

## Superexponential L<sup>2</sup> decay via Batesian mimicry

Gianmarco Brocchi University of Birmingham

## Batesian mimicry

Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species. [...] It is named after the English naturalist *Henry Walter Bates*, after his work on butterflies in the rainforests of Brazil.

- Wikipedia

Figure 1: Below, an example of Batesian mimicry between species. Papilio polytes (left) resembles the inedible Pachliopta aristolochiae (right).



Idea: Any maximiser of (1) is a critical point of a functional  $\mathfrak{L}: L^2(\mathbb{R}) \to \mathbb{R}_+$ .

Consider the functional  $\mathfrak{L}$  given by  $\mathfrak{L}(f) := \frac{\|\mathcal{E}_{p}(f)\|_{L^{6}_{t,x}(\mathbb{R}^{2})}^{6}}{\|f\|_{L^{2}(\mathbb{R})}^{6}}.$ 

Imposing the condition $\frac{\partial}{\partial \tau} \mathfrak{L}(f + \tau \nu) \upharpoonright_{\tau=0} = 0, \quad \forall \nu \in L^2(\mathbb{R})$ 

one can see that any maximiser of (1) is a solution of the following equation:  $\mathcal{E}_{p}^{\star}\left(|\mathcal{E}_{p}(f)(\cdot,t)|^{4}\mathcal{E}_{p}(f)(\cdot,t)\right) = \lambda f.$  (E-L)

We introduce the 6-linear form





Figure 2: Papilio polytes.

Figure 3: Pachliopta aristolochiae.

#### Sources.

**Papilio** : Photo by Jeevan Jose, Kerala, India. Attribution: © 2016 Jee & Rani Nature Photography. **Pachliopta** : Photo by J.M.Garg, India.

### Maximisers for an extension inequality

For any real p > 1, consider the linear operator

$$\mathcal{E}_{p}(f)(x,t) = \int_{\mathbb{R}} e^{ixy} e^{it|y|^{p}} |y|^{\frac{p-2}{6}} f(y) dy.$$

The operator  $\mathcal{E}_{p}(f)$  is a Fourier ex-

 $Q(f_1, f_2, f_3, f_4, f_5, f_6) \coloneqq \int_{\mathbb{R}^2} \Pi_{j=1}^3 \mathcal{E}_p(f_j)(x, t) \overline{\mathcal{E}_p(f_{j+3})(x, t)} dx dt.$ 

**Definition** A function  $f \in L^2(\mathbb{R})$  is a weak solution of Equation (E-L) if there exists  $\lambda > 0$  such that

$$Q(g, f, f, f, f, f) = \lambda \langle g, f \rangle$$
, for every  $g \in L^2(\mathbb{R})$ .

#### (2)

#### **Bilinear estimates**

**Idea**: Gain decay if functions have disjoint support.

Let  $I_k \coloneqq (-2^{k+1}, -2^k] \cup [2^k, 2^{k+1})$ , for  $k \in \mathbb{Z}$ . **Proposition** Let  $k, k' \in \mathbb{Z}$ . For every  $f, g \in L^2(\mathbb{R})$  we have that  $\|\mathcal{E}_p(f) \mathcal{E}_p(g)\|_{L^3(\mathbb{R}^2)} \lesssim_p 2^{-|k-k'|\frac{p-2}{6}} \|f\|_{L^2(\mathbb{R})} \|g\|_{L^2(\mathbb{R})}$ whenever supp  $f \subset I_k$  and supp  $g \subset I_{k'}$ .





 $\xrightarrow{} \xi$ 

Figure 4: The curves  $s = |\xi|^p$ , for p = 2, 3, 4 and 5. The operator makes sense for any real p > 1.

The operator  $\mathcal{E}_p$  is bounded from  $L^2 \to L^6$  and satisfies

 $\|\mathcal{E}_{p}(f)\|_{L^{6}(\mathbb{R}^{2})} \leqslant \mathsf{E}_{p}\|f\|_{L^{2}(\mathbb{R})}$ 

where  $E_p$  is the best constant.

**Definition** *A* maximiser *for* (1) *is a function*  $f \neq 0$  *that satisfies*  $\|\mathcal{E}_{p}(f)\|_{L^{6}(\mathbb{R}^{2})} = E_{p}\|f\|_{L^{2}(\mathbb{R})}.$ 

The existence of maximisers for (1) for  $1 \le p \le 5$  has been proved in [1]. Even without knowing what they are, we can still claim that

**Theorem 1** Any maximiser of (1) decays superexponentially fast.

In particular, we have the following result.

#### $I_k U I_{k'}$

## Batesian mimicry in action

Idea: Introduce an exponential weight, uniformly controlled.

# The function $t\mapsto \frac{\mu t}{1+\varepsilon t}$ is increasing on $\mathbb{R}_+$ for every positive $\mu, \varepsilon$ .

Consider the function  $G_{\mu,\varepsilon}(x) = \frac{\mu |x|^p}{1+\varepsilon |x|^p}$ 

(1)



Figure 5: Plot of the functions  $t \mapsto \frac{t}{1+\varepsilon t}$  for different values of  $\varepsilon \in [0, 1)$ .

Reduce the weighted L<sup>2</sup> norm to the 6-linear form Q:  $\lambda \|e^{G}f\|_{L^{2}}^{2} = \lambda \langle e^{2G}f, f \rangle = Q(e^{2G}f, f, f, f, f, f, f)$ 

Theorem If f is a maximiser of (1), there exists  $\mu > 0$  such that  $x \mapsto e^{\mu |x|^p} f(x) \in L^2(\mathbb{R})$ 

and its Fourier transform  $\hat{f}$  can be extended to an entire function on  $\mathbb{C}$ .

#### Strategy of the proof

- 1. Every maximiser f of (1) satisfies an Euler-Lagrange equation. This helps us to neutralise the exponential weight splitting f in pieces.
- 2. Using **bilinear estimates** we can get decay from faraway pieces, in term of their distance.
- 3. Acting as in a Batesian mimicry, the weight evolves into a harmless exponential that can be controlled.



## UNIVERSITY<sup>OF</sup> BIRMINGHAM



Figure 6: The functions  $e^{G_{\mu,\epsilon}}$ , as  $\epsilon$  approaches zero.

#### References

[1] G. Brocchi, D. O. e Silva, and R. Quilodrán. *Sharp Strichartz inequalities for fractional and higher order Schröodinger equations*. To appear in *Analysis and PDE*.

# $$\begin{split} G_{\mu,\varepsilon}(x) &\to \mu |x|^p \quad \text{as $\varepsilon \to 0^+$}\,. \end{split}$$ We can choose $\mu$ such

We can choose  $\mu$  such that  $||e^{G_{\mu,\epsilon}}f||_2$  is *uniformly* bounded in  $\epsilon$ .

It is enough to control f outside a compact interval, since for any  $a \in \mathbb{R}$  one has  $e^{a|x|}f(x) = e^{a|x|-\mu|x|^p} \cdot e^{\mu|x|^p}f(x)$ . The second factor is in  $L^2$ , while the first is bounded.

**CIEN** IIKZposter