Capitolo 1

Teoria dei campi

Definizione 1.1. Un campo \mathbb{K} è un anello commutativo con identità tale che $\mathbb{K}^* = \mathbb{K} \setminus \{0\}.$

Siamo interessati allo studio delle soluzioni di equazioni algebriche f(x) = 0; in particolare, vogliamo studiare il comportamento di esse al variare del campo considerato Siamo portati allora a trattare le estensioni di campi, cioè un contenimento $\mathbb{K} \subseteq \mathbb{L}$. Indicheremo un'estensione di campi con \mathbb{L}/\mathbb{K} .

Definizione 1.2. Siano \mathbb{K}, \mathbb{L} tali che $\mathbb{K} \subseteq \mathbb{L}$. $\alpha \in \mathbb{L}$ si dice algebrico su \mathbb{K} se esiste un polinomio non nullo $f \in \mathbb{K}[x]$ tale che $f(\alpha) = 0$. Se α non è algebrico, si dice trascendente.

Consideriamo allora l'omomorfismo di anelli

$$\varphi_{\alpha} \colon \quad \mathbb{K}[x] \quad \longrightarrow \quad \mathbb{K}[\alpha] \subseteq \mathbb{L}$$

$$x \quad \longmapsto \quad \alpha$$

Notiamo che $\mathbb{K}[\alpha]$ è un dominio di integrità, perchè sottoanello di un campo. Di conseguenza, $\operatorname{Ker}(\varphi_{\alpha})$ è un ideale primo di $\mathbb{K}[x]$, che invece è un dominio a ideali principali. Vi sono allora due casi:

- Se $Ker(\varphi_{\alpha}) = (0)$, si ha che α è trascendente per definizione
- Se $\operatorname{Ker}(\varphi_{\alpha}) \neq (0)$, allora per la caratterizzazione degli ideali di un PID, si ha che $\operatorname{Ker}(\varphi_{\alpha})$ è un ideale massimale e dunque $\mathbb{K}[\alpha]$ è un campo e α è algebrico.

Possiamo però ottenere anche di più. Per il primo teorema di omomorfismo, si ha che $\mathbb{K}[\alpha] \simeq {}^K[x]/_{\mathrm{Ker}(\varphi_{\alpha})}$. Poichè $\mathbb{K}[x]$ è a ideali principali, esiste un unico polinomio f_{α} monico tale che $\mathrm{Ker}(\varphi_{\alpha}) = (f_{\alpha})$.

Definizione 1.3. Sia $\alpha \in \mathbb{L}$ algebrico su \mathbb{K} . Chiamiamo f_{α} il polinomio minimo di α su \mathbb{K} .

Il polinomio minimo di α fornisce diverse informazioni rispetto all'estensione. Infatti, rappresenta la relazione di grado minimo a coefficienti in \mathbb{K} che lega le potenze di α ; in particolare ci permette di trovare una base di $\mathbb{K}[\alpha]$ come \mathbb{K} -spazio vettoriale. Detto $n = \deg(f_{\alpha})$, l'insieme $\{1, \alpha, \dots, \alpha^{n-1}\}$ è una base di $\mathbb{K}[\alpha]$; se infatti non fossero linearmente indipendenti si negherebbe il fatto che f_{α} sia il polinomio minimo. D'altra parte, generano, perchè la relazione data da f_{α} permette di abbassare il grado di ogni relazione data fino a n-1. Fino ad ora abbiamo però considerato un caso "semplice" di estensioni generate da un solo elemento. Questo tipo di estensione può essere però generalizzato:

Definizione 1.4. $\mathbb{L}_{\mathbb{K}}$ è un'estensione finita se $[\mathbb{L} : \mathbb{K}] := \dim_{\mathbb{K}} \mathbb{L}$ è finita; è invece algebrica se ogni $\alpha \in \mathbb{L}$ è algebrico su \mathbb{K} .

Esempio. \mathbb{C} è algebrico su \mathbb{R} , ma non su \mathbb{Q} .

Per scoprire il grado di un'estensione, è essenziale il seguente teorema:

Teorema 1.5 (di estensione). Consideriamo le estensioni di campi $L \supseteq E \supseteq K$. Allora [L:K] = [L:E][E:K].

Il problema è ora capire le relazioni tra le due estensioni che staimo considerando.

Teorema 1.6. Ogni estensione finita $\mathbb{L}_{/\mathbb{K}}$ è algebrica.

Dimostrazione. Mostriamo che ogni elemento di \mathbb{L} è algebrico su \mathbb{K} . Sia $\alpha \in \mathbb{L}$. Poichè $[\mathbb{L} : \mathbb{K}] = n$, gli elementi $1, \alpha, \dots, \alpha^n$ sono linearmente dipendenti su \mathbb{K} . Di conseguenza, esistono $a_i \in \mathbb{K}$ tali che $\sum_{i=0}^n a_i \alpha^i = 0$. Di conseguenza, α annulla il polinomio $f = \sum_{i=0}^n a_i x^i$, da cui la tesi.

