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Abstract

This wants to be an extended version of my exam on the course of Category Theory
by Filippo Bonchi.
It is a rewritten recap -in no way original- of different sources which I will now cite
once and for all: Lurie’s [5], Joyal’s [4] and Cisinksi’s [2]. As a must, I have to cite
nCatLab [1] too.
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Introduction

This document wants to be a brief recap on what I studied when learning ∞-categories.
The main goal will be that of defining ∞-cats (I will sometimes call them like this) and
hopefully some "out"sights1 on the consequences the theory. In particular, we will state
and give an outline of the proof of a result of Boardman and Vogt which tells us how (a
category associated to) an ∞-cat keeps track of homotopical information.
Just to make things faster, I will give the main definition of this expository article now.

Definition 0.1. An ∞-category is a simplicial set X such that the inclusion-induced
maps

Hom(∆n, X)→ Hom(Λn
k , X)

1As of now I would not be able to give insights.
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are surjective for any n ≥ 2, 0 < k < n.

The next sections will try to give precise definitions for all the ingredients used in the
definitions. For the one of you which know the definition of Kan complexes (and almost
certainly already encountered this definition of ∞-cats) the striking similarity appears.
This "model" (in a meta-mathematical way) of ∞-cats is called under the name of weak
Kan complexes.

1 Presheaves, Yoneda and Simplicial Sets

1.1 What is a presheaf and (yet another) Yoneda

Simplicial sets are fundamental objects in different areas of mathematics. In their down-
to-Earth form they are simply objects which (in some sense) resemble the standard
(geometrical) simplex, or the "simplest n-dimensional convex". With these intuition
they serve as very "comfortable" space of parameters for very concrete things (such as
optimization algorithm). They - however - are the very starting brick of a much greater
skyscraper: homotopy theory, in its broadest sense. Topologically, they serve as foun-
dational constructing blocks for well-behaved spaces and (sometimes, and hopefully
so) simply studying how simplices can be attached to a space, and the way to deform
these attachments gives us a nice ID of the space. Surely you won’t know about some
work-off-the-books just by looking at someone’s ID, but in the vast majority of the time,
you really don’t need these kinds of information. The same happens to topological
spaces.
Simplices are nice combinatorial and algebraic objects: they are naturally totally ordered
finite sets and studying maps from and to these objects can reveal important combinato-
rial information about other sets.
Some algebraic conditions on polynomial rings may be encoded in simplicial sets (infor-
mally, unions of simplices) and algebraic properties may be obtained by doing some
operations on associated simplicial sets (one of those very nice property is "shellability").
What we said so far is, in my opinion, a simple reason on why to study simplicial sets:
they serve as a natural way to generalize already working and present ideas on more
abstract contexts.
Let us start with a bit of formalism.
The following definition is not necessary for the rest of the exposition, but I think it
simplifies some concepts and is overall a very common notion.

Definition 1.1. A presheaf over a category A is a functor

X : Aop → Set.

Given a a ∈ Ob(A), the set X(a) (or Xa or simply Xa) is called fibre over a and its
elements are the sections over a.
Given the definition, we can naturally call morphism of presheves a natural transformation
between a presheaf X and a presheaf Y.
Omitting the trivial checks, one convinces himself that sheaves over a category A and
morphism between sheaves forms a category. We will call this category Â.
Continuing this excursus on presheaves, let me give a fundamental result in category
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theory, namely the (or a) Yoneda Lemma.
In the following section A will always be locally small (unless otherwise stated).

Definition 1.2. The Yoneda embedding is the morphism

A → Â

sending a 7→ ha where ha = HomA(•, a).

Theorem 1.3 (Yoneda Lemma). Given X an object of Â there is a natural bijection

HomÂ(ha, X)
∼=→ Xa

given by
(u : ha → X) 7→ ua(1a).

Proof. This fundamental result has a rather simple proof.
We have to show an inverse. Given s ∈ Xa a section, we associate to a morphism
(u : c→ a) an element of Xc simply choosing u∗(s).
This is clearly an inverse.

Using this we obtain that the Yoneda embedding is a fully faithful functor: clearly
HomÂ(hx, hy) ∼= HomA(x, y).
Let us proceed on the line of Cisinski [2], by introducing the useful notion of Grothendieck
construction of a presheaf X.

