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Abstract

This paper is based upon Cui, Luo, and Sim (2013) which devel-
ops an epistemic model for the Iterated Eliminating Regret-Dominated
Strategies (IERS) in Halpern and Pass (2012). In section 1 I will
present the IERS and the relevant results by Cui et al. (2013). In sec-
tion 2 I will highlight a possible mistake in their paper and propose
a solution according to the IERS epistemic characterization. Then, in
section 3, I will develop a plausibility regret model to avoid the elim-
ination of strategies so that also repeated games can be modeled. In
section 4 I will compare this plausibility characterization to a preex-
isting one. In section 5 I will give an example based on the defined
plausibility model of IERS. In section 6 I will draw the conclusions,
study the IERS using the µ−calculus and I will sketch some possible
future work.

1 Introduction

In this paper we will study the Iterated Eliminating Regret-Dominated
Strategies (IERS) algorithm. The purpose of this study is to shift the ap-
plicability of this algorithm from a one shot game to a repeated game. We
will see the formalization introduced by Cui et al. (2013) and then we will
see a proposal for a different characterization of the algorithm which enables
to keep all the strategies and create levels of plausibility among them. Then
we will compare this plausibility characterization to a preexisting one. We

∗I would like to thank Megan Andrew, Alexandru Baltag, Alessandro Berarducci, Em-
manuele Bobbio, Ilaria Canavotto, Nabila Chibani, Andrea Ciccorelli, Giovanni Cina’,
Paolo Galeazzi, Daisaku Ikeda, Mirko Lugli, Miquel Forteza Moll, Hadrien Pulcini, Mat-
teo Romoli, Johan van Benthem for their advice and support. This project has benefited
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will also see an example of an iterated game using the plausibility charac-
terization of IERS; finally we will give a formalization of IERS using the
µ−calculus.

Definition 1. A strategic form game with pure strategies is a tuple of G =
〈N, {Si}i∈N , {ui}i∈N 〉, where:

• N is the set of players in the game G.

• Si is the set of strategies for player i.

• ui is a function that assigns a real value to every strategy profile s =
(s1, .., sn).

We denote by S−i = S1× ..×Si−1×Si+1× ..×Sn the set of strategy profiles
other than i. When we want to focus on the strategy of player i, we denote
the strategy profile s ∈ S as s = (si, s−i) where si ∈ Si and s−i ∈ S−i.

Let’s now define the regret game of a given strategic form game:

Definition 2. For a normal form game G = 〈N, {Si}i∈N , {ui}i∈N 〉, its
strategic regret game is a 3-tuple of G′ = 〈N, {Si}i∈N , {rei}i∈N 〉, where
rei stands for player i’s expost regret associated with any profile of pure
strategies (si, s−i), which is calculated as follows:

rei(si, s−i) = max{ui(s′i, s−i)|∀s′i ∈ Si} − ui(si, s−i).

Meaning the regret of choosing si for player i when his opponents choose
s−i.

Now we define a way a player i can confront two strategies on the basis
of their maximal regret.

Definition 3. Given a strategic regret game G′ = 〈N, {Si}i∈N , {rei}i∈N 〉,
let si and s′i be two strategies for player i. We say that si is regret dominated
by s′i if Rei(s

′
i) < Rei(si). Where

Rei(si) = max{rei(si, s−i)|∀s−i ∈ S−i}.

We say that a regret dominated strategy si is regrettable for player i. And
for S′ ⊆ S we say that strategy s′i ∈ Si is unregretted with respect to S′i if
no strategy in S′i regret dominates s′i on S

′
−i.

Let’s now see the recursive elimination process of IERS:

Definition 4. Given a strategic regret game G′ = 〈N, {Si}i∈N , {rei}i∈N 〉,
let IUD be the set of iterated regret-undominated strategies of G’ recursively
defined by:
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IUD =
∏

i∈N IUDi.

Where IUDi =
⋂

m≥0 IUD
m
i with IUD0

i = Si and

RD0
i = {si|si ∈ IUD0

i is regrettable with respect to IUD0
i in G′}.