Notiamo che il viceversa è falso. Per mostrarlo ci serve prima un lemma:

Lemma 1.7. Consideriamo un'estensione L/K e definiamo l'insieme $A = \{\alpha \in L \mid \alpha \text{ è algebrico su } K\}$. Allora A è un campo.

Dimostrazione. Siano $\alpha, \beta \in A$. Mostriamo che $\alpha + \beta$ e α^{-1} e $\alpha\beta$ sono elementi di A. Consideriamo l'estensione di K $K(\alpha, \beta)$. Tale estensione è algebrica e finitamente generata, di conseguenza finita per il teorema di estensione. Gli elementi cercati si trovano allora in $K(\alpha, \beta) \subseteq L$, da cui laa tesi.

Mostriamo ora con un controesempio che non tutte le estensioni algebriche sono finite. Consideriamo il campo $\mathbb Q$ e definiamo

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ è algebrico su } \mathbb{Q} \}$$

Per quanto detto, \overline{Q} è un'estensione algebrica di \mathbb{Q} ma non è finita, poichè contiene tutti gli elementi del tipo $\sqrt[n]{2}$ che hanno grado n su \mathbb{Q} .

Proposizione 1.8. L_K è algebrica e finitamente generata \iff è finita.

Proposizione 1.9. Consideriamo le estensioni L_E e E_K . Allora vale

$$L_{/K}$$
 è algebrica $\iff L_{/E}, E_{/K}$ sono algebriche

Dimostrazione.

- (⇒) L'implicazione è banale, se $\alpha \in L$ è algebrico su K, allora utilizzando lo stesso polinomio otteniamo la sua algebricità su E. Se $\alpha \in E$ allora in particolare $\alpha \in L$ e dunque è algebrico su K.
- (\Leftarrow) Sia $\alpha \in L$. Sappiamo allora che α è algebrico su E, di conseguenza esiste $p = \sum a_i x^i \in E[x]$ tale che $p(\alpha) = 0$. Notiamo che i coefficienti di p sono algebrici su K. Consideriamo allora il campo $E_0 = K(a_0, \ldots, a_n)$; l'estensione E_0/K è finita perchè algebrica e finitamente generata. Abbiamo allora la seguente catena di implicazioni:

$$E_0(\alpha) /_{E_0} \text{ finita} \Rightarrow E_0(\alpha) /_{K} \text{ finita} \Rightarrow E_0(\alpha) /_{K} \text{ algebrica}$$

Conseguentemente, α è algebrico su \mathbb{K} .

Tra le estensioni più ambite, ci sono le chiusure algebriche:

Definizione 1.10. Un campo K si dice algebricamente chiuso se ogni polinomio $f \in K[x]$ ammette una radice in K. Data un'estensione L/K, L si dice la chiusura algebrica di K se

- \bullet L è algebricamente chiuso
- \bullet L è algebrico su K

Indicheremo nel seguito la chiusura algebrica di un campo con \overline{K} .

Esempio. $\mathbb C$ è un campo algebricamente chiuso ed è la chiusura algebrica di $\mathbb R$, ma non di $\mathbb Q$.

Mostriamo ora che dato un campo K, esiste sempre una sua chiusura algebrica. Abbiamo prima bisogno di un lemma:

Lemma 1.11. Sia K un campo e sia $p \in K[x]$ un polinomio non nullo di grado positivo. Allora esiste un campo K' algebrico su K tale che p abbia una radice in K'.

Dimostrazione. Per le ipotesi scelte, p è un elemento non invertibile di K[x]; di conseguenza, esiste un ideale massimale \mathfrak{M} che contiene p. Consideriamo allora il campo $K' = K[x]/\mathfrak{M}$. Chiaramente $K' \supseteq K$ tramite l'omomorfismo

$$K \xrightarrow{\imath} K[x] \xrightarrow{\pi} K[x]/\mathfrak{M}$$

che è iniettivo in quanto non banale. Sia $\alpha = \pi(x)$. Allora (notando che K viene fissato)

$$p(\alpha) = p(\pi(x)) = \pi(p(x)) = 0$$

come voluto. Ci manca da mostrare l'algebricità di K' su K. Poichè K[x] è un PID, $\mathfrak{M}=(q)$. Di conseguenza, l'estensione è di grado finito su K e dunque algebrica.

Teorema 1.12 (di esistenza della chiusura algebrica). Sia K un campo. Allora esiste un campo \overline{K} chiusura algebrica di K.