Definition 1.4. Given X a presheaf overAwe call Groethendieck construction of X (or also
category of elements) the category whose objects are pairs (a, s) with a ∈ A, s ∈ Xa and a
morphism u : (a, s)→ (b, t) for each morphism u : a→ b in A such that u∗(t) = s.

We will indicate this category with A/X and notice that we have a faithful functor

φX : A/X → Â

sending (a, s) 7→ ha and sending morphism u to itself (notice that u : a → b induces
ha → hb).
By using the Yoneda lemma one gets that the category of elements of X is precisely the
category of maps (ha

s→ X) and the morphisms are commutative 2 triangles such as

ha hb

X

u

s t

The following elementary fact, which I will not prove, is a variation of the Yoneda
lemma.

Proposition 1.5. The maps ha → X exhibit X as a colimit under the functor φX.

Let’s end this "Yoneda excursus" by proving the following theorem, due to Kan.

2Reminder: this is the real commutativity.
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Theorem 1.6 (Kan). Let A be a small category and C a locally small category with all small
colimits.
For any functor u : A → C there exists a functor of evaluation at u defined via

u∗ : C → Â, C ∋ Y 7→ u∗(Y) = (a 7→ HomC(u(a), Y)).

This functor has a left adjoint u! : Â → C.
Moreover there are unique natural isomorphisms u(a) ≃ u!(ha) such that the induced bijection

HomC(u!(ha), Y) ≃ HomC(u(a), Y)

is the inverse of the Yoneda bijection

HomC(u(a), Y) = u∗(Y)a ≃ HomÂ(ha, u∗(Y))

with the adjunction
HomÂ(ha, u∗(Y)) ≃ HomC(u!(ha), Y).

Proof. We start by proving that u∗ has a left adjoint.
Given a presheaf X over A, take a colimit of the maps

A/X → C, (a, s) 7→ u(a)

and call it u!(X). If we choose the Yoneda embedding of A as presheaf, namely put
X = ha we obtain a canonical isomorphism u!(ha) ≃ u(a) because clearly (a, 1a) is a
final object in the category of elements A/ha.
Now in full generality, taking a presheaf X we have the following identifications (I
won’t check naturality but it follows from naturality of Yoneda):

HomC(u!(X), Y) ≃ HomC(lim−→
(a,s)

u(a), Y) (1)

≃ lim←−
(a,s)

HomC(u(a), Y) (2)

≃ lim←−
(a,s)

HomÂ(ha, u∗(Y)) by Yoneda (3)

≃ HomÂ(lim−→
(a,s)

ha, u∗(Y)) (4)

≃ HomÂ(X, u∗(Y)) by proposition 1.5. (5)

All being natural in X, Y, these isomorphisms give us that u! is a left adjoint for u∗.

What one discovers is that every colimit preserving functor Â → C is of the form u! for
an appropriato functor u: in particular, by the preceding theorem, every such functor
has a right adjoint.

1.2 Simplicial sets...

While in my bachelor thesis the first chapter was an introduction to simplicial sets
from a more mathematical point of view, here I am going to introduce them in a purely
categorical way.
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I will hopefully be able to give you the topological meaning of all this abstract formal-
ism, the way I now3 perceive them.
The main object of this section will be the category of finite linear order ∆.
Its objects are the totally ordered sets [n]n≥0 = {0 ≤ 1 ≤ 2 ≤ · · · ≤ n} and the mor-
phisms are (non-strictly) increasing maps [n]→ [m].

Definition 1.7. We call sSet the category of presheaves over ∆. The objects of sSet are
called simplicial sets.

We will call the standard n-simplex ∆n the functor h[n], or the presheaf represented by
[n].
Given a simplicial set X, we call Xn its n− simplices, the image X([n]), which by Yoneda
we conveniently recognize as HomsSet(∆n, X).
An element of Xn is an n−simplex of X, which again can be thought of as a morphism
∆n → X.
We now introduce coface and codegeneracy maps.
Fixing n and 0 ≤ i ≤ n there is a clear natural transformation

∂n
i : ∆n−1 → ∆n

induced by the unique strictly order preserving map [n− 1]→ [n] skipping the index i.
Similarly, there is just one (order preserving, but keep in mind this is always imposed
by our definition of the ∆ category) surjective map [n + 1]→ [n] which takes the value
i twice: this induces a natural transformation

σn
i : ∆n+1 → ∆n.

In fact, it is a very easy exercise to see that all maps [n]→ [m] can be obtained via the
composition of the aforementioned coface and codegeneracy maps.
More is true.

