
Appunti di

Aspetti matematici
nella computazione quantistica

dalle lezioni di Paola Boito e Dario Trevisan

A cura di Francesco Baldino

Anno accademico 2022/2023

Contents

1 Remarks on Hilbert Spaces 3

2 Quantum Mechanics 10
2.1 Postulates . 10
2.2 Mixed states . 17
2.3 Spin . 19

3 Quantum Systems 23
3.1 Qubits . 23

3.1.1 Bloch sphere representation . 23
3.1.2 Operators on qubits . 27
3.1.3 Hadamard operator . 30

3.2 Composite systems . 30
3.2.1 States and observables for composite systems 34

3.3 Entanglement . 39

4 Quantum circuits 42
4.1 Quantum copier . 42
4.2 EPR states and Bell telephone . 43
4.3 Classical gates . 43
4.4 Quantum gates . 47
4.5 Quantum circuits . 51

5 Quantum algorithms 54
5.1 Quantum Fourier Transform . 59
5.2 Deutch’s Problem . 63
5.3 Superdense coding . 65
5.4 Teleportation . 66
5.5 Shor’s algorithm . 67

5.5.1 Definition and remarks . 68
5.5.2 Quantum routine . 69

5.6 Quantum phase estimation . 72
5.6.1 Back to Shor’s quantum routine . 75

5.7 Grover’s algorithm . 76
5.8 Quantum counting . 83
5.9 Harrow-Hassidim-Lloyd algorithm . 83
5.10 Quantum walks . 86

1

5.10.1 Coined quantum walks . 88
5.10.2 Quantum walks on an n-dimensional hypercube 90

2

1 | Remarks on Hilbert Spaces

We’ll start with some remarks on Hilbert Spaces that will allow us to introduce the notation that we
will use throughout the course.

Definition 1.0.1 – Definite positive scalar product

A definite positive scalar product on a complex vector space V is a map ⟨·|·⟩ : V × V → C
with the following properties

• ⟨φ|ψ⟩ = ⟨ψ|φ⟩

• ⟨φ|φ⟩ ≥ 0, ∀φ ∈ V

• ⟨φ|φ⟩ = 0 ⇐⇒ φ = 0

• ⟨φ|aψ1 + bψ2⟩ = a ⟨φ|ψ1⟩+ b ⟨φ|ψ2⟩ ∀a, b ∈ C,∀φ,ψ1ψ2 ∈ V

Remark 1.0.1. A scalar product on V defines a norm on V defined as

∥ψ∥ =
√

⟨ψ|ψ⟩

Definition 1.0.2 – Hilbert space

An Hilbert Space is a vector space H over C endoned with a definite positive scalar product
such that H is complete with respecto to the given norm

We also have the following useful properties:

1. ∀a ∈ C, ∀ψ,φ ∈ H it holds ⟨aφ|ψ⟩ = a ⟨φ|ψ⟩ and ∥aφ∥ = |a| · ∥φ∥

2. Let ψ ∈ H, then ⟨ψ|φ⟩ = 0 ∀φ ∈ H ⇐⇒ ψ = 0

Proof.
[⇒] it must also hold ⟨ψ|ψ⟩ = 0 so ψ = 0
[⇐] it follows from linearity on the second argument

3. (Complex parallelogram identity)

∀φ,ψ ∈ H it holds that

⟨ψ|φ⟩ = 1

4

(
∥ψ + φ∥2 − ∥ψ − φ∥2 + i∥ψ − iφ∥2 − i∥ψ + iφ∥2

)
3

Definition 1.0.3

• A vector ψ ∈ H is unitary (normed) if ∥ψ∥ = 1

• φ,ψ ∈ H are orthogonal if ⟨φ|ψ⟩ = 0

• Given ψ ∈ H the orthogonal subspace to ψ is

Hψ⊥ = {ψ ∈ H | ⟨φ|ψ⟩ = 0}

Note that given ψ ∈ H, ψ ̸= 0, then ∀φ ∈ H, φ− ⟨ψ|φ⟩
∥ψ∥2 ψ ∈ Hψ⊥

Let H be a Hilbert space and I a set of indices, then

• The vectors {ψi}i∈I ⊂ H are linearly independent if for every finite subset {i1, . . . , in} ⊂
I it holds that

a1ψi1 + · · ·+ anψin = 0 ⇒ a1 = . . . an = 0

• H is finite-dimensional if any set of linearly independent vectors is finite

• An orthonormal basis (ONB) for H is a set of linearly independant vector {ej}j∈I ⊂ H
such that ⟨ei|ej⟩ = δij and any ψ ∈ H can be written as

ψ =
∑
j

ajej

for some aj ∈ C

We will only work with separable Hilbert spaces, that is spaces where every basis has a countable
number of elements.

Let ψ,φ ∈ H, let {ej} be an ONB and let ψ =
∑
ψjej and φ =

∑
φjej . Then it holds that

⟨φ|ψ⟩ =
∑
φjψj and ∥ψ∥ =

√∑
|ψ|2.

In particular if ⟨φ|ψ⟩ = 0 then ∥ψ + φ∥2 = ∥ψ∥2 + ∥φ∥2 because we get

∥ψ + φ∥2 = ⟨ψ + φ|ψ + φ⟩ = ∥ψ∥2 + ∥φ∥2 + ⟨ψ|φ⟩
=0

+ ⟨φ|ψ⟩
=0

Theorem 1.0.4 – Reisz representation theorem

All linear continuous maps H → C can be written as

⟨ψ|·⟩ : H C
|φ⟩ ⟨ψ|φ⟩

for some ψ ∈ H

4

Definition 1.0.5 – Dual space

The space of linear continuous maps from H to Cis called the dual space

H∗ = {f : H → C | f is linear continuous}

As a concequence of the last theorem, H∗ is in bijection with H

We’ll now introduce the bra/ket notation that we will use throghout the course:

Definition 1.0.6 – Dirac notation

• A ket vector is |ψ⟩ ∈ H

• A bra vector is ⟨ψ| ∈ H∗

If A : H → H is a linear map then |Aψ⟩ = A |ψ⟩

Note that this somewhat contradicts the notation we used beforehand, where we called vectors in
H simply ψ and not |ψ⟩. This notation will actually be really useful later on when the symbol inside
the |·⟩ will be a way to identify some specific state (eg: if we put inside the |·⟩ a numeric value or a
binary string, it will represent the corrisponding element of a fixed base of the space H).

From now on vectors will always be represented with the ket notation, and the symbol inside the
ket will either be a mute variable or a representation of something else.

Given an ONB {|ej⟩} for H we can write any |ψ⟩ as |ψ⟩ =
∑
j ⟨ej |ψ⟩ |ej⟩. If we then apply a

linear map A we get

A |ψ⟩

=

=
∑
j

A |ej⟩ ⟨ej |ψ⟩

|Aψ⟩ =
∑
j

|ej⟩ ⟨ej |Aψ⟩ =
∑
j

|ej⟩

〈
ej

∣∣∣∣∣A∑
k

|ek⟩ ⟨ek|ψ⟩

〉

thus we can write A =
∑
j,k |ej⟩ ⟨ej |ek⟩ ⟨ek| as an operator acting on |ψ⟩

Example 1.0.7 (The finite-dimensional case). We will often consider the finite-dimensional
case where H ∼= Cn (that is dimH = n) which has an explicit representation given by
{|ej⟩}nj=1 being the canonical basis (which is an ONB).

In this case we can easily represent elements |ψ⟩ ∈ H, ⟨ψ| ∈ H∗ and products |ψ⟩⟨φ|.

Because we can write |ψ⟩ =
∑n
j=1 ψj |ej⟩ there’s a corrispondence between |ψ⟩ and

the complex column vector (ψ1, . . . , ψn)
⊺.

Because we can write ⟨ψ| =
∑n
j=1 ⟨ej |ψj there’s a corrispondence between ⟨ψ| and

the complex row vector (ψ1, . . . , ψn).

5

Then we can represent |ψ⟩⟨φ| as

|ψ⟩⟨φ| =

ψ1

...
ψn

(φ1 . . . φn
)
=

ψ1φ1 . . . ψ1φn
...

...
ψnφ1 . . . ψnφn

Example 1.0.8. Let’s first consider the case n = 2

We have H ∼= C2. We usually represent an ONB for H as {|0⟩ , |1⟩} and the isomor-

phism is given by the map |0⟩ 7→
(
1
0

)
and |1⟩ 7→

(
0
1

)
Elements in H can be written as |ψ⟩ = a |0⟩ + b |1⟩ ∈ H. By linearity, the isomor-

phism sends |ψ⟩ to
(
a
b

)
.

Similarly, elements in H∗ can be written ⟨ψ| = a ⟨0|+ b ⟨1| ∈ H∗ which would be mapped to
(a, b) ∈ (C2)∗

We’ve seen that given |ψ⟩ , |φ⟩ ∈ H we can construct the operator |ψ⟩ ⟨φ| : H → H. Let’s
see some examples. Using the elements of the ONB we get

• |0⟩⟨0| 7→
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
which is the projection on the first coordinate

• |1⟩⟨1| 7→
(
0
1

)(
0 1

)
=

(
0 0
0 1

)
which is the projection on the second coordinate

• |0⟩⟨1| 7→
(
1
0

)(
0 1

)
=

(
0 1
0 0

)

• |1⟩⟨0| 7→
(
0
1

)(
1 0

)
=

(
0 0
1 0

)
By linearity, given |ψ⟩ = a |0⟩+ b |1⟩ and |φ⟩ = c |0⟩+ d |1⟩, we get

|ψ⟩⟨φ| 7→
(
a
b

)(
c d

)
=

(
ac bc

ad bd

)

Let A : H → H be a linear operator. We will assume that A is bounded, that is

∥A∥ = sup{∥Aψ∥ | |ψ⟩ ∈ H, ∥ψ∥ = 1} <∞

Definition 1.0.9 – Adjoint

The adjoint of A is an operator A∗ : H → H such that ∀ |ψ⟩ , |φ⟩ ∈ H it holds

⟨A∗ψ|φ⟩ = ⟨ψ|Aφ⟩

We say that A is self-adjoint if A = A∗

6

The following properties of the adjoint hold:

• (A∗)∗ = A, because ∀ |ψ⟩ , |φ⟩ ∈ H we have

⟨(A∗)∗ψ|φ⟩ = ⟨ψ|A∗φ⟩ = ⟨A∗φ|ψ⟩ = ⟨φ|Aψ⟩ = ⟨Aψ|φ⟩

• ∀c ∈ C (cA)∗ = c(A∗), because

⟨ψ|cAφ⟩ = c ⟨ψ|Aφ⟩ = c ⟨A ∗ ψ|φ⟩ = ⟨cA∗ψ|φ⟩

• (AB)∗ = B∗A∗

• (A∗)ij = Aij , because

(A∗)ij = ⟨ei|A∗ej⟩ = ⟨Aei|ej⟩ = ⟨ej |Aei⟩ = Aij

• ⟨Aψ| = ⟨ψ|A∗, where

⟨Aψ| : H C
|φ⟩ ⟨Aψ|φ⟩

⟨ψ|A∗ : H C
|φ⟩ ⟨ψ|A∗φ⟩

• (|ψ⟩⟨φ|)∗ = |φ⟩⟨ψ|, because ∀ |ξ⟩ , |η⟩ ∈ H it holds

⟨(|ψ⟩⟨φ|)∗η|ξ⟩ = ⟨η|(|ψ⟩⟨φ|)ξ⟩ =
= ⟨η|ψ⟩ ⟨φ|ξ⟩ =
= ⟨φ|ξ⟩ ⟨η|ψ⟩ =

= ⟨ξ|φ⟩⟨ψ|η⟩ =

= ⟨ξ|φ⟩ ⟨ψ|η⟩ =

= ⟨ξ|(|φ⟩⟨ψ|)η⟩ =
= ⟨(|φ⟩⟨ψ|)η|ξ⟩

Definition 1.0.10 – Unitary operator

We say that U : H → H is unitary if ∀ |ψ⟩ , |φ⟩ ∈ H ⟨Uψ|Uφ⟩ = ⟨ψ|φ⟩

Proposition 1.0.11
The following properties are equivalent:

1. U is unitary

2. U∗U = Id

3. ∀ |ψ⟩ ∈ H ∥Uψ∥ = ∥ψ∥

7

Proof.
[1 ⇒ 2] It holds that ∀ |ψ⟩ |φ⟩ ∈ H, ⟨ψ|φ⟩ = ⟨Uψ|Uφ⟩ = ⟨U∗Uψ|φ⟩, so it must be U∗U = Id

[1 ⇒ 3] ∥Uψ∥ =
√

⟨Uψ|Uφ⟩ =
√
⟨ψ|ψ⟩ = ∥ψ∥

The left of the proof is left as an exercise to the reader

Remark 1.0.2. In the finite-dimension case, if {ej}j∈I is an ONB and U is unitary, then
{Uej}j∈I is also ONB

Definition 1.0.12 – Eigenvalues and eigenvectors

Let A be an operator on H. We say that a non-zero vector |ψ⟩ ∈ H is an eigenvector of A
with respect to to the eigenvalue λ ∈ C if A |ψ⟩ = λ |ψ⟩

We call σ(A) = {λ ∈ C | (A− λId) is not invertible} the spectrum of A

Remark 1.0.3. If λ is an eigenvalue for A, then λ ∈ σ(A). In the finite-dimensional case,
the viceversa is also true

Let A = A∗ and λ be an eigenvalue of A with eigenvector |ψ⟩. Then we get

⟨ψ|Aψ⟩

=

= ⟨ψ|λψ⟩ = λ ⟨ψ|ψ⟩ = λ∥ψ∥

⟨A∗ψ|ψ⟩ = ⟨Aψ|ψ⟩ = ⟨λψ|ψ⟩ = λ∥ψ∥

from which we deduce that λ ∈ R

Let U be a unitary operator and λ an eigenvalue of U with eigenvector |ψ⟩. Then we get ∥ψ∥ =
∥Uψ∥ = ∥λψ∥ = |λ|∥ψ∥ from which we deduce that |λ| = 1

Let A be a compact self-adjointed operator on H. Then A can be diagonalized with respect to
an ONB of H. If {λj}j∈I are the eigenvalues of A, then A =

∑
j,α λj |ej,α⟩ ⟨ej,α| for some ONB

{|ej,α⟩} (where the vectors of the basis are indicized on j and some other index α because A might
have some eigenvalues of multiplicity bigger than 1)

Definition 1.0.13 – Projection operator

A projection is an operator P : H → H such that P 2 = P . Let K be a subspace of H, then
if P (H) ⊂ K we say that P is a projection onto K

We say that P is an orthogonal projection if P 2 = P and P ∗ = P

Remark 1.0.4. If P is an orthogonal projection, then there exists an orthonormal set
{|ψj⟩}j∈I such that P =

∑
j |ψj⟩⟨ψj |. This is a consequence of the property of the pos-

sible eigenvalues of a projection (0 and 1) and the diagonal representation of self-adjointed

8

operators

Definition 1.0.14 – Commutator

Given two operators A,B : H → H, we call the commutator of A and B the operator
[A,B] = AB −BA.
A and B commute if and only if [A,B] = 0

Note that given A = A∗ and B = B∗ then (AB)∗ = AB if and only if A and B commute

Definition 1.0.15
Given an operator A we say that A is

• positive, if ∀ |ψ⟩ ∈ H ⟨ψ|Aψ⟩ ≥ 0

• strictly positive, if it’s positive and ⟨ψ|Aψ⟩ = 0 ⇐⇒ |ψ⟩ = 0

Definition 1.0.16 – Trace

We call trace operator the map A 7→ tr (A) =
∑
j ⟨ej |Aej⟩ for some {ej}j∈I ONB.

Note that this definition is independent on the choiche of the ONB.

Moreover, ∀A,B : H → H it holds tr (AB) = tr (BA)

9

2 | Quantum Mechanics

The theory of quantum mechanics was initialy developed at the beginning of the XX century by
physicists Heisenberg, Pauli, Weyl and Schrödinger.

For what concerns us, quantum mechanics gives a set of rules to compute probabilities associated
to events related to "measures", which practically can be something along the line of "the electron
will be located in some volume D ⊂ R3" or "the light ray will be polarized along some direction v⃗".

More precisely, we will not bother with the details of actual quantum mechanics in a physical world,
and we will only focus on the possible behaviours of a quantum computer, which we will formalize
and take for granted as a set of postulates . These postulates will have each their own physical
interpretation, but they can be seen as just a set of rules that we can use and must obey when
building quantum algorithms and quantum circuits.

The approach we will use to formalize quantum mechanics is the frequentist approach: every single
event will be random, but by repeating the same experiment over and over, the fraction of success
will approach the probability of success of the single random event.

We will see that many of the algorithms we will study are only probabilistic, which means that
the algorithm will only have a (hopefully high) probability of returning the correct result. It might
be the case that some algorithms will have to be ran multiple times in order to get the correct result
with sufficiently high probability. Still, most of the times this will be only a linear increase of the cost,
which will make those algorithms still faster than the corresponding classical algorithm used to solve
the same problem.

2.1 Postulates

First we’ll introduce some instruments from probability theory:

Definition 2.1.1
Given a discrete space of events Ω = {1, . . . , n} and a probability density (pj)

n
j=1 such that

pj ∈ [0, 1] and
∑n
j=1 pj = 1, we define the expected value of some function f : Ω → R as

Ep[f] =
n∑
j=1

pjf(j)

We’re now going to replace many of these concepts, and introduce four postulates that will be

10

the base of our formalization of quantum mechanics.

First, we note that f can be described as a vector (fj)
n
j=1 where fj = f(j). Then, we can re-

place the expected value with

Ep[f] =
n∑
j=1

pjfj =
[
(
√
pj)

n
j=1

]⊺ · F · (√pj)nj=1

for F = diag(f1, . . . , fn)

Definition 2.1.2 – Postulate 1

A quantum system is described as a Hilbert space H. Given H:

• an observable is any self-adjointed A : H → H, and represents a physically measurable
quantity of a quantym system

• a pure state is any |ψ⟩ ∈ H such that ∥ψ∥ = 1

When we say that the physical quantum system is in state |ψ⟩ we mean that for every
observable A, its quantum expected value ⟨A⟩|ψ⟩ is ⟨A⟩|ψ⟩ = ⟨ψ|Aψ⟩. In this case we call
|ψ⟩ the state vector.

We will identify the physical system with the Hilbert space H

The role of |ψ⟩ corresponds in a way to the role of (the square root of) the fixed probability
distribution p, and saying that the system is in a state |ψ⟩ corresponds to fixing a certain probability
over the space of events. We will see later that this correspondence between states and probability
distributions does not work as nicely as we would like (in particular for the interference that we will
describe later on).

A simple deduction is that | ⟨A⟩|ψ⟩ | ≤ ∥A∥. Note also that by the spectral theorem we also have
that any observable A can be diagonalized with an ONB (|ej,α⟩)j,α, that is A =

∑
j,α λj |ej,α⟩ ⟨ej,α|.

We can then rewrite the expected value of the observable as

⟨A⟩|ψ⟩ =
∑
j,α

λj ⟨ψ|ej,α⟩ ⟨ej,α|ψ⟩ =
∑
j,α

λj | ⟨ej,α|ψ⟩ |2

If we conseder as an observable the identity operator (which we will write as 1 but is also often
referred to as Id or 1) we get

⟨1⟩|ψ⟩ =
∑
α

1| ⟨eα|ψ⟩ |2 = ∥ψ∥2 = 1

Note also that for A,B observables and λ ∈ R, ⟨A+ λB⟩|ψ⟩ = ⟨A⟩|ψ⟩ + λ ⟨B⟩|ψ⟩

Definition 2.1.3 – Postulate 2

Suppose that a system is in state |ψ⟩ ∈ H and let A be an observable. The possible outcomes
of measuring the observable A are all the elements of σ(A).

11

For any possible result λ ∈ σ(A) the probability of measuring λ is

Pψ(λ) = ∥Pλψ∥2

where the operator Pλ : H → H denotes the orthogonal projection on EigA(λ) where

EigA(λ) = {|φ⟩ ∈ H | |Aφ⟩ = λ |φ⟩}

Remark 2.1.1. Note that Pλ is also an observable. We can rewrite the previous definition
as

Pψ(λ) = ∥Pλψ∥2 = ⟨Pλψ|Pλψ⟩ = (P ∗
λ = Pλ)

= ⟨ψ|PλPλψ⟩ = (P 2
λ = Pλ)

= ⟨ψ|Pλψ⟩ =
= ⟨Pλ⟩|ψ⟩

We can now see that two different states |ψ⟩ , |φ⟩ can be "physically" the same, in that they
can’t be physically distinguished by measurements. Two systems are physically indistinguishable if
|φ⟩ = eiα |ψ⟩ for some α ∈ R, called phase. The reason why they are indistinguishable is that there
is no observable A that can tell them apart, as two states that differ only by a phase give the same
expected value:

Proof.
[⇒] ⟨A⟩|ψ⟩ = ⟨ψ|Aψ⟩ = e−iα ⟨φ|Aφ⟩ eiα = ⟨φ|Aφ⟩ = ⟨A⟩|φ⟩
[⇐] left as an exercise to the reader

Definition 2.1.4 – Ray

We call a ray the set Rψ = {eiα |ψ⟩ |α ∈ R}, that is the states physically indistinguishible
from |ψ⟩, or more abstractly, the state |ψ⟩ up to a phase

Definition 2.1.5 – Superpositon

Let |ψ⟩ , |φ⟩ be states and a, b ∈ C such that a |ψ⟩ + b |φ⟩ is also a state (ie such that
∥a |ψ⟩+ b |φ⟩ ∥ = 1).
Such a state is called a quantum superposition of |ψ⟩ and |φ⟩

An important example of quantum superposition is the case where ⟨ψ|φ⟩ = 0, where we get that
a sufficient condition to obtain a superposition is |a|2 + |b|2 = 1.

