The Stoillow factorisation theorem

Gianmarco Brocchi, after Astala, Iwaniec, and Martin

Summer School ${ }^{a}$ on
Nodal Domains and Landscape Functions
2-7 October 2022, Kopp

${ }^{\text {a }}$ Supported by Hausdorff Center for Mathematics

Complex analysis in the plane $1 / 2$

Wirtinger derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial z} & =\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \\
\frac{\partial}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Chain rule: $g \circ f: \mathbb{C} \rightarrow \mathbb{C}, z=f(w)$

$$
\begin{aligned}
\partial_{w} g(f(w)) & =g_{z}(f(w)) f_{w}(w)+g_{\bar{z}}(f(w)) \overline{f_{\bar{w}}(w)} \\
\partial_{\bar{w}} g(f(w)) & =g_{z}(f(w)) f_{\bar{w}}(w)+g_{\bar{z}}(f(w)) \overline{f_{w}(w)}
\end{aligned}
$$

Proof: use Wirtinger derivatives and classical chain rule in \mathbb{R}^{2}.

Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on $\Omega \subset \mathbb{C}$ is conformal if it is a biholomorphism.
(Note: f conformal $\Longrightarrow \mathrm{f}$ is holomorphic and $\mathrm{f}^{\prime} \neq 0$.)
Theorem (Riemann mapping theorem (1851) (1900)) Any non-empty open simply connected proper $\Omega \subset \mathbb{C}$ admits a bijective conformal map to the open unit disk \mathbb{D}.

Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on $\Omega \subset \mathbb{C}$ is conformal if it is a biholomorphism.
(Note: f conformal $\Longrightarrow \mathrm{f}$ is holomorphic and $\mathrm{f}^{\prime} \neq 0$.)
Theorem (Riemann mapping theorem (1851) (1900)) Any non-empty open simply connected proper $\Omega \subset \mathbb{C}$ admits a bijective conformal map to the open unit disk \mathbb{D}.

Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on $\Omega \subset \mathbb{C}$ is conformal if it is a biholomorphism.
(Note: f conformal $\Longrightarrow \mathrm{f}$ is holomorphic and $\mathrm{f}^{\prime} \neq 0$.)
Theorem (Riemann mapping theorem (1851) (1900)) Any non-empty open simply connected proper $\Omega \subset \mathbb{C}$ admits a bijective conformal map to the open unit disk \mathbb{D}.

Complex analysis in the plane 2/2

Definition (Conformal map)
A function f on $\Omega \subset \mathbb{C}$ is conformal if it is a biholomorphism.
(Note: f conformal $\Longrightarrow \mathrm{f}$ is holomorphic and $\mathrm{f}^{\prime} \neq 0$.)
Theorem (Riemann mapping theorem (1851) (1900)) Any non-empty open simply connected proper $\Omega \subset \mathbb{C}$ admits a bijective conformal map to the open unit disk \mathbb{D}.

$$
\begin{aligned}
2 \leqslant & \int_{0}^{1} \int_{0}^{1}\left|f^{\prime}(x+i y)\right| d x d y \\
& \leqslant\left(\iint_{[0,1]^{2}}\left|f^{\prime}(x+i y)\right|^{2} d x d y\right)^{\frac{1}{2}}\left(\iint_{[0,1]^{2}} d x d y\right)^{\frac{1}{2}}=\sqrt{2}
\end{aligned}
$$

Complex analysis in the plane $2 / 2$

Definition (Conformal map)
A function f on $\Omega \subset \mathbb{C}$ is conformal if it is a biholomorphism.
(Note: f conformal $\Longrightarrow \mathrm{f}$ is holomorphic and $\mathrm{f}^{\prime} \neq 0$.)
Theorem (Riemann mapping theorem (1851) (1900)) Any non-empty open simply connected proper $\Omega \subset \mathbb{C}$ admits a bijective conformal map to the open unit disk \mathbb{D}.

$$
\begin{aligned}
2 \leqslant & \int_{0}^{1} \int_{0}^{1}\left|f^{\prime}(x+i y)\right| d x d y \\
& \leqslant\left(\iint_{[0,1]^{2}}\left|f^{\prime}(x+i y)\right|^{2} d x d y\right)^{\frac{1}{2}}\left(\iint_{[0,1]^{2}} d x d y\right)^{\frac{1}{2}}=\sqrt{2}
\end{aligned}
$$

Grötzsch (1928) asked for "approximate conformality".

