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 Annals of Mathematics, 117 (1983), 235-265

 The Nielsen realization problem

 By STEVEN P. KERCKHOFF

 Closed, oriented surfaces of genus g > 2 admit many hyperbolic (constant

 Gaussian curvature -1) metrics in contrast to Mostow's rigidity theorems in

 higher dimensions. Only special hyperbolic surfaces have non-trivial groups of

 isometries, but many different, non-isomorphic groups arise for different symmet-

 ric metrics. The group of isometries of a closed hyperbolic surface M2 is always

 finite and the only isometry isotopic to the identity is the identity itself. As a

 result, hyperbolic surfaces with non-trivial groups of isometries have been a

 primary source for the construction of finite subgroups of the group of isotopy

 classes of diffeomorphisms of M2, ?TDiff(M2). An old question, usually referred
 to as the Nielsen Realization Problem, is whether every such finite subgroup

 arises as a group of isometries of some hyperbolic surface. In this paper we

 answer the question in the affirmative.

 THEOREM 5. Every finite subgroup G of groDiff(M2) can be realized as a
 group of isometries of a hyperbolic surface.

 Remark. Theorem 5 has been known for G cyclic (Nielsen [14]), solvable
 (Fenchel [2]), and in numerous other special cases (see Zieschang [22]).

 Since it is the generalization to higher genus of the classical modular group

 for genus 1, we refer to go Diff(M 2) as the modular group of genus g and denote
 it by Modg. It is often called the mapping class group (we allow orientation-

 reversing maps however), and is known to be naturally isomorphic to the group

 of outer automorphisms of zr1M2. Modg acts properly discontinuously on T77, the
 Teichmiiller space of all hyperbolic metrics on M 2 (up to isometry isotopic to the
 identity), and the surfaces with a nontrivial group of isometries are distinguished

 as those with a non-trivial (necessarily finite) isotropy subgroup. This paper is
 primarily a study of the geometry of Teichmiiller space, the results of which

 allow us to prove the following fixed point theorem which is equivalent to
 Theorem 5.
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 236 STEVEN P. KERCKHOFF

 THEOREM 4. Every finite subgroup G C Modg acting on Tg fixes some point

 in Tg.

 Tg is an open 6g - 6 dimensional cell so that Theorem 4 follows for certain

 finite groups for topological reasons, but the general case relies on some strong

 convexity properties of Tg. There is substantial historical precedent for such an

 approach. In the genus 1 case, T1 is the space of flat metrics of area 1 and is

 isometric to H12, 2-dimensional hyperbolic space. Mod1 is GL(2, Z) and acts by

 isometries on T, so that Theorem 4 is an easy consequence of the convexity
 properties of H2. Moreover, Kravetz [8] gave an analogous proof of Theorem 4

 based on the false belief that Tg (with the Teichmfiller metric) has negative

 curvature. This is now known to be false. (See [9] and [11].)

 The convexity properties described here are not of a metric but rather of a

 function on Tg. It is shown that the geodesic length function of a closed curve is
 convex along certain paths in Tg. These paths are the traces of one-parameter

 families of deformations of hyperbolic structures which generalize the deforma-

 tions gotten by twisting along simple closed geodesics. Called earthquakes, these

 deformations were invented (and named) by Thurston who also proved that any

 two points in Tg can be connected by an earthquake path.

 The outline of the proof of Theorem 4 is briefly as follows: By taking

 sufficiently many simple closed curves (yi) = y, we insure that the sum of the
 geodesic lengths of the yi, ly, realizes a minimum in Tg (Lemma 3.1). Now 1,, is
 shown to be strictly convex along earthquake paths (Theorem 1). Since every pair

 of points can be connected by such a path (Theorem 2), LI, attains a unique

 minimum (Theorem 3). If y is a G-invariant set of simple, closed curves, Il, is
 G-invariant and thus its unique minimum is a fixed point for G.

 Section 1A is a brief discussion of some geometric properties of H12 and its
 unit tangent bundle; Section 1B covers geodesic laminations. These sections are

 brief and purely expository, primarily stating known results which are needed in

 the paper. The reader unfamiliar with these subjects may wish to consult some of
 the references below for proofs. Section 2 develops the theory of earthquakes.

 Section 3 is the heart of the paper, where we discuss the geometric and analytic
 properties of the geodesic length function, especially along earthquake paths.

 Theorem 1 (the convexity result) is proved here. In Section 4, we give the formal
 proofs of Theorems 3 and 4 and indicate how the proof generalizes to general

 Fuchsian groups. Section 5 details some fairly immediate (and presumably

 well-known) restatements and consequences of Theorem 4 (e.g., Theorem 5),

 including some new information about Seifert fibered 3-manifolds. In the Ap-

 pendix we give a proof of Thurston's Earthquake Theorem (Theorem 2), included
 here since no written source exists.

 The results of this paper were previously announced in [7].
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 THE NIELSEN REALIZATION PROBLEM 237

 References. The theory of geodesic laminations is developed rather exten-

 sively in Chapters 8 and 9 of [17] so that no attempt is made here to reprove the

 basic theorems proved there. The reader may also find references on measured

 foliations (e.g. [1] and [18]) useful as they are analogous to geodesic laminations
 in a different context. (See the remark at the end of Section 1B.) Finally, a good

 general reference for background material on hyperbolic surfaces, Teichmiiller

 spaces, and modular groups is the book Discrete Groups and Automorphic

 Functions [3].

 Section I

 I.A. A hyperbolic surface M2 is a closed, oriented 2-dimensional manifold
 with a Riemannian metric of constant Gaussian curvature -1. Its universal cover

 also has constant negative curvature so it is isometric to the open unit disk

 endowed with the Poincare metric (denoted by H2). Since the covering transla-

 tions of the universal cover act by isometries, M2 can be represented by H12/F,
 where r is a subgroup of the (orientation-preserving) isometry group of H2
 (denoted by I(H12)) isomorphic to 7T1M2 (called the Fuchsian group of M). F is

 well-defined up to conjugacy in I(H2).

 The Teichmiiller space of genus g (g > 2), (Tg), is the space of marked
 hyperbolic surfaces, that is, hyperbolic surfaces together with a fixed isomor-

 phism of sr1M to F where two surfaces are thought to be equivalent if there is an
 isometry between them respecting this isomorphism. Equivalently, Tg can be

 defined as the space of hyperbolic structures on a single underlying differentiable

 surface with two hyperbolic structures identified if there is an isometry between

 them isotopic to the identity or as the subset of discrete representations of Vi1M
 into I(H12) up to conjugacy. These definitions will be used interchangeably.

 The modular group (Modg) or mapping class group of genus g is the group

 of diffeomorphisms of the surface of genus g up to isotopy (To Diff M). It is
 well-known that Modg is isomorphic to the group of outer automorphisms of

 vi1M, Out ?Tj. The diffeomorphism group of M acts on Tg by pulling back metrics
 and the action descends to an action of Modg since the points of Tg are isotopy

 classes of metrics. Equivalently the automorphism group of 7r1M acts on the

 space of discrete representations of -71M into I(H12) and the action descends to an

 action of Out -r, on Tg. The action is properly discontinuous and, except for an
 element of order 2 in Mod2, is faithful. The quotient space is the moduli space of
 genus g.

 The action of I(H12) on H12 extends continuously to the boundary circle of

 the open unit disk, called the circle at infinity, S. . Note that S. can be identified
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 238 STEVEN P. KERCKHOFF

 with the circle of directions at a point in H12; directions at two different points

 are identified if the corresponding directed rays are asymptotic. A pair of distinct

 points on S. determines a unique bi-infinite geodesic in H2. If a hyperbolic
 surface M is closed, every element of F is hyperbolic, i.e., it has two fixed points

 on S., one attracting and one repelling. The geodesic corresponding to this pair
 of points projects to a closed geodesic on the surface which is the unique

 geodesic on M in its isotopy class.

 If f: M -k M' is a homotopy equivalence between two marked hyperbolic
 surfaces then by the work of Nielsen any lift of f to fI H12 -- H12 extends
 continuously to a homeomorphism on SO and the extension is invariant under
 homotopy, depending only on the lift and on M and M'. (See also Mostow [12] or

 Thurston [17] for a proof in dimension > 2.) The extension is equivariant so that

 the fixed endpoints of an element y E F are taken to the endpoints of y' E F"

 where f*(y) = y' (f*: F -k I" induced by f). This invariance on S. of the
 extension of f under homotopy (hence isotopy) suggests that the circle at infinity

 is likely to be important in the study of the action of Modg on Tg. For, although

 Modg does not act necessarily in a well-defined manner on a hyperbolic surface

 M, it does act on the circle at infinity of the universal cover of M (and hence on

 T,(M); see Section V). This was the beginning point for Nielsen's deep work on
 Modg and again becomes significant here (e.g., in the proof of Theorem 1).

 I(H12) also acts on T1(H12), the unit tangent bundle of H2. In fact the action
 is faithful and transitive so that T1(H2) can be identified with I(H2). It follows

 that an element of I(H2) is completely determined by its action on a single point
 of T1(H2). Topologically, T1(H2) is a trivial circle bundle over the disk.