Proposition 1.8. The following relations hold:

∂n+1
j ∂n

i = ∂n+1
i ∂n

j−1 i < j

σn
j σn+1

i = σn
i σn+1

j+1 i ≤ j

σn−1
j ∂n

i =


∂n−1

i σn−2
j−1 i < j

1∆n−1 i ∈ {j, j + 1}
∂n−1

i−1 σn−2
j i > j + 1

and they completely determine ∆ as a category.

Just for the sake of clarity, let me explain what we mean for a category to "be completely
determined by the relations above".
If we take the free category over the graph with vertex [n]’s and edges ∂n

i ’s and σn
i and

quotient the relations above, we obtain a category which is isomorphic to ∆.
I want to strongly point out what this is really telling us about simplicial sets. It is telling
us that a simplicial set X essentially consists of just objects Xn, face maps di

n : Xn → Xn−1
and degeneracy maps si

n : Xn → Xn+1 which satisfy similar relations as above (notice

3To be read as "at the beginning of my understanding of certain mathematical concepts such as this".
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the contravariance here).
Topologically speaking, it is fairly clear what is happening: we are just calling "n−simplices
of X" the part of this abstract entity X which is constructed using n−dimensional tri-
angles and we just have to specify how higher and lower dimensional triangles get
identified "on the boundaries".
Let me just make a quick remark: thinking of CW complexes usually the notation Xn
means "what is constructed using triangles of dimensions up n" (rather than just dimen-
sion n). I think you can convince yourself that we are never imposing non-degeneracy,
so this notation (and the intuition behind) certainly holds. We will, however, give a nice
categorical definition of what we really want to call skeleton.
The following is an easy proposition.

Proposition 1.9. Any map ∆n f→ ∆m factors as f = i ◦ π where π : ∆n → ∆p is an
epimorphism that admits a section and i : ∆p → ∆n is a monomorphism.

Proof. Essentially just factor through the image of the morphism f as a set-morphism
and just take care of the order of the vertex.

Let me now expose, again following Lurie [5], a prototypical example of simplicial sets.
We can consider the following object:

|∆n| = {(x0, . . . , xn) ∈ Rn+1| xi ≥ 0, ∑ xi = 1}.

This is what is typically known as geometric n−simplex or standard geometric simplex.
Clearly a map [n]→ [m] induces an affine map |∆n| → |∆m| by simply choosing where
to send each coordinate (and summing them if the images overlap).
More clearly:

| f |(x0, . . . , xn) =

 ∑
j∈ f−1(i)

xj


i=0,m

.

This construction yields a functor sSet→ Top. This functor induces a functor Top→
∆̂ = sSet given by evaluation

Top ∋ X 7→ Sing(X) = ([n] 7→ HomTop(|∆n|, X)) ∈ sSet

called singular chain. This is a _very fundamental construction in homotopy theory
and it is the first brick of a skyscraper called Homology Theory. There are lots and lots
of references such as [6], [3].
However, let us proceed. We can apply Kan’s Theorem (1.6): this evaluation functor has
a left adjoint, the geometric realization functor sSet→ Top.
This is (apparently) a very non-explicit way of describing this geometric realization
but I think it is useful thinking of it like that: it automatically confirms our intuition:
from the point of view of morphism (which in some sense - again by Yoneda - suffices
for most applications) we can really think about 0-simplexes as points of a topological
space, 1-simplexes as paths and so on.
For a more "hand-on" approach you can read my bachelor thesis where I effectively use
all of these functors.
Now we state a new definition, just to complicate things. It won’t be useful for the
rest of the article but at least it gives a more general way to describe the "skeletons" of
certain objects in certain categories.
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Definition 1.10. An Eilenberg-Zilber category is the datum of (A, A+, A−, d) of a small
category A and subcategories A, A+ together with a function Ob(A)→N such that:

• any iso of A is contained in both A−, A+ and the function d does not distinguish
isomorphic objects;

• if a→ a′ is a non-identity morphism in A+ then d(a) < d(a′), and the inequality
is reversed if the non-identity morphism is in A−;

• any morphism u : a→ b in A has a unique factorization as a→ c→ b where the
first is in A− and the second one is in A+;

• every morphism in A− has a section in A, moreover if two morphism in A− have
the same set of sections then they are equal.