And for m ≥ 1 we have the following: IUDm
i = IUDm−1

i \ RDm−1
i and

RDm−1
i = {si|si ∈ IUDm−1

i is regrettable with respect to IUDm−1
i in G′}.

Let’s now give an example to understand the previous definitions.
In Table 1 we have: N = {player1, player2}, S1 = {A,B,C}, S2 = {a, b, c},
u(A, b) = (1, 2) (and so on for all the other outcomes).
The computed regret values are in Table 2. For example, re1(A, a) = 3−0 =
3.
Let’s see how the IERS works: Re1(A) = 4, Re1(B) = 2, Re1(C) = 2, so
strategy A is dominated. We will then cancel the first row from the table
(because the corresponding strategy is an element of RD0

1 ). So, IUD1
1 =

{B,C} and similarly RD0
2 = {b} and IUD1

2 = {a, c} (so we also cancel the
second column from the table). At the second iteration we find that IUD1

1 =
IUD2

1 = {B,C} (i.e. player 1 has no dominated strategy), RD2
2 = {c} and

IUD2
2 = {a} (so we cancel the third column from the table). At the third

iteration we find that IUD3
1 = {C} and RD3

1 = {B} while IUD3
2 = {a}

(so we cancel the second row from the table). In the end we find that
IUD = {(C, a)}.

player 1 - player 2 a b c
A (0,0) (1,2) (0,0)
B (1,3) (0,0) (4,3)
C (3,4) (2,0) (2,3)

Table 1: A two player game.

player 1 - player 2 a b c
A (3,2) (1,0) (4,2)
B (2,0) (2,3) (0,0)
C (0,0) (0,4) (2,1)

Table 2: Regret game of the game represented in Table 1.

Theorem 5. Let G′ = 〈N, {Si}i∈N , {rei}i∈N 〉 be a strategic regret game. If
S is a closed, non-empty set of strategies, then IUD is non-empty.

Cui et al. (2013) manage to represent the IERS through the logic PAL
of public announcement. Let’s see how they do it:

Definition 6. Given a regret game G′, a regret game logic (G′-logic) is a
logic that contains atomic propositions in the following form:
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• Pure strategy symbols si, s′i... so the interpretation for si is that player
i chooses strategy si.

• The symbol Rarei means that player i is rational. Br∗i means the best
response of player i. GS means the game solution of the game through
algorithm IERS.

• Atomic propositions in the form si < s′i mean that strategy si is weakly
regret dominant over strategy s′i for player i while si � s′i means that
strategy si is better than strategy s′i for player i.

Definition 7. Given a regret game G′, a frame of G′-logic is F ′ = 〈W, {∼i

}i∈N , {fi}i∈N 〉, where

• W (6= ∅) consist of all players’ pure strategy profiles (i.e. in the previous
example of Table 1 (A, a) ∈W ).

• ∼i is an epistemic accessibility relation for player i, which is defined as
the equivalence relation of agreement of profiles in the i’th coordinate
(i.e. in the previous example of Table 1 (A, a) ∼1 (A, b) ∼1 (A, c)).

• fi is a pure strategic function, which satisfies the following property:
if w ∼i v then fi(w) = fi(v) (i.e. in the previous example of Table 1 if
w = (A, a) and v = (A, b) then f1(w) = A = f1(v)).

Observation 8. We will also use the followings:

• Ri(w) = {v|w ∼i v where w, v ∈ W}, the set of worlds that i believes
possible from world w.

• ‖si‖ = {w ∈ W |fi(w) = si} is the set of worlds where the player i
chooses the strategy si.

Let’s finally see the definition of a model:

Definition 9. An epistemic game model MG′ over G′-logic is obtained by
incorporating the following valuation on F ′:

• MG′ , w � si ⇐⇒ w ∈ ‖si‖.

• MG′ , w � si < s′i ⇐⇒ ∃v ∈ ‖s′i‖ such that rei(si, f−i(w)) ≤ rei(s′i, f−i(v)).