 The metric on T1(H2) is defined so that a path of parallel-translated vectors
 has the same length as the path projected onto H2 and the metric along the fiber
 comes from the standard one on S'. This is the usual left invariant metric coming
 from the Lie group structure of T11H2 - PSL(2, R). We will use d(., .) to denote
 either the metric in H12 or T1H12 when the meaning is clear from the context.

 The following lemma will be useful in understanding geodesic laminations.

 Given a geodesic 1 in H12 and a point x on it, we denote by x1, the unit vector at x
 along 1. (The choice between the two possibilities will always be evident from the
 context.)

 LEMMA 1.1. Given two disjoint geodesics 1 and 1' in H12 and any two points
 x and x' on 1 and 1' respectively, distance E < 1 apart, then d(x , x',) < Ce for a
 universal constant C.

 Proof We may fix 1 and x without loss of generality. Then for a fixed x', the
 worst case occurs when 1 and 1' are asymptotic in one direction, so we consider

 only this case. The tangent vector x", determined by the asymptotic condition
 varies differentiably with x' and equals x when x' = x; so the lemma follows. El
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 THE NIELSEN REALIZATION PROBLEM 239

 In Section II we will be studying deformations of H12 of the following sort:
 Let v be a tangent vector in T1(H12), w another tangent vector based at a point

 x E H2 (usually distinct from the basepoint y of v.) Denote by &S(t)w the vector
 obtained by translating the geodesic from y to x distance t along the geodesic 1

 determined by v. (See Figure 1.)

 w

 \ ~ ~ ~~~~~~~v/

 / 1- ~ ~~t J1

 FIGURE 1

 The dependence of &S(t)w is actually only on 1, not on v, and we will say it

 is "the vector w translated distance t in the direction v" (or "along 1"). Note

 that when x = y this is just parallel translation.
 The following lemma is the main control needed in the study of earthquakes

 in Section II.

 LEMMA 1.2. If d(v, v') < e, v, v' E T1H2, and if w E T1H2, then

 i) d(&;v(t)w, 6;v,(t)w) < KtE-;
 ii) d(&S(t)w, w) < Kt

 for all t < T, where K is a constant depending only on T and the distance
 between the basepoints of v and w.

 Proof We may fix w without loss of generality. Now &6;((t)w depends

 differentiably on t and v. Moreover, 6;v(t)w = 6;v,(t)w for all v, v' E T1H2
 when t = 0 and for all t E R when v = v'. The first inequality follows where K

 depends only on T and v (or v'). Since the circle of directions at the basepoint y

 of v is compact, the latter dependence can be reduced to one on y. Since H2 can
 be rotated by isometry, fixing the basepoint x of w, the dependence can further
 be reduced to one on d(x, y).

 The second inequality similarly follows from differentiability. O

 I.B. A geodesic lamination on a hyperbolic surface M is a closed subset

 P c 9t which is the union of geodesics and which is foliated in the following

 sense: There are open sets Ui covering P with continuous maps 4i: P n Ui c
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 240 STEVEN P. KERCKHOFF

 Ui- (0, 1) X Bi C R2 taking e n Ui to horizontal arcs (0,1) X y, y E Bi, in the
 plane such that the overlap maps preserve the horizontal property, i.e.,

 Pi ? 4j- 1(x, y) is of the form (f(x, y), g(y)). The geodesic laminations of interest
 here will also be required to possess a positive Borel measure yt on its local leaf

 space Bi which is invariant under co-ordinate change. Equivalently, ti can be
 defined as a measure on arcs transverse to e which is invariant under projection

 along leaves. Now yt is required to have all of e as support and to be finite on
 compact arcs. The existence of the transverse measure on all of e restricts the

 local behavior in that a local cross-section is either discrete or a Cantor set. A

 lamination will be called discrete when all its local cross-sections are discrete. We

 will drop the distinction in notation between a lamination with transverse

 measure and the measure itself and denote both by ti.
 One example of a geodesic lamination is a simple closed geodesic p. The

 measure ti is just the counting measure on p times a positive real number. The
 closure of an infinite simple geodesic (if it does not asymptotically approach a

 closed geodesic) gives a lamination with Cantor set local cross-sections. The

 transverse measure may be defined as a limit (in the weak sense) as d -s o of
 1/d times the counting measure of segments of length d along a single leaf.

 The transverse measure yt on a lamination induces a Stieltjes measure along
 any arc A transverse to it, defined as the total mass of yt along open sub-arcs. This

 induced measure allows one to integrate functions along A (denoted by fAfdIdL).
 In particular, the integral of the characteristic function of A is just the total mass

 of ti along A. To get a quantity dependent only on the isotopy class of A
 (endpoints fixed) we define the intersection number, i(A, pt), of A with ,t to be

 the infimum of JA' d u over all arcs A' isotopic to A fixing endpoints. Similarly we

 define the intersection number of a simple closed curve 4 with at, i(o, u) to be
 the infimum of f,,, d u over all closed curves O' isotopic to p. It is not hard to see
 that the infimum is realized in each case by the unique geodesic in the isotopy

 class if we use the convention that a subarc of yt has zero intersection number

 with ti.
 Another useful quantity to consider along an arc A is the angle 0 which A

 makes with the leaves of Ai, 0 < ( < 7T, measured counterclockwise from A to ti.
 Assume that A is a geodesic arc transverse to yt and define the total angle as

 JAO di.
 To see that the integral exists, it suffices to show that for any 8 > 0, there is

 an e > 0 such that l@(x) - 0(x')I < 8 if d(x, x') < e and x, x' E A n ,t. Then
 the integral can be estimated uniformly well by its Riemann sums. That ( is
 sufficiently well behaved follows from Lemma 1.1. (Note that 0 is strictly greater

 than zero along A so there is no problem with the discontinuity of 0 at 0.)

 Similarly, the total cosine fAcos 0 d i of A with yt can be defined.
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 THE NIELSEN REALIZATION PROBLEM 241

 The total angle of A with ti divided by the total mass i(A, ti) will be called
 the average angle of A with ti and be denoted by O(A, ,i). The vector vA(tt) in R2
 determined in polar co-ordinates by (i(A, pt), O(A, pt)) will be used to compare

 two laminations A and At'.
 The set of all geodesic laminations with transverse measure (referred to

 simply as laminations from now on) on M will be denoted by 9DTh. Now DIP, is
 given the following topology which can be thought of as a Cl-topology weighted

 by the transverse measure: Given a finite set of open geodesic arcs {Ai), an

 ({Ai), e)-neighborhood of ti consists of all v E 9ThPisuch that IvA(v) - VA,() I < E
 for all i.

 This topology has the following geometric meaning in terms of the lamina-

 tions themselves. Suppose ,i converges to It in Eh. If x E M is a point on a leaf

 of At, then there are points xi E ti such that xi -* x. Conversely if xi E ti is a
 convergent sequence with x E M its limit, then either x E ,I or there is a
 neighborhood U of x such that the mass 1i(A) across any geodesic arc A in U

 goes to zero as i -s o. Similar statements hold for tangent vectors, tangent to yt

 and tii.
 The measure on ti can always be multiplied by a positive scalar which causes

 DIP, to be non-compact. Deleting the zero lamination and dividing out by scalar
 multiplication determines a space E9P of projective classes of geodesic laminations
 which inherits the quotient topology from 9h. E9 is compact; in fact:

 THEOREM A (Thurston [17]). E9P is homeonmrphic to S6g-7 and )Z is
 homeomorphic to R6g -6 (where g = genus of M).

 At first sight it is surprising that 6Th, and E9P are even finite dimensional
 manifolds since there are uncountably many arcs in M. But in Lemma 1.1 we

 have seen that the behavior of Mi at one point approximately determines its
 behavior in a whole neighborhood which in turn controls its behavior for a

 considerable distance along the leaves. In fact, the proof of Theorem A shows

 that the intersection numbers with a finite number of simple closed curves
 provide local co-ordinates for 9h.

 For the subset of 6Th, determined by simple closed geodesics with a
 multiple of the counting measure, it is not hard to see, by cutting M into 2g - 2

 spheres with 3 geodesic boundary components, that a point is determined by
 6g - 6 local parameters (see Fathi et al. [1]). Although these discrete laminations

 are special, it is shown during the proof of Theorem A that, if we denote by S the

 set of isotopy classes of simple closed curves and embed S x R+ in 9TC by
 sending (y, r) to the geodesic isotopic to y with r times the counting measure,
 then

 THEOREM B (Thurston [18]). S x R + is dense in MTE; S is dense in ? .
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 242 STEVEN P. KERCKHOFF

 This theorem allows one to extend ideas that are easily defined for simple

 closed geodesics to the entire space of laminations. (For example the length of a

 geodesic lamination is well-defined; see [17], Chapter 9.) One example of this
 principle is the object of the next section.