For example 1√
2
|ψ⟩ + 1√

2
|φ⟩ is an example of a superposition. If the correspondence between

states and probabilities where to behave nicely, given that this state is a "convex combination" (keep
in mind that we redefined the expected value to use the square root of the probabilities) of the states
|ψ⟩ and |φ⟩, one would expect that this state would influence the behaviour of observables in a convex

12

combination way. Indeed, for classical probabilities, it holds:

Eαp1+(1−α)p2 [f] = αEp1 [f] + (1− α)Ep2 [f]

Sadly, it isn’t always as straightforward. Consider the case of a more generic superposition
√
α |ψ⟩+√

1− α |φ⟩. Then for an observable A we get

⟨A⟩√α|ψ⟩+√
1−α|φ⟩ =

〈√
αψ +

√
1− αφ

∣∣A(√αψ +
√
1− αφ)

〉
=

= α ⟨ψ|Aψ⟩+ (1− α) ⟨φ|Aφ⟩+
√
α(1− α)(⟨ψ|Aφ⟩+ ⟨ψ|Aφ⟩) =

= α ⟨ψ|Aψ⟩+ (1− α) ⟨φ|Aφ⟩+ 2
√
α(1− α)Re(⟨ψ|Aφ⟩)

interference term

This goes to show that a quantum superpositon state isn’t just a state composed of a set of states
where each has a certain probability of occurring, but something more complex. One can also notice
that the interference term appeared because we required no additional hypothesis on |ψ⟩, |φ⟩ and
A. In the case where we’re able to decompose the current state as a superposition states of an ONB
that diagonalizes A (which is also useful to calculate the probability of each possible outcome, since
this procedure uses a projection on eigenspaces) then the interference term disappears, because if |ψ⟩
and |φ⟩ are orthogonal eigenstates of A then |ψ⟩ and |Aφ⟩ remain orthogonal and the interference
term vanishes.

Proposition 2.1.6
Given a system H prepared in state |ψ⟩ ∈ H and given another state vector |φ⟩ ∈ H, we can
check if the system is in state |φ⟩ and the probability of this occurring is | ⟨φ|ψ⟩ |2

Proof. The observable we measure when querying if the system is in state |φ⟩ is the or-
thogonal projection A = |φ⟩⟨φ|, with eigenvalue 1 and 0 respectively corresponding to the
system being and not being in state |φ⟩. Note that being EigA(1) = Span(|φ⟩), P1 from the
definition of Postulate 2 coincides with A, and we get

Pψ(1) = by definition

= ∥P1(ψ)∥2 = by P1 = A

= ∥Aψ∥2 =

= ∥ |φ⟩ ⟨φ|ψ⟩ ∥2 =

= | ⟨φ|ψ⟩ |2∥ψ∥2

=1

=

= | ⟨φ|ψ⟩ |2

We’ve seen the quantum version of the expectation. We’ll introduce now the quantum version of
the standard deviation

13

Definition 2.1.7 – Uncertainty

The uncertainty of an observable A in a state vector |ψ⟩ is defined as

∆ψ(A) =

√〈
(A− ⟨A⟩|ψ⟩ Id)2

〉
|ψ⟩

The uncertainty can be rewritten as

∆ψ(A) =

√〈
(A− ⟨A⟩|ψ⟩ Id)2

〉
|ψ⟩

=

=

√〈
ψ
∣∣∣(A− ⟨A⟩|ψ⟩ Id)2ψ

〉
=

=

√〈
(A− ⟨A⟩|ψ⟩ Id)ψ

∣∣∣(A− ⟨A⟩|ψ⟩ Id)ψ
〉
=

= ∥(A− ⟨A⟩|ψ⟩ Id)ψ∥

An observable is sharp on a state |ψ⟩ id ∆ψ(A) = 0

Proposition 2.1.8
A is sharp on |ψ⟩ if and only if |ψ⟩ is an eigenvector of A

Proof.

∆ψ(A) = 0 ⇐⇒ ∥(A− ⟨A⟩|ψ⟩ Id)ψ∥ = 0

⇐⇒ A |ψ⟩ = ⟨A⟩|ψ⟩ |ψ⟩

Definition 2.1.9
A,B observables are compatible if [A,B] = 0. Compatible observables can be "measured at
the same time"

The meaning of "can be measured at the same time" is given by the following result

Proposition 2.1.10 – Heisenberg’s uncertainty principle

If A and B are not compatible, then ∀ |ψ⟩ state it holds

⟨i[A,B]⟩|ψ⟩ ≤ 2∆ψ(A)∆ψ(B)

In other words, we get a lower bound on the product of the standard deviation of measuring
A and B, which means we can’t measure them both precisely at the same time.

14

Proof. Observe that ∀K : H → H operator we can get K∗K which is a non-negative
operator, because ⟨ψ|K∗Kψ⟩ = ⟨Kψ|Kψ⟩ = ∥Kψ∥2 ≥ 0.

Pick K = A− iB which gives K∗ = A+ iB. Then we have

K∗K = (A+ iB)(A− iB) =

= A2 − iAB + iBA+B2 =

= A2 +B2 − i[A,B]

and we get
0 ≤ ⟨K∗K⟩|ψ⟩ =

〈
A2
〉
|ψ⟩ +

〈
B2
〉
|ψ⟩ − ⟨i[A,B]⟩|ψ⟩

which implies
⟨i[A,B]⟩|ψ⟩ ≤

〈
A2
〉
|ψ⟩ +

〈
B2
〉
|ψ⟩

Suppose we substitute A with A− Id ⟨A⟩|ψ⟩. The commutator would become

[A− Id ⟨A⟩|ψ⟩ , B] = [A,B]− ⟨A⟩|ψ⟩ [Id, B]

=0

so the left-hand side does not change, while on the right-handside,
〈
A2
〉
|ψ⟩ would become

∆ψ(A)
2. By applying the same substitution with B we get

⟨i[A,B]⟩|ψ⟩ ≤ ∆ψ(A)
2 +∆ψ(B)2

We can parametrize this inequality by replacing A with λA and B with B
λ for some variable

λ > 0, which yields the inequality

⟨i[A,B]⟩|ψ⟩ ≤ λ2∆ψ(A)
2 +

1

λ2
∆ψ(B)2

If we minimize the right-hand side with respect to λ we find that the minimum is reached for
λ2 =

∆ψ(B)
∆ψ(A) , which when substituted gives the thesis

Note that in the premise of Heisenberg’s uncertainty principle we required that A and B were not
compatible, though we didn’t use it in the proof. Indeed, the inequality also holds if A and B are
compatible, but it becomes much less interesting. Consider the following result:

Theorem 2.1.11
If [A,B] = 0 then there exists (ej)j ONB such that A and B are both diagonal

In the light of this result we gat that if A and B are compatible then they can be simultaneously
diagonalized. Suppose |ψ⟩ was an eigenstate of both A and B. Then the inequality becomes an
equality, and more precisely

0 = ⟨i[A,B]⟩|ψ⟩ ≤ 2∆ψ(A)∆ψ(B) = 0 · 0

where the first equality holds because [A,B] = 0

15

Example 2.1.12. Consider Heisenberg’s inequality on the space H = L2(R). We can define
a position operator Q such that (Qψ)(x) = x ·ψ(x), and a momentum operator P such that
(Pψ)(x) = −i ddxψ(x).

It is possible to prove that if ψ ∈ C1
c (R) then

[Q,P]ψ(x) = QPψ − PQψ =

= −ix d

dx
ψ(x) + i

d

dx
(xψ(x)) =

= iψ(x) =

= i(Idψ)(x)

Following the process in the Heisenberg’s inequality proof, we get

⟨ψ|ψ⟩
2

=
1

2
≤ ∆ψ(P)∆ψ(Q)

Which proves the more commonly known version of Heisenberg’s uncertainty principle, that
states that it’s impossible to measure precisely (in our terms, sharply) both position and
momentum at the same time

Definition 2.1.13 – Postulate 3

If a system is in state |ψ⟩ and we measure an observable A with outcome λ ∈ σ(A), then the
state after the measurement is described by |Pλψ⟩

∥Pλψ∥

Definition 2.1.14 – Postulate 4

If the system is closed (ie isolated) the evolution of a state |ψt⟩ from a time t0 to a time t1
is described by a unitary U(t0, t1) such that

|ψt1⟩ = U(t0, t1) |ψt0⟩

Postulate 4 gives us a restriction on the algorithms that we can build. Isolated quantum system
can evolve only according to unitary operators, which means that we cannot just apply any arbitrary
operator. One interesting consequence is that, because unitary operators are necessarily invertible,
quantum algorithms (composed only of quantum steps and no classical steps, that is "pure" quantum
algorithms) will always be invertible

Definition 2.1.15 – Hamiltonian

An observable H is the Hamiltonian of a system if U(t0, t1) = e−i(t1−t0)H

If we assume that H does not depend on t0, t1, we can write |ψt⟩ = e−itH |ψ0⟩, and by deriving
we get

∂

∂t
|ψt⟩ = −iH |ψt⟩

which is a different way of writing Schrödinger’s equation.

16

2.2 Mixed states

Given |φ0⟩ , |φ1⟩ states, we called (under certain hypotesis) |ψ⟩ = a |φ0⟩ + b |φ1⟩ a quantum super-
position, and we saw that some interference showed up in the expected value. We will now define
a type of state where this interference never shows up, an behaves more like a classical probability
upon possible states. For this we will introduce the density operator.

Definition 2.2.1 – Mixed states

A mixed state on a system H is described by any density operator ρ : H → H such that

• ρ is self-adjointed

• ρ is non-negative

• ρ has unit trace

We call D(H) = {ρ : H → H | ρ∗ = ρ, ρ ≥ 0, tr (ρ) = 1} the set of all the density operators
on H

Remark 2.2.1. The following properties on density operators hold:

• D(H) is a convex set

• If |ψ⟩ is a pure state, we can build ρ = |ψ⟩⟨ψ| ∈ D(H) which shows that every pure
state is (as in, it can be represented as) a mixed state. There are some mixed states
that aren’t pure. It holds that |ψ⟩⟨ψ| ∈ D(H) because

o ⟨φ|ρφ⟩ = ⟨φ|ψ⟩ ⟨ψ|φ⟩ = ⟨ψ|φ⟩ ⟨φ|ψ⟩ = ⟨ρφ|φ⟩
o tr (ρ) = ∥ψ∥2 = 1

• If |φ⟩ ∈ R|ψ⟩, then |φ⟩⟨φ| = |ψ⟩⟨ψ|

• If U is unitary, then ∀ρ ∈ D(H), UρU∗ is also a state

Theorem 2.2.2
Let dimH = n. Given ρ ∈ D(H)

1. ∃(pi)i with pi ∈ [0, 1],
∑
i pi = 1 and ∃(|ψi⟩)i ONB of H such that ρ =

∑
i pi |ψi⟩⟨ψi|

2. ρ2 ≤ ρ as quadratic forms. The equality holds if and only if ρ is pure, that is ρ = |ψ⟩⟨ψ|
for some |ψ⟩

3. ∥ρ∥ ≤ 1, and the equality holds if and only if ρ is pure

Proof. 1. By applying the spectral theorem to ρ we get ρ =
∑
j λj

∑
α |φj,α⟩ ⟨φj,α|

with σ(ρ) = {λj}.

17

Up to renumbering we can send |φj,α⟩ 7→ |ψi⟩, λj 7→ pi and get

1 = tr (ρ) =
∑
j

λjmj =
∑
i

pi mj = multiplicity of λj

Also pi ≥ 0 so pi ∈ [0, 1]

2. Since ρ =
∑
i pi |ψi⟩⟨ψi| we have

ρ2 =

(∑
i

pi |ψi⟩⟨ψi|

)(∑
i

pi |ψi⟩⟨ψi|

)
= because of orthonormality

=
∑
i

p2i |ψi⟩⟨ψi| ≤

=
∑
i

pi |ψi⟩⟨ψi| = ρ

Formally, ρ − ρ2 =
∑
i pi(1 − pi) |ψi⟩⟨ψi| which can be zero if and only if exactly one

of the pi = 1 and all the others are zero, that is if and only if ρ is pure

3. Left as an exercise

Let’s now see the four postulates we saw in the previous section, but with mixed states

Definition 2.2.3 – Postulate 1, with mixed states

If a system is in a mixed state ρ, given an observable A its expected value is ⟨A⟩ρ = tr (Aρ) =∑
i pi ⟨A⟩|ψi⟩

Note that by postulate 1, a mixed state on |ψ1⟩, |ψ2⟩ and a superposition of |ψ1⟩, |ψ2⟩ behave
extremely differently, and the mixed state behaves more like a classical probability

Definition 2.2.4 – Postulate 2, with mixed states

If the system is in the mixed state ρ, the probability of observing λ ∈ σ(A) is

Pρ(λ) = tr (Pλρ) =
∑
i

piPψi(λ)

Definition 2.2.5 – Postulate 3, with mixed states

After measuring λ ∈ σ(A), the state ρ collapses to

PλρPλ
Pρ(λ)

∈ D(H)

18

Remark 2.2.2. Say that A is measured but the outcome is not given to us. We can still
describe the system as

ρ̃ =
∑

λ∈σ(A)

Pρ(λ)
(
PλρPλ
Pρ(λ)

)

Definition 2.2.6 – Postulate 4, with mixed states

If the system is closed, it evolves from time t0 to time t1 according to an unitary operator
U(t0, t1) such that ρt0 7→ ρt1 = U(t0, t1)ρt0U(t0, t1)

The Schrödinger equation associated to H is

i∂tρt = Hρt − ρtH = [H, ρt]

The uncertainty of A over ρ is

∆ρ(A) =

√〈
(A− ⟨A⟩ρ)2

〉
ρ

If we represent ρ ∈ D(H) as ρ =
∑m
i=1 qi |φi⟩⟨φi|, with |φi⟩ state vectors (not necessarily

orthogonal), and ρ =
∑m
i=1 pi |ψi⟩⟨ψi| with (|ψi⟩)ni=1 ONB, we can find a relation between the two

decompositions. It holds that m ≥ n and exists U ∈ Cm×m unitary such that

√
qi |φi⟩ =

n∑
j=1

Uij
√
pj |ψj⟩

Note that despite U being of size m×m (which it has to be in order to be unitary), we only use a
submatrix of size m× n, so U is not unique

Hint of a proof. Start with Uij =
√

qi
pj

⟨φi|ψj⟩ for i = 1, . . . ,m and j = 1, . . . , n and

complete to m×m unitary

Remark 2.2.3. If ρ, ρ′ ∈ D(H) are such that ∀A observable it holds⟨A⟩ρ = ⟨A⟩ρ, then
ρ = ρ′

2.3 Spin

We know that electrons have an intrinsic property called spin. This is not an actual spinning motion,
but it’s useful to think of it like that, and more precisely as an axis of rotation.

We identify Spin with a vector in R3. We’re interested in being able to measure the spin’s com-
ponent along three axis with three observables that we will call Sx, Sy and Sz. From now on, we will
consider the Hilbert space H ∼= C2, that is n = 2.

19

We identify an ONB for H as |↑z⟩, |↓z⟩ (also called up and down). We will also use the nota-
tion |0⟩, |1⟩

Definition 2.3.1 – Pauli matrices

The Pauli matrices are

σx = σ1 =

(
0 1
1 0

)
σy = σ2 =

(
0 −i
i 0

)
σz = σ3 =

(
1 0
0 −1

)
We can build the operators Sx = 1

2σx, Sy = 1
2σy and Sz = 1

2σz

Note that |↑z⟩ and |↓z⟩ are eigenvectors for the observable Sz with eigenvalues 1
2 and − 1

2 respec-
tively, which explains the notation

Proposition 2.3.2
The following properties hold:

1. σ2
j = 1 and if j ̸= k then σjσk = iεjklσl where

• l is the missing index if j ̸= k and any value (it doesn’t matter) if j = k

• ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1 and εjkl = 0 for any other
combination of j, k, l

In one formula we can write σjσk = δjk1 + iεjklσl

2. [σj , σk] = σjσk − σkσj = 2iεjklσl

3. {σj , σk} = σjσk + σkσj = 2δjk1

4. σx, σy and σz are unitary

Example 2.3.3. Suppose a system is in state |0⟩ = |↑z⟩. What would happen after we
measure σz = 2Sz? From the postulates we expect that:

• the measurement is sharp

• the expected value is 1

• the system stays in state |0⟩ after the measurement

Let’s manually check.

⟨σz⟩|0⟩ = ⟨0|σz0⟩ = (1, 0)

(
1 0
0 −1

)(
1
0

)
= 1, so the expected value is indeed 1.

20

For the uncertainty we get

σz − ⟨σz⟩|0⟩ 1 =

(
1 0
0 −1

)
−
(
1 0
0 1

)
=

(
0 0
0 −2

)
⇒
(
σz − ⟨σz⟩|0⟩ 1

)2
=

(
0 0
0 4

)
⇒
〈
0

∣∣∣∣(σz − ⟨σz⟩|0⟩ 1
)2

0

〉
= (1, 0)

(
0 0
0 4

)(
1
0

)
= 0

so the measurement is indeed sharp.
Finally, because |0⟩ is an eigenstate, the system remains in that state.

Suppose we started with state |1⟩ instead of state |0⟩. The only thing that would change
is the expected value, which would now be −1.

Let’s say that starting with state |0⟩, we choose to measure σx instead of σz. Then, for

the expected value, we would get ⟨σx⟩|0⟩ = (1, 0)

(
0 1
1 0

)(
1
0

)
= 0.

For the uncertainty we have
(
σx − ⟨σx⟩|0⟩ 1

)2
= σ2

x =

(
1 0
0 1

)
which implies〈

0

∣∣∣∣(σx − ⟨σx⟩|0⟩ 1
)2

0

〉
= (1, 0)

(
1 0
0 1

)(
1
0

)
= 1.

The possible outcomes of this measurement are the eigenvalues of σx which are ±1,
each of which has a probability of occurring which we can compute via projection on the
eigenspaces.

The eigenstates of σx are 1√
2

(
1
1

)
= |↑x⟩ and 1√

2

(
1
−1

)
= |↓x⟩ respectively for the

eigenvalues 1 and −1. We can write these states with respect to the ONB {|0⟩ , |1⟩} as

|↑x⟩ =
1√
2
|0⟩+ 1√

2
|1⟩ , |↓x⟩ =

1√
2
|0⟩ − 1√

2
|1⟩

and equivalently

|0⟩ = 1√
2
|↑x⟩+

1√
2
|↓x⟩ , |1⟩ = 1√

2
|↑x⟩ −

1√
2
|↓x⟩

So to calculate the probability of measuring 1 from the state |0⟩ we take the coefficient of
the eigenstate corresponding to 1 in the expression for |0⟩ and square its modulus. The same
goes for the probability of measuring −1.

Suppose we decide to measure σz after we just measured σx. Let’s assume the system
started in state |0⟩ and when measuring σx we got the result 1, so now the system is in the
state 1√

2
|0⟩+ 1√

2
|1⟩.

If we measure σz in the current state, we have a probability of 1
2 of measuring |0⟩ and a

probability of 1
2 of measuring |1⟩, while previously the measurement was sharp!

Imagine we start in state |0⟩, measure σz (and obtain |0⟩), then measure σx and then again
σz. Because after σx we have that σz is not sharp anymore, the act of measuring σx possibly

21

changed a property that we already "knew" (as in, measured).

Notice that σz and σx do not commute, so they are not compatible and cannot be measured
at the same time

22

3 | Quantum Systems

3.1 Qubits

A classical bit can be imagined as a set {0, 1} where the possible states are 0 and 1. The equivalent
of a bit in a quantum system is a qubit, of which we give now a definition

Definition 3.1.1 – Qubit

We identify a qubit as a 2-dimensional quantum system defined by a Hilbert space H with ONB
{|0⟩ , |1⟩} and an observable σz with |0⟩ and |1⟩ as eigenstates, respectively with eigenvalues
1 and −1.

The possible states |0⟩ and |1⟩ correspond to the classical states 0 and 1, but w also have states
of the form

|ψ⟩ = a |0⟩+ b |1⟩ , where ∥a∥2 + ∥b∥2 = 1, a, b ∈ C

For this reason, a qubit contains much more information than a classical bit, but after a measure-
ment this additional information is lost.
Measuring a qubit means measuring σz, yielding either 1 or −1 after which the state will collapse
respectively in |0⟩ or |1⟩

3.1.1 Bloch sphere representation

Since ∥a∥2 + ∥b∥2 = 1, there exists angle α, β, θ such that

a = eiα cos
θ

2
, b = eiβ sin

θ

2

which means that up to a global phase, we can write |ψ⟩ = e−i
φ
2 cos θ2 |0⟩ + ei

φ
2 sin θ

2 |1⟩ for some
angles 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Note that since we’re interested in states up to a global phase,
we’re free to write |ψ⟩ = cos θ2 |0⟩+ eiθ sin φ

2 |1⟩ and "put all the phase on |1⟩".

We can uniquely identify (again up to a global phase) |ψ⟩ = |ψ⟩φ,θ as the point

sin θ cosφ
sin θ sinφ

cos θ

in S3 ⊂ R3. This representation is called the Bloch sphere representation

23

Definition 3.1.2

Given a qubit state |ψ⟩ we define n̂|ψ⟩ =

sin θ cosφ
sin θ sinφ

cos θ

 where θ, φ are the parameters that

represent |ψ⟩ in Bloch sphere representation

Figure 3.1: Bloch sphere representation for the state corresponding to θ = π
2 , φ = π

3

Note that this is not a bijection because for θ = 0 every choice of φ would end up in |0⟩, and for
θ = π every choice of φ would end up in |1⟩.

Fix a qubit state |ψ⟩. We would like to build an observable which has |ψ⟩ as an eigenvector.