• MG′ , w � si � s′i ⇐⇒ ∀v ∈ ‖s′i‖ we have that rei(si, f−i(w)) <
rei(s

′
i, f−i(v)).

• MG′ , w � Rarei ⇐⇒MG′ , w �
∧
{a6=fi(w)}Ki(fi(w) < a).
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Observation 10. Let’s see an example of the last point of the previous
definition using Table 1 and 2. We can see that A � B holds in world
(A,b). This is because there is world (B,a) such that 1 = re1(A, f2(A, b)) ≤
re1(B, f2(B, a)) = 2. But Rare1 fails at the world (A,b) because there is
world (A, a) ∈ R1(A, b) such that MG′ , (A, a) 2 A < B. Similarly, the
worlds (A, a) and (A, c) do not satisfy Rare1 .

Let’s see briefly some results developed in Cui et al. (2013):

Theorem 11. Every finite general epistemic regret-game model has worlds
in which Rare is true, where Rare =

∧
i∈N Rarei .

Theorem 12. Rationality is epistemically introspective. The formula

Rarei → KiRa
re
i

is valid in a general epistemic regret-game model.

Observation 13. At this point the authors states that, thanks to the two
previous results, it is possible to successively remove the worlds where Rare

doesn’t hold. They obtain this by iteratively announcing rationality.

Theorem 14. Given a full epistemic model MG′ based on finite strategic-
form game G′ with regret, we define a general epistemic game model M∗G′ as
the fix-point model obtained after iterated announcement of rationality over
MG′ . M∗G′ , where arbitrary world w is, is stable by repeated announcements
of Rare in MG′ for all the players of game G′ if and only if f(w) ∈ IUD,
i.e.

w ∈ ](Rare,MG′)↔ f(w) ∈ IUD.

2 Traveler’s Dilemma

In the paper Cui et al. (2013) the authors propose a solution for the
Traveler’s Dilemma, let’s introduce the dilemma and see how their solution
could be wrong.
Two friends take a plane to attend a surf competition. The airplane company
looses their two suitcases, that contain exactly the same swimming suits.
They are asked to give a value to their luggage from 2 to 100 without the
possibility of consulting each other. The company will refund both of them
the lower value and take 2 from the one who gave the higher value and give it
to the other. In Table 3 it is possible to find the outcomes of the strategies.
The Nash equilibrium is given by choosing the strategies (2,2), which give
the lowest outcome; this is a solution far from the strategies (97,97) which
represent the experimental results.
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player 1 - player 2 100 99 98 . . . 3 2
100 (100,100) (97,101) (96,100) . . . (1,5) (0,4)
99 (101,97) (99,99) (96,100) . . . (1,5) (0,4)
98 (100,96) (100,96) (98,98) . . . (1,5) (0,4)
...

...
...

...
. . .

...
...

3 (5,1) (5,1) (5,1) . . . (3,3) (0,4)
2 (4,0) (4,0) (4,0) . . . (4,0) (2,2)

Table 3: Table representing the game of the Traveler’s Dilemma.

In Cui et al. (2013) paper the authors claim that after public announcing
Rare one time it can be attained the following regret sub-model.

player 1 - player 2 100 99 98 97 96
100 (1,1) (3,0) (3,1) (3,2) (2,3)
99 (0,3) (1,1) (3,0) (3,1) (2,2)
98 (1,3) (0,3) (1,1) (3,0) (2,1)
97 (2,3) (1,3) (0,3) (1,1) (2,0)
96 (3,2) (2,2) (1,2) (0,2) (0,0)

Table 4: Table introduced by Cui et al. (2013) representing the regret game
of the Traveler’s Dilemma.