 It should be pointed out that although P, and '9 P are defined in terms of a

 specific hyperbolic structure, there is a homeomorphism between 6ThQ(M) and
 9ThC(M'), M, M' e Tg, which can be defined using the circle at infinity of H2.
 The point is that there is a 1 - 1 correspondence between pairs of points on S1

 and geodesics in H2, and that any lift of a map from M to M' to H2 extends to

 SI, the extension depending only on the lift and on M and M'. The map on pairs
 of points on S1 induces one on laminations. (The transverse measure is equiva-
 lent to a measure on pairs of points so that can be carried over also.) The map

 induced on S x R+ is just the identity and in general the corresponding

 laminations are isotopic on the underlying manifold.

 Remark. For the reader familiar with the theory of measured foliations ([1],

 [18]), it should be pointed out that geodesic laminations are the analog of
 measured foliations in the context of hyperbolic geometry and that there is a

 homeomorphism from 9Th6Y, the space of measured foliations, to 9h. (This
 homeomorphism is also defined in terms of S1.) Thus Theorems A and B also
 follow from the comparable theorems about measured foliations.

 Warning. In [17] it is proved only that '9 P is a sphere; its dimension is not
 actually computed. However, the dimension is easily seen to be 6g - 7 by the
 comment above about parametrizing S X R+ by 6g - 6 parameters or by, in the
 terminology of [17], computing the number of independent parameters of any
 essentially complete train track.

 Section II

 The deformations studied in this section will be the primary tool in studying

 the length function on Tg. The prototype for this deformation, defined when the
 shearing lamination is a simple closed geodesic, dates back at least to Fenchel

 and Nielsen, but seems not to have been studied in depth until a recent
 rekindling of interest. It was Thurston who first realized that the deformations

 generalized to the form considered here.

 Fix a hyperbolic surface M and choose any simple closed geodesic p on M.
 Cut along Ji to get a (possibly disconnected) surface with geodesic boundary. A
 new hyperbolic manifold Mt is formed by gluing the boundary components back
 with a left twist of distance t; i.e., the two images of any point on p are separated

 by distance t along the image of p in Mt. Notice that the notions of "left" and
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 THE NIELSEN REALIZATION PROBLEM 243

 "right" twists depend only on the orientation of M (no orientation of p is

 necessary). MO is the original manifold and Mt is clearly a homeomorphic
 hyperbolic surface.

 There is a map 't from MO to Mt which is an isometry off 0 but is not
 uniquely defined at p and is discontinuous there. (It is sometimes useful to think

 of a point on p as splitting into two copies of itself, one of which is moved

 distance t, the other fixed.) For the hyperbolic structure of Mt to determine a
 new point in Tg, not just in the moduli space, we require a homotopy class of

 maps from MO to Mt. This is done by requiring that any closed curve y in MO be
 mapped to a curve in Mt homotopic to the curve determined by following rt(y)
 until it hits p, then running along p distance t to the left, then following rt(y),
 and so on. Thus the hyperbolic structure determined by a full left twist is distinct

 from Mo.

 Remark. These deformations can also be described as 1-parameter families

 of amalgamations (HNN constructions or amalgamated free products) of the

 Fuchsian group(s) of the surface(s) with boundary. These are known ([3],
 Chapter 9) to change the lengths of geodesics real analytically. As a result, the

 question of differentiability of the more general deformations to be studied here

 is settled simply by controlling convergence. (See, for example, Corollary 3.4.)

 The twist deformation can be defined for any y E S, t E R+, and M E Tg,
 and, more generally, given any (y, t) E S X R+c c6hE, M E Tg, we define the
 time t twist deformation of M to be the new structure obtained from M by

 twisting left distance ti along y. In other words yt determines the speed of
 twisting. Finally, for any v c 9Th we want to determine a deformation by a
 limiting process, following Thurston.

 Definition. The left earthquake deformation of M at time t determined by v

 is the limit in Tg of the time t twist deformations of M for any sequence (yi, Iti) in
 S x R+ converging to v in 6T E. It will be denoted by &l;(t) (where M is
 understood from the context).

 Since M above is arbitrary, &j(t) can be thought of as a map from Tg to
 itself. Furthermore, we will see below that for any M the sequence of twist maps

 determined by (yi, ti) above converges (in an appropriate sense) so that &JO(t)
 may be thought of as a map determining a new structure for each t. As a result,

 we will speak of left earthquake maps and deformations interchangeably (and

 equivalently) as left earthquakes.
 As in the twist case, an earthquake is an isometry in the complement of v.

 However, if v has no atoms, &S(t) is continuous; the image of a transverse arc
 looks qualitatively like the graph of the Cantor function. The issue of a homotopy
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 244 STEVEN P. KERCKHOFF

 class of maps from M to Mt is settled in this case by choosing the class of &S( t).
 When v has atoms, the same device as before is used to connect disconnected

 curves along the isolated leaves of v.

 Some Terminology. We note that twist deformations (and maps) are earth-

 quakes, but we will save the adjective "twist" for the simple closed curve case.

 To avoid linguistic tedium and absurdity, we will use "to shear" in place of "to

 earthquake" in its various forms (verb, gerund, etc.). The lamination v determin-

 ing the earthquake will be referred to as the "shearing lamination."

 Remark. The definition of earthquakes as limits may seem unnatural at first

 and, indeed, it is possible to define them directly from the shearing laminations v

 themselves by requiring that the "total amount of shearing" along any transverse

 geodesic arc A in M be equal to ti(A, v). However, showing that this rough

 notion can be made precise and well-defined seems to involve approximating the

 Cantor set local cross-sections BA of v by discrete cross-sections and applying
 (locally) the approximation techniques developed below. Thus nothing much

 seems to be gained by this approach, while a few of the proofs are somewhat
 harder with such a direct definition.

 Of course, for the definition above to be of any use, it is necessary to show

 that the limits exist and are independent of the converging sequence. To this

 end, we will need a few lemmas which relate the closeness of simple closed

 curves in DU to the closeness of the effect of shearing along them.

 Definition. If A is a geodesic arc transverse to 'y, jy E S X R+, we will say
 that y and y- are e-close along 8-subarcs of A if there are subarcs Ai, such that

 A = U Ai, whose lengths are bounded by 8 such that EA=livA(y)-VA.(y)I < e.

 For any v e 91ZE and any transverse geodesic arc A and real numbers

 , 8 > 0 there is a neighborhood U of v such that all y, j- e (S x R+) n U are
 e-close along 8-subarcs of A. To control the corresponding time t twist maps, we

 will first replace the leaves of y and jy by a single leaf across each subarc (Lemma
 2.1) so that there is a 1-1 correspondence between leaves of -y and of Yj. The
 desired estimates then follow from Lemma 1.2 and the triangle inequality
 (Lemma 2.2 and Proposition 2.3).

 We will work in the universal cover, H2, where keeping track of the
 homotopy class of a map is easier. Twists along geodesics clearly lift to H2, and
 the same notation is used in this case. For example, if 1 is a geodesic in H2 with a

 transverse measure, &,(t) denotes the time t twist along 1 (which is well-defined
 once a neighborhood of a point not on 1 is fixed).

 Consider the following situation: Let x, y E 12, v e T1H2 based at y, A be
 the geodesic arc from x to y. Suppose y is a discrete lamination in H2 with equal
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 THE NIELSEN REALIZATION PROBLEM 245

 measures on each leaf whose intersections with A are contained in a small subarc

 A. Let 1 be a single geodesic intersecting A with angle equal to the average angle

 O(A, y) and with mass equal to u = i(A, y). Let &4t) and &1(t) be the time t

 twist maps in H2 along -y and 1 respectively which fix a neighborhood of x.

 LEMMA 2.1. With notation as above, if the subarc A has length less than 8,

 then, for any T E R+, the distance between the image vectors &7(t)v and &1(t)v
 in T1H2 is less than KtPu, for all t < T. where K is a constant depending only

 on TfL and d(x, y).

 Proof Consider &,(t) and denote by 11,..., n the images of the leaves of y
 under &7(t). The image of A is a disconnected arc (still denoted A). The point x
 is connected to &Y(t)y by a staircase path, going along one component of A - A
 to 11, along 11 distance nL/n, along A to 12, along 12 distance ,u/n and so on. (See
 Figure 2.) Call the successive components of A, A0, A1,..., An' so that AO
 connects x to 11, Ai connects li to li+1 i = 1,..., n - 1, and An connects In to
 &;Y(t)y. Let the length of Ai be denoted by S.

