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Preface

The goal of this book is to present several central topics in Geometric Group
Theory, primarily related to the large scale geometry of infinite groups and of the
spaces on which such groups act, and to illustrate them with fundamental theo-
rems such as Gromov’s Theorem on groups of polynomial growth, Tits’ Alternative
Theorem, Mostow’s Rigidity Theorem, Stallings’ theorem on ends of groups, theo-
rems of Tukia and Schwartz on quasiisometric rigidity for lattices in real-hyperbolic
spaces, etc. We give essentially self-contained proofs of all the above mentioned re-
sults, and we use the opportunity to describe several powerful tools/toolkits of
Geometric Group Theory, such as coarse topology, ultralimits and quasiconformal
mappings. We also discuss three classes of groups central in Geometric Group
Theory: Amenable groups, hyperbolic groups, and groups with Property (T).

The key idea in Geometric Group Theory is to study groups by endowing them
with a metric and treating them as geometric objects. This can be done for groups
that are finitely generated, i.e. that can be reconstructed from a finite subset,
via multiplication and inversion. Many groups naturally appearing in topology,
geometry and algebra (e.g. fundamental groups of manifolds, groups of matrices
with integer coefficients) are finitely generated. Given a finite generating set S of
a group G, one can define a metric on G by constructing a connected graph, the
Cayley graph of G, with G serving as set of vertices, and oriented edges joining
elements in G that differ by a right multiplication with a generator s from S, and
labeled by s. A Cayley graph G, as any other connected graph, admits a natural
metric invariant under automorphisms of G: Edges are assumed to be of length
one, and the distance between two points is the length of the shortest path in
the graph joining these points (see Section 2.3). The restriction of this metric
to the vertex set G is called the word metric distg on the group G. The first
obstacle to “geometrizing” groups in this fashion is the fact that a Cayley graph
depends not only on the group but also on a particular choice of finite generating
set. Cayley graphs associated with different generating sets are not isometric but
merely quasiisometric.

Another typical situation in which a group G is naturally endowed with a
(pseudo-)metric is when G acts on a metric space X: In this case the group G
maps to X wvia the orbit map g — gx. The pull-back of the metric to G is then
a pseudo-metric on G. If G acts on X isometrically, then the resulting pseudo-
metric on G is G-invariant. If, furthermore, the space X is proper and geodesic
and the action of G is geometric (i.e. properly discontinuous and cocompact), then
G is finitely generated and the resulting (pseudo-)metric is quasiisometric to word
metrics on G (Theorem 8.37). For example, if a group G is the fundamental group

of a closed Riemannian manifold M, the action of G on the universal cover M of
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M satisfies all these properties. The second class of examples of isometric actions
(whose origin lies in functional analysis and representation theory) comes from
isometric actions of a group G on a Hilbert space. The square of the corresponding
pull-back (pseudo-)metric on G is known in the literature as a conditionally negative
semidefinite kernel. In this case, if the group is not virtually abelian the action
cannot be geometric. (Here and in what follows, when we say that a group has a
certain property virtually we mean that it has a finite-index subgroup with that
property.) On the other hand, the mere existence of a proper action of a group G
on a Hilbert space H (i.e. an action so that, as g € G escapes every compact, the
norm ||gv|| diverges to infinity, where v is any vector in H), equivalently the mere
existence of a conditionally negative semidefinite kernel on G that is proper as a
topological map, has many interesting implications, detailed in Chapter 19.

In the setting of the geometric view of groups, the following questions become
fundamental:

QUESTIONS. (A) If G and G’ are quasiisometric groups, to what extent
do G and G’ share the same algebraic properties?

(B) If a group G is quasiisometric to a metric space X, what geometric prop-
erties (or structures) on X translate to interesting algebraic properties

of G?

Addressing these questions is the primary focus of this book. Several striking
results (like Gromov’s Polynomial Growth Theorem) state that certain algebraic
properties of a group can be reconstructed from its loose geometric features, and
in particular must be shared by quasiisometric groups.

Closely connected to these considerations are two foundational problems which
appeared in different contexts, but both render the same sense of existence of a
“demarcation line” dividing the class of infinite groups into “abelian-like” groups
and “free-like” groups. The invariants used to draw the line are quite different
(existence of a finitely-additive invariant measure in one case and behavior of the
growth function in the other); nevertheless, the two problems/questions and the
classification results that grew out of these questions, have much in common.

The first of these questions was inspired by work investigating the existence
of various types of group-invariant measures, that originally appeared in the con-
text of Euclidean spaces. Namely, the Banach-Tarski paradoz (see Chapter 17),
while denying the existence of such measures on the Euclidean space, inspired John
von Neumann to formulate two important concepts: That of amenable groups and
that of paradozical decompositions and groups [vIN28|. In an attempt to connect
amenability to the algebraic properties of a group, von Neumann made the observa-
tion, in the same paper, that the existence of a free subgroup excludes amenability.
Mahlon Day (in [Day50] and [Day57]) extended von Neumann’s work, introduced
the terminology amenable groups, defined the class of elementary amenable groups
and proved several foundational results about amenable and elementary amenable
groups. In [Day57, p. 520] he also noted®:

1Contrary to the common belief, Day neither formulated a conjecture about this issue nor
attributed the problem to von Neumann.



e It is not known whether the class of elementary amenable groups equals
the class of amenable groups and whether the class of amenable groups co-
incides with the class of groups containing no free non-abelian subgroups.

This observation later became commonly known as the von Neumann-Day
problem (or conjecture):

QUESTION (The von Neumann-Day problem). Is non-amenability of a group
equivalent to the existence of a free non-abelian subgroup?

The second problem appeared in the context of Riemannian geometry, in con-
nection to attempts to relate, for a compact Riemannian manifold M, the geo-
metric features of its universal cover M to the behavior of its fundamental group
G = m(M). Two of the most basic objects in Riemannian geometry are the vol-
ume and the volume growth rate. The notion of volume growth extends naturally
to discrete metric spaces, such as finitely generated groups. The growth function of
a finitely generated group G (with a fixed finite generating set .S) is the cardinality
&(n) of the ball of radius n in the metric space (G,dists). While the function
®(n) depends on the choice of the finite generating set S, the growth rate of &(n)
is independent of S. In particular, one can speak of groups of linear, polynomial,
exponential growth, etc. More importantly, the growth rate is preserved by quasi-
isometries, which allovf@ to establish a close connection between the Riemannian
growth of a manifold M as above, and the growth of G = w1 (M).

One can easily see that every abelian group has polynomial growth. It is a
more difficult theorem (proven independently by Hyman Bass [Bas72| and Yves
Guivarc’h [Gui70, Gui73]) that all nilpotent groups also have polynomial growth.
We provide a proof of this result in Section 14.2. In this context, John Milnor
[Mil68c| and Joe Wolf [Wol68| asked the following question:

QUESTION. Is it true that the growth of each finitely generated group is either
polynomial (i.e. &(n) < Cn? for some fized C' and d) or exponential (i.e. &(n) >
Ca™ for some fized a > 1 and C >0)?

Note that Milnor stated the problem in the form of a question, not a conjec-
ture, however, he conjectured in [Mil68c| that each group of polynomial growth is
virtually nilpotent.

The answer to the question is positive for solvable groups: This is the Milnor—
Wolf Theorem, which moreover states that solvable groups of polynomial growth are
virtually nilpotent, see Theorem 14.37 in this book (the theorem is a combination
of results due to Milnor and Wolf). This theorem still holds for the larger class
of elementary amenable groups (see Theorem 18.58); moreover, such groups with
non-polynomial growth must contain a free non-abelian subsemigroup.

The proof of the Milnor—Wolf Theorem essentially consists of a careful exam-
ination of increasing/decreasing sequences of subgroups in nilpotent and solvable
groups. Along the way, one discovers other features that nilpotent groups share
with abelian groups, but not with solvable groups. For instance, in a nilpotent
group all finite subgroups are contained in a maximal finite subgroup, while solvable
groups may contain infinite strictly increasing sequences of finite subgroups. Fur-
thermore, all subgroups of a nilpotent group are finitely generated, but this is no
longer true for solvable groups. One step further into the study of a finitely gener-
ated subgroup H in a group G is to compare a word metric disty on the subgroup
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H to the restriction to H of a word metric dists on the ambient group G. With an
appropriate choice of generating sets, the inequality distg < disty is immediate:
All the paths in H joining h,h’ € H are also paths in G, but there might be some
other, shorter paths in G joining h, h’. The problem is to find an upper bound on
disty in terms of distg. If G is abelian, the upper bound is linear as a function of
distg. If disty is bounded by a polynomial in distg, then the subgroup H is said
to be polynomially distorted in G, while if disty is approximately exp(Adistg) for
some A > 0, the subgroup H is said to be exponentially distorted. It turns out that
all subgroups in a nilpotent group are polynomially distorted, while some solvable
groups contain finitely generated subgroups with exponential distortion.

Both the von Neumann-Day and the Milnor-Wolf questions were answered in
the affirmative for linear groups by Jacques Tits:

THEOREM (Tits’ Alternative). Let F' be a field of zero characteristic and let T
be a subgroup of GL(n, F'). Then either T' is virtually solvable or T contains a free
nonabelian subgroup.

We prove Tits’ Alternative in Chapter 15. Note that this alternative also holds
for fields of positive characteristic, provided that I" is finitely generated.

There are other classes of groups in which both the von Neumann-Day and the
Milnor-Wolf questions have positive answers, they include: Subgroups of Gromov—
hyperbolic groups (|[Gro87, §8.2.F|, [GAIH90, Chapter 8]), fundamental groups
of closed Riemannian manifolds of nonpositive curvature [Bal95], subgroups of the
mapping class groups of surfaces [Iva92], and of the groups of outer automorphisms
of free groups [BFH00, BFHO5].

The von Neumann-Day question in general has a negative answer: The first
counterexamples were given by A. Ol'shanskil in [OI'80]. In [Ady82] it was shown
that the free Burnside groups B(n,m) with n > 2 and m > 665, m odd, are also
counterexamples. The first finitely presented counterexamples were constructed by
A. Ol'shanskii and M. Sapir in [0S02]. Y. Lodha and J.T. Moore later provided,
in [LM16], another finitely presented counterexample, a subgroup of the group of
piecewise projective homeomorphisms of the real projective line, subgroup which
is torsion free (unlike the previous counterexamples, based precisely on the exis-
tence of a large torsion), and has an explicit presentation with three generators
and nine relators. These papers have lead to the development of certain tech-
niques of constructing “infinite finitely generated monsters”. While the negation of
amenability (i.e. the paradoxical behavior) is, thus, still not completely understood
algebraically, several stronger properties implying nonamenability were introduced,
among which are various fixed-point properties, most importantly Kazhdan’s Prop-
erty (T) (Chapter 19). Remarkably, amenability (hence paradoxical behavior) is
a quasiisometry invariant, while Property (T) is not.

The Milnor-Wolf question, in full generality, likewise has a negative answer:
The first groups of intermediate growth, i.e. growth which is super-polynomial but
subexponential, were constructed by Rostislav Grigorchuk. Moreover, he proved
the following;:

THEOREM (Grigorchuk’s Subexponential Growth theorem). Let f(n) be an
arbitrary sub-ezponential function larger than 2V™. Then there exists a finitely
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generated group T with subexponential growth function &(n) such that:
f(n) < &(n)
for infinitely many n € N.

Later on, Anna Erschler [Ers04] adapted Grigorchuk’s arguments to improve
the above result with the inequality f(n) < ®(n) for all but finitely many n. In
the above examples, the exact growth function was unknown. However, Laurent
Bartholdi and Anna Erschler [BE12] constructed examples of groups of intermedi-
ate growth, where they actually compute &(n), up to an appropriate equivalence
relation. Note, however, that the Milnor—-Wolf Problem is still open for finitely
presented groups.

On the other hand, Mikhael Gromov proved an even more striking result:

THEOREM (Gromov’s Polynomial Growth Theorem, [Gro81al). Every finitely
generated group of polynomial growth is virtually nilpotent.

This is a typical example of an algebraic property that may be recognized via
a, seemingly, weak geometric information. A corollary of Gromov’s theorem is
quasiisometric rigidity for virtually nilpotent groups:

COROLLARY. Suppose that G is a group quasiisometric to a nilpotent group.
Then G itself is virtually nilpotent.

Gromov’s theorem and its corollary will be proven in Chapter 16. Since the
first version of this book was written, Bruce Kleiner [Klel0] and, later, Narutaka
Ozawa [Ozal5]| gave completely different (and much shorter) proofs of Gromov’s
polynomial growth theorem, using harmonic functions on graphs (Kleiner) and
functional-analytic tools (Ozawa). Both proofs still require the Tits’ Alternative.
Kleiner’s techniques provided the starting point for Y. Shalom and T. Tao, who
proved the following effective version of Gromov’s Theorem [ST10]:

THEOREM (Shalom—Tao Effective Polynomial Growth Theorem). There exists
a constant C such that for any finitely generated group G and d > 0, if for some
R > exp (eXp (C’dc)), the ball of radius R in G has at most R? elements, then G

has a finite index nilpotent subgroup of class less than C?.

It is also possible to prove Gromov’s Theorem without using the Tits alterna-
tive. Indeed, the proofs of either Gromov, Kleiner or Ozawa allow to restrict to the
case of linear groups, and from there two different approaches are possible.

The first one is to use the well known remark that groups with subexponential
growth are amenable (see Proposition 18.6), and the direct proof of Shalom [Sha98|
of the fact that linear amenable groups are virtually solvable. The main ingredient
in Shalom’s proof is a version of the Furstenberg lemma stating that, for any local
field F, the stabilizer in PGL(n,F) of a probability measure on the projective space
FP™! whose support is not included in a finite number of hyperplanes is a compact
subgroup of PGL(n,F). See also [Brel4].

The second approach is via simple additive combinatorics. E. Breuillard and
B. Green have shown in [BG12| that if a finite subset A of the unitary group
U(n) satisfies |A3| < K|A| then A is contained in at most K¢ cosets of an abelian
subgroup of U(n), where K > 1 is an arbitrary constant and C' = C(n) is inde-
pendent of K and A. From this, it can be easily deduced that finitely generated
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subgroups of U(n) that have polynomial growth are virtually abelian; see [BG12,
Proposition 5.1]. As Kleiner’s proof allows to restrict to the case of subgroups
of the unitary group U(n), this concludes the proof of Gromov’s Theorem. The
advantage of this approach is that it is elementary: it relies on simple properties
of compact Lie groups, and uses neither proximality nor amenability. The result
of Breuillard-Green has been further generalized in their joint work with T. Tao
[BGT11] to subsets A in Lie groups that are not compact. This improved result
can be combined with either of the arguments of Gromov, Kleiner or Ozawa, reduc-
ing the problem to linear groups, to provide yet another proof of the Polynomial
Growth Theorem avoiding the Tits alternative, less elementary though. Both ad-
ditive combinatorics proofs have the further advantage that, unlike when using the
Tits alternative or the proof of Shalom, one does not need to change field: The
entire argument can be carried out in the setting of the real numbers.

We decided to retain, however, Gromov’s original proof since it contains a
wealth of ideas that generated in their turn new areas of research. Remarkably, the
same piece of logic (a weak version of the axiom of choice) that makes the Banach—
Tarski paradox possible also allows to construct ultralimits, a powerful tool in the
proof of Gromov’s theorem and that of many rigidity theorems (e.g, quasiisometric
rigidity theorems of Kapovich, Kleiner and Leeb) as well as in the investigation of
fixed point properties.

Regarding Questions (A) and (B), the best one can hope for is that the geometry
of a group (up to quasiisometric equivalence) allows to recover, not just some of its
algebraic features, but the group itself, up to virtual isomorphism. Two groups G
and Gy are said to be virtually isomorphic if there exist subgroups

FiQHigGi,’L’:LQ,

so that H; has finite index in G;, F; is a finite normal subgroup in H;, ¢ = 1,2, and
H, /F} is isomorphic to Ha/F». Virtual isomorphism implies quasiisometry but, in
general, the converse is false, see Example 8.48. In the situation when the converse
implication also holds, one says that the group G, is quasiisometrically Tigid.

An example of quasiisometric rigidity is given by the following theorem proven
by Richard Schwartz [Sch96b]:

THEOREM (Schwartz QI rigidity theorem). Suppose that T' is a non-uniform
lattice of isometries of the hyperbolic space H",n > 3. Then each group quasiiso-
metric to I' must be virtually isomorphic to T'.

We will present a proof of this theorem in Chapter 24. In the same chapter we
will use similar “zooming” arguments to prove the following special case of Mostow’s
Rigidity Theorem:

THEOREM (The Mostow Rigidity Theorem). Let 'y and Ty be lattices of isome-
tries of H",n > 3, and let ¢ : 'y — 'y be a group isomorphism. Then ¢ is given
by a conjugation via an isometry of H".

Note that Schwartz’ Theorem no longer holds for n = 2, where non-uniform
lattices are virtually free. However, in this case, quasiisometric rigidity still holds
as a corollary of Stallings’ Theorem on ends of groups:

THEOREM. Let ' be a group quasiisometric to a free group of finite rank. Then
T is itself virtually free.
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This theorem will be proven in Chapter 20. We also prove:

THEOREM (Stallings “Ends of groups” theorem). If G is a finitely generated
group with infinitely many ends, then G splits as a graph of groups with finite
edge—groups.

In this book we give two proofs of the above theorem, which, while quite differ-
ent, are both inspired by the original argument of Stallings. In Chapter 20 we prove
Stallings’ theorem for almost finitely presented groups. This proof follows the ideas
of Dunwoody, Jaco and Rubinstein: We will be using minimal Dunwoody tracks,
where minimality is defined with respect to a certain hyperbolic metric on the
presentation complex (unlike the combinatorial minimality used by Dunwoody). In
Chapter 21, we will give another proof, which works for all finitely generated groups
and follows a proof sketched by Gromov in [Gro87], using least energy harmonic
functions. We decided to present both proofs, since they use different machinery
(the first is more geometric and the second more analytical) and different (although
related) geometric ideas.

In Chapter 20 we also prove the following:

THEOREM (Dunwoody’s Accessibility Theorem). Let G be an almost finitely
presented group. Then G is accessible, i.e. the decomposition process of G as a
graph of groups with finite edge groups eventually terminates.

In Chapter 23 we prove Tukia’s theorem, which establishes quasiisometric rigid-
ity of the class of fundamental groups of compact hyperbolic n-manifolds, and, thus,
complements Schwartz’ Theorem above:

THEOREM (Tukia’s QI Rigidity Theorem). If a group T is quasiisometric to
the hyperbolic n-space, then I' is virtually isomorphic to the fundamental group of
a compact hyperbolic n-manifold.

Note that the proofs of the theorems of Mostow, Schwartz and Tukia all rely
upon the same analytical tool: Quasiconformal mappings of Euclidean spaces. In
contrast, the analytical proofs of Stallings’ theorem presented in the book are mostly
motivated by another branch of geometric analysis, namely, the theory of minimal
submanifolds and harmonic functions.

In regard to Question (B), we investigate two closely related classes of groups:
Hyperbolic and relatively hyperbolic groups. These classes generalize fundamen-
tal groups of compact negatively curved Riemannian manifolds and, respectively,
complete negatively curved Riemannian manifolds of finite volume. To this end, in
Chapters 4 and 11 we cover the basics of hyperbolic geometry and the theory of
hyperbolic and relatively hyperbolic groups.

Other sources. Our choice of topics in geometric group theory is far from ex-
haustive. We refer the reader to [Aea91],[Bal95]|, [Bow91], [VSCC92|, [Bow06a],
[BH99|, [CDP90], [Dav08|, [Geo08], [GAIH90|, [dIH00|, [NY11], [Pap03],
[Roe03], [Sap14], [V&i05], for the discussion of other parts of the theory.

Work on this book started in 2002 and the material which we cover mostly
concerns developments in Geometric Group Theory from the 1960s through the
1990s. In the meantime, while we were working on the book, some major ex-
citing developments in the field have occurred which we did not have a chance
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to discuss. To name a few, these developments are subgroup separability and its
connections with 3-dimensional topology [Agol3, KM12, HW12, Besl4], ap-
plications of Geometric Group Theory to higher dimensional and coarse topology
[Yu00, MYO02, BLW10, BL12], the theory of Kleinian groups [Min10, BCM12,
Mj14b, Mjl4a], quasiconformal analysis on boundaries of hyperbolic groups and
Cannon Conjecture [BK02a, BK05, Bon11, BK13, Mar13, Hail5|, the theory
of approximate groups [BG08a, Tao08, BGT12, Hrul2], the first-order logic of
free groups (see [Sel01, Sel03, Sel05a, Sel04, Sel05b, Sel06a, Sel06b, Sel09,
Sel13] and [KM98b, KM98a, KM98c, KMO05|), the theory of systolic groups
[JSO3, JSo06, HS08S, Osal3], probabilistic aspects of Geometric Group Theory
[Gro03, Ghy04, 01104, 01105, KSS06, 01107, KS08, OW11, ALS15, DM16].

Requirements. The book is intended as a reference for graduate students and
more experienced researchers, it can be used as a basis for a graduate course and as
a first reading for a researcher wishing to learn more about Geometric Group The-
ory. This book is partly based on lectures given at the Oxford University (C.D.),
the University of Utah and the University of California, Davis (M.K.). We expect
the reader to be familiar with the basics of group theory, algebraic topology (fun-
damental groups, covering spaces, (co)homology, Poincaré duality) and elements of
differential topology and Riemannian geometry. Some of the background material is
covered in Chapters 1, 3 and 5. We tried to make the book as self-contained as pos-
sible, but some theorems are stated without proof, they are marked as Theorem.
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CHAPTER 1

Geometry and Topology

Treating groups as geometric objects is the major theme and defining feature
of Geometric Group Theory. In this chapter and Chapter 2 we discuss basics of
metric (and topological) spaces, while Chapter 3 will contain a brief overview of
Riemannian geometry. For an in-depth discussion of metric geometry, we refer the
reader to [BBIO1]. We assume basic knowledge of Algebraic Topology as can be
found, for instance, in [Hat02] or [Mas91].

1.1. Set-theoretic preliminaries

1.1.1. General notation. Given a set X we denote by P(X) = 2% the power
set of X, i.e. the set of all subsets of X. If two subsets A, B in X have the property
that AN B = () then we denote their union by A U B, and we call it the disjoint
union. For a subset E of a set X we denote the complement of E in X either by
X \ E or by E°. A pointed set is a pair (X, x), where z is an element of X. The
composition of two maps f : X — Y and g : Y — Z is denoted either by go f or by
gf . The identity map X — X will be denoted either by Idx or simply by Id (when
the choice of X is clear). For a map f: X — Y and a subset A C X, we let f|A
denote the restriction of f to A. We use the notation |E| or card (E) to denote the
cardinality of a set E. (Sometimes, however, |E| will denote the Lebesgue measure
of a subset of the Euclidean space.) We use the notation D™ for the closed unit
ball centered at the origin in the n-dimensional Euclidean space, and S*~! for the
corresponding unit sphere. In contrast, we use the notation B(z,r) for the open
metric ball (in a general metric space) centered at x, of radius r. Accordingly, B"
will denote the open unit ball in R”.

The Axiom of Choice (AC) plays a prominent part in many of the arguments in
this book. We discuss it in more detail in section 10.1, where we also list equivalent
and weaker forms of AC. Throughout the book we make the following convention:

CONVENTION 1.1. We always assume ZFC: The Zermelo—Fraenkel axioms of
set theory and the Axiom of Choice.

Given a non-empty set X, we denote by Bij(X) the group of bijections X — X ,
with composition as the binary operation.

CONVENTION 1.2. Throughout the paper we let 14 and x4 denote the char-
acteristic (or indicator) function of a subset A in a set X, ie. the function
14:X — {0,1} defined by

1 ifxeA,
1 =
A@) {0 itz¢ A



By the codimension of a subspace X in a space Y we mean the difference be-
tween the dimension of Y and the dimension of X, whatever the notion of dimension
that we use.

We will use the notation = to denote an isometry of metric spaces and ~ to
denote an isomorphism of groups.

Throughout the book, N will denote the set of natural numbers and Z, =
Nu{0}.

1.1.2. Growth rates of functions. In this book we will be using two dif-
ferent asymptotic inequalities and equivalence relations for functions: One is used
to compare Dehn functions of groups and the other to compare growth rates of
groups.

DEFINITION 1.3. Let X be a subset of R. Given two functions f,g : X — R,
we say that the order of the function f is at most the order of the function g and
we write f = g, if there exist real numbers a, b, c,d,e > 0 and xg such that for all
r € X, > xg, we have: bx + c € X and

f(@) <ag(br+c¢)+de+e.

If f 2 gandg = f then we write f ~ g and we say that f and g are approzi-
mately equivalent.

This definition will be typically used with X = Ry or X = N, in which case
a,b, c,d, e will be natural numbers.

The equivalence class of a function with respect to the relation ~ is called the
order of the function. If a function f has (at most) the same order as the function
z, 22, 2%, 2% or exp(x) it is said that the order of the function f is (at most) linear,
quadratic, cubic, polynomial, or exponential, respectively. A function f is said to
have subexponential order if it has order at most exp(z) and is not approximately
equivalent to exp(z). A function f is said to have intermediate order if it has
subexponential order and 2™ X f(z) for every n.

DEFINITION 1.4. We introduce the following asymptotic inequality between
functions f,g : X — R with X C R: We write f < g if there exist a,b > 0
and xg € R such that for all z € X, x > zg, we have: bxr € X and

f(z) < ag(b).
If f <gand g < f then we write f < g and we say that f and g are asymptotically
equal.

Note that this definition is more refined than the order notion =. For instance,
x =~ 0 while these functions are not asymptotically equal. This situation arises, for
instance, in the case of free groups (which are given free presentation): The Dehn
function is zero, while the area filling function of the Cayley graph is A(¢) < £. The
equivalence relation ~ is more appropriate for Dehn functions than the relation =,
because in the case of a free group one may consider either a presentation with
no relations, in which case the Dehn function is zero, or another presentation that
yields a linear Dehn function.

EXERCISE 1.5. 1. Show that ~ and =< are equivalence relations.
2. Suppose that x < f, x < g. Then f = g if and only if f =< g.
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1.1.3. Jensen’s inequality. Let (X, 1) be a space equipped with a probabil-
ity measure u, f : X — R a measurable function and ¢ a convex function defined
on the range of f. Jensen’s inequality [Rud87, Theorem 3.3| reads:

w(/xfdu></x<p0fdu~

We will be using this inequality when the function f is strictly positive and ¢(t) =
t~1: The function ((t) is convex for t > 0. It will be convenient to eliminate the
probability measure assumption. We will be working with spaces (X, u) of finite
(but non-zero) measure. Instead of normalizing the measure p to be a probability
measure, we can as well replace integrals [ « hdp with averages

1
hduz—/hd,u7
foae=si ),

where M = [ « du. With this in mind, Jensen’s inequality becomes

(fm) "<, o

Replacing f with % we also obtain:

(L1) (]{( }du)l <fodu.

1.2. Measure and integral

1.2.1. Measures. We recall the relevant definitions from the theory of mea-
sure spaces. A reference is [Bau01], whose terminology we adopt here. Let X be
a non-empty set.

DEFINITION 1.6. A ring of subsets of X is a subset R of P(X) containing the
empty set, closed with respect to finite unions and differences.
An algebra of subsets of X is a non-empty collection A of subsets of X such
that:
(1) X e 4
(2) ABe A= AUBe A, ANB e A
3) Ac A= Acc A

A o-algebra of subsets of X is an algebra of subsets closed under countable
intersections and countable unions.

Given a topological space X, the smallest o-algebra of subsets of X containing
all open subsets is called the Borel o-algebra of X. Elements of this o-algebra are
called Borel subsets of X.

DEFINITION 1.7. A finitely additive (f. a.) measure p on a ring R is a function
p:R — [0, 00] such that u(AU B) = u(A) + u(B) for all A, B € R.

An immediate consequence of the f. a. property is that when R is an algebra A,
for any two sets A, B € A,

H(AUB) = p((A\B)U(ANB)L(B\A)) = u(A\B)+u(ANB)+u(B\A) < u(A)+u(B).

3



In some texts the f. a. measures are called simply ‘measures’. We prefer the
terminology above, since in other texts a ‘measure’ is meant to be countably additive
as defined below.

DEFINITION 1.8. Given a ring R, a countably additive (c. a.) premeasure on it
is a function g : R — [0, +oc] such that

(My) for any sequence of pairwise disjoint sets (A, )nen in R such that | |, .y A, €

R,
1 <|_| An> = A).

neN neN
A premeasure is called o-finite if there exists a sequence (4,) in R such that
p(Ayn) < 400 for every n, and J,, A, = X. A premeasure defined on a o-algebra
is called a countably additive (c. a.) measure.

Property (M) is equivalent to the following list of two properties:
(M) u(AU B) = pu(A) + u(B);
(M) If (Ap)nen is a non-increasing sequence of sets in R such that (), .y 4n =
(0, then lim, o u(A4,) = 0.
In order to simplify the terminology, we will suppress the dependence of the
f.a. (resp. c.a) measure p on the algebra (resp. o-algebra) of subsets of X, and will
refer to such a p simply as a f.a. (resp. c.a.) measure on X.

DEFINITION 1.9. If g is a finitely (resp. countably) additive measure on X,
such that pu(X) = 1, then p is called a f.a. (resp. c.a.) probability measure on X,
which is abbreviated as f.a.p. measure (resp. c.a.p. measure).