Dimostrazione. Sia Λ un insieme che indicizza i polinomi di K[x] di grado positivo. Consideriamo l'insieme di indeterminate $X = \{x_{\lambda} \mid \lambda \in \Lambda\}$; abbiamo allora l'anello di polinomi K[X] che ha come indeterminate gli x_{λ} . In tale anello, consideriamo l'ideale $I = (\{p_{\lambda}(x_{\lambda}) \mid \lambda \in \Lambda\})$. I è un ideale proprio di K[X]. Supponiamo infatti per assurdo che $1 \in I$. se così fosse, esisterebbero $a_1, \ldots a_n \in K[X]$ e $\lambda_1, \ldots, \lambda_n$ tali che

$$\sum_{i=1}^{n} a_i(X) p_{\lambda_i}(x_{\lambda_i}) = 1$$

Per il lemma, esiste K' un campo nel quale $p_{\lambda_1}, \ldots, p_{\lambda_n}$ ammettono una radice; siano $\alpha_1, \ldots, \alpha_n$ tali radici. Consideriamo allora l'omomorfismo di anelli

$$\begin{array}{cccc} \varphi \colon & K[X] & \longrightarrow & K' \\ & x_{\lambda_i} & \longmapsto & \alpha_i \\ & x_{\mu} & \longmapsto & 0 & se \; \mu \neq \lambda_i \end{array}$$

Poichè è un omomorfismo di anelli, $\varphi(1) = 1$; notiamo allora che

$$0 = \varphi\left(\sum_{i=1}^{n} a_i(X)p_{\lambda_i}(x_{\lambda_i})\right) = \varphi(1) = 1$$

da cui un assurdo. Esiste allora un ideale massimale \mathfrak{M} che contiene I. Consideriamo allora $E_1 = {}^{K[X]}/\mathfrak{M}$. Notiamo che $E_1 \supseteq K$. Inoltre, $\forall \lambda \in \Lambda \ p_{\lambda}(x)$ ha una radice in E_1 , perchè $p_{\lambda}(x_{\lambda}) \in I \subseteq \mathfrak{M}$ e dunque $p_{\lambda}(\overline{x}_{\lambda}) = 0$. Possiamo iterare la costruzione e ottenere una catena di campo l'uno contenuto nel

successivo:

$$K = E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots$$

nei quali ogni polinomio di $E_i[x]$ abbia almeno una radice in E_{i+1} . Consideriamo allora $E = \bigcup_{n \in \mathbb{N}} E_n$. E è un campo perchè unione di una catena ascendente di campi. Inoltre, E è algebricamente chiuso. Sia infatti $p \in E[x]$. Allora, esiste un naturale n tale che $p \in E_n[x]$. Di conseguenza, p ammette una radice in E_{n+1} . Non abbiamo però informazioni sul fatto che E sia algebrico su K. Ovviamo allora a questo problema: consideriamo cioè $\overline{K} = \{\alpha \in E \mid \alpha \text{ è algebrico su } K\}$. Sicuramente \overline{K} è algebrico su K. Mostriamo che è algebricamente chiuso. Sia $p \in \overline{K}[x]$ e sia $\alpha \in E$ una sua radice. Allora α è algebrico su \overline{K} , che a sua volta è algebrico su K. Di conseguenza, α è algebrico su K e dunque $\alpha \in \overline{K}$, come voluto.

Per mostrare l'unicità, abbiamo bisogno di studiare gli omomorfismi tra campi e la loro estensione.

1.1 Estensioni e omomorfismi

Una domanda interessante è come si comportano gli omomorfismi rispetto alle estensioni di campo. Supponiamo cioè di avere un omomorfismo di campi $\varphi: K \to F$, con $K \subseteq F \subseteq \overline{K}$. Dato $\alpha \in \overline{K}$ ha senso chiedersi sotto quali condizioni φ si può estendere a $K(\alpha)$, cioè quando esiste un omomorfismo $\tilde{\varphi} \colon K(\alpha) \to F$ tale che $\tilde{\varphi}_{|_K} = \varphi$.

Proposizione 1.13. Sia K un campo e sia $K' = K(\alpha)$ un'estensione algebrica semplice di K. Sia $\sigma: K \to L$ un omomorfismo di campi e sia $f_{\alpha} = \sum a_i x^i$ il polinomio minimo di α .

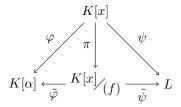
- Se σ' : $K' \to L$ è un omomorfismo di campi che prolunga σ , allora $\sigma'(\alpha)$ è una radice di $\sigma f_{\alpha} = \sum \sigma(a_i)x^i$.
- Per ogni radice $\beta \in L$ di $\sigma f_{\alpha} \in L[x]$ esiste un omomorfismo $\sigma' \colon K' \to L$ di σ tale che $\sigma'(\alpha) = \beta$.