Thus after public announcing another time Rare they find (97,97) as the
only game solution.
It seems that this solution is wrong. By computing the whole regret game
as in Table 5, it is easy to see that we can find the regret sub-model
[100, 96] × [100, 96] after public announcing 94 times Rare. This is also the
game solution. In Cui et al. (2013) is obtained the different result (97,97) be-
cause the authors compute the regret game on the Traveler’s Dilemma game
[100, 96]× [100, 96]. Thereby they obtain a different regret game. But this is
different from their original definition of the epistemic IERS. Although their
definition of epistemic IERS is interesting, it doesn’t work for the purpose
for which it was created: to find that the game solution is (97,97). Correctly
applying their definition of epistemic IERS, one finds out that the game so-
lution is [100, 96] × [100, 96], which is still a good solution. It is certainly
better than (2,2).
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player 1 - player 2 100 99 98 97 96 95 . . . 3 2
100 (1,1) (3,0) (3,1) (3,2) (3,3) (3,4) . . . (3,96) (2,97)
99 (0,3) (1,1) (3,0) (3,1) (3,2) (3,3) . . . (3,95) (2,96)
98 (1,3) (0,3) (1,1) (3,0) (3,1) (3,2) . . . (3,94) (2,95)
97 (2,3) (1,3) (0,3) (1,1) (3,0) (3,1) . . . (3,93) (2,94)
96 (3,3) (2,3) (1,3) (0,3) (1,1) (3,0) . . . (3,92) (2,93)
95 (4,3) (3,3) (2,3) (1,3) (0,3) (1,1) . . . (3,91) (2,92)
...

...
...

...
...

...
...

. . .
...

...
3 (96,3) (95,3) (94,3) (93,3) (92,3) (91,3) . . . (1,1) (2,0)
2 (97,2) (96,2) (95,2) (94,2) (93,2) (92,2) . . . (0,2) (0,0)

Table 5: Table representing the regret game of the Traveler’s Dilemma.

3 A plausibility model for IERS

I think that it is restricting to use the update to represent the IERS
algorithm. I will therefore develop a different model where radical upgrades
are used instead of updates. This could give the players the chance to change
strategy across time in case they change belief (for example through a radical
upgrade caused by sources like friends, mentors, books, papers, et cetera).

Definition 15. A multi-agent plausibility model is an S = 〈S,≤a,∼a, ‖ · ‖,
s∗〉a∈N , where:

• S is a set o possible worlds.

• N is a finite set of agents.

• ≤a is a preorder (i.e. reflexive and transitive) on S: a’s plausibility
relation.

• ∼a is an equivalence relation on S: a’s epistemic possibility.

• ‖ · ‖ : Φ→ ℘(S) is a valuation map for a set Φ.

• a designated state (the actual world s∗).

This model goes with the following three conditions:

1) Plausibility implies possibility: s ≤a t implies s ∼a t.

2) Indistinguishable states are comparable: s ∼a t implies s ≤a t or
s ≥a t.

3) The preorders ≤a are converse well-founded: no infinite ascending
chains s0 ≤a s1 ≤a . . . .

Let’s now build our regret game logic for plausibility models.
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Definition 16. Given a game G and its regret game G′, a plausibility re-
gret game logic (G′p-logic) is a logic that contains atomic proposition in the
following form:

• Pure strategy symbols si, s′i . . . .The interpretation for si is that player
i chooses strategy si.

• The symbol Rarei indicates player i is rational. Br∗i means the best
response of player i. GS means the game solution of the game through
algorithm IERS.

• Atomic propositions in the form si < s′i mean that strategy si is weakly
regret dominant over strategy s′i for player i while si � s′i means that
strategy si is better than strategy s′i for player i.

We also ask G′p to contain the symbols {Ba,Ka}a∈N representing the Belief
and the knowledge of agent a, respectively.

Definition 17. Given a game G′, a plausibility frame of G′p-logic is F ′ =
〈W, {≤i}i∈N , {∼i}i∈N , s∗, {fi}i∈N 〉, where

• W (6= ∅) consist of all players’ pure strategies profile.

• ∼i is an equivalence relation on S: i’s epistemic possibility.

• ≤i is a preorder on S: i’s plausibility relation.

• fi is a pure strategic function, which satisfies the following property:
if w ∼i v then fi(w) = fi(v).