Suppose that G is a group acting on X preserving an algebra (resp. o-algebra)
A. If pis a f.a. (resp. c.a.) measure on A, such that p(vA) = u(A) for all vy € G
and A € A, then u is called G—invariant.

We will need a precise version of the Caratheodory’s Theorem on the extension
of a premeasure ;1 to a measure, therefore we recall here the notion of an outer
measure.

DEFINITION 1.10. Let 4 be a c.a. premeasure defined on a ring R.
For every Q C X let U(Q) designate the set of all sequences (A,) in R such
that Q C J,, An. Define p1*(Q) = +oo if U(Q) = 0; if U(Q) # 0 then define

p*(Q) = inf {Zu(An) (An) € U(Q)} :

The function p* is an outer measure on the set X.
A subset A of X is called p*-measurable if for every Q € P(X),

p(Q) = p (QNA)+p"(QNA?).

THEOREM 1.11 (Carathéodory [Bau01], §1.5). (1) The collection A* of
w*-measurable sets is a o-algebra containing R, and the restriction of p*
to A* is a measure, while the restriction of u* to R coincides with .
(2) If u is o-finite, then it has a unique extension to a measure on the o-
algebra generated by R.



1.2.2. Integrals. We let B(X) denote the vector space of real-valued bounded
functions on a set X. In addition to measures we will need the notion of finitely
additive integral. We discuss integrals of functions f € B(X), only in the simpler
case of finitely additive probability measures pu, defined on the algebra A = P(X)
(the setting where we will use finitely additive integrals, in Chapter 18). We re-
fer the reader to [DS88] for an exposition of finitely additive integrals in greater
generality.

A finitely additive integral on (X, A, u, B(X)) is a linear functional

fH/deu, feB(X /fdueR

satisfying the following properties:
o If f(z) >0 for all x € X, then [, fdu >0
o [ 1adu=p(A)foral Ae A
For a subgroup G < Bij(X), the integral fX is said to be G-invariant if

/fowdu /fdu

for every v € G and every f € B(X).

THEOREM 1.12. If p is a G-invariant f.a.p. measure on the algebra P(X), then
there exists a G-invariant integral fX on (X, A, u, B(X)) such that for every A

/ Ladp = u(A).
X

ProoF. We let B, (X) denote the subset of B(X) consisting of all non-negative
functions f € B(X). Observe that the linear span of By (X) is the entire B(X).
First of all, for each A € A we have the integral

/ 14dp = p(A).
b'e

We next extend the integral from the set of characteristic functions 14, A € A, to
the linear subspace S(X) C B(X) of simple functions, i.e. the linear span of the
set of characteristic functions. We also define Sy (X) as B4 (X) N S(X). In order
to construct an extension of [, to S(X), we observe that each f € S(X) can be
written in the form

(1.2) f=> sila,
=1

where the subsets A; are pairwise disjoint. Moreover, we can choose the subsets
A; such that either f‘A, > 0 or f|A_ < 0, and this for every i. (Here we are

helped by the fact that A = 2%X.) Next, for s; € R,A; € A,i = 1,...,n, and
t; €eR,Bj e A j=1,...,m, finite additivity of x implies that if

n m
i=1 j=1
then

D sip(A) = tiu(By)
i=1 j=1



Therefore, we can extend | to a linear functional on S(X) by linearity:

X \i=1 i=1
Since for every f € S;(X) we can assume that in (1.2), each s; > 0 and A;NA; =0

for all i # j, it follows that
/ fdu>0.
X

Next, given a function f € B, (X) we set

/ fdu:=sup{/ gdu:g€S+(X),g<f}~
X X

It is clear from this definition that, since p is G-invariant, so is the map

/X : By (X) > R.

/Xafdu:a/deu

for all @ > 0 and f € B(X). However, additivity of [, thus defined is not
obvious. We leave it to the reader to verify the simpler fact that for all functions

fyg € B4(X) we have
dpu > d du.
/X(f+g)u>/xfu+/xgu

We will prove the reverse inequality. For each subset A C X and f € B, (X) define

the integral
/fdu ::/ fladp.
A b'e

Given a simple function h, 0 < h < f + g, we need to show that

/hdu</ fdu+/gdu~
X X X

The function A can be written as

Furthermore, it is clear that

n
h = ZailAi
i=1

with pairwise disjoint 4; € A and a; > 0. Therefore, in view of the linearity of [ ¥
on S(X), it suffices to prove that

aiu(AiK/ fdu+/ gdpu
A; A,

for each i. Thus, the problem reduces to the case n =1, A; = A and (by dividing
by a1) to proving the inequality

uA) < / fdu+/ gdp,
A A
for functions f, g € B4 (X) satisfying
(1.3) 1a< f+g.
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Let ¢ be an integer upper bound for f and g. For each N € N, consider the following
simple functions fy, gn:

c cj

N
fla— ylas/vi= 3 Li-1((ej/NeGn /N 3y < 5
=0

N
¢ — <
gla— pla<ygn = ;) Ly=1((ei/Ne(i+0)/N) 37 S 9-
In view of the inequality (1.3) we have
2c
1—-—=14< .
( N) A< N +tgn

The latter implies (by the definition of [ ) that

<1fj)u(A)<Adeu+LgNdu<Lfdu+Agdu.

Since this inequality holds for all N € N, we conclude that

M(A)S/Afdqu/Agdu

as required. Thus, [, is an additive functional on B4 (X). Since By (X) spans
B(X), [y extends uniquely (by linearity) to a linear functional on B(X). Clearly,
the result is a G-invariant integral on B(X). O

1.3. Topological spaces. Lebesgue covering dimension

In this section we review some topological notions that shall be used in the
book.

Notation and terminology. A neighborhood of a point in a topological space
will always mean an open neighborhood. A neighborhood of a subset A in a topo-
logical space X is an open subset U C X containing A.

We will use the notation A, cl A and cl(A) for the closure of a subset A in a
topological space X. We will denote by int A and int(A) the interior of A in X.
A subset of a topological space X is called clopen if it is both closed and open.
We will use the notation Cx and Kx for the sets of all closed, and of all compact
subsets in X, respectively.

A topological space X is said to be locally compact if there is a basis of topology
of X consisting of relatively compact subsets of X, i.e. subsets of X with compact
closures. A space X is called o-compact if there exists a sequence of compact subsets
(Kn)nen in X such that X = |J, cy K- A second countable topological space is
a topological space which admits a countable base of topology (this is sometimes
called the second aziom of countability). A second countable space is separable
(i.e. contains a countable dense subset) and Lindeldf (i.e. every open cover has a
countable sub-cover). A locally compact second countable space is o-compact.

The wedge of a family of pointed topological spaces (X;,z;),i € I, denoted
by VierX;, is the quotient of the disjoint union U;c;X;, where we identify all the
points x;. The wedge of two pointed topological spaces is denoted X; V Xs.
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If f: X — Ris a function on a topological space X, then we will denote by
Supp(f) the support of f, i.e. the set

d({zxeX: f(x)#£0}).

Given two topological spaces X,Y, we let C(X;Y) denote the space of all
continuous maps X — Y; we also set C(X) := C(X;R). For a function f € C(X)

we define its norm

If1l = sup [f ()]
reX

We always endow the space C(X;Y) with the compact-open topology. A sub-
basis of this topology consists of the subsets

Uky ={f: X =Y : f(K)CV}CCX;Y),

where K C X is compact and V C Y is open.

If Y is a metric space then the compact-open topology is equivalent to the
topology of uniform convergence on compacts: A sequence of functions f; : X — Y
converges to a function f: X — Y if and only if for every compact subset K C X
the sequence of restrictions f; | x K =Y converges to f | ;¢ uniformly.

Given two topological spaces X,Y and two continuous maps

f07f1:X—>Ya

a homotopy between fy and fi is a continuous map F : X x [0,1] — Y such that
F(x,0) = fo(x), F(x,1) = fi(x), for every x € X. Tracks of this homotopy are
paths F(z,t),t € [0,1], in Y, for various (fixed) points z € X.

A continuous map f : X — Y of topological spaces is called proper if preimages
of compact sets under f are again compact. In line with this, one defines a proper
homotopy between two maps

fo,i: X =Y,
by requiring the homotopy F' between these maps to be a proper map F : X X
[0,1] = Y.

A topological space is called perfect if it is non-empty and contains no isolated
points, i.e. points z € X such that the singleton {x} is open in X.

DEFINITION 1.13. A topological space X is regular if every closed subset A C X
and a singleton {2} C X \ A, have disjoint neighborhoods. A topological space X
is called normal if every pair of disjoint closed subsets A, B C X have disjoint
open neighborhoods, i.e. there exist disjoint open subsets U,V C X such that
AcUBCV.

EXERCISE 1.14. 1. Every normal Hausdorff space is regular.
2. Every compact Hausdorff space is normal.

We will also need a minor variation on the notion of normality:

DEFINITION 1.15. Two subsets A, B of a topological space X are said to be
separated by a function if there exists a continuous function p = pa g : X — [0,1]
so that

1. p’ 4=0

2. p’ g =1

A topological space X is called perfectly normal if every two disjoint closed
subsets of X can be separated by a function.
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We will see below (Lemma 2.2) that every metric space is perfectly normal. A
much harder result is

THEOREM 1.16 (Tietze—Urysohn extension theorem). Every normal topologi-
cal space X is perfectly normal. Moreover, for every closed subset C C X and
continuous function f : C — R, the function f admits a continuous extension to
X.

A proof of this extension theorem can be found in [Eng95]. In view of this
theorem, every normal topological space is perfectly normal, since one can take
C = AU B and let p be a continuous extension of the function

f:C=R, fl,=0f|l,=1

COROLLARY 1.17. In the definition of a mormal topological space, one can take
U and V to have disjoint closures.

PRrROOF. Let f: C = AUB — {0, 1} be the function as above. define p: X — R
to be a continuous extension of f. Then take

U:=pH((=00,1/3)), V:=p~1((2/3,00)). O

LEMMA 1.18. [Eztension lemma/ Suppose that X, Y topological spaces, where
Y is reqular and X contains a dense subset A.

1. If f: X — Y is a mapping satisfying the property that for each © € X the
restriction of f to AU {x} is continuous, then f is continuous.

2. Assume now that A is open and set X \ A = Z. Suppose that f : X =Y
is such that the restriction f|AU{z} is continuous at z for every point z € Z C X.
Then f: X =Y is continuous at each point z € Z.

PRrROOF. 1. We will verify continuity of f at each x € X. Let y = f(z) and
let V' be an (open) neighborhood of y in Y; the complement C' =Y \ V is closed.
Since Y is regular, there exist disjoint open neighborhoods Vi C V' of y and V5, of
C. Therefore, the closure W of V; is contained in V. By continuity of the map

flAu{x}’
there exists an (open) neighborhood U of z in X, such that
fUNn(AU{z}) cVi CcW.
Let us verify that f(U) Cc W C V. Take z € U. By continuity of

f|AU{z}’
the preimage
D=f"'(W)n(Au{z})

is closed in A U {z}. This preimage contains U N A; the latter is dense in U, since
A is dense in X and U C X is open. Therefore, D contains the closure of U N A
in AU{z}. This closure contains the point z since z € U and U N A is dense in U.
It follows that z is in D and, hence, f(z) € W. We conclude that f(U) C V and,
therefore, f is continuous at x.

2. We change the topology Tx on X to a new topology Ty whose basis is the
union of Tx and the power set 24. Since A € Ty, it follows that the map f: X =Y
is continuous at each point a € A with respect to the new topology. Part 1 now

9



implies continuity of the map f : (X, 7x) — (Y, Ty). It follows that f : AU{z} =Y
is continuous at each z € Z with respect to the original topology. ([

A topological space X is said to be locally path-connected if for each x € X and
each neighborhood U of x, there exists a neighborhood V' C U of «x, such that every
point y € V can be connected to x by a path contained in U. In other words, the
inclusion V — U induces the map

mo(V) = mo(U)
whose image is a singleton.

An open covering U = {U; : i € I} of a topological space X is called locally
finite if every subset J C I such that
(Ui #0
ieJ
is finite. Equivalently, every point = € X has a neighborhood which intersects only
finitely many U;’s.
The multiplicity of an open cover U = {U; : i € I} of a space X is the supremum
of cardinalities of subsets J C I so that

m Us # 0.

i€J
A cover V is called a refinement of a cover U if every V € V is contained in some
Uecl.

DEFINITION 1.19. The (Lebesgue) covering dimension of a topological space
Y is the least number n such that the following holds: Every open cover U of Y
admits a refinement V which has multiplicity at most n + 1.

The following example shows that the covering dimension is consistent with
our “intuitive” notion of dimension:

ExampLE 1.20. If M is an n-dimensional topological manifold, then n equals
the covering dimension of M. See e.g. [Nag83|.

1.4. Exhaustions of locally compact spaces

DEFINITION 1.21. A family of compact subsets {K; : i € I} of a topological
space X is said to be an exhaustion of X if:
L Ujer Ki = X.
2. For each ¢ € I there exists j € I such that
K; C int(K;).
PROPOSITION 1.22. If X 1is locally compact, Hausdorff and second countable, it
admits an exhaustion by a countable collection of compact subsets. Moreover, there

exists a countable exhaustion {K, : n € N} of X such that K,, C int K1 for each
n.

ProoF. If X is empty, there is nothing to prove, therefore we will assume that
X # (. Let B be a countable basis of X. Define 4 C B to be a subset of B
consisting of relatively compact sets.

LEMMA 1.23. U is a basis of X.

10



PRrROOF. Let x € X be a point and V' a neighborhood of z. Since X is locally
compact, there exists a compact subset K C X with

x €int(K) CV.

Then the boundary 0K of K in X is disjoint from {x}. Since K is regular and B is
a basis, there exists a neighborhood W of 0K in K and B € B, a neighborhood of
zin X, such that B C int(K) and BNW = (). Then the closure B of B is compact
(and, thus, B € ) and contained in K \ W C int(K). O

We define an exhaustion of X inductively. We begin by enumerating the ele-
ments of the cover:
U={Uy,Us...,Up,...}.
Set K to be the closure of Uy. Given a compact subset K, containing U?:l U;,
we consider its cover by elements of /. By compactness of K,,, there exists a finite

subcollection Uj,,...U;, € U covering K,,. Set
k

Kn+1 = U Ujs UUn+1.

s=1

This is the required exhaustion. O

1.5. Direct and inverse limits

Let I be a directed set, i.e. a partially ordered set, where every two elements 4, j
have an upper bound, which is some k € I such that i < k,j < k. The reader should
think of the set of real numbers, or positive real numbers, or natural numbers, as
the main examples of directed sets. A directed system of sets (or topological spaces,
or groups) indexed by I is a collection of sets (or topological spaces, or groups)
A;,i € I, and maps (or continuous maps, or homomorphisms) f;; : A; = A;,i < j,
satisfying the following compatibility conditions:

(1) fi = fiko fij, Vi< j <k,
(2) fii=1d.

An inverse system is defined similarly, except f;; : A; — A; ¢ < j, and,
accordingly, in the first condition we use f;; o fjr = fik-

We will use the notation (A;, fij,4,j € I) for direct and inverse systems of sets,
spaces and groups.

The direct limit of the direct system of sets is the set

A=lim A; = <HA1>/~,

il
where a; ~ a; whenever fir(a;) = fjx(a;) for some k € I. In particular, we have
maps f, : Ay — A given by fin(am) = [am], where [a,,] is the equivalence class in
A represented by a,, € A,,. Note that

A= fmlAm).

mel

If the sets A; are groups, then we equip the direct limit with the group operation:
[ai] - [aj] = [fir(ai) - fix(az)],
where k € I is an upper bound for i and j.
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If the sets A; are topological spaces, then we equip the direct limit with the
final topology, i.e. the topology where U C lim A; is open if and only if fi_l(U) is
open for every ¢ € I. In other words, this is the quotient topology descending from
the disjoint union of A;’s.

Similarly, the inverse limit of an inverse system is

@Ai = {(az) S HAl La; = fij(aj)ﬁi < j} .
iel

If the sets A; are groups, we equip the inverse limit with the group operation
induced from the direct product of the groups A;. If the sets A; are topological
spaces, we equip the inverse limit with the initial topology, i.e. the subset topology
of the Tychonoff topology on the direct product. Explicitly, this is the topology
generated by the open sets of the form f,.1(U,,), where U,, C X,, are open subsets
and f, : l'&lAi — A, is the restriction of the coordinate projection.

EXERCISE 1.24. 1. Show that lim A; is closed in []
each A; is compact, then so is @1 i

ser Ai- 2. Conclude that if

Given a subset J C I, we have the restriction map

pZHAi—)HAj, )"_>>‘|J
i€l JjeJ
where we treat elements of the product spaces as functions I — (J;c; A; and J —
Uje ; A; respectively. A subposet J C I is called cofinal if for each i € I there
exists j € J such that ¢ < j.

EXERCISE 1.25. Show that if J C I is cofinal then the restriction map p is a
bijection between @Ai and @Aj.

EXERCISE 1.26. Assuming that each A; is a Hausdorff topological space satisfy-
ing the first separation axiom (also denoted T}, requiring that singletons are closed
sets), show that lim A; is a closed subset of the product space [],.; A;. Conclude
that the inverse limit of a directed system of compact Hausdorff topological spaces
is again compact and Hausdorff. Conclude, furthermore, that if each A; is totally
disconnected, then so is the inverse limit.

Suppose that each A; is a topological space and we are given a subset A; C A;
with the subspace topology. Then we have a natural continuous embedding

L H Al — HAi
iel iel
EXERCISE 1.27. Suppose that for each ¢ € I there exists 7 € I such that
fij(A;) C AL Verify that the map ¢ is a bijection.

We now turn from topological spaces to groups.

EXERCISE 1.28. Every group G is the direct limit of a direct system G;,i € I,
consisting of all finitely generated subgroups of G. Here the partial order on [ is
given by inclusion and homomorphisms f;; : G; — G; are tautological embeddings.
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EXERCISE 1.29. Suppose that G is the direct limit of a direct system of groups
{Gi, fij : 1,7 € I'}. Assume also that for every ¢ we are given a subgroup H; < G;
satisfying

fij(H;) < Hj, Vi<
Then the family of groups and homomorphisms
H={H;, fijlm; 24,5 € I}
is again a direct system; let H denote the direct limit of this system. Show that
there exists a monomorphism ¢ : H — G, so that for every i € I,

fila, =¢oh;: Hi — G,

where h; : H; — H are the homomorphisms associated with the direct limit of the
system H.

EXERCISE 1.30. 1. Let H < G be a subgroup. Then |G : H| < n if and only
if the following holds: For every subset {go, ..., g,} C G, there exist i # j so that
9ig; ' € H.

2. Suppose that G is the direct limit of a system of groups {Gj, fij,i,j € I}.
Assume also that there exist n € N so that for every i € I, the group G; contains a
subgroup H; of index < n and the assumptions of Exercise 1.29 are satisfied. Let
the group H be the direct limit of the system

{Hi, fijla, 2,5 €I}
and ¢ : H — G be the monomorphism as in Exercise 1.29. Show that
|G : ¢(H)| < n.

1.6. Graphs

An unoriented graph T' consists of the following data:

e a set V called the set of vertices of the graph;

e a set E called the set of edges of the graph;

e a map ¢ called incidence map defined on E and taking values in the set
of subsets of V' of cardinality one or two.

We will use the notation V= V(T') and E = E(T") for the vertex and respec-
tively the edge set of the graph I'. When {u,v} = i(e) for some edge e, the two
vertices u, v are called the endpoints of the edge e; we say that u and v are adjacent
vertices.

An unoriented graph can also be seen as a 1-dimensional cell complex (see sec-
tion 1.7), with O-skeleton V' and with 1-dimensional cells/edges labeled by elements
of E, such that the boundary of each 1-cell e € E is the set ¢(e).

Note that in the definition of a graph we allow for monogons (i.e. edges connect-
ing a vertex to itself)! and bigons? (pairs of distinct edges with the same endpoints).
A graph is simplicial if the corresponding cell complex is a simplicial complex. In
other words, a graph is simplicial if and only if it contains no monogons or bigons®.

INot to be confused with unigons, which are hybrids of unicorns and dragons.
2Also known as digons.
3and, naturally, no unigons, because those do not exist anyway.
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The incidence map ¢ defining a graph I' is set-valued; converting ¢ into a map
with values in V' x V| equivalently into a pair of maps E — V is the choice of an
orientation of I': An orientation of I' is a choice of two maps

o:E—=V t.E—=V

such that ¢(e) = {o(e),t(e)} for every e € E. In view of the Axiom of Choice, every
graph can be oriented.

DEFINITION 1.31. An oriented or directed graph is a graph I' equipped with an
orientation. The maps o and t are called the head (or origin) map and the tail map
respectively.

We will in general denote an oriented graph by T, its edge-set by E, and oriented
edges by e.

CONVENTION 1.32. In this book, unless we state otherwise, all graphs are
assumed to be unoriented.

The valency (or valence, or degree) of a vertex v of a graph I' is the number of
edges having v as an endpoint, where every monogon with both endpoints equal to
v is counted twice. The valency of ' is the supremum of valencies of its vertices.

Examples of graphs. Below we describe several examples of graphs which
will appear in this book.

EXAMPLE 1.33 (n-rose). This graph, denoted R,,, has one vertex and n edges
connecting this vertex to itself.

EXAMPLE 1.34. [i-star or ¢-pod] This graph, denoted T;, has i + 1 vertices,
Vo, V1, .. .,V;. Two vertices are connected by a unique edge if and only if one of
these vertices is vy and the other one is different from vg. The vertex vg is the
center of the star and the edges are called its legs.

EXAMPLE 1.35 (n-circle). This graph, denoted C,,, has n vertices which are
identified with the n—th roots of unity:

v = 627”k/n.

Two vertices u, v are connected by a unique edge if and only if they are adjacent to

each other on the unit circle:

uv_l — eiZﬂ'z/n.

EXAMPLE 1.36 (n-interval). This graph, denoted I,,, has the vertex set equal
to [1,n + 1] NN, where N is the set of natural numbers. Two vertices n,m of this
graph are connected by a unique edge if and only if

[n —m|=1.
Thus, I, has n edges.

ExXAMPLE 1.37 (Half-line). This graph, denoted H, has the vertex set equal to
N (the set of natural numbers). Two vertices n, m are connected by a unique edge
if and only if

[n—m|=1.

The subset [n,00) NN C V(H) is the vertex set of a subgraph of H also
isomorphic to the half-line H. We will use the notation [n, co) for this subgraph.
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ExaMPLE 1.38 (Line). This graph, denoted L, has the vertex set equal to Z,
the set of integers. Two vertices n, m of this graph are connected by a unique edge
if and only if

[n—m|=1.

As with general cell complexes and simplicial complexes, we will frequently
conflate a graph with its geometric realization:

DEFINITION 1.39. The geometric realization or underlying topological space of
an oriented graph I' is the quotient space of the topological space

U=|]{vyu | |{e} x0,1]

veV ecE
by the equivalence relation
ex {0} ~o(e), ex{l} ~t(e).

One defines the geometric realization of an undirected graph I' by converting
I" to an oriented graph I'; the topology of the resulting space is independent of the
orientation.

A morphism of graphs f : T' — T” is a pair of maps fy : V(') — V(I"),
fe: E(T) = E(I) such that
Vofg=fvot
where ¢ and ¢/ are the incidence maps of the graphs I' and I" respectively. Thus,
every morphism of graphs induces a (nonunique) continuous map f : I' — I of
geometric realizations, sending vertices to vertices and edges to edges. A monomor-
phism of graphs is a morphism such that the corresponding maps fy, fg are injec-

tive. The image of a monomorphism I' — IV is a subgraph of I'. In other words, a
subgraph in a graph I" is defined by subsets V C V(I), E C E(I") such that

de)cV

for every e € E. A subgraph IV of T' is called full if every e = [v,w] € E(T)
connecting vertices of IV, is an edge of I".

A morphism f : T' — I" of graphs which is invertible (as a morphism) is called
an isomorphism of graphs: More precisely, we require that the maps fy, fp are
invertible and the inverse maps define a morphism IV — I'. In other words, an
isomorphism of graphs is an isomorphism of the corresponding cell complexes.

EXERCISE 1.40. 1. For every isomorphism of graphs there exists a (nonunique)
homeomorphism f : I' — IV of geometric realizations, such that the images of the
edges of T" are edges of I and images of vertices are vertices.

2. Isomorphisms of graphs are morphisms such that the corresponding vertex
and edge maps are bijective.

We use the notation Aut(T") for the group of automorphisms of a graph T'.

An edge connecting two vertices u,v of a graph I' will sometimes be denoted
by [u,v]: This is unambiguous if T' is simplicial. A finite ordered set of edges of
the form [vq, va], [v2, 3], ..., [Un, Un11] is called an edge-path in T'. The number n
is called the combinatorial length of the edge-path. An edge-path in T" is a cycle if
Unt1 = v1. A simple cycle (or a circuit) is a cycle with all vertices v;, i = 1,...,n,
pairwise distinct. In other words, a simple cycle is a subgraph isomorphic to the

15



n-circle for some n. A graph I' is connected if any two vertices of I" are connected by
an edge-path. Equivalently, the topological space underlying I" is path-connected.

A subgraph I" C T is called a connected component of T' if T is a maximal
(with respect to the inclusion) connected subgraph of I'.

A simplicial tree is a connected graph without circuits.

EXERCISE 1.41. Simple cycles in a graph I are precisely subgraphs whose
underlying spaces are homeomorphic to the circle.

Maps of graphs. Sometimes, it is convenient to consider maps of graphs
which are not morphisms. A map of graphs f : ' — IV consists of a pair of maps
(g, h):

1. A map g : V(I') = V(I') sending adjacent vertices to adjacent or equal
vertices;

2. A partially defined map of the edge-sets:

h:E,— E(T),

where E, consists only of edges e of I" whose endpoints v, w € V(I') have distinct
images by g:

g(v) # g(w).
For each e € E,, we require the edge ¢/ = h(e) to connect the vertices g(o(e)), g(t(e)).

In other words, f amounts to a morphism of graphs I', — I/, where the vertex set
of T, is V(T') and the edge-set of T', is E,.

Collapsing a subgraph. Given a graph I' and a (non-empty) subgraph A of
it, we define a new graph, I = I'/A, by “collapsing” the subgraph A to a vertex.
Here is the precise definition. Define the partition V(I') = W L W€,

W =V(A), W¢=V(I)\V(A).

The vertex set of IV equals
Weu{v,}.
Thus, we have a natural surjective map V(I') — V(I") sending each v € W€ to itself
and each v € W to the vertex v,. The edge-set of I” is in bijective correspondence
to the set of edges in T which do mot connect vertices of A to each other. Each
edge e € E(I') connecting v € W€ to w € W projects to an edge, also called e,
connecting v to vg. If an edge e connects two vertices in W€, it is also retained and
connects the same vertices in IV.
The map V(I') — V(I'") extends to a collapsing map of graphs x: ' — I,

EXERCISE 1.42. If T" is a tree and A is a subtree, then I is again a tree.

DEFINITION 1.43. Let FF C V = V(I') be a set of vertices in a graph I'. The
vertez-boundary of F', denoted by Oy F, is the set of vertices in F' each of which is
adjacent to a vertex in V' \ F. Similarly, the exterior vertez-boundary of F is

OVF = 0y Fe.

The edge-boundary of F, denoted by E(F, F€), is the set of edges e such that
the set of endpoints ¢(e) intersects both F' and its complementary set F'¢ in exactly
one element.
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Unlike the vertex-boundary, the edge boundary is the same for F, as for its com-
plement F°. There is a natural surjective map from the edge-boundary E(F, F°)
to the vertex-boundary dy F', sending each edge e € E(F, F°) to the vertex v such
that {v} = t(e) N F. This map is at most C-to-1, where C is the valency of T.
Hence, assuming that C' is finite, the cardinalities of the two types of boundaries
are comparable:

(1.4) Ov F| < |E(F, F9)| < Clov F|,

(1.5) 0V F| < |B(F,F)| < C|0" F],

DEFINITION 1.44. A simplicial graph I' is bipartite if the vertex set V splits as
V =Y U Z, so that each edge e € E has one endpoint in Y and one endpoint in Z.
In this case, we write I' = Bip(Y, Z; E).

EXERCISE 1.45. Let W be an n-dimensional vector space over a field K, where
n > 3. Let Y be the set of 1-dimensional subspaces of W and let Z be the set of
2-dimensional subspaces of W. Define the bipartite graph I' = Bip(Y, Z, E), where
y € Y is adjacent to z € Z if and only if, as subspaces in W, y C z.

(1) Compute (in terms of K and n) the valency of I', the (combinatorial)
length of the shortest circuit in I', and show that I' is connected.

(2) Estimate from above the length of the shortest path between any pair of
vertices of I'. Can you get a bound independent of K and n?

1.7. Complexes and homology

Complezes are higher-dimensional generalizations of graphs. In this book, we
will primarily use two types of complexes:

e Simplicial complexes.
e Cell complexes.

As we expect the reader to be familiar with basics of algebraic topology, we
will discuss simplicial and cell complexes only briefly.