Dimostrazione. Sia σ' un prolungamento di σ . Se $f(\alpha) = 0$, allora si ha $0 = \sigma'(f(\alpha)) = \sigma f(\sigma'(\alpha))$ e dunque il primo punto. Mostriamo ora il secondo. Consideriamo gli omomorfismi

$$\begin{array}{cccc} \varphi \colon & K[x] & \longrightarrow & K[\alpha] \\ & g & \longmapsto & g(\alpha) \end{array}$$

$$\psi \colon \quad K[x] \quad \longrightarrow \quad L$$
$$g \quad \longmapsto \quad \sigma g(\beta)$$

Sappiamo che Ker $(\varphi) = (f_{\alpha})$; poichè per ipotesi $\sigma f_{\alpha}(\beta) = 0$, si ha $(f_{\alpha}) \subseteq \text{Ker}(\psi)$. Passando al quoziente, si ottiene allora il diagramma:



D'altronde $\tilde{\varphi}$ è un isomorfismo, dunque è ben definito l'omomorfismo $\sigma' = \tilde{\psi} \circ \tilde{\varphi}^{-1}$. L'omomorfismo è tale che $\sigma'(\alpha) = \beta$; infatti

$$\tilde{\psi} \circ \tilde{\varphi}^{-1}(\alpha) = \tilde{\psi}([x]) = \beta$$

dunque la tesi.

Possiamo riformulare quanto fatto in maniera più precisa:

Corollario 1.14. Il numero di prolungamenti di un omomorfismo $\sigma' \colon K(\alpha) \to L$ è uguale al numero delle radici distinte di σf_{α} in L.

Il lemma di Zorn ci permette di estendere quanto fatto fino ad ora:

Teorema 1.15 (di estensione). $Sia \ ^F/_K$ un'estensione algebrica e $sia \ \varphi \colon K \to \overline{K}$ un'immersione. Allora φ si estende a $\tilde{\varphi} \colon F \to \overline{K}$.

 $\label{eq:definition} \textit{Dimostrazione.} \ \ \text{Sia} \ \ X = \{(E,\psi) \mid K \subseteq E \subseteq F, \ \psi \colon E \to \overline{K}, \ \psi_{|_K} = \varphi \} \ \ \text{ordinato}$ parzialmente:

$$(E, \psi) \le (E', \psi') \iff E \subseteq E' \ e \ \psi'_{|_E} = \psi$$

Notiamo che $X \neq \emptyset$; mostriamo allora che possiamo applicare il lemma di Zorn. Sia $\{(E_i, \psi_i) \mid i \in I\}$ una catena. Allora $E = \bigcup E_i$ è un campo perchè unione ascendente di campi. Definiamo

$$\psi \colon \quad E \quad \longrightarrow \quad \overline{K}$$

$$\alpha \quad \longmapsto \quad \psi_i(\alpha) \quad se \ \alpha \in E_i$$

 ψ è ben definita perchè le funzioni considerate sono coerenti. Allora (E, ψ) è un maggiorante della catena. Per Zorn esiste allora (F_0, ψ_0) massimale per X. Mostriamo che $F_0 = F$. Se per assurdo $F_0 \subsetneq F$, sia $\alpha \in F \setminus F_0$. Allora possiamo considerare l'estensione semplice $F_0(\alpha)$; per quanto visto su tali estensioni, esiste $\tilde{\psi}_0$ che estende ψ_0 , da cui un assurdo. Di conseguenza $F = F_0$ e quindi la tesi.

Possiamo ora dimostrare l'unicità della chiusura algebrica:

Teorema 1.16 (Unicità della chiusura algebrica). Sia K un campo e siano \overline{K}_1 e \overline{K}_2 due chiusure algebriche. Allora $\overline{K}_1 \simeq \overline{K}_2$.

Dimostrazione. Sia $i: K \to \overline{K}_1$ l'inclusione e sia ψ un omomorfismo che estende i a \overline{K}_2 . Chiaramente ψ è iniettivo perchè è un omomorfismo di campi non nullo. Mostriamo che è surgettivo. Abbiamo

$$K \subseteq \psi(\overline{K}_2) \subseteq \overline{K}_1$$

L'estensione $\psi(\overline{K}_2) \subseteq \overline{K}_1$ è quindi algebrica poichè la è $K \subseteq \overline{K}_1$. Inoltre, poichè \overline{K}_2 è algebricamente chiuso, lo è anche $\psi(\overline{K}_2)$. Ma ogni estensione algebrica di un campo algebricamente chiuso è banale, da cui $\psi(\overline{K}_2) = \overline{K}_1$ e dunque la surgettività. Abbiamo allora trovato un isomorfismo tra le due chiusure algebriche.

Ora che abbiamo dimostrato l'esistenza della chiusura algebrica, continuiamo lo studio degli omomorfismi e delle loro estensioni. Abbiamo visto il caso di una radice semplice; in realtà possiamo ampliare quanto fatto a un'estensione finita qualunque:

Proposizione 1.17. Sia E/K un'estensione finita di grado n e sia $\varphi \colon K \to \overline{K}$. Allora esistono $\varphi_1, \ldots, \varphi_n$ omomorfismi tali che $\varphi_i \colon E \to \overline{K}$ e $\varphi_{i|_K} = \varphi$.

Dimostrazione. Dimostriamo l'enunciato per induzione sul grado dell'estensione. Se n=1, allora E=K e dunque l'enunciato è ovvio.