 Now alter &Y(t) as follows: The shearing along In distance 4/n is replaced
 by shearing along In_ - distance ju/n farther for a total distance of 24L/n. The

 change in & (t)v is less than Kt CA _ _ by Lemmas 1.1 and 1.2. Replacing the
 If ~~~n

 shearing along l -1 by shearing a total distance of 3ki/n along ln -2 changes
 &4t)v by less than Kt 21i Cln - 2. Continuing in this fashion until the map just

 shears distance fL along l1 gives a total change of less than KtC E a -"- i which
 n

 n-1

 is less than K01Au since - < ,u, i < n - 1 and E Sn-i =S2.
 n i=i

 Sy( t ) y

 14

 13

 i ~~~~~~~~~~~~~~12
 M/-n IA11

 (n - 1)[t/n [t/n AA

 FIGURE 2
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 246 STEVEN P. KERCKHOFF

 Note that the constants K from Lemma 1.2 depend on the distance between

 different points in each case, but that the distance between these points is

 bounded in terms of T,4 and d(x, y) so that a single, sufficiently large K will do.
 To complete the proof, we must replace 11 with 1. Since by Lemma 1.1 the

 average angle O(A, y) differs from the angle of intersection of any particular leaf
 with A by at most CS and the points of intersection are within 8 of each other,

 Lemma 1.2 allows us to replace 11 by 1 with a change bounded by K(C + 1)Stli.
 Lemma 2.1 follows by the triangle inequality, if we let K = K(2C + 1) and
 denote K by K. E

 LEMMA 2.2. If x, y, v, and A are as above and if 1 and l are geodesics in H2

 with measures ,u, A; such that I n A =llnA = p, p P x, y and IvX(l)-vX(l)I
 < a, then for any T e R+, d(&1(t)v, &f(t)v) < Kte, for all t < T. where K
 depends only on d(x, y) and Tfi.

 Proof Since IIL - AI < a, we can assume that u = p, with error bounded by
 Kte (Lemma 1.2). Then, if the angle between 1 and 1 at p is 0, 011 < a, so, again
 by Lemma 1.2, d(&1(t)v, &1-(t)v) < Kt0,u < Kte. E

 - In the proof of the proposition below, the effects of two twist maps on a

 fixed v E T1H2 are compared by successively changing the maps across small
 subarcs of an arc A. Control of the error for such a change on a small arc is given

 by the previous two lemmas. However, to use the triangle inequality to control
 the error over all of A, an observation is necessary.

 When a twist map (in H2) is determined by shearing along several geodes-
 ics, the order of shearing is irrelevant; the rest of the geodesics move by isometry.

 Since Lemmas 2.1 and 2.2 are stated for two maps applied to the same tangent
 vector, it is necessary to shear last along the geodesics in the subarc where the

 change is being made. In this way the two maps across all of A differ only at the
 last stage, in the way they move the image of v under the rest of the twists, and

 Lemmas 2.1 and 2.2 apply. But, since v has been moved, the distance between x

 and the basepoint of v will differ in each case. However, a uniform choice of the
 constants in 2.1 and 2.2 is possible since everything takes place in a compact set.
 This having been said, no mention of the validity of the use of the triangle
 inequality or of the choice of constants is made in the proof below.

 PROPOSITION 2.3. Let P e 'lAP, be any lamination (lifted to H2) and let
 x, y E H2, A be the geodesic from x to y, v E T1 H2 be based at y, where x, y do

 not lie on the atomic part of P. Then for any e > 0, T > 0. there is a
 neighborhood U of P in DIPA such that for all y, y- e (S x R+) n U. d(&4(t)v,

 &,(t)v) < Kte, for all t < T. K a constant depending only on d(x, y) and
 Ti(i, A).
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 THE NIELSEN REALIZATION PROBLEM 247

 Proof Choose U such that for any y, yj as above, y and jy are e-close along

 8-subarcs of A, where 8 is chosen so that Si(A, ,u) < a, for all 4 E U. We can
 assume that neither x nor y is on a leaf of y or yj by choosing U small enough that
 the measure across all geodesic arcs in a sufficiently small neighborhood around x

 and y is less than e. (This is possible because v is not atomic at x nor at y.)

 Therefore, these leaves can be ignored and the error incorporated into Kte. As in

 Lemma 2.1, replace y and jy on each subarc of A by single geodesics which pass
 through the same point. By Lemma 2.1 and the triangle inequality, this changes

 &Y(t)v and &M(t)v by less than Ktbi(A, y) and Ktbi(A, y-), respectively, which
 are both less than Kte by the choice of S.

 Denote the new geodesics by 11,. . ., In and 11,..., In respectively. First shear
 along the li according to their measures. If we shear along 11,. . ., i -1 and then
 in is replaced by Ink the change is less than Kten by Lemma 2.2, where en is the
 deviation of -y and jy on the last subarc. Similarly, we can then replace In -1 by
 in -1 and so on until all the li are replaced by 4i The total change is less than
 En Ktei = Kte.

 Letting K = 3K and denoting Kby K complete the proof. E

 To compare the images of a point in Tg under various twist maps, we need a
 notion of an e-neighborhood in Tg. Fix a set of generators pi for 7TM, continu-

 ously choose a representation in PSL(2, R) for each point in Tg and fix v E T1H2.
 An e-neighborhood of M E Tg consists of all M E Tg such that d(4i(v), 4i(v)) < a,
 for all i, where (pi and pi denote the elements in PSL(2, R) corresponding to the
 various generators in the representations of M and M respectively. The induced

 topology is independent of the choices made.

 PROPOSITION 2.4. Given M E 7g, va eAGE R, T > O, 8 > O. there is a

 neighborhood U of p in )A& such that for all y, 7 e (S x R,) n U and every
 fixed t < T, &7(t) and &M(t) are in the same B-neighborhood in Tg.

 Proof Let x be the basepoint of v. Assume x is not on a leaf of v in H2 after

 a small perturbation, if necessary, and lift the twist maps so as to fix a

 neighborhood of x. Connect x to 0i(x) by geodesic arcs Ai, where the Oi are the
 generators of 7T M acting on H2 (and T1H2) and let vi = oi(v). After shearing by
 -y and y-, respectively, Oi will take vi to &;(Y(t)vi and 6;( (t)vi. Choosing e so that
 8 = KeT and choosing U sufficiently small to satisfy Proposition 2.3 for all Ai
 simultaneously, we see that the proposition follows. El

 The following corollaries are immediate:

 COROLLARY 2.5. Left earthquakes along v are well-defined for all v E 1A&E
 and for all time t ER+.
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 248 STEVEN P. KERCKHOFF

 COROLLARY 2.6. The map 9DIE X R+-* Tg which takes (P, t) to the image
 of a base surface M under ;,(t ) is continuous.

 To see that earthquakes $,,(t) are maps as well as curves in Tg, we need to
 see that the twist maps defined by a sequence of simple closed curves converging

 to v in D1E converge. Because v may have an atomic part, where &;,(t) will not
 be defined, the definition of convergence will avoid such points. However, the

 behavior there is controlled by nearby points because of the nature of the maps.

 Again, to keep track of the homotopy class of the maps, we look at the maps
 lifted to H2 and consider a fundamental domain D for the hyperbolic surface.

 Definition. Let v E DIE, and let &y.(t) be a sequence of twist maps,
 E=E S x R +, yi -* v. We say & (t) converges if there are lifts to H2 such that for

 each t and every x E D not on an atomic part of P, &;,i(t)x converges.
 If x is on yi itself for some i, &; (t)x is interpreted as either "copy" of

 &'Yi(t)x. In particular the amount of shearing at x must be small.

 PROPOSITION 2.7. For every v E DIZ1E and any ({yi) E S x R + such that ({yi)
 converges to P, the twist maps & (t) converge.

 Proof. Pick p e P in H12 to be fixed for all i and choose a fundamental
 domain D C H2. Consider x E D not on the atomic part of P. By Proposition 2.3,

 for each x and for all e > 0. there is a neighborhood U of P in 91Z where

 d(&y(t)x, iy~t)x) < KTe, for all t < T. and all y, yj E (S x R+) n U. Conver-
 gence follows. El

 The limit map &,(t) of &7i (t), yi v-* P, will be called the time t earthquake
 map.

 COROLLARY 2.8. $,,(t) is an isometry off i and is continuous off the atomic
 part of P.

 Proof. Around any point x e v there is a neighborhood V which misses v

 and, for any e > 0. there is a neighborhood U of v in D1E where the measure of
 ,u E U across every geodesic arc in V is less than e. Thus the distortion of the

 metric in V becomes arbitrarily small and in the limit &,(t) is an isometry there.
 If x is on the diffuse part of v then, for any e > 0. there is a neighborhood W

 around x, depending on a, where the measure of P across all geodesic arcs in W is

 less than le. For U around P small enough, the measure is less than e for all

 IL E U. Thus, under &;N(t), yi E U n (S X R+), points in W are sheared less than
 Kte by Lemma 1.2 and the triangle inequality, so that continuity follows. El

 Remark. It should be pointed out that for each x E D not on the atomic

 part of P, Yi (t)x converges uniformly for t < T so &;,(t)x is continuous in t. Also
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 THE NIELSEN REALIZATION PROBLEM 249

 if x is on the atomic part, it lies on a simple closed geodesic p (contained in v)

 with measure ,u. Now &,(t) will just be the tni-twist map along 0 in a neighbor-
 hood of p.