Notice the similarity with the model structures.
Given an EZ−category A, an object a ∈ A with d(a) = n is called n−dimensional object.
Clearly, from all we’ve learnt, ∆ is an EZ-cat taking as degree [n] 7→ n and as subcate-
gories the ones spanned by the epimorphisms and monomorphisms.

Definition 1.11. Given X a presheaf over an EZ-cat A, a section x ∈ Xa is called
degenerate if there exist a morphism a σ→ a′ in A with d(a′) < d(a) and a section y ∈ Xa′

such that σ∗(y) = x.
We denote by Skn(X) (or its n-skeleton) the maximal subpresheaf of X such that for any
m > n, any sections of Skn(X) over an m-dimensional object is degenerate.

Let me now state, without proving, some general results about EZ-cats. Again, the
setting is X presheaf over an EZ-cat A.

Lemma 1.12 (Eilenberg-Zilber). Let x ∈ Xa be a section of X. There exist a unique decompo-
sition (σ, y) of x such that σ is in A− and y is non-degenerate.

Theorem 1.13. Let X ⊂ Y be presheaves over A. For any non negative n there is a canonical
pushout square ⊔

y∈Σ
∂ha X ∪ Skn−1(Y)

⊔
y∈Σ

∂ha X ∪ Skn(Y)

where Σ denotes the set of non-degenerate sections of Y of the form y : ha → Y which do not
belong to X and such that d(a) = n. Here ∂ha = Skd(a)−1(ha).

1.3 ... and nerves

Consider the full and faithful inclusion functor

i : ∆→ Cat

and consider the induced evaluation

N : Cat→ sSet
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mapping a category C to its nerve ([n] 7→ HomCat([n], C)).
Again we could construct it a bit more explicitly: the nerve of a category is a simplicial
set X having Xn consisting of the n-tuples of composable morphisms. The face and
degeneracy consist of inserting an identity morphism (a loop) at the i-th step of the
chain and composing the i and i + 1’th morphism respectively (to be more precise, the
first and last morphisms get cancelled).
By what we’ve already said these informations completely determine the simplicial set
X.
By applying Kan’s Theorem (1.6) we obtain the existence of a left adjoint functor i!
which will be denoted as τ : sSet→ Cat.
Again, in my bachelor thesis one can find lots of applications of this functor, however in
this article we will use the nerve functor (and its left adjoint) as a way to use simplicial
formalism on generic category.
In fact, simplicial sets are very similar to category: we can define "objects" and "mor-
phisms" of a simplicial sets X by simply looking at points and paths on it in the following
way.

Definition 1.14. A map of simplicial sets ∆0 → X is an object of X, while a map ∆1 → X

is a morphism of X, with source ∆0 ∂1
1→ ∆1 → X and target ∆0 ∂1

0→ ∆1 → X.

We will shortly indicate with the ’diagram’ x
f→ y the datum of

∆0

∆1 X

∆0

∂1
1

x

f

∂1
0

y

encoding a morphism in a simplicial set X.
Given a finite totally ordered set E, which can clearly be thought of as a category (E
again by abusing notation) we put ∆E = N(E) and notice4 that an enumeration of E
gives us an isomorphism ∆E ∼= ∆|E|.

Definition 1.15. The boundary of the standard n-simplex is defined as

∂∆n =
⋃

E⊊[n]

∆E.

Definition 1.16. Similarly, we call i-th horn, for 0 ≤ i ≤ n

Λn
i =

⋃
i∈E⊊[n]

∆E.

Definition 1.17. We call spine of a n-simplex

Spn =
⋃

0≤i<n

∆{i,i+1}.

4In an obvius way, this is a generalization of the previously used notation: ∆[n] = ∆n
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Now we come to a couple of examples and a fundamental notion of "commutative
triangle" in a simplicial set.
This is, in general, kind of a (re)lax commutativity with respect to the ordinary commu-
tativity in the categorical sense, but we will se that the nerve functor is able to control
such property.
In retrospect, for the same reason that homotopy theory is a very functional and highly
awarding theory in topology, this lax(er) notion will bring beautiful results almost
immediately.

For us, a triangle5 in a simplicial set X is the datum of a morphism ∂∆2 ϕ→ X. Namely,
remembering that ∂∆2 = ∆{0,1} ∪ ∆{1,2} ∪ ∆{0,2} we can identify the map ϕ with the
datum of a triple ( f , g, h), where f : ∆{0,1} → X, g : ∆{1,2} → X, h : ∆{0,2} → X, with
the target of f equal to the source of g and the target of h equal to the target of h, whose
source is the sourse of f .
In a shorter way, a triangle in X is, with the notations used above, a diagram of the form

y

x z

gf

h

Similarly, the datum of a map Sp2 → X is a diagram of the form

x y z
f g

and most importantly, note that Sp2 = Λ2
1.