Definition 3.1.3

Let a =

a1a2
a3

 ∈ R3. We define

a · σ =

3∑
k=1

akσk = a1σ1 + a2σ2 + a3σ3

With a ∈ R3 we identify the linear combination of the Pauli matrices given by

a · σ =

(
a3 a1 − ia2

a1 + ia2 −a3

)

24

Remark 3.1.1. It holds

(a · σ)(b · σ) =(a1σ1 + a2σ2 + a3σ3)(b1σ1 + b2σ2 + a3σ3) =

=(a1b1 + a2b2 + a3b3)1 + a1b2σ1σ2 + a1b3σ1σ3+

+ a2b1σ2σ1 + a2b3σ2σ3 + a3b1σ3σ1 + a3b2σ3σ2 =

=(a · b)1 + i(a1b2σ3 − a1b3σ2 − a2b1σ3 + a2b3σ1 + a3b1σ2a3b2σ1) =

=(a · b)1 + i [(a2b3 − a3b2)σ1 + (a3b1 − a1b3)σ2 + (a1b2a2b1)σ3] =

=(a · b)1 + i(a× b) · σ

Notice that we get

n̂|ψ⟩ · σ =

(
cos θ sin θ cosφ− i sin θ sinφ

sin θ cosφ+ i sin θ sinφ − cos θ

)
=

=

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
The operator n̂|ψ⟩ ·σ is exactly the operator we were looking for, as |ψ⟩ is an eigenvector for n̂|ψ⟩ ·σ,
because: (

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)(
e−i

φ
2 cos θ2

ei
φ
2 sin θ

2

)
=

(
e−i

φ
2 cos θ cos θ2 + e−i

φ
2 sin θ sin θ

2

ei
φ
2 sin θ cos θ2 − ei

φ
2 cos θ sin θ

2

)
=

=

(
e−i

φ
2 (cos θ cos θ2 + sin θ sin θ

2)

ei
φ
2 (sin θ cos θ2 − cos θ sin θ

2)

)
=

=

(
e−i

φ
2 cos

(
θ − θ

2

)
ei
φ
2 sin

(
θ − θ

2

)) =

= |ψ⟩

Similarly,
∣∣↓n̂|ψ⟩

〉
=

(
e−i

φ
2 cos θ2

−ei
φ
2 sin θ

2

)
is an eigenvector with eigenvalue −1

Now that we’ve seen pure states in the context of qubits, we’ll now discuss mixed states.

A mixed state is described by a density operator, that is an operator ρ : H → H that satisfies

1. ρ = ρ∗

2. tr (ρ) = 1

3. ρ ≥ 0

In dimension n = 2, a density operator is described by a matrix ρ =

(
a b
c d

)
satisfying (1.), (2.)

and (3.). As (1.) implies a, d ∈ R, b = c and (2.) implies a + d = 1, we can describe ρ with three
real parameters x1, x2, x3 ∈ R by

a =
1 + x3

2
, d =

1− x3
2

, b =
x1 + ix2

2
, c =

x1 − ix2
2

25

which yields

ρ =
1

2

(
1 + x3 x1 + ix2
x1 − ix2 1− x3

)
To satisfy (3.) we need to find the eigenvalues of ρ, so

(1 + x3 − 2λ)(1− x3 − 2λ)− (x1 − ix2)(x1 + ix2) = 0

⇓
(1− 2λ)2 − x23 = x21 + x22

⇓
(1− 2λ)2 = ∥x∥22

⇓

λ =
1± ∥x∥22

2

so we get ρ ≥ 0 ⇐⇒ λ ≥ 0 ⇐⇒ ∥x∥2 ≤ 1. This means that we can represent any mixed
state ρ in dimension n = 2 with a vector x ∈ R3 inside the unitary disk. This gives a representation
corresponding to the Bloch sphere, and indeed we have the following remarks

Remark 3.1.2.

ρ =
1

2

[(
1 0
0 1

)
+ x1

(
0 1
1 0

)
+ x2

(
0 −i
i 0

)
+ x3

(
1 0
0 −1

)]
=

=
1

2
[1 + x1σx + x2σy + x3σz] =

=
1

2
[1 + x · σ]

Remark 3.1.3. ρ is pure if and only if it’s represented by a point on the sphere (ie ∥x∥ = 1)

Proof. We know that ρ is pure if and only if ρ2 = ρ so

ρ2 =

(
1

2
[1 + x · σ]

)
=

=
1

4
(1 + (x · σ)(x · σ) + 2x · σ) = (a · σ)(b · σ) = (a · b)1 + i(a× b) · σ

=
1

4
(1 + ∥x∥221 + 2x · σ) =

=
1

2

(
1 + ∥x∥22

2
1 + x · σ

)
so ρ2 = ρ ⇐⇒ ∥x∥2 = 1

Remark 3.1.4. For j = 1, 2, 3 it holds tr (ρxσj) = xj

26

Proof.

tr (ρxσj) = tr
(
1

2
(1 + x · σ)σj

)
=

=
1

2
tr (σj + (x · σ)σj) =

=
1

2
tr (σj)

=0

+
1

2
tr ((x · σ)(ej · σ)) =

=
1

2
tr (x · ej1 + i(x× ej) · σ) =

=
1

2
tr (xj1)
=2xj

+
1

2
i

3∑
k=1

tr ((x× ej)kσk)

=0

=

= xj

3.1.2 Operators on qubits
We now want to study unitary operators on H

Example 3.1.4. Let A be an operator on H, then we also have eA =
∑∞
k=0

Ak

k! . Suppose
that A2 = 1, then ∀α ∈ R we have

eiαA = 1 + iαA− 1

2
α21 − 1

3!
iα3A+ . . .

= cos(α)1 + i sin(α)A

Definition 3.1.5
Let n̂ ∈ R3 be a unit vector and α ∈ R. We define the rotation around n̂ of an angle α

2 as
the operator Dn̂(α) = e−i

α
2 n̂·σ.

This is called the spin operator.

Note that much like in the example, (n̂ · σ)2 = (n̂ · n̂)
=1

1 + i(n̂× n̂)

=0

· σ = 1, and we get the

following properties

Proposition 3.1.6

1. Dn̂(α) = e−i
α
2 n̂·σ = cos

(
α
2

)
1 − i sin

(
α
2

)
n̂ · σ

2. Dn̂(α)
∗ = Dn̂(−α)

3. Dn̂(α)Dn̂(α)
∗ = 1, so Dn̂(α) is unitary

27

4. Dn̂(α)Dn̂(β) = Dn̂(α+ β), because

Dn̂(α)Dn̂(β) =
[
cos
(α
2

)
1 − i sin

(α
2

)
n̂ · σ

] [
cos

(
β

2

)
1 − i sin

(
β

2

)
n̂ · σ

]
=

=cos
(α
2

)
cos

(
β

2

)
1 − sin

(
β

2

)
sin

(
β

2

)
1−

− i

[
cos
(α
2

)
sin

(
β

2

)
+ sin

(α
2

)
cos

(
β

2

)]
n̂ · σ =

=cos

(
α+ β

2

)
1 − i sin

(
α+ β

2

)
n̂ · σ =

=Dn̂(α+ β)

Lemma 3.1.7
Let U be a unitary operator on H, then ∃α, β, γ, δ ∈ R such that the matrix of U with respect
to the ONB {|0⟩ , |1⟩} is

U = eiα

(
e−i

β+δ
2 cos

(
γ
2

)
−e−i

δ−β
2 sin

(
γ
2

)
ei
β−δ
2 sin

(
γ
2

)
ei
β+δ
2 cos

(
γ
2

))

Hint of a proof. Write U =

(
a b
c d

)
∈ C2 and impose UU∗ = 1. This is written in

matrix form as (
a b
c d

)(
a c

b d

)
=

(
1 0
0 1

)
which is equivalent to the following system

|a|2 + |b|2 = 1

ac+ bd = 0

|c|2 + |d|2 = 1

from which is possible to find a set of angles that gives the thesis

Lemma 3.1.8
Let U be a unitary operator on H, then ∃α, β, γ, δ such that

U = eiαDẑ(β)Dŷ(γ)Dẑ(δ)

that is we can express U as a composition of rotations using only rotations around ẑ and ŷ

28

Proof. Remember that

Dẑ(β) = cos

(
β

2

)
1 − i sin

(
β

2

)
σz =

(
cos β2 − i sin β

2 0

0 cos β2 + i sin β
2

)
Dŷ(γ) = cos

(γ
2

)
1 − i sin

(γ
2

)
σy =

(
cos β2 − sin β

2

sin β
2 cos β2

)
If you explicit the product eiαDẑ(β)Dŷ(γ)Dẑ(δ) with the matrices we’ve just written, you
get the representation given by the previous lemma

Lemma 3.1.9
Let U be a unitary operator on H, then there exists operators A,B,C on H and α ∈ R such
that

• ABC = 1

• U = eiαAσxBσxC

Hint of a proof. We know that U = eiαDẑ(β)Dŷ(γ)Dẑ(δ). If we take

A = Dẑ(β)Dŷ

(γ
2

)
B = Dŷ

(
−γ
2

)
Dẑ

(
−β + δ

2

)
C = Dẑ

(
δ − β

2

)
It’s clear that ABC = 1. For the second point we get

AσxBσxC = Dẑ(β)Dŷ

(γ
2

)
σxDŷ

(
−γ
2

)
Dẑ

(
−β + δ

2

)
σxDẑ

(
δ − β

2

)
=

= Dẑ(β)Dŷ

(γ
2

)
σxDŷ

(
−γ
2

)
1

=σxσx

Dẑ

(
−β + δ

2

)
σxDẑ

(
δ − β

2

)
=

= Dẑ(β)Dŷ

(γ
2

)
σxDŷ

(
−γ
2

)
σx

Dŷ(γ2)

σxDẑ

(
−β + δ

2

)
σx

Dẑ(β+δ2)

Dẑ

(
δ − β

2

)
=

= Dẑ(β)Dŷ(γ)Dẑ(δ)

Note that the substitutions on the last step hold specifically because σx =

(
0 1
1 0

)
and that

we’re using Dŷ and Dẑ. This would need a rigorous proof which is left as an exercise to the
reader, and that’s the reason why this is only a hint of a proof

29

Lemma 3.1.10
Let U be a unitary operator on H, then there exist α, ξ ∈ R angles and n̂ ∈ R3 unit vector
such that U = eiαDn̂(ξ)

Hint of a proof. Use the representation from the first lemma and split the matrix as U =
c01+ c1σx + c2σy + c3σz and deduce the coordinates of n̂ and ξ from {ci}3i=0. This is not a
difficult proof, but it is a long one

Proposition 3.1.11
Let A be an operator on H, then there exist z0, z1, z2, z3 ∈ C such that A = z01+z ·σ where

z =

z1z2
z3

 ∈ C3. If A is also unitary, then |z0|2 + ∥z∥22 = 1

Proof. Write A =

(
a b
c d

)
=

(
z0 + z3 z1 − iz2
z1 + iz2 z0 − z3

)
∈ C2×2, from which we get

z0 =
a+ d

2
, z1 =

b+ c

2
, z2 = i

b− c

2
, z3 =

a− d

2

If A is unitary, then A = eiαDn̂(ξ) from which we can deduce |z0|2 + ∥z∥22 = 1

3.1.3 Hadamard operator

Definition 3.1.12 – Hadamard operator

The Hadamard operator is H = σx+σz√
2

= 1√
2

(
1 1
1 −1

)
as written in matrix form with respect

to {|0⟩ , |1⟩}

Remark 3.1.5. H |0⟩ = |0⟩+|1⟩√
2

and H |1⟩ = |0⟩−|1⟩√
2

. It also holds H2 = 1.

The decomposition of H in rotations is H = ei
3
2πDẑ(0)Dŷ

(
π
2

)
Dẑ(−π)

3.2 Composite systems

If a classical bit can be represented with the set {0, 1}, where the possible states are 0 and 1, a
classical system of bits can be represented with the set {0, 1}n, where the possible states are the
binary strings of length n.

In a similar fashion, we can combine different qubits (each of which is represented with the Hilbert
space H ∼= C) to obtain a collection of qubits, that we will call quantum system. The way we will

30

combine Hilbert spaces to obtain a quantum system is via the tensor product. Suppose we have a
qubit that we will call A, identified by a Hilbert space that we will call HA, and a qubit B identified
by its space HB , then we will call the combined system of the two qubits HAB = HA ⊗HB , which
we will now define formally.

Given a joint probability ρ ∈ D(HAB) of HAB , we would like to be able to compute the marginal
probabilities on HA and HB , ρA ∈ D(HA) and ρB ∈ D(HB) (called reduced states)

Definition 3.2.1

Given (HA, ⟨·|·⟩H
A

) and (HB , ⟨·|·⟩H
B

) two Hilbert spaces with the respective scalar products,
we define ∀ |φ⟩ ∈ HA, |ψ⟩ ∈ HB the functional |φ⟩ ⊗ |ψ⟩ given by

|φ⟩ ⊗ |ψ⟩ : HA ⊗HB C
(ξ, η) ⟨ξ|φ⟩ ⟨ψ|η⟩

The following properties hold:

• |φ⟩ ⊗ |ψ⟩ (ξ + ξ′, η) = |φ⟩ ⊗ |ψ⟩ (ξ, η) + |φ⟩ ⊗ |ψ⟩ (ξ′, η)

• |φ⟩ ⊗ |ψ⟩ (aξ, η) = a |φ⟩ ⊗ |ψ⟩ (ξ, η)

so |φ⟩ ⊗ |ψ⟩ is a biantilinear functional on HA ×HB

Definition 3.2.2
To lighten the notation, we will sometimes use the following notations equivalently

|φ⟩ ⊗ |ψ⟩ = |φ⊗ ψ⟩ = |φ,ψ⟩ = |φ⟩ |ψ⟩ = |φψ⟩

Definition 3.2.3 – Tensor product

The tensor product of two Hilbert spaces HA and HB is defined as

HA ⊗HB = {Φ : HA ×HB → C biantilinear}

Remark 3.2.1.

1. HA ⊗HB is a complex vector space

2. If {|ei⟩}i=1,...,nA and {|fj⟩}j=1,...,nB are ONBs for HA and HB respectively, then {|ei⟩⊗
|fj⟩}i=1,...,nA//j=1,...,nB is a basis for HA⊗HB . It is also an ONB, but we haven’t yet
defined a scalar product over the tensor product

3. dimHA ⊗HB = dimHA · dimHB

Proof.

2. If ξ ∈ HA, η ∈ HB then we can write ξ =
∑
i ⟨ei|ξ⟩

HA |ei⟩ and η =
∑
j = ⟨fj |η⟩H

B

|fj⟩.

31

We can decompose a biantilinear map Ψ as

Ψ(ξ, η) =
∑
i

∑
j

ξiηjΨij

where ξiηj = ⟨ξ|ei⟩H
A

⟨ηj |fj⟩H
B

= |ei⟩ ⊗ |fj⟩ (ξ, η), so

Ψ(ξ, η) =
∑
i

∑
j

Ψij |ei⟩ ⊗ |fj⟩ (ξ, η)

which means that {|ei⟩ ⊗ |fj⟩}i,j generate the tensor product. It remains to show that
they are linearly independent.
If you pick ξ = eh and η = fk, then

|ei⟩ ⊗ |fj⟩ = δihδjk

which, with some linear algebra, shows the linear independence

Definition 3.2.4

Given the tensor product HA ⊗ HB , we define a scalar product ⟨·|·⟩H
A⊗HB on this space

defined on the canonical basis as

∀φ1, φ2 ∈ HA, ψ1, ψ2 ∈ HB , ⟨φ1 ⊗ ψ1|φ2 ⊗ ψ2⟩H
A⊗HB

= ⟨φ1|φ2⟩H
A

⟨ψ1|ψ2⟩H
B

and extended by linearity on the whole tensor product

Remark 3.2.2. If {|ei⟩}, {|fj⟩} are ONBs on HA and HB respectively, then {|ei⟩ ⊗ |fj⟩} is
indeed an ONB, and we can write the scalar product as

⟨Ψ|Φ⟩H
A⊗HB

=
∑
i,j

ΨijΦij = tr (M∗
ΨMΦ)

where MΨ = (Ψij)ij ∈ CnA×nB .

The norm on the tensor product induced by the scalar product satisfies

∥ |φ⟩ ⊗ |ψ⟩ ∥HA⊗HB = ∥φ∥HA∥ψ∥HB

The definition of tensor product of two Hilbert spaces can be generalized to a tensor product of
n Hilbert spaces, where

|φ1⟩ ⊗ · · · ⊗ |φn⟩ : HA1 × · · · ×HAn → C

(ξ1, . . . , ξn) 7→
n∏
i=1

⟨ξi|φi⟩H
Ai

Note that setwise, (HA ⊗HB)⊗HC ̸= HA ⊗HB ⊗HC , but they are isomorphic as Hilbert spaces.

32

It’s also important to notice that in general HA ⊗ HB ̸= HA ⊗ HB . They, too, are isomorphic as
Hilbert spaces, but in the future the order of qubits (and hence the Hilbert spaces representing them)
will be important.

Example 3.2.5. Take HA = HB = C2 with ONBs {|0⟩H
A

, |1⟩H
A

} and {|0⟩H
B

, |1⟩H
B

}.
Then HA ⊗HB ∼= C4 with ONB given by

|0⟩H
A

⊗ |0⟩H
B

= |00⟩ = |0⟩

|0⟩H
A

⊗ |1⟩H
B

= |01⟩ = |1⟩

|1⟩H
A

⊗ |0⟩H
B

= |10⟩ = |2⟩

|1⟩H
A

⊗ |1⟩H
B

= |11⟩ = |3⟩

Any Ψ ∈ HA ⊗HB can be written as Ψ = Ψ00 |00⟩+Ψ01 |01⟩+Ψ10 |10⟩+Ψ11 |11⟩ and
can be representet either as a matrix in C2×2 or a vector in C4

Ψ 7→
(
Ψ00 Ψ01

Ψ10 Ψ11

)
7→

Ψ00

Ψ01

Ψ10

Ψ11

In this correspondence we have

|00⟩ 7→

1
0
0
0

 , |01⟩ 7→

0
1
0
0

 , |10⟩ 7→

0
0
1
0

 , |11⟩ 7→

0
0
0
1

Notice that if you take a number x ∈ {0, . . . , 3} and express it in binary digits x = (x1x0)
with le least significant digit being on the right (that is, formally x = 2x1 + x0), then in
the correspondence we have |x1x0⟩ 7→ ex+1. This is a useful fact that will allow us to use a
simpler notation of |x⟩ instead of writing x explicitly in binary digits

Definition 3.2.6 – Computational basis of n-fold tensor product of qubits

Given Hn = C2 ⊗ · · · ⊗ C2

n times

with dimHn = 2n, the computational basis of Hn is defined as

{|s⟩}s∈{0,1}n , where s = (xn−1 . . . x1x0) with xi ∈ {0, 1} and |s⟩ being a short representation
for |s⟩ = |xn−1⟩ ⊗ · · · ⊗ |x0⟩. It can be proven by induction that the computational basis is
an ONB

Definition 3.2.7 – Qubit system notation

We already know the meaning of |b⟩ if b is a binary digit.
Given s ∈ {0, . . . , 2n−1}, and given its representation s = (xn−1 . . . x0) in binary digits (that

33

is, s =
∑n−1
i=0 2ixi), we will use both |s⟩ and |xn−1 . . . x0⟩ to represent the state

|s⟩ = |xn−1 . . . x0⟩ = |xn−1⟩ ⊗ · · · ⊗ |x0⟩

of the computational base.
We will sometimes add a superscript to the state just to make its dimension explicit, as using
the notations above can obscure the actual dimension of the system. For example,

|0⟩2 = |0⟩ ⊗ |0⟩ ∈ H2, |0⟩3 = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ∈ H3, |0⟩n = |0⟩ ⊗ · · · ⊗ |0⟩ ∈ Hn

The computational basis is the main basis we will use when building circuits and for measurements,
but this is not the only possible basis we could use. Another possible choice is the Bell basis, that is
the one given by the following Bell states

Definition 3.2.8 – Bell states

The Bell states are the following

∣∣Φ+
〉
=

|00⟩+ |11⟩√
2

,
∣∣Φ−〉 = |00⟩ − |11⟩√

2∣∣Ψ+
〉
=

|01⟩+ |10⟩√
2

,
∣∣Ψ−〉 = |01⟩ − |10⟩√

2

Indeed one can check that the Bell states form an ONB for H2

3.2.1 States and observables for composite systems

Definition 3.2.9 – Postulate for composite systems

Given a system represented by HA, HB , the composite system is represented by HA ⊗HB .

Pure states in the composite system are represented by |ψ⟩ ∈ HA ⊗HB with ∥ψ∥ = 1.
Mixed states are represented by ρ ∈ D(HA ⊗HB), that is:

• ρ : HA ⊗HB → HA ⊗HB linear

• ρ = ρ∗

• ρ ≥ 0

• tr (ρ) = 1

The mixed state ρ ∈ D(HA⊗HB) can be written as ρ =
∑
s,s′∈{0,1}n ρs,s′ |s⟩⟨s′| and represented

by the density matrix (ρs,s′)s,s′ ∈ C2n×2n .

We can consider |ψ⟩ = |00⟩ ∈ H2, which is a pure state. If we consider it as a mixed state, the
reduced states on each qubit are |0⟩ and |0⟩.

If we consider |ψ⟩ = |Ψ+⟩ = |01⟩+|10⟩√
2

thought, the situation on the reduced states is not so clear.

34

We’re tempted to say that the reduced state on each qubit is the pure state |0⟩+|1⟩√
2

, but the correct
interpretation is actually the mixed state 1

2 |0⟩⟨0|+
1
2 |1⟩⟨1|. We will now introduce some instruments

that we will need to define the partial trace, which is exactly the tool that we need to define the
state of a subregister given a composite system, and will explain why the answare is the mixed state
1
2 |0⟩⟨0|+

1
2 |0⟩⟨0|

October 26th, 2022
Let’s build a particular observable on HA⊗HB . LetMA : HA → HA self-adjoint andMB : HB → HB
self-adjoint.
We can define the linear map MA ⊗MB : HA ⊗HB → HA ⊗HB on the canonical base by sending
the element |ψ⟩ ⊗ |φ⟩ → |MAψ⟩ ⊗ |MBφ⟩ and extending it by linearity (the verification that this is
indeed a well defined linear map is left as an exercise to the reader).

This linear map is self-adjoint, hence an observable. This is because

⟨η ⊗ ξ|MA ⊗MBψ ⊗ φ⟩H
A⊗HB

= ⟨η|MAψ⟩H
A

⟨ξ|MBφ⟩H
B

=

= ⟨MAη|ψ⟩H
A

⟨MBξ|φ⟩H
B

=

= ⟨MA ⊗MBη ⊗ ξ|ψ ⊗ φ⟩H
A⊗HB

Remark 3.2.3. Remember that given {|ei⟩} and {|fj⟩} ONBs for HA and HB then
{|ei ⊗ fj⟩} is and ONB for HA ⊗HB .