 Section III

 In this section we study the geodesic length function, particularly its

 behavior under earthquake deformations. The lengths of a finite number of

 simple closed curves completely determine a hyperbolic surface. Any unbounded

 sequence of points in Tg has the property that some geodesic is becoming
 infinitely long because either some length is becoming infinite or going to zero;

 in the latter case any curve intersecting the short one is becoming infinitely long.

 Therefore, any subset of T1 on which the length of every simple closed geodesic is
 bounded is a bounded subset [1].

 Definition. A collection of simple closed curves y = {yi) is said to fill up
 M2 if, whenever they have the minimal number of pairwise intersections,

 -U yi is a union of disks. Equivalently, for any v E )1Z-O0 i(i, Y = 0
 for some i.

 LEMMA 3.1. If y = (-yi) fills up M2, then the function ls: Tg -* R which
 assigns to a hyperbolic surface the sum of the geodesic lengths of the yi is proper.
 In particular it realizes a minimum in T1.

 Proof. It suffices to show that the set By(K) = (x e TgIly(x) < K) is
 bounded for any constant K. Since y fills up M2, any p E S can be homotoped to

 a curve in U yi which covers no point in U yi more than N times. N depends on
 p but not on x. Therefore l<,(x) < Nly(x) so l,(x) is bounded on Bk for all p E S.

 El

 The relationship between a geodesic curve on the initial surface MO of an
 earthquake path and the corresponding geodesic on Mt is quite complicated even
 in the case of a discrete shearing lamination. However, the first order variation of

 length is easily computed due to the fact that it is not affected by corners

 appearing in the geodesic. (See Lemma 3.2 below.)
 Fix an isotopy class of y E S and consider the time t earthquake along a

 closed geodesic 0. Assume i(o, y) A 0. To measure the length of the geodesic in
 Mt isotopic to -y (call it 'y(t)), look at the pre-image in MO of y(t) under the time t

 earthquake map. It is disconnected at each intersection with 0 into geodesic arcs
 whose endpoints are distance t apart along 0. At time t = 0, it is the geodesic in
 MO, and the arcs move continuously apart as t varies. Since the earthquake map
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 250 STEVEN P. KERCKHOFF

 is an isometry off the lamination, the sum of lengths of these arcs at time t is

 equal to 1(t), the length of 'y(t).

 Look at the universal cover of MO and at a lift of -y (call it -y also). Note that -y

 intersects n lifts of 4 (call them li) at points xi with angle Oi (measured
 counter-clockwise from -y to li). Let i run from 1 to n + 1 with xl identified with

 xn+l by y. Consider any Cl-family 9 of geodesic arcs Ai(t) from li to li+ 1 whose
 time zero position is equal to y and which map to a closed curve isotopic to y in

 Mt. Denote the sum of the lengths of these arcs by lg(t).

 LEMMA 3.2. dig

 dt = Cos Oi.

 Proof The arc Ai(t) is determined by points ai(t) on li and bi+1(t) on li+
 which are parametrized by their directed distance from the initial points xi, xi+ 1.
 The condition that the arcs map to a closed curve in M is equivalent to the

 condition bijl(t) - ai(t) = t. The first derivative of the lengths of the Ai(t)
 da~ db (Tisisa

 at t = 0 is - cos i dt - cos( i+) + 1 .(This is an easy application of the
 first variation formula or can be derived in H2 by differentiating the side-angle

 formula for hyperbolic triangles ([17], Chapter 2).) The lemma follows from

 ____+ = I + 1 and cos(T - =i+ 1) -cos Oi+ 1 dt =1 dt
 dl n

 COROLLARY 3.3. dtY (O) = cos Oi along the earthquake path &;(t), E E S.
 dt

 dl
 COROLLARY 3.4. dt (O) = fIcos 0 dpu along a general earthquake path s,(t),

 u E 'IRE where 0 is the function measuring the angle from y to ,.

 Proof Let 0i E S x R+ be such that 0i -, p in DIE. Denote by Ci(M),
 M E Tg, the total cosine (see Section IB) between 0i and y on M. Corollary 3.3

 says that dt (0) = C,(M) along &,>(t) when S&,(0) = M. Similarly let C(M) =
 fycos 0 dpu be the total cosine between , and y on M. Recall that this integral
 exists (Section IB) because for any e there are sufficiently small subarcs of y such
 that the difference between the average angle and any given angle is less than E.

 It follows that the difference between the integral and its Riemann sum over

 these subarcs is less than i(y, ,U)e. Note that since the angle between two

 geodesics is a continuous function of Tg, C(M) is a continuous function on M.
 By choosing N large enough, the 0i (i > N) can be taken to be e-close to ,u

 on these subarcs. Then ICi(M) - C(M)I, i > N, is less than a constant times e.
 By continuity of angles again, this estimate holds uniformly on compact subsets

 of Tg (with the subarcs smaller and N larger if necessary).
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 THE NIELSEN REALIZATION PROBLEM 251

 If Ci(t) = Cif(&,g(t)) and C(t) = CSE,(t)), we have shown that Ci(t) -C Ct)
 uniformly for 0 < t < T since S&,(t) -SE, (t) uniformly in Tg by Proposition 2.4.
 Therefore fJtCi(s) ds -- JtC(s) ds. If Q(t) denotes l7 along S&,(t), then it follows

 dl
 that li(t) -* IY(t), IY(t) = 1(0) + JtC(s) ds and dt-(t) = C(t). Corollary 3.4 is
 the case where t = 0. 2

 Having computed the first derivative of the length function, one can study

 the variation of this derivative along earthquake paths.

 PROPOSITION 3.5. For every intersection of y E S with ,u E IRE, the angle

 of intersection 0(t) from y to ,u is strictly decreasing as a function of t along the

 earthquake path S,,(t). Equivalently, cos 0(t) is strictly increasing.

 The key point in the proof of Proposition 3.5 is that, although it is difficult

 to describe exactly the position of y(t), it is possible to describe the endpoints on

 S. of any lift of y(t) to H2. Before beginning the proof it is useful to have a
 formula relating endpoints of geodesics and the angle between them.

 Definition. The cross-ratio, x(a, b, c, d), of four points a, b, c, d in the

 extended complex plane C U x is defined to be (a - d)(b - )

 The cross-ratio is invariant under linear fractional transformations. Given

 two intersecting geodesics g1 and g2, translate them so that their point of
 intersection is the origin and their endpoints are +1 and +e4'. respectively.
 Calculation shows that

 (1) X-(1, e - e -1) = cos2( /2)

 where 4 is the angle from g1 to g2.

 Proof of Proposition 3.5. Isolate a point x of intersection between y and ,u

 and choose a lift of it to H12. Denote the leaf through x of the lifted lamination
 ,u by 1 and assume that 1 and x are fixed under all deformations. (In the case

 when ,u is discrete at 1, fix one copy of x.) This can be done by isometries so that

 it does not affect the calculation of angles. Now 0(t) is the angle y(t) makes with

 1 in the universal cover of Mt.

 Although we cannot describe y(t) we can describe a curve in Mt homotopic
 to it. Since Mt is compact, the homotopy moves points at most a bounded
 distance so that such a curve will have the same endpoints as y(t). The image

 y(t) of y(O) under the earthquake map is homotopic to y(t), if, as before, at
 discrete points of ,, where the image of y(O) is disconnected, the two images of
 the point of discontinuity are joined along the leaves of ,u. The relationship
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 252 STEVEN P. KERCKHOFF

 between the endpoints of y(t) and those of y(O) is contained in the following
 lemma:

 LEMMA 3.6. The endpoints of Y(t) are strictly to the left (as viewed from
 the point x) of the endpoints of y(O) for all t > 0.

 The proposition follows immediately from Lemma 3.6 since it implies that

 the cross-ratio X(p1, el(t), e2(t), P2) is strictly decreasing, where pi and ei(t) are
 the endpoints of 1 and y(t) respectively, ordered so that p1, el(t), P2, e2(t) are in

 counter-clockwise order around S.. (Normalize with pi = +1 and compute
 directly.) From (1) it follows that cos2(4(t)/2) is strictly decreasing where 4(t)

 is the angle from p to y(t). Since 0(t) = S7T - (t) and +(t) is strictly increasing,
 0(t) is strictly decreasing as was to be shown.

 Proof of Lemma 3.6. First consider the discrete case, p E S x R+. Then
 y(t) is the union of arcs coming from y(O) under the earthquake map and pieces

 of leaves of p. One such arc AO passes through the point x. If AO is continued to a
 bi-infinite geodesic, its endpoints will be precisely those of y(O). Move along y(t)
 in one direction until coming to the next arc A1. If this arc is continued in the

 forward direction, its endpoint will be strictly to the left of the forward endpoint

 of AO (see Figure 3). This follows from the fact that the angles that A1 and AO
 make with the leaf of ,u joining them are the same so that, were they to intersect
 (even at infinity), they, together with the leaf of ,, would form a triangle whose
 angle sum is at least 7T. This is impossible by the Gauss-Bonnet Theorem.

 o<~~~AO
 OLD ENDPOINTS

 FIGuRE 3

This content downloaded from 
�����������131.114.4.147 on Wed, 17 Apr 2024 13:32:17 +00:00������������ 

All use subject to https://about.jstor.org/terms



 THE NIELSEN REALIZATION PROBLEM 253

 Similarly, the forward endpoint of the next arc, A2, is to the left of the

 forward extension of Al and so on. In fact, at each stage, the entire remaining
 forward piece of y(t) is to the left of the forward extension of Ai. On the other
 hand, this piece of y(t) and the remaining A 's all lie in the half space

 determined by the corresponding leaf Ai. These leaves form a nested set.
 Therefore, the forward endpoints of the A 's converge to the forward endpoint of

 y-(t) which is then seen to be to the left of that of y(O) as claimed. The same
 argument shows that the other endpoint is to the left of that of y(O) also.