1.7.1. Simplicial complexes.

DEFINITION 1.46. A simplicial complex X consists of a set V = V(X), called
the vertez set of X, and a collection S(X) of finite non-empty subsets of V'; members
of S(X) of cardinality n + 1 are called n—dimensional simplices or n— simplices. A
simplicial complex is required to satisfy the following axioms:

(1) For every simplex o € S(X), every non-empty subset 7 C o is also a
simplex. The subset 7 is called a face of o. Vertices of o are the O-faces
of 0.

(2) Every singleton {v} C V is an element of S(X).

A simplicial map or morphism of two simplicial complexes f : X — Y is a map
f: V(X) — V(Y) which sends simplices to simplices, where the dimension of a
simplex might decrease under f.

Products of simplicial complexes. Let X,Y be simplicial complexes. We
order all the vertices of X and Y. The product Z = X xY is defined as a simplicial
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complex whose vertex set is V(X) x V(Y). Let 0,7 be simplices in X and Y of
dimensions m and n respectively with vertex sets

0'(0) = {UOa'~'7v7n}7 7(0) = {w07""w"}'

The product o x 7, of course, is not a simplex (unless nm = 0), but it admits a
standard triangulation, whose vertex set is
o x 70,
This triangulation is defined as follows. Pairs u;; = (v;, w;) are the vertices of o X 7.
Distinct vertices
(uimjm s 7uik’jk)

span a k-simplex in o x 7 if and only if ig < ... < and jo < ... < jg. These will
compose the set of simplices of Z, for arbitrary choices of ¢ and 7. The product
complex Z depends on the orderings of V(X)) and V(Y'); however, which orderings
to choose will be irrelevant for our purposes.

We will use the notation X () for the i-th skeleton of the simplicial complex X,
i.e. the simplicial subcomplex with the same set of vertices but having as collection
of simplices only the simplices of dimension < 4 in X.

The geometric realization of an n-simplex is the standard simplex

n
A" = {(20, ..., xn) € R*TL: Zmi =1,2; 20,i=0,...,n}.
i=0

Faces of A™ are intersections of the standard simplex with coordinate subspaces of
R"*1. Given a simplicial complex X, by gluing copies of standard simplices, one
obtains a topological space, which is a geometric realization of X.
We define the interior of the standard simplex A" as
n
int(A™) = {(20, ..., v,) € R" T : in =1,2; >0,i=0,...,n}.
i=0
We refer to interiors of simplices in a simplicial complex X as open simplices in X.

A gallery in an n-dimensional simplicial complex X is a chain of n-simplices
O1,...,0% such that o; No;41 is an (n — 1)-simplex for every i = 1,...,k — 1.

A homotopy between simplicial maps fo, f1 : X — Y is a simplicial map F :
X x I =Y which restricts to f; on X x {i},i = 0,1. The tracks of the homotopy
F are the paths p(t) = F(z,t),z € X.

Cohomology with compact support. Let X be a simplicial complex. Re-
call that besides the usual cohomology groups H*(X;A) (with coefficients in a
ring A that the reader can assume to be Z or Zs), we also have cohomology with
compact support H¥(X, A), defined as follows. Consider the usual cochain complex
C*(X; A). We say that a cochain o € C*(X; A) has compact support if it vanishes
outside a finite subcomplex in X. Thus, in each chain group C*(X; A) we have the
subgroup C*(X; A) consisting of compactly supported cochains. Then the usual
coboundary operator ¢ satisfies

§:CM(X; A) — CHL(X; A).

The cohomology of the new cochain complex (C¥(X;A),d) is denoted HX(X; A)
and is called cohomology of X with compact support. Maps of simplicial complexes
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no longer induce homomorphisms of H*(X; A) since they do not preserve the com-
pact support property of cochains; however, proper maps of simplicial complexes
do induce natural maps on H}. Similarly, maps which are properly homotopic
induce equal homomorphisms of H} and proper homotopy equivalences induce iso-
morphisms of H}. In other words, H} satisfies the functoriality property of the
usual cohomology groups as long as we restrict to the category of proper maps.

Bounded cohomology. Another variation on this construction, which has
many applications in Geometric Group Theory, is the concept of bounded cohomol-
0gy.
Let A be a subgroup in R (the groups A = Z and A = R will be the main
examples here). One defines the group of bounded cochains CF(X;A) C C*(X; A)
as the group consisting of cochains which are bounded as functions on Cj(X). It
is immediate that the usual coboundary operator satisfies

5kt CE(X; A) = CFYH(X; A)

for every k. This allows one to define groups of bounded cocycles ZF(X; A) and
coboundaries B{f“(X ; A) as the kernel and image of the coboundary operator re-
stricted to CF(X; A). Hence, one defines the bounded cohomology groups

H(X;A) = Z(X; A)/ By (X; A).
The inclusion Cf(X) — C*(X) induces the group homomorphism
HF(X;A) = H¥(X; A).
This is sometimes called the comparison map.

1.7.2. Cell complexes. A CW complex X is defined as the increasing union
of subspaces denoted X (™ (or X™), called n-skeleta of X. The 0-skeleton X (©) of
X is a set with discrete topology. Assume that X (™1 is defined. Let

U, = H D7,
aeJ

be a (possibly empty) disjoint union of closed n-balls D?. Suppose that for each
D? we have a continuous attaching map e, : 0D — X (n=1) " This defines a map

e" U, — X1

and an equivalence relation x ~ y = €"(z), z € U,y € X (=1 The space X is
the quotient space of X"~V U U,, with the quotient topology with respect to this
equivalence relation. Each attaching map e, extends to the map é, : D} — X (),
We will use the notation o = D /e, for the image of D™ in X", it is homeomorphic
to the quotient D"/ ~. We will also use the notation e, = 9é, and refer to the
image of e, as the boundary of the cell o = é,(D"™), o = e, (OD™). The set

X = H X,
neN
is equipped with the weak topology, where a subset C' C X is closed if and only if
the intersection of C' with each skeleton is closed (equivalently, the intersection of
C with each é,(D%) in X is closed). The space X, together with the collection of
maps e, is called a CW complex. By abuse of terminology, the maps é,, the balls
D7, and their projections to X are called n-cells in X. Similarly, we will conflate
the cell complex X and its underlying topological space |X|. We will also refer
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to CW complexes simply as cell complezes, even though the usual notion of a cell
complex is less restrictive than the one of a CW complex.

We use the terminology of open n-cell in X for the open ball D7 \ 9D, as well
as for the restriction of the map é, to the open ball D” \ 9D”  and for the image
of this restriction. We refer to this open n-cell as the interior of the corresponding
n-cell.

We will use the notation o for cells and ¢° for their interiors.

The dimension of a cell complex X is the supremum of n’s such that X has an

n-cell. Equivalently, the dimension of X is its topological dimension.

EXERCISE 1.47. A subset K C X is compact if and only if it is closed and
contained in a finite union of cells.

Regular and almost regular cell complexes. A cell complex X is said to
be regular if every attaching map e, is one-to-one. For instance, every simplicial
complex is a regular cell complex. If D C R"™ is a bounded convex polyhedron, then
D has a natural structure of regular cell complex X, where the faces of D are the
cells of X.

A regular cell complex is called triangular if every cell is naturally isomorphic
to a simplex. (Note that a triangular cell complex need not be simplicial since a
non-empty intersections of two cells need not be a single cell.)

A slightly more general notion is the one of almost regular cell complex. (We
could not find this notion in the literature and the terminology is ours.) A cell
complex X is almost regular if the boundary S"~! of every n-cell D? is given a
structure of regular cell complex K, so that the attaching map e, is one-to-one
on every open cell in S*1.

ExaMPLES 1.48. 1. Consider the 2-dimensional complex X constructed as
follows. The complex X has a single vertex and a single 1-cell, thus |[X(1)| is
homeomorphic to S'. Let e : S' — S! be a k-fold covering. Attach the 2-cell D? to
X® via the map e. The result is an almost regular (but not regular) cell complex
X.

2. Let X be the 2-dimensional cell complex obtained by attaching a single
2-cell to a single vertex by the constant map. Then X is not an almost regular cell
complex.

Almost regular 2-dimensional cell complexes (with a single vertex) appear nat-
urally in the context of group presentations, see Definition 7.92. For instance,
suppose that X is a simplicial complex and Y ¢ X is a forest, i.e. a subcomplex
isomorphic to a disjoint union of simplicial trees. Then the quotient X/Y is an
almost regular cell complex.

Barycentric subdivision of an almost regular cell complex. Our goal
is to (canonically) subdivide an almost regular cell complex X so that the result is
a triangular regular cell complex X’ = Y. We define Y as an increasing union of
regular subcomplexes Y,, (where Y, C Y (™) but, in general, is smaller).

First, set Yy := X(©). Suppose that ¥;,_; € Y (=1 is defined, so that |Y,,_,| =
|X(»=1)|. Consider the attaching maps e, : ID? — X (=1, We take the preimage
of the regular cell complex structure of Y,,_; under e, to be a refinement L, of the
regular cell complex structure K, on S"~!. We then define a regular cell complex
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M, on D7 by coning off every cell in L, from the origin o € D,. Then the cells in
M, are the cones Cone,_ (s), where s is a cell in L.

[

subdivide

FIGURE 1.1. Barycentric subdivision of a 2-cell.

Since, by the induction assumption, every cell in Y,,_1 is a simplex, its preimage
s in S~ is also a simplex, thus Cone,(s) is a simplex as well. We then attach
each cell D} to Y, by the original attaching map e,. It is clear that the new
cells Cone,_ (s) are embedded in Y,, and each is naturally isomorphic to a simplex.

Lastly, we set
Y = U Y,,.

Second barycentric subdivision. Note that the complex X’ constructed
above may not be a simplicial complex. The problem is that if x,y are distinct
vertices of L;, their images under the attaching map e, could be the same (a point
z). Thus the edges [0;, ], [0;,y] in Y, 41 will intersect in the set {o;, z}. However,
if the complex X was regular, this problem does not arise and X’ is a simplicial
complex. Thus, in order to promote X to a simplicial complex (whose geometric
realization is homeomorphic to | X|), we take the second barycentric subdivision X"
of X: Since X’ is a regular cell complex, the complex X’ is naturally isomorphic
to a simplicial complex.

Mapping cylinders. Let f : X — Y be a map of topological spaces. The
mapping cylinder My of f is the quotient space of
X x[0,1]uY
by the equivalence relation:
(z,1) ~ f(x).
Similarly, given two maps f; : X — Y;,i = 0, 1, we form the double mapping cylinder
My, +,, which is the quotient space of

X x [0,1] L|Y0|_|Y1
by the equivalence relation:
(x,4) ~ fi(x),i =0,1.

ff: X—=>Y fi: X —Y;i=0,1, are cellular maps of cell complexes, then the
corresponding mapping cylinders and double mapping cylinders also have natural
structures of cell complexes.
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Morphisms of almost regular complexes.

DEFINITION 1.49. Let X and Y be almost regular cell complexes. A cellular
map f: X — Y is said to be almost reqular if for every n-cell o in X either:

(a) f collapses o, i.e. f(o) C Y1 or

(b) f maps the interior of ¢ homeomorphically onto the interior of an n-cell in
Y.

An almost regular map is regular or noncollapsing if only (b) occurs.

For instance, a simplicial map of simplicial complexes is always almost regular,
while a simplicial topological embedding of simplicial complexes is noncollapsing.
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CHAPTER 2

Metric spaces

2.1. General metric spaces

A metric space is a set X endowed with a function dist : X x X — R satisfying
the following properties:

(M1) dist(z, y) > 0 for all z, y € X; dist(x, y) = 0 if and only if x = y;

(M2) (Symmetry) for all z, y € X, dist(y, =) = dist(z, y);

(M3) (Triangle inequality) for all z, y, z € X, dist(z, z) < dist(z, y)+dist(y, z).

The function dist is called metric or distance function. Occasionally, we will
relax the axiom (M1) and allow dist(z,y) = 0 even for distinct points z,y € X; we
will also allow dist to take infinite values, in which case we will interpret triangle
inequalities following the usual calculus conventions (a + co = oo for every a €

R U {oo}, etc.). With these changes in the definition, we will refer to dist as a
pseudo-distance or pseudo-metric.

Notation. We will use the notation d or dist to denote the metric on a metric
space X. For z € X and A C X we will use the notation dist(x, A) for the minimal
distance from = to A, i.e.

dist(z, A) = inf{d(z,a) : a € A}.
Similarly, given two subsets A, B C X, we define their minimal distance
dist(4, B) = inf{d(a,d) : a € A,b € B}.
For subsets A, B C X we let

pdist g ,,s(4, B) = max (sup dist(a, B), sup dist (b, A))
a€A beB

denote the Hausdorff (pseudo-) distance between A and B in X. Two subsets of
X are called Hausdorff-close if they are within finite Hausdorff distance from each
other. See Section 2.4 for further details on this distance and its generalizations.

Given two maps f; : (X,disty) — (Y, disty),i = 1,2, we define the distance
between these maps

dist(fy, f2) == sug dist(f1(x), f2(z)) € [0, o0].
rE

Let (X, dist) be a metric space. We will use the notation Nz(A) to denote the
open R-neighborhood of a subset A C X, i.e. Ng(A) = {z € X : dist(z, 4) < R}.
In particular, if A = {a} then Nr(A) = B(a, R) is the open R-ball centered at a.

We will use the notation N'g(A), B(a, R) to denote the corresponding closed
neighborhoods and closed balls, defined by non-strict inequalities.
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We denote by S(z,r) the sphere with center x and radius r, i.e. the set
{y e X : dist(y,z) =r}.

We will use the notation AB to denote a geodesic segment connecting the
point A to the point B in X: Note that such a segment may be non-unique, so our
notation is slightly ambiguous. Similarly, we will use the notation A(A, B,C) or
T(A, B,C) for a geodesic triangle in X with the vertices A, B,C. The perimeter
of a triangle is the sum of its side-lengths (lengths of its edges). Lastly, we will
use the notation A(A, B,C) for a solid triangle in a surface with the given vertices
A, B and C. Precise definitions of geodesic segments and triangles will be given in
section 2.2.

A metric space is said to satisfy the wltrametric inequality if
dist(z, z) < max(dist(z,y), dist(y, 2)), Vo, y, z € X.
We will see some examples of ultrametric spaces in section 2.9.
Every norm | - || on a vector space V defines a metric on V:
dist(u,v) = ||ju — v||.

The standard examples of norms on the n-dimensional real vector space V are:

n 1/p
[ollp = (leﬂ> 1 <p<oo,
i=1

and
[0llmaz = [[v]loc = max{|z1],..., |zal}.
In what follows, our default assumption, unless stated otherwise, is that R™ is
equipped with the Euclidean metric, defined by the fo-norm ||v||2; we will also use
the notation E™ for the Euclidean n-space.

EXERCISE 2.1. Show that the Euclidean plane E? satisfies the parallelogram
identity: If A, B,C, D are vertices of a parallelogram P in E? with the diagonals
AC and BD, then

(2.1) d*(A,B) + d*(B,C) + d*(C, D) + d*(D, A) = d*(A,C) + d*(B, D),

i.e. sum of squares of the lengths of the sides of P equals the sum of squares of the
length of the diagonals of P.

If X,Y are metric spaces, the product metric on the direct product X x Y is
defined by the formula

(2.2) P ((1,01), (22, 42)) = d* (21, 2) + d* (41, y2)-
We will need a separation lemma, which is standard (see for instance [Mun75,
§32|), but we include a proof for the convenience of the reader.

LEMMA 2.2. Every metric space X is perfectly normal.

ProoF. Let A,V C X be disjoint closed subsets. Both functions dist 4, disty,
which assign to € X its minimal distance to A and to V respectively, are clearly
continuous. Therefore, the ratio

o) = dist 4 (x)

= : X 0
Gty (@) © X 710
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is continuous as well. Let 7 : [0,00] — [0, 1] be a continuous monotone function
such that 7(0) = 0,7(c0) = 1, e.g.

2
7(y) = —arctan(y), y # oo, 7(00):=1.
T
Then the composition p := 7 o ¢ satisfies the required properties. (|

é metric space (X, dist) is called proper if for every p € X and R > 0 the closed
ball B(p, R) is compact. In other words, the distance function d,(z) = d(p, ) is
proper.

DEFINITION 2.3. Given a function ¢ : Ry — N, a metric space X is called ¢
uniformly discrete if each ball B(x,r) C X contains at most ¢(r) points. A metric
space is called uniformly discrete if it is ¢—uniformly discrete for some function ¢.

Note that every uniformly discrete metric space necessarily has discrete topol-
ogy.

Given two metric spaces (X, distx), (Y, disty), amap f: X — Y is an isomet-
ric embedding if for every z,2' € X

disty (f(x), f(2')) = distx (z,2") .

The image f(X) of an isometric embedding is called an isometric copy of X inY.

A surjective isometric embedding is called an isometry, and the metric spaces
X and Y are called isometric. A surjective map f : X — Y is called a similarity
with factor X if for all z, 2’ € X,

disty (f(z), f(2')) = Mdistx (z,2") .

The group of isometries of a metric space X is denoted Isom(X ). A metric space
is called homogeneous if Isom(X) acts transitively on X, i.e. for every z,y € X
there exists an isometry f: X — X such that f(z) = y.

2.2. Length metric spaces

Throughout this book, by a path in a topological space X we mean a continuous
map p : [a,b] = X. A path is said to join (or connect) two points z,y if p(a) =
x, p(b) = y. We will frequently conflate a path and its image.

Given a path p in a metric space X, one defines the length of p as follows. A
partition

a=thy<t1 <...<th_1<tp,=b

of the interval [a, b] defines a finite collection of points p(to), p(t1), ..., p(tn—1), p(tn)
in the space X. The length of p is then defined to be

n—1
(2.3) length(p) = sup Z dist(p(t:), p(ti+1))
a=tog<t1<--<tp=b i=0

where the supremum is taken over all possible partitions of [a, b] and all integers n.
If the length of p is finite then p is called rectifiable, otherwise the path p is
called non-rectifiable.
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EXERCISE 2.4. Consider a Cl-smooth path in the Euclidean space p : [a,b] —
R™, p(t) = (x1(t),...,zn(t)). Prove that its length (defined above) is given by the
familiar formula

length(p) = / JEOP + .+ R

Similarly, if (M,g) is a connected Riemannian manifold and dist is the Rie-
mannian distance function (see section 3.3), then the two notions of length, given
by equations (3.1) and by (2.3), coincide for smooth paths.

EXERCISE 2.5. Prove that the graph of the function f : [0,1] — R,

xsint if O<z<1,
f(x){ 0 it  r=0,

is a non-rectifiable path joining (0,0) and (1,sin(1)).

Let (X,dist) be a metric space. We define a new metric disty on X, known
as the induced intrinsic metric: disty(x,y) is the infimum of the lengths of all
rectifiable paths joining = to y.

EXERCISE 2.6. Show that:
1. disty is a metric on X with values in [0, c0].
2. dist < disty.

Suppose that p : [0,0] — X is a path joining x to y and realizing the finite
infimum in the definition of the distance D = disty(z,y). We will (re)parameterize
p by its arc-length:

a(s) = (1)
where
s = length(pho’t])).
The resulting path q: [0, D] — (X, dist,) is called a geodesic segment in (X, disty).

Note that in a path metric space, a priori, not every two points are connected by
a geodesic. We extend the notion of geodesic to general metric spaces: A geodesic in
a metric space (X, dist) is an isometric embedding g of an interval in R into X. Note
that this notion is different from the one in Riemannian geometry, where geodesics
are isometric embeddings only locally, and need not be arc-length parameterized.
A geodesic is called a geodesic ray if it is defined on an interval (—oo, a] or [a, +00),
and it is called bi-infinite or complete if it is defined on R. As with paths, we will
frequently conflate geodesics and their images.

EXERCISE 2.7. Prove that for (X, disty) the two notions of geodesics (for maps
of finite intervals) agree.

DEFINITION 2.8. A metric space (X,dist) such that dist = disty is called a
length (or path) metric space.

DEFINITION 2.9. A metric space X is called geodesic if every two points in X
are connected by a geodesic path. A subset A in a metric space X is called convex
if for every two points z,y € A there exists a geodesic v : [0, D] — A connecting
and y.

EXERCISE 2.10. Each geodesic metric space is locally path-connected.
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A geodesic triangle T = T(A,B,C) or A(A, B,C) with vertices A, B,C in
a metric space X is a collection of geodesic segments AB, BC,CA in X. These
segments are called edges of T. We would like to emphasize that triangles in this
book are 1-dimensional objects; we will use the terminology solid triangle to denote
the corresponding 2-dimensional object.

Later on, in Chapters 4 and 11 we will use generalized triangles, where some
edges are geodesic rays or, even, complete geodesics. The corresponding vertices of
the generalized triangles will be points of the ideal boundary of X.

EXAMPLES 2.11. (1) R™ with the Euclidean metric is a geodesic metric
space.

(2) R™\ {0} with the Euclidean metric is a length metric space, but not a
geodesic metric space.

(3) The unit circle S! with the metric inherited from the Euclidean metric of
R? (the chordal metric) is not a length metric space. The induced intrinsic
metric on S! is the one that measures distances as angles in radians, it is
the distance function of the Riemannian metric induced by the embedding
St — R2

(4) The Riemannian distance function dist defined for a connected Riemann-
ian manifold (M, g) (see section 3.3) is a path-metric. If this metric is
complete, then the path-metric is geodesic.

(5) Every connected graph equipped with the standard distance function (see
section 2.3) is a geodesic metric space.

EXERCISE 2.12. If X,Y are geodesic metric spaces, so is X x Y. If X,Y are
path-metric spaces, so is X x Y. Here X x Y is equipped with the product metric
defined by the formula (2.2).

THEOREM 2.13 (Hopf-Rinow Theorem [Gro07]). If a length metric space is
complete and locally compact, then it is geodesic and proper.

EXERCISE 2.14. Construct an example of a metric space X which is not a
length metric space, so that X is complete, locally compact, but is not proper.

2.3. Graphs as length spaces

Let ' be a connected graph. Recall that we are conflating I" and its geometric
realization; the notation x € I' below will simply mean that = is a point of the
geometric realization.

We introduce a path-metric dist on the geometric realization of I' as follows.
We declare every edge of I' to be isometric to the unit interval in R. Then, the
distance between any vertices of I' is the combinatorial length of the shortest edge-
path connecting these vertices. Of course, points of the interiors of edges of I' are
not connected by any edge-paths. Thus, we consider fractional edge-paths, where
in addition to the edges of I' we allow intervals contained in the edges. The length
of such a fractional path is the sum of lengths of the intervals in the path. Then,
forx,y €T,

dist(z,y) = irgf (length(p)),

where the infimum is taken over all fractional edge-paths p in I' connecting z to y.
The metric dist is called the standard metric on T'.
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EXERCISE 2.15. a. Show that infimum is the same as minimum in this defini-
tion.

b. Show that every edge of I" (treated as a unit interval) is isometrically em-
bedded in (T, dist).

c. Show that dist is a path-metric.

d. Show that dist is a complete metric.

The notion of a standard metric on a graph generalizes to the concept of a
metric graph, which is a connected graph I'" equipped with a path-metric disty.
Such path-metric is, of course, uniquely determined by the lengths of edges of T’
with respect to the metric d.

ExXAMPLE 2.16. Consider I' which is the complete graph on 3 vertices (a tri-
angle) and declare that two edges e, ez of I' are unit intervals and the remaining
edge e3 of I' has length 3. Let disty be the corresponding path-metric on I'. Then
es is not isometrically embedded in (T, disty).

Diameters in graphs. Recall that the diameter of a metric space is the
supremum of distances between its points. Suppose that [' is a connected graph
equipped with the standard metric. A subgraph I of T" is called a diameter of T,
if TV is isomorphic to the n-interval I,,, where n = diam(T") is the diameter of T.
This should not cause a confusion since one diameter is a number, while the other
diameter is a subgraph.

EXERCISE 2.17. Suppose that T is a tree of finite diameter n. Then:

1. Any two diameters of T have non-empty intersection.

2. The intersection C of all diameters of T is non-empty. The subtree C' is the
core of T'.

3. Each connected component of T\ C has diameter strictly less than n.

EXERCISE 2.18. Show that each connected graph of finite valence and infinite
diameter contains an isometrically embedded copy of R .

LEMMA 2.19. Suppose that f : H — T is a map of graphs, where H is the
half-line and T is a tree, such that diam(f(H)) is finite. Then there exists a vertex
v € T such that f~1(v) is unbounded.

PRrROOF. The proof is by induction on D = diam(f(H)). If D = 1, there is
nothing to prove. Suppose that D is at least 2. The image subgraph f(H) is
connected and, hence, is a subtree A C T. Let C C A be the core of A as in
Exercise 2.17. If there exists a vertex a € V(C) with infinite preimage f~'(a), we
are done. Otherwise, there exists n such that

f([n, 00)),

is disjoint from C. Since the subgraph H' = [n,c0) is isomorphic to the half-line
H, we obtain a new map of graph f’H, : H — T. The diameter of the image of
this map is strictly less than D. Lemma follows from the induction hypothesis. [

2.4. Hausdorff and Gromov—Hausdorff distances. Nets

The Hausdorfl' distance between two distinct spaces (for instance, between a
space and a dense subspace in it) can be zero. The Hausdorfl distance becomes
a genuine distance only when restricted to certain classes of subsets, for instance,
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to the class of compact subsets of a metric space. Still, for simplicity, we call it a
distance or a metric in all cases.

The Hausdorff distance defines the topology of Hausdorff-convergence on the
set Kx of compact subsets of a metric space X. This topology extends to the set
Cx of closed subsets of X as follows. Given € > 0 and a compact K C X we define
the neighborhood U, g of a closed subset C' € Cx to be

{Z €Cx: diStHaus(ZmK,CﬂK) < 6}.

This system of neighborhoods generates a topology on Cx, called Chabauty topology.
Thus, a sequence C; € Cx converges to a closed subset C' € Cx if and only if for
every compact subset K C X,

lim (C;NK) =CNK,

1—00
where the limit is in the topology of Hausdorff-convergence.

M. Gromov defined in [Gro81la, section 6] the modified Hausdorff pseudo-
distance (also called the Gromov—Hausdorff pseudo-distance) on the class of proper
metric spaces:

(2.4) pdistay ((X,dx), (Y,dy)) = inf  inf{e > 0|3 a pseudo-metric
(z,y)EX XY

dist on M = X UY, such that dist(z,y) < 5,dist|X = dX,dist|Y = dy and

Bla,1/e) € No(Y), B(y,1/¢) € No(X)}.

For homogeneous metric spaces the modified Hausdorff pseudo-distance coin-
cides with the pseudo-distance for the pointed metric spaces:

(2.5) distg ((X,dx, z0), (Y,dy,yo)) = inf{e > 0| 3 a pseudo-metric
dist on M = X UY such that dist(zo,y0) < €, dist|x = dx,dist|y = dy,

B(xo,1/e) CN(Y), B(yo, 1/2) C Ne(X)} .

This pseudo-distance becomes a metric when restricted to the class of proper
pointed metric spaces. Note that since we use pseudo-metrics in order to define
dey and dy, instead of considering pseudo-metrics on the disjoint union X LY, we
can as well consider pseudo-metrics on spaces Z such that X, Y embed isometrically
in Z.

In order to simplify the terminology we shall refer to all three pseudo-distances
as ‘distances’ or ‘metrics.’

One can associate to every metric space (X,dist) a discrete metric space at
finite Hausdorff distance from X, as follows.

DEFINITION 2.20. An e—separated subset A in X is a subset such that
dist(ai,as) > €, Vai, a2 € A, a1 # as.

A subset S of a metric space X is said to be r-dense in X if the Hausdorff
distance between S and X is at most r. In other words, for every z € X, we have
the inequality dist(z,S) < 7.
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DEFINITION 2.21. An e-separated d—net in a metric space X is a subset of X
that is e—separated and d—dense.
An e-separated net in X is a subset that is e—separated and 2e—dense.

When the constants € and ¢ are not relevant we shall not mention them and
simply speak of separated nets.

LEMMA 2.22. A mazimal (with respect to inclusion) d—separated set in X is a
d-separated net in X.

PROOF. Let N be a maximal d—separated subset in X. For every z € X \ N,
the set N U {z} is no longer d—separated, by maximality of N. Hence there exists
y € N such that dist(x,y) < 4. O

By Zorn’s lemma a maximal d—separated subset always exists. Thus, every
metric space contains a d—separated net, for any § > 0.

EXERCISE 2.23. Prove that if (X, dist) is compact then every separated net in
X is finite; hence, every separated subset in X is finite.

DEFINITION 2.24 (Rips complex). Let (X, dist) be a metric space. For R > 0
we define a simplicial complex Ripsyp(X): Its vertices are points of X; vertices
T, X1, ..., T, Span a simplex if and only if for all 4, j,

dist(x;, ;) < R.
The simplicial complex Ripsy(X) is called the R-Rips complex of X.
We will discuss Rips complexes in more detail in Section 9.2.1.

REMARK 2.25. The complex Rips, (X) was first introduced by Leopold Vietors
in [Vie27], who was primarily interested in the case of compact metric spaces X
and small values of . This complex was reinvented by Eliyahu Rips in 1980s with
the primary goal of studying hyperbolic groups, where X is a hyperbolic group
equipped with the word metric and r is large. Accordingly, the complex Rips,.(X)
is also known as the Vietoris complex and the Vietoris-Rips complex.