Mostriamo che $n-1 \Rightarrow n$. Sia $\alpha \in E \setminus K$. Otteniamo allora le sottoestensioni

$$[K(\alpha):K] = d$$
 $[E:K(\alpha)] = m$ $n = d \cdot m$

Per la proposizione dimostrata per le estensioni semplici, esistono $\varphi_1, \ldots, \varphi_d$ che estendono φ . Per l'ipotesi induttiva applicata a ogni φ_i , esistono ψ_{ij} che estendono φ_i . Abbiamo allora che le ψ_{ij} sono n ed estendono φ . Ci manca da mostrare che sono tutte distinte e che sono tutte le possibili estensioni.

- Se $\psi_{i_j} = \psi_{l_k}$, allora $\psi_{i_j}|_{K(\alpha)} = \psi_{l_k}|_{K(\alpha)}$, di conseguenza $\varphi_i = \varphi_l$ e dunque i = l perchè le φ_i sono tutte distinte. D'altronde, anche le applicazioni fornite dall'ipotesi induttiva sono distinte e quindi anche j = k.
- Sia η un'altra applicazione che estende φ ad E. Per la proposizione sulle estensioni semplici, necessariamente esiste un indice i tale che $\eta_{|K}(\alpha) = \varphi_i$; per ipotesi induttiva, esiste allora j tale che $\eta = \psi_{i_j}$.

Definizione 1.18. Sia F_{K} un'estensione algebrica, $F \subseteq \overline{K}$. F è normale su K se $\forall \varphi \colon F \to \overline{K}$ tale che $\varphi_{|_{K}} = id$ allora $\varphi(F) = F$.

In altre parole, F è un'estensione normale se ogni sua immersione in una sua chiusura algebrica che fissa K si può restringe a un automorfismo di F. Questa proprietà, che può sembrare misteriosa e poco rilevante, è in realtà cruciale:

Proposizione 1.19. Sia F_K un'estensione normale e sia $f \in K[x]$ un polinomio irriducibile che ammette una radice in F. Allora f si spezza in fattori lineari in F[x].

Dimostrazione. Sia $\alpha \in F$ una radice di f e sia $\varphi \colon K \to \overline{K}$. Per quanto visto, esistono allora $\varphi_1, \ldots, \varphi_n$ che estendono φ a $K(\alpha)$. Siano $\{\alpha_1, \ldots, \alpha_n\}$ le radici di f in \overline{K} . Allora, a meno di riordinare le applicazioni, $\varphi_i(\alpha) = \alpha_i$. Per il teorema di estensione, possiamo estendere ogni φ_i a delle ψ_i definite su F, ottenendo allora la tesi per la normalità dell'estensione. Infatti $\psi_i(\alpha) = \alpha_i \in F$ e ogni α_i è una radice di f.

Proposizione 1.20. Sia $F/_K$ un'estensione finita. Sono equivalenti:

- $F_{/K}$ è un'estensione normale
- F è il campo di spezzamento di $f_1, \ldots, f_n \in K[x]$

Dimostrazione. Supponiamo F_K normale. Poichè per ipotesi l'estensione è finita, esistono $\alpha_1, \ldots, \alpha_k$ tali che $F = K(\alpha_1, \ldots, \alpha_k)$. Siano allora $f_{\alpha_1}, \ldots, f_{\alpha_k}$ i polinomi minimi di questi elementi. Per normalità dell'estensione, per la proposizione precedente, abbiamo che F contiene il campo di spezzamento di $f_{\alpha_1}, \ldots, f_{\alpha_k}$. D'altronde, il campo di spezzamento di questi polinomi contiene $\alpha_1, \ldots, \alpha_k$ e dunque contiene F. Per doppio contenimento, abbiamo allora mostrato un'implicazione.

Supponiamo ora che F sia il campo di spezzamento di f_1, \ldots, f_n . Possiamo supporre, senza perdita di generalità, che questi polinomi siano irriducibili. Sia $\{\alpha_{i,j}\}$ l'insieme delle radici degli f_i . Allora per definizione di campo di spezzamento, $F = K(\{\alpha_{i,j}\})$. Mostriamo allora la normalità: consideriamo $\varphi \colon F \to \overline{K}$ tale che $\varphi_{|_K} = id$. Sappiamo allora che $\varphi(\alpha_{i,j}) = \varphi(\alpha_{i,k})$ e dunque $\varphi(F) \subseteq F$. Notiamo però che

$$[F:K] = [\varphi(F):\varphi(K)] = [\varphi(F):K]$$

Di conseguenza, per motivi di dimensione come spazi vettoriali su K, si ha $\varphi(F) = F$ e dunque la tesi.

Definizione 1.21. Sia F/K un'estensione normale separabile finita. Definiamo

$$Gal(F/K) = \{\varphi \colon F \to F \mid \varphi_{|K} = id\}$$

Lemma 1.22. Gal(F/K) è un gruppo rispetto alla composizione; la cardinalità di Gal(F/K) è uguale al grado dell'estensione.