• a designated state (the actual world) s∗.

This frame goes with the following four conditions:

1) Plausibility implies possibility: s ≤a t implies s ∼a t.

2) Indistinguishable states are comparable: s ∼a t implies s ≤a t or
s ≥a t.

3) The preorders ≤a are conversely well-founded: no infinite ascending
chains s0 ≤a s1 ≤a . . . .

4) All the worlds for all the agents are possible (i.e. for every player i and
every two worlds v, w ∈W we have that v ∼i w).

Observation 18. I add one more condition to the plausibility frame for
regret games respectively to the standard definition for plausibility model.
According to condition 4 in the previous definition, all the worlds are equally
possible. By doing radical upgrades of rationality for each player we will find
which worlds are more plausible, until we reach a fix-point. I will show this
below.
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Observation 19. As before we will use the followings:

• Ri(w) = {v|w ∼i v and fi(w) = fi(v) where v ∈W}, the set of worlds
that are possible from world w for player i which have the same i-th
strategy as w.

• ‖si‖ = {w ∈ W |fi(w) = si} is the set of worlds where the player i
chooses the strategy si.

Let’s see the definition of our model.

Definition 20. A plausibility game model MG′
p
over G′p-logic is obtained

by incorporating the following valuation on the plausibility frame F ′:

• MG′
p
, w � si ⇐⇒ w ∈ ‖si‖.

• MG′
p
, w � si < s′i ⇐⇒ ∃v ∈ ‖s′i‖ such that rei(si, f−i(w)) ≤ rei(s′i, f−i(v)).

• MG′
p
, w � si � s′i ⇐⇒

∀v ∈ ‖s′i‖ we have that rei(si, f−i(w)) < rei(s
′
i, f−i(v)).

• MG′
p
, w � Rarei ⇐⇒ (w ∈Max≤i(W ) and

∀v ∈ Ri(w) ∩
⋂

i∈N Max≤i(W ), MG′
p
, v �

∧
{a6=fi(w)}(fi(w) < a)) .

• MG′
p
, w � Kiφ⇐⇒MG′

p
, v � φ for all v ∈ Ri(w).

• MG′
p
, w � Biφ⇐⇒MG′

p
, v � φ for all v ∈Max≤i(Ri(w)).

Where Max≤i(P ) = {s ∈ P | t ≤i s ∀t ∈ P}.

Theorem 21. Every finite plausibility regret-game model has worlds in which
Rare is true, where Rare =

∧
i∈N Rarei .

Proof. The proof is the same as the one given for Theorem 11 by Cui et al.
(2013).

Theorem 22. Given a plausibility regret-game model M∗G′
p
,which is the pos-

itive fix-point of iterated radical upgrade of rationality, rationality is doxas-
tically introspective. The following formula is valid

Rarei → BiRa
re
i .

Proof. Consider a plausibility regret-game model M∗G′
p
and an arbitrary

world w in it such that M∗G′
p
, w � Rarei but M∗G′

p
, w 2 BiRa

re
i . Then there

is a v ∈ Max≤i(W ) such that M∗G′
p
, v 2 Rarei . By Definition 20, fi(v) is

a regret dominated strategy for player i by some of his strategies. Since
v ∈ Max≤i(W ) and the model is a positive fix point of radical upgrade of
Rare then v is not a dominated strategy for i.

9



Theorem 23. Given a plausibility regret-game model MG′
p
based on a finite

strategic-form game G′ with regret, we define M∗G′
p
as the fix-point model

obtained after iterated radical upgrade of rationality over MG′
p
. Given an

arbitrary world w, w is among the maximal worlds for all the players of
game G′ in the model M∗G′

p
if and only if f(w) ∈ IUD, i.e.

w ∈ ](Rare,
⋂
i∈N

Max≤i(W ))↔ f(w) ∈ IUD.

Proof. (→) If w ∈ ](Rare,
⋂

i∈N Max≤i(W )), then M∗G′
p
, w � Rare, i.e.