Maps of bounded distorsion

Consider $\mathrm{f} \in \mathrm{W}_{\text {loc }}^{1,2}(\mathbb{C})$ such that $\exists \mathrm{K} \geqslant 1$

$$
\begin{aligned}
\max _{\alpha}\left|\partial_{\alpha} f(z)\right| & \leqslant K \min _{\alpha}\left|\partial_{\alpha} f(z)\right| \quad \text { for a.e. } z \\
\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| & \leqslant K\left(\left|f_{z}(z)\right|-\left|f_{\bar{z}}(z)\right|\right)
\end{aligned}
$$

We can rearrange them to get:

$$
\left|f_{\bar{z}}(z)\right| \leqslant \frac{K-1}{K+1}\left|f_{z}(z)\right|
$$

The Beltrami equation is $\mathrm{f}_{\bar{z}}(z)=\mu(z) \mathrm{f}_{z}(z)$ for $\|\mu\|_{L^{\infty}} \in(0,1)$.

Maps of bounded distorsion

Consider $\mathrm{f} \in \mathrm{W}_{\text {loc }}^{1,2}(\mathbb{C})$ such that $\exists \mathrm{K} \geqslant 1$

$$
\begin{aligned}
\max _{\alpha}\left|\partial_{\alpha} f(z)\right| & \leqslant K \min _{\alpha}\left|\partial_{\alpha} f(z)\right| \quad \text { for a.e. } z \\
\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| & \leqslant K\left(\left|f_{z}(z)\right|-\left|f_{\bar{z}}(z)\right|\right)
\end{aligned}
$$

We can rearrange them to get:

$$
\left|f_{\bar{z}}(z)\right| \leqslant \frac{K-1}{K+1}\left|f_{z}(z)\right|
$$

The Beltrami equation is $f_{\bar{z}}(z)=\mu(z) f_{z}(z)$ for $\|\mu\|_{L^{\infty}} \in(0,1)$.
Linear algebra interpretation:

$$
|\operatorname{Df}(z)|=\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| \leqslant K \frac{\left|f_{z}(z)\right|^{2}-\left|f_{\bar{z}}(z)\right|^{2}}{|\operatorname{Df}(z)|}=K \frac{J(f, z)}{|\operatorname{Df}(z)|}
$$

Maps of bounded distorsion

Consider $\mathrm{f} \in \mathrm{W}_{\text {loc }}^{1,2}(\mathbb{C})$ such that $\exists \mathrm{K} \geqslant 1$

$$
\begin{aligned}
\max _{\alpha}\left|\partial_{\alpha} f(z)\right| & \leqslant K \min _{\alpha}\left|\partial_{\alpha} f(z)\right| \quad \text { for a.e. } z \\
\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| & \leqslant K\left(\left|f_{z}(z)\right|-\left|f_{\bar{z}}(z)\right|\right)
\end{aligned}
$$

We can rearrange them to get:

$$
\left|f_{\bar{z}}(z)\right| \leqslant \frac{\mathrm{K}-1}{\mathrm{~K}+1}\left|\mathrm{f}_{\mathrm{z}}(z)\right|
$$

The Beltrami equation is $\mathrm{f}_{\bar{z}}(z)=\mu(z) \mathrm{f}_{z}(z)$ for $\|\mu\|_{L^{\infty}} \in(0,1)$.
Linear algebra interpretation:

$$
|\operatorname{Df}(z)|=\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| \leqslant K \frac{\left|f_{z}(z)\right|^{2}-\left|f_{\bar{z}}(z)\right|^{2}}{|\operatorname{Df}(z)|}=K \frac{J(f, z)}{|\operatorname{Df}(z)|}
$$

Remark. We have $|\operatorname{Df}(z)|^{2} \geqslant 2 \mathrm{~J}(\mathrm{f}, z)$ by the AM-GM. Since $\|A\|_{2}^{2}=\operatorname{tr}\left(A^{\mathrm{t}} A\right) \geqslant 2 \operatorname{det}(A)$ for $A \in \mathbb{R}^{2 \times 2}$.