Dimostrazione. Chiaramente, l'elemento neutro è l'identità $id\colon F\to F$. Mostriamo l'esistenza dell'inversa. Sia $\varphi:F\to F$; allora $\mathrm{Im}(\varphi)\subseteq F$. Per motivi di dimensione come K-spazi vettoriali, si ha allora la surgettività; φ è quindi un isomorfismo di campi e dunque ammette inversa. Per le proposizioni precendenti, abbiamo poi che se [F:K]=n, esistono esattamente n omomorfismi $\varphi_i\colon F\to \overline{K}$ che estendono l'identità. Per normalità di F, questi si restringono a omomorfismi $\varphi_i\colon F\to F$, e sono tutti e soli gli automorfismi di $\mathrm{Gal}(F/K)$. \square

L'idea è ora quella di applicare la teoria dei gruppi allo studio delle estensioni. Consideriamo per esempio $f \in K[x]$ un polinomio irriducibile di grado n. f si spezza allora nella chiusura algebrica

$$f = \prod_{i=1}^{n} (x - \alpha_i)$$

Il campo di spezzamento è allora $F=K(\alpha_1,\ldots,\alpha_n)$; sappiamo anche che gli automorfismi possono solo mischiare le radici. Infatti:

Teorema 1.23. Gal(F/K) si immerge in S_n .

Dimostrazione. Interpretiamo $S_n = S\{\alpha_1, \dots, \alpha_n\}$ Consideriamo la mappa

$$\Phi \colon \quad Gal\left(F_{/K}\right) \quad \longrightarrow \quad S_n$$

$$\varphi \quad \longmapsto \quad \varphi_{\mid_{\{\alpha_1,\dots,\alpha_n\}}}$$

Tale applicazione è ben definita perchè l'immagine di una radice di f è ancora una radice di f e inoltre una applicazione tra campi è iniettiva e dunque la restrizione è una bigezione. Mostriamo che è un omomorfismo.

$$\Phi(\varphi \circ \rho) = \varphi \circ \rho_{|_{\{\alpha_1,...,\alpha_n\}}} = \varphi_{|_{\{\alpha_1,...,\alpha_n\}}} \circ \rho_{|_{\{\alpha_1,...,\alpha_n\}}} = \Phi(\varphi) \circ \Phi(\rho)$$

Inoltre Φ è iniettivo. Infatti, $\operatorname{Ker}(\Phi) = \{ \varphi \in \operatorname{Gal}\left(F_{/K}\right) \mid \varphi_{\mid \{\alpha_1, \dots, \alpha_n\}} = id \}$, cioè $\varphi(\alpha_i) = \alpha_i$. Poichè gli α_i e i loro prodotti generano F come K-spazio vettoriale, se un omomorfismo fissa questi, allora fissa tutto F; di conseguenza $\operatorname{Ker}(\varphi) = \{id\}$.

Corollario 1.24. [F:K] | n!

Dimostrazione. Per il teorema di Lagrange, la cardinalità di un sottogruppo deve dividere la cardinalità del gruppo; la cardinalità di S^n è n!.

Esempio. Tutte le estensioni di grado 2 sono normali. Supponiamo infatti [F:K]=2 e sia $\alpha\in F\setminus K$. Abbiamo allora $F=K(\alpha)$ e $f_{\alpha}=x^2+ax+b$ è il suo polinomio minimo. Di conseguenza, su F, il polinomio si spezza completamente e dunque F è il campo di spezzamento di f_{α} .

Radici dell'unità Delle estensioni normali particolarmente semplici sono i campi di spezzamento dei polinomi ciclotomici, cioè le estensioni per le radici dell'unità del campo. Sia ζ_n una radice n-esima primitiva dell'unità. Sappiamo allora che $[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\deg(f_{\zeta_n})$. Poichè $g(x)=x^n-1$ è un polinomio di $\mathbb{Q}[x]$ che si annulla in ζ_n , abbiamo che $f_{\zeta_n}\mid g$ e dunque $g=f_{\zeta_n}\cdot h$. Per separabilità di \mathbb{Q} , inoltre, si ha $(f_{\zeta_n},h)=1$. Fissato $i\in\{1,\ldots,n\}$, consideriamo l'omomorfismo

$$\begin{array}{cccc} \varphi_i \colon & \mathbb{Q}(\zeta_n) & \longrightarrow & \mathbb{Q}(\zeta_n) \\ & \zeta_n & \longmapsto & \zeta_n^i \end{array}$$

Per essere un automorfismo, condizione necessaria è che $ord(\zeta_n) = ord(\zeta_n^i)$. Questo accade se e solo se (i,n)=1 e dunque il numero di automorfismi è $\leq \phi(n)$, dove ϕ è la funzione di Eulero. Notiamo che altri automorfismi non possono esistere perché l'immagine di ζ_n deve essere una radice di g e le radici di g sono ζ_n^i al variare di i.