 It follows, by taking a limit, that, in the general case, the endpoints of y(t)
 are never to the right of those of y(O), but it is necessary to rule out the

 possibility that one of them is the same. To this end it suffices to estimate the

 change in the cross-ratio caused by shearing across a small interval purely in

 terms of the transverse measure and angles (hence independently of the number

 of leaves). Then the argument goes through in the limit.

 By sending the unit disk to the upper half plane, the endpoints of the

 shearing geodesic 1 to 0 and so, we see that shearing distance t along 1 multiplies

 the quantity (l/x) - 1 by et where X = (oo, b, c, 0) and b, c are the endpoints
 of a geodesic crossing 1. It follows that there is a constant C6, depending only on

 X (and hence on the angle 0 of intersection), such that shearing distance t
 decreases X by at least Cot for small t. Since nearby leaves li intersect the
 geodesic in almost the same angle as 1 does, their cross-ratios Xi with their
 endpoints will have bounded ratios with X. It follows that shearing a total

 distance t along all of the li's increases X by at least Cot for some new constant Co
 depending only on 0 and the closeness of the li to 1 and not on the number of
 leaves or amount of shearing done on any individual leaf. This completes the

 proof of Lemma 3.6 and Proposition 3.5. E

 Definition. A function f: Tg -- R+ is convex along earthquake paths if for
 any earthquake path &,Xt), t E (0, 1),

 fo S(t) < tfo & (O) + (1- t)f & V(1).

 It is strictly convex if the strict inequality holds.

 THEOREM 1. The geodesic length function, l,, of a simple closed curve y is
 convex along any earthquake path &S(t). It is strictly convex if and only if
 i(y, v) A 0.

 Proof If i(y, v) = 0, ly is a constant which is convex but not strictly convex.
 If i(y, v) A 0, the first derivative of ly along S&(t) is strictly increasing since, by

 Proposition 3.5, each term in the integral expression for the derivative (Corollary

 3.4) is strictly increasing. Thus l,(t) is strictly convex. E
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 Remark. A quick look at the proofs above shows that Proposition 3.5 and

 Theorem 1 are true for any (not necessarily simple) closed curve. Proposition 3.5

 is true for every leaf of a lamination crossing the leaves of v (so is Theorem 1 once

 the length of a lamination is defined). These facts will be used in the appendix.

 The following Earthquake Theorem shows that there are sufficient earth-

 quake paths to make Theorem 1 useful. A proof can be found in the appendix to
 this paper.

 THEOREM 2 (Thurston). For every x, y E Tg there is a unique left earth-
 quake path from x to y.

 Remark. Due to a striking formula of Wolpert [21] for the second order

 variation of the length function under twist maps, an alternative proof of the

 convexity result of this section is now possible. The point is that the second

 derivative is positive along this dense set of earthquake paths and can be

 bounded away from zero to get convexity in the limit. Moreover, the formula is
 linear so that, as in Corollary 3.4, it gives a formula for the second derivative

 along any earthquake path (where a finite sum is replaced by an integral) and

 shows that ly(t) is C2. It is possible to show that Iy(t) is C' directly, but
 formulae for the higher order derivatives seem to be unknown.

 Section IV

 In this section we pull together the results of the previous sections to prove

 the main theorems of this paper. Then we indicate how the proofs can be

 adapted to the case of a general Teichmiiller space.

 THEOREM 3. If a collection of simple, closed curves y fills up M2, then the

 length function ly has a unique minimum in Tg.

 Proof By Lemma 3.1, ,Y attains a minimum in Tg. Suppose there were two
 minima, x and y. By the Earthquake Theorem (Theorem 2) there is an earth-

 quake path from x to y. By Theorem 1, Is is the sum of functions which are
 convex along earthquake paths. Since y fills up M2, at least one of the curves in y

 has non-zero intersection number with the lamination p determining the earth-
 quake path. It follows that at least one of the functions in the sum is strictly

 convex so that l, is strictly convex along the earthquake path from x to y. Thus x
 equals y and the minimum is unique. O

 THEOREM 4. Every finite subgroup G of Modg, acting on Tg, has a fixed
 point.
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 Proof Let y be a collection of simple closed curves which fill up M2. Then

 the orbit Gy of this collection also fills up the surface. Since Gy is G-invariant,

 the length function lGY is G-invariant. By Theorem 3, 1Gl has a unique minimum.
 Since 1GY is G-invariarit, this minimum is a fixed point. El

 The case of a general, finitely generated Fuchsian group r (or, equivalently,

 of a hyperbolic manifold with finitely many geodesic boundary components,

 branch points, and cusps) can be dealt with in precisely the same way as those
 with a closed surface as quotient space once the proper definitions are estab-

 lished.

 The Teichmiiller space Tg n b is the space of hyperbolic structures on a
 surface of genus g with n branch points and cusps and b geodesic boundary

 components of length 1. There are many different such spaces for fixed g, n, b

 depending on the orders P1,... , Pk of the branch points and the number of cusps
 (v = oo in this case). Thus the notation Tg assumes that "n" stands for a
 collection of n integers (some possibly infinite). In each case Tg n, b is an open
 ball of dimension 6g - 6 + 2(b + n). The boundary condition of fixed geodesic
 length is different from the one used in the complex analytic approach but is

 natural in our hyperbolic context.

 We will refer to such hyperbolic surfaces with their singular structures as

 hyperbolic orbifolds, M2 n b following Thurston ([17], Chapter 13). The modular

 group Mod ng b can be defined topologically as the group of diffeomorphisms of
 a surface of genus g with b boundary components which fix n distinguished

 points up to isotopy through maps with the same property. Modg n, b acts on

 Tg n, bas before by pulling back metrics.
 Mg n b is the quotient space of a convex subset of H2 by a Fuchsian group r

 and Tg n'b can be equivalently defined as the space of discrete, faithful represen-
 tations (up to conjugacy) of r in 1(H12) having M2 n as quotient space.

 Modg, n b is then the group of "allowable" outer automorphisms of r acting as
 before on the space of representations. The algebraic criterion for the quotient

 space to be correct and for the automorphisms to be "allowable" (i.e., induced

 from a homeomorphism of M2 n, b) is essentially that the characterization of
 elements as hyperbolic, parabolic, elliptic of order n, and of boundary elements

 be preserved. Further restrictions are necessary when b A 0. For details on the
 algebraic definitions of allowable representations and automorphisms as well as

 on the equivalence of the two definitions of Tgnb and Modg, n, b see [4].
 The correct space, 9)hO, of measured laminations in this case consists of

 those on the hyperbolic orbifold which do not intersect the distinguished set
 (i.e., the singular set and the boundary). The space is closed because there are
 neighborhoods of the distinguished set with the property that any simple
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 geodesic entering the neighborhood intersects the distinguished set. This can be

 proved fairly easily by looking at local models of neighborhoods of fixed sets of

 the distinguished elements. 91A0 is the space of measured laminations with
 compact support in the hyperbolic orbifold minus the distinguished set and is a

 Euclidean space of dimension 6g - 6 + 2(b + n) (see [17], Chapter 9). Simple

 closed curves are again dense in the corresponding projective space.

 Left earthquakes are defined as before, and, since the laminations do not
 intersect the distinguished set, they preserve the orbifold structure. By the same

 proof as before one can show that every pair of points in Tg7n b can be connected
 by a unique left earthquake. Simple closed curves {yi) fill up Mg2 b if every
 lamination intersects one of them or, equivalently, if their complement consists of

 disks, punctured disks with a single distinguished point or annuli with a single

 distinguished boundary component. The proofs of the paper then go through

 without modification.

 Remark. It should be pointed out that the Realization Problem was previ-

 ously known to be solved in the case n + b > 0 (see Zieschang [22] and

 Neumann-Raymond [13]). Furthermore, this case follows easily from the results

 of this paper (n + b = 0) by topological considerations (compare Theorem 6

 below). However, the point of the previous discussion was to indicate that the
 methods (hence the geometric information about lengths of geodesics) carry over

 to this case as well.

 The case of a non-orientable surface cannot be proved directly in the same

 way because left earthquakes cannot be defined (since " left" cannot be defined).