2.5. Lipschitz maps and Banach-Mazur distance

If one attempts to think of metrics spaces categorically, one wonders what is
the right notion of morphism in metric geometry. It turns out that depending on
the situation, one has to use different notions of morphisms. Lipschitz (especially
1-Lipschitz) and locally Lipschitz maps appear to be the most useful. However, as
we will see throughout the book, other classes of maps are also important, especially
quasiisometric, quasisymmetric and uniformly proper maps.

2.5.1. Lipschitz and locally Lipschitz maps. A map f: X — Y between
two metric spaces (X, distx ), (Y, disty ) is L-Lipschitz, where L is a positive number,
if forall z,2’ € X

disty (f(z), f(2')) < Ldistx (z,2') .

A map which is L-Lipschitz for some L > 0 is called simply Lipschitz.
EXERCISE 2.26. 1. Show that every L-Lipschitz path p : [0,1] — X is rectifiable
and length(p) < L.

2. Show that a map f: X — Y is an isometry if and only if f is 1-Lipschitz
and admits a 1-Lipschitz inverse.
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For a Lipschitz function f: X — R let Lip(f) denote
(2.6) Lip(f) := inf{L : f is L-Lipschitz}

EXERCISE 2.27. Suppose that f, g are Lipschitz functions on X. Let ||f]|, ] g]]
denote the sup-norms of f and g on X. Show that

1. “Sum rule”: Lip(f + ¢g) < Lip(f) + Lip(g).

2. “Product rule”™ Lip(fg) < Lip(f)||gll + Lip(g)| |-

3. “Ratio rule”:

i (£) < B0l + Lo}
g infzex g%(x)
Note that in case when f is a smooth function on a Riemannian manifold (e.g.,
on R™), these formulae follow from the formulae for the derivatives of the sum,
product and ratio of two functions.

The following is a fundamental theorem about Lipschitz maps between Eu-
clidean spaces:

THEOREM 2.28 (Rademacher Theorem, see Theorem 3.1 in [HeiO1]). Let U be
an open subset of R™ and let f: U — R™ be Lipschitz. Then f is differentiable at
almost every point in U.

A map f: X — Y is called locally Lipschitz if for every x € X there exists
€ > 0 so that the restriction le(x o is Lipschitz. We let Lip,,.(X;Y) denote the

space of locally Lipschitz maps X — Y. We set Lip;,.(X) := Lip;,.(X; R).

EXERCISE 2.29. Fix a point p in a metric space (X, dist) and define the function
dist, by dist,(z) := dist(z,p). Show that this function is 1-Lipschitz. Prove the
same for the function dist4(z) = dist(z, A), where A C X is a non-empty subset.

LeEMMA 2.30 (Lipschitz bump-function). Let 0 < R < co. Then there exists a

%7Lipschitz function ¢ = pp r on X such that

1. Supp(p) = B(p, R).

2. ¢(p) = 1.
3.0<p<lonX.

PrOOF. We first define the function ¢ : Ry — [0,1] which vanishes on the
interval [R, 00), is linear on [0, R] and equals 1 at 0. Then ¢ is £-Lipschitz. Now

take ¢ := ¢ o dist,,. g

LEmMMA 2.31 (Lipschitz partition of unity). Suppose that we are given a lo-
cally finite covering of a metric space X by a countable set of open R;-balls B; :=
B(zi, R;), i € I C N. Then there exists a collection of Lipschitz functions n;, i € I,
so that:

2.0<m; <1, Viel.

3. Supp(n;) C B(zi, R;), Viel.

PrOOF. For each i define the bump-function using Lemma 2.30:

@Z' = (JDCU/L',R/L"
Then the function
P = Z Pi
iel
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is positive on X. Finally, define

2
It is clear that the functions n; satisfy all the required properties. [

REMARK 2.32. Since the collection of balls {B;} is locally finite, it is clear that
the function

L(z):= sup Lip(n;)
i€l,m;(x)#0

is bounded on compact sets in X, however, in general, it is unbounded on X. We
refer the reader to the equation (2.6) for the definition of Lip(;).
From now on, we assume that X is a proper metric space.

PROPOSITION 2.33. Lip,,.(X) is a dense subset in C(X), the space of contin-
wous functions X — R, equipped with the compact-open topology.

PrOOF. Fix a base-point o € X and let A,,,n € N, denote the annulus
{r € X :n—1<dist(z,0) < n}.

Let f be a continuous function on X. Pick € > 0. Our goal is to find a locally
Lipschitz function g on X so that |f(z) — g(x)| < € for all x € X. Since f is
uniformly continuous on compact sets, for each n € N there exists 6 = §(n, €) such
that

V,o' € Ay, dist(z,2") <§ = |f(z) — f(2)] <e.
Therefore for each n we find a finite subset
Xn =A{xn1, s Tnm, } CAp

so that for r := d(n,€)/4, R := 2r, the open balls B,, ; := B(z, ;,r) cover A,. We
reindex the set of points {z, ;} and the balls B,, ; with a countable set I. Thus, we
obtain an open locally finite covering of X by the balls B;,j € I. Let {n;,j € I}
denote the corresponding Lipschitz partition of unity. It is then clear that

g9(z) == Zm(x)f(%)
icl
is a locally Lipschitz function. For x € B; let J C I be such that
© ¢ B(xj, Rj), Vig¢J
Then |f(z) — f(z;)| < € for all j € J. Therefore
l9(x) = f@)| <Y mi(@)|f(w)) = fl@)| <ed mix) =€y mila) =

jed JjeJ iel

It follows that |f(x) — g(z)| < € for all x € X. O

A relative version of Proposition 2.33 also holds:

PROPOSITION 2.34. Let A C X be a closed subset contained in a subset U which
is open in X. Then, for every e > 0 and every continuous function f € C(X) there
exists a function g € C(X) so that:

1. g is locally Lipschitz on X \ U.

2. |If —gll <e.

3. 9’,4 = f’A'
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PRrROOF. For the closed set V' := X \ U pick a continuous function p = pa vy
separating the sets A and V. Such a function exists, by Lemma 2.2. According to
Proposition 2.33, there exists h € Lip;,.(X) such that || f — k|| < e. Then take

9(x) := p(x)h(z) + (1 = p(x)) f (2).
We leave it to the reader to verify that g satisfies all the requirements of the propo-
sition. (]

2.5.2. Bi—Lipschitz maps. The Banach-Mazur distance. A map of met-
ric spaces f : X — Y is L—bi-Lipschitz, for some constant L > 1, if it is a bijection
and both f and f~! are L-Lipschitz for some L; equivalently, f is surjective and
there exists a constant L > 1 such that for every x,2’ € X

1
Zdistx(x, 2') < disty (f(x), f(2')) < Ldistx (z,2') .
A bi-Lipschitz embedding is defined by dropping surjectivity assumption.

EXAMPLE 2.35. Let (M, g) and (N, h) be two connected Riemannian manifolds
(see section 3.3). Then a diffeomorphism f : M — N is L-bi-Lipschitz if and only

if
L—lg,/ﬁgL.

In other words, for every tangent vector v € T'M,
Lo )

=l

Q

|<L.

If there exists a bi-Lipschitz map f : X — Y, the metric spaces (X, distx) and
(Y, disty ) are called bi-Lipschitz equivalent or bi-Lipschitz homeomorphic. If disty
and diste are two distances on the same metric space X such that the identity map
id : (X,dist;) — (X, dists) is bi-Lipschitz, then we say that dist; and diste are
bi-Lipschitz equivalent.
ExXAMPLES 2.36. (1) Any two metrics dq, d2 on R™ defined by two norms
on R™ are bi-Lipschitz equivalent.

(2) Any two left-invariant Riemannian metrics on a connected real Lie group
define bi-Lipschitz equivalent distance functions.

ExaAMPLE 2.37. If T : V — W is a continuous linear map between Banach

spaces, then
Lip(T) = || T,
the operator norm of T'.

The Banach-Mazur distance distpas(V, W) between two Banach spaces V' and

W is
1 ( inf (|7 - |7 )
og (it (ITI-I71)).
where the infimum is taken over all bounded invertible linear maps T : V. — W

with bounded inverse. The reader can think of dist g5, as a Banach-space analogue
(and precursor) of the Gromov-Hausdorff distance between metric spaces.

EXERCISE 2.38. Show that distgas is a metric on the set of n-dimensional
Banach spaces.
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THEOREM 2.39 (John’s Theorem, see e.g. [MS86], Theorem 3.3). For every
pair of n-dimensional normed vector spaces V, W, distgp (V, W) < log(n).

2.6. Hausdorff dimension

In this section we review the concept of Hausdorff dimension for metric spaces.
We let w,, denote the volume of the unit Euclidean n-ball. The function w,
extends to Ry by the formula

7.‘.oz/2

T T(1+/2)

Wa

where I' is the Gamma-function.
Let K be a metric space and o > 0. The a—Hausdorff measure pio(K) is defined
as

(2.7) We ,h_% inf Z re,

where the infimum is taken over all countable coverings of K by balls B(x;,r;),
r; < r. The motivation for this definition is that the volume of the Euclidean r-
ball of dimension n € N is w,r™; hence, the Lebesgue measure of a (measurable)
subset of R™ equals its n-Hausdorff measure. Euclidean spaces, of course, have
integer dimension, the point of Hausdorff measure and dimension is to extend the
definition to the non-integer case.

EXERCISE 2.40. Suppose that f : X — Y is an L-Lipschitz map between metric
spaces. Show that

fra(f(X)) < L pa(X).
The Hausdorff dimension of the metric space K is defined as:
dimpy (K) := inf{a: po(K) = 0}.
EXERCISE 2.41. Verify that the Euclidean space R™ has Hausdorff dimension n.

We will need the following theorem:

THEOREM 2.42 (L. Sznirelman; see [HW41]). The covering dimension dim(X)
of a proper metric space X is at most the Hausdorff dimension dimg(X).

Let A C X be a closed subset. Recall that D" := B(0,1) C R" denotes the
closed unit ball in R™. Define
C(X,A;B™) :={f € C(X,D") : f(A) cS"!=0oD"}.
An immediate consequence of Proposition 2.34 is the following.

COROLLARY 2.43. For every function f € C(X,A;D™) and open set U C X
containing A, there exists a sequence of functions g; € C(X, A;D™) such that for
all i € N:

1. gi‘A = f‘A'
2. gi € Lip,.(X \ U;R™).

For a continuous map f: X — D™ define A = Ay as
A= fHsmh).
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DEFINITION 2.44. The map f is inessential if it is homotopic rel. A to a map
f': X — S" 1. An essential map is the one which is not inessential.

We will be using the following characterization of the covering dimension, due
to P. S. Alexandrov:

THEOREM 2.45 (P. S. Alexandrov, see Theorem III.5 in [Nag83]). A space X
satisfies dim(X) < n if and only if every continuous map f : X — D" is inessential.

We are now ready to prove Theorem 2.42.

Proof of Theorem 2.42. Suppose that dimg(X) < n. We will prove that
dim(X) < n as well. We need to show that every continuous map f : X — D" is
inessential. Let D denote the annulus

{zreR":1/2 < |z] < 1}.

Set A:= f~1(S" 1Y) and U := f~1(D).

Take the sequence g; given by Corollary 2.43. Since each g; is homotopic to f
rel. A, it suffices to show that some g; is inessential. Since f = lim;_,, g;, it follows
that for all sufficiently large 1,

G(U) N B (o, ;) )

We claim that the image of every such g; misses a point in B (O, %) Indeed, since
dimg (X) < n, the n-dimensional Hausdorff measure of X is zero. However, each

gi’X\U

is locally Lipschitz. Therefore g;(X \ U) has zero n-dimensional Hausdorff (and
hence Lebesgue) measure, see Exercise 2.40. It follows that g;(X) misses a point
y in B (0,%). Composing g; with the retraction D" \ {y} — S"~! we get a map

’3
f': X — S ! which is homotopic to f rel. A. Thus f is inessential and, therefore,
dim(X) < n. O

2.7. Norms and valuations

In this and the following section we describe certain metric spaces of algebraic
origin that will be used in the proof of the Tits alternative. We refer the reader to
[Lan02, Chapter XII| for more details.

A norm or an absolute value on a ring R is a function |- | from R to R, which
satisfies the following axioms:

1. ]z|=0 < z=0.

2. |zyl = |2l - lyl.

3. |o +yl < fa| + yl.

An element € R such that |x| = 1 is called a wnit. A norm |- | is called
non-archimedean if it satisfies the wltrametric inequality

|+ y| < max(|z], y[).

According to Ostrowski’s theorem, [Cas86], Theorem 1.1, if (F,|| -]|) is a
normed field which is not non-archimedean, then there exists an isometric homo-
morphic embedding

Fo(E- D) = (G- %),
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where C is equipped with the Euclidean norm given by a power of the absolute
value of complex numbers, |- |[*, a > 0.

Such norms || - || are called archimedean. We will be primarily interested in
normed archimedean fields which are R and C with the usual norms given by the
absolute value. In the case F' = Q, Ostrowski’s theorem can be made even more
precise: Every norm || - || on Q arises as a power of the Euclidean norm or of a
p-adic norm; see [Cas86]|, Theorem 2.1.

Below is an alternative approach to non-archimedean normed rings R. A func-
tion v : R — RU {oo} is called a wvaluation if it satisfies the following axioms:

l.ov(z) =00 < z=0.

2. v(zy) = v(z) +v(y).

3. v(z +y) = min(v(z), v(y)).

Therefore, one converts a valuation to a non-archimedean norm by setting
|z| = @) g £, |0] =0,
where ¢ > 0 is a fixed real number.

REMARK 2.46. More generally, one also considers valuations with values in
arbitrary ordered abelian groups, but we will not need this.

A normed ring R is said to be local if it is locally compact as a metric space; a
normed ring R is said to be complete if it is complete as a metric space. A norm
on a field F is said to be discrete if the image I' of | - | : F* = F\ {0} - R* is an
infinite cyclic group. If a norm is discrete, then an element m € F such that |7 is
a generator of I' satisfying |7| < 1, is called a uniformizer of F. If F is a field with
valuation v, then the subset

O, ={zeF:v(z)>0}
is a subring in F', the valuation ring or the ring of integers in F.

EXERCISE 2.47. 1. Verify that every non-zero element of a field F' with discrete
norm has the form 7*u, where u is a unit.
2. Verify that every discrete norm is non-archimedean.

Below are the two main examples of fields with discrete norms:

1. The field Q, of p-adic numbers. Fix a prime number p. For each number
x = q/p" € Q (where both numerator and denominator of ¢ are not divisible by
p) set |z|, := p™. Then |-|, is a non-archimedean norm on Q, called the p-adic
norm. The completion of Q with respect to the p-adic norm is the field of p-adic
numbers Q,,. The ring of p-adic integers O,, intersects Q along the subset consisting
of (reduced) fractions /- where m,n € Z and m is not divisible by p. Note that p

is a uniformizer of Q,.

REMARK 2.48. We will not use the common notation Z, for O,, in order to
avoid the confusion with finite cyclic groups.

EXERCISE 2.49. Verify that O, is open in Q,,. Hint: Use the fact that |z+y|, <
1 provided that |z|, < 1,|y,| < 1.

Recall that one can describe real numbers using infinite decimal sequences.
There is a similar description of p-adic numbers using “base p arithmetic.” Namely,
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we can identify p-adic numbers with semi-infinite Laurent series
oo
Z k
agp,
k=—n

where n € Z and a, € {0,...,p—1}. Operations of addition and multiplication here
are the usual operations with power series where we treat p as a formal variable, the
only difference is that we still have to “carry to the right” as in the usual decimal
arithmetic.

With this identification, |z|, = p™, where a_,, is the first non-zero coefficient in
the power series. The corresponding valuation is v(z) = —n, ¢ = p. In particular,
the ring O, is identified with the set of series

o0
5 o
k=0
REMARK 2.50. In other words, one can describe p-adic numbers as left-infinite
sequences of (base p) digits
SR o R R TR A R A

where Vi, a; € {0,...,p — 1}, and the algebraic operations require “carrying to the
left” instead of carrying to the right.

EXERCISE 2.51. Show that in Q,,
= 1
Zpk 1o p
k=0
2. Let A be a field. Consider the ring R = A[t,t™!] of Laurent polynomials

&)= axt".
k=n

Set v(0) = oo and for non-zero f let v(f) be the least n so that a, # 0. In other
words, v(f) is the order of vanishing of f at 0 € R.

EXERCISE 2.52. 1. Verify that v is a valuation on R. Define |f| := e~ ")),
2. Verify that the completion R of R with respect to the above norm is naturally
isomorphic to the ring of semi-infinite formal Laurent series

f= Z ayt®,
k=n
where v(f) is the minimal n such that a,, # 0.

Let A(t) be the field of rational functions in the variable t. We embed A(t) in

R using the rule
1 o0
e 1 nt’n.
1—at + Z “
n=1
If A is algebraically closed, every rational function is a product of a polynomial
function and several functions of the form
1

ai—t’
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so we obtain an embedding A(t) < R in this case. If A is not algebraically closed,
proceed as follows. First, construct, as above, an embedding ¢ of A(t) to the
completion of Aft,t71], where A is the algebraic closure of A. Next, observe that
this embedding is equivariant with respect to the Galois group Gal(A/A), where
o € Gal(A/A) acts on Laurent series

o0
f:Zaktk,aeﬁ,

k=n

by
oo
f7=>agth.
k=n

Therefore, ((A(t)) C R, R = Alt,t™].

In any case, we obtain a norm on A(t) by restricting the norm in R. Since
R C (A(t), it follows that R is the completion of tA(t). In particular, R is a
complete normed field.

EXERCISE 2.53. 1. Verify that R is local if and only if A is finite.

2. Show that ¢ is a uniformizer of R. R

3. At the first glance, it looks like Q,, is the same as R for A = Z,, since elements
of both are described using formal power series with coefficients in {0,...,p — 1}.
What is the difference between these fields?

The same construction works with Laurent polynomials of several variables.
We let A be a field, T = {¢1,...,%;} a finite set of variables and consider first the
ring of Laurent polynomials:

Al
in these variables. The degree of a monomial
atht . ke
with a # 0 is defined as the sum
ki+ ...+ ky.

For a general Laurent polynomial p in the variables T', set v(p) = d iff d is the
lowest degree of all non-zero monomials in p. With this definition, one again gets
a complete norm |- | on the field A(ty,...,t,) of rational functions in the variables
t;, where

Ip| = e v®,

EXERCISE 2.54. If A is finite, then the normed field (A(¢1,...,t,),| - |) is local.

Similarly, we have the following lemma:
LEMMA 2.55. Q, is a local field.

Proor. It suffices to show that the ring O,, of p-adic integers is compact. Since
Q, is complete, we only need to show that O, is closed and totally bounded, i.e.
for every € > 0, O, has a finite cover by closed e-balls. The fact that O, is closed
follows from the fact that |- |, : @, — R is continuous and O, is given by the
inequality O, = {z : |z|, < 1}.
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Let us check that O, is totally bounded. For ¢ > 0 pick ¥ € N such that
p~* < e. The ring Z/p*Z is finite, let 21,...,2xy € Z\ {0} (where N = p*) denote
representatives of the cosets in Z/p*Z. We claim that the set of fractions

5
wij:—l, 1<i,j<N,
17
forms a p~F-net in Op N Q. Indeed, for a rational number = € O, N Q, find
s,t € {z1,...,2n} such that

s=m,t=n, mod p*.

Then
m s &
——-€p“0
n t P
and, hence,
m s K
™o
n tp

Since O, N Q is dense in O,, it follows that

N
OpC U E(’Ujij,é). O
i,j=1
For the next exercise, recall Brouwer’s Theorem (see e.g. [HY88, Corollary
2-98]) that every compact metrizable totally disconnected and perfect topological
space is homeomorphic to the Cantor set.

EXERCISE 2.56. Show that O, is homeomorphic to the Cantor set. Hint: Verify
that O, is totally disconnected and perfect.

2.8. Norms on field extensions. Adeles

A proof of the following theorem can be found e.g., in [Lan02, Chapter XII.2,
Proposition 2.5]|.

THEOREM 2.57. Suppose that (E,| - |) is a normed field and E C F is a finite
extension. Then the norm | - | extends to a norm |- | on F and this extension is
unique. If (E,|-|) s a local field, then so is (F,|-|).

We note that the statement about local fields follows from the fact that if V' is a
finite-dimensional normed vector space over a local field, then V is locally compact.

Norms on number fields are used to define rings of adeles of these fields. We
refer the reader to [Lan64, Chapter 6] for the detailed treatment of adeles.

We let Nor(Q) denote the set of normson Q, |-|: Q — R, see Section 2.7. If
F is an algebraic number field (a finite algebraic extension of Q), then we let Nor(F)
denote the set of norms on F extending the ones on Q. We will use the notation v
and |- |, for the elements of Nor(F) and O, for the corresponding rings of integers;
we let v, denote the p-adic norm and its unique extension to F. Note that for each
x € Q, xz € O, (the ring of p-adic integers) for all but finitely many p’s, since x has
only finitely many primes in its denominator.

For each v we let F,, denote the completion of F with respect to v and set

N, =1[F,:Q,].
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LEMMA 2.58 (Product formula). For each x € F\ {0} we have
I @) =1

vEeNor(F)

PrOOF. We will prove this in the case F = Q; the reader can find the proof
for general number fields in [Lan64, Chapter 6]. If x = p is prime, then |p| = p
for the archimedean norm, v(p) = 1 if v # v, is a non-archimedean norm and
vp(p) = 1/p. Thus, the product formula holds for prime numbers z. Since norms
are multiplicative functions from Q* to R, the product formula holds for arbitrary
x # 0. |

For a non-archimedean norm v we let
O,={z€eF,:|z|, <1}
denote the ring of integers in F,. Since v is non-archimedean, O, is both closed

and open in F,.

DEFINITION 2.59. For a finitely generated algebraic number field F, the ring of
adeles is the restricted product

A(F) = f[ F,,

vENor(F)

i.e. the subset of the direct product

(2.8) H F,

veNor(F)

which consists of sequences whose projection to F,, belongs to O, for all but finitely
many v’s. The ring operations on A(F) are defined first on sequences in the infinite
product which have only finitely many non-zero terms and then extends to the rest
of A(F) by taking suitable limits.

Note that in the case F' = Q, the A(Q) is the restricted product

R x H Q,.

p is prime

Adelic topology. Open subsets in the adelic topology on A(FF) are products
of open sets of I, for finitely many »’s (including all archimedean ones) and of
O,’s for the rest of v’s. Then the ring operations are continuous with respect to
this topology. Accordingly, we topologize the group GL(n, A(F)) using the product
topology on A(F)"2. With this topology, GL(n, A(F)) becomes a topological group.
Tychonoff’s theorem implies compactness of product sets of the form

I ¢
veNor(F)
where C,, C F,, is compact for each v, which equals to O, for all but finitely many
v’s,
THEOREM 2.60 (See e.g. Chapter 6, Theorem 1 in [Lan64|). The image ((F)
of the diagonal embedding F — A(F) is a discrete subset in A(F).
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PRrROOF. Since ((F) is an additive subgroup of the topological group A(F), it
suffices to verify that 0 is an isolated point of ¢(F). Take the archimedean norms
Viy...,Vm € Nor(F) (there are only finitely many of them since the Galois group
Gal(F/Q) is finite) and consider the open subset

U=][{z €F., :vi(z) < 1/2} x 11 0,
i=1 peNor (F)\{v1,....um }
of A(F). Then for each (z,) € U,

I v@)<1/2<1

veNor(F)

Hence, by the product formula, the intersection of U with the image of F in A(TF)
consists only of {0}. O

In order to appreciate this theorem, note that ' = Q is dense in the completion
of @Q with respect to every norm. We also observe that this theorem fails if we equip
A(F) with the topology induced from the product topology on the product of all
F,’s.

COROLLARY 2.61. The image of GL(n,F) under the embedding ¢ : GL(n,F) —
GL(n,A(F)) (induced by the diagonal embedding F — A(F)) is a discrete subgroup.

Even though, the adelic topology on A(IF) is strictly stronger than the product
topology, we note, nevertheless, that for a finitely generated subgroup L < F, the
image of L under the diagonal embedding ¢ : F — A(F) projects to O, for all but
finitely many »’s (since the generators of L have only finitely many denominators).
Thus, the restriction of the adelic topology to ¢(L) coincides with the restriction
of the product topology. The same applies for finitely generated subgroups I' <
GL(n,TF), since such I is contained in GL(n,F’) for a finitely generated subfield F/
of F. We, thus, obtain:

COROLLARY 2.62. Suppose that T' < GL(n,TF) is a finitely generated subgroup
which project to a relatively compact subgroup of GL(n,TF,) for every norm v. Then
T is finite.

PROOF. Since T is finitely generated, the restriction of the product topology

on
H GL(n,F,)
veNor(F)

to +(T") coincides with the adelic topology, since I" projects to GL(n, O,) for all but
finitely many v’s. In the adelic topology, ¢(I") is discrete, while, in the product
topology, it is a closed subset of a set C, which is the product of compact subsets of
the groups GL(n,F,). Hence, by Tychonoff’s Theorem, C is compact. Thus, ¢+(T")
is a discrete compact topological space, which implies that «+(T") is finite. Since ¢ is
injective, it follows that I' is finite as well. O

COROLLARY 2.63. Suppose that a € Q is an algebraic integer, i.e. a root of a
monic polynomial p(x) with integer coefficients. Then either « is a root of unity
or p(x) has a root B such that |B| > 1. In other words, there exists an element
o € Gal(Q/Q) which sends o to an algebraic number B with non-unit absolute
value.
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PROOF. Let F = Q(«) and consider the cyclic subgroup I' < Q* generated by
a. Since a € Op, we conclude that a belongs to the ring of integers O, for each
non-archimedean norm v of F. Thus, I" projects to the compact subgroup O, of
A(TF). For each archimedean norm v, we have |a|, = |o(«)|, where o0 € Gal(F/Q).
However, o(«) is another root of p(z). Therefore, either there exists a root /8 of
p(x) such that || # 1, or T' projects to a compact subgroup of F,, for each v, both
archimedean and non-archimedean. In the latter case, by Corollary 2.62, the group
I is finite. Hence, « is a root of unity. |

Our next goal is to extend this corollary to the case of general finitely gener-
ated fields, including transcendental extensions of Q, as well as fields of positive
characteristic. The following theorem is Lemma 4.1 in [Tit72]:

THEOREM 2.64. Let E be a finitely generated field and suppose that o € E is
not a root of unity. Then there exists an extension (F,|-|) of E, which is a local
field with the norm | - |, such that |a| # 1.

ProoOF. Let P C E denote the prime subfield of E. Since E is finitely generated
over [P, there is a finite transcendence basis T' = {t;,...,t,} for E over P and E
is a finite extension of P(T') = P(ty,...,t,) (cf. Chapter VI.1 of(Hun80]). Here
P(ty,...,t,) is isomorphic to the field of rational functions with coefficients in P
and variables in 7. We also let 7" denote a (finite) transcendence basis of E over
P(a).

There are two main cases to consider.

Case 1: E has characteristic p > 0, equivalently, P = Z,, for some p. If o were
to be algebaric over P, then P(«) would be finite and, hence, o = aF for some
i # k, implying that « is a root of unity. This is a contradiction. Therefore, « is
transcendental over P and, hence, we can assume that « is an element of T'. Define
the ring A = P[T] and let I C A denote the ideal generated by T. As we explained
in the previous section, there is a (unique) valuation v on P(T") (with the norm |- |)
such that

via) =k <= acIF\ I
By the construction, v(a) = 1 and, hence, |a| # 1. The completion of P(7') with
respect to the norm | - | is a local field, since P is finite. We then extend the norm
to a norm on E; the completion with respect to this norm is again a local field.

Case 2: E has zero characteristic, equivalently, P = Q. Suppose, first, that «
is a transcendental number. Then there exists an embedding

Q(a) = C

which sends « to a transcendental number whose absolute value is > 1, e.g., a > 7.
This embedding extends to an embedding E — C, thereby finishing the proof.

Suppose, therefore, that « is an algebraic number, « € Q. Let p(z) be the
minimal monic polynomial of «.

Subcase 2a. Assume first that p has integer coefficients. Then, since « is not
a root of unity, by Corollary 2.63, one of the roots S of p has absolute value > 1.
Consider the Galois automorphism ¢ : Q(a) — Q(a) sending « to 3. We then
extend ¢ to an embedding
Y E(T' U{a}) — C,
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by sending the elements of 7" to complex numbers which are algebraically indepen-
dent over Q(«). Lastly, since E(T" U {a}) C E is an algebraic extension and C is
algebraically closed, the embedding v extends to the required embedding E — C.

Subcase 2b. Lastly, we consider the case when p € Q[z] has a non-integer
coefficient. We consider the infinite cyclic subgroup generated by a in Q(«)* and
the embedding

(o) = Qo) — Ay,
where A, in the ring of adeles A, of the field Q(«a); here Q(a) — A, is the
diagonal embedding. Since the subgroup Q(a) < A,, is discrete and («) is an infinite
subgroup, Tychonoff compactness theorem implies that the projection of («) to at
least one of the factors of A, is unbounded. If this factor were archimedean, we
would obtain a Galois embedding Q(«) — C sending « to 5 € C whose absolute
value is different from 1. This situation is already handled in the Subcase 2a.
Suppose, therefore, that there is a prime number p such that (@) is an unbounded
subgroup of the p-adic completion of Q(«), which means that |a|, # 1, where | - |,
is the extension of the p-adic norm to Q(«). Next, extending the norm | - |, from
Q(a) to E and then taking the completion, we obtain an embedding to E to a local
field, o has non-unit norm. O

2.9. Metrics on affine and projective spaces

In this section we will use complete normed fields to define metrics on affine and
projective spaces. Consider the vector space V = F™ over a complete normed field F,
with the standard basis ey, ..., e,. We equip V with the usual Euclidean/hermitian
norm in the case F is archimedean and with the max-norm

‘(xla”wxn” = m?X|xZ‘

if F is non-archimedean. We let (-, -) denote the standard inner/hermitian product
on V in the archimedean case.