M∗G′
p
, w �

∧
i∈N Rarei . First we show: ∀i ∈ N , fi(w) /∈ RD0

i . Suppose
not. Then ∃i ∈ N such that fi(w) ∈ RD0

i , that is, fi(w) of player i is
regret-dominated in G′ by some other strategy s′i ∈ Si = IUD0

i . It means
Rei(fi(w)) > Rei(s

′
i), thus by definition of Rei(· ), we have

max{rei(fi(w), s−i)|∀s−i ∈ S−i} > max{rei(s′i, s−i)|∀s−i ∈ S−i}.

Now set some s′−i ∈ S−i satisfying rei(fi(w), s′−i) = Rei(fi(w)), and set
s′′−i ∈ S−i satisfying rei(s′i, s′′−i) = Rei(s

′
i). Thus, by the previous inequality

we have
rei(fi(w), s′−i) > rei(s

′
i, s
′′
−i).

Furthermore, set v′ ∈ Ri(w) ∩ ‖s′−i‖. Then by the previous inequality

rei(fi(w), fi(v
′)) > rei(s

′
i, s
′′
−i).

Thus, considering ∀v ∈ ‖s′i‖, rei(s′i, s′′−i) ≥ rei(s
′
i, f−i(v)), then we can then

find from the previous inequality

∀v ∈ ‖s′i‖, rei(fi(w), f−i(v
′)) > rei(s

′
i, f−i(v)).

According to fi(w) = fi(v
′), which follows from v′ ∈ Ri(w) and the definition

of the plausibility frame, we find

∀v ∈ ‖s′i‖, rei(fi(v′), f−i(v′)) > rei(s
′
i, f−i(v)).

Then we have that MG′
p
, v′ 2 fi(v

′) < s′i. From fi(w) = fi(v
′) we have

that MG′
p
, v′ 2 fi(w) < s′i, since v

′ ∈ Ri(w) ∩
⋂

i∈N Max≤i(W ). Then, by
definition, we obtain that MG′

p
, w 2 Rarei . This is against our hypothesis.

Since ∀w ∈W fi(w) ∈ IUD0
i , it follows that fi(w) ∈ IUD0

i \RD0
i = IUD1

i .
Let’s see now the inductive step. For a given integer m ≥ 1, suppose

that ∀j ∈ N , fj(w) ∈ IUDm
j , then we need to show that fj(w) /∈ RDm

j .
Suppose not. Then there is player i such that fi(w) ∈ RDm

i . That is, fi(w)
is a regret dominated strategy in G′m by some other strategy s′i ∈ IUDm

i .
Then we have
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max{rei(fi(w), s−i)|∀s−i ∈ IUDm
−i} > max{rei(s′i, s−i)|∀s−i ∈ IUDm

−i}.

By the induction hypothesis, ∀j ∈ N , fj(w) ∈ IUDm
j . Thus we have

that
max{rei(fi(w), f−i(v))|∀v ∈ Ri(w) such that fi(v) ∈ IUDm

i } >
max{rei(fi(w′), f−i(v))|∀v ∈ Ri(w) such that fi(v) ∈ IUDm

i }.

Where w′ ∈ ‖s′i‖. Similar to the above proof, we can conclude that
MG′

p
, w 2 Rarei . This is in contradiction with the hypothesis that MG′

p
, w �

Rarei . So fi(w) ∈ IUDm
i \ RDm

i = IUDm+1
i . Then for induction we have

that ∀i ∈ N , fi(w) ∈ IUDi.

(←) Let f(w) ∈ IUD =
⋂

m≥0 IUD
m. Then ∀i ∈ N fi(w) is never

regret dominated in IUDm. It means that after m radical upgrades of Rare,
MG′m , w � Rare, where MG′m is the plausibility model related to submodel
G′m. Due to the arbitrary m we have that w ∈ ](Rare,

⋂
i∈N Max≤i(W )).

4 Comparison to a preexisting plausibility formal-
ization for IERS

After writing the previous section I found that in Cui (2012) the au-
thor already drew a plausibility formalization for IERS. Let’s see the given
semantic definition.