 However, the theorems above which are proved for oriented surfaces allow

 orientation-reversing diffeomorphisms. A finite group G of isotopy classes of

 diffeomorphisms of a non-orientable surface can be lifted to a (larger) finite

 group H of isotopy classes of diffeomorphisms of the oriented double cover.

 H contains a new element of order two which commutes (in the modular

 group) with the rest of the group. Since H can be realized as a group H of
 isometries, the isometry T representing this element commutes with all of H.
 Therefore H descends to a group of isometries isomorphic to G acting on the
 quotient space under the action of T which is necessarily the original non-orient-

 able surface.

 Section V

 This section is intended to point out some fairly immediate consequences or
 restatements of Theorem 4.
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 THE NIELSEN REALIZATION PROBLEM 257

 THEOREM 5. Every finite subgroup G of Modg can be realized as a group of
 isometrics of some hyperbolic structure on a surface of genus g.

 Proof: By Theorem 4, G has a fixed point, M, when acting on Tg. It follows
 that, for each g e G, there is an isometry of M to itself in the isotopy class of g.
 The important point is that this isometry is unique because if there were two,

 then, by composing one with the inverse of the other, we could find an isometry

 of M isotopic to the identity but not equal to the identity. Such an isometry

 would have a lift to H12 which would commute with every element of 7r1M (acting

 on H12). This would imply that every element of 7r1M had the same endpoints,
 which is clearly absurd.

 Similarly, the group of isometries H C I(M) of M generated by choosing the

 unique isometry in each class of g e G is isomorphic to G because any word in H

 which represents the trivial word in G is an isometry isotopic to the identity,

 hence equal to the identity. El

 For any manifold M there is a map 'n: Diff(M) -- go Diff(M) and a standard
 question in topology is whether or not it is possible to lift go Diff(M) back into
 Diff(M), i.e., to choose a representative in Diff(M) for each element in 0o Diff(M)
 so that any word in the lifted elements isotopic to the identity equals the identity.

 For example, this is made possible when M = T2 by choosing the unique linear

 map in each class. Theorem 5 implies that the lifting problem is solvable for
 finite subgroups G when M is a surface of arbitrary genus. The general case is

 still far from being understood.

 THEOREM 6. The lifting problem for 'n: Diff(M) --ro Diff(M) is solvable
 for finite G C 7ro Diff(M) when M is a surface of genus g.

 It should be pointed out that, although Theorem 6 looks somewhat weaker

 than Theorem 5, it is, in fact, equivalent to it. For if we have a finite group of
 diffeomorphisms we can take any metric on M and average it over G to get an

 invariant metric. In particular, G acts as a group of conformal maps of the

 averaged Riemann surface. Conformal maps of the unit disk are just linear
 fractional transformations which in turn are precisely the isometries of H2.

 Similarly there is a unique hyperbolic surface in each conformal class so that G
 can be made to act by isometries on the hyperbolic surface corresponding to the

 averaged surface.

 Finally, since the modular group has a purely group theoretic definition, one

 expects a group theoretic version of Theorem 4. We define a Fuchsian group to

 be a finitely generated, discrete subgroup F of I(H 2) which is not cyclic. The
 quotient space may have finite order fixed points, cusps, and boundary. (It is an

 orbifold, in the terminology of the previous section.) In these cases, the automor-
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 phism group of F, Aut F, is defined as the group of allowable automorphisms as
 discussed in the previous section. It is well-known that Fuchsian groups have
 trivial center (otherwise the whole group would have a common fixed point and
 thus be cyclic). In fact the centralizer of every element is cyclic.

 Given a finite extension r of a group F by a finite group G,

 1 --.r --.r - G ---1,3

 there is a homomorphism from r to Aut(F) defined by sending y to the
 automorphism of F induced by conjugation by y. It is not hard to see that this
 descends to a homomorphism A: G -- Out(F). Conversely, given a homomor-
 phism p from G to Out(F), there is a unique group extension inducing p if the
 center of F is trivial. (The general theory here is that the obstruction to existence

 of such an extension lies in H3(G, Z(F)) and uniqueness is measured by

 H2(G, Z(F)), where Z(F) is the center of F. See, e.g. [10].) We emphasize that
 in our case only allowable automorphism are considered.

 Then Theorem 4 (actually its generalization as discussed in the previous

 section) can be restated as follows:

 THEOREM 7. An allowable extension r of a Fuchsian group by a finite
 group G is again a Fuchsian group if and only if the induced homomorphism

 0: G -- Out(F) is injective

 Proof If p is injective, then G can be thought of as a finite subgroup of

 Out(F) and thus, by Theorem 5, can be realized as a group of isometries acting
 on H2/F = M. Hence r is isomorphic to the Fuchsian group associated to the
 quotient space M/G.

 If p is not injective, it is straightforward to show that some element of r has
 centralizer which is not cyclic. This is impossible in a Fuchsian group. El

 Remark. Finite extensions of 2-dimensional Euclidean and spherical groups

 have been understood for some time so that Theorem 7 can be generalized to a

 theorem about all 2-dimensional geometric groups using known results (see [20]).

 A similar, argument can be used to conclude some new results about
 compact 3-dimensional Seifert fiber spaces M3 (see [5] or [16] for a detailed

 description of these spaces). These manifolds are the union of circles which are
 the fibers of a "fibration" with finitely many "singular" fibers over a 2-manifold.

 A regular fiber generates a normal cyclic subgroup N of 7r1M3 and the quotient

 group 7T1M3/N F F is a 2-dimensional geometric group (i.e., the fundamental
 group of a 2-dimensional orbifold). When F is hyperbolic (hence a Fuchsian
 group) we will say that M3 is of hyperbolic type. In this case N - Z is a
 characteristic subgroup of 7T1M3.
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 THE NIELSEN REALIZATION PROBLEM 259

 THEOREM 8. Any 3-manifold M3 finitely covered by a Seifert fiber space M'
 of hyperbolic type is homotopy equivalent to a Seifert fiber space (also of

 hyperbolic type).

 Proof. The proof is essentially group theoretic diagram chasing, using

 Theorem 7, and the fact that N is characteristic.

 We can assume that 7r1M3 is a normal subgroup of giM3 of finite index by
 looking at the intersection of the conjugates of 7r1M3. The corresponding cover-
 ing space is again a Seifert fiber space since the pre-images of the fibers of M3

 are again circles. Denote 7r1M3 by 'T and g71M3 by 'if. The hypotheses imply the
 existence of the following diagram:

 1

 z

 1 - r -r G 1

 1

 where F is Fuchsian and G is finite.

 G acts by outer automorphism on -r. Since N - Z is a characteristic

 subgroup, the action descends to an action on 7r/Z F F which gives rise to a

 short exact sequence:

 1 yrt~G -* 1

 where -f maps onto r with kernel Z. Assume that G acts on F with trivial kernel.
 Then, by Theorem 7, F is again Fuchsian. Thus 'if is an infinite cyclic extension
 of a Fuchsian group and so is isomorphic to the fundamental group of a Seifert
 fiber space of hyperbolic type. Since M3 is a K( i, 1) group, it is homotopy

 equivalent to such a fiber space.
 In the case when the kernel K of the action of G on F is non-trivial, we look

 at the covering space M whose fundamental group r is a normal subgroup of iF
 with quotient group G' = G/K. As above, r maps onto f which fits into the
 short exact sequence:

 1~~~~ -)-r 1.

 Since K acts trivially on F and the center of F is trivial, f I F X K. Then r
 maps onto F with kernel F giving the diagram below (without the dotted arrows).
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 Standard diagram chasing allows the completion of the diagram.

 1 1 1

 1 -r '7 - o 'r - - - K -~ 1 1 Z~ ..- ....-> F -.. .. 1

 1 1

 Since 4r is torsion free (M 3 is a K(4T, 1)), F is a finite, torsion-free extension

 of Z and hence equal to Z. (Hence K is cyclic and the map Z -- F is just z -) kz
 for some k C Z. This can be interpreted geometrically as the regular fibers of M3

 being wrapped k times around the "fiber" of M3 (if M3 is Seifert fibered).) It
 follows that M3 is homotopy equivalent to a Seifert fiber space. Using the first

 argument for G' acting on M 3, we conclude that M 3 is also. [

 Remark. For sufficiently large 3-manifolds, homotopy equivalence (pre-

 serving the peripheral structure, if the boundary is non-empty) implies homeo-

 morphism, so that if M 3 is sufficiently large, it is homeomorphic to a Seifert fiber

 space. The case when M 3 is sufficiently large has been known for some time.

 (See [6], [19].)

 Remark. Quite recently Peter Scott [16] has shown that for Seifert fiber

 spaces with infinite sr,, homotopy equivalence implies homeomorphism so that
 the M 3 above are actually homeomorphic to Seifert fiber spaces in general.