In this basis, the observable MA⊗MB is represented by a matrix in C(nAnB)×(nAnB) given
by the Kronecker product of the two matrices representingMA andMB in the respective basis.

The two matrices representing MA and MB are

(MA
ik)i,k=1,...,nA = (⟨ei|MAek⟩) ∈ CnA×nA

(MB
jl)j,l=1,...,nB = (⟨ej |MAel⟩) ∈ CnB×nB

and the Kronecker product is given by MA
11M

B . . . MA
1nAM

B

...
...

MA
nA1M

B . . . MA
nAnAM

B

 ∈ C(nAnB)×(nAnB)

Example 3.2.10. Consider the case HA = HB = C2 (so HA ⊗HB = C2 ⊗ C2).
Some possible operators expressed in matrix form are

σx ⊗ σx =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

35

which acts by sending

|00⟩ 7→ σx ⊗ σx |00⟩ = |11⟩
|01⟩ 7→ σx ⊗ σx |01⟩ = |10⟩
|10⟩ 7→ σx ⊗ σx |10⟩ = |01⟩
|11⟩ 7→ σx ⊗ σx |11⟩ = |00⟩

Also

σz ⊗ σz =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

which acts by sending

|00⟩ 7→ σx ⊗ σz |00⟩ = |00⟩
|01⟩ 7→ σx ⊗ σz |01⟩ = − |01⟩
|10⟩ 7→ σx ⊗ σz |10⟩ = − |10⟩
|11⟩ 7→ σx ⊗ σz |11⟩ = |11⟩

In general, with a bit of an abuse of notation on the indices of the Kronecker product matrix, we
have (

MA ⊗MB
)
(i,j)(l,k)

= ⟨ei ⊗ fj |MA ⊗MBek ⊗ fl⟩ =

=
〈
ei
∣∣MAek

〉 〈
fj
∣∣MBfl

〉
=

=MA
ikM

B
jl

The index (i, j)(l, k) actually means ((i − 1)nB + j, (k − 1)nB + l), but by writing the Kronecker
product in block form, the double indices (i, j)(l, k) end up being more useful as they specify which
block, and then the coordinates inside that block.

Note that quite surprisingly, the observables σx ⊗ σx and σz ⊗ σz commute, because

(σx ⊗ σx)(σz ⊗ σz) |φ⊗ ψ⟩ = (σx ⊗ σx) |σzφ⊗ σzψ⟩ =
= |(σxσzφ)⊗ (σxσzψ)⟩ =
= (σxσz)⊗ (σxσz) |φ⊗ ψ⟩

(σz ⊗ σz)(σx ⊗ σx) |φ⊗ ψ⟩ = (σz ⊗ σz) |σxφ⊗ σxψ⟩ =
= |(σzσxφ)⊗ (σzσxψ)⟩ =
= (σzσx)⊗ (σzσx) |φ⊗ ψ⟩

and since σxσz = iσy and σxσz = −iσy we get

(σx ⊗ σx)(σz ⊗ σz) = (−iσy)⊗ (−iσy) =
= (iσy)⊗ (iσy) =

= (σz ⊗ σz)⊗ (σx ⊗ σx)

36

Since they commute they can be simultaneously diagonalized. In fact, the basis that diagonalizes
them both is Bell’s basis, which is composed of eigenvectors of both. The eigenvalues are

(σx ⊗ σx)
∣∣Φ±〉 = σx ⊗ σx |00⟩ ± σx ⊗ σx |11⟩√

2
=

=
|11⟩ ± |00⟩√

2
= ±

∣∣Φ±〉
(σz ⊗ σz)

∣∣Φ±〉 = σz ⊗ σz |00⟩ ± σz ⊗ σz |11⟩√
2

=

=
|00⟩ ± |11⟩√

2
=
∣∣Φ±〉

(σx ⊗ σx)
∣∣Ψ±〉 = σx ⊗ σx |01⟩ ± σx ⊗ σx |10⟩√

2
=

=
|10⟩ ± |01⟩√

2
= ±

∣∣Ψ±〉
(σz ⊗ σz)

∣∣Ψ±〉 = σz ⊗ σz |01⟩ ± σz ⊗ σz |10⟩√
2

=

=
− |01⟩ ∓ |10⟩√

2
= −

∣∣Ψ±〉

by measuring simultaneously (σx ⊗ σx) and (σz ⊗ σz) we can detect in which of the Bell states
the system is, where the correspondence is given by the following table

σz ⊗ σz

σx ⊗ σx 1 −1

1 |Φ+⟩ |Φ−⟩

−1 |Ψ+⟩ |Ψ−⟩

By the postulates, the expectation of MA ⊗ MB on the mixed state ρ ∈ D(HA ⊗ HB) is
tr ((MA ⊗MB)ρ). If we represent ρ with a density matrix with respect to the ONB {|ei ⊗ fj⟩}, then
we get

tr ((MA ⊗MB)ρ) =
∑

i=1...nA
j=1...nB

⟨ei ⊗ fj |MA ⊗MBρei ⊗ fj⟩ =

=
∑
i,j

〈
MAei ⊗MBfj

∣∣∣∣∣∣
∑
k,l

|ek ⊗ fl⟩ ρ(k,l)(i,j)

〉
=

=
∑
i,j,k,l

⟨MAei ⊗MBfj |ek ⊗ fk⟩ ρ(k,l)(i,j) =

=
∑
i,j,k,l

⟨MAei|ek⟩ ⟨MBfj |fl⟩ ρ(k,l)(i,j)

37

For example, if we take MB = 1B we get

tr ((MA ⊗ 1B)ρ) =
∑
i,j,k,l

⟨MAei|ek⟩ δjlρ(k,l)(i,j) =

=

nA∑
i,k=1

⟨MAei|ek⟩
nB∑
j=1

ρ(k,j)(i,j)

Notice that tr (ρ) =
∑nA
i=1

∑nB
j=1 ρ(i,j)(i,j).

We can now define the partial trace

Definition 3.2.11 – Partial trace

Let M : HA ⊗ HB → HA ⊗ HB be a linear operator. We define the partial trace on B,
trB (ρ) : HA → HA as the only linear operator LA : HA → HA that satisfies

∀K : HA → HA, tr
(
KLA

)
= tr ((K ⊗ 1B)M)

Similarly we can define trA (M) : HB → HB

Explicitly (by repeating the same calculations we’ve done previously) we get

trA (M) =

nA∑
i,k=1

|ei⟩⟨ek|

 nB∑
j=1

⟨ei ⊗ fj |Mek ⊗ fj⟩
=M(i,k)(k,j)

trB (M) =

nB∑
j,l=1

|fj⟩⟨fl|

(
nA∑
i=1

⟨ei ⊗ fj |Mei ⊗ fl⟩

)

To show that the definition is well posed, that is LA is actually unique, suppose that LA and L̃A are
such that ∀K, tr

(
KLA

)
= tr

(
KL̃A

)
. Then we get tr

(
K(LA − L̃A)

)
= 0. It can be proved that

the map (K,C) 7→ tr (KC) defines a scalar product (see Frobenius inner product), the fact that ∀K,
tr
(
K(LA − L̃A)

)
= 0 implies that LA − L̃A = 0, hence LA is actually unique.

Proposition 3.2.12
The following properties hold

1. ∀M,N operators, ∀λ ∈ C, it holds trA (M + λN) = trA (M) + λtrA (N).
More generally ∀K : HB → HB , trA ((1A ⊗K)M) = KtrA (M)

2. If M is self-adjoint and non-negative, then trA (M) is also self-adjoint and non-negative

3. tr
(
trA (M)

)
= tr (M)

Similar properties also hold for trB (·)

In particular, given ρ ∈ D(HA⊗HB) we have trA (ρ) = ρB ∈ D(HB) and trB (ρ) = ρA ∈ D(HA)
which are the reduced density operators.

38

Exercise 3.2.13. Prove that if M : HA ⊗ HB ⊗ HC → HA ⊗ HB ⊗ HC , then trAB (M) =
trA
(
trB (M)

)
, where trAB (M) is defined by intepreting the tensor product HA ⊗ HB ⊗ HC as

(HA ⊗HB)⊗HC

Exercise 3.2.14. Prove that if UB : HB → HB is unitary then

∀M, trB (M) = trB
(
(1A ⊗ UB)M(1A ⊗ UB)∗

)
Example 3.2.15. Let HA = HBC2, let’s compute trB (|Φ+⟩⟨Φ+|).

trB
(∣∣Φ+

〉〈
Φ+
∣∣) = trB

(
|00⟩+ |11⟩√

2

⟨00|+ ⟨11|√
2

)
=

=
1

2

[
trB (|00⟩⟨00|) + trB (|00⟩⟨11|) + trB (|11⟩⟨00|) + trB (|11⟩⟨11|)

]
=

=
1

2
[|0⟩⟨0|+ |1⟩⟨1|] =

=
1

2
1A

Note that this is not a pure state!

October 28th, 2022

3.3 Entanglement

As we know, given the systems HA and HB we can build the composite system HA⊗HB . If we take
|φ⟩ ∈ HA and |ψ⟩ ∈ HB we can obtain the state |φ⟩ ⊗ |ψ⟩ ∈ HA ⊗ HB , but not every state in the
tensor product HA ⊗HB can be represented as |φ⟩ ⊗ |ψ⟩ for some |φ⟩ ∈ HA and |ψ⟩ ∈ HB .

Example 3.3.1. Let’s consider Bell’s states in a two-qubit composite system, that is
HA = HB = C2.

Suppose there existed two states |φ⟩ ∈ HA, |ψ⟩ ∈ HB such that |φ⟩ ⊗ |ψ⟩ = |Φ+⟩.
If that was the case, we could write with respect to the computational base

|φ⟩ = φ0 |0⟩+ φ1 |1⟩ , |ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩

which yields

|φ⟩ ⊗ |ψ⟩ = φ0ψ0 |00⟩+ φ0ψ1 |01⟩+ φ1ψ0 |10⟩+ φ1ψ1 |11⟩

If we now impose |φ⟩ ⊗ |ψ⟩ = |Φ+⟩ we get the system{
φ0ψ0 = φ1ψ1 = 1√

2

φ0ψ1 = φ1ψ0 = 0

but this system has no solution.

This means that Bell’s state |Φ+⟩ (and similarly for the other three states) can’t be
represented as |φ⟩ ⊗ |ψ⟩

39

Definition 3.3.2 – Separable and entangled states

A state in HA ⊗ HB is called separable if it can be written as |φ⟩ ⊗ |ψ⟩ for some |φ⟩ ∈ HA
and |ψ⟩ ∈ HB . Otherwise, that state is called entangled

Note that if |Ψ⟩ = |φ⟩ ⊗ |ψ⟩, then by iterpreting it as a mixed state we get

ρΨ = |Ψ⟩⟨Ψ| =
= (|φ⟩ ⊗ |ψ⟩)(⟨φ| ⊗ ⟨ψ|) =
= (|φ⟩⟨φ|)⊗ (|ψ⟩⟨ψ|)

Definition 3.3.3
A mixed state ρ ∈ D(HA ⊗HB) is called separable if it can be written

ρ =
∑
j∈I

pjρ
(A)
j ⊗ ρ

(B)
j

with
∑
j∈I pj = 1 and ρ(A)

j ∈ D(HA), ρ(B)
j ∈ D(HB). Otherwise, it’s called entangled

Theorem 3.3.4
The definition of separable/entangled for pure states and mixed states are consistent

For example, we’ve shown that Bell’s states are entangled. The state |Ψ⟩ = 1
2 (|00⟩+ |01⟩+ |10⟩+

|11⟩) is separable as we can write

|Ψ⟩ = |0⟩+ |1⟩√
2

⊗ |0⟩+ |1⟩√
2

Theorem 3.3.5
Let |Ψ⟩ ∈ HA ⊗HB be a pure state. Then |Ψ⟩ is separable if and only if both ρA|Ψ⟩ and ρB|Ψ⟩
are pure state

Example 3.3.6. We can apply this criteria to |Φ+⟩. We saw that ρAΦ+ = trB (|Φ+⟩⟨Φ+|) =
1
2 (|0⟩⟨0|+ |1⟩⟨1|), so ρAΦ+ = 1

21.
We also know that a mixed state ρ is pure if and only if ρ2 = ρ.

Since (ρAΦ+)2 =
(
1
21
)2

= 1
41 ̸= 1

21 = ρAΦ+ we get that |Φ+⟩ is entangled

Consider the composite system HABCD = HA⊗HB⊗HC⊗HD with HA ∼= HB ∼= HC ∼= HD ∼= C2

qubits.

We can prepare the system HABCD in the state |Φ⟩ defined as

|Φ⟩ =
∣∣Ψ−〉AB ⊗

∣∣Ψ−〉CD

40

where

∣∣Ψ−〉AB =
|01⟩AB − |10⟩AB√

2∣∣Ψ−〉CD =
|01⟩CD − |10⟩CD√

2

Notice (or prove as an exercise) that

|Φ⟩ =1

2
(|0101⟩ − |1001⟩ − |0110⟩+ |1010⟩) =

=
1

2
(
∣∣Ψ+

〉AD ⊗
∣∣Ψ+

〉BC −
∣∣Ψ−〉AD ⊗

∣∣Ψ−〉BC −

−
∣∣Φ+

〉AD ⊗
∣∣Φ+

〉BC
+
∣∣Φ−〉AD ⊗

∣∣Φ−〉BC
We can define the observables

Σz = 1 ⊗ σz ⊗ σz ⊗ 1, Σx = 1 ⊗ σx ⊗ σx ⊗ 1

As we’ve seen in the 2 qubit system, (σx⊗σx) and (σz⊗σz) commute, so one can reasonably believe
(and it can be proven formally) that Σz and Σx commute.
In the 2 qubit system, measuring (σx ⊗ σx) and (σz ⊗ σz) allowed us to prepare the system in one
of the Bell’s state1. Similarly, we can measure Σx and Σz to detect in which of the states |Φ±⟩BC ,
|Ψ±⟩BC the subsystem HBC is. Given the decomposition of |Φ⟩, knowing the state of the system
HBC will tell us the state of HAD.

For example, if we measure ΣxΣz and obtain (+1,+1), we know that HBC is in state |Φ+⟩BC ,
which means that the global system HABCD must be in state |Φ+⟩AD ⊗ |Φ+⟩BC . This is because,
in the prepared state |Φ⟩, the subsystem HAD is entangled with the subsystem HBC .

1that is, it collapsed the system in one of those states and allowed us to detect which state it collapsed to. By
repeating this procedure untill the desired result, we can prepare the system in a desired state

41

4 | Quantum circuits

4.1 Quantum copier

In a classical system it’s taken for granted that once you have a set of bits (or even just a single bit)
you can copy and share them as much as you like. We would like to do the same thing in a quantum
system, that is we would like to be able to duplicate or clone the state of a qubit to another qubit,
without losing the original.

Formally, a quantum copier is an operator K : H ⊗ H → H ⊗ H such that given a fixed state
|w⟩ ∈ H (on which K depends), and any state |φ⟩ ∈ H, it maps |φ⟩⊗|w⟩ 7→ K |φ⟩⊗|w⟩ = |φ⟩⊗|φ⟩.

Note that we must require that the second system is prepared in a predeterminated state |w⟩ and not
just any state, because an operator that sends the state |φ⟩ ⊗ ∗ to |φ⟩ ⊗ |φ⟩ would not be injective
and clearly not unitary, which means it couldn’t be built as a quantum operator.

Theorem 4.1.1 – No cloning theorem

There is no quantum copier

Proof. We will prove this theorem on a 2-qubit system (that is H ∼= C2).
Fix any |w⟩ ∈ H. Ad absurdum, suppose there existed a quantum copier K. Then we would
get

K(|0⟩ ⊗ |w⟩) = |0⟩ ⊗ |0⟩ = |00⟩
K(|1⟩ ⊗ |w⟩) = |1⟩ ⊗ |1⟩ = |11⟩

If we instead apply K on |0⟩+|1⟩√
2

⊗ |w⟩ we should get (using the copying property)

K

(
|0⟩+ |1⟩√

2
⊗ |w⟩

)
=

|0⟩+ |1⟩√
2

⊗ |0⟩+ |1⟩√
2

=
1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

but by linearity we should get

K

(
|0⟩+ |1⟩√

2
⊗ |w⟩

)
=

1√
2
(K(|0⟩ ⊗ |w⟩) +K(|1⟩ ⊗ |w⟩)) = 1√

2
(|00⟩+ |11⟩)

This is clearly absurd, which means a quantum copier can’t exist

42

This means that when building quantum circuits, we won’t be free of copying a reusing multiple
times a given qubit, which will be quite a restriction.

4.2 EPR states and Bell telephone

Suppose two parties (which will be referred to from now on as Alice and Bob) have each their own
qubit, and a 2-qubit system HA ⊗HB is built from these two qubits.
Suppose we prepare this system in Bell’s state∣∣Φ+

〉
=

1√
2
(|↑ẑ⟩ ⊗ |↑ẑ⟩+ |↓ẑ⟩ ⊗ |↓ẑ⟩) =

=
1√
2
(|↑x̂⟩ ⊗ |↑x̂⟩+ |↓x̂⟩ ⊗ |↓x̂⟩)

Suppose Alice measures σz (which means we measure σAz ⊗ 1B on the global system) on her
quibit and gets 1. Then her qubit must be in state |↑ẑ⟩, and by entanglement Bob’s qubit must be
on |↑ẑ⟩ even though he took no measurement.
The same would happen if Alice measured σx. This would be a way of sending information instantly
and is at the base of the EPR paradox.

Let’s see how we can use this mechanism to send information (this concept is called Bell tele-
phone). We can encode classical bits in the following way:

• if Alice wants to send a 0, she can measure σz making Bob’s qubit either |0⟩ or |1⟩

• if Alice wants to send a 1, she can measure σx making Bob’s qubit either |0⟩+|1⟩√
2

or |0⟩−|1⟩√
2

The thing is that just by a single measurement, Bob cannot distinguish whether the qubit was in state
|0⟩, |1⟩, |0⟩+|1⟩√

2
or |0⟩−|1⟩√

2
. If he could measure σz multiple times, he could know if Alice measured

σz (in which case he would get the same result every time) or if Alice measured σx (in which case
he would get random results). The issue is that Bob would need multiple copies of the same bit, and
as we’ve shown, a qubit cannot be cloned.

An argument can be made for using multiple qubits to send a single bit of information, but even
in this case it would be prone to errors as it might happen that Alice measured σx and by chance
Bob could measure n times and get the same (but technically random) result, leading him to believe
that Alice measured σz.

November 2nd, 2022

4.3 Classical gates

In classical computing, transforming a state means modifying a finite sequence of binary digits into
another finite sequence of binary digits. At a low level, this is done by a combination of binary gates,
that we can imagine as blackboxes that take an input (x1, . . . , xn) and return an output (o1, . . . , om)
and are described by defining the result on every possible input via a truth table. More precisely:

43

Definition 4.3.1 – Gates

An elementary classical gate is a function e : {0, 1}n → {0, 1}.
A classical gate is a function g : {0, 1}n → {0, 1}m composed of the product of m elementary
gates.

A classical gate is fully described by a truth table, that is a table where every possi-
ble input is paired with the corresponding output, such as

x1 . . . xn−1 xn o1 . . . om
0 . . . 0 0 * . . . *
0 . . . 0 1 * . . . *
0 . . . 1 0 * . . . *
0 . . . 1 1 * . . . *

...
...

1 . . . 1 1 * . . . *

Example 4.3.2. We will use ⊕ to indicate the addition modulo N for some case-specific N ,
and ⊞ to indicate the bitwise addition modulo 2. Here are some notable examples of classical
gates

• NOT : {0, 1} → {0, 1}, which can be written as NOT(x) = 1 ⊕ x, with the following
truth table

x o
0 1
1 0

• AND : {0, 1}2 → {0, 1}, which can be written as AND(x1, x2) = x1x2, with the
following truth table

x1 x2 o
0 0 0
0 1 0
1 0 0
1 1 1

• XOR : {0, 1}2 → {0, 1}, which can be written as XOR(x1, x2) = x1 ⊕ x2, with the
following truth table

x1 x2 o
0 0 0
0 1 1
1 0 1
1 1 0

• OR : {0, 1}2 → {0, 1}, which can be written as OR(x1, x2) = x1 ⊕ x2 ⊕ (x1x2), with
the following truth table

44

x1 x2 o
0 0 0
0 1 1
1 0 1
1 1 1

• TOF{0, 1}3 → {0, 1}3, the Toffoli gate, which can be written as TOF(x1, x2, x3) =
(x1, x2, x1x2 ⊕ x3), with the following truth table

x1 x2 x3 o1 o2 o3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Interpreting {0, 1}3 as binary numbers, the Toffoli gate is the permutation (6, 7)

Graphically, we express a generic gate g : {0, 1}n → {0, 1}m as the following diagram

x1

A

o1

x2 o2

...
...

xn om

but there some special notations for some gates, such as

• the NOT gate is represented as

x 1⊕ x

• the Toffoli gate is represented as

x1 • x1

x2 • x2

x3 x1x2 ⊕ x3

where the black dot means that we’re applying the identity on that bit but we’re also using
that bit as a control to decide whether to apply the NOT gate on x3

Definition 4.3.3
We say that a gate is reversible if the associated function is a bijection

45

Note that the NOT gate and the Toffoli gate are reversible, while the AND, XOR and OR gate are
not reversible.

The notion of reversibility is particularly important in quantum computation because we can only
apply unitary operators, which are necessarily reversible. This means that in quantum computation
we cannot apply AND, XOR and OR gates

The workaround to solve this problem is the use of auxiliary qubits, that are usually called "an-
cilla" qubits, such that when prepared in a specific state, by using a different gate we can emulate a
non bijective gate. For example

• TOF(x1, x2, 0) = (x1, x2, x1x2 ⊕ 0) = (x1, x2, AND(x1, x2))

• TOF(1, x2, x3) = (1, x2, 1, x2 ⊕ x3) = (1, x2, XOR(x2, x3))

• TOF(1, 1, x3) = (1, 1, 1⊕ x3) = (1, 1, NOT(x3))

Other useful gates in the classical setting are:

• Id : x1 7→ x1

• FALSE : x1 7→ 0

• TRUE : x1 7→ 1

• COPY : x1 7→ (x1, x1)

Given g1, . . . , gk gates, we define F (g1, . . . , gk) the set of gates that can be built using g1, . . . , gk
as building blocks, according to the following rules:

1. g1, . . . , gk ∈ F (g1, . . . , gk)

2. Padding is allowed, where padding is defined as

P
(n)
y1,...,yl,j1,...,jl

: {0, 1}n {0, 1}n+l

(x1, . . . , xn) (x1, . . . , xj1−1, y1, xj1 , . . .)