EXERCISE 2.65. Suppose that F is non-archimedean. Show that the metric
|v —w| on V satisfies the ultrametric triangle inequality.

If F is non-archimedean, define the group K = GL(n, O), consisting of matrices
A such that A, A= € Mat,,(0).

EXERCISE 2.66. If F is a non-archimedean local field, show that the group K
is compact with respect to the subspace topology induced from Mat,, (F) = Fr°.

LEMMA 2.67. The group K acts isometrically on V.

Proor. It suffices to show that elements g € K do not increase the norm on
V. Let a;; denote the matrix coefficients of g. Then, for a vector v =", vie; € V,
the vector w = g(v) has coordinates

wj = Z ajivi.
i
Since |a;;| < 1, the ultrametric inequality implies
[l = maxfuj], - fuw;| < maxajivil < o

Thus, |g(v)] < |v]. O
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If F is archimedean, we let K < GL(V') denote the orthogonal/hermitian sub-
group preserving the inner/hermitian product on V. The following is a standard
fact from the elementary linear algebra, which follows from the spectral theorem,
see e.g. [Str06, §6.3]:

THEOREM 2.68 (Singular Value Decomposition Theorem). IfF is archimedean,
then every matric M € End(V') admits a singular value decomposition

M =UDYV,

where U,V € K and D is a diagonal matriz with nonnegative entries arranged in
the descending order. The diagonal entries of D are called the singular values of
M.

We will also need a (slightly less well-known) analogue of the singular value
decomposition in the case of non-archimedean normed fields, see e.g. [DF04, §12.2,
Theorem 21]:

THEOREM 2.69 (Smith Normal Form Theorem). Let F be a field with discrete
norm, and uniformizer © and ring of integers O. Then every matriz M € Mat,, (F)
admits a Smith Normal Form decomposition

M = LDU,
where D is diagonal with diagonal entries (dy,...,dy), d; = w"i
ki >2ke > ... = kn,

and L,U € K = GL(n,0). The diagonal entries d; € F are called the invariant
factors of M.

PRroOF. First, note that permutation matrices belong to K; the group K also
contains upper and lower triangular matrices with coefficients in O, whose diagonal
entries are units in F. We then apply Gauss Elimination Algorithm to the matrix
M. Note that the row operation of adding the z-multiple of the i-th row to the
j-th row amounts to multiplication on the left with the lower-triangular elementary
matrix E;;(z) with the ij-entry equal z. If z € O, then E;; € K. Similarly,
column operations amount to multiplication on the right by an upper-triangular
elementary matrix. Observe also that dividing a row (column) by a unit in F
amounts to multiplying a matrix on left (right) by an appropriate diagonal matrix
with unit entries on the diagonal.

We now describe row operations for the Gauss Elimination in detail (column
operations will be similar). Consider (non-zero) i-th column of a matrix A €
End(F™). We first multiply M on left and right by permutation matrices so that
a; has the largest norm in the i-th column. By dividing rows on A by units in F,
we achieve that every entry in the i-th column is a power of 7. Now, eliminating
non-zero entries in the i-th column will require only row operations involving m%#-
multiples of the i-th row, where s;; > 0, i.e. 79 € O. Applying this form of Gauss
Algorithm to M, we convert M to a diagonal matrix A, whose diagonal entries are
powers of 7 and

A=L'MU', L' M€ GL(n,0).

Multiplying A on left and right by permutation matrices, we rearrange the diagonal
entries to have weakly decreasing exponents. (I
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Note that both singular value decomposition and Smith normal form decom-
position both have the form:

M=UDV, UVEK,

and D is diagonal. Such decomposition of the Mat,, (F) is called the Cartan decom-
position. To simplify the terminology, we will refer to the diagonal entries of D as
singular values of M in both archimedean and non-archimedean cases.

EXERCISE 2.70. Deduce the Cartan decomposition in F = R or F = C, from the
statement that given any Euclidean/hermitian bilinear form ¢ on V' = F", there
exists a basis orthogonal with respect to ¢ and orthonormal with respect to the
standard inner product

1y + o A T,

We now turn our discussion to projective spaces. The F-projective space P =
FP"~! is the quotient of F™ \ {0} by the action of F* wvia scalar multiplication.

NOTATION 2.71. Given a non-zero vector v € V let [v] denote the projection of
v to the projective space P(V); similarly, for a subset W C V' we let [W] denote the
image of W \ {0} under the canonical projection V' — P(V'). Given an invertible
linear map g : V — V', we will retain the notation g for the induced projective map
P(V)— P(V).

Suppose now that F is a normed field. Our next goal is to define the chordal
metric on P(V) = FP"~!. In the case of an archimedean field F, we define the
Euclidean or hermitian norm on V' AV by declaring basis vectors

egNej,l<i<j<n
to be orthonormal. Then
. 2
lo A w]? = [vP|w]? = (v, w) (w,v) = (|v] - |u] - | sin(p)])

where ¢ = Z(v,w). In other words, |v Aw| is the area of the parallelogram spanned
by the vectors v and w.

In the case when F is non-archimedean, we equip V AV with the max-norm so
that

[v A wl :Hile}x|xiyj — x;Yi]
where v = (z1,...,Zn), W= (Y1,---,Yn)-

DEFINITION 2.72. The chordal metric on P(V') is defined by

v Aw

d([v]; [w]) =

In the non-archimedean case this definition is due to A. Néron [Nér64].

BRI

EXERCISE 2.73. 1. If F is non-archimedean, show that the group GL(n,O)
preserves the chordal metric.

2. If F = R, show that the orthogonal group preserves the chordal metric.

3. If F = C, show that the unitary group preserves the chordal metric.

4. Show that each g € GL(n,K) is a Lipschitz homeomorphism with respect
to the chordal metric.
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It is clear that d([v], [w]) = d([w], [v]) and d([v], [w]) = 0 if and only if [v] = [w].
What is not so obvious is why d satisfies the triangle inequality. Note, however,
that in the case of a non-archimedean field F,

d([v], [w]) <1

for all [v], [w] € P = P(V). Indeed, pick unit vectors v, w representing [v], [w]; in
particular, v;, w; belong to O for all 4, j. Then, the denominator in the definition
of d([v], [w]) equals 1, while the numerator is < 1, since O is the ring of integers.

PrOPOSITION 2.74. If F is non-archimedean, then d satisfies the triangle in-
equality.

PrOOF. We will verify the triangle inequality by giving an alternative descrip-
tion of the function d. We define affine patches on P to be the affine hyperplanes

Aj={zeV:iz; =1} CV

together with the (injective) projections A; — P. Every affine patch is, of course,
just a translate of F*~1, so that e; is the translate of the origin. We, then, equip
A; with the restriction of the metric |[v —w| from V. Let B; C A; denote the closed
unit ball centered at e;. In other words,

Bj=A;nO™.

We now set d;(x,y) = |z —y| if 2,y € B; and d;(x,y) = 1 otherwise. It follows
immediately from the ultrametric triangle inequality that d; is a metric. Define for
[x], [y] € P the function dist([z], [y]) by:

1. If there exists j so that z,y € B; project to [z],[y], then dist([z],[y]) :=
dj (:Ca y) :

2. Otherwise, set dist([z], [y]) = 1.

If we knew that dist is well-defined (a priori, different indices j give different
values of dist), it would be clear that dist satisfies the ultrametric triangle inequality.
Proposition will, now, follow from:

LEMMA 2.75. d([z], [y]) = dist([z], [y]) for all points in P.

PRrROOF. The proof will break in two cases:

1. There exists k such that [z], [y] lift to z, y € By. To simplify the notation, we
will assume that k = n. Since z,y € By, |z;] < 1,|y;| < 1 for all ¢, and z,, =y, = 1.
In particular, |z| = |y| = 1. Hence, for every 1,

|3?i - yi\ = \St?iyn - Cﬁjyn| < mjax \Cciyj - xjyz‘\ < d([a:], [y]),

which implies that
dist([z], [y]) < d([2], [y])-
We will now prove the opposite inequality:
Vi, i |ziy; — 2yl <aci=lr—yl.
There exist z;,z; € F so that
yi=xi(l+z), vy =qx;(1+%),
where, if x; # 0,2; # 0,

Yi — T4 Yi — %y
2= —, zj:g.
Z; &€



We will consider the case x;x; # 0, leaving the exceptional cases to the reader.

Then
’ a a
|Zi|<m7 |Zz|<7|z‘
i J

Computing x;y; — x;y; using the new variables z;, z;, we obtain:

iy — z5yil = iz (14 25) — iz (L4 2)| = [zj25(25 — )] <
a a
s ma il ) < oy mae (27, ) < amax (il ) <
i j

since z;,z; € O.
2. Suppose that (1) does not happen. Since d([z], [y]) < 1 and dist([z], [y]) =1

(in the second case), we just have to prove that

d([=], [y]) = 1.

Consider representatives x, y of points [z], [y] and let 4, j be the indices such that

il = |l [yl = 1yl

Clearly, i,j are independent of the choices of the vectors z,y representing [z], [y].
Therefore, we choose x so that x; = 1, which implies that xx € O for all k. If y; =0
then

lziy; — =5vil = |y,
and | |
max; |1 -y,
d([=].[y)) > — 7+

|31

Thus, we assume that y; # 0. This allows us to choose y € A; as well. Since (1)
does not occur, y ¢ O™, which implies that |y;| > 1. Now,

=1

|lway; — x5l ly; — 51
d([z], ly]) > —H——h— = =
’ EART |31
Since z; € O and y; ¢ O, the ultrametric inequality implies that |y; — x;| = |y;|.
Therefore,

v =5l Il _
131 ;|
and d([z],[y]) = 1. This concludes the proof of lemma and proposition. O

COROLLARY 2.76. If K is non-archimedean, then the metric d on P is locally
isometric to the metric |x — y| on the affine space F"~1.

We now consider real and complex projective spaces. Choosing unit vectors
u, v as representatives of points [u], [v] € P, we get:
d([u], [v]) = sin(£(u, v)),

where we normalize the angle to be in the interval [0, 7]. Consider now three points
[u], [v], [w] € P; our goal is to verify the triangle inequality

d([ul, [w]) < d([u], [v]) + d([v], [w]).
We choose unit vectors u, v, w representing these points so that

Ogazl(u,v)gg, Ogﬂzé(v,w)gg.

47



Then,
v =Z(u,w) <a+p
and the triangle inequality for the metric d is equivalent to the inequality

sin(vy) < sin(a) + sin(3).

We leave verification of the last inequality as an exercise to the reader. Thus, we
obtain

THEOREM 2.77. The chordal metric is a metric on P in both archimedean and
non-archimedean cases.

EXERCISE 2.78. Suppose that F is a normed field (either non-archimedean or
archimedean).

1. Verify that metric d determines the topology on P which is the quotient
topology induced from V' \ {0}.

2. Assuming that F is local, verify that P is compact.

3. If the norm on F is complete, show that the metric space (P, d) is complete.

4. If H is a hyperplane in V' = F", given as Ker f, where f : V' — F is a linear
function, show that

|f(v)]

EIR

2.10. Quasiprojective transformations. Proximal transformations

dist([v], [H])

In what follows, V is a finite-dimensional vector space of dimension n, over a
local field F. Each automorphism g € GL(V) of the vector space V projects to a
projective transformation g € PGL(V), g : P(V) — P(V). Given g, we will always
extend the norm from F to the splitting field E of the characteristic polynomial of
g, in order to define norms of eigenvalues of g.

On the other hand, endomorphisms of V' (i.e. linear maps V' — V) do not
project, in general, to self-maps P(V) — P(V). Nevertheless, if g € End(V) is
a linear transformation of rank r > 0 with kernel Ker(g) and image Im(g), then
g determines a quasiprojective transformation g of P(V'), whose domain dom, is
the complement of P(Ker(g)) and whose image is Img := P(Im(g)). The num-
ber r = rank (g) is called the rank of this quasiprojective transformation. The
subspace Ker, := P(Ker(g)) is the kernel, or the indeterminacy set of g. We let
End(P(V)) denote the semigroup of quasiprojective transformations of P(V'). Rank
1 quasiprojective transformations are quasiconstant maps: Fach quasiconstant map
is undefined on a hyperplane in P(V') and its image is a single point.

EXERCISE 2.79. For h € GL(V) and g € End(V) we have:
Imp, = h(Imy), Kerpy = Kery,
Imgy, = Im,, Kery, = h™!(Kery).
The rank of a quasiprojective transformation can be detected locally:

EXERCISE 2.80. Suppose that g € End(P(V)) and U C dom, C P(V) is a
non-empty open subset. Then

rank (¢g) = dim(g(U)) + 1.
We will topologize End(P(V')) using the operator norm topology on End(V).
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EXERCISE 2.81. 1. The function rank is lower semicontinuous on End(P(V)).

2. A sequence g; converges to g in End(P(V)) if and only if it converges to
¢ uniformly on compacts in dom,. (In particular, each compact C' C dom, is
contained in domg, for all but finitely many 4’s.)

3. Suppose that g € End(V) is such that the dominant eigenvalue A; of g
satisfies |A\;| < 1. Show that the sequence g¥ € End(V) converges to 0 € End(V).
Hint: Show that for any norm on V' and the corresponding norm on End(V') we
have

19" I < [ [*p(k),
where p(k) is a polynomial in k of degree < n — 1.

THEOREM 2.82 (A convergence property). The semigroup End(P(V)) is com-
pact: Each sequence g; € End(P(V)) subconverges to a quasiprojective transforma-
tion.

Proor. We fix a basis in V. In the case when the field F is archimedean we
equip V with the inner product with respect to which the basis is orthonormal. In
the case when F is non-archimedean we equip V with the maximum-norm:

[[V|lmaz = max |v;],v = (v1, ..., vp).
=1 n

,,,,

In either case, we equip V with the operator norm defined via || - || and let K <
GL(V) denote a maximal compact subgroup preserving the norm on V. We will
use the Cartan decomposition End(V) = K - Diag(V) - K: Each g € End(V) has
the form g = kyayk;, where k,, kj belong to the subgroup K < GL(V) and a, is
a diagonal transformation whose diagonal entries are the singular values of g, see
Section 2.9. Assuming g # 0, a, # 0 as well and, by replacing g with its scalar
multiple (which does not affect the corresponding quasiprojective endomorphism),
we can assume that the dominant eigenvalue of a4 equals 1, i.e. |lagl| = 1. We
apply this to elements of a sequence g; € End(P(V)) and obtain:

9i = kgiagiklgi’ ||agz|| =1

Since F is a locally compact field, the sequences kg, , a,,, kj, subconverge in End(V):
The limits k, k" of convergent subsequences of k,,, kj, belong to the group K, while
ag4, subconverges to an endomorphism a of the unit norm, in particular, this limit
is different from 0. Thus, the sequence (g;) subconverges to the non-zero endomor-

phism kak’. O
LEMMA 2.83. Suppose that (g;) is a sequence in GL(V') converging to a quasi-
constant map §. Then
lim Lip(g;) = 0
71— 00
uniformly on compacts in dom(g). In other words, for every compact
Cc dOmg

we have y
(). a
sup (9i(), 9:(y)) -0
z,y€C,x#Yy d(m,y)

PROOF. In view of the Cartan decomposition, it suffices to analyze the case
when each g; is a diagonal matrix with the diagonal entries \; = 1,As,..., Ap,
satisfying

12Xl =200 2 (Al
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such that
hm )\2’1' =0.

1—00
In particular, the maps g; preserve the affine hyperplane

A ={(1,2za,...,2,) : x2,..., 2, €EF}
in V. We will identify A; with
domy C P(V)
and, accordingly, lift C' to a compact subset (again denoted by C) in A;.

We first consider the case of a non-archimedean field F. We will use the action
of g; on A; in order to analyze the contraction properties of g;. Since the sequence
g; restricted to C' converges uniformly to e, for all sufficiently large i, g;(C) is
contained in the unit ball centered at e;. In view of Lemma 2.75, it is clear that

the maps g; do not increase distances between points in A; (measured in the metric
dy on Ay). Furthermore, for all z,y € B(e1,1) C A;, we have

(2.9) di(gi(z), 9i(y)) < A2,idi(,y)

and, hence, the Lipschitz constant of g; converges to zero.

Consider now the archimedean case. As in the non-archimedean case, we let
d; denote the restriction to A; of the metric defined via the maximum-norm on V.
We leave it to the reader to check the inequalities:

|z —yl

X
|| |yl
for all points x,y € A; satisfying max(|z|,|y|) < D. This shows that the map

(A1,d1) — (P(V),d) is uniformly bilipschitz on each compact in A;. On the other
hand, the map

D2d1 (xﬂ y)

d([=], [y]) < nllz = Yllmaz = ndi(z,y)

gi: (A1, dy) = (Ay,dy)
satisfies the inequality (2.9) for all z,y € A;. Lemma follows. O

REMARK 2.84. It is useful to note here that while singular values depend on
the choice of a basis in V, the limit quasiprojective transformation of the sequence
(gi) is, of course, independent of the basis. The same applies to the notion of
proximality below.

The most important, for us, example of convergence to a quasiprojective trans-
formation comes from iterations of a single invertible transformation: ¢; = ¢°, i € N.
For g € End(V') we say that an eigenvalue A\ of g is dominant if it has algebraic
multiplicity one and

[Aa] > [ Ak

for all eigenvalues Ay of g different from A;.

DEFINITION 2.85. An endomorphism g is called prozimal if it has a dominant
eigenvalue; an automorphism g € GL(V) is very prozimal if both g and g~ are
proximal elements of GL(V).

For a proximal endomorphism g we let flg C V denote the (one-dimensional)
eigenspace corresponding to the dominant eigenvalue A\; and let Eg C V denote
the sum of the rest of the generalized eigenspaces of g. We project flg and Eg,
respectively, to a point A, and a hyperplane E; in the projective space P(V). We
will refer to A, as the attractive point and Eg the exceptional hyperplane for the
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action of a proximal projective transformation g on P(V). (The reason for the
terminology will become clear from the next lemma.)

It is clear that proximality depends only on the projectivization of g.

We now work out limits of sequences g* € End(P(V)), when g is proximal. We
already know that the sequence (g*) of projective transformations subconverges to
a quasiprojective transformation, the issue is to compute the rank, range and the
kernel of the limit.

LEMMA 2.86. If g € End(V) is a proxzimal endomorphism of P(V), then each
convergent subsequence in the sequence (gk) of projective transformations converges
to a rank 1 (quasiconstant) quasiprojective transformation §. The image Img of §
equals A, := P(A,) and the kernel Ker; of § equals E, := P(E,).

PROOF. We normalize g so that A\; = 1; hence, all eigevalues of g restricted
to E have absolute value < 1. Clearly, the restriction of g to Ag is the identity,
while, by Part 3 of Exercise 2.81, the restriction of the sequence g* to E‘ converges
to the zero linear map. Lemma follows. |

COROLLARY 2.87. Given a prozimal endomorphism g € End(P(V)), for every
for every e > 0 there exists N = N(g) such that for every i > N, the projective
transformation g* € End(P(V)) maps the complement of the e-neighborhood of the
hyperplane E, C P(V') inside the ball

B(Ag,¢)
of radius € and center Ag.
We will be using quasiprojective transformations and proximal elements of
GL(V) in the proof of the Tits’ Alternative, Section 15.4.
2.11. Kernels and distance functions

A kernel on a set X is a symmetric map ¢ : X x X — Ry such that ¢(z, z) = 0.
(Symmetry of 1) means that ¥ (x,y) = ¥(y,x) for all z,y in X.) Fix p € X and
define the associated Gromov kernel

1
cf. section 11.3 for the definition of the Gromov product in metric spaces. Clearly,
Vee X, ky(z,z)=1¢(z,p).

DEFINITION 2.88. 1. A kernel v is positive semidefinite if for every natural
number n, every subset {z1,...,2,} C X and every vector A € R",

(2.10) ii)\ Ajo(xs, ;) 2 0.

2. A kernel v is condmonally negative semidefinite if for every n € N, every
subset {z1,...,2,} C X and every vector A € R" with >_"" | A\; = 0, the following
holds:

i=1 j=1
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This is not a particularly transparent definition. A better way to think about
this definition is in terms of the vector space V' = V(X)) of consisting of functions
with finite support X — R. Then each kernel ¢ on X defines a symmetric bilinear
form on V' (denoted W):

U(fg)= > dla,y)f(@)g(y)-

z,yeX
With this notation, the left hand side of (2.10) becomes simply ¥(f, f), where

Ai = f(z;), Supp(f) C{z1,...,z,} C X.

Thus, a kernel is positive semidefinite if and only if ¥ is a positive semidefinite
bilinear form. Similarly, ¢ is conditionally negative semidefinite if and only if the
restriction of —W to the subspace Vj consisting of functions with zero average, is a
positive semidefinite bilinear form.

NoTATION 2.89. We will use the lower case letters to denote kernels and the
corresponding upper case letters to denote the associated bilinear forms on V.

Below is yet another interpretation of the conditionally negative semidefinite
kernels. For a subset {x1,...,2,} C X define the symmetric matrix M with the
entries

mi; = —(z;, ), 1<1i,j<n.
For A = (A1,...,Ay), the left hand-side of the inequality (2.11) equals
q(A) = ATMA,

a symmetric bilinear form on R™. Then, the condition (2.11) means that ¢ is
positive semi-definite on the hyperplane
n

> Ai=0

i=1
in R™. Suppose, for a moment, that this form is actually positive-definite, Since
¥(zi,z;) = 0, it follows that the form ¢ on R™ has signature (n—1, 1). The standard
basis vectors ey, ..., e, in R™ are null-vectors for ¢; the condition m;; < 0 amounts
to the requirement that these vectors belong to the same, say, positive, light cone.

The following theorem gives yet another interpretation of conditionally negative

semidefinite kernels in terms of embeddings in Hilbert spaces. It was first proven
by J. Schoenberg in [Sch38] in the case of finite sets, but the same proof works for
infinite sets as well.

THEOREM 2.90. A kernel v on X is conditionally negative semidefinite if and
only if there exists a map F : X — H to a Hilbert space such that
U(@,y) = |F(z) - Fy)|.
Here || - || denotes the norm on H. Furthermore, if G is a group acting on X pre-

serving the kernel i then the map F is equivariant with respect to a homomorphism
G — Isom(H).

PROOF. 1. Suppose that the map F exists. Then, for every p = xg € X, the
associated Gromov kernel k,(z,y) equals

kp(z,y) = (F(z), F(y)) ,
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and, hence, for every finite subset {zo,x1,...,2,} C X, the corresponding matrix
with the entries k,(x;, ;) is the Gramm matrix of the set

{yi == F(z;) — F(xo) :i=1,...,n} CH.

Hence, this matrix is positive semidefinite. Accordingly, Gromov kernel determines
a positive semidefinite bilinear form on the vector space V = V(X).

We will verify that v is conditionally negative semidefinite by considering sub-
sets X in X of the form {zg,z1,...,2,}. (Since the point xy was arbitrary, this
will suffice.)

Let f: Xo — R be such that

(2.12) Zf(:ci) =0.

1=0
Thus,
- Z f ().
i=1
Set y; :== F(x;),i =0,...,n. Since the kernel K is positive semidefinite, we have
(2.13) Z lyo — wil® + lyo — w51 — Iy — yj|2) f() f(zj) =

2 k(s @) f(wi) f(z5) > 0.

4,j=1

The left hand side of this equation equals

2 (Z f(%)) : Z|yo — il f(z;) | -

>l =yl f () f(ay).

ij=1
Since f(zo) := — >+, f(x;), we can rewrite this expression as
n
—f(@0)?|yo — yol* — 2 Z|yo—y]\ f(zo)f Z'yz yi|* f (i) f () =
Jj=1 i,j=1

Z yi — yj‘ flxi)f Z Y( -'L'uxj )f(xj)

4,7=0 4,7=0
Taking into account the inequality (2.13), we conclude that
(2.14) Z (@i, ) f(xi) f(z5) < 0.
i,j=0
In other words, the kernel ¥ on X is conditionally negative semidefinite.
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2. Suppose that v is conditionally negative semidefinite. Fix p € X and define
the Gromov kernel

kp(z,y) := = (Y(2,p) +(p,y) — d(z,y)).

N |

The key to the proof is:
LEMMA 2.91. ky(x,y) is a positive semidefinite kernel on X.

ProoFr. Consider a subset Xg = {z1,...,2,} C X and a function f : Xy — R.
a. We first consider the case when p ¢ X(. Then we set zp := p and extend
the function f to p by

f(zo) = — _Zf(a:».

The resulting function f : {zg,...,2,} — R satisfies (2.12) and, hence,

S i ws) f () f(2;) < 0.

i,j=0
The same argument as in the first part of the proof of Theorem 2.90 (run in the
reverse) then shows that

7 k(@i @) f (@) f(x;) > 0.

i,j=1
Thus, k, is positive semidefinite on functions whose support is disjoint from {p}.

b. Suppose that p € Xo, f(p) = ¢ # 0. We define a new function g(z) :=
f(x) — ¢dp. Here ¢, is the characteristic function of the subset {p} C X. Then
p ¢ Supp(g) and, hence, by the Case (a),

Kp(g.9) 2 0.

On the other hand,
Kp(fv f) = F(gvg) + 2CK(976;D) + CQK((SZN (sp) = F(QaQ)?

since the other two terms vanish (as k,(z,p) = 0 for every x € X). Thus, K, is
positive semidefinite. O

Now, consider the vector space V' = V(X) equipped with the positive semi-
definite bilinear form (f,g) = K(f,g). Define the Hilbert space H as the metric
completion of

VI{f eV :(f f)=0}
Then we have a natural map F': X — H which sends « € X to the projection of
the d-function ¢, (the indicator function 1,); we obtain:

(F(z), F(y)) = kp(x,y).

Let us verify now that

(2.15) (F(z) = F(y), F(z) = F(y)) = ¢(z,y).
The left hand side of this expression equals

(F(z), F(z)) + (F(y), F(y)) = 2kp(x,y) = (2, p) + ¢ (y,p) — 2kp(2,y)-
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Then, the equality (2.15) follows from the definition of the Gromov kernel k. The
part of the theorem dealing with G-invariant kernels is clear from the construction.
O

Below we list several elementary properties of positive semidefinite and condi-
tionally negative semidefinite kernels.

LEMMA 2.92. Each kernel of the form (x,y) = f(x)f(y) is positive semidefi-
nite.

ProoF. This follows from the computation:

n n n n 2
Z AiXj(zi, Tj) = (Z Aif(%‘)) ijf(afj) = (Z Aif(%‘)) >0. O
i,j=1 i=1 j=1 i=1

Before proving the next lemma we will need the notion of Hadamard product of
two matrices: If A = (a;;) and B = (b;;) are n X m matrices, then their Hadamard
product, denoted by Ao B is the matrix with the entries (a;;b;;). The main property
of the Hadamard product that we will need is known as the Schur Product Theorem:

THEOREM 2.93 (I. Schur). If A, B are positive semidefinite n X n matrices,
then their Hadamard product A o B is again positive semidefinite.

PrOOF. A proof of Schur’s Product Theorem reduces to two calculations: For
each (row) vector v € R"

vT (A o B)v = tr(Adiag(v)B diag(v))
(where diag(v) is the diagonal matrix with the diagonal entries equal to v;,i =

1,...,n). Then for the matrix M = B'/? diag(v)A/? (note that square roots exist
since A and B are positive semidefinite) we have:

vT (Ao B)v = tr(AY2 A2 diag(v) BY/2BY/? diag(v)) =
tr(AY2 diag(v)BY2BY/2 diag(v)AY/?) = tr(MTM) > 0. O

LEMMA 2.94. Sums and products of positive semidefinite kernels are again pos-
itive semidefinite. The set of positive semidefinite kernels is closed in the space of
all kernels with respect to the topology of pointwise convergence.

PrOOF. The only statement which is not immediate from the definitions is that
product of positive semidefinite kernels 6(x,y) = o(x,y)¥(x,y) is again positive
semidefinite. In order to prove so it suffices to consider the case =,y € X =
{z1,...,2n}. Let A = (asj), aij = ¢(x4,x;), and B = (bsj), bij = ¥(z;, ;) denote
the Gramm matrices of the kernels ¢ and . Then the product kernel @ is given by
the matrix

C=AoB.

Since A and B are positive semidefinite, so is C' and, hence, 6. O

COROLLARY 2.95. If a kernel ¥(x,y) is positive semidefinite, so is the kernel

exp(¢(z,y)).

PRrOOF. This follows from the previous lemma since

oo

tn
exp(t) = Z t .
n=0
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THEOREM 2.96 (J. Schoenberg, [Sch38]). If ¢(z,y) is a conditionally negative
semidefinite kernel then for each s > 0 the function p(x,y) = exp(—sv(z,y)) is a
positive semidefinite kernel.