 Finally, it should be pointed out that an independent proof of the fact that
 3-manifolds finitely covered by Seifert fiber spaces of hyperbolic type are again

 Seifert fibered would give another solution to the Nielsen problem. Briefly, the

 argument is that, since Modg acts on the circle at infinity of H2, it acts (up to a

 choice of lifting) on the set of ordered, distinct triples, 0, of points on S.. Now 0
 is identified with T1(H2) (actually two copies of it), 0/F is identified with
 T1(M2), and the action of Modg is well-defined on 0/F. Any finite G C Modg
 acts on o/r and the action is free by the Nielsen problem for cyclic groups.
 Thus G \ 0/F is finitely covered by T1(M2) which is Seifert fibered. The
 extension of F by G is Fuchsian if and only if G \ 0/F is again Seifert fibered.
 In fact, the quotient 3-manifold is the unit tangent bundle of the quotient space
 M2/G.
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 THE NIELSEN REALIZATION PROBLEM 261

 The argument above was pointed out to the author by Thurston, but seems

 to have been known before. (However, a precise origin was never determined.) It

 has been independently discovered more recently by Neumann and Raymond

 [13].

 Appendix

 In order for the convexity result of Section III to imply the existence of a

 unique minimum, it is necessary to connect every two points by an earthquake
 path. This fact is contained in the theorem below, due to Thurston, which says

 that there is a unique such path from x to y in Tg if one considers only left

 earthquakes. This theorem is a generalization of the statement that there is a

 unique "left" horocycle from x to y in H2 (which is equal to T1). Note that in
 both cases the relation is not symmetric with respect to x and y.

 The following proof is the same in outline, if not in detail, as that given by

 Thurston in a course at Princeton University during 1976-7. Since no written

 proof exists, the author feels obliged to prove it here.

 THEOREM 2 (Thurston). For every x, y E Tg there is a unique left earth-

 quake from x to y.

 Proof The idea of the proof is to fix a point x in Tg and consider the

 earthquake "exponential" map from x, &x: 6XE Tg which sends Mi to the image
 of x under the time 1 earthquake map corresponding to [t. For any x, &x will be
 shown to be a homeomorphism which clearly implies the theorem.

 Since our study of &x concentrates on the behavior of the 1-parameter
 subsets of 6RE in a fixed projective class, it is somewhat easier to pick one,
 element from each projective class in a continuous fashion, identify this "section"

 with qYe, and think of 6)RA parametrized (in "polar co-ordinates") by ? E and a
 time co-ordinate t E [0, oo). Now x is the time zero image of every lamination

 and the image of Mi X [0, so), Mi E ?C, is the infinite earthquake path from x
 corresponding to ,u, which we will call the ray in the direction ,u. An example of

 such a section would be the subset of laminations whose length on x is 1, but any

 section will do. All laminations are assumed to be in this subset, denoted by ft,
 unless stated otherwise.

 Since both 9R.fC and Tg are homeomorphic to open 6g - 6 dimensional balls,
 it suffices, by invariance of domain, to show that &x is continuous, proper and
 1 - 1. That Sx is continuous is the content of Corollary 2.6.

 Recall that for any finite set y = { yi) of simple closed curves filling up M the
 length function Iy is proper. Thus for any such set of curves and any compact set
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 262 STEVEN P. KERCKHOFF

 C in Tg there is a constant K such that C is contained in the compact set BK(x) of

 all points y in Tg for which Iyi(y) - 1i(x) < K for all yi E y. To show that &X is
 proper it suffices to show that x-7l(BK(x)) is compact for all K.

 Clearly along any ray in the direction ,u, such that i(Mi, yi) - 0, l7i becomes
 arbitrarily long and, since the derivative of lYi is strictly increasing, once the ray
 leaves BK' it stays outside it. Since, for every ,u, i(,t, yi) - 0 for some i, every ray
 leaves BK eventually. Since Cie is compact and &x is continuous, the time of
 departure is uniformly bounded for all Mt. Thus 7x- '(BK(X)) is compact.

 To prove that &x is 1- 1, first note that the ray in the direction of [i is
 embedded since for any y E S such that i(y, ,u) - 0, the quantity Jycos 0 di is an
 invariant of the surface and is strictly increasing along the ray. To see that two

 different rays [i and P do not intersect requires two subcases.
 In the case i(ti, P) - 0 the average cosine of the angle 0 from [L to P,

 JJMCOS 0 d i X d P, is strictly increasing along the ray in the direction P since
 each term is strictly increasing. However, it is strictly decreasing along the ray [L.

 This follows from the facts that the angle T from P to 1i is 7T - 0 (so that
 cos T = - cos ) and that JJMCOS TdM X dp is strictly increasing along i. Thus
 the- rays are disjoint except at x.

 In the case when i(ti, P) = 0 we can assume, by adding leaves with weight
 zero, that ,u and P have the same leaves with different transverse measures. The
 idea in this case is to distinguish the rays by the length function of closed curves

 which are very nearly tangent (0 - 0) to [i (and hence to P) and which therefore
 have first derivatives very near their intersection numbers with [L and P.

 Suppose that 6 (t) = &P(s) for s, t - 0. By multiplying the measure of P by
 a constant, we can assume that s = t. Let p be a (not necessarily simple) closed

 geodesic such that

 (1) 1 > cos0 > 1-e

 for all angles of intersection of p with ,[ (and P). Since

 dt= jcos 0dM and += Jcos 0dp

 it follows that

 si(p, P)(1 -E) < ALl1, < si(p, zP) and ti(p, [t)(1 - E) < Atl < ti(p, [)

 for all s, t where A,14, and Atl1,, are the changes in 14, along &P and 6; at times s
 and t respectively. Since A, 1, = At1,, when &,(s) = &P(t), this and t = s imply
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 THE NIELSEN REALIZATION PROBLEM 263

 that 1 - e < i(, i') <1 _ for any such 0. Below it is shown that for any e
 sufficiently small there always exists a p satisfying (1) such that

 (2) i(p, A) 1> -

 implying a contradiction. Therefore, it will follow that S&(s) A &;,(t) when
 s, t A 0 as claimed.

 First, suppose that ,u and v consist of only closed curves. Take any 4
 satisfying (2) for some small e (which exists since ,u A v) and consider the

 geodesic isotopic to the image of 4 under (left-handed) Dehn twists around each

 of the curves in ,u. If the twists are of a sufficiently high order, then (1) will be

 satisfied. Since the intersection numbers remain unchanged, this is the required
 geodesic 4.

 Now assume that ,u has no closed leaves. Let A be a small transverse

 geodesic arc whose endpoints, el, e2, are in the same connected component of ,u
 such that i(A, ,i) and i(A, v) satisfy (2). Orient A so that it goes from el to e2
 and let 1 be the portion of the leaf of ,u leaving from e2 to the left as viewed along

 A. We will see below that el is the limit of points of positive intersection of 1 with
 A (where " positive" means crossing from right to left).

 If we assume that el is such a limit point, it is possible to go along 1 until it
 intersects A positively very close to el (at p, say). The geodesic 4 from el to itself,
 homotopic to the path from el to e2 along A, along 1 to p and back to el along A,
 will have intersection numbers with ,t and v approximately equal to i(A, ji) and

 i(A, v) respectively, the error depending only on how close p is to el. The
 geodesic 4 is very nearly tangent to ,4, but probably has a corner at el. The angle,
 however, is small and 1 is long so the unique closed geodesic 4 homotopic to 4
 will be close to it and hence also very nearly tangent to ,u. The intersection

 numbers with ,u and v are the same as those of 4.

 By choice of A sufficiently small and 1 sufficiently long, 4 can be made to
 satisfy (1) for as small an e as desired. To see that A can be chosen arbitrarily

 small, note that if it is subdivided, at least one sub-interval still satisfies (2) with
 the same value of e.

 To see that 1 can be chosen arbitrarily long and p arbitrarily close to el, it is
 necessary to show that el is, in fact, a limit of positive intersections of A with 1. It

 is clearly a limit of positive and negative intersections since el and e2 are in the
 same connected component. (Strictly speaking, el could be the lower boundary
 point of an interval in the Cantor set cross-section and hence approached only

 from below where the leaf through e2 fails to hit A. In this case, replace el with
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 264 STEVEN P. KERCKHOFF

 the upper boundary point of the interval without altering the intersection
 number.)

 Suppose there is some point of negative intersection, since otherwise we are

 done. If any point of positive (resp. negative) intersection is the limit of points of
 negative (resp. positive) intersection, then every point of intersection is the limit

 of points of intersection of the opposite sign. (Just follow 1 from one point to the

 other; a small neighborhood of leaves of ,u follows the same path.) In this case e
 is the limit of positive intersections as claimed.

 If no point is the limit of intersections of opposite sign, there are sub-inter-
 vals of positive and negative intersections. Replacing A with any such sub-inter-

 val satisfying (2), we have an interval with the required properties.

 In the general case, when , has both closed and non-closed leaves, it may be
 necessary both to take high order Dehn twists around closed leaves and to drag a

 small transverse arc along an infinite leaf. The existence of a closed curve (
 satisfying (1) and (2) follows as before.

 This completes the proof of Theorem 2. [

 STANFORD UNIVERSITY, STANFORD, CALIFORNIA
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