That is, the padding operator takes an n-bit state (x1, . . . , xn), l indices j1, . . . , jl and l bits
y1, . . . , yl and inserts the given bits yi in the corresponding position ji in the given state,
obtaining a new (n+ l)-bit state

3. Restriction and reorderings are allowed, and defined as

r
(n)
j1,...,jl

: {0, 1}n {0, 1}l

(x1, . . . , xn) (xj1 , . . . xjl)

where l ≤ n and j1, . . . , jl are distinct

4. Composition of gates is allowed, that is

h1, h2 ∈ F (g1, . . . , gk) ⇒ h1 ◦ h2 ∈ F (g1, . . . , gk)

46

5. Cartesian product is allowed, that is given h1 : {0, 1}n → {0, 1}m and h2 : {0, 1}p → {0, 1}q
such that h1, h2 ∈ F (g1, . . . , gk), then h1 × h2 ∈ F (g1, . . . , gk), where

h1 × h2 : {0, 1}n+p {0, 1}m+q

(x1, . . . , xn, xn+1, . . . , xn+p) (h1(x1, . . . , xn), h2(xn+1, . . . , xn+p))

Example 4.3.4. Suppose we start with the set of elementary gates (AND,XOR) and we
would like to build a Toffoli gate. It seems reasonable to be able to do so, given that the
Toffoli gate requires only AND and XOR of a specific combination of bits. Indeed we have

(Id × Id × XOR) ◦ (Id × Id × AND × Id) ◦ r(5)13245 ◦ (COPY × COPY × Id)(x1, x2, x3) =

= (Id × Id × XOR) ◦ (Id × Id × AND × Id) ◦ r(5)13245(x1, x1, x2, x2, x3) =

= (Id × Id × XOR) ◦ (Id × Id × AND × Id)(x1, x2, x1, x2, x3) =
= (Id × Id × XOR)(x1, x2, x1x2, x3) =
= (x1, x2, x1x2 ⊕ x3) =

= TOF(x1, x2, x3)

Definition 4.3.5 – Universal set of gates

We say that a set of gates g1, . . . , gk is universal if any gate can be built starting with them,
that is

∀g gate, g ∈ F (g1, . . . , gk)

Theorem 4.3.6
The (classical) Toffoli gate is reversible, and {TOF} is universal

4.4 Quantum gates

Definition 4.4.1 – Quantum gates

A quantum n-gate is a unitary operator U : H⊗n → H⊗n, where H ∼= C2 is the Hilbert space
of a single qubit.
H⊗n, that is the composite system of n qubits on which we apply the quantum gates, is called
a quantum register

Here are some examples of quantum gates that we will use often. The first set is a set of unary
gates, that is gates that act on a single qubit

• Id, expressed in matrix form as 1 =

(
1 0
0 1

)
and drawn as

• Phase factor, expressed in matrix form as eiα1 = eiα
(
1 0
0 1

)
and drawn as

47

M(α)

• Phase shift, expressed in matrix form as |0⟩⟨0|+ eiα |1⟩⟨1| =
(
1 0
0 eiα

)
and drawn as

P (α)

• QNOT, expressed in matrix form as X = σx =

(
0 1
1 0

)
and drawn as

X or

• Pauli Y, expressed in matrix form as Y = σy =

(
0 −i
i 0

)
and drawn as

Y

• Pauli Z, expressed in matrix form as Z = σz =

(
1 0
0 −1

)
and drawn as

Z

• Hadamard, expressed in matrix form as H = σx+σz√
2

= 1√
2

(
1 1
1 −1

)
and drawn as

H

• Spin rotation, expressed in matrix form as Dn̂(α) and drawn as

Dn̂(α)

• Measurement of an observable A with result λ, drawn as

A

λ
��

If no observable A is specified, we mean σz, so we’re measuring with respect to the computa-
tional basis

The following are examples of binary gates, that is quantum gates that act on a register of two
qubits

• CNOT (controlled not) controlling on the first qubit, Λ1(X) = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ X =
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and drawn as

48

•

X

or •

• CNOT controlling on the second qubit, Λ1(X) = 1 ⊗ |0⟩⟨0| +X ⊗ |1⟩⟨1| =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

and drawn as

•

• CNOT controlling |0⟩ instead of |1⟩, Λ|0⟩(X) = |0⟩⟨0|⊗X+ |1⟩⟨1|⊗1 =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and

drawn as

• Controlled Z controlled on some qubit. Note that

Λ1(Z) = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ Z =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Λ1(Z) = 1 ⊗ |0⟩⟨0|+ Z ⊗ |1⟩⟨1| =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

which means Λ1(Z) = Λ1(Z). For this reason one we usually refer to this gate generically
as CZ without specifying where the control is applied. As for the circuit, we use any of the
following equivalently

•

Z

Z

•

•
•

• Given a generic unary gate V , we can express controlled-V as Λ1(V) = |0⟩⟨0|⊗1+|1⟩⟨1|⊗V =
1 0 0 0
0 1 0 0
0 0 v11 v12
0 0 v21 v22

 and drawn as

•

V

49

• Swap, expressed in matrix form as S = |00⟩⟨00|+|11⟩⟨11|+|01⟩⟨10|+|10⟩⟨01| =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

and drawn as

×
×

Note that the Swap gate can be built as a composition of 3 CNOT gates as

• •

•

Just like in the classical case, we can define rules to combine quantum gates. Given U1, . . . , Uk
unitary operators, the set F (U1, . . . , Uk) of gates that can be obtained from U1, . . . , Uk is generated
by the following rules:

1. U1, . . . , Uk ∈ F (U1, . . . , Uk)

2. 1⊗n ∈ F (U1, . . . , Uk)

3. V1, V2 ∈ F (U1, . . . , Uk) ⇒ V1V2 ∈ F (U1, . . . , Uk)

4. If V1, V2 ∈ F (U1, . . . , Uk) with V1 ∈ U(H⊗n1) and V2 ∈ U(H⊗n2), then V1⊗V2 ∈ F (U1, . . . , Uk)

As in the classical case, we say that a set {U1, . . . , Uk} is universal if any unitary operator on
H⊗n belongs to F (U1, . . . , Uk)

November 4th, 2022

Theorem 4.4.2
The set {M(α), Dŷ(β), Dẑ(γ),Λ

1(X)}α,β,γ∈R is universal

Example 4.4.3. Given U ∈ U(C2), let’s write Λ1(U) in terms of the operators from the
previous theorem.

Recall that any such U can be decomposed as U = eiαAσxBσxC with A = Dẑ(β)Dŷ

(
γ
2

)
,

B = Dŷ

(
−γ

2

)
Dẑ

(
− δ+β

2

)
and C = Dẑ

(
δ−β
2

)
.

Note that we can build σx using a global phase, which means σx ∈ F , hence U ∈ F .
For U we have

|ψ⟩ C X B X A M |Uψ⟩

Since we also have that ABC = 1, if we ignore the global phase given by M we can modify
the circuit to obtain a circuit equivalent to Λ1(U) like this

• •

|ψ⟩ C X B X A |CUψ⟩

50

To be more precise, in order to get a circuit that acts precisely like Λ1(U) we would need to
add a gate of partial phase P (α). More details are given in the reference book.

Example 4.4.4. Let’s now write a doubly-controlled version of U .

One way to achieve such a circuit is by using the more general decomposition of unitary
operator that is

U = EXDXCXBXA

where the operators A,B,C,D and E are such that

EDXCBXA = Id
EXDCXBA = Id
EDCBA = Id

Then by building the following circuit

• •

• •

|ψ⟩ E D C B A
∣∣C2Uψ

〉
we would have found the solution. The issue is that to be formally correct, we would need to
prove that such a decompositio is always possible, which is fairly hard.

Another approach is to prove that for any unitary U there exists another unitary V such
that V 2 = U . This decomposition is easier to prove, and gives the solution

• • •

• •

|ψ⟩ V V ∗ V
∣∣C2Uψ

〉

4.5 Quantum circuits

There are three types of circuits:

• a plain quantum circuit is a circuit where the used register is composed only of the input/output
register, that is H⊗n = HI/O

• a circuit with ancilla is a circuit where the register has some I/O qubits and some auxillary
qubits, that is H⊗n = HI/O ⊗H⊗m

• a composite circuit is the composition of quantum circuits and classical operations

We will now give a more formal definition of these circuits

51

Definition 4.5.1 – Plain circuit

A plain circuit is a composition of L "elementary" gates U1, . . . , UL ∈ U(HI/O) which acts as
U = UL . . . U1. It’s said to be of depth L and if the system is initially in state ρ ∈ D(HI/O),
after applying U the state will be UρU∗

Before we give the definition of circuit with ancilla, we will prove an useful theorem

Theorem 4.5.2
Let HI/O,HW be Hilbert spaces. Let |wi⟩ , |wf ⟩ be states in HW and let Û ∈ U(HI/O ⊗HW)
such that

∀ |ψ⟩ ∈ HI/O, Û(|ψ⟩ ⊗ |wi⟩) = (U |ψ⟩)⊗ |wf ⟩

for some fixed U . Then the map |ψ⟩ 7→ U |ψ⟩ is unitary on HI/O and if ρ ∈ D(HI/O) we get

UρU∗ = trW
(
Û(ρ⊗ (|wi⟩⟨wi|))Û∗

)

Proof. First, we prove that U is a linear operator. It holds that

[U(|ψ1⟩+ |ψ2⟩)]⊗ |wf ⟩ = Û(|ψ1⟩+ |ψ2⟩)⊗ |wi⟩ =
= Û |ψ1⟩ ⊗ |wi⟩+ Û |ψ2⟩ ⊗ |wi⟩ =
= (U |ψ1⟩)⊗ |wi⟩+ (U |ψ2⟩)⊗ |wi⟩ =
= (U |ψ1⟩+ U |ψ2⟩)⊗ |wi⟩

which implies linearity. Let’s prove that U is unitary

∥(U |ψ⟩)⊗ |wf ⟩ ∥HI/O⊗HW

=

= ∥(U |ψ⟩)∥HI/O∥ |wf ⟩ ∥HW
=1

= ∥U |ψ⟩ ∥HI/O

∥Û |ψ⟩ ⊗ |wi⟩ ∥HI/O⊗HW = ∥ |ψ⟩ ⊗ |wi⟩ ∥HI/O⊗HW = ∥ |ψ⟩ ∥HI/O∥ |wi⟩ ∥HW
=1

= ∥ |ψ⟩ ∥HI/O

so U is also unitary. Finally, given ρ =
∑
j pj |ψj⟩⟨ψj | with pj ≥ 0,

∑
j pj = 1 and {ψj}

ONB, by linearity we have

trW
(
Û(ρ⊗ |wi⟩⟨wi|)Û∗

)
=
∑
j

pjtrW
(
Û(|ψj⟩⟨ψj | ⊗ |wi⟩⟨wi|)Û∗

)
which means that we only have to prove the identity on pure states. Indeed we have

trW

Û(|ψ⟩⟨ψ| ⊗ |wi⟩⟨wi|
=(|ψ⟩⊗|wi⟩)(⟨ψ|⊗⟨wi|)

)Û∗

 = because Û |ψ⟩⊗|wi⟩=
=(U |ψ⟩)⊗|wf ⟩

= trW ([(U |ψ⟩)⊗ |wf ⟩][(⟨ψ|U∗)⊗ ⟨wf |]) =
= trW ((U |ψ⟩⟨ψ|U∗)⊗ |wf ⟩⟨wf |) =
= U |ψ⟩⟨ψ|U∗

where the last step holds because of the more general proposition

trB (ρA ⊗ ρB) = ρA

which one can prove as an exercise

52

Definition 4.5.3 – Circuit with ancilla

A unitary U ∈ U(HI/O) is implemented by a quantum circuit with ancilla system HW and
states |wi⟩ , |wf ⟩ ∈ HW if there exists a plain circuit Û on HI/O ⊗HW such that ∀ |ψ⟩ ∈ HI/O

it holds
Û |ψ⟩ ⊗ |wi⟩ = (U |ψ⟩)⊗ |wf ⟩

or equivalently
UρU∗ = trW

(
Û(ρ⊗ |wi⟩⟨wi|)Û∗

)
Definition 4.5.4
Given a function f : N → N we can write an implementation of f on n ≥ 1 qubits, which is
the unitary operator Uf such that

Uf : Hn ⊗Hn Hn ⊗Hn

|x⟩n ⊗ |y⟩n |x⟩n ⊗ |y ⊞ f(x)⟩n

where we interpret x and y both as integers and finite strings of bits.

Note that it’s not necessarily the case that the image of a binary string of length n (in this case
x) is also a binary string of length n. If it’s smaller, this is no issue and to perform y ⊞ f(x) we just
pad f(x) with leading zeros. If f(x) is longer than n bits, then we cannot represent y ⊞ f(x) in the
register Hn. In this case we usually resort to use f(x) mod 2n instead of simply f(x)

Example 4.5.5. If we pick f = Id, that is f(x) = (x), then we use a slightly different
notation Uf = U⊞ which is the unitary |x⟩ ⊗ |y⟩ to |x⟩ ⊗ |y ⊞ x⟩

53

5 | Quantum algorithms

Quantum algorithms usually follow this general structure:

1. Prepare the input |ψ⟩ ∈ HI/O

2. Implement Uf for some (problem dependant) f : N → N

3. Do some "clever transformations"

4. Measure/observe the output

We’ll show some examples of possible interpretations of these four steps in order to get familiar with
quantum algorithms

1. Many quantum algorithms use the initial state |0⟩n⊗|0⟩m, that is the input register is prepared
in state |0⟩n and the ancilla register is prepared in state |0⟩m. The reason behind this is that
it’s generally assumed that preparing a state of the computational basis (specifically the |0⟩) is
easy or at least possible (we will see that the issue of not being able to prepare a specific initial
state will be a problem we will have to work around for some algorithms).

Another commonly used initial state for the input register is

|φ0⟩ =
1√
2n

2n−1∑
x=0

|x⟩n

which is useful because it represents a superposition where all the numbers from 0 to 2n − 1
have the same aplitude.

Note that we can generate this state by applying H⊗n to the initial state |0⟩n, where H⊗n is
the Hadamard gate on all the n qubits. Indeed we have

H ⊗ · · · ⊗H(|0⟩ ⊗ · · · ⊗ |0⟩) =
(
|0⟩+ |1⟩√

2

)
⊗ . . .

(
|0⟩+ |1⟩√

2

)
=

=
1√
2n

2n−1∑
x=0

|x⟩n

Note that this state is in superposition, but it’s not entangled (in fact we’ve just shown how to
separate it)

54

Example 5.0.1. If we instead want to produce an entangled state we can consider the
following circuit U with initial state |00⟩

|0⟩ H •

|0⟩

If we compute U |00⟩ we get

U |00⟩ = Λ1(X)H ⊗ 1 |00⟩ =

= Λ1(X)

(
|0⟩+ |1⟩√

2
⊗ |0⟩

)
=

=
|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩√

2
=

=
∣∣Φ+

〉
As an exercise, the reader can compute U |01⟩, U |10⟩ and U |11⟩

The usefulness of this state comes from the fact that if we now apply some unitary Uf for
f : N → N we get (assuming that the ancilla register has initial state |0⟩m)

Uf (|φ0⟩ ⊗ |0⟩m) =
1√
2n

2n−1∑
x=0

|x⟩ ⊗ |f(x)⟩

which means that somehow we encoded or calculated all the possible outputs of f with only
one evaluation of Uf . The problem is that it’s not yet clear how to retrieve this all information
from the superposition

4. An example of observable we can measure is Σjz = 1 ⊗ · · · ⊗ 1 ⊗ σz ⊗ 1 ⊗ · · · ⊗ 1, that is the
observable that measures σz on the j-th qubit.

Notice that if j ̸= j′, then [Σjz,Σ
j′

z] = 0, that is they commute, which means that given a state
ρ ∈ D(Hn) we can measure all the Σjz for j = 1, . . . , n in any order, and obtain a "binary"
string in {1,−1}n which becomes an actual binary string with the mapping 1 7→ 0, −1 7→ 1.
By doing so we get a binary string s which represents a number x ∈ {0, . . . , 2n − 1} which is
also (maybe not surprisingly) the state in which the system currently is (more precisely, |x⟩n is
the current state)

Remark 5.0.1 (On future measurements). As we’ve just pointed out, when we
measure all the Σjz, there is a bijection between the string in {1,−1}n that we get
from the measurement and the state |s⟩ with s ∈ {0, 1}n which is the state after the
measurement. Of course, if we know one we know the other, and practically we will
use most often the value of the state instead of the value of the measurement, so most
of the times we will consider, as output of the measurament, the state itself, and not
the string of eigenvalues.

Note that this can create confusion. Consider a system of one qubit and sup-
pose we measure on the computational basis (that is we measure σz) and get "1".
Because we don’t specify what this "1" means, it both could be that we measured and

55

obtained the eigenvalue "1", corresponding to the final state |0⟩, or that we measured
some eigenvalue (which a posteriori is -1) and we got the final state |1⟩. To avoid this
confusion, we will try to use the convention where just a number "n" means that n is the
eigenvalue we obtained by the measurement, and "|m⟩" means that m is the state we
"obtained" by the measurement (ignoring the actual eigenvalue or string of eigenvalues).

Furthermore, if we say that we "measure" without specifying the observable, it’s
meant as measuring with respect to the computational basis, so we’re measuring all
the Σjz for that given register

November 9th, 2022

2. Consider the case f = Id, so we want to implement U⊞, that acts like U⊞ |a⟩⊗|b⟩ = |a⟩⊗|a⊞ b⟩.
For n = 1 the implementation is quite simply the following circuit

|a⟩1 • |a⟩

|b⟩1 |a ⊞ b⟩

For n > 1 it gets only slightlt more complicated, being

|a0⟩ • . . . |a0⟩

|a1⟩ • . . . |a1⟩

...
. . .

...

|an−1⟩ . . . • |an−1⟩

|b0⟩ . . . |a0 ⊕ b0⟩

|b1⟩ . . . |a1 ⊕ b1⟩

...
. . .

...

|bn−1⟩ . . . |an−1 ⊕ bn−1⟩

Suppose instead that we want to implement an operator U+ such that

U+ : Hn ⊗Hn+1 Hn ⊗Hn+1

|a⟩n ⊗ |b⟩n+1 |a⟩n ⊗ |a+ b⟩n+1

for all a, b ∈ {0, . . . , 2n − 1}. Note that even though (given the dimension of the second
register) b could assume values bigger than 2n − 1, we can only require that U+ acts as shown
only for values of b ≤ 2n − 1. Otherwise, the addition might cause an overflow that wouldn’t
be representable in the second register for dimension-related issues. Actually, this is precisely
the reason why we use a second register of dimension n+ 1 instead of n, because the addition
of two n-bit numbers can be an (n+ 1)-bit number.

56

Let a =
∑n−1
j=0 2jaj and b =

∑n−1
j=0 2jbj with aj , bj ∈ {0, 1}.

Then we can write a + b =
∑n−1
j=0 2jsj + 2ncn, cn being the carry digit. We can find explicit

values of sj and cn with the following recursive formulas

sj = aj ⊕ bj ⊕ cj

cj =

{
0 if j = 0

(aj−1bj−1)⊕ (aj−1cj−1)⊕ (bj−1cj−1) otherwise

Let’s implement U+. First, we will implement two subcircuits (sometimes called routines) Us
and Uc that respectively calculate sj and cj . For Us we have the following circuit

|bj⟩ |sj⟩

|aj⟩ • |aj⟩

|cj⟩ • |cj⟩

For computing cj , we use a gate that also produces a side effect (namely changing |bj−1⟩ into
|aj−1 ⊕ bj−1⟩) as the resulting gate will be cheaper (that is, it will use fewer elementary gates).
The gate Uc is

|0⟩ |cj⟩

|bj−1⟩ • • |aj−1 ⊕ bj−1⟩

|aj−1⟩ • • |aj−1⟩

|cj−1⟩ • |cj−1⟩

We’re now ready to build the whole circuit. The initial state will be |b⟩n+1 ⊗ |a⟩n ⊗ |0⟩n, but
shuffled (that is, we’re implying some Swap gates that only add visual complexity). The first
step of the circuit will be the following

Step 1

57

|bn⟩ = |0⟩ . . .

Uc

|bn ⊕ cn⟩ |bn ⊕ cn⟩ = |cn⟩

|bn−1⟩ . . . |an−1 ⊕ bn−1⟩ |bn−1⟩

|an−1⟩ . . . |an−1⟩ • |an−1⟩

|0⟩ . . . |cn−1⟩ |cn−1⟩

...
...

...
...

|0⟩

Uc

. . . |c2⟩ |c2⟩

|b1⟩ . . . |a1 ⊕ b1⟩ |a1 ⊕ b1⟩

|a1⟩ . . . |a1⟩ |a1⟩

|0⟩

Uc

. . . |c1⟩ |c1⟩

|b0⟩ . . . |a0 ⊕ b0⟩ |a0 ⊕ b0⟩

|a0⟩ . . . |a0⟩ |a0⟩

|0⟩ . . . |0⟩ |0⟩

For the second step we first consider the action of the gate Us,c−1 = (Us ⊗ 1)(U−1
c)

Us,c−1

|cj⟩

U−1
c

|0⟩ |0⟩

|bj−1 ⊕ aj−1⟩ |bj−1⟩

Us

|sj−1⟩

|aj−1⟩ |aj−1⟩ |aj−1⟩

|cj−1⟩ |cj−1⟩ |cj−1⟩

The second step of the circuit is now defined as the following circuit

Step 2

58

|cn⟩ . . . |cn⟩

|bn−1⟩

Us

|sn−1⟩ . . . |sn−1⟩

|an−1⟩ |an−1⟩ . . . |an−1⟩

|cn−1⟩ |cn−1⟩

Us,c−1

. . . |0⟩

|bn−2 ⊕ an−2⟩ . . . |sn−2⟩

|an−2⟩ . . . |an−2⟩

|cn−2⟩

Us,c−1

. . . |0⟩

|bn−3 ⊕ an−3⟩ . . . |sn−3⟩

|an−3⟩ . . . |an−3⟩

|cn−3⟩ . . . |0⟩

...
. . .