PrOOF. If X is empty, there is nothing to prove, therefore, fix p € X and
consider the kernel

(twice the Gromov kernel). This kernel is positive semidefinite according to Lemma
2.91. We have:

exp(—s(z,y)) = exp(s k(z,y)) exp(—s¥(z, p)) exp(—s¢(y, p)).
The first term on the right hand side is positive semidefinite according to Corollary
2.95. The product of the other two terms is positive semidefinite by Lemma 2.92.
Therefore, Lemma 2.94 implies that ¢(x,y) is positive semidefinite. O

Note that Schoenberg uses Theorem 2.96 to prove in [Sch38] the following neat
result: For every conditionally negative semidefinite kernel ¢) : X x X — R, and
every 0 < a < 1, the power ¥ is also a conditionally negative semidefinite kernel.
In other words, if a metric space (X, dist) embeds isometrically into a Hilbert space,
so does every metric space

(X,dist”), 0<a<Ll

The main source of examples of conditionally negative semidefinite kernels
comes from norms in LP—spaces (the case p = 2 is covered by Theorem 2.90).

Before proceeding with the discussion on kernels, we wish to clarify our choices
for LP-spaces, with p € (0,1).

REMARK 2.97. For a space LP(X,u) with p € (0,1), [|f], = ([ \f|pdu)% no
longer satisfies the usual triangular inequality, it only satisfies a similar inequality
with a multiplicative factor added to the second term. On the other hand, || f||} is
no longer a norm, but it does satisfy the triangular inequality, hence it defines a
metric [KPR84].

Throughout the book, we consider LP-spaces endowed with this metric, for
p € (0,1).

PROPOSITION 2.98 ([WWT75|, Theorem 4.10). Let (Z, 1) be a measure space.
Let 0 < p < 2, and let E = LP(Z, ) be endowed with the norm || - ||,. Then
V:EXxXE =R, (x,y) = |z —yl} is a conditionally negative semidefinite kernel.

On the other hand, according to Schoenberg’s theorem 2.90, every conditionally
negative semidefinite kernels comes from maps to Hilbert spaces. A corollary of this
is a theorem first proven by Banach and Mazur:

COROLLARY 2.99. For each p € (0,2] there exists a linear isometric embedding

of metric spaces
(LP(Z, :u’)v dp) - H
where H s a Hilbert space and

dp(f,9) = (/Zlfgl”du>1/2.
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THEOREM 2.100 (Theorems 1 and 7 in [BDCKG66]). Let 1 <p < g < 2.

(1) The normed space (LU(X, ), ||-|q) can be embedded linearly and isomet-

rically into
(LP(XI7M,)7 || : ”P)

for some measure space (X', ).

(2) If LP(X, p) has infinite dimension, then (LP(X, ), ||-|l5) can be embedded
isometrically into (L9(X', 1), || - |lq) for some measured space (X', '), if
and only if 0 < a < g.
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CHAPTER 3

Differential geometry

In this book we will use some elementary Differential and Riemannian geometry,
basics of which are reviewed in this chapter. All the manifolds that we consider are
second countable.

3.1. Smooth manifolds

We expect the reader to know basics of differential topology, that can be found,
for instance, in [GP10], [Hir76]|, [War83|. Below is only a brief review.

Unless stated otherwise, all maps between smooth manifolds, vector fields and
differential forms are assumed to be infinitely differentiable.

We will use the notation A¥(M) for the space of differential k-forms on M.
Every vector field X on M defines the contraction operator

ix t ATH(M) — AY(M),  ix (W) (X, Xe) = w(X, X1, X).
The Lie derivative along the vector field X is defined as
Lx : AF(M) — AF(M),
Lx(w) =ixdw + d(ixw).

For a smooth n—dimensional manifold M, a k—dimensional submanifold in M
is a subset N C M with the property that every point p € N is contained in the
domain U of a chart ¢ : U — R™ such that (U N N) = p(U) NRF.

If & = n then, by the inverse function theorem, N is an open subset in M;
in this case N is also called an open submanifold in M. (The same is true in the
topological category, but the proof is harder and requires Brouwer’s Invariance of
Domain Theorem, see e.g. [Hat02], Theorem 2B.3.)

Suppose that U C R™ is an open subset. A piecewise-smooth function f: U —
R™ is a continuous function such that for every x € U there exists a neighborhood
V of x in U, a diffeomorphism ¢ : V' — V' C R", a triangulation T of V', so that
the composition

foo™ ' (V,T) = R™
is smooth on each simplex. Note that composition g o f is again piecewise-smooth,
provided that g is smooth; however, composition of piecewise-smooth maps need
not be piecewise-smooth.

One then defines piecewise smooth k—dimensional submanifolds N of a smooth
manifold M. Such N is a topological submanifold which is locally the image of R¥
in R™ under a piecewise-smooth homeomorphism R™ — R™. We refer the reader to
[Thu97]| for the detailed discussion of piecewise-smooth manifolds.

If kK =n — 1 we also sometimes call a submanifold a (piecewise smooth) hyper-
surface.
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Below we review two alternative ways of defining submanifolds. Consider a
smooth map f : M — N of a m-dimensional manifold M = M™ to an n-
dimensional manifold N = N". The map f : M — N is called an immersion
if for every p € M, the linear map dfy, : T,M — Ty, N is injective. If, moreover,
f defines a homeomorphism from M to f(M) with the subspace topology, then f
is called a smooth embedding.

EXERCISE 3.1. Construct an injective immersion R — R? which is not a smooth
embedding.

If N is a submanifold in M then the inclusion map ¢ : N — M is a smooth
embedding. This, in fact, provides an alternative definition for k-dimensional sub-
manifolds: They are images of smooth embeddings with k—dimensional manifolds
(see Corollary 3.4). Images of immersions provide a large class of subsets, called
immersed submanifolds.

A smooth map f : M* — N™ is called a submersion if for every p € M, the
linear map df, is surjective. The following theorem can be found for instance, in
[GP10], [Hir76|, [War83].

THEOREM 3.2. (1) If f : M™ — N™ is an immersion, then for every
p € M and g = f(p) there exists a chart o : U — R™ of M with p € U,
and a chart ¥ :' V. — R"™ of N with ¢ € V' such that the composition

f=vofop o) = (V)
is of the form

fl@r,. . xm) = (@1, .y Zm, 0,...,0).
——

n—m times

(2) If f : M™ — N™ is a submersion, then for every p € M and ¢ = f(p)
there exists a chart o : U — R™ of M withp € U, and a charty : V — R"
of N with q € V' such that the composition

f=1vofop™ o) —y(V)
s of the form

f(xly--'amna"'7xm) = (331,---,1‘n)~
(3) The constant rank theorem is a combination of (1) and (2). Suppose that
the derivative of f: M™ — N™ has constant rank r. Then then for every
p € M and g = f(p) there exists a chart ¢ : U — R™ of M with p € U,
and a chart ¥ : V. — R™ of N with ¢ € V' such that the composition
f=vofop™ o) —y(V)

is of the form

flx1,...,2m) = (21,...,2,,0,...,0).
In particular, f(U) is a submanifold of dimension r in N.

EXERCISE 3.3. Prove Theorem 3.2. Hint. Use the Inverse Function Theorem
and the Implicit Function Theorem from Vector Calculus.

COROLLARY 3.4. (1) If f : M™ — N™ is a smooth embedding then
F(M™) is a m-dimensional submanifold of N™.
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(2) If f : M™ — N™ is a submersion then for every x € N™ the fiber f~1(x)
s a submanifold of codimension n.

EXERCISE 3.5. Every submersion f : M — N is an open map, i.e. the image
of an open subset in M is an open subset in N.

Let f: M™ — N™ be a smooth map and y € N is a point such that for some
z € f~(y), the map df, : T,M — TyN,y = f(z), is not surjective. Then the point
y € N is called a singular value of f. A point y € N which is not a singular value
of f is called a regular value of f. Thus, for every regular value y € N of f, the
preimage f~!(y) is either empty or a smooth submanifold of dimension m — n.

THEOREM 3.6 (Sard’s theorem). Almost every point y € N is a regular value

of f.
3.2. Smooth partition of unity

DEFINITION 3.7. Let M be a smooth manifold and U = {B; : i € I} a locally
finite cover of M by open subsets diffeomorphic to Euclidean balls. A collection
of smooth functions {n; : i € I} on M is called a smooth partition of unity for the
cover U if the following conditions hold:

(1) 2im =1
(2)0<m <1, Viel
(3) Supp(mi) C By, Vi€l

THEOREM 3.8. Ewvery open cover U as above admits a smooth partition of unity.

3.3. Riemannian metrics

A Riemannian metric (also known as the metric tensor) on a smooth n-dimen-
sional manifold M, is a positive definite inner product (-, -), defined on the tangent
spaces T, M of M; this inner product is required to depend smoothly on the point
p € M. We will suppress the subscript p in this notation; we let ||-|| denote the norm
on T, M determined by the Riemannian metric. The subspace of TM consisting
of unit tangent vectors is a submanifold denoted UM and called the unit tangent
bundle: UM 1is a smooth submanifold of TM and the restriction of the projection
TM — M is a bundle, whose fibers are n — 1-dimensional spheres.

The Riemannian metric is usually denoted g = g, = g(z),x € M or ds?. We
will use the notation dz? to denote the Euclidean Riemannian metric on R™:

dr? = dx? + ... +dx2.
Here and in what follows we use the convention that for tangent vectors u, v,
da;dxj(u,v) = uv;

and dz? stands for dr;dz;. A Riemannian metric on an open subset Q C R"
is determined by its Gramm matric A, x € €, where A, is a positive-definite
symmetric matrix depending smoothly on x:

<88

the ij-th entry of the matrix A,.

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric.
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Two Riemannian metrics g, h on a manifold M are said to be conformal to
each other, if h, = \(x)g,, where A(z) is a smooth positive function on M, called
the conformal factor. In matrix notation, we just multiply the matrix A, of g, by
a scalar function. Such modification of Riemannian metrics does not change the
angles between tangent vectors. A Riemannian metric g, on a domain 2 in R" is
called conformally-Euclidean if it is conformal to dz?, i.e. it is given by

Mx)dz? = N(z)(da? + ...+ d2?).

Thus, the square of the norm of a vector v € T, ) with respect to g, is given by

i=1

Given an immersion f : M™ — N™ and a Riemannian metric ¢ on N, one
defines the pull-back Riemannian metric f*(g) by

<v,w>p = (df(v),df(w)>q,p€ M, q= f(p) EN,

where in the right-hand side we use the inner product defined by ¢ and in the
left-hand side the one defined by f*(g). It is useful to rewrite this definition in
terms of symmetric matrices, when M, N are open subsets of R". Let A, be the
matrix-function defining g. Then f*(g) is given by the matrix-function B,, where

y:f(x), B, = (Dmf)TAy (D;tf)
and D, f is the Jacobian matrix of f at the point x.
Let us compute how pull-back works in “calculus terms” (this is useful for
explicit computations of the pull-back metrics f*(g)), when g(y) is a Riemannian
metric on an open subset U in R™. Suppose that

ng )dyidy;
and f = (f1,...,fn) isa diffeomorphlsm V CR™ = U. Then
[ (g)=h,
Zgu o)) dfidf;.
Here for a function ¢ : R™ — R, e.g., ¢( ) = fi(z),
B n n QS
d¢ = ; dy.¢ Z D, 4k

and, thus,

n
Ofi 0f;

df;df; = —dxydx

fz fg kzl:l 8 O 7 kAL
A special case of the above is when N is a submanifold in a Riemannian manifold
M. One can define a Riemannian metric on N either by using the inclusion map
and the pull-back metric, or by considering, for every p € N, the subspace T, N
of T, M, and restricting the inner product (-, -), to it. Both procedures define the

same Riemannian metric on N.

Measurable Riemannian metrics. The same definition makes sense if the
inner product depends only measurably on the point p € M, equivalently, the
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matrix-function A, is only measurable. This generalization of Riemannian metrics
will be used in our discussion of quasiconformal groups, Chapter 23, section 23.6.

Gradient and divergence. A Riemannian metric g on M defines isomor-
phisms between tangent and cotangent spaces of M:

Tp(M) — T, (M),
where each v € T,,(M) corresponds to the linear functional
vt eT,(M), v'(w)=(v,w).

In particular, one defines the gradient vector field Vu of a function u : M — R by
dualizing the 1-form du.

Suppose now that M is n-dimensional. For a vector field X on M, the diver-
gence div X is a function on M, which, for every n-form w, satisfies

div Xw = Lx(w),

where Lx is the Lie derivative along X.
In local coordinates, divergence and gradient are given by the formulae:

~ 1 0 ;
divX = —— = (/det(g)X"),
P / |g‘ 83)1 ( )

and

Here
X =(X'..., X",
and (¢g") = (g;;) ™' is the inverse matrix of the metric tensor g.

Length and distance. Given a Riemannian metric on M, one defines the
length of a path p : [a,b] = M by

b
(3.1) length(p) = [ '(6)]dr

By abusing the notation, we will frequently denote length(p) by length(p([a, b])).
Then, provided that M is connected, one defines the Riemannian distance func-
tion
dist(p, q) = iI;f length(p),

where the infimum is taken over all paths in M connecting p to gq.

A smooth map f : (M,g) — (N,h) of Riemannian manifolds is called a
Riemannian isometry if f*(h) = g. In most cases, such maps do not preserve
the Riemannian distances. This leads to a somewhat unfortunate terminological
confusion, since the same name isometry is used to define maps between metric
spaces which preserve the distance functions. Of course, if a Riemannian isometry
f:(M,g9) — (N,h) is also a diffeomorphism, then it preserves the Riemannian
distance function and, hence, f is an isometry of Riemannian metric spaces.

A Riemannian geodesic segment is a path p : [a,b] C R — M which is a local
length-minimizer, i.e.:

There exists ¢ > 0 so that for all ¢1,ts in J sufficiently close to each other,

dist(p(t1), p(t2)) = length(p([t1, t2])) = clt1 — ta].
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If ¢ = 1, we say that p has unit speed. Thus, a unit speed geodesic is a locally-
distance preserving map from an interval to (M,g). This definition extends to
infinite geodesics in M, which are maps p : J — M, defined on intervals J C M,
whose restrictions to each finite interval are finite geodesics. A Riemannian metric
is said to be complete if every geodesic segment extends to a complete geodesic
v : R — M. According to the Hopf-Rinow theorem, a Riemannian metric on a
connected manifold is complete if and only if the associated distance function is
complete.

A smooth map f : (M, g) — (N, h) is called totally-geodesic if it maps geodesics
in (M, g) to geodesics in (N, h). If, in addition, f*(h) = g, then such f is locally
distance-preserving.

Injectivity and convexity radii. For every complete Riemannian manifold
M and a point p € M, there exists the exponential map

exp, : T, M — M,

which sends every vector v € T, M to the point v,(1), where v,(¢) is the unique
geodesic in M with v(0) = p and 4/(0) = v. If S(0,r) C T,M, B(0,r) C T,M are
the round sphere and round ball of radius r, then

exp(S5(0,7)), exp(B(0,r)) C M

are the geodesic r-sphere and the geodesic r-ball in M centered at p.

The injectivity radius InjRad(p) of M at the point p € M is the supremum of
the numbers r so that exp, |B(0,r) is a diffeomorphism to its image. The radius
of convexity ConRad(p) is the supremum of r’s so that r < InRad(p) and C =
exp,(B(0,7)) is a convex subset of M, i.e. every z,y € C are connected by a
(distance-realizing) geodesic segment entirely contained in C. It is a basic fact of
Riemannian geometry that for every p € M,

ConRad(p) > 0,
see e.g. [dC92].

3.4. Riemannian volume

For every m-dimensional Riemannian manifold (M, g) one defines the volume
element (or volume density) denoted dV (or dA if M is 2-dimensional). Given n vec-
tors vi,...,v, € T,M, dV(v1 A...Avy) is the volume of the parallelepiped in T, M
spanned by these vectors. This volume is nothing but /| det(G(v1, . .., v,))|, where
G(v1,...,v,) is the Gramm matrix with the entries (v;,v;). If ds? = p?(z)d2?, is
a conformally-Euclidean metric on an open subset of R™, p > 0, then the volume
density of ds? is given by

P (x)dxy ... dxy,.
Thus, every Riemannian manifold has a canonical measure, given by the integral
of its volume form

mes(E) = / dav.
A
THEOREM 3.9 (Generalized Rademacher’s theorem). Let f : M — N be a Lip-

schitz map of Riemannian manifolds. Then f is differentiable almost everywhere.

EXERCISE 3.10. Deduce Theorem 3.9 from Theorem 2.28 and the fact that M
is second countable.
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We now define volumes of maps and submanifolds. The simplest and the most
familiar notion of volume of maps comes from the vector calculus. Let Q be a
bounded region in R™ and f : 2 — R”™ be a smooth map. Then the geometric
volume of f is defined as

(3.2) Vol(f) ::/Q|Jf(x)\d:c1...dxn,

where Jy is the Jacobian determinant of f. Note that we are integrating here a non-
negative quantity, hence, the geometric volume of a map is always non-negative. If
f were 1-1 and J;(x) > 0 for every x, then, of course,

Vol(f) :/QJf(x)dxl...dwn — Vol(F().

More generally, if f: Q@ — R™ (now, m need not be equal to n), then

val() = [ \Jaer(c).

where G is the Gramm matrix with the entries <%, %>, where brackets denote
i J

the usual inner product in R™. In case f is an embedding, the reader will recognize
in this formula the familiar expression for the volume of the submanifold ¥ = f(2)
in R™,

Vol(f) = /E ds.

The Gramm matrix above makes sense also for maps whose target is an m-
dimensional Riemannian manifold (M, g), with partial derivatives replaced with
vectors df (X;) in M, where X; are coordinate vector fields in Q:

Xi = %,Z: 1,...,7’L.

Furthermore, one can take the domain of the map f to be an arbitrary smooth
manifold N (possibly with boundary). The definition of volume still makes sense
and is independent of the choice of local charts on IV used to define the integral: This
independence is a corollary of the change of variables formula in the integral in R™.
More precisely, counsider charts ¢, : Uy, — Vi, C N, so that {V,}aes is a locally-
finite open covering of N. Let {n,} be a partition of unity on N corresponding to
this cover. Then for {, = 14 © Yo, fo = f © @a,

Vol(f) = Z/U Car/| det(Gy ) |dxy . . . day

acJ
In particular, if f is 1-1 and ¥ = f(NNV), then
Vol(f) = Vol(%).

Observe that the formula for Vol(f) makes sense when f : N — M is merely
Lipschitz, in view of Theorem 3.9.

Thus, one can define the volume of an immersed submanifold, as well as that of
a piecewise smooth submanifold; in the latter case we subdivide a piecewise-smooth
submanifold in a union of images of simplices under smooth maps.

By abuse of language, sometimes, when we consider an open submanifold V in
M, so that boundary ON of N a submanifold of codimension 1, while we denote
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the volume of N by Vol(N), we shall call the volume of N the area, and denote
it by Area (ON).

In Section 7.10.1 we will introduce combinatorial/simplicial/cellular analogues
of the Riemannian volume of maps, for this reason, for a Lipschitz map f: N — M
we will use the notation Vol™¢(f) for its Riemannian (metric volume).

EXERCISE 3.11. (1) Suppose that f: Q2 C R™ — R™ is a smooth map so
that |dyf(u)] < 1 for every unit vector w and every z € Q. Show that
|Jr(x)] < 1 for every x and, in particular,

Vol(f(Q)) = |/Qdex1...dxn| < Vol(f) < Vol().

Hint: Use the fact that under the linear map A = d, f, the image of every
r-ball is contained in an r-ball.

(2) Prove the same thing if the map f is merely 1-Lipschitz.
More general versions of the above exercises are the following.

EXERCISE 3.12. Let (M, g) and (N, h) be n-dimensional Riemannian manifolds.

(1) Let f: M — N be a smooth map such that for every x € M, the norm of
the linear map

df (T (1)) = (Tr@N.(),)

is at most L.
Prove that |J¢(z)| < L™ for every = and that for every open subset U
of M
Vol(f(2)) < L"Vol(Q).

(2) Prove the same statement for an L-Lipschitz map f: M — N.

A consequence of Theorem 3.2 is the following.

THEOREM 3.13. Consider a compact Riemannian manifold M™, a submersion
f:M™ — N™. For everyx € N set M, := f~(x). Then, for every p € N and
every € > 0 there exists an open neighborhood W of p such that for every x € W,

Vol(M,)
e
Vol(Mp)

Proor. First note that, by compactness of M, for every neighborhood U of
M, there exists a neighborhood W of p such that f~1(W) c U.

According to Theorem 3.2, (2), for every x € M, there exists a chart of M,
wr Uy = U'm, with U, containing x, and a chart of N, ¢, : V, — f/m with V,,
containing p, such that v, o f o p, ! is a restriction of the projection to the first n

1 <1l+e

coordinates. Without loss of generality we may assume that U, is an open cube in
R™. Therefore, \N/aC is also a cube in R”, and IL = f/w X Zaj, where Zz is an open
subset in R™™" .

Since M, is compact, it can be covered by finitely many such domains of charts
Uy,...,Ug. Let Vq,..., Vi be the corresponding domains of charts containing p.
For the open neighborhood U = Ule U; of M, consider an open neighborhood W

of p, contained in ﬂle V;, such that f~(W) C U.
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For every x € W, M, = Uf’zl(Ul NM,;). Fixl € {1,...,k}. Let (955 (¥))1<i,j<n
be the matrix-valued function on U;, defining the pull-back by o of the Riemannian
metric on M .

Since g;; is continuous, there exists a neighborhood W, of P = ;(p) such that
for every & € W; and for every € Z; we have,

,  det [gij(jvt)]nﬂsi,jgm
det [gi;(, tﬂnﬂgi,y‘ém

Recall that the volumes of M, N U; and of M, N U, are obtained by integrating
respectively

(1- < (1+e)?.

(det [g;; (‘i"g)}n+1<i,j<k)l/2

and
(det 945 (p, E)]n—&-lgi,jgk)lﬂ

on Z;. The volumes of M, and M, are obtained by combining this with a partition
of unity.
It follows that for z € ﬂle v (W),

Vol(M,)
l—e< ———=
Vol(M,)

<1l+4e.
Finally, we recall an important formula for volume computations:

THEOREM 3.14 (Coarea formula, see e.g. Theorem 6.3 in [Cha06| and 3.2.22
in [Fed69]). Let f: M — (0,00) be a smooth function on a Riemannian manifold
M. For almost every t € (0,00), the level set H; := f~1(t) is a smooth hypersur-
face in M ; let dA; be the Riemannian area density induced on H; and AV be the
Riemannian volume density of M. Then, for every function g € L*(M),

/g|Vf|dV:/ dt/ gdA;.
M 0 He

3.5. Volume growth and isoperimetric functions. Cheeger constant

In this section we present several basic notions, initially introduced in Riemann-
ian geometry and later adapted and used in group theory and in combinatorics.
These notions and their coarse analogues will appear frequently in this book.

Volume growth. Given a Riemannian manifold M and a basepoint g € M,
the (volume) growth function is defined as

Sz, (1) := Vol B(xg,T),

the volume of the metric ball of radius r and center at xq in M.

REMARKS 3.15. (1) For two different points zg, yo, we have

S50 (1) < Bag o (r + d), where d = dist(zo, yo) -
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(2) Suppose that the action of the isometry group of M is cobounded on M,
i.e. there exists a constant x such that the orbit of B(xg, ) under the
group Isom (M), is the entire manifold M. (For instance, this is the case if
M is a regular covering space of a compact Riemannian manifold.) Then,
for every two basepoints xg, Yo

B M,z (1) < By (1 + K) -

Thus, in this case, the growth rate of the function & does not depend on
the choice of the basepoint.
We refer the reader to Section 8.7 for the detailed discussion of volume growth
and its relation to group growth.

EXERCISE 3.16. Assume again that the action Isom(M) ~ M is cobounded,
the constant x is as above, and that M is complete.

(1) Prove that the growth function is almost sub-multiplicative, that is:
Garzo (7 + 1)) < Gt ag (15) Bz (T + 1)5) -

(2) Prove that the growth function of M is at most exponential, that is, there
exists a > 1 such that

Sz () < a®, forevery x > 0.

Isoperimetric inequalities and isoperimetric functions. Isoperimetric
problems in geometry go back to the antiquity: (Dido’s problem) Which region of
the given perimeter in the Fuclidean plane R? has the least area? The answer “the
round disk” is intuitively obvious, but, surprisingly, hard to prove. This classical
problem explain the terminology isoperimetric below.

In general, isoperimetric problem in Riemannian geometry have the following
minimazx form.

Consider a complete connected n-dimensional Riemannian manifold M (which
may or may not be closed). Fix a number k¥ € N and all consider closed k-
dimensional submanifolds Z C M (or maps Z — M of closed k-manifolds to M
or, more generally, k-cycles in M). Assume, now, depending on the context, that
each Z C M bounds a k + 1-dimensional submanifold, or a k + 1-chain B, or that
the map Z — M extends to a map B — M, where B is a compact manifold with
boundary equal to Z. The the latter case, one typically assumes that Z = S* and
B is the k + 1-ball. To unify the notation, we will simply say that Z = 9B, even in
the case of maps Z — M.

Next, among all these B’s (or their maps), one looks for the one of the least k+1-
volume. (The minimum may not exist, in which case one takes the infimum.) This
least volume is the filling volume of Z. Lastly, among all Z’s with Vol (Z) < L, one
looks for the ones which have the largest filling volume (again, taking the supremum
in general). This defines the isoperimetric function of M:

(33) IP]VT[LEIS = IP]u’k(L) = sup inf VOlk_H(B).
’ Z,Vol,(2)<L B:0B=Z

REMARK 3.17. In Section 9.7 we introduce other isoperimetric functions of
more combinatorial and coasre geometric nature. In order to distinguish the Rie-
mannian isoperimetric functions for those, we will use the notation [ Pﬂe,;t when
convenient,.
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In each setting (submanifolds, maps, cycles), we get a different isoperimetric
function, of course.

We will be primarily interested in two cases (Z having codimension 1 and
dimension 1 respectively):

1. k=n—1, Z is a (smooth) closed hypersurface in M.

2. k=1, Z = S', where we consider Lipschitz maps Z — M and their
extensions B = D? — M (“filling disks”).

Perhaps surprisingly, asymptotic behavior of isoperimetric functions in these
two cases goes long way towards determining the asymptotic geometry of M.
Suppose, for instance, that M is a regular cover of a compact Riemannian man-
ifold, with the group G of covering transformations. Then the dichotomy lin-
ear/superlinear for both isoperimetric functions serves as a major demarkation line
in the world of finitely generated groups:

1. The condition IPy1(L) ~ L (linear growth of the filling area) yields the
class of Gromov—hyperbolic groups G. This linearity condition can be regarded as
asymptoically negative sectional curvature of the manifold M (and the group G).

2. The condition IPyn ,—1(L) =~ L yields the class of nonamenable groups G.

Here we are using the notation ~ introduced in the Definition 1.3.

The following Riemannian geometry theorem illustrates the power of this lin-
ear /nonlinear dichotomy:

THEOREM 3.18. Suppose that M is a Riemannian manifold which is the uni-
versal cover of a compact Riemannian manifold. Then

IPMJ(L) ~ L= IP]ijk(L) ~ L,

for all k > 2. Here for k > 2 one can equally use either the homological filling or
filling of maps of spheres by maps of disks. For the former, one needs to assume
that H;(M) = 0,i < k and for the latter one requires that mi(M) =0, < k.

As far as we know, this theorem does not have a “purely Riemannian” proof:
One first verifies that the group G = m (M) is Gromov-hyperbolic (Theorem
11.181), then proves that all such groups have linear isoperimetric functions of in all
degrees [Lan00, Min01] and, then uses the approximate equality of isoperimetric
functions of M and of G (cf. Theorem 9.75).

Below we discuss the “codimension 17 isoperimetric function in more detail. If
M is connected and non-compact, each closed hypersurface in M bounds exactly
one compact submanifold, which leads to

DEFINITION 3.19. Suppose that F : Ry — Ry is a function and M is a (con-
nected) non-compact n-dimensional Riemannian manifold. Then M is said to sat-
isfy the isoperimetric inequality of the form

Vol(Q) < F (Area(09)),

if this inequality holds for all open submanifolds 2 C M with compact closure and
smooth boundary.

EXERCISE 3.20. The above definition is equivalent to the inequality
1Py (L) < F(L)

for every L > 0. (Note: Hypersurfaces in the definition of T PJU[L%A need not be
connected.)
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For instance, if M is the Euclidean plane, then
(3.4) 4rAr(c) < £3(c),

for every loop ¢ (with equality realized precisely in the case when ¢ is a round
circle). Thus,
£2

TR (0) = .

The Cheeger constant. As the main dichotomy in the case of codimension
1 isoperimetric inequality is linear/nonlinear, it makes sense to look at the ratio
between areas of hypersurfaces in M and volumes of domains in M which they
bound. If M is compact, connected and the hypersurface is connected, then there
are exactly two such domains. In line with the definition of the isoperimetric
function, we will be choosing the domain with the least volume. This motivates:

DEFINITION 3.21. The Cheeger (isoperimetric) constant h(M) (or isoperimetric
ratio) of M is the infimum of the ratios
Area(09)
min [Vol(Q), Vol(M \ Q)]
where 2 varies over all open non-empty submanifolds with compact closure and
smooth boundary.