Mostriamo ora che se (i,n)=1, allora $f_{\zeta_n}(\zeta_n^i)=0$. Sia ora $p\in\mathbb{N}$ un primo, (p,n)=1 e sia γ tale che $f_{\zeta_n}(\gamma)=0$. Mostriamo che $f_{\zeta_n}(\gamma^p)=0$. Sicuramente $0=g(\gamma^p)=f_{\zeta_n}(\gamma^p)h(\gamma^p)$. Se per assurdo $h(\gamma^p)=0$, allora $h(x^p)$ si annulla in γ e di conseguenza $f_{\zeta_n}\mid h(x^p)$ (perché f_{ζ_n} è irriducibile). Riducendo la relazione modulo p, si ottiene

$$\bar{f}_{\zeta_n} \mid \overline{h(x^p)} = \overline{h(x)}^p$$

e dunque $(\bar{f}_{\zeta_n}, \bar{h}) \neq 1$. Di conseguenza, dalla relazione $\bar{f} = \bar{f}_{\zeta_n} \bar{h}$ si ottiene che \bar{f} ha radici multiple. D'altro canto, $\bar{f}' = nx^{n-1}$ e $p \nmid n$. Di conseguenza $(\bar{f}, \bar{f}') = 1$, da cui un assurdo per il criterio della derivata. Abbiamo così dimostrato che tutti e soli gli automorfismi di $\mathbb{Q}(\zeta_n)$ che fissano il campo \mathbb{Q} sono i φ_i . Di conseguenza il gruppo di Galois dell'estensione è

$$Gal\left(\mathbb{Q}(\zeta_n)/\mathbb{Q}\right)\simeq\left(\mathbb{Z}/n\mathbb{Z}\right)^*$$

e il grado è $\phi(n)$.

Il teorema dell'Elemento Primitivo Abbiamo visto che non tutte le estensioni algebriche sono finite; questo accade solo quando l'estensione è finitamente

generata. In tal caso, in ipotesi di separabilità, possiamo in realtà trovare un generatore dell'estensione:

Teorema 1.25 (dell'elemento primitivo). Sia K un campo e sia E/K un'estensione finita e separabile. Allora esiste un elemento $\alpha \in E$ tale che $E = K(\alpha)$.

Dimostrazione. Se $|K| < \infty$, poichè ogni sottogruppo moltiplicativo finito di un campo è ciclico, si ha che $E^* = \langle \alpha \rangle$ e dunque $E = K(\alpha)$. Supponiamo allora che K sia infinito. Poichè l'estensione è finita, è in particolare finitamente generata, e dunque $E = K(\alpha_1, \ldots, \alpha_n)$. Mostriamo l'enunciato per induzione sul numero di generatori. Supponiamo ciòè $E = K(\alpha, \beta)$ e [E:K] = n. Mostriamo che esiste $t \in K$ per il quale $E = K(\alpha + t\beta)$, cioè che $\alpha + t\beta$ ammette, per un'opportuna scelta di t, n coniugati distinti. Siano $\varphi_1, \ldots, \varphi_n$ le estensioni a E dell'identità

$$\varphi_i \colon E \longrightarrow \bar{K}$$
 $\varphi_{i|_K} = id$

Definiamo allora il polinomio

$$F(x) = \prod_{i < j} (\varphi_i(\alpha) + x\varphi_i(\beta) - \varphi_j(\alpha) - x\varphi_j(\beta)) \in \bar{K}[x]$$

Notiamo che F non è il polinomio nullo; infatti:

$$F = 0 \iff \exists i < j \ tali \ che \ \varphi_i(\alpha) + x\varphi_i(\beta) = \varphi_j(\alpha) + x\varphi_j(\beta)$$
$$\iff (\varphi_i(\alpha) = \varphi_j(\alpha)) \land (\varphi_i(\beta) = \varphi_j(\beta))$$
$$\iff i = j$$

Per il teorema di Ruffini, F ha allora al più $\deg(F)$ radici in K; poichè il campo è infinito, esiste allora $t \in K$ per il quale $F(t) \neq 0$. Di conseguenza,

$$\varphi_i(\alpha + t\beta) \neq \varphi_i(\alpha + t\beta)$$

e dunque $\alpha + t\beta$ ha *n* coniugati distinti. Per induzione, la tesi.

1.2 Corrispondenza di Galois

Vogliamo ora studiare in che modo gli automorfismi del gruppo di Galois siano legato alle sottoestensioni dell'estensione data. Per definizione, ogni automorfismo del gruppo $Gal\left(\frac{L}{K}\right)$ fissa almeno il campo K. Chiaramente, potrebbe anche fissare altri elementi:

Definizione 1.26. Sia H un sottogruppo di $Gal\left(\stackrel{L}{\swarrow}_{K}\right)$. Definiamo

$$Fix(H) = L^H := \{ \gamma \in L \mid \sigma(\gamma) = \gamma \ \forall \sigma \in H \}$$

Chiaramente L^H è un sottocampo di L.