Maps of bounded distorsion

Consider $\mathrm{f} \in \mathrm{W}_{\text {loc }}^{1,2}(\mathbb{C})$ such that $\exists \mathrm{K} \geqslant 1$

$$
\begin{aligned}
\max _{\alpha}\left|\partial_{\alpha} f(z)\right| & \leqslant K \min _{\alpha}\left|\partial_{\alpha} f(z)\right| \quad \text { for a.e. } z \\
\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| & \leqslant K\left(\left|f_{z}(z)\right|-\left|f_{\bar{z}}(z)\right|\right)
\end{aligned}
$$

We can rearrange them to get:

$$
\left|f_{\bar{z}}(z)\right| \leqslant \frac{\mathrm{K}-1}{\mathrm{~K}+1}\left|\mathrm{f}_{\mathrm{z}}(z)\right|
$$

The Beltrami equation is $\mathrm{f}_{\bar{z}}(z)=\mu(z) \mathrm{f}_{z}(z)$ for $\|\mu\|_{L^{\infty}} \in(0,1)$.
Linear algebra interpretation:

$$
|\operatorname{Df}(z)|=\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right| \leqslant K \frac{\left|f_{z}(z)\right|^{2}-\left|f_{\bar{z}}(z)\right|^{2}}{|\operatorname{Df}(z)|}=K \frac{J(f, z)}{|\operatorname{Df}(z)|}
$$

Remark. We have $|\operatorname{Df}(z)|^{2} \geqslant 2 \mathrm{~J}(\mathrm{f}, z)$ by the AM-GM. Since $\|A\|_{2}^{2}=\operatorname{tr}\left(A^{t} A\right) \geqslant 2 \operatorname{det}(A)$ for $A \in \mathbb{R}^{2 \times 2}$.

What do these maps look like?

Figure 1: (A) Face. (B) Conformal Mapping. (C) Induced Circle Packing. (D) Conformal Checkerboard. (E) Quasiconformal Mapping. (F) Quasiconformal Circle Packing.
Source by Zeng, Lui, Luo, Liu, Chan, Yau, Gu arXiv:1005.464

Let $\mu \in \mathrm{L}^{\infty}(\mathbb{C})$, with $\|\mu\|_{\infty}=\varepsilon:=\frac{\mathrm{K}-1}{\mathrm{~K}+1}$.

Definition (Quasiconformal mappings)

Functions f on $\Omega \subset \mathbb{C}$ that are $W_{\text {loc }}^{1,2}$ solutions to

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}} f(z)=\mu(z) \frac{\partial}{\partial z} f(z) \quad \text { a.e. } z \in \Omega \subset \mathbb{C} \tag{B}
\end{equation*}
$$

and that are homeomorphisms: continuous and open.
Are two solutions of (B) related?

Let $\mu \in \mathrm{L}^{\infty}(\mathbb{C})$, with $\|\mu\|_{\infty}=\varepsilon:=\frac{\mathrm{K}-1}{\mathrm{~K}+1}$.
Definition (Quasiconformal mappings)
Functions f on $\Omega \subset \mathbb{C}$ that are $W_{\text {loc }}^{1,2}$ solutions to

$$
\begin{equation*}
\frac{\partial}{\partial \bar{z}} f(z)=\mu(z) \frac{\partial}{\partial z} f(z) \quad \text { a.e. } z \in \Omega \subset \mathbb{C} \tag{B}
\end{equation*}
$$

and that are homeomorphisms: continuous and open.
Are two solutions of (B) related?

Theorem (Stoïlow factorization)

Let $f, g \in W_{\text {loc }}^{1,2}(\Omega)$ be two solutions to the same equation (B), and let f be quasiconformal.
Then there exists a holomorphic map Φ on $f(\Omega)$ such that

$$
g(z)=\Phi(f(z)) \quad \text { for all } z \in \Omega
$$

Moreover, for any holomorphic function Φ on $f(\Omega)$, the map $\Phi \circ f$ is a solution of (B).