Definition 24. An epistemic model MG′ over G′-logic is obtained by incor-
porating the following valuation on a F ′G′ .

• MG′ , w � si ⇐⇒ w ∈ ‖si‖.

• MG′ , w � si < s′i ⇐⇒ ∃v ∈ ‖s′i‖ such that rei(si, f−i(w)) ≤ rei(s′i, f−i(v)).

• MG′ , w � si � s′i ⇐⇒ ∀v ∈ ‖s′i‖ we have that rei(si, f−i(w)) <
rei(s

′
i, f−i(v)).

• MG′ , w � Rare
′

i ⇐⇒MG′ , w �
∧
{a6=si}Bi(si < a).1

According to Cui (2012), if we give a plausibility model to the regret
game showed in Table 2, by iterative radical upgrade of rationality (⇑ Rare)
we find exactly the same result as in the public announcement case. But this

1The original definition in Cui (2012) is MG′ , w � Rare′
i ⇐⇒ MG′ , w � si ∧

(
∧

{a 6=si} Bi(si < a)), but it seems to be redundant to ask a world to satisfy its own
strategy (fi(w) = si). Thus I hide "si∧" to make the formula clearer.
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seems not to be the case. Public announcement deletes the worlds that do not
satisfy the announced property. On the other hand, radical upgrade doesn’t
delete worlds; radical upgrade changes the preorder putting on top those
worlds satisfying the upgraded property. The previous definition doesn’t
take into account this fact. After the first radical upgrade of rationality any
other radical upgrade of rationality will not change the model because the
regret outcomes are compared again among all worlds. But this problem can
be overtaken by analyzing only the worlds that are already in the maximal
set of the preorder. Thus to start studying the rationality of a world, such
a world should be already among the maximal worlds of the preorder. This
fact is taken into account in Definition 20.

5 Benedick and Beatrice

I will use an example inspired by William Shakespeare through the plau-
sibility regret game model defined in section 3. Benedick from Padua (Ben)
and Beatrice (Bea), love each other but one doesn’t know about the other
person’s feelings. Both of them are also very proud, so they interpret the
other person’s mocking attitude as the absence of love. We assume that
¬BeaLBen ↔ BeaMBen and similarly for Benedick, where “BeaLBen”
means that Beatrice loves Benedick and “BeaMBen” stands for Beatrice
mocks Benedick. This situation can be modeled in the belief plausibility
model of Figure 1 (where arrows represent the plausibility relations).

*
BeaLBen

∧
BenLBea

BenLBea
∧

BeaMBen

BeaLBen
∧

BenMBea

B
ea

B
en

B
en

B
ea

Bea

Ben

Figure 1: Figure representing the plausibility belief model.

Each one of them can choose between two equally plausible strategies:
declaring their love or mocking the other person. Due to their pride they
will also “feel good” only for mocking the other person (even better if in such
a case the other person declares his/her love!). The outcomes of this game
can be found in Table 6.
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Ben - Bea BeaLBen BeaMBen
BenLBea (2,2) (0,2)
BenMBea (2,0) (1,1)

Table 6: Table representing the strategy game of Benedick and Beatrice.

Both Beatrice and Benedick can’t decide which action to choose so they
think the possible outcomes and understand that there are two Nash equilib-
ria: (BenLBea, BeaLBen) and (BenMBea, BeaMBen). So, each one of them
may compute the regret game (Table 7) and compute the IERS (Figure 2).
Applying the IERS they both find that the best solution is given by choosing
the Mock strategy: (BenMBea, BeaMBen).

Ben - Bea BeaLBen BeaMBen
BenLBea (0,0) (1,0)
BenMBea (0,1) (0,0)

Table 7: Table representing the regret strategy game of Benedick and Beat-
rice.

(0, 0)∗
Beatrice−−−−−→ (1, 0)

Benedick

y yBenedick

(0, 1)
Beatrice−−−−−→ (0, 0)

Figure 2: Figure representing the regret strategy game of Benedick and
Beatrice after the IERS upgrade.