...

|c1⟩ . . .

Us,c−1

|0⟩

|b0 ⊕ a0⟩ . . . |s0⟩

|a0⟩ . . . |a0⟩

|0⟩ . . . |0⟩

The construction of this circuit requires O(n) elementary gates
To define some possible extensions of this building procedure, we first define H<N ⊂ H⊗n as
H<N = Span{|a⟩n | a ∈ {0, . . . , N − 1}} Then, other operators that we could consider are

– U+%N = U+ mod N : H<N ⊗ H<N → H<N ⊗ H<N that sends |a⟩n ⊗ |b⟩n to |a⟩n ⊗
|a+ b mod N⟩n

– U− mod N = U∗
+ mod N

– U·c mod N that sends |a⟩ ⊗ |b⟩ to |a⟩ ⊗ |b+ ac mod N⟩
– Ub· mod N that sends |a⟩ to |ba mod N⟩

5.1 Quantum Fourier Transform

Remark 5.1.1 (Discrete Fourier Transform). Recall that the Discrete Fourier Transform
(DFT) is the map F : CN → CN defined as

F (a0, . . . , aN−1) = (b0, . . . , bN−1)

where

bh =
1√
N

N−1∑
n=0

an exp

(
2πi

hn

N

)
Note that F ∗F = IdCN

59

The fastest classical algorithm to compute the DFT is the Fast Fourier Transform (FFT) with
complexity of O(N log(N)). From now on we will fix N = 2n. This means that the DFT is an
operator F : C2n ∼= H⊗n → H⊗n. We would like to build it as a quantum circuit.

To define the corresponding quantum version of the DFT, the Quantum Fourier Transform (QFT),
we need to understand the behaviour of the DFT on elements of the computational basis of H⊗n,
seen as elements of C2n .
Let k ∈ {0, . . . , 2n − 1} and consider the element |k⟩ of the computational basis. To apply the DFT
to |k⟩ we have to interpret |k⟩ as a vector 1. The corresponding vector in C2n is ek, which means
that when computing bh all but the k-th terms of the sum are zero, and we get

bh =
1√
2n

exp

(
2πi

hk

2n

)
Because bh is the coefficient of eh, which corresponds to the state |h⟩ in of the computational basis
in the correspondence C2n ∼= H⊗n, we can define the Quantum Fourier Transform as follows

Definition 5.1.1 – Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the operator QFT : H⊗n → H⊗n defined on the
computational basis as

QFT |k⟩ = 1√
2n

2n−1∑
h=0

exp

(
2πi

hk

2n

)
|h⟩

and extended by linearity

The matrix representation of the QFT is QFT = (QFTk,h)
2n−1
k,h=0 where QFTk,h = 1√

2n
e2πi

kh
2n .

Our goal is to express the QFT as a composition of elementary gates. To do so, we first intro-
duce some notation and useful results

Definition 5.1.2
Given an integer x ∈ {0, . . . , 2n − 1} and its binary decomposition x =

∑n−1
j=0 2jxj we use

the notation [0.xk . . . x0] to express the fractional number that has as its binary digits (after
the period) the last k + 1 binary digits of x.
"0.xk . . . x0" would be the actual binary representation of the number [0.xk . . . x0]

One can easily notice that [0.xk . . . x0] = 2−(k+1)
∑k
j=0 2

jxj and also that [0.xk . . . x0] is the frac-
tional part (that is, the reminder modulo 1) of the value 2−(k+1)

∑n−1
j=0 2jxj = 2−(k+1)x. Similarly,

the fractional part of 2k−nx for k < n is [0.xn−k−1 . . . x0]

1: Be sure not to get confused. So far we’ve seen two ways of getting a vector out of a state |k⟩ of the computational
basis: either as a vector of the canonical base of C2n (which would be ek of length 2n), or as a vector of the binary
digits of the number k, (which would be some (kn−1, . . . , k0) of length n), and some confusion might arise given that
(being it an element of the computational basis) the end result is always a binary vector, but with very different lengths
and meanings. Right now we mean the vector ek ∈ C2n

60

Lemma 5.1.3
Given |x⟩n element of the computational basis of H⊗n, that is x ∈ {0, . . . , 2n−1}, and given
its binary decomposition x =

∑n−1
j=0 2jxj , we have

QFT |x⟩n =
1√
2n

n−1⊗
k=0

(
|0⟩+ e2πix2

−(k+1)

|1⟩
)
=

=
1√
2n

n−1⊗
k=0

(
|0⟩+ e2πi[0.xk...x0] |1⟩

)

Proof. It holds

QFT |x⟩n =
1√
2n

2n−1∑
ξ=0

e2πi
xξ
2n |ξ⟩ = decomposing ξ =

n−1∑
j=0

2jξj

=
1√
2n

2n−1∑
ξ=0

n−1∏
j=0

e2πix2
jξj2

−n

 0⊗
j=n−1

|ξj⟩

 = by distributing the factors of the
productory onto the tensor product

=
1√
2n

2n−1∑
ξ=0

0⊗
j=n−1

e2πixξj2
j−n

|ξj⟩ =

=
1√
2n

0⊗
j=n−1

(
|0⟩+ e2πix2

j−n
|1⟩
)
=

=
1√
2n

n−1⊗
k=0

(
|0⟩+ e2πix2

−(k+1)

|1⟩
)

To conclude the proof we just notice that at the exponent in the last equality we only care
about the fractional part of x2−(k+1), because any integer part, being it multiplied by 2πi as
an exponent with base e, would end up being an additional factor of 1.

To express the QFT as a composition of elementary gates, we first notice that the result of the
lemma can be expressed as

QFT |x⟩n =
1√
2n

n−1⊗
j=0

|0⟩+ e2πi[0.xj ...x0]

=
∏j
k=0 exp(2πixk2j−k−1)

|1⟩

 =

=
1√
2n

n−1⊗
j=0

(
|0⟩+

j∏
k=0

exp(πixk2
j−k) |1⟩

)

This means that to implement the QFT we just need to find a way to cleverly modify the phase
of the qubits.

61

Notice that because the Hadamard gates acts as

H |0⟩ = |0⟩+ |1⟩√
2

H |1⟩ = |0⟩ − |1⟩√
2

we can express it more concisely (although in a more complicated way, which will be useful for our
case) as

H |xj⟩ =
|0⟩+ eπixj |1⟩√

2

simply by the fact that eπi·1 = −1 and eπi·0 = 1.

To add the remaining phase to the qubit, remember the phase shift operator P (θ) = |0⟩⟨0|+eiθ |1⟩⟨1|.
If we imlpement a controlled version of P (θ), using the same eπix = (−1)x for x ∈ {0, 1} that we
used for the Hadamard gate, we would get an operator that acts as

|xk⟩ ⊗
|0⟩+ eiα |1⟩√

2
7→ |xk⟩ ⊗

|0⟩+ eiαeiθxk |1⟩√
2

which means we have a way to add the remaining phases to the qubit, containing the value of the
bits xj−1, . . . , x0.

Let Hj = 1 ⊗ . . . 1 ⊗H ⊗ 1 ⊗ · · · ⊗ 1, that is the Hadamard gate applied to the j-th qubit, and
let Pjk be the controlled version of the shift operator P (θjk) acting on the j-th qubit with control
on the k-th qubit, where θjk = π2j−k. Then we can express the QFT as

QFT = S(n)
n−1∏
j=0

(
j−1∏
k=0

Pjk

)
Hj

where S(n) means reversing the order of the qubits.

We can also express the QFT as the following circuit (with the omission of the indices on the
gates Pjk which are obvious from the position of the gate and the position of the control)

|xn−1⟩ H P P . . . P P ×

|xn−2⟩ • . . . H P . . . P P . . . ×

|xn−3⟩ • . . . • ×

...
.

|x1⟩ . . . • . . . • . . . H P ×

|x0⟩ . . . • . . . • . . . • H ×

November 16th, 2022

62

5.2 Deutch’s Problem

We’ll now showcase an artificial problem to show how quantum algorithms can be extremely more
efficient than classical algorithm. The problem is artificial in the sense that it’s not actually a problem
where the solution is useful for real life applications, more than it’s useful to show the potential of
quantum algorithms.

Suppose there existed a function f : {0, 1}n → {0, 1} such that

• we have a way to compute f , but we don’t have any analitic representation of f

• we know that f is either constant (which means either f ≡ 0 or f ≡ 1) or f is balanced (that
is f assumes value 0 on exactly half of the inputs and 1 on the remaining half)

We want to determine with certainty whether f is constant or balanced, with the least number of
evaluations possible.

The classical solution for this problem is able to give certainty only with 2n−1 + 1 evaluations in
the worst case.
The quantum solution for this problem, that is the Deutsch-Jozsa algorithm that we’re now going to
define, solves this problem with only 1 evaluation, which is an impressive improvement.

We’ve already seen that given a function f : {0, 1}n → {0, 1}, if we implement a gate Uf and
apply it to the state |φ0⟩n ⊗ |0⟩ we get the result

Uf |φ0⟩n ⊗ |0⟩ = 1√
2n

2n−1∑
x=0

|x⟩ ⊗ |f(x)⟩

where the state |φ0⟩n = H⊗n |0⟩n is the (equal) superposition of all the elements of the computational
basis.

Proposition 5.2.1
Given x, y ∈ {0, . . . , 2n − 1} and interpreting them as binary vectors of length n, that is
x, y ∈ {0, 1}n, it holds

H⊗n |x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x
⊺y |y⟩

where x⊺y =
∑n
i=0 xiyi

Proof. By induction on n
[n = 1] The thesis is H |x⟩ = 1√

2
(|0⟩+ (−1)x |1⟩) for x ∈ {0, 1}, which is trivially checked

manually for x = 0 and x = 1

[n → n + 1] Let x̃ ∈ {0, 1}n+1, then by rewriting x̃ = 2nxn + x where xn ∈ {0, 1},

63

x ∈ {0, 1}n, H⊗n+1 |x̃⟩n+1 can be written as

H⊗n+1 |x̃⟩n+1
=
(
H ⊗H⊗n) |xn⟩ ⊗ |x⟩n =

=

(
|0⟩+ (−1)xn |1⟩√

2

)
⊗

 1√
2n

∑
y∈{0,1}n

(−1)x
⊺y |y⟩

 =

=
1√
2n+1

∑
y∈{0,1}n

(
(−1)x

⊺y |0⟩ ⊗ |y⟩+ (−1)x
⊺y+xn |1⟩ ⊗ |y⟩

)
=

=
1√
2n+1

∑
y∈{0,1}n

(
(−1)x

⊺y+xn·0 |0⟩ ⊗ |y⟩+ (−1)x
⊺y+xn·1 |1⟩ ⊗ |y⟩

)
=

=
1√
2n+1

∑
ỹ∈{0,1}n+1

(−1)x̃
⊺ỹ |ỹ⟩

The Deutsch-Jozsa algorithm for n = 1 is defined as the following circuit

|0⟩ H
Uf

H

|1⟩ H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩
Let’s analyse the intermediate states

|ψ0⟩ = |0⟩ ⊗ |1⟩

|ψ1⟩ =
|0⟩+ |1⟩√

2
⊗ |0⟩ − |1⟩√

2

Note that

Uf

(
|x⟩ ⊗ |0⟩ − |1⟩√

2

)
=

|x⟩ ⊗ |f(x)⟩ − |x⟩ ⊗ |1⊕ f(x)⟩√
2

so if f(x) = 0 we get |x,0⟩−|x,1⟩√
2

, and if f(x) = 1 we get |x,1⟩−|x,0⟩√
2

.
This means that we can write

Uf

(
|x⟩ ⊗ |0⟩ − |1⟩√

2

)
= (−1)f(x)

|x, 0⟩ − |x, 1⟩√
2

and we get

|ψ2⟩ =

±
[
|0⟩+|1⟩√

2
⊗ |0⟩−|1⟩√

2

]
if f(0) = f(1)

±
[
|0⟩−|1⟩√

2
⊗ |0⟩−|1⟩√

2

]
if f(0) ̸= f(1)

where the ± depends on the actual value of f but only adds up to a global phase, so it’s irrelevant.
For |ψ3⟩ we get

|ψ3⟩ =

|0⟩ ⊗ |0⟩−|1⟩√
2

if f(0) = f(1)

|1⟩ ⊗ |0⟩−|1⟩√
2

if f(0) ̸= f(1)

64

This means that if we measure the first qubit and we get |0⟩, the function is constant, and if we get
|1⟩ the function is balanced

The Deutsch-Jozsa algorithm for n > 1 is only slightly more complicated, and is given by the
following circuit

|0⟩n H⊗n

Uf
H⊗n

|1⟩ H

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩
Similarly we have the following partial states

|ψ0⟩ = |0⟩n ⊗ |1⟩

|ψ1⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩ ⊗ |0⟩ − |1⟩√
2

|ψ2⟩ =
1√
2n

∑
x∈{0,1}n

(−1)f(x) |x⟩ ⊗ |0⟩ − |1⟩√
2

|ψ3⟩ =
1

2n

∑
x∈{0,1}n

∑
y∈{0,1}n

(−1)x
⊺y+f(x) |y⟩ ⊗ |0⟩ − |1⟩√

2

Note that in the last state, the amplitude of |0⟩n in the first register is 1
2n

∑
x∈{0,1}n(−1)f(x), which

means it’s ±1 if the function is constant and |0⟩ if the function is balanced. If we now measure the
observable |0⟩nn ⟨0| we can detect whether f is constant or balanced

5.3 Superdense coding

A more realistic problem where quantum algorithms allow us to be more efficient than the classical
solution is in superdense coding, that is encoding and transmitting n classical bits in less than n
qubits. Note that it is simply not possible to encode n classical bits in less than n bits (compression
algorithms do exist but they either work on stronger assumptions or cannot guarantee that for any
possible input the output will be less than n bits, just from a dimensional point of view).

Suppose we have a two qubit system in state |Φ+⟩ = |00⟩+|11⟩√
2

. We then give the first qubit to
Alice and the second qubit to Bob. Alice will perform "some operation" on her qubit to encode the
information that she wants to send(in this case, two classical bits of information) on the global state,
then give her qubit back to Bob. If the two bits that Alice wants to send are (m,n), the operation
Alice will perform will be ZmXn, changing the global state according to the following table

Classical bits to encode Operator to apply Global state after operator
(0, 0) 1 |00⟩+|11⟩√

2
= |Φ+⟩

(0, 1) X |10⟩+|01⟩√
2

= |Ψ+⟩
(1, 0) Z |00⟩−|11⟩√

2
= |Φ−⟩

(1, 1) ZX −|10⟩+|01⟩√
2

= |Ψ−⟩

Notice that the four possible outcomes form a basis (in particular, Bell’s basis) which means by
measuring with respect to this basis Bob can tell in which state the global system is, understand

65

which operation was applied and retrieve the bits. To simplify this, we can transform Bell’s basis to
the computational basis by applying a CNOT and an Hadamard gate. After this, the global system
will be in the computational basis’ state corresponding to the two bits of information that Alice
wanted to encode, and this information can be obtained by Bob just by measuring with respect to
the computational basis.
An example circuit, corresponding to the case of Alice encoding 10, is given by the following

A |0⟩ H • ZmXn • H |m⟩

B |0⟩ |n⟩

where the barriers represent the moment where Alice recieves and sends her qubit. Note that the
initial state for this circuit is actually |0⟩ ⊗ |0⟩, and the state |Φ+⟩ is produced.

Exercise 5.3.1. One can prove that the reduced density matrix of Alice’s qubit after her operation
is the same independently of which operator she decides to apply, which means that an eavesdropper
cannot obtain any information without modyfing the system

5.4 Teleportation

In the previous problem we were able to use an entangled system to send two bits of information by
transmitting only one qubit. We will now consider a problem which can be seen as the inverse of the
previous problem. We want to be able to send some state |ψ⟩, and we will achieve this by using an
entangled state and sending two bits of information.

Note that by the cloning theorem, we must destroy the original state in order to recreate it on a
different register.

Suppose that Alice and Bob have each one qubit of an entangled pair in state |Φ+⟩ = |00⟩+|11⟩√
2

.
Suppose that Alice also has a qubit in a state |ψ⟩ = α |0⟩ + β |1⟩ which she is not able to recreate,
but would like to send to Bob (in this case "sending a qubit to Bob" means making so that Bob’s
qubit transforms in that state). Consider the following circuit

A0 |ψ⟩ • H |m⟩

A1 |0⟩ H • |n⟩

B |0⟩ ZmXn

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩
Again, the entangled state |Φ+⟩ is produced from the state |00⟩ rather than being in the initial state.

66

The partial states are

|ψ0⟩ = |ψ⟩ ⊗ |00⟩+ |11⟩√
2

|ψ1⟩ =
1√
2
(α |0⟩ ⊗ (|00⟩+ |11⟩) + β |1⟩ (|10⟩+ |01⟩))

|ψ2⟩ =
1

2
(|00⟩ (α |0⟩+ β |1⟩)+

+ |01⟩ (α |1⟩+ β |0⟩)+
+ |10⟩ (α |0⟩ − β |1⟩)+
+ |11⟩ (α |1⟩ − β |0⟩))

|ψ3⟩ = |m⟩ ⊗ |n⟩ ⊗ |ψ⟩

The reason why the final state has |ψ⟩ on Bob’s register is best manually checked: suppose for
example that after the measurement, Alice measured |mn⟩ = |10⟩. By checking the superpositon
before the measurement |ψ2⟩, then we know that after Alice’s register collapsed to |10⟩, Bob’s register
must have collapsed to α |0⟩ − β |1⟩, which means that after applying Z, Bob’s register is in state
α |0⟩+ β |1⟩ = |ψ⟩.
One can check as an exercise that the other possible values of (m,n) yield the same final state with
the opportune measurement

November 18th, 2022

5.5 Shor’s algorithm

Given a composite number N the goal of the factorization problem is to find a non-trivial factorization
of that number, ie: find p, q ∈ N such that pq = N and p, q ̸= 1. The case of N even is trivial
(assuming the number N is stored in any reasonable representation like binary, decimal, hexadecimal,
. . .) and there exist classical algorithms that efficiently solve the case of N being the power of a prime.
For this reason we usually focus on the case of N being an odd composite prime that is the product of
at least two distinct primes. Factorizing composite numbers is also at the core of many cryptographic
primitives for protocols currently in use that assume that the factorization problem is difficult to solve.
Indeed, the fastest classical algorithm currently known is the Numbered Field Sieve algorithm (NFS)

which has a complexity of O(ec(logN)
1
3 log logN) (or, if you let n be the number of binary digits of

N , you can express the complexity as O(ecn
1
3 logn); the number of binary digits, which is also the

number of bits needed to store N , is the usual unit for calculating the complexity of such algorithms).

Shor’s algorithm, proposed in 1994, requires only O((logN)3 log logN), using a register of
O(logN) qubits.
As a meter of comparison, consider that checking if a given number b < N divides N requires
O(logN) steps, and computing the GCD of b and N (for example via Euclid’s Algorithm) requires
O((logN)2).

An important note is that Shor’s algorithm is probabilistic, as in it has only a constant probability
p ∈ (0, 1) of returning a correct non-trivial solution. It is always possible, though, to run the algorithm
multiple times (which would only add up to a moltiplicative factor in the complexity calculation) un-
til the probability of retrieving a non-trivial factorization is at least 1−ε for some small value of ε > 0.

67

The key idea behind Shor’s algorithm is to reduce the factorization problem to the problem of
finding the period2 r of a periodic function f : N → N, which has an easy-to-implement solving
algorithm in the quantum setting. The actual function f that we will find the period of is a func-
tion of the form fb,N (n) = bn mod N , for some b < N . If GCD(b,N) = 1 then such a function
is indeed periodic with period r = ordN (b), that is the order of b in the multiplicative group (Z/NZ)∗.

The classical method to compute a period for such a function requires O(N) steps in the worst
case (it requires calculating powers of b mod N until you find a repetition). On the other side,
Shor’s algorithm for the calculation of the period of a function computes the period of the function
in only O((logN)3 log logN) steps (note that it has the same complexity as the whole of Shor’s
algorithm for factorization, as it is its most expensive part), which is an exponential improvement.

5.5.1 Definition and remarks
We can describe Shor’s algorithm as composed of 3 steps, of which we will discuss implementation
and correctness afterwards

• Input: an odd, composite integer N that is the product of at least two different primes

• Output: a non-trivial factorization of N

• Steps:

1. Choosing b
We start with a random value of b < N and compute GCD(b,N) (which requires
O((logN)2) steps) with Euclid algorithms. If GCD(b,N) ̸= 1 then we’re done, as clearly
GCD(b,N) divides N and would give us a non-trivial factorization. If GCD(b,N) = 1,
we procede with step 2

2. Quantum routine
Use a quantum algorithm (that we will describe later) to compute (with high probability)
the period r = ordN (b) of fb,N . If r is odd, we go back to step 1. Otherwise, we procede
to step 3

3. Finding the factorization
Compute GCD(b

r
2 + 1, N). If the result is N , we go back to step 1. Otherwise the pair

GCD(b
r
2 + 1, N), GCD(b

r
2 − 1, N) gives a non-trivial factorization of N

As one can see from the many branches that require to restart the algorithm and the presence of a
probabilistic subroutine, this algorithm is itself probabilistic.

The first issue we’re going to address is the correctness of step 3. Once we get to step 3 we have
values b and r such that br ≡ 1 mod N and r even. We can write (b

r
2)2 − 1 ≡ 0 mod N which

can be factored as
(b

r
2 + 1)(b

r
2 − 1) ≡ 0 mod N

which implies
N | (b r2 + 1)(b

r
2 − 1)

2: when we talk about "a" period of a periodic function f : N → N we mean any value k such that ∀n ∈ N, it holds
f(n+ k) = f(n). When we talk about "the" period of such a function f we mean the smallest possible value for such
a k

68

Notice that since r is the (smallest) period, it must be b
r
2 − 1 ̸≡ 0 mod N . This implies that

N ̸ | (b r2 − 1), which combined with N | (b r2 + 1)(b
r
2 − 1) implies that N and (b

r
2 + 1) must have a

common non-trivial factor, that is GCD(b
r
2 +1, N) ̸= 1. If we also have that GCD(b

r
2 +1, N) ̸= N

thenGCD(b
r
2 +1, N) is a non-trivial factor ofN , and the remaining factor is exactlyGCD(b

r
2 −1, N).