Now we come to the notion of commutativity.

Definition 1.18. A commutative triangle in X is a triangle ( f , g, h) such that there exist
a simplicial set morphism φ : ∆2 → X with the property that φ ↾ ∂∆2 ∼= ( f , g, h).

With the aforementioned definition, we say that given two composable6 morphisms f , g
in X, h is a composition if ( f , g, h) is a commutative triangle.
Note that composition is not necessarily unique.
Let’s continue the exploration on the nerve functor.
Observe that given a small category C, then the objects and morphisms of X = N(C)
as a simplicial sets coincide in a natural way with the objects and arrows of Cin the
categorical sense.
More is true: commutative triangles in X correspond precisely to the "real" commutative
triangles in C.
What is true is that, in a category if f , g is a composable pair then there exists at least a
commutative triangle f , g, g ◦ f and this is more important than the other with the same
"spine".
This "correspondence" between pair of composable morphisms and triangles, turns out
to induce a bijection

Hom(∆2, N(C))
∼=→ Hom(Sp2, N(C)).

5Note, we are not asking commutativity in any way. That will come out later.
6So the target of f is the source of g
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Proof. This is easily proved: N(C)2 is made exactly by • → • → • and by using
f , g as first and second morphism we obtain the inverse map Hom(Sp2, N(C)) →
Hom(∆2, N(C)) to the above restriction.

Theorem 1.19. Given a small cat C, the restriction map give rise to a bijection

Hom(∆n, N(C))
∼=→ Hom(Spn, N(C))

Proof. I just wanted to insert this proof paragraph, the proof is the literal copy of the
above one and I will not copy-paste it.

This is very important: in the small settings, understanding the "homotopy type" (in
some sense) of a nerve is the same as understanding its arrow.
To give a map from X → N(C) it suffices to give a map X1 → Mor(C) such that the
identity of all objects of X goes to an identity and that sends commutative triangles (in
the simplicial setting) to compositions.

Proposition 1.20. For any simplicial set X, the inclusion Sk2(X) ⊂ X induces an isomorphism
of category τ(Sk2(X)) ∼= τ(X).

Definition 1.21 (Grothendieck-Segal condition). A simplicial set X is said to satisfy the
Grothendieck-Segal condition if the inclusion of the n-th spine in the standard n-simplex
induces a bijection Hom(∆n, X)→ Hom(Spn, X) for all n ≥ 2.

Thus, we said that the nerve of a category respects the Grothendieck-Segal condition.
What we actually proved, said in other terms, is that the functor N(•) : Cat→ sSet is
fully faithful on the subcategory of small categories: it induces bijections

HomCat(A, B) ∼= HomsSet(N(A), N(B))

for all small A, B.
More is true and fascinatingly simple to prove.

Theorem 1.22. Given a simplicial set X, the following are equivalent:

• X ∼= N(C) for some small category C;

• the unit map X → N(τ(X)) is invertible;

• X satisfies the Grothendieck-Segal condition.

Now another restatement of the preceeding result. The proof is a bit convoluted, namely
there are a couple of cases to be taken care of separately, but I decided the proof is not
so important or enlightening. It - however - certainly reflects the adaptability of the
theory we are discovering.

Theorem 1.23. A simplicial set X satisfies the Grothendieck-Segal condition if and only if the
inclusion of its k-th horn in the n-th standard simplex induces a bijection

Hom(∆n, X)→ Hom(Λn
k , X)

for all n ≥ 2, 0 < k < n.



FIRST APPROACH TO ∞-CATEGORIES 11

2 Definition of ∞-cat(egorie)s

Now the moment we were (hopefully) waiting. Let me restate the definition given in
the absolute first page of the article.

Definition 2.1. An ∞-category is a simplicial set X such that the inclusion-induced
maps

Hom(∆n, X)→ Hom(Λn
k , X)

are surjective for any n ≥ 2, 0 < k < n.

Definition 2.2. If there exist f , g, h such that

y x

x x y y

g ff

1x

h

1y

commute, then f is said to be invertible.

