ‘good’ states.
Start out in a good state (with probabilities
resp. π = [π1, p2, . . . , pnG ]); what is the probability of reaching
(‘hitting’) a bad state? Which one of them is reached first?

P =
[
PGG PGB
PBG PBB

]
To reach a bad state, we can either:
I transition directly to a bad state, with probability πPGB;
I transition to a good state once, then to a bad state,

πPGGPGB;
I transition through 2 good states, then to a bad state,

πP2
GGPGB; etc.

Total probability:

π(I + PGG + P2
GG + P3

GG + . . . )PGB = π(I − PGG)−1PGB.



Hitting probabilities

FGB = (I + PGG + P2
GG + P3

GG + . . . )PGB = (I − PGG)−1PGB.

(FGB)ij gives the probabilities that the Markov chain first enters
the set of bad states B in its jth state, starting from the ith good
state.
Remarks:
I The formula (I + M + M2 + M3 + . . . ) = (I −M)−1 holds for

each square matrix M with ρ(M) < 1.
I PGG satisfies PGG1 ≤ 1, and the ≤ is not an equal (unless

PGB = 0). So by monotonicity ρ(PGG) < 1.

Also, one can prove that the ‘mean hitting time’ is (I − PGG)−11.



Example: a game with coins
We toss a coin repeatedly. I win if three consecutive tosses give
THH, you win if you get HHT first. Who is at an advantage?

Set up transition matrix over all 8 possible sequences of 3 tosses,
compute hitting probabilities for the set of bad states THH, HHT.

From the initial set π = [1/8, 1/8, . . . , 1.8], we get

πB + πGFGB = . . .



Censoring
Censoring: rewrite transition history ‘pretending the set G does not
exist’.

b1, g1, b2, b2, g2, g3, g1, g2, b1, b3, g1, g2, b2, . . .

becomes
b1, b2, b2, b1, b3, b2, . . .

Transition matrix of the censored chain nB × nB:

PBB + PBG(I − PGG)−1PGB

Interpretation: we either transition from B to B directly, or we
transition to G , stay inside it for 0, 1, 2, . . . time steps, and then
get back out to B.

Interesting interpretation: Gaussian elimination on I − P ⇐⇒
censoring states 1, 2, 3, . . . in sequence.



Stationary probabilities
Suppose P > 0 for now (we’ll see what changes if there are zero
entries).

Theorem
For any initial probabilities π, the probabilities
πP,πP2, . . . ,πPk , . . . of being in each state after k steps
converge to a fixed vector µ when k →∞.
This vector is the left eigenvector with eigenvalue ρ(P) = 1, i.e.,
the Perron vector of PT .

Proof 1: this is simply the power method on PT .

Proof 2: if P = V ΛV −1 is diagonalizable, recall that all other
eigenvalues apart from 1 = λ1 = ρ(P) have modulus |λi | < 1,
hence (cont.)



π(V ΛV −1)k = πV


λk

1
λk

2
. . .

λk
n

 V −1

which converges when k →∞ to

π(V ΛV −1)k = πV


1

0
. . .

0

 V −1

which is a multiple of the first row of V −1.

One can prove directly that the first row of V −1 is a left
eigenvector, exactly like one proves that the columns of V are the
right eigenvectors. Otherwise, take limits in both sides of
(πPk)P = πPk+1.



What happens if there are zeros
Some states (called transient states) are visited only a few times
and then ‘abandoned forever’, e.g.,

1

2

3

Key to understand it: doubly connected components of the graph
with adjacency matrix P.
If a DCC has outgoing edges, eventually they will be taken with
probability 1 =⇒ the DCC will be abandoned with probability 1.

Each DCC without outgoing nodes is a possible final class.



Periodic chains
Another edge case: periodic chains. Suppose P is irreducible, but
all closed paths have lengths that are multiple of a certain integer
d > 1; e.g.,

1

2

3

In general, their transition matrices can be written as
P12

P23
. . .

Pd−1,d
Pd1

 .

(These may be blocks.)



General Perron–Frobenius
Periodic chains do not have a limit distribution (easy to see also in
the example; starting from state 1 one ‘loops indefinitely’).

Another characterization: a chain is aperiodic if Pk > 0 for some k.

Periodic chains have d eigenvalues with modulus 1 (at the dth
roots of 1). In particular, ‘Perron-Frobenius with strict inequalities’
does not hold for them.
The missing hypothesis
The Perron–Frobenius theorem ‘with strict inequalities’ holds for
matrices P ≥ 0 that have a doubly-connected graph (irreducible
chains/matrices) and are aperiodic.
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