Stơ̈low factorisation

Recall the Beltrami equation:

$$
\frac{\partial}{\partial \bar{z}} f(z)=\mu(z) \frac{\partial}{\partial z} f(z)
$$

The Stoillow factorisation theorem says that two different solutions to the Beltrami equation are related by a holomorphic function.

Stơ̈low factorisation

Recall the Beltrami equation:

$$
\frac{\partial}{\partial \bar{z}} f(z)=\mu(z) \frac{\partial}{\partial z} f(z)
$$

The Stoillow factorisation theorem says that two different solutions to the Beltrami equation are related by a holomorphic function.

$$
\begin{aligned}
& \Omega \xrightarrow{f} \Omega^{\prime} \\
& \Omega^{\prime \prime}
\end{aligned}
$$

How can this be used?

Applications to PDEs

Let A be symmetric and elliptic on \mathbb{C}

$$
\frac{1}{\mathrm{~K}}|\xi|^{2} \leqslant\langle A(z) \xi, \xi\rangle \leqslant \mathrm{K}|\xi|^{2}
$$

Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be a solution of $\operatorname{div} A(z) \nabla u=0$.

1. Does $u \in W_{\text {loc }}^{1, p}(\Omega)$ for other (higher) p ?
2. What is the regularity of u ?

Applications to PDEs

Let A be symmetric and elliptic on \mathbb{C}

$$
\frac{1}{\mathrm{~K}}|\xi|^{2} \leqslant\langle A(z) \xi, \xi\rangle \leqslant K|\xi|^{2}
$$

Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be a solution of $\operatorname{div} A(z) \nabla u=0$.

1. Does $u \in W_{\text {loc }}^{1, p}(\Omega)$ for other (higher) p ?
2. What is the regularity of u ?

Idea: construct a K-quasiconformal map from u.

Definition (A-harmonic conjugate)

A function $v \in W_{\text {loc }}^{1,2}(\Omega)$ such that

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \mathcal{A}(z) \nabla u=\nabla v
$$

Then $f=u+\mathfrak{i v}$ is K-quasiconformal. By Stoïlow factorisation $\exists \Phi$ holomorphic and F K-quasiconformal such that $f=\Phi \circ F$. Then

$$
u=\mathfrak{R}(f)=\mathfrak{R}(\Phi) \circ \mathrm{F}
$$

Applications to PDEs

Theorem

Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be a solution of

$$
\operatorname{div} \mathcal{A}(z) \nabla u=0
$$

Then, by Stoillow factorisation, we have the following:

1. Improved integrability: $u \in W_{l o c}^{1, p}(\Omega)$ for $p \in\left[2, \frac{2 \mathrm{~K}}{\mathrm{~K}-1}\right)$.
2. From Mori's theorem: $u \in C_{\text {loc }}^{1 / K}(\Omega)$.

Applications to PDEs

Theorem

Let $u \in W_{\text {loc }}^{1,2}(\Omega)$ be a solution of

$$
\operatorname{div} A(z) \nabla u=0
$$

Then, by Stoilow factorisation, we have the following:

1. Improved integrability: $u \in W_{l o c}^{1, p}(\Omega)$ for $p \in\left[2, \frac{2 \mathrm{~K}}{\mathrm{~K}-1}\right)$.
2. From Mori's theorem: $u \in C_{\text {loc }}^{1 / k}(\Omega)$.

Stoïlow factorisation successfully used by (at least) one participant in this school: Gallegos, Josep M. "Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant." arXiv:2201.12307, check it out!

Corollary (Uniqueness of normalised solution)
Let $f, g \in W_{\text {loc }}^{1,2}(\mathbb{C})$ be two homeomorphic solutions to (B) on \mathbb{C}.
If f and g fix the points 0 and 1 , then $\mathrm{f}=\mathrm{g}$.

Corollary (Uniqueness of normalised solution)
Let $f, g \in W_{\text {loc }}^{1,2}(\mathbb{C})$ be two homeomorphic solutions to (B) on \mathbb{C}.
If f and g fix the points 0 and 1 , then $\mathrm{f}=\mathrm{g}$.
Proof of the Corollary. By Stoïlow factorisation,

- \exists an entire function Φ such that $g=\Phi \circ f$.
- f and g are homeomorphisms $\Longrightarrow \Phi$ injective, so Φ is conformal.
- Entire conformal maps are similarities: $\forall \zeta, z, w \in \mathbb{C}$

$$
\frac{|\Phi(\zeta)-\Phi(w)|}{|\Phi(z)-\Phi(w)|}=\frac{|\zeta-w|}{|z-w|}
$$

- a similarity which fixes 0 and 1 (and $\Phi(\infty)=\infty$) is the identity.

