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1 The Stoïlow factorisation theorem
After Astala, Iwaniec, and Martin [AIM09, §5]

A summary written by Gianmarco Brocchi

Abstract

We give a proof of the Stoïlow factorisation theorem for quasicon-
formal mappings on the plane. This result is then used to obtain a
classification of quasiconformal mappings, and so uniqueness of (nor-
malised) solutions to the Beltrami equation.

1.1 Introduction

The Stoïlow factorisation theorem says that two different solutions to the
Beltrami equation are related by a holomorphic function.

1.1.1 Quasiconformal mappings

Let µ be a measurable function on Ω ⊂ C with small L∞-norm ∥µ∥∞ = ε < 1.
The weak solutions (in H1

loc(Ω)) to the Beltrami equation

∂

∂z̄
f(z) = µ(z)

∂

∂z
f(z) a. e. z ∈ Ω ⊂ C (B)

that are homeomorphisms are called quasiconformal mappings. Geometri-
cally, these are maps of “bounded distorsion” on the plane.

The following result relates a homeomorphic solution to (B) and any other
solution.

Theorem 1 (Stoïlow factorization). Let Ω ⊂ C, and let f, g ∈ W 1,2
loc (Ω) be

two solutions to the same Beltrami equation (B) with f a quasiconformal
map. Then there exists a holomorphic map Φ on f(Ω) such that

g(z) = Φ(f(z)) for all z ∈ Ω.

Moreover, for any holomorphic function Φ on f(Ω), the map Φ ◦ f is a
solution of (B).

The Stoïlow factorisation can be used to parameterise solutions to (B) on
the whole plane by their value at different points.
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Corollary 2. Let f, g ∈ W 1,2
loc (Ω) be two homeomorphic solutions to (B) on

C. If f and g fix the points 0 and 1, then f = g.

Proof of the Corollary. By Stoïlow factorisation, there exists an entire func-
tion Φ such that g = Φ ◦ f . Since both f and g are homeomorphism, Φ has
to be injective, so in particular Φ is conformal. Entire conformal maps are
similarities (they preserve the ratio of distances), and a similarity which fixes
0 and 1 (and Φ(∞) = ∞) is the identity.

We say that a quasiconformal homeomorphism f : C → C is normalised
if it fixes the origin and the point 1. Then the corollary above implies that
normalised solutions to the Beltrami equation are unique.

Before going into the proof of the Theorem 1, we recall a few useful facts
needed to find solutions to the Beltrami equation.

1.2 Solving the Beltrami equation

To find solutions to (B), we start by assuming that the Beltrami coefficient
µ is smooth and compactly supported. Then, consider the inhomogeneous
equation:

∂

∂z̄
σ = µ(z)

∂

∂z
σ + φ (1)

where φ ∈ Lp(C) and compactly supported.

1.2.1 Cauchy and Beurling transform

A couple of operators are relevant to us: the Cauchy transform C := (∂/∂z̄)−1,
mapping C : Lp(C) → W 1,p(C) for p > 2, which is the singular integral
operator given by

Cf(z) = 1

π

ˆ
C

f(ζ)

z − ζ
dζ,

and the Beurling transform S, which is ∂/∂z ◦ C, so it is given by

Su(z) = − 1

π

ˆ
C

u(ζ)

(z − ζ)2
dζ.

Remark 3. The operator S is bounded on Lp(C) and it exchanges the weak
derivative ∂/∂z̄ with ∂/∂z, in particular S(σz̄) = σz for σ ∈ W 1,p(C).
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Let u := (∂/∂z̄)σ. By using the Beurling transform S, the inhomogeneous
equation (1) is equivalent to

u = µ(z)Su+ φ.

The solution can be written as u = (I − µS)−1φ, where we used the in-
verse of the Beltrami operator (I − µ(z)S). Indeed, the Neumann series of
(I − µ(z)S)−1 converges if ∥µ∥∞∥S∥Lp < 1. Since ∥µ∥∞ = ε < 1, the
Beltrami operator I − µ(z)S is invertible in a range of p where ∥S∥p < 1/ε.