After being mocked both of them will upgrade their belief plausibility
model by applying the following radical upgrades: ⇑Ben ¬BeaLBen and
⇑Bea ¬BenLBea. (They both apply a radical upgrade, and not an update,
because at the bottom of their hearts they still hope that the other person
loves him/her). Thus the plausibility belief model will be changed as the one
in Figure 3.

*
BeaLBen

∧
BenLBea

BenLBea
∧

BeaMBen

BeaLBen
∧

BenMBea
Bea

Ben Ben

Bea

Figure 3: The plausibility belief model after mocking.

Since BBeaBenMBea and BBenBeaMBen, these two beliefs will induce
the following two upgrades in the plausibility strategy model:
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⇑Ben ¬BenLBea and ⇑Bea ¬BeaLBen. But, these two upgrades leave the
plausibility strategy model unchanged. Thus we have found a fix-point be-
tween the two models! After some time their friends manage to speak to each
of them and convince them that the other loves him/her. So they apply the
following radical upgrades in their plausibility belief model: ⇑Ben BeaLBen
and ⇑Bea BenLBea which will give the plausibility belief model as in Fig-
ure 4.

*
BeaLBen

∧
BenLBea

BenLBea
∧

BeaMBen

BeaLBen
∧

BenMBea

B
ea

B
en

Ben

Bea

Figure 4: Plausibility belief model after the revelations from their friends
about the other person’s love.

Since BBeaBenLBea and BBenBeaLBen, these two beliefs will induce
the following upgrades in the plausibility strategy model:
⇑Ben BenLBea and ⇑Bea BeaLBen. These two upgrades give the plausi-
bility strategy model represented in Figure 5. And we have found another
fix-point between the two models!

(0, 0)∗ ←−−−−−
Beatrice

(1, 0)

Benedick

x xBenedick

(0, 1) ←−−−−−
Beatrice

(0, 0)

Figure 5: Table representing the strategy game of Benedick and Beatrice
after the love upgrades induced by their new beliefs.

6 Conclusions and Future Work

In this project we have seen the IERS characterization introduced in Cui
et al. and the corrected solution for the Traveler’s Dilemma. After that
we have given IERS a plausibility characterization, we have compared this
characterization to a preexisting one and we have seen an example of iterated
game. The plausibility characterization allows to study both repeated games
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and one shot games, thus it is more general and convenient to use than the
PAL characterization.
As we have seen, through the IERS algorithm we find a fix-point model as
our game solution. We saw two different representations of this procedure
using modal logic and it could be interesting to see how modal µ−calculus
can help us find a synthetic formula for describing IERS.
For both the two previous modal languages we have the following result:

Theorem 25. The game solution given from the IERS is the same as the
limit set of worlds for repeated announcement of Rare (=

∧
i∈N Rarei ), which

is defined inside the full game model by

νx.
∧
i∈N

Rarei ∧ x

.

Proof. The first statement of the theorem follows from Theorem 14 for the
PAL characterization (Theorem 23 for the Radical Upgrade characteriza-
tion). Let’s see the second statement.
By the definition of greatest fix-point, any world in the set P defined by
νx.

∧
i∈N Rarei ∧ x satisfies

∧
i∈N Rarei ∧ x. Thus the formula

∧
i∈N Rarei ,

being a logical consequence of this, also holds throughout P, and a further
public announcement of rationality (⇑ Rare) has no effect.
On the other hand, the announcement limit for

∧
i∈N Rarei is by definition

a subset P of the current model that is contained in the set
∧

i∈N Rarei ∧ x.
Thus, it is contained in the greatest fix-point for the monotonic operator
matching this formula.

Concerning further work first it would be interesting to see if it is possible
to prove the completeness theorem for both logics presented in this work. The
plausibility model might also be thought for other algorithms and it might be
given a more general version of Theorem 23. Finally, concerning the example
of Benedick and Beatrice, it would be nice to study how to formalize the
relation between the plausibility strategy model and the plausibility belief
model.
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