In particular, if h(M) > k > 0, then the following isoperimetric inequality
holds in M:

1
Vol(Q) < —Area(09).
K

Cheeger constant was defined by J. Cheeger for compact manifolds in [Che70].
Further details can be found for instance in P. Buser’s book [Bus10]. Note that
when M is a Riemannian manifold of infinite volume, one may replace the denom-
inator in the ratio defining the Cheeger constant by Vol((Q).

Assume now that M is the universal cover of a compact Riemannian manifold
N. A natural question to ask is to what extent the growth function and the Cheeger
constant of M depend on the choice of the Riemannian metric on N. The first
question, in a way, was one of the origins of the Geometric Group Theory.

Vadim Efremovich [Efr53] noted that two growth functions corresponding to
two different choices of metrics on N are asymptotically equal (see Definition 1.4)
and, moreover, that their asymptotic equivalence class is determined by the funda-
mental group of IV only. See Proposition 8.80 for a slightly more general statement.

A similar phenomenon occurs with the Cheeger constant: Positivity of h(M)
does not depend on the metric on N, it depends only on a certain property of 71 (N),
namely, the non-amenability, see Remark 18.15. This was proved much later by
Robert Brooks [Bro8la, Bro82a|. Brooks’ argument has a global analytic flavor,
as it uses the connection established by Jeff Cheeger [Che70] between positivity
of the isoperimetric constant and positivity of spectrum of the Laplace-Beltrami
operator on M. This result was highly influential in global analysis on manifolds
and harmonic analysis on graphs and manifolds.
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3.6. Curvature

Instead of defining the Riemannian curvature tensor, we will only describe some
properties of Riemannian curvature. First, if (M, g) is a 2-dimensional Riemannian
manifold, one defines the Gaussian curvature of (M, g), which is a smooth function
K : M — R, whose values are denoted K (p) and K.

More generally, for an n-dimensional Riemannian manifold (M, g), one de-
fines the sectional curvature, which is a function A2TM — R, denoted Kp(u,v) =
K, 4(u,v):

(R(u,v)u,v)
|u A v]?
provided that u,v € T,M are linearly independent. Here R is the Riemannian
curvature tensor and |uAv| is the area of the parallelogram in T, M spanned by the
vectors u,v. Sectional curvature depends only on the 2-plane P in 7, M spanned
by v and v. The curvature tensor R(u,v)w does not change if we replace the metric

g with a conformal metric h = ag, where a > 0 is a constant. Thus,

Kpp(u,v) = a_le’g(u, v).

Ky(u,v) =

)

Totally geodesic Riemannian isometric immersions f : (M, g) — (N, h) preserve
sectional curvature:

Kp(uvv) :Kq(df(u)7df(v))> q= f(p)

In particular, sectional curvature is invariant under Riemannian isometries of equidi-
mensional Riemannian manifolds. In the case when M is 2-dimensional, K, (u,v) =
K,, is the Gaussian curvature of M.

Gauss-Bonnet formula. Our next goal is to connect areas of triangles to
curvature.

THEOREM 3.22 (Gauss-Bonnet formula). Let (M, g) be a Riemannian surface
with the Gaussian curvature K(p),p € M and the area form dA. Then for every
2-dimensional triangle A C M with geodesic edges and vertex angles «, 3,7,

/AK(p)dA:(oz—i-ﬁ—i—'y)—w.

In particular, if K(p) is constant equal k, we get
—kArea(A) =7 — (a+ B+ 7).

The quantity 7 — (o + 8 + ) is called the angle deficit of the triangle A.

Curvature and volume. Below we describe the relation of uniform lower
and upper bounds on the sectional curvature and the growth of volumes of balls,
that will be used in the sequel. The references for these results are [BCO1, Section
11.10], [CGT82], [Gro86|, [G60] and [GHLO04], Theorem 3.101, p. 140.

We will use the following notation: For k € R, we let A.(r) and Vi, (r) denote
the area of the sphere, respectively the volume of the ball of radius r, in the n—
dimensional space of constant sectional curvature x. We will also denote by A(z, )
the area of the geodesic sphere of radius r and center z in a given Riemannian
manifold M. Likewise, V (z,r) will denote the volume of the geodesic ball centered
at x and of radius r in M.
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THEOREM 3.23 (Bishop—Gromov—Giinther). Let M be a complete n—dimensional
Riemannian manifold.

(1) Assume that the sectional curvature on M is at least a. Then, for every
point x € M:

o A(x,r) < Au(r) and V(x,r) < Vo(r).

1%

o The functions r ‘i(a:(’:)) and r — V(:?TT)) are non-increasing.

(2) Assume that the sectional curvature on M is at most b. Then, for every
x € M with injectivity radius p, = InjRady(x):
e For allr € (0, pg), we have A(x,r) = Ap(r) and V(z,7) = Vi(r).
z,7)

e The functions r — ‘:(:"f)) and r ‘(/(b(r) are non-decreasing on the

interval (0, py) .

The results (1) in the theorem above are also true if the Ricci curvature of M
is at least (n — 1)a.

EXERCISE 3.24. Use this inequality to show that every n-dimensional Riemann-
ian manifold M of nonnegative Ricci curvature has at most polynomial growth:

Gy(r) St

Theorem 3.23 follows from infinitesimal versions of the above inequalities (see
Theorems 3.6 and 3.8 in [Cha06]). A consequence of the infinitesimal version of
Theorem 3.23, (1), is the following theorem which will be useful in the proof of the
quasiisometric invariance of positivity of the Cheeger constant:

THEOREM 3.25 (Buser’s inequality [Bus82|, [Cha06|, Theorem 6.8). Let M be
a complete n—dimensional manifold with sectional curvature at least a. Then there
erists a positive constant A depending on n,a and r > 0, such that the following
holds. Given a hypersurface H C M and a ball B(x,r) C M such that B(x,r) \ H
is the union of two open subsets 21,s separated by H, we have:

min [Vol(Q1), Vol(Q)] < Mrea [H N B(x,r)].
3.7. Riemannian manifolds of bounded geometry

DEFINITION 3.26. We say that a Riemannian manifold M has bounded geometry
if it is connected, complete, has uniform upper and lower bounds for the sectional
curvature:

a< Kp(u,v) <b
(for all p € M,u,v € T,(M)) and a uniform lower bound for the injectivity radius:
InjRad(z) > e > 0.

Probably the correct terminology should be “uniformly locally bounded geom-
etry”, but we prefer shortness to an accurate description. The numbers a, b, € in
this definition are called geometric bounds on M. For instance, every compact con-
nected Riemannian manifold M has bounded geometry, every covering space of M
(with pull-back Riemannian metric) also has bounded geometry. More generally, if
M is connected, complete and the action of the isometry group on M is cobounded,
then M has bounded geometry.
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EXERCISE 3.27. Every non-compact manifold of bounded geometry has infinite
volume.

REMARK 3.28. One frequently encounters weaker notions of bounded geometry
for Riemannian manifold, e.g.:

1. There exists L > 1 and R > 0 such that every ball of radius R in M is
L-bi-Lipschitz equivalent to the ball of radius R in R™. (This notion is used, for
instance, by Gromov in [Gro93|, §0.5.43).

2. The Ricci curvature of M has a uniform lower bound (|[Cha06], [Cha01]).

For the purposes of this book, the restricted condition in Definition 3.26 suffices.

The following theorem connects Gromov’s notion of bounded geometry with
the one used in this book:

THEOREM 3.29 (See e.g. Theorem 1.14, [Att94]). Let M be a Riemannian
manifold of bounded geometry with geometric bounds a,b,e. Then for every x € M
and 0 < r < €/2, the exponential map

exp, : B(0,r) = B(z,r) C M
is an L-bi-Lipschitz diffeomorphism, where L = L(a,b,¢).

This theorem also allows one to refine the notion of partition of unity in the
context of Riemannian manifolds of bounded geometry:

LEMMA 3.30. Let M be a Riemannian manifold of bounded geometry and let
U={B; = B(x;,r;) : i € I} be a locally finite covering of M by metric balls so that
InjRady (x;) > 2r; for every i and

B <$Z‘, 37“7,) NnB (xj, 37”]‘) =0, Vi £ j.
4 4
Then U admits a smooth partition of unity {n; : i € I} which, in addition, satisfies
the following properties:
1. n; =1 on every ball B(x;, %5 ).
2. Every smooth functions n; is L—Lipschitz for some L independent of i.

In what follows we keep the notation V,;(r) from Theorem 3.23 for the volume
of a ball of radius r in the n—dimensional space of constant sectional curvature «.

LEMMA 3.31. Let M be complete n—dimensional Riemannian manifold with
bounded geometry, let a < b and p > 0 be such that the sectional curvature of M
varies in the interval [a,b] and that at every point of M the injectivity radius is
larger than p. Then:

(1) For every 6 > 0, every d—separated set in M is ¢-uniformly discrete, with

o(r) = V‘Q/(b’“(j\')’\) , where X\ is the minimum of% and p.

(2) For every 2p > § > 0 and every mazimal §—separated set N in M, the

V()

multiplicity of the covering {B(x,6) | v € N} is at most - )
v(2

PRrROOF. (1) Let S be a d—separated subset in M.
According to Theorem 3.23, for every point « € S and radius r > 0 we have:

Va(r+X) 2 Vol [Ba(,r + X)] > card [B(z,r) N S] Vo(A) .
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This inequality implies that
Valr + )
Vi(A)

whence, S with the induced metric is ¢-uniformly discrete, with the required ¢.

card [B(z,r)NS] <

(2) Let F be a subset in N such that the intersection
ﬂ B(z,0)
zEF

is non-empty. Let y be a point in this intersection. Then the ball B (y, %) contains
the disjoint union |_|I€F B (x, g) , whence

() 5 v (5 2)] a0 (2).

3.8. Metric simplicial complexes of bounded geometry and systolic
inequalities

]

In this section we describe a discretization of manifolds of bounded geometry
via metric simplicial complexes. Another method of approximating of Riemannian
manifolds by simplicial complexes will be described in Section 8.3, cf. Theorem
8.52.

Let X be a simplicial complex and d a path-metric on X. Then (X,d) is said
to be a metric simplicial complez if the restriction of d to each simplex is isometric
to a Euclidean simplex. The main example of a metric simplicial complex is a
generalization of a graph with the standard metric described below.

Let X be a connected simplicial complex. As usual, we will often conflate X
and its geometric realization. Metrize each k-simplex of X to be isometric to the
standard k-simplex AF in the Euclidean space:

AF = (R+)k+1 N{xo+...+ax =1}

Thus, for each m-simplex A™ and its face A, the inclusion AF — A™ is an
isometric embedding. This allows us to define a path-metric on X so that each
simplex is isometrically embedded in X, similarly to the definition of the standard
metric on a graph and the Riemannian distance function. Namely, a piecewise-
linear (PL) path p in X is a path p : [a,b] = X, whose domain can be subdivided
in finitely many intervals [a;, a;+1] such that each restriction

p | l[ai,ait]

is a piecewise-linear path whose image is contained in a single simplex of X. Lengths
of such paths are defined using the Euclidean metric on simplices of X. Then

d(z,y) = inf length(p),
p
where the infimum is taken over all PL paths in X connecting z to y. The metric

d is then a path-metric; we call this metric the standard metric on X.

EXERCISE 3.32. Verify that the standard metric is complete and that X is a
geodesic metric space.
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For Lipschitz maps f : N — X from smooth manifolds to simplicial complexes
with at most countably many simplices, equipped with the standard piecewise-
Euclidean structure we define the notion of volume as the integral

(35) vort = [ VG

where the sum is taken over all simplices in X and the Gramm matrix is defined

for the map to the corresponding open simplex. The superscript met is used to

distinguish this notion of volume from the combinatorial and coarse concepts in

Chapter 9.7. The definition that we are using here is a special concept of volume of

maps from smooth manifolds to metric spaces. We refer the reader to [Wen05] for

the notion of volume of maps to general metric spaces. Given the metric volume of
met

maps, we define metric isoperimetric functions IP¥'7" of the simplicial complex X
exactly as in (3.3).

DEFINITION 3.33. A metric simplicial complex X has bounded geometry if it is
connected and if there exist L > 1 and N < oo such that:

e every vertex of X is incident to at most N edges;
e the length of every edge is < L.
e The volume of every simplex is > L1,
In particular, the set of vertices of X with the induced metric is a uniformly
discrete metric space.

Thus, a metric simplicial complex of bounded geometry is necessarily finite-
dimensional.

ExXAMPLE 3.34. e If Y is a finite connected metric simplicial complex,
then its universal cover (with the pull-back path metric) has bounded
geometry.

e A connected simplicial complex (with the standard metric) has bounded
geometry if and only if there is a uniform bound on the valency of the
vertices in its 1-skeleton.

Analogously to simplicial complexes of bounded geometry one defines almost
reqular cell complexes X of bounded geometry by requiring that:

(a) Each cell ¢ of X is contained in the image of at most D cells.

(b) There are only finitely many combinatorial types of polyhedra which appear
in the definition of attaching maps for cells in X.

Metric simplicial complexes of bounded geometry appear in the context of
Riemannian manifolds with bounded geometry.

DEFINITION 3.35. Let M be a Riemannian manifold. A bounded geometry
triangulation T of M is a metric simplicial complex X of bounded geometry together
with a bi-Lipschitz homeomorphism 7 : X — M.

Every smooth manifold admits a triangulation (see [Cai61] for an especially
simple proof); however, a general Riemannian manifold M will not have a uniform
triangulation. An easy sufficient condition for uniformity of (any) triangulation of
M is compactness of M. Lifting a finite triangulation T of a compact Riemannian
manifold M to its Riemannian covering M’ — M results in a bounded geometry
triangulation 77 of M’.
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Proofs of the following theorem are outlined in [Att94, Theorem 1.14] and
[ECH'92, Theorem 10.3.1]; a detailed proof in the case of hyperbolic manifolds
can be found in [Bre09].

THEOREM 3.36. FEwvery Riemannian manifold of bounded geometry admits a
bounded geometry triangulation. Furthermore, there exists a function L = L(m, a, b, €)
with the following property. Let M be an m-dimensional Riemannian manifold of
bounded geometry with the geometric bounds a,b,e. Then M admits a bounded
geometry triangulation T, which is a simplicial complex X equipped with the stan-
dard metric together with an L-bi-Lipschitz homeomorphism 7 : X — M, such that
geometric bounds on X depend only on m,a,b and €.

Given lack of a detailed proof, this theorem should be currently treated as a
conjecture. Nevertheless, a homotopy form of this theorem is not all that hard:

THEOREM 3.37. If (M, g) is a Riemannian manifold of bounded geometry then
there exists a simplicial complex X of bounded geometry (with the standard metric)
and a pair of L-Lipschitz maps

fM—=X, f:X—M
which form a homotopy-equivalence between M and X. Furthermore, the homo-
topies
H:Mx[0,1]—-M, H:Xx[0,1]—-X
between f o f and idys, and f o f and idx respectively, are also L-Lipschitz maps.
Here L and geometric bounds on X depend only on m,a,b and €.

PRrROOF. Let € > 0 be the injectivity radius of M and a < b the constants
bounding the curvature. Pick

(el
r < min (2,47T|b )

Then r is smaller than the convezity radius of (M, g), see e.g. [Pet16, p. 177].
For a probability measure p whose support is contained in B(z,r) define its
center of mass Center(u) as the unique point of minimum for the function

o= [ ),

cf. [BK81, §8].

Consider the cover of M by suitable open metric balls B(z;,r),i € I, where
the centers z; form an {5-separated 5-net in M. Let X denote the nerve of this
cover; we identify the vertices of X with the centers x; of the balls. Equip X with
the standard metric.

For each simplex ¢ = [z, ..., 2] in X we pick a point

Yo € B(x1,7) N .cc. N By, ).
The map f is defined via a suitable Lipschitz partition of unity (7;);c; subordinate

to the covering {B(z;,r)}icr (cf. [Kap09, §6]), namely, we take the partition
of unity as in Lemma 3.30. We identify X with a subcomplex in the infinite-

dimensional simplex
A> c PR,
iel
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A® = {(ti)i61|0 < t,1 € I’Zti = 1}
iel
Then f is defined as
y = (0i(y))ier-

In order to construct the map f : X — M we first take the barycentric subdivision
X' of X. The vertices v of X’ are labelled by the simplices o of X, v = v,. The
map f sends each vertex v, of X’ to the point y, € M. This map then extends to
a map f on each simplex 7 of X’ via Riemannian barycentric coordinates, see e.g.
[BKS81, §8|: If € 7 has barycentric coordinates (A1, ..., \,) in 7 and vy, ..., v, are
the vertices of 7 then

n
f(z) = Center(z AibF(ui))s
i=1
is where d,, denotes the probability measure supported on the point y € M.
In particular, if 7 is a simplex of X’ with the vertex z; = v(7) that is also a
vertex of X, then for every vertex v of 7, f(v) belongs to B(x;,r) and, hence, by

convexity of the latter, f(7) is contained in B(x;,r) as well.
In order to construct the homotopy

H:Mx[0,1] — M, H(y,0) = fof H(y1) =yye M

we use the straight-line homotopy via minimizing geodesics in (M, g) (here we are
again using the fact that the distance between y and f o f(y) is less than the
convexity radius € of (M, g)). The map H is Lipschitz because of uniform Lipschitz
dependence of the minimal geodesic y1y2 in M on the endpoints y1,y2, provided
that d(y1,92) < e. The composition hoh : X — X sends each simplex 7 of X’
into the star St(z;, X) of the vertex z; = v(7) in the complex X. For any two
points x,y € St(x;, X) we define the broken geodesic path p, ,(t) from x to y as
the concatenation of the Euclidean geodesic segments

TT; * Ty

parameterized by the unit interval [0, 1] with the constant speed. Lastly, define the
homotopy

H: (I’, t) = Pz h(x) (t)
where h(z) = f o f(z), z € T C St(w;, X). O

DEFINITION 3.38. We will refer to the complex together with the map, (X, f),
as a Lipschitz simplicial model of the Riemannian manifold (M, g).

The main application of bounded geometry triangulations (or, Lipschitz simpli-
cial models) in this book comes in the form of systolic inequalities which we describe
below.

Let M be a Riemannian manifold. The k-systole sysi(M) of M is defined as
the infimum of volumes of homologically non-trivial k-cycles in M. In the following
proof, by abusing the terminology, we will conflate singular k-chains

N
S = E a;0;
=1

(where a; € Z\ {0} and o0;’s are singular simplices) and their support sets in X, i.e.
unions of images of the singular k-simplices o;.
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THEOREM 3.39. FEvery Riemannian manifold M of bounded geometry has pos-
itive k-systoles for all k.

PROOF. Given M we take either a bounded geometry triangulation 7 = (X, 7)
of M (if it exists) or a Lipschitz simplicial model (X, f). Since the map f is a
bi-Lipschitz homotopy equivalence, it suffices to prove positivity of k-systoles for
X. The key to the proof is the following Deformation Theorem of Federer and
Flemming, which first appeared in their work on the Plateau Problem [FF60, §5].
Another proof of this fundamental fact can be found in Federer’s book [Fed69,
4.2.9]; an especially readable proof is given in [ECH 92, Theorem 10.3.3|. Suppose
that A™ is the standard n-simplex. For each interior point x € A™ we define the
radial projection py : A™ \ {z} — 9A™. We will need:

THEOREM 3.40 (Deformation Theorem). Suppose that S is a singular k-chain
in A, k < n. Then for almost every point x € A™, the k-volume of the chain
p=(S) in OA does not exceed CVoly(S), where the constant C' depends only on the
dimension n of the simplez.

We will refer to the projections p, satisfying the conclusion of this theorem as
Federer-Flemming projections.

Suppose now that S is a singular k-cycle in a bounded geometry D-dimensional
simplicial complex X. In each n-simplex A™ in X whose dimension is greater than k,
we apply a Federer—Flemming projection p, to S. By combining these projections,
we obtain a chain S; in X~ which is homologous to S and whose volume is
at most C'Vol(S). After repeating the process at most D — k times, we obtain a
k-cycle S’ in the k-skeleton X*) (homologous to S); the volume of S’ is at most
CP=kVol,(S). Let Vi denote the volume of the standard k-simplex. If Vol (S’)
is less than V}, then S’ cannot cover any k-simplex in X. Therefore, for each k-
simplex A* in X we apply a radial projection p, to S’ from any point x which
does not belong to S’ (at this stage, we no longer care about the volume of the
image). The result is a k-cycle T in the k — 1-skeleton X *~1) of X which is still
homologous to S. However, k — 1-dimensional simplicial complexes have zero kth
homology groups, which means that 7' (and, hence, S) is homologically trivial.
Therefore, assuming that S € Z, (M) was homologically non-trivial, we obtain a
lower bound on it volume:

Vol (S) = L=*C*Pv,.

3.9. Harmonic functions

For the detailed discussion of the material in this section we refer the reader to
[Li12] and [SY94].

Let M be a Riemannian manifold. Given a smooth function f : M — R, we
define the energy of f as the integral

B(f) = /M df PV = /A Vv

Here the gradient vector field V f is obtained by dualizing the differential 1-form
df using the Riemannian metric on M. Note that energy is defined even if f only
belongs to the Sobolev space Wlif (M) of functions differentiable a.e. on M with
locally square-integrable partial derivatives.
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THEOREM 3.41 (Lower semicontinuity of the energy functional). Let (f;) be a
sequence of functions in VVllof(M) which converges (in Wllof(M)) to a function f.
Then

E(f) < liminf E(f;).

DEFINITION 3.42. A function h € T/Vllof is called harmonic if it is locally energy-
minimizing: For every point p € M and a small metric ball B = B(p,r) C M,

E(h|g) < E(u), Yu:B—=Rul,,=h|,z.

Equivalently, for every relatively compact open subset Q C M with smooth

boundary
E(h‘B) < E(u), VYu:Q— ]R,u|8Q = h’aQ'

It turns out that harmonic functions h on M are automatically smooth and,
moreover, satisfy the equation Ah = 0, where A is the Laplace—Beltrami operator
on M:

Ay = div Vu.

In local coordinates (assuming that M is n-dimensional)

n

1 0 ( iy ou
Au = —_— g” \/E) .
i;l \/mailiz 81‘]‘

In terms of the Levi-Civita connection V on M,
A(u) = Trace(H(u)), H)(X,Y) = VxVy(u) - Vo (u),

where X,Y are vector fields on M. In local coordinates, setting

o 0
H;j = H(u) (f)xi’ E)x]) ;

we have
Trace(H) = Z g Hj.
ij=1
If M = R™ with the flat metric, then A is the usual Laplace operator:

EXERCISE 3.43. Work out the formula for Au in the case of a conformally-
Euclidean metric ¢ on an open subset of R™. Conclude that harmonicity with
respect to g is equivalent to harmonicity with respect to the flat metric.

Lastly, if we use the normal (geodesic) coordinates on a Riemannian manifold
then

Au(p) = @U(
i=1 i

A function v on M is called subharmonic if

Au > 0.

0).

EXAMPLE 3.44. If n =1 and M = R then a function is harmonic if and only if
it is linear, and is subharmonic if and only if it is convex.
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EXERCISE 3.45. Suppose that h : M — R is a harmonic function and f : R -+ R
is a smooth convex function. Then the composition u = foh is subharmonic. Hint:
Verify that Au(p) > 0 for every p € M using normal coordinates on M defined via
the exponential map exp,, : T,M — M. This reduces the problem to a Euclidean
computation.

THEOREM 3.46 (Maximum Principle). Suppose that M is connected, Q C M
is a relatively compact subset with smooth boundary and h : M — R is a harmonic
function. Then h|§ attains maximum on the boundary of Q0 and, moreover, if h|Q
attains its maximum at a point of Q, then h is constant.

COROLLARY 3.47. Let h; : M — R,i = 1,2 be two harmonic functions such
that hy < ho. Then either hy = hy or hy < hs.

ProOF. The difference h = hy — hy < 0 is also a harmonic function on M.
Suppose that the subset A = {hi(z) = hza(x)} is non-empty. Then for every
relatively compact subset with smooth boundary @ € M and AN Q # (), the
maximum of h’ q is attained on

ANQ.
Therefore, h’ q is identically zero. Taking an exhaustion of M by subsets () as
above, we conclude that h vanishes on the entire M. (I

THEOREM 3.48 (Li-Schoen’s Mean Value Inequality for subharmonic functions).
Suppose that Ricci curvature of the Riemannian n-manifold M is bounded below by
a constant r. Then there exists a function C(n,r, R) such that for every nonegative
subharmonic function u : M — R, and normal ball B(p, R), we have

u?(p) < C(n,r, R)/ u?dV.
B(p,R)
As a corollary, one obtains a similar mean value inequality for harmonic func-

tions (without any positivity assumption):

COROLLARY 3.49. Suppose that M, p and R satisfy the hypothesis of the pre-
vious theorem. Then for every harmonic function h : M — R we have

h*(p) < \/C(n,r, R) / h2dV.
B(p,R)
PRrROOF. The composition u = h? of h with the convex function z — z2 is

subharmonic. Therefore,

uz(p) < C(n,r, R)/ w2dVv.
B(p,R)

Thus,

2
ht(p) < C(n,r, R)/ u?dV < C(n,r, R) (/ udV) ,
B(p,R) B(p,R)

which implies the inequality

h%(p) < /C(n,r, R) / p2dv. O
B(p,R)
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THEOREM 3.50 (Yau’s gradient estimate). Suppose that M™ is a complete n-
dimensional Riemannian manifold with Ricci curvature > a. Then for every posi-
tive harmonic function h on M, every x € M with InjRad(z) > e,

[Vh(z)] < C(e,n)h(z).

The following two theorem are a part of the so called elliptic reqularity theory
for solutions of second order elliptic PDEs, see e.g. [GT83].

THEOREM 3.51 (Derivative bounds). For every harmonic function h on a man-
ifold of bounded geometry, there exists L(r) such that for every x € M and every
harmonic function h : M — R, whose restriction to the ball B(x,r) takes values in
[0,1], we have

[VIVh(z)?| < L(r),
as long as Vh(x) # 0.

Note that similar estimates hold for higher-order derivatives of harmonic func-
tions; we will only need a bound on the second derivatives.

THEOREM 3.52 (Compactness Property). Suppose that (f;) is a sequence of
harmonic functions on M so that there exists p € M for which the sequence (f;(p))
is bounded. Then the family of functions (f;) is precompact in Wﬁ)’f(M) Further-
more, every limit of a subsequence in (f;) is a harmonic function.

We will use these properties of harmonic functions in Chapter 21, in the proof
of Stallings Theorem on ends of groups via harmonic functions. Since in the proof
it suffices to work with 2-dimensional Riemannian manifolds (Riemann surfaces),
the properties of harmonic functions we are using follow from more elementary
properties of harmonic functions of one complex variable (real parts of holomorphic
functions). For instance, the upper bounds on the first and second derivatives and
Compactness Property follow from Cauchy’s integral formula; the maximum prin-
ciple for harmonic functions follows from the maximum principle for holomorphic
functions. Similarly, Corollary 3.49 follows from [Poisson’s Integral Formula].

3.10. Spectral interpretation of the Cheeger constant

Let M be a complete connected Riemannian manifold of infinite volume. Then
the vector space V = L?(M) N C°>°(M) contains no non-zero constant functions.
We let Ajp; denote the restriction of the Laplace-Beltrami operator to the space V
and let A1 (M) be the lowest eigenvalue of Ays. The number Aj (M) is also known
as the spectral gap of the manifold M. The eigenvalue A1 (M) can be computed as

(3.6) inf {fl\f VfJ;|2
M

see [CY75] or Chapter I of [SY94]. J. Cheeger proved in [Che70] that

| f: M — R is smooth, non-zero, with compact support } ,

M (M) > TR(M),

where h(M) is the Cheeger constant of M. Even though Cheeger’s original result
was formulated for compact manifolds, his argument works for non-compact man-
ifolds as well, see [SY94]. Cheeger’s inequality is complemented by the following
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inequality due to P. Buser (see [Bus82]|, or [SY94]) which holds for all complete
Riemannian manifolds whose Ricci curvature is bounded below by some a € R:

A (M) < ah(M) + Bh*(M),
for some o = a(a), f = B(a). Combined, Cheeger and Buser inequalities imply

THEOREM 3.53. h(M) =0 < X\ (M) =0.

3.11. Comparison geometry

In the setting of general metric spaces it is still possible to define a notion
of (upper and lower bound for the) sectional curvature, which, moreover, coincide
with the standard ones for Riemannian manifolds. This is done by comparing
geodesic triangles in a metric space to geodesic triangles in a model space of constant
curvature. In what follows, we only discuss the metric definition of upper bound
for the sectional curvature, the lower bound case is similar (see e.g. [BBIO1]) but
will not be used in this book.

3.11.1. Alexandrov curvature and CAT(k) spaces. For a real number
k € R, we denote by X, the model surface of constant curvature k. If kK = 0 then
X, is the Euclidean plane. If k < 0 then X, will be discussed in detail in Chapter
4, it is the upper half-plane with the rescaled hyperbolic metric:
dz? + dy?
X, = (U?, |1 ) .
Y

If K > 0 then X, is the 2-dimensional sphere S (O, ﬁ) in R? with the Riemannian

metric induced from R3.

Let X be a geodesic metric space, and let A be a geodesic triangle in X. Given
k > 0 we say that A is k—compatible if its perimeter is at most % By default,
every triangle is k—compatible for k < 0.