Remark. The map

$$
f(z)=z+\varepsilon \prod_{j=1}^{N}\left(z-\zeta_{j}\right)
$$

fixes $\left\{\zeta_{j}, j=1, \ldots, N\right\}$, is holomorphic and locally injective ($f^{\prime} \neq 0$ for small ε), but it is not the identity.

Recall the Beltrami equation:

$$
\frac{\partial}{\partial \bar{z}} f(z)=\mu(z) \frac{\partial}{\partial z} f(z)
$$

Theorem (Stoïlow factorization)

Let $f, g \in W_{\text {loc }}^{1,2}(\Omega)$ be two solutions to the same equation (B), and let f be quasiconformal.
Then there exists a holomorphic map Φ on $f(\Omega)$ such that

$$
g(z)=\Phi(f(z)) \quad \text { for all } z \in \Omega
$$

Moreover, for any holomorphic function Φ on $f(\Omega)$, the map $\Phi \circ f$ is a solution of (B).

Proof of the factorisation

$\Omega \xrightarrow{f} \Omega^{\prime}$

Goal: show that the map $\Phi:=\mathrm{g} \circ \mathrm{f}^{-1}$ is holomorphic.

1. Assume g continuous (and in $W_{\text {loc }}^{1,2}$). Let $f(z)=w$.
2. Check that $\Phi \in \operatorname{ker} \bar{\partial}$. Let $h:=f^{-1}$, so $(h \circ f)(z)=z$.

$$
\begin{aligned}
& \partial_{z}(h \circ f)(z)=h_{w}(w) f_{z}(z)+h_{\bar{w}}(w) \overline{f_{\bar{z}}(z)}=1 \\
& \partial_{\bar{z}}(h \circ f)(z)=h_{w}(w) f_{\bar{z}}(z)+h_{\bar{w}}(w) \overline{f_{z}(z)}=0
\end{aligned}
$$

Proof of the factorisation

$\Omega \xrightarrow{f} \Omega^{\prime}$

Goal: show that the map $\Phi:=\mathrm{g} \circ \mathrm{f}^{-1}$ is holomorphic.

1. Assume g continuous (and in $W_{\text {loc }}^{1,2}$). Let $f(z)=w$.
2. Check that $\Phi \in \operatorname{ker} \bar{\partial}$. Let $h:=f^{-1}$, so $(h \circ f)(z)=z$.

$$
\begin{gathered}
\partial_{z}(h \circ f)(z)=h_{w}(w) f_{z}(z)+h_{\bar{w}}(w) \overline{f_{\bar{z}}(z)}=1 \\
\partial_{\bar{z}}(h \circ f)(z)=h_{w}(w) f_{\bar{z}}(z)+h_{\bar{w}}(w) \overline{f_{z}(z)}=0 \\
\left(\begin{array}{cc}
f_{z} & \overline{f_{\bar{z}}} \\
f_{\bar{z}} & \bar{f}_{\bar{z}}
\end{array}\right)\binom{h_{w}}{h_{\bar{w}}}=\binom{1}{0} \Longrightarrow \quad\binom{h_{w}}{h_{\bar{w}}}=\frac{1}{\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}}\binom{\overline{f_{z}}}{-f_{\bar{z}}}
\end{gathered}
$$

Proof of the factorisation

$\Omega \xrightarrow{f} \Omega^{\prime}$

Goal: show that the map $\Phi:=\mathrm{g} \circ \mathrm{f}^{-1}$ is holomorphic.