Proposizione 1.27. Sia H un sottogruppo di $Gal\left(\frac{L}{K}\right)$. Allora

$$L^{H} = K \iff H = Gal\left(\frac{L}{K}\right)$$

Dimostrazione. (\Rightarrow) Supponiamo $L^H = K$ e sia |G| = [L:K]. Per il teorema dell'elemento primitivo 1.25, $L = K(\alpha)$. Consideriamo allora

$$f(x) = \prod_{\sigma \in H} (x - \sigma(\alpha))$$

Sicuramente, per normalità dell'estensione, $f \in L[x]$. In realtà, si può dire di più. Sia infatti $\rho \in H$. Allora, notando che la moltiplicazione per un elemento di un gruppo induce una permutazione del gruppo stesso,

$$\rho \circ f(x) = \rho(\prod_{\sigma \in H} (x - \sigma(\alpha))) = \prod_{\sigma \in H} (x - \rho \circ \sigma(\alpha)) = \prod_{\sigma \in H} (x - \sigma(\alpha)) = f(x)$$

Dunque, $f\in L^H[x]=K[x]$. Poichè $\deg(f)=|H|\leq |Gal\left(\frac{L}{K}\right)|$ e $f(\alpha)=0$, ne segue che f è il polinomio minimo di α che però genera l'estensione. Quindi

$$|H| = [K(\alpha) : K] = \left| Gal\left(\frac{L}{K} \right) \right|$$

da cui l'uguaglianza cercata.

(\Leftarrow) Mostriamo che $L^H = K$. Per definizione $L^H \supseteq K$. Supponiamo per assurdo che $L^H \supsetneq K$ e sia $\alpha \in L^H \setminus K$. Sia $d = [K(\alpha) : K]$. Per il teorema 1.17, esistono $\varphi_1, \ldots, \varphi_d$ immersioni $\varphi_i \colon K(\alpha) \to \bar{K}$; in particolare uno di questi omomorfismi non fissa α e possiamo chiamarlo φ . Possiamo ora estendere φ a $\tilde{\varphi} \colon E \to \bar{K}$. Dunque $\tilde{\varphi} \in Gal\left(\frac{L}{K}\right)$ ma $\tilde{\varphi}(\alpha) \neq \alpha$, mentre $\alpha \in L^H$, da cui un assurdo.

Mostriamo ora che esiste una corrispondenza tra i sottocampi di L e i sottogruppi del gruppo di Galois.

Definizione 1.28. Sia $^L\!\!/_{\!K}$ un'estensione di Galois. Definiamo

$$\mathcal{E}_{L_{/\!\!/_{\!\!K}}} \coloneqq \{F \mid K \subseteq F \subseteq L\} \qquad \qquad \mathcal{G}_{L_{/\!\!/_{\!\!K}}} \coloneqq \{H < \operatorname{Gal}(^{L_{/\!\!/_{\!\!K}}})\}$$

Teorema 1.29 (Primo Teorema di Corrispondenza). Sia $E_{/K}$ un'estensione normale finita. Allora esiste una corrispondenza biunivoca tra $\mathcal{E}_{E_{/K}}$ e $\mathcal{G}_{E_{/K}}$ data da

$$\mathcal{E}_{E_{/K}} \quad \longleftrightarrow \quad \mathcal{G}_{E_{/K}}$$

$$F \xrightarrow{\alpha} Gal(E/F)$$

$$Gal(\stackrel{E}{/_F}) \quad \stackrel{\beta}{\leftarrow} \quad E^{Gal(\stackrel{E}{/_F})}$$

Dimostrazione. Mostriamo che le applicazioni indicate sono l'una l'inversa dell'altra, cioè

$$\alpha \circ \beta(H) = H \qquad \beta \circ \alpha(F) = F$$

Mostriamo che $\alpha \circ \beta = id$. Sia H un sottogruppo di Gal(E/F). Poiché $\beta(H) = Gal(E/F)$, dobbiamo mostrare che questo è Gal(E/F) = H.

- $\supseteq\,$ Quest'inclusione è ovvia, poichè Hfissa E^H per definizione.
- \subseteq Discende dalla precedente proposizione; detto infatti $L = E^H$, si ha che H = Gal(E/I), come voluto.

Mostriamo ora che $\beta \circ \alpha = id$. Sia F un sottocampo di E che contiene K. Bisogna mostrare che $F = E^{Gal(E/F)}$.

- \subseteq Dalla definizione di Gal(E/F), si ha che ogni $\varphi \in Gal(E/F)$ fissa F.
- $\supseteq\,$ Discende dalla precedente proposizione; l'unico sottogruppo che fissa solo F è infatti $Gal(\stackrel{E}{\sim}_F).$

. .

Teorema 1.30 (Secondo teorema di corrispondenza). Sia E_K un'estensione di Galois e sia F una sottoestensione. Allora

$$F/_{K}$$
è di Galois $\iff F = E^{H}$ dove $H \leq Gal(E/_{K})$

In tal caso, vale l'isomorfismo

$$Gal(F/K) \simeq \frac{Gal(F/K)}{Gal(F/F)}$$