Despite the fact that the exact value of ∥S∥Lp is still unknown, it is a
deep result that the maximal range of invertibility of I − µ(z)S is

Iε :=

(
1 + ε, 1 +

1

ε

)
.

Back to our inhomogeneous problem, a solution to (1) is given by the
Cauchy transform of u:

σ =
( ∂

∂z̄

)−1

(I − µ(z)S)−1φ.

Given a solution to the inhomogeneous problem (1), a solution to the
original Beltrami equation (B) is f = z + σ, by taking φ = µ in (1).

Now one can show that solution are smooth by a bootstrapping argument:
first, taking µ = φ ∈ W 1,p(C) implies σ ∈ W 2,p(C). Then the smoothness of
µ implies σ ∈ C∞, and so the smoothness of f .

For the general case (µ only measurable with small L∞ norm) one can
solve (B) with the smooth approximation µδ := µ ∗ ϕδ → µ as δ → 0, and
ϕ smooth. Then exploit the compactness properties of the class of quasicon-
formal mappings and the boundedness of the Cauchy transform to prove the
uniform convergence of the approximate solution fδ. Details are in [AIM09,
§5.3].

We now move to the proof of the factorisation theorem.

1.3 Proof of the Stoïlow factorisation

The idea of the proof is to show that the map

Φ := g ◦ f−1
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is continuous and then that is holomorphic. Note that g is not a priori
continuous, but we will see that any W 1,2

loc -solution to the Beltrami equation
(B) is indeed continuous. We will prove this result later. For the time being,
we will assume the g is continuous and it has weak derivative in L2.

Then it follows that Φ is continuous, because f is a homeomorphism. We
want to show that ∂/∂w̄Φ ≡ 0. By the chain rule:

∂

∂w̄
Φ(w) = (gz ◦ f−1)(w)

∂

∂w̄
(f−1)(w) + (gz̄ ◦ f−1)(w)

∂

∂w
(f−1)(w).

Since it can be seen that inverse function f−1 satisfies the equation

∂

∂w̄
(f−1) = −µ(f−1(w))

∂

∂w
f−1

by rewriting the chain rule above, we have that

∂

∂w̄
Φ =

∂

∂w
f−1

[
− gz(f

−1)µ(f−1) + gz̄(f
−1)

]
= 0

because g satisfies the Beltrami equation.
To conclude, we invoke the Weyl’s lemma, which states that weak solution

to ∂/∂w̄ in L1
loc(C) are analytic. This shows that Φ is holomorphic and

concludes the proof.
It is left to show that W 1,2

loc -solutions to the Beltrami equation are contin-
uous. This result exploits the Lp mapping property of the Beltrami operator
presented above. In particular, when ∥µ∥∞ < ε < 1, the inverse of the
Beltrami operator is continuous on Lp for p in the range Iε := (1+ε, 1+1/ε).

1.3.1 Continuity of W 1,2
loc solutions

Theorem 4. Let Ω ⊂ C. Let f ∈ W 1,2
loc (Ω) be a solution to (B) with ∥µ∥∞ =

ε < 1. Then f ∈ W 1,p
loc (Ω) for all p ∈ Iε.

In particular, f ∈ W 1,2+s
loc (Ω) for some s > 0, so by the Sobolev embedding

f is continuous.

Sketch of the proof of Theorem 4. Consider the function ψf , for ψ ∈ C∞
c (Ω).

Since f is a solution to the Beltrami equation, by the chain rule we have

(ψf)z̄ − µ(ψf)z = f · (ψz̄ − µψz) =: φ.
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By solving the inhomogeneous Beltrami equation for F = ψf

Fz̄ = µFz + φ

we find expressions for the weak derivative of F , that are

Fz̄ = (I − µS)−1φ

Fz = SFz̄ = S ◦ (I − µS)−1φ.

The Sobolev membership of f then follows from the Lp boundedness of the
partial derivative Fz̄, Fz, which is a consequence of the Lp mapping property
of the Beurling transform S and (I − µS)−1 for p in the range Iε.
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