Definition 2.3. An ∞-groupoid is an ∞-cat where each morphism is invertible.

Definition 2.4. A Kan complex is an ∞-cat which respect the horn-filling condition for
any n ≥ 1, 0 ≤ k ≤ n.

Hence the name of Weak Kan complexes which is sometimes used when referring to
∞-cats.
Note that the horn-filling condition for n = 2 implies that every pair of composable

morphism of X admit in fact a composition in X: simply consider • f→ • g→ • in X and
realize this is the 2-horn Λ2

1. Filling the horn means there exists an extension starting
from ∆2: then its restriction to ∆{0,2} ⊂ ∆2 is a composition of f and g.
This composition in non unique (the horn filling condition states a surjectivity, not an
isomorphism as the Grothendieck-Segal condition) but this laxer structures are still of
interests because of the "higher coherence" they encode.
The remark between parenthesis actually furnishes the following:

Proposition 2.5. Given a small category C, its nerve N(C) is an ∞-cat.

Proof. By Theorem (1.22) we know that the simplicial set N(C) satisfies the Grothendieck-
Segal condition hence satisfies the horn-filling condition with uniqueness.

Proposition 2.6. A Kan complex is an ∞-groupoid.

Proof. This is easy. The "enriched" (not in the categorical sense) horn filling conditions

tell us that even diagrams such as • f← • g→ • and • f→ • g← • admit extensions to a
triangle.
Choosing g = 1x in the first and g = 1y in the second one gives us the 2 triangles we are
looking for in the definition of invertibility of f .
By the generality of our choices the thesis follows.

The following is a very deep theorem.
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Theorem 2.7 (Equivalence of Kan complexes and ∞-groupoid). Given X an ∞-groupoid,
then X is a Kan complex.

Let us end this definition section by defining what the opposite of a simplicial set is.

Definition 2.8. Given a non strictly increasing morphism f : [m]→ [n] one can associate
to it its opposite:

ρ( f )(i) = n− f (m− i).

What is really happening is that we can think of an increasing function as defined by its
jump from left to right: now if we follow the path from right to left we have "negative"
jumps: simply negate those and you have a new increasing function.
One can prove that ρ defines a functor ∆→ ∆ and induces

ρ∗ : sSet→ sSet.

Given a simplicial set X we define Xop = ρ∗(X).

In fact, this behaves well with the only real notion we gave.

Proposition 2.9. Given a small category C, the following is a canonical identification:

N(C)op = N(Cop).

In the next section we will try to describe how ∞-cat behaves as "real" categories.
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3 From an ∞-cat to a cat: a theorem of Boardman & Vogt

For the rest of this section, I will use X to indicate an ∞-cat.
The purpose of this section is givin a somewhat explicit construction of τ(X): in some
sense trying to understand how the simplicial structure of X and the higher coherence
given by the horn filling conditions, affect its "categorical" structure.
Start by considering the 1-skeleton of ∆3. Now, with much abstract work, we can return
to our root and simply think of the "sticks" you would use to construct a tetrahedron.
These are exactly the non degenerate 1-simplices of ∆3 and they meet at the 0-simplices.
So, let x be a map Sk1(∆3) → X. By what we’ve said this is simply a diagram of the
form

x2

x0 x1

x3

where we are not asking for any type of commutativity7.
I am sure you can clearly see the 4 triangles in the picture: they are given by applying
face maps di (namely, forgetting the vertex xi and the map it touches). The following is
a cute lemma which will be fundamental.

Theorem 3.1 (Joyal’s Coherence Lemma). Assume the two ’face’ triangles d0x, d3x of the
map x : Sk1(∆3)→ X commute.
Then the other two ’face’ triangles either both commute or they both don’t commute.

Proof. We just have to prove that, without loss of generality, if d0x, d1x, d3x commute
then d2x commutes as well.
Commutativity of d0x, d1x, d2x implies the existence of suitable extensions y0, y1, y3 :
∆2 → X.
Now, d0x, d1x, d3x all have a vertex x2 in common, so the datum of (y0, y1, y3) guarantees
the existence of a map

Λ3
2 → X

whose restriction to standard 2-simplices is precisely y0, y1, y3.
Now X is an ∞-cat, so this map admits an extension γ : ∆3 → X, whose restriction - by
construction - on the 1-simplices of d2γ is precisely d2x. But d2γ is a full face and hence
the triangle d2x is commutative.

