
First approximation: encode the data regarding the configuration space of a single knot type K 
in a graph, the Reidemeister graph G(K). 

This is done by working on diagrams, i.e. drawings of knots. We then study properties of 
the graph to infer information on the action of Type I Topoisomerases.

Finally, we consider a "bigger" graph, in which the vertices are diagrams of any knot type, and 
in which the action of Type II Topoisomerases can be analysed as well.

Problem

Approach

Abstract
If we wish to include the action of Type II Topoisomerases, we need to consider all possible different 
knots at once, since the Topo II might change the topology of the (axes of the) DNA molecule. 
We model the protein action as a crossing change as is standard (e.g. as done by Stasiak and 
collaborators in [2]). We then construct a larger graph, whose vertices are diagrams representing any 
knot type, and whose edges represent the Reidemeister moves plus the action of Type II Topoisomerases 
(assuming no chirality bias). We call this object the blown-up Reidemeister graph G*.

Our goal is to describe the set of possible configuration of knots (i.e. covalently closed 
circular DNA molecules) in a computable way, using a newly developed mathematical tool. 

Finding implementable descriptions of possible configurations of a knotted DNA molecule
has remarkable importance from a biological point of view, as highlighted by Stasiak and 
collaborators in [2], and in other works (see e.g. [9], [10]) and it is a hard and well studied 
problem in mathematics (see e.g. [1]).

We can then carry out a similar analysis as in the previous case, and look for short cycles in the graph. 
The action of Type II Topoisomerases is detected among the other local moves, and together with the 
Type I Topoisomerases, are the only moves that fit into length three cycles. 

A step further: include the action of Type II Topoisomerases

Applications and further work

The action of Type II Topoisomerases fits into a length three cycle. 
We proved in [4] that this configuration, together with the previous one are 

the only admissible length three cycles. 

Boundaries between Spaces of Knots

Summarising, for a circular double stranded DNA molecule we model the action of Type I and II 
Topoisomerases as a path in the blown-up graph, and use  mathematical tools to obstruct configurations
or specific reactions.

Even if the graph is infinite, every vertex has finite valence. Moreover, if we consider  finite-length 
knots the resulting graphs are finite. These facts ensure that our approach is implementable.
The most feasible way to approach this point of view is through grid diagrams [5], [6]. In this case 
a knot is encoded in a pair of permutations. This fact obviously facilitates a computational 
approach. 

We could refine our approach by adding weights to the edges of our graph and thus include a 
chirality bias. 

Another approach could be to focus only on Type II Topoisomerases and the Reidemeister II and III 
moves. From a mathematical point of view, this means using diagrams representing framed knots.

In [7] the authors model site-specific recombinations as band surgeries. In terms of local moves 
between diagrams this translates to nullifications. We can define another graph, adding diagrams 
representing catenanes and edges representing nullification moves, to investigate short paths and 
configurations, or to obstruct their existence. 

While Stasiak and collaborator's results are based on simulations, we provide a mathematical 
framework which allows us to a priori obstruct or exclude particular sequences of reactions, or the 
formation of specific knot types. 
Moreover, with their simulation they obtain the probability of passing from one knot to the other, 
without considering the distinct configurations involved. Thus, by considering specific configurations 
(diagrams) we achieve a more granular understanding and a complementary approach to their model.  

This local move represents the action of 
site-specific recombination.

In their work "Simulations of Action of DNA Topoisomerases to Investigate Boundaries and Shapes of 
Spaces of Knots" Stasiak and collaborators obtain a schematic picture (shown in the left side of the 
Figure below) for the connectivity between spaces of knots. Labels in the edges represent the 
probability of passing form one knot type to another by random intersegmental passages, simulating
the action of a Type II Topoisomerases without chirality bias.

With our construction we get a representation of the configuration spaces of knots "all at once", 
as an infinite graph. We can focus on small portions of this graph and look for information about 
exchanges between particular knot spaces.

This Picture is taken from [2],
kind courtesy of A. Stasiak.

In the center, the radius 1 ball centered
in the unkot diagram. On the sides, we
show paths leading to the Trefoil knot.

Stasiak and collaborators in [2] investigate the connectivity between Knots Spaces accessible 
to a circular knotted double stranded DNA molecule, under the action of Type II 
Topoisomerases. They describe the Spaces of Knots as a foam where neighbouring 
sub-spaces contain configurations of knot types differing by a single intersegmental passage.    

Here we define a new mathematical tool to model the action of Type I and II 
Topoisomerases on a covalently closed circular DNA molecule: the Reidemeister graph.
We then analyse the local properties of this object from a mathematical point of view.

Finally, we indicate how the Reidemeister graph can be used to infer information about the 
proteins' action.

We represent the central axes of a circular (possibly knotted) molecule of DNA as a diagram. In this 
setting, the action of Type I Topoisomerases can be modeled as shown in the Figure below.

Our model of the Space of Knots

In our work [4], for a given knot K, we consider the (infinite) graph whose vertices are given by diagrams 
representing K, and edges connect two diagrams related by any of the moves described above. We call the 
resulting locally finite graph obtained the Reidemeister graph of K.

Our choice is consistent, since a famous Theorem [3] in topology (by K. Reidemeister, from whom the 
moves take the name) ensures that two diagrams represent the same knot type if and only if they are 
related by a finite sequence of these moves.

This local move represents the action of Type I Topoisomerases. 
The two possibilities differ in the sign of the crossing, and lead to positive or negative coiling.

We will refer to this move as a Reidemeister I move.

These two other moves (called Reidemeister II and III, respectively) also represent deformations. 
Together with the previous one they form a complete set of local moves relating 

diagrams representing equivalent knots.

We can consider short circular paths (cycles) on the graph. The only cycles of length 3 are of the form 
described in the picture. Thus, our Reidemeister Graph highlights the particular behaviour of Type I 
Topoisomerases.

The action of Type I Topoisomerases plays a special role: the only
length three cycles are composed of two succesive Type I Topoisomerases-mediated

actions of opposite sign, followed by a Reidemeister II move.
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We then represent deformations and the action of Type I Topoisomerases (assuming no chirality bias*) 
by local moves.

This Picture is taken from [8],
kind courtesy of A. D. Bates and A. Maxwell.

Passage from a trefoil 
to an unknot.  

*We discuss the possibility of using weighted edges in order to include chirality bias in the box "Applications and further work".

In our work [4] we consider only the central axes of the
DNA molecule, disregarding the double helix structure.

This could possibly lead to better understanding the mechanics of the action of Type I and II 
Topoisomerases, since with our model we are able to to investigate not only when the change in the 
knot type happens, but also where (i.e between which configurations). 