1. Assume g continuous (and in $W_{\text {loc }}^{1,2}$). Let $f(z)=w$.
2. Check that $\Phi \in \operatorname{ker} \bar{\partial}$. Let $h:=f^{-1}$, so $(h \circ f)(z)=z$.

$$
\begin{gathered}
\partial_{z}(h \circ f)(z)=h_{w}(w) f_{z}(z)+h_{\bar{w}}(w) \overline{f_{\bar{z}}(z)}=1 \\
\partial_{\bar{z}}(h \circ f)(z)=h_{w}(w) f_{\bar{z}}(z)+h_{\bar{w}}(w) \overline{f_{z}(z)}=0 \\
\left(\begin{array}{cc}
f_{z} & \overline{f_{\bar{z}}} \\
f_{\bar{z}} & \overline{f_{z}}
\end{array}\right)\binom{h_{w}}{h_{\bar{w}}}=\binom{1}{0} \Longrightarrow \quad\binom{h_{w}}{h_{\bar{w}}}=\frac{1}{\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}}\binom{\overline{f_{z}}}{-f_{\bar{z}}}
\end{gathered}
$$

It follows that h satisfies

$$
h_{\bar{w}}=-\mu(h(w)) \overline{h_{w}}
$$

substitute in: $\partial_{\bar{w}}(g \circ h)(w)=g_{z}(h(w)) h_{\bar{w}}(w)+g_{\bar{z}}(h(w)) \overline{h_{w}(w)}$

Proof of the factorisation

$\Omega \xrightarrow{f} \Omega^{\prime}$

Goal: show that the map $\Phi:=g \circ f^{-1}$ is holomorphic. $\Omega^{\prime \prime}$

1. Assume g continuous (and in $W_{\text {loc }}^{1,2}$). Let $f(z)=w$.
2. Check that $\Phi \in \operatorname{ker} \bar{\partial}$. Let $h:=f^{-1}$, so $(h \circ f)(z)=z$.

$$
\begin{aligned}
& \partial_{z}(h \circ f)(z)=h_{w}(w) f_{z}(z)+h_{\bar{w}}(w) \overline{f_{\bar{z}}(z)}=1 \\
& \partial_{\bar{z}}(h \circ f)(z)=h_{w}(w) f_{\bar{z}}(z)+h_{\bar{w}}(w) \overline{f_{z}(z)}=0 \\
& \left(\begin{array}{cc}
f_{z} & \overline{f_{\bar{z}}} \\
f_{\bar{z}} & \overline{f_{z}}
\end{array}\right)\binom{h_{w}}{h_{\bar{w}}}=\binom{1}{0} \Longrightarrow\binom{h_{w}}{h_{\bar{w}}}=\frac{1}{\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}}\binom{\overline{f_{z}}}{-f_{\bar{z}}}
\end{aligned}
$$

It follows that h satisfies

$$
h_{\bar{w}}=-\mu(h(w)) \overline{h_{w}}
$$

substitute in: $\partial_{\bar{w}}(g \circ h)(w)=g_{z}(h(w)) h_{\bar{w}}(w)+g_{\bar{z}}(h(w)) \overline{h_{w}(w)}$
3. Use Weyl's lemma: weak solutions to $\bar{\partial}$ in $L_{\text {loc }}^{1}(\mathbb{C})$ are analytic. \square

Two operators

The solid Cauchy transform is

$$
\mathfrak{C} f(z)=\frac{1}{\pi} \int_{\mathbb{C}} \frac{f(\zeta)}{z-\zeta} d \zeta
$$

The Beurling transform S is given by

$$
\operatorname{Su}(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{u(\zeta)}{(z-\zeta)^{2}} d \zeta
$$

Note:

- $\mathcal{C}:=\left(\partial_{\bar{z}}\right)^{-1}$, mapping $\mathcal{C}: L^{p}(\mathbb{C}) \rightarrow W^{1, p}(\mathbb{C})$ for $p>2$.
- S is bounded on $L^{p}(\mathbb{C})$, and $S\left(\partial_{\bar{z}} f\right)=\partial_{z} f$ for $f \in W^{1, p}(\mathbb{C})$.