We are almost ready to state the theorem of Boardman and Vogt.
Let us define the following equivalence relations: given a commutative triangle ( f , g, h)
we will write g f ∼ h and state that

• f ∼1 g⇐ f 1x ∼ g;

• f ∼2 g⇐ 1y f ∼ g;

• f ∼3 g⇐ g1x ∼ f ;

• f ∼1 g⇐ 1yg ∼ f .
7I can’t stress this enough and I admit the notation seems confusing at first sight: why would someone

draw a diagram if it were not commutative..
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Proposition 3.2. All the equivalence relations stated above are the same.

Proof. I will not prove they are in fact equivalence relations. It will be easier to prove
afte stating the equality between them.
Instead I will prove they coincide.
The useful remark here is that the diagrams

x y

x y x y

f 1y
1x

f

f

f

are always commutative. They come from degenerate 2-simplices obtained via appro-
priate surjective mappings ∆2 → ∆1.
Now using Joyal’s Coherence Lemma (3.1) to both of the diagrams

y y

x x x x

y y

1y 1y

f

1x

g

f

f

f

1x

f

f

g

and the same in the opposite Xop, we obtain exactly what we were looking for.
It is just a matter of explicitly writing everything.

Definition of homotopy category of a simplicial set

Consider the following construction.
Given two objects x, y in an ∞-cat X, we can quotient out (as sets) the set Hom(x, y) via
the equivalence relations defined above. We will call this set Homho(X)(x, y).
When trying to give a composition law

Homho(X)(x, y)×Homho(X)(y, z)→ Homho(X)(x, z)

one should be tempted to just compose some representative

[ f ]× [g]→ [g] ◦ [ f ] = [h]

where h is a composition of f , g (which always exists in an ∞-cat as already said).
This works but is not painless.
We should show that none of the above depends on the choice of representatives.
First step: [h] does not depend on h. Let g f ∼ h, g f ∼ h′. Consider the following
diagram

z

x y

z

1z

h

f

h′

g

g

Clearly the rightmost triangle commutes (as always) and by hypothesis the top and
bottom triangle commutes too. By Joyal’s 3.1 all triangles commutes, in particular the
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bigger one (which bounds the boundary of the diagram)⇒ 1zh ∼ h′ and so [h′] = [h].
Let us show that [g] = [g′] and g f ∼ h imply g′ f ∼ h and so the choice of representative
of [g] is not important.
Consider the diagram

z

x y

z

1z

h

f

h

g

g′

and again apply Joyal’s 3.1 to conclude.
Doing all this in the opposite ∞-cat shows that all of the above does not depend on the
choice of representative for [ f ].
The composition law is then well defined and so produces a new category from X:
a category whose objects are precisely the objects of X and whose morphisms are
Homho(X)(•, •).
This category is called ho(X) or homotopy category of X.
We are now ready to state the main result of this section.

Theorem 3.3 (Boardman & Vogt construction). There is a unique morphism of simplicial
sets

X → N(ho(X))

which is the identity on objects and sends a morphism [ f ] of X to its class [ f ] ∈ Homho(X)(•, •).
Moreover, this morphism induces an isomorphism of categories

τ(X) ≃ ho(X).

Proof. As of now, the proof can be stated very shortly without too many details.
Clearly such a morphism exists and is unique: we’ve already said that morphisms X →
N(C) are completely determined by X1 → Arr(C) which send identities to identities and
send commutative triangles to compositions. These conditions are precisely satisfied by
our maps, so we have existence and uniqueness of X → N(ho(X)).
More is true: because every N(C) for C a small category, is actually an ∞-groupoid
(hence an ∞-cat), every morphism X → N(C) has to factor through X → N(ho(X))→
N(C) and this factorization is unique (again by looking at maps X1 → Arr(C)).
Using the fully faithful nature of N(•) we just proved that the objects τ(X) and ho(X)
represent the same functor; hence they are canonically isomorphic.

Proposition 3.4. An ∞-cat X is an ∞-groupoid if and only if τ(X) is a groupoid.

Proof. Clearly,if X is an ∞-groupoid then every morphism of ho(X) admits an inverse
and so is a groupoid. By the isomorphism 3.3 we conclude.

Now the final homotopy flavor.

Proposition 3.5. A morphism f : x → y in an ∞-cat is invertible if and only if there exists a
morphism g : y→ x such that g f and f g admit respectively 1x and 1y as compositions.
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