About the likelihood of a random b resulting in a number coprime with N with an even period
r = ordN (b), the following theorem (which we won’t prove) reassures us

Theorem 5.5.1
Let N =

∏k
j=1 p

vj
j with {pj} distinct odd primes, with k ≥ 2 and vj ≥ 1.

Let Ω = {c ∈ {0, . . . , N − 1} |GCD(c,N) = 1}. Then

• |Ω| = ϕ(N) =
∏k
j=1 p

vj−1
j (pj − 1)

• |{b ∈ Ω | r = ordN (b) is even ∧ N ̸ | (b r2 + 1)}| ≥ ϕ(N)
(
1− 1

2k−1

)
Proposition 5.5.2

There exists a constant c > 0 such that ϕ(n)
n ≥ c

log logn definitely in n

5.5.2 Quantum routine
We’ll now focus on step 2 of Shor’s algorithm, which is the quantum routine for determining the
period of a function of the form fb,N with GCD(b,N) = 1.

The problem we will solve is actually a bit more general, in that we will find the period r of an
unknown function f : N → N with the following assumptions:

• ∃L ≥ 2 such that r < 2
L
2 , which means we have an upper bound for r. In our case we have

L = ⌊2 log2N⌋+ 1

• f restricted to one period is injective and ∃k ≥ 1 such that ∀n, f(n) < 2k, which means we
can store the values of f(n) in k classical bits

• Uf : HL ⊗ Hk → HL ⊗ Hk is implementable with O(Lc) elementary gates. In our case fb,N
requires O((logN)3)

The algorithm we will see will find the period r with probability of at least c′

logL with at most
O(Lmax{c,3}) elementary gates, where c′ is a constant that doesn’t depend on anything, and is just
cumbersome to write. To find the period r with probability of at least, for example, 1

2 , we need to
repeat the algorithm s times where s is such that (1− c′

logL)
s ≤ 1

2 . As L grows, s needs to be pro-
portional to logL. This repetition is what gives the factor log logN in the complexity of the algorithm.

The circuit for this routine is the following

|0⟩L H⊗L

Uf

QFT

|0⟩k

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

69

For the partial states |ψ0⟩, |ψ1⟩ and |ψ2⟩ we get

|ψ0⟩ = |0⟩L ⊗ |0⟩k

|ψ1⟩ =
1√
2L

2L−1∑
x=0

|x⟩L ⊗ |0⟩k

|ψ2⟩ = Uf |ψ1⟩ =
1√
2L

2L−1∑
x=0

|x⟩L ⊗ |f(x)⟩

Since f is periodic we can rewrite |ψ2⟩ as

|ψ2⟩ =
1√
2L

r−1∑
y=0

Jy∑
j=0

|y + jr⟩ ⊗ |f(y)⟩

where, given J = ⌊ 2L−1
r ⌋ being the total number of complete periods in {0, . . . , 2L − 1} and R ≡

2L − 1 mod r, then Jy is defined as

Jy =

{
J + 1 if y ≤ R

J if y > R

Practically speaking, Jy is the number of times the "class" of y appears in {0, . . . 2L − 1} (and it
might appear one more time than J if a representant of the class of y appears in the last incomplete
period, which appens exactly if and only if y ≤ R)
For |ψ3⟩, remember that QFT |x⟩L = 1√

2L

∑2L−1
l=0 e2πi

lx

2L |l⟩, which yields

|ψ3⟩ = QFT ⊗ 1k |ψ2⟩ =
1

2L

r−1∑
y=0

Jy∑
j=0

2L−1∑
l=0

e2πi
l(y+jr)

2L |l⟩ ⊗ |f(y)⟩

When we then measure on the register HL the system will collapse to a state |z⟩ of the canonical
basis, where the probability of obtaining |z⟩ is

P(z) = ⟨Az⟩|ψ3⟩ = ∥Az |ψ3⟩ ∥2

70

Note that the observable is Az = |z⟩⟨z| ⊗ 1k = A2
z because it’s a projection, so

Az |ψ3⟩ =
1

2L

r−1∑
y=0

 Jy∑
j=0

e2πi
z(y+jr)

2L

 |z⟩ ⊗ |f(y)⟩

∥Az |ψ3⟩ ∥2 =
1

22L

r−1∑
y=0

∣∣∣∣∣∣
Jy∑
j=0

e2πi
z(y+jr)

2L

∣∣∣∣∣∣
2

=

=
1

22L

r−1∑
y=0

∣∣∣∣∣∣e2πi zy2L
Jy∑
j=0

e2πi
zjr

2L

∣∣∣∣∣∣
2

=

=
1

22L

r−1∑
y=0

∣∣∣∣∣∣
Jy∑
j=0

e2πi
zjr

2L

∣∣∣∣∣∣
2

= a = e2πi
zr

2L

=
1

22L

r−1∑
y=0

∣∣∣∣∣∣
Jy∑
j=0

aj

∣∣∣∣∣∣
2

where in the first equality for ∥Az |ψ3⟩ ∥2 we were able to take out the sum because the f(y) are all
different, which means the |z⟩ ⊗ |f(y)⟩ are all orthogonal. We find that

P(z)

1

22L

∑r−1
y=0(Jy + 1)2 if zr

2L
is an integer, that is a = 1

1
22L

∑r−1
y=0

∣∣∣∣ e2πi zr2L −1

e
2πi zr

2L −1

∣∣∣∣2 otherwise

It’s still not clear how to extract the period r from this. To extract the value of r, we will use the
follwoing theorem from the continuous fractions theory that guarantees that if we’re able to obtain an
integer z such that zr

2L
is "sufficiently close" to be an integer, then it is possible to obtain the value of r.

Theorem 5.5.3
Given an integer z, suppose the exists an integer l such that

A)
∣∣∣ zr
2L

− l
∣∣∣ ≤ r

2L+1

then the (possibly reduced) fraction l
r will appear in the fraction approximations of z

2L
given

by its continuous fraction representation (which we can manually calculate efficiently).
If it also hold that

B) GCD(l, r) = 1

then the fraction l
r is unreducible, which means it will appear as-is in the fraction approxima-

tions and we will know the values of l (which is not interesting for us) and of r

To show that it’s likely to get from the measurement a number z that satisfies that property,
consider the following results (that we will not prove and take for granted):

71

• if z is such that zr
2L

is an integer, that is a = 1, then P(z) ≈ 1
22L

r
(

2L

r

)2
= 1

r , which is
reasonabily higher than the likelyhood given by a uniform distribution

• if z is such that there exists an integer l such that A) holds, then a similar bound P(z) ≥ c
r

holds for some fixed constant c

More precisely, the following lemma holds

Lemma 5.5.4 ∑
z such that A)
and B) hold

P(z) ≥ c

logL

November 23th, 2022

5.6 Quantum phase estimation

Consider the following problem: given U (that we don’t know explictly) with eigenstate |φ⟩n ∈ H⊗n

with eigenvalue e2πiθ, that is
U |φ⟩ = e2πiθ |φ⟩

we would like to retrieve at least an approximation of θ.

Remember that |φ⟩ and e2πiθ |φ⟩ belong to the same ray, so they give the same density operator
ρ = |φ⟩⟨φ| and are physically indistinguishable.

The solution will assume that we we’re not only able to evaluate U , but also a controlled version CU
(which is not necessarily possible given U as a blackbox). The solution will use an ancilla register of
t qubits to obtain (with high probability) the value ⌊2tθ⌋ from which we can get an approximation
of θ to t binary digits.

For t = 1, the algorithm is described by the following circuit

|0⟩ H • QFT−1

|φ⟩n CU

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩
The partial states are

|ψ0⟩ = |0⟩ ⊗ |φ⟩n

|ψ1⟩ =
|0⟩+ |1⟩√

2
⊗ |φ⟩

|ψ2⟩ =
|0⟩ ⊗ |φ⟩√

2
+ e2πiθ

|1⟩ ⊗ |φ⟩√
2

=
|0⟩+ e2πiθ |1⟩√

2
⊗ |φ⟩

72

Notice that for t = 1 we get QFT−1 = H so we get

|ψ3⟩ =
1√
2

|0⟩+ |1⟩√
2

⊗ |φ⟩+ e2πiθ√
2

|0⟩ − |1⟩√
2

⊗ |φ⟩ =

=

[
1

2
(1 + e2πiθ) |0⟩+ 1

2
(1− e2πiθ) |1⟩

]
⊗ |φ⟩

therefore when we measure the first qubit we obtain 0 with probability

P(0) =
∣∣∣∣1 + e2πiθ

2

∣∣∣∣2 = cos2(πθ)

and 1 with probability

P(1) =
∣∣∣∣1− e2πiθ

2

∣∣∣∣2 = sin2(πθ)

Note that P(0) > P(1) if and only if θ ∈
[
0, 14

]
∪
[
3
4 , 1
)
. So if θ has only one binary digit, that is if

θ ∈
{
0, 12

}
then we obtain exactly θ.

The algorithm for the general case t > 1 is given by the following circuit

|0⟩

H⊗t

• . . .

QFT−1

|0⟩ • . . .

...
. . .

...

|0⟩ . . . •

|φ⟩n U2t−1

U2t−2 . . . U

|ψ1⟩ |ψ2,1⟩ |ψ2,2⟩ |ψ2,t⟩ |ψ3⟩
This circuit gives the following partial states

|ψ1⟩ =
1√
2t
(|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)⊗ |φ⟩

|ψ2,1⟩ =
1√
2t
(|0⟩+ e2πiθ2

t−1

|1⟩)⊗ (|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)⊗ |φ⟩

|ψ2,2⟩ =
1√
2t
(|0⟩+ e2πiθ2

t−1

|1⟩)⊗ (|0⟩+ e2πiθ2
t−2

|1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)⊗ |φ⟩

...

|ψ2,t⟩ =
1√
2t
(|0⟩+ e2πiθ2

t−1

|1⟩)⊗ · · · ⊗ (|0⟩+ e2πiθ2
t−2

|1⟩)⊗ (|0⟩+ e2πiθ |1⟩)⊗ |φ⟩

=
1√
2

t−1⊗
j=0

(
|0⟩+ e2πiθ2

t−(j+1)

|1⟩
)
⊗ |φ⟩

=
1√
2

t−1⊗
j=0

(
|0⟩+ e2πi(2

tθ)2−(j+1)

|1⟩
)
⊗ |φ⟩

73

Note that by a lemma on the QFT, if 2tθ is an integer then we get

|ψ3⟩ = (QFT−1 ⊗ 1n) |ψ2,t⟩ =
∣∣2tθ〉⊗ |φ⟩

in which case we can just measure and obtain 2tθ and retrieve θ. That said, 2tθ might not be an
integer, in which case we won’t get that exact result.

To analize the general case, first consider that

1√
2t

t−1⊗
j=0

(|0⟩+ e2πi(2
tθ)2−(j+1)

|1⟩) = 1√
2t

2t−1∑
ξ=0

e2πi
(2tθξ)

2t |ξ⟩

the proof of which is the reverse of the same lemma on the QFT used for the 2tθ integer case (in
which part of the proof we never use that x is an integer, right until the last step that we don’t need
now).

Because the inverse of the QFT acts exactly as the QFT, except with a negative sign at the ex-
ponent, in the general case we get

|ψ3⟩ =
1

2t

2t−1∑
x=0

2t−1∑
ξ=0

e2πi
(2tθ)ξ

2t e−2πi xξ
2t |x⟩t ⊗ |φ⟩n

which means that fixed any value x ∈ {0, . . . , 2t − 1} the probability of measuring x is

P(x) =
1

22t

∣∣∣∣∣∣
2t−1∑
ξ=0

e2πi
ξ

2t
(2tθ−x)

∣∣∣∣∣∣
2

Using the same result from continuous fractions theory that we mentioned in Shor’s algorithm, we
know that there exists a unique x̄ such that

∣∣ x̄
2t − θ

∣∣ ≤ 1
2t+1 that, if measured, would give us the

approximation of θ to t bits. It can be proven that the probability of measuring this specific x̄ is
greater than an universal constant that is "sufficiently high" (somewhere close 40%).

Remark 5.6.1. Note that at the beginning of the algorithm we implicitly made the strong
assumption that we were able to prepare the state |φ⟩ being an eigenstate of the operator
we’re considering. It is not always the case that we can prepare an eigenstate of the operator,
and we would like to ease the assumptions.

Suppose instead that we’re able to prepare a state |φ⟩ = α |φa⟩ + β |φb⟩ where |φa⟩
and |φb⟩ are eigenstates for U , where

U |φa⟩ = e2πiθa |φa⟩ , U |φb⟩ = e2πiθb |φb⟩

74

Following the same steps as before, and using linearity when needed, we get

|ψ2⟩ =
1√
2t

2t−1∑
ξ=0

αe2πiθa |ξ⟩ ⊗ |φa⟩+ βe2πiθb |ξ⟩ ⊗ |φb⟩

|ψ3⟩ =
1

2t

2t−1∑
x=0

2t−1∑
ξ=0

e2πi(θa−
x
2t
)ξα |x⟩ ⊗ |φa⟩+ e2πi(θb−

x
2t
)ξβ |x⟩ ⊗ |φb⟩

This means that the probability of measuring some integer l is

P(l) =

∥∥∥∥∥∥ 1

2t

2t−1∑
ξ=0

e2πi(θa−
l
2t
)ξα⊗ |φa⟩+ e2πi(θb−

l
2t
)ξβ ⊗ |φb⟩

∥∥∥∥∥∥
2

= |φa⟩ ⊥ |φb⟩

=
1

2t

∣∣∣∣∣∣
2t−1∑
ξ=0

e2πi(θa−
l
2t
ξ)

∣∣∣∣∣∣
2

|α|2 + 1

2t

∣∣∣∣∣∣
2t−1∑
ξ=0

e2πi(θb−
l
2t
ξ)

∣∣∣∣∣∣
2

|β|2

= |α|2Pθa(l) + |β|2Pθb(l)

In the extreme case where both θa2t = la and θb2t = lb are integers, then we would get la
with probability |α|2 and lb with probability |β|2

5.6.1 Back to Shor’s quantum routine
Now that we know how to perform QPE we can give a different interpretation to Shor’s quantum
routine for the period of a function. The following algorithm is more of a sketch than a rigorous
algorithm, and has the purpose of showing a possible application of the QPE.
The hypothesis under which we were working are

• ∃L ≥ 2 such that r < 2L/2

• f restricted to one period is injective

• ∃k ≥ 1 such that ∀n, f(n) < 2k

Before we used an operator Uf that acted as |x⟩L ⊗ |y⟩k 7→ |x⟩L ⊗ |y ⊕ f(x)⟩k. Now we’re going
to use a differnet operator that acts as |f(x)⟩k 7→ |f(x+ 1)⟩k and we will also require to be able
to build a controlled version CUf . This is not a strong hypothesis because in the case of fb,N , such
operator would just be the operator that acts as |x⟩ 7→ |xb⟩ which is actually very easy to implement.

Consider the following state

|φ⟩ = 1√
r

r−1∑
y=0

|f(y)⟩ ∈ Hk

Of course, not knowing r, we can’t easily prepare this state so the interest in it right now is purely
theoretical, but the reason behind it will be clear soon.

75

Note that

U |φ⟩ = 1√
r

r−1∑
y=0

U |f(y)⟩ =

=
1√
r

r−1∑
y=0

|f(y + 1)⟩ =

=
1√
r

r∑
y=1

|f(y)⟩ = f(r) = f(0)

=
1√
r

r−1∑
y=0

|f(y)⟩

which means that |φ⟩ is an eigenstate of U with eigenvalue 1.
Consider the following (still purely theoretical) class of states

|φs⟩ =
1√
r

r−1∑
y=0

e−2πi syr |f(y)⟩ , s ∈ {0, . . . r − 1}

By repeating the same calculations as before we get that |φs⟩ is an eigenstate of U with eigenvalue
e2πi

s
r . If we were able to prepare a state |φs⟩ for some s coprime with r, then by using QPE we

could obtain s
r and with the same trick from continuous fractions we could obtain r.

The solution to not bein able to prepare any of the states |φs⟩ comes by observing that

1√
r

r−1∑
s=0

|φs⟩ =
1

r

r−1∑
s=0

r−1∑
y=0

e−2πi syr |f(y)⟩

=
1

r

r−1∑
y=0

r−1∑
s=0

e−2πi syr

=rδy0

|f(y)⟩ =

= |f(0)⟩

This means that |f(0)⟩ (which is Shor’s case is |1⟩k which is even easier to prepare) is a superposition
of eigenstates of U , and that if we apply QPE built with this particular U to the initial state |f(0)⟩
we will get as a result an approximation of the fraction s

r , for some integer s ∈ {0, . . . , r − 1}
that is random because of the superposition. With a relatively high probability (ϕ(r)/r, which by a
previous lemma we know is a decent percentage) the random s corresponding to the approximation
we obtained will be coprime with r, and will alow us to retrieve the value of r.

November 9th, 2022

5.7 Grover’s algorithm

The problem we want to solve now is the unstructured search problem, that is being able to find
elements of a subset S (that we suppose satisfy a certain property) in a set X with no additional
structure other than being enumerated. Note that with additional structure, for example if the set is

76

ordered in some way related to the property that element in S satisfy, the problem becomes easier to
solve. This is the most general version of the search problem.

In the unstructured case, the classical approach consist in bruteforcing the search resulting in a
complexity of O(N) in the worst case (where N = |X|). Grover’s algorithm for the unstructured
search problem, although being a probabilistic algorithm, has a complexity of O(

√
N) which is prov-

ably optimal.

We will suppose that N = 2n (if this is not the case we can just pretend that X has more
elements than it actually does) and let m = |S|. With a bit of an abuse of notation, we will identify
X with the set {0, 1}n and will treat elements of X as binary string. This does not count as addi-
tional structure on X and has the only purpose of simplifying the notation. A solution without this
identification would just insert the bijection {0, 1}n → X and its inverse many times in the definition.

We will also suppose that we have an oracle for S, that is we can implement and use a gate Ug
where g : {0, 1}n → {0, 1} is a boolean function that returns 1 if the input belongs to S, and 0
otherwise. Let’s also call S⊥ = X \ S.

Remark 5.7.1. The solution to this problem given these assumption might seem pointless,
as one could find it unlikely that we can’t easily find elements in S but we can easily have
access to such a function g.

Actually, such cases are very common. Consider this: we would like to use this algo-
rithm to solve some different problem, making X the set of all the possible solutions and
S the set of only the valid solutions (eg: for the 3 colouring problem, X would be the
set of all the possible colourations regardless of them bein valid, and S would be the set
of actual solutions). In many cases, solving a problem can be a much more difficult task
than verifying if a given possible solution is an actual solution (famously, NP-Hard problems
have a supposedly exponential solving algorithm but a polynomial verifying algorithm). This
means that we can use the efficiency of the verifying algorithm to build an efficient solving
algorithm.

Note that this has no implication on P vs NP as the resulting algorithm will indeed
have a quadratic improvement from bruteforce but will still be exponential in n

Given the gate

Ûg : Hn ⊗H Hn ⊗H
|x⟩n ⊗ |y⟩ |x⟩n ⊗ |y ⊕ g(x)⟩

note that, if we set the second register to the state |0⟩−|1⟩√
2

= H |1⟩ then on a basis state |x⟩ we get

Ûg |x⟩ ⊗
|0⟩ − |1⟩√

2
= |x⟩ ⊗ |g(x)− |1⊕ g(x)⟩⟩√

2
=

= (−1)g(x) |x⟩ ⊗ |0⟩ − |1⟩√
2

77

More generally, on a non-basis state |φ⟩ =
∑2n−1
x=0 αx |x⟩ we get

Ûg |φ⟩ ⊗
|0⟩ − |1⟩√

2
=

2n−1∑
x=0

(−1)g(x)αx |x⟩ ⊗
|0⟩ − |1⟩√

2

This means that Ûg reverses the phases of the states belonging to the solution set. For this reason, it
makes sense to initialize the I/O register to |φ0⟩ = H⊗n |0⟩n, but given that also the ancilla register
was initialized to H |1⟩, in practice we will actually use |0⟩n ⊗ |1⟩ as initial state and just apply an
H⊗n+1 at the beginning of the circuit.

Notice also that Ûg acts as the identity on the ancilla qubit when the ancilla qubit is |0⟩−|1⟩√
2

, reason

for which it makes sense to consider the operator Ug as the operator that acts as |x⟩ 7→ (−1)g(x) |x⟩
on the computational basis and extended by linearity. Because Ûg doesn’t change the ancilla qubit
from its initial state (because of the specific initial state, and not true in general), we will commit a
bit of a notation abuse and for the sake of simplicity consider only Ug and the I/O register, implicitly
saying that the ancilla register does exist and is and always remains in state |0⟩−|1⟩√

2
. When more

formality will be needed, we will resort to Ûg and will use in general the notation of putting a "hat"
on operators acting on both I/O and ancilla registers, and not putting a hat on operators that act
only on the I/O register.

The algorithm itself is not necessarily easy to understand, but it has a nice geometrical interpreta-
tion that gives much of the intuition needed to understand. We will first consider the case of m = 1,
where there exist a unique solution.