Also

$$
\|S\|_{p \rightarrow p} \leqslant \frac{1}{\varepsilon} \quad \text { for } p \in\left(1+\varepsilon,(1+\varepsilon)^{\prime}\right)
$$

Solving the Beltrami equation

Consider the inhomogeneous equation for $\varphi \in \mathrm{L}_{\text {comp }}^{p}(\mathbb{C})$.

$$
\begin{equation*}
\partial_{\bar{z}} \sigma=\mu(z) \partial_{z} \sigma+\varphi \tag{B}
\end{equation*}
$$

If σ solves (\tilde{B}) with $\varphi=\mu$, then $f=z+\sigma$ solve (B).
Rewrite using $\partial_{z}=S \partial_{\bar{z}}$:

$$
(I-\mu(z) S) \partial_{\bar{z}} \sigma=\varphi
$$

Solving the Beltrami equation

Consider the inhomogeneous equation for $\varphi \in \mathrm{L}_{\text {comp }}^{p}(\mathbb{C})$.

$$
\begin{equation*}
\partial_{\bar{z}} \sigma=\mu(z) \partial_{z} \sigma+\varphi \tag{B}
\end{equation*}
$$

If σ solves (\tilde{B}) with $\varphi=\mu$, then $f=z+\sigma$ solve (B).
Rewrite using $\partial_{z}=S \partial_{\bar{z}}$:

$$
(I-\mu(z) S) \partial_{\bar{z}} \sigma=\varphi
$$

A solution is given by

$$
\sigma=\partial_{\bar{z}}^{-1}(I-\mu(z) S)^{-1} \varphi=\partial_{\bar{z}}^{-1} \sum_{k \geqslant 0}(\mu(z) S)^{k} \varphi
$$

The Neumann series converges for $\|\mu S\| \leqslant\|\mu\|_{\infty}\|S\|<1$. If $\|\mu\|_{\infty}=\varepsilon$, we need $\|S\|<1 / \varepsilon$, "not too large".

Why are weak $W^{1,2}$ solution continuous? $1 / 2$

Recall $\mathrm{I}_{\varepsilon}:=(1+\varepsilon, 1+1 / \varepsilon)$.

Theorem

Let $\Omega \subset \mathbb{C}$. If $\mathrm{f} \in \mathrm{W}_{\text {loc }}^{1,2}(\Omega)$ solves (B) with $\|\mu\|_{\infty}=\varepsilon<1$, then $f \in W_{\text {loc }}^{1, p}(\Omega)$ for all $p \in I_{\varepsilon}$.

Remark. In particular, $f \in W_{\text {loc }}^{1,2+s}(\Omega)$ for some $s>0$, so by the Sobolev embedding f is continuous.

Sketch of the proof. Consider $F:=\psi f$, for $\psi \in C_{c}^{\infty}(\Omega)$. Since f is a solution to the Beltrami equation, by the chain rule

$$
(\psi f)_{\bar{z}}-\mu(\psi f)_{z}=f \cdot\left(\psi_{\bar{z}}-\mu \psi_{z}\right)=: \varphi
$$

Then $F=\psi f$ solves the inhomogeneous Beltrami equation

$$
\mathrm{F}_{\bar{z}}=\mu \mathrm{F}_{z}+\varphi
$$

Why are weak $W^{1,2}$ solution continuous? $2 / 2$

We find expressions for the weak derivative of F, that are

$$
\begin{aligned}
& F_{\bar{z}}=(I-\mu S)^{-1} \varphi \\
& F_{z}=S\left(F_{\bar{z}}\right)=S \circ(I-\mu S)^{-1} \varphi
\end{aligned}
$$

where $\varphi:=\mathrm{f} \cdot\left(\psi_{\bar{z}}-\mu \psi_{z}\right)$, and $F=\psi f, \psi \in \mathrm{C}_{0}^{\infty}$.

- For $p \in I_{\varepsilon}$, we control $\|S\|_{p},\left\|(I-\mu S)^{-1}\right\|_{p}$
- $F_{\bar{z}}, F_{z}$ are in L^{p} since

$$
\begin{aligned}
\|D F\|_{p} & \leqslant\left(\left\|(I-\mu S)^{-1}\right\|_{p}+\|S\|_{p}\left\|(I-\mu S)^{-1}\right\|_{p}\right)\|\varphi\|_{p} \\
& \lesssim p\left\|\psi_{\bar{z}}-\mu \psi_{z}\right\|_{\infty}\|f\|_{p}
\end{aligned}
$$

which holds for $p>2$.

Thank you