Let s ∈ S be the unique solution. The initial state |φ0⟩ of the I/O register can be decomposed
as a component on |s⟩ and a component orthogonal to |s⟩. More formally, we can define

|s′⟩ = 1√
N − 1

∑
x∈S⊥

|x⟩

and get

|φ0⟩ =
1√
N

|s⟩+
√
N − 1√
N

|s′⟩

= sin θ0 |s⟩+ cos θ0 |s′⟩

where θ0 = arcsin 1√
N

. Geometrically, we can consider the plane spanned by |s⟩ and |s′⟩ and consider
|φ0⟩ on this plane

|s′⟩

|s⟩

|φ0⟩

θ0

78

Note that so far, every basis state is equally likely. Our goal is to amplify the amplitude of the state
|s⟩ to make it more likely to measure. If we apply the oracle Ug we get

|φ1⟩ = U |φ0⟩ = − sin θ0 |s⟩+ cos θ0 |s′⟩

This means that applying Ug reflects a state with respect to |s′⟩. Geometrically we get

|s′⟩

|s⟩

|φ0⟩

|φ1⟩

θ0

θ0

To conclude this iteration of the algorithm, we can now get a new state obtained by the previous,
reflected with respect to |φ0⟩. The reflection with respect to |φ0⟩ is the operator Rφ0

= 2 |φ0⟩⟨φ0|−
1⊗n, and we get

|φ1⟩ = Rφ0 |φ1⟩ = sin(2θ0 + θ0) |s⟩+ cos(2θ0 + θ0) |s′⟩
as one can clearly see from the geometric interpretation

|s′⟩

|s⟩

|φ0⟩

|φ1⟩

|φ1⟩

θ0

θ0

2θ0

It’s clear to see that (supposing that θ0 ≤ π
6 which is true for N ≥ 2m) then the amplitude of |s⟩ in

|φ1⟩ is bigger than the amplitude in |φ0⟩, which means we made it more likely to measure |s⟩.

The general case for a generic m is not much different, and requires only a few changes, namely:

• The "solution" state |s⟩ is now defined as

|s⟩ = 1√
m

∑
x∈S

|x⟩

79

• Similarly, |s′⟩ orthogonal to |s⟩ is defined as

|s′⟩ = 1√
N −m

∑
x∈S⊥

|x⟩

• The initial superposition state is now decomposed as

|φ0⟩ =
1√
N

∑
x∈X

|x⟩ =

=

√
m

N
|s⟩+

√
N −m

N
|s′⟩ =

= sin θ0 |s⟩+ cos θ0 |s′⟩

θ0 = arcsin
√
m

N

The rest of the argument stays exactly the same, and by applying first Ug (which acts like a reflection
with respect to |s′⟩) and then Rφ0

we get

|φ1⟩ = sin(2θ0 + θ0) |s⟩+ cos(2θ0 + θ0) |s′⟩

Definition 5.7.1 – Grover operator

The Grover operator, at the core of Grover’s algorithm, is defined as

Ĝg = (Rφ0 ⊗ 1)Ûg

If we iterate this step, we get the following result, which can be proved by induction as an exercise

Proposition 5.7.2
By iterating Grover’s operator we get

|φj⟩ ⊗
|0⟩ − |1⟩√

2
= Ĝg

j
|φ0⟩ ⊗

|0⟩ − |1⟩√
2

where
|φj⟩ = sin θj |s⟩+ cos θj |s′⟩

and
θj = (2j + 1)θ0

Our hope is to iterate this step just the right number of times to maximise the amplitude of |s⟩
in |φj⟩. It’s easy to see that the probability of measuring an element of S is

P(S) = sin2 θj

and to maximise this probability we need θj ≈ π
2 .

80

Lemma 5.7.3
Let

jN
m

=

 π

4arcsin
√

N
m

Then if we perform jN

m
iterations of Grover, the probability of getting an element of S upon

measurement is greater than 1− m
N

Proof. By definition it holds
jN
m

≤ π

4θ0
< jN

m
+ 1

and by multiplying by 2θ0 we get

2θ0jN
m

≤ π

2
< 2θ0jN

m
+ 2θ0 = θjN

m

+ θ0

By adding θ0 to the first inequality we get

θjN
m

≤ π

2
+ θ0

which combined with the other inequality we get

π

2
− θ0 < θjN

m

≤ π

2
+ θ0

Since P(S) = sin2 θjN
m

and θjN
m

> π
2 − θ0 we get

P(S) = sin2 θjN
m

≥

≥ sin2
(π
2
− θ0

)
=

= cos2(θ0) =

= 1− sin2(θ0) =

= 1− m

N

Note that (initially) any additional iteration after the jN
m

-th iteration actuall worsens.

If we expand with a simple Taylor expansion we get jN
m

= O
(√

N
m

)
, so the entirety of Grover’s

algorithm requires O
(√

N
m

)
applications of Grover operator. The complexity in terms of elementary

gates remains unclear, as we haven’t discussed how to implement Grover’s operator using only ele-
mentary gates.

For this purpose, notice that Rφ0 = H⊗nR|0⟩H
⊗n, which means it can be implemented with 2n+1

elementary gates where n = logN , so the actual cost of Grover’s algorithm in terms of elementary

gates is O
(√

N
m logN

)
assuming that the oracle is a blackbox of constant cost.

81

November 30th, 2022
Let’s implement Grover’s algorithm for N = 4 and m = 1. We will actually analize two different
methods of implementing Grover for this specific case.

The first method we’re going to consider is one where, consistently with how we’ve described
Grover’s algorithm, the oracle requires one ancilla qubit. Graphically we get

HI/O
0

UgHI/O
1

HW

The search set X is formed by the basis states {|00⟩ , |01⟩ , |10⟩ , |11⟩}. For an actual implementation
on something like qiskit we also have to implement the oracle that we would normally take for granted.
To implement it, we need to build a gate that can detect one of those basis state. For example, for
target states |00⟩, |01⟩, |10⟩, |11⟩ we can respectively use the following gates

•
• •

•

For Rφ0
we will use the previously seen equivalent gate H⊗2(2 |00⟩⟨00| − 12)H

⊗2, and we can
implement 2 |00⟩⟨00| − 12 with the following circuit

X • X

X H H X

In this case we get θ0 = arcsin
√

1
4 = π

6 which means that after j4 = 1 iteration we get an angle
of θ1 = 3θ0 = π

2 , which means we get the target state with certainty instead of just with high
probability. This happens everytime N

m = 4, for example if N = 8 and m = 2. The complete circuit
(with target state |11⟩) will be

Setup Ug Rφ0

HI/O
0

|0⟩ H • H X • X H

HI/O
1

|0⟩ H • H X H H X H

HW |0⟩ X H

The second method we will consider for implementing Grover’s for N = 4 and m = 1 will use a
slightly different oracle that doesn’t need an ancilla.

Suppose that the target state that we want to detect is |11⟩. For this, we consider the oracle
given by the matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

82

which is the matrix of the CZ gate.

Another way to optimize the circuit is by implementing a smarter version of the reflection 2 |00⟩⟨00|−
12 with the following equivalent circuit

Z •

Z •

which also makes use of the CZ gate. Note that this is equivalent to the given reflection only up
to a global phase (it adds a −1 factor to the global phase), but a global phase won’t change the
correctness of the circuit.

The complete circuit becomes

HI/O
0

|0⟩ H • H Z • H

HI/O
1

|0⟩ H • H Z • H

5.8 Quantum counting

A really important assumption that we used in Grover’s algorithm (particularly, to determine how
many iterations to do) was knowing m = |S|. We would like now to solve this problem, that is being
able to (approximally) count the number of elements in S.

We saw that Grover’s operator, restricted to the plane spanned by |s⟩ , |φ0⟩, acted as a rotation
of an angle 2θ0, which is described by the matrix(

cos 2θ0 − sin 2θ0
sin 2θ0 cos 2θ0

)

which is a unitary operator with eigenvectors
(
i
1

)
and

(
−i
1

)
and respective eigenvalues eiθ0 and

e−iθ0 . We’ve also studied the QPE algorithm, which allowed us to get an extimation of the phase of
an eigenvalue of such operators. Supposing that we have access to the oracle that allows us to build
Grover’s operator, the idea behind quantum counting is to retrieve an approximation of θ0 using QPE
and from this value, obtain m as m = N sin2 θ0

December 2nd, 2022

5.9 Harrow-Hassidim-Lloyd algorithm

We will now study the Harrow-Hassidim-Lloyd (HHL) algorithm, originally proposed in 2008, which
is used to find solutions of systems of linear equations.

More precisely, given A ∈ CN×N and b ∈ CN , we want to find x ∈ CN such that Ax = b.
Without any additional structure, classical algorithms for this general problem take O(N3) steps. We
will actualy focus on a more specific case that we will now describe

83

Remark 5.9.1 (Conditioning number). The conditioning number of an invertible matrix
A ∈ CN×N is given by

k(A) = ∥A∥∥A−1∥

which clearly depends on the choice of the norm.

If A is hermitian and positive, and we choose ∥ · ∥2 as the norm, we get

k(A) =
λmax

λmin

where λmax and λmin are respectively the maximum and the minimun eigenvalues of A

Definition 5.9.1 – s-sparse matrix

Given a matrix A ∈ CN×N , we say that A is s-sparse if every row of A contains at most s
non-zero elements

The most efficient classical algorithm for the Ax = b problem with A being hermitian, positive
and s-sparse matrix is the conjugate gradient algorithm which takes O

(
Nsk(A) log 1

ε

)
to get a result

closer than ε (in some norm) to an actual solution.

The HHL algorithm for Ax = b with A being hermitian, positive and s-sparse takes only
O(logNs2(k(A))2 1

ε). This looks like an exponential improvement, but to be completely fair the
result given by the HHL algorithm is not exactly the same type of result given by other classical
algorithms, in that it doesn’t give a numerical solution but it is able to produce a state |x⟩

∥x∥ with x
being a solution, which allows us to evaluate observables on x without having a numerical expression
for it. Still, in many applications we don’t actually want the numerical solution, just some observable
properties of the solution, in which case the result given by the HHL algorithm is good enough.

A recent result (Wassing, 2018) showed that if A is not sparse you can solve the problem on a
quantum device in O(

√
N logN(k(A))2) steps.

The HHL algorithm can be summed up in two steps

1. Hamiltonian Simulation
We use QPE on U = e2πiA (so we need an efficient implementation of U). We will take for
granted how to obtain the operator e2πiA from the matrix A.

2. Branch selection step
We measure the ancilla and according to the outcome we perform some quantum operations
on the I/O

The I/O register will be H⊗nb where nb is chosen big enough to encode b. The ancilla register will
be H⊗t⊗H where t will be the precision that we will use for the QPE and will influence the precision
of the final result.
We will also make use of an inversion gate, defined on the computational basis as follows. Given |l⟩t

84

in the computational basis, the inversion gate acts as:

|l⟩ ⊗ |0⟩ 7→ |l⟩ ⊗
(
f(l) |1⟩+

√
(1− f2(l)) |0⟩

)
|l⟩ ⊗ |1⟩ 7→ |l⟩ ⊗

(
−
√

1− f2(l) |1⟩+ f(l) |0⟩
)

where the function f is defined as

f(l) =

{
2tλmin

l = 1
l c if l > c

0 otherwise

where λmin is the minimum eigenvalue of A.
We will assume that N = 2nb which means that b = (b̃j)

N−1
j=0 and we can encode b to a state |b⟩

defined as

|b⟩ =
N−1∑
j=0

b̃j |j⟩

assuming that ∥b∥ = 1 (if this is not the case we can just rescale it and solve an equivalent problem)

We can now define the HHL algorithm as

H⊗nb |0⟩nb encode
b |b⟩

QPE QPE−1

. . .

H⊗t |0⟩t
inversion

. . .

H |0⟩ if 1, continue
if 0, repeat

After encoding the vector b, the global state is |b⟩ ⊗ |0⟩t ⊗ |0⟩. Then we perform QPE with unitary
U = e2πiA on |b⟩, and to understand the result, note that by Bertrand’s theorem we can decompose
A as

A =

N−1∑
k=0

λk |φk⟩⟨φk|

with |φk⟩ eigenvectors and λk such that U |φk⟩ = e2πiλk |φk⟩. Because the eigenvectors form a base,
we can also decompose the state |b⟩ as

|b⟩ =
N−1∑
k=0

bk |φk⟩

After the QPE we get the following state

N−1∑
k=0

N−1∑
l=0

β(l, λk)bk |φk⟩ ⊗ |l⟩t ⊗ |0⟩

where

β(l, λk) =
1

2t

2t−1∑
j=0

e2πi(λk−
l
2t
)j

85

If we suppose that all the eigenvalues λk can be written as 2tλk = lk for some lk ∈ {0, . . . , 2t − 1},
which to be fair is a strong supposition, we can simplify the state as

N−1∑
k=0

bk |φk⟩ ⊗
∣∣2tλk〉t ⊗ |0⟩

When we apply the inversion we get

N−1∑
k=0

bk |φk⟩ ⊗
∣∣2tλk〉t ⊗

 c

2tλk
|1⟩+

√
1−

(
c

2tλk

)2

|0⟩

Then we apply QPE−1 we get

N−1∑
k=0

c

2tλk
bk |φk⟩ ⊗ |0⟩t ⊗ |1⟩+

√
1−

(
c

2tλk

)2

bk |φk⟩ ⊗ |0⟩t ⊗ |1⟩

If we measure the "isolated" ancilla qubit, we get 1 with probability

P(1) =

∥∥∥∥∥
N−1∑
k=0

bk |φk⟩ ⊗ |0⟩t c

2tλk

∥∥∥∥∥
2

=

=

∥∥∥∥∥
N−1∑
k=0

bk |φk⟩ ⊗ |0⟩t λmin

λk

∥∥∥∥∥
2

=

=

N−1∑
k=0

|bk|2
(
λmin

λk

)2

≥

≥
(
λmin

λmax

)2

=

= k(A)−2

If we get 1, then the rest of the global state must be collapsed to

c

2t

N−1∑
k=0

bk
λk

|φk⟩ ⊗ |0⟩t = c

2t
∣∣A−1b

〉
⊗ |0⟩t =

=

∣∣A−1b
〉

∥A−1b∥
⊗ |0⟩t

so the final global state will be |x⟩
∥x∥ ⊗ |0⟩t ⊗ |1⟩

December 9th, 2022

5.10 Quantum walks

The last class of problems we will consider are about quantum walks. The goal is to find and analyze
a correspondent in the quantum setting of random walks. We’ll first introduce classical random walks
with all the related concepts and then we will jump to quantum walks.

86

Definition 5.10.1 – Undirected graph

A graph is a pair of sets (V,E) were V is a set of vertices or nodes, and E is a set of edges
connecting two of the nodes in the set V .
We say that the graph:

• is undirected if the edges are undirected, that is "connects via an edge to" is a
symmetric relation.

• is connected if every node is reachable from any other node only jumping through edges.

• has no multiple edges if given a pair of nodes, at most one edge connects them.

• has no loops if no edge connects a node to itself

• is d-regular if every node has exactly d neighbors

We will use d-regular, undirected, connected graphs with no multiple edges or loops. Examples
of such graphs are cycles (2-regular) or n-dimensional hypercubes (n-regular)

Definition 5.10.2 – Adjacency matrix

Given a graph G = (V,E) we can construct its adjacency matrix as the matrix A = (Aij)ij
where

Aij =

{
1 if vi and vj are connected by an edge
0 otherwise

In a classical setting, a random walk on G is a stocastic process without memory (Markov chain)
where for each node i we have a discrete probability function that associates to each neighbor j of i
a probability, which represents the probability of jumping to j when being in state i.

The natural way to represent these probability distributions is by the transition matrix

Definition 5.10.3 – Transition matrix

The (row) transition matrix is a matrix P = (pij)ij where pij is the probability of j given by
the discrete probability function associated to i. This matrix is clearly row-stocastic.

We can also define a column transition matrix which is the same as the previous, but
transposed, which is also clearly column-stocastic.

Note that because the graph is undirected, the adjacency matrix A is symmetric, but the transition
matrix P might not be. If we also suppose that the graph is d-regular and that all the probability
functions are uniform, then P is symmetric and more precisely it holds P = 1

dA.

In the contex of random walks, a position vector v is a vector of probabilities of size |V | that
represents the current state. If the position vector is a vector of the canonical basis (ie it has only one
non-zero entry, and that entry is equal to 1) then we interpret it as knowing with certainty that the

87

current position is the node correspondig to the non-zero entry. Otherwise, if it’s a linear combination
of elements of the canonical basis, we interpret is as giving us the probability of the current position
being on the respective node.

By applying P we get the position vector after 1 step of the random walk. By iterating steps,
the process typically converges to a stationary distribution (that is a uniform distribution on all the
nodes), although this is not always the case (for example, consider the case of a cycle with an even
number of nodes). We will assume that this is always the case for the sake of simplicity.

We now want to transpose the concept of random walks to the quantum domain. There are
mainly two ways to formalize this:

• Coined quantum walks (Aharonov, 1993). This type of quantum walks is more well suited for
d-regular graphs

• Szegdy quantum walks (Szegdy, 2004), which is a more general approach. In this approach
instead of using a position state to represent nodes, we use a position state to represent edges

Note that we’ve only discussed (and will only discuss) the case of discrete random walks, that is the
case where the position can only change discretely. There are also continuous random walks.

5.10.1 Coined quantum walks
Let G = (V,E) be a d-regular, undirected, connected graph with no multiple edges or loops. Let
|V | = N = 2n. We will need a register HT = Hc ⊗Hp where the first subregister is called the "coin
space" and the second subregister is called the "position space". A basis state in H is |k, p⟩ = |k⟩⊗|p⟩
which is interpreted as representing a position on node p ∈ {0, . . . , N − 1} with a coin toss result-
ing in k. On a cycle graph of length N = 2n we have Hc = H, that is only one qubit, and Hp = H⊗n.

In the classical setting we used the transition matrix as operator to get to the next step of the
walk. In this context, we will make use of two operators, the coin operator and the shift operator.

For the coin operator one usually chooses the Hadamard gate, as it gives (starting from a basis
state) equal probability to every (basis state) outcome. Formally

C : HT HT
|k, p⟩ |Hk, p⟩

that is C = H ⊗ 1 (without specifying the dimensions of H or 1). The shift operator models the
concept of "jumping to the next node". It’s defined as

S : HT HT
|k, p⟩

∣∣k, p+ (−1)k mod N
〉

Note that some authors also impose that the shift operator must also flip the coin, that acting as a
NOT on the first register.

The walk operator is given by the composition W = SC and each application of W models a
single quantum walk step. This is sometiems referred as the "flip-flop quantum walk".

88

Remark 5.10.1. The reason for why we also need a coin space beside the position space is
that in quantum algorithms we can only operate with unitary operators, which are necessarily
invertible hence not random. This means that we can’t just randomly go from a position
vector to another position vector, but we somehow need to keep track of the randomness (the
coin toss) so that the operation is at least invertible.

We can define this process as an algorithm, like the following:

1. Prepare the initial state

2. Repeat k times

2.1 Apply C

2.2 Apply S

3. Measure

Note that there is no "randomness" in the body of the algorithm, as everything happening in step 2
is deterministic. The only source of randomness is the measure, which makes the system collapse to
some possibly random state.

Another important observation is that since every step is unitary, we can’t possibly approach some
limit stationary distribution as unitary operators preserver distances. For this reason we usually use
the notion of "limiting distribution" defined as the limit of partial time averages

Example 5.10.4. Let’s implement a circuit for quantum walks for a 4-cycle graph. In this
case we have HT = HC ⊗Hp where Hc = H and Hp = H⊗2.

The coin operator is C = H ⊗ 1. For the shift operator, one way of implementing it
is the following circuit

Hc • • X • •

Hp,0 • X • X

Hp,1

For example, with an initial state of |0⟩ ⊗ |00⟩ we get

|0⟩ ⊗ |00⟩ 7→ |0⟩ ⊗ |00⟩ 7→
7→ |0⟩ ⊗ |00⟩ 7→
7→ |1⟩ ⊗ |10⟩ 7→
7→ |1⟩ ⊗ |11⟩ 7→
7→ |1⟩ ⊗ |01⟩ 7→
7→ |1⟩ ⊗ |11⟩

89

5.10.2 Quantum walks on an n-dimensional hypercube

Definition 5.10.5 – n-dimensional hypercube graph

An n-dimensional hypercube graph is a graph where the set of nodes is the set of binary
strings of length n, and two nodes are adjacent if they have Hamming-distance 1 (ie they
differ only by one character)

With an n-dimensional hypercube we have N = 2n and HT = Hc ⊗ Hp with basis {|a, v⟩ | 0 ≤
a ≤ n − 1, v ∈ {0, 1}n}. We interpret the result a ∈ {0, . . . , n − 1} of the coin toss as which digit
(0-indexed) of the current node we have to change to get to the next node.

This means that the shift operator can be defined on a basis as S |a, v⟩ = |a, v ⊞ ea⟩ where ea
is the a-th element of the canonical basis of |0, 1⟩n. As for the coin operator, this time we will use a
Grover reflection, that is

G =
2

n
uu⊺ − 1

where u = (1, . . . , 1)⊺. As before we have W = SG. This example, that we’re referring to as an
example of a coined quantum walk, is actually a specific case of a Szegedy quantum walk. In general,
Szegedy quantum walks on d-regular graphs become equivalent to a coined Grover quantum walks.

The reason why we’re discussing quantum walks on the hypercube is because we can use them
to implement a search algorithm on the nodes of the hypercube, as follows.

Let M be a set of marked nodes and m = |M |. We start the quantum walk on a "suitable state"
(which could be a node or a superposition of nodes) and we perform some steps until we "reach" a
marked node. The interesting fact is that we can estimate a priori how many steps we have to take
to have a probability of landing on a marked node.

As we’ve mentioned, in this formalism the position state represent an edge instead of a node. More
precisely, we will need two subregisters: one for the current node and one for the previous node.
Together they identify an edge. We can define the state

|px⟩ =
∑
y

√
pxy |y⟩

which is a superposition of all the neighbors of x, each with an amplitude corresponding to the (square
root of the) associated discrete probability. We can then define

|G⟩ = 1√
m

∑
x∈M

|x⟩ ⊗ |px⟩

which is a superposition of all the marked ("good") states. Similarly we define

|B⟩ = 1√
N −m

∑
x̸∈M

|x⟩ ⊗ |px⟩

Now we set ε = m
N and θ = arcsin

√
ε so that we can write a superposition of all the edges as

|U⟩ = 1√
N

∑
x

|x⟩ ⊗ |px⟩ = sin θ |G⟩+ cos θ |B⟩

90

Just like we did for Grover, we can define a quantum walk with initial state |U⟩ where we repeat
O(1√

ε
) times the following step routine:

1. apply reflection with respect to |B⟩

2. apply reflection with respect to |U⟩

Finally, we measure. Note that to apply a reflection with respect to |B⟩ we need a phase oracle
(much like Grover)

91