We will prove later on (see Section 4.11) the following:

LEMMA 3.54. Let k € R and let a < b < ¢ be three numbers such that ¢ < a-+b

and a+b+c < 2—\/% if Kk > 0. Then there exists a geodesic triangle in X, with

side-lengths a,b and c, and this triangle is unique up to congruence.

Therefore, for every x € R and every k—compatible triangle A = A(A, B,C) C
X with vertices A, B,C € X and lengths a, b, ¢ of the opposite sides, there exists a
triangle (unique, up to congruence)

A(4, B,C) C X,
with the side-lengths a,b,c. The triangle A(A7B7C~’) is called the k—comparison
triangle or a k—Alezandrov triangle.

_ For every point P on, say, the side AB of A, we define the k—comparison point
P € AB, such that

d(A,P) =d(A, P).
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DEFINITION 3.55. We say that the triangle A is C AT (k) if it is k—compatible
and for every pair of points P and () on the triangle, their k—comparison points
P, Q satisfy

distx, (P,Q) > distx (P, Q) .

DEFINITION 3.56. (1) A CAT(k)-domain in X is an open convex set
U C X, and such that all the geodesic triangles entirely contained in U
are CAT (k).

(2) The space X has Alexandrov curvature at most x if it is covered by
C AT (k)-domains.

Note that a C AT (k)-domain U for x > 0 must have diameter strictly less than
. Otherwise, one can construct geodesic triangles in U with two equal edges and

2m

$h

K

the third reduced to a point, with perimeter >

=

The point of Definition 3.56 is that it applies to non-Riemannian metric spaces
where such notions as tangent vectors, Riemannian metric, curvature tensor cannot
be defined, while one can still talk about curvature being bounded from above by
K.

PROPOSITION 3.57. Let X be a Riemannian manifold. Its Alexandrov curvature
is at most k if and only if its sectional curvature in every point is < K .

PRrROOF. The “if” implication follows from the Rauch-Toponogov comparison
theorem (see [dC92, Proposition 2.5]). For the “only if” implication we refer to
[Rin61] or to [GHLO04, Chapter III]. O

DEFINITION 3.58. A metric space X is called a CAT(k)-space if the entire X
is a CAT(k)-domain. We will use the definition only for x < 0. A metric space X
is said to be a CAT(—o0)-space if X is a CAT(k)-space for every k.

Note that for the moment we do not assume X to be metrically complete.
This is because there are naturally occurring incomplete C AT (0) spaces, called
Euclidean buildings, which, nevertheless, are geodesically complete (every geodesic
segment is contained in a complete geodesic).

Clearly, every Hilbert space is CAT(0).

EXERCISE 3.59. Let X be a simplicial tree with a path-metric d. Show that
(X,d) is CAT(—00).

This exercise leads to the following definition:

DEFINITION 3.60. A geodesic metric space X such that for every geodesic
triangle in X with the sides zy, yz, zx, the side zy is contained in the union yzU zz,
is called a real tree.

EXERCISE 3.61. 1. Show that a geodesic metric space X is a real tree if and
only if X is CAT(—00).

2. Consider the following metric space: Take the union of the z-axis in R?
and all vertical lines {x = ¢}, where ¢’s are rational numbers. Equip X with the
path-metric induced from R?. Show that X is an real tree.
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We note that real trees are also called R-trees or metric trees in the literature.
A real tree is called complete if it is complete as a metric space. While the simplest
examples of real trees are given by simplicial trees equipped with their standard
path-metrics, we will see in Chapter 11 that other real trees also arise naturally in
the Geometric Group Theory. We refer to Section 11.2 for further discussion of real
trees.

EXERCISE 3.62. Let I' be a connected metric graph with the path-metric. Show
that I is a CAT(1) if and only if I" contains no circuits of length < 2.

More interesting examples come from polygonal complexes. Their origins lie in
two areas of mathematics, going back to 1940s and 1950s:

e The small cancellation theory, which is an area of the combinatorial group
theory.
e Alexandrov’s theory of spaces of curvature bounded from above.

Suppose that X is a connected almost regular 2-dimensional cell complex. We
equip X with a path-metric where each 2-face is isometric to a constant curvature
K 2-dimensional polygon with unit edges. This defines structure of a metric graph
on the link Lk(v) of each vertex v of X, where each corner ¢ of each 2-face F’
determines an edge of Lk(v) whose length is the angle of F' at ¢. We refer the
reader to [BH99, Bal95] for proofs of the following theorem:

THEOREM 3.63. The metric space X has Alexandrov curvature < k if and only
if each connected component of the link Lk(v) of each vertex v of X is a CAT(1)
space. (See [BH99]|, Theorem 5.20, Ch. I1.5.)

To make this theorem more concrete, we assume that each 2-dimensional face
of X has n edges and for each vertex v € X the combinatorial length of the shortest
circuit in the link Lk(v) is at least m. Then Theorem 3.63 implies:

COROLLARY 3.64. 1. Suppose that Kk =0, n > 3 and m > 6, orn > 4 and
m>=4, orn>6 and m > 3. Then X has Alexandrov curvature < 0.

2. Suppose that k = -1, n >3 andm =7, orn>4 andm =5, orn > 6 and
m=>=4, orn>7Tandm > 3. Then X has Alexandrov curvature < —1.

Yes another class of examples of CAT(0) spaces comes from cube complezes.
The n-dimensional cube is the product of intervals

" =10,1]".
DEFINITION 3.65. An almost regular cell complex where each cell is isomorphic

to a cube is called a cube complez.

We will always equip cube complexes with the standard path-metric where each
n-dimensional face is isometric to the Euclidean cube I™.

DEFINITION 3.66. A simplicial complex Y is called a flag-complex if whenever
Y contains a 1-dimensional complex Z isomorphic to the 1-skeleton of the n-simplex
A", the complex Y also contains a subcomplex W isomorphic to A" such that !
equals Z.

THEOREM 3.67. A simply-connected cube complex X is a CAT(0) space if and
only if the link of every vertex in X is a flag-complex.
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In the case of spaces of non-positive curvature one can connect local and global
curvature bounds:

THEOREM 3.68 (Cartan-Hadamard Theorem). If X is a simply connected com-
plete metric space with Alexandrov curvature at most k for some k < 0, then X is

a CAT(k)-space.

We refer the reader to [Bal95] and [BH99] for proofs of this theorem, and a
detailed discussion of C AT (k)-spaces, with x < 0.

DEFINITION 3.69. Simply-connected complete Riemannian manifolds of sec-
tional curvature < 0 are called Hadamard manifolds. Thus, every Hadamard man-
ifold is a C'AT(0) space.

An important property of C AT (0)-spaces is convezity of the distance function.
Suppose that X is a geodesic metric space. A function F' : X x X — R is said to
be convex if for every pair of geodesics a(s), 5(s) in X (which are parameterized
with constant, but not necessarily unit, speed), the function

f(s) = F(a(s), B(s))
is a convex function of one variable. Thus, the distance function dist of X is convex,
whenever for every pair of geodesics aga; and byb; in X, the points as € aga; and
bs € boby such that dist(ag, as) = sdist(ag, a1) and dist(bg, bs) = sdist(bo, b1 ), satisty
(3.7 dist(as, bs) < (1 — s)dist(ag, bo) + sdist(a1,b1) .
Note that in the case of a normed vector space X, a function f: X x X - R
is convex if and only if the epi-graph

{(z,y,t) € X2 xR f(x,y) >t}

is convex.

PROPOSITION 3.70. If a geodesic metric space X is CAT(0) then the distance
on X s convex.

PrOOF. Consider two geodesics agby and a1b; in X. On the geodesic agby
consider the point ¢; such that dist(ap,cs) = sdist(ag,b1). The fact that the
triangle with edges apai, agby and a;b; is CAT(0) and the Thales theorem in
R?, imply that dist(as,cs) < sdist(ay,b;). The same argument applied to the
triangle with edges agby, agbo, bob1, implies that dist(cs,bs) < (1 — s)dist(aog, bo).
The inequality (3.7) follows from

dist(as, bs) < dist(as, cs) + dist(cs, bs) -
(I

REMARK 3.71. The converse to this proposition is not true in general. In-
deed, every strictly convex normed vector space has convex distance function but
only Hilbert spaces (among normed vector spaces) are CAT'(0). See also [BH99],
Example 1.18, page 169.

COROLLARY 3.72. Every CAT(0)-space X is uniquely geodesic, i.e. for any
two points p,q € X, the (arc-length parameterized) geodesic from p to q is unique.

ProoF. It suffices to apply the inequality (3.7) to a geodesic bigon, that is, in
the special case when ag = by and a1 = b;. O
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FIGURE 3.1. Argument for convexity of the distance function.

3.11.2. Cartan’s fixed point theorem. Let X be a metric space and A C X
be a subset. Define the function

p(x) = pa(x) = sup d*(z, a).
a€A

PROPOSITION 3.73. Let X be a complete CAT(0) space. Then for every bounded
subset A C X, the function p = pa attains unique minimum in X .

PRrOOF. Consider a sequence (x,) in X such that
33, Plam) = 1= 1ol ple)-
We claim that the sequence (z,) is Cauchy. Given € > 0 let 2 = x;,2" = z; be
points in this sequence such that
p(z') <r+e.
Let p be the midpoint of zz’ C X; hence, r < p(p). Let a € A be such that
p(p) — e < d*(p,a).

Consider the Euclidean comparison triangle T = T'(&, #', &) for the triangle T'(z, 2’, a).
In the Euclidean plane we have (by the parallelogram identity (2.1)):

d*(z,7') + 4d*(a, p) = 2 (d*(a, &) + d*(a, 7)) .

r<plx)<r+e r<
<

Applying the comparison inequality for the triangles T" and T, we obtain:
d(a,p) < d(a,p).
Thus:
d(z,2')? +4(r — €) < &*(z,2") + 4d*(a,p) < 2 (*(a,z) + d*(a,2")) <
2(p(z) + p(z')) < 4r + 4e.
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It follows that

d(z,z')?* < 8e
and, therefore, the sequence (z,,) is Cauchy. By completeness of X, the function
p attains minimum in X; the same Cauchy argument implies that the point of
minimum is unique. ([l

As a corollary, we obtain a fixed-point theorem for isometric group actions on
complete C'AT'(0) spaces, which was first proven by E. Cartan in the context of
Riemannian manifolds of nonpositive curvature and then extended by J. Tits to
geodesic metric spaces with convex distance function:

THEOREM 3.74. Let X be a complete C AT (0) metric space and G < Isom(X)
be a subgroup which has bounded orbits: One (equivalently every) subset of the form

G-x={g(x): g€ G}
is bounded. Then G fizes a point in X.

PROOF. Let A denote a (bounded) orbit of G in X and let p4 be the corre-
sponding function on X. Then, by uniqueness of the minimum point m of p4, the
group G will fix m. |

COROLLARY 3.75. 1. Ewvery finite group action on a complete CAT(0) space
has a fixed point. For instance, every action of a finite group on a complete real
tree or on a Hilbert space fixes a point.

2. If G is a compact group acting isometrically and continuously on a Hilbert
space H, then G fixes a point in H.

EXERCISE 3.76. Prove that this corollary holds for all real trees T, not neces-
sarily complete ones. Hint: For a finite subset F' C T consider its span T , i.e. the
union of all geodesic segments connecting points of F'. Show that T is isometric
to a complete metric tree and is G-invariant if F' was. In fact, T is isometric to a
finite metric simplicial complex (which, as a simplicial complex, is isomorphic to a
finite simplicial tree).

DEFINITION 3.77. A group G is said to have the Property FA if for every
isometric action G ~ T on a complete real tree T', G fixes a point in 7.

Thus, all finite groups have the Property FA.

3.11.3. Ideal boundary, horoballs and horospheres. In this section we
discuss the notion of the ideal boundary of a metric space. This is a particularly
useful concept when the metric space is CAT(0), and it generalizes the concept
introduced for non-positively curved simply connected Riemannian manifolds by P.
Eberlein and B. O’Neill in [EO73, Section 1].

Let X be a geodesic metric space. Two geodesic rays p; and py in X are called
asymptotic if they are at finite Hausdorff distance; equivalently if the function
t — dist(p1(¢), p2(t)) is bounded on [0, c0) .

Clearly, being asymptotic is an equivalence relation on the set of geodesic rays
in X.

DEFINITION 3.78. The ideal boundary of a metric space X is the collection of

equivalence classes of geodesic rays. It is usually denoted either by 9., X or by
X (00).
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An equivalence class £ € 0., X is called an ideal point or point at infinity of X,
and the fact that a geodesic ray p is contained in this class is sometimes expressed
by the equality p(co) = £. When a geodesic ray p represents an equivalence class
&€ € 050X, the ray p is said to be asymptotic to &.

The space of geodesic rays in X has a natural compact-open topology, or,
equivalently, topology of uniform convergence on compacts (recall that we regard
geodesic rays as maps from [0,00) to X). Thus, we topologize 0,,X by giving it
the quotient topology .

EXERCISE 3.79. Every isometry g : X — X induces a homeomorphism g, :
Ooo X — 000 X.

This exercise explains why we consider rays emanating from different points of
X: Otherwise, most isometries of X would not act on J,,X.

Convention. From now on, in this section, we assume that X is a complete
CAT(0) metric space.

LEMMA 3.80. If X is locally compact then for every point x € X and every
point £ € 0 X there exists a unique geodesic ray p with p(0) = x and p(cc) = &.
We will also use the notation x€ for the ray p.

PROOF. Let r : [0,00) — X be a geodesic ray with r(co) = £. For every
n € N, according to Corollary 3.72, there exists a unique geodesic g,, joining x and
r(n). The convexity of the distance function implies that every g, is at Hausdorff
distance dist(x,7(0)) from the segment of r between r(0) and r(n).

By the Arzela-Ascoli Theorem, a subsequence g, of geodesic segments con-
verges in the compact-open topology to a geodesic ray p with p(0) = x. Moreover,
p is at Hausdorff distance dist(x,r(0)) from r.

Assume that p; and ps are two asymptotic geodesic rays with pq(0) = p2(0) =
x. Let M be such that dist(p1(t), p2(t)) < M, for every t > 0. Consider t € [0, c0),
and € > 0 arbitrarily small. Convexity of the distance function implies that

dist(p1(t), p2(t)) < edist(p1(t/e), p2(t/c)) < eM .
It follows that dist(p1(t), p2(t)) = 0 and, hence, p; = pa. O

In particular, for a fixed point p € X one can identify the set X := X L 950 X
with the set of geodesic segments and rays with initial point p. In what follows,
we will equip X with the topology induced from the compact-open topology on the
space of these segments and rays.

EXERCISE 3.81. (1) Prove that the embedding X < X is a homeomor-
phism to its image.
(2) Prove that the topology on X is independent of the chosen basepoint p.
In other words, given p and ¢ two points in X, the map [p,z] — [g, 2]
(with z € X) is a homeomorphism.

(3) In the special case when X is a Hadamard manifold, show that for every
point p € X, the ideal boundary 0., X is homeomorphic to the unit sphere
S in the tangent space T),M via the map

v €S CTyM — exp,(Ryv) € 0, X.
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An immediate consequence of the Arzela—Ascoli Theorem is that X is compact,
provided that X is locally compact.

Consider a geodesic ray r : [0,00) — X, and an arbitrary point © € X . The
function t — dist(z,r(t)) — ¢ is decreasing (due to the triangle inequality) and
bounded from below by —dist(x,r(0)). Therefore, there exists a limit

(3.8) be(z) = tgrgo [dist(z,7(t)) — 1] .

DEFINITION 3.82. The function b, : X — R thus defined, is called the Buse-
mann function for the ray r.

For a proof of the next result see e.g. [Bal95]|, Chapter 2, Proposition 2.5.

THEOREM 3.83. Ifry and ry are two asymptotic rays then b,, —b,, is a constant
function.

In particular, it follows that the collections of sublevel sets and the level sets of
a Busemann function do not depend on the ray r, but only on the point at infinity
that r represents.

EXERCISE 3.84. Show that b, is linear with slope —1 along the ray r. In
particular,
lim b,(t) = —oc0.

t—o0

DEFINITION 3.85. A sublevel set of a Busemann function, b, !(—o0, a] is called
a (closed) horoball with center & = r(c0); we denote such horoballs as B(§) or B(r).
A level set b, !(a) of a Busemann function is called a horosphere with center &,
it is denoted X(£). In the case when X is 2-dimensional, horospheres are called
horocycles. Lastly, an open sublevel set b~ *(—o0, a) is called an open horoball with
center £ = r(c0), and denoted B(§) or B(r).

Informally, one can think informally of horoballs B(§) and horospheres 3(&) as
metric balls and metric spheres of infinite radii in X, centered at £, whose radii are
determined by the choice of the Busemann function b, (which is determined only
up to a constant) and by the choice of the value a of b,.

LEMMA 3.86. Let r be a geodesic ray and let B be the open horoball b1 (—00,0) .
Then B =5 B(r(t),t) .

PROOF. Indeed, if for a point x,

br(z) = tlim [dist(z, r(t)) — t] <O,

then, for some sufficiently large ¢, dist(z,7(t)) —t < 0. Whence x € B(r(t),t).

Conversely, suppose that x € X is such that for some s > 0,

dist(z,7(s)) —s = ds < 0.
Then, because the function ¢ +— dist(x,r(t)) — t is decreasing, it follows that for
every t = s,
dist(z,7r(t)) — ¢t < ds.

Whence, b, () < 65 < 0. O

LEMMA 3.87. Let X be a CAT(0) space. Then every Busemann function on
X is convex and 1-Lipschitz.
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PRrROOF. Recall that the distance function on any metric space is 1-Lipschitz.
Since Busemann functions are limits of normalized distance functions, it follows
that Busemann functions are 1-Lipschitz as well. (This part does not require the
CAT(0) assumption.) Similarly, since the distance function is convex, Busemann
functions are also convex as limits of normalized distance functions. O

Furthermore, if X is a Hadamard manifold, then every Busemann function b,
is smooth, with gradient of constant norm 1, see [BGS85].

LEMMA 3.88. Assume that X is a complete CAT(0) space. Then:

e Open and closed horoballs in X are convex sets.
e A closed horoball is the closure of an open horoball.

PRrROOF. The first property follows immediately from the convexity of Buse-
mann functions. Let f = b, be a Busemann function. Consider the closed horoball

B={x: f(x) <t}
Since this horoball is a closed subset of X, it contains the closure of the open
horoball

B={z: f(x) <t}
Suppose now that f(z) = ¢t. Since lim,_, f(s) = —o0, there exists s such that
f(r(s)) < t. Convexity of f implies that for z = r(s),

fly) < f@) =t Vyewxz\{z}.

Therefore, = belongs to the closure of the open horoball B, which implies that B
is the closure of B. O

EXERCISE 3.89. 1. Suppose that X is the Euclidean space R™, r is the geodesic
ray in X with 7(0) = 0 and r'(0) = u, where u is a unit vector. Show that

by(z) = —x - u.

In particular, closed (resp. open) horoballs in X are closed (resp. open) half-spaces,
while horospheres are hyperplanes.

2. Construct an example of a proper CAT(0) space and an open horoball
B C X, B # X, so that B is not equal to the interior of the closed horoball B.
Can this happen in the case of Hadamard manifolds?
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CHAPTER 4

Hyperbolic Space

The real hyperbolic space is the oldest and easiest example of hyperbolic spaces,
which will be discussed in detail in Chapter 11. The real hyperbolic space has its
origin in the following classical question that has challenged the geometers for nearly
2000 years:

QUESTION. Does Fuclid’s fifth postulate follow from the rest of the axioms of
Euclidean geometry? (The fifth postulate is equivalent to the statement that given
a line L and a point P in the plane, there exists exactly one line through P parallel
to L.)

After a long history of unsuccessful attempts to establish a positive answer to
this question, N.I. Lobachevski, J. Bolyai and C.F. Gauss independently (in the
early 19th century) developed a theory of non-Euclidean geometry (which we now
call “hyperbolic geometry”), where Euclid’s fifth postulate is replaced by the axiom:

“For every point P which does not belong to L, there are infinitely many lines
through P parallel to L.”

Independence of the 5th postulate from the rest of the Euclidean axioms was
proved by E. Beltrami in 1868, via a construction of a model of hyperbolic geom-
etry. In this chapter we will use the unit ball and the upper half-space models of
hyperbolic geometry, the latter of which is due to H. Poincaré.

Given the classical nature of the subject, there are many books about real
hyperbolic spaces, for instance, [And05], [Bea83], [BP92|, [Rat06], [Thu97].
Our treatment of hyperbolic spaces is not meant to be comprehensive, we only
cover the material needed elsewhere in the book. The purpose of this chapter is
threefold:

1. It motivates many ideas and constructions in more general Gromouv—-hyperbolic
spaces, which appear in Chapter 11.

2. It provides the necessary geometric background for lattices in the isometry
group PO(n, 1) of hyperbolic n-space. This background will be needed in the proof
of various rigidity theorems for such lattices, which are due to Mostow, Tukia and
Schwartz (Chapters 23 and 24).

3. We will use some basic hyperbolic geometry as a technical tool in proofs of a
purely group-theoretic theorem, Stalling’s theorem on ends of groups. Hyperbolic
geometry appears in both proofs of this theorem given in the book, Chapters 20
and 21.

4.1. Moebius transformations

We will think of the sphere S™ as the 1-point compactification of Euclidean
n-space E™,
S" =E» =E" U {0}
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Accordingly, we will regard the 1-point compactification of a hyperplane in E™ as
a round sphere (of infinite radius) and the 1-point compactification of a line in E™
as a round circle. Another way to justify this treatment of hyperplanes and lines
is that hyperplanes in E™ appear as Chabauty—limits of round spheres: Consider a
sequence of round spheres S(a;, R;) in E™ passing through the origin (|a;| = R;)
with the sequence R; diverging to infinity.

EXERCISE 4.1. Every sequence of spheres as above subconverges to a linear
hyperplane in R".

The inversion in the radius r sphere ¥ = S(0,7) = {x : |x| = r} is the map

x
Iy x> T’ZW, J(0) =00, Jxn(o0)=0.

X
One defines the inversion Jy in the sphere ¥ = S(a,r) = {x : |x — a|] = r} by the
formula

X—a
Js =Tao Jsom 0 Ta, Ju(x) = r2(7)2 +a,

’ x —a
where T} is the translation by the vector a. Inversions map round spheres to round
spheres and round circles to circles; inversions also preserve Euclidean angles. We
will regard the reflection in a Euclidean hyperplane as an inversion (this inversion
fixes the point 0o). This is justified by:

EXERCISE 4.2. Suppose that the sequence of spheres ¥; = S(a;,r;) converges
to a linear hyperplane II in R™. Show that the sequence of inversions J; in the
spheres ¥; converges uniformly on compact subsets in R™ to the reflection in II.

DEFINITION 4.3. A Moebius transformation of E™ (or, more precisely, of S™) is
a composition of finitely many inversions in E™. The group of all Moebius trans-
formations of E” is denoted Mob(E™) or Mob(S™).

In particular, Moebius transformations preserve angles, send circles to circles
and spheres to spheres.

For instance, every translation is a Moebius transformation, since it is the
composition of two reflections in parallel hyperplanes. Every rotation in E™ is the
composition of at most n inversions (reflections), since every rotation in E? is the
composition of two reflections. Every dilation x — Ax, A > 0 is the composition of
two inversions in spheres centered at 0. Thus, the group of Fuclidean similarities

Sym(E™) = {g: g(x) = AMAx + b, A > 0,4 € O(n),b € R"},

is a subgroup of Mob(S™).

The cross-ratio of a quadruple of points in S™ is defined as:

_x—yllz—w|

x,y,2z,wW| = —————.

ly —z| - |w —x|
Here and in what follows we assume, by default, that y # z,x # w. In the
formula for the cross-ratio we use the chordal distance on the sphere (defined via the
standard embedding of S™ in E"*!). Instead, we can identify, via the stereographic
projection, S™ with the extended Euclidean space En = E"U{oo} and use Euclidean
distances, provided that the points x,y,z, w are not equal to the point co. Even
if one of these points is co, we can define the cross-ratio by declaring that the
two infinities appearing in the fraction defining the cross-ratio cancel each other.
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This cross-ratio turns out to be equal to the one defined via the chordal metric
(since the stereographic projection is the restriction of a Moebius transformation,
see Example 4.6).

THEOREM 4.4. 1. A map g : S* — S™ is a Moebius transformation if and
only if it preserves cross-ratios of quadruples of points in S™. 2. If a Moebius
transformation g fixes the point oo in E", then g is a Fuclidean similarity.

We refer the reader to [Rat06, Theorems 4.3.1, 4.3.2] for a proof.
This theorem has an immediate corollary:

COROLLARY 4.5. The subgroup Mob(S™) is closed in the topological group
Homeo(S™), equipped with the topology of pointwise convergence.

EXAMPLE 4.6. Let us construct a Moebius transformation ¢ sending the open
unit ball B” = B(0,1) C E™ to the upper half-space U™,

U" ={x = (z1,..2pn) : &, > 0}

We take o to be the composition of translation x — x +e,,, where e,, = (0, ...,0,1),

inversion Jy;, where ¥ = 0B", translation x — x — %en and, lastly, the dilation
x — 2x. The reader will notice that the restriction of ¢ to the boundary sphere ¥

of B™ is nothing but the stereographic projection with the pole at —e,,.

Note that the map o sends the origin 0 € B” to the point e, € U".
Given a subset A C S, we will use the notation Mob(A) for the stabilizer of
A in Mob(S™).

EXERCISE 4.7. Each Moebius transformation g € Mob(B™) commutes with the
inversion J in the boundary sphere of B".

Low-dimensional Moebius transformations. Suppose now that n = 2.
The group SL(2,C) acts on the extended complex plane S? = C U {oo} by linear-
fractional transformations:

a b az+b
4.1 sz = .
(41) ( c d ) T etd
Note that the matrix —I is in the kernel of this action, thus, the action factors
through the group PSL(2,C) = SL(2,C)/£1. If we identify the complex-projective
line CP* with the sphere S? = C U 0o via the map [z : w] — z/w, this action of

SL(2,C) on $? is nothing but the action of SL(2,C) on CP* obtained via projection
of the linear action of SL(2,C) on C?\ 0.

EXERCISE 4.8. Show the group PSL(2,C) acts faithfully on S2.

EXERCISE 4.9. Prove that the subgroup SL(2,R) C SL(2,C) preserves the
upper half-plane U? = {z : Im(z) > 0}. Moreover, SL(2,R) is the stabilizer of U?
in SL(2,C).

EXERCISE 4.10. Prove that each matrix in SL(2,C) is either of the form

(5 o)
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or it can be written as a product

(20 ()

Hint: If a matrix is not of the first type then it is a matrix

a b
c d
such that ¢ # 0. Use this information and multiplications on the left and on the

right by matrices
1 =z
0 1

to create zeroes on the diagonal in the matrix.

LEMMA 4.11. PSL(2,C) is the subgroup Mob. (S*) of Moebius transformations
of S? which preserve orientation.

PrOOF. 1. Every linear-fractional transformation is a composition of
jrz— z_l,

translations, dilations and rotations (see Exercise 4.10). Note that j(z) is the
composition of the complex conjugation with the inversion in the unit circle. Thus,
PSL(2,C) C Moby(S?). Conversely, let g € Mob(S?) and 2y := g(oo). Then
h = joTog fixes the point oo, where 79(z) = z — z9. Let z3 = h(0). Then
composition f of h with the translation 71 : z — z — z; has the property that
f(o0) =00, f(0) = 0. Thus, f € CO(2) and h preserves orientation. It follows that
f has the form f(z) = Az, for some A € C\0. Since f, 79, 7—1, j are linear-fractional
transformation, it follows that g is also linear-fractional. O

EXERCISE 4.12. Show that the group Mob(S!) equals the group of real-linear
fractional transformations
axr +b
- +d’
ad —bc # 0,a,b,¢c,d € R.

4.2. Real hyperbolic space

The easiest way to introduce the real-hyperbolic n-space H™ is by using its
models: Upper half-space, unit ball and the projectivization of the two-sheeted
hyperboloid in the Lorentzian model. Different features of H" are best visible in
different models.

Upper half-space model. We equip U"™ with the Riemannian metric

dx?  da? + ..+ da?
(4.2) ds? = — = 1+—2+n
x’ﬂ, x’ﬂ,
The Riemannian manifold (U™, ds?) is called the n-dimensional hyperbolic space
and denoted H™. This space is also frequently called the real-hyperbolic space,
in order to distinguish it from other spaces also called hyperbolic (e.g., complex-
hyperbolic space, quaternionic-hyperbolic space, Gromov—hyperbolic space, etc.).
We will use the terminology hyperbolic space for H" and add adjective real in case
when other notions of hyperbolicity are involved in the discussion. In case n = 2,
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we identify R? with the complex plane, so that U? = {z|Im(z) > 0}, z = x + iy,
and
2 dz? + dy?
y:
Note that the hyperbolic Riemannian metric ds? on U™ is conformally-Euclidean,
hence, hyperbolic angles are equal to the Euclidean angles. One computes hyper-
bolic volumes of solids in H"™ by the formula

Vol(Q):/ dzy...dx,
Q

n
x’ﬂ

ds

Consider the projection to the x,-axis in U™ given by the formula
7w (21, ey xn) — (0,..,0,2,).

EXERCISE 4.13. 1. Verify that d,m does not increase the length of tangent
vectors v € T, H" for every x € H".

2. Verify that for a unit vector v € TpH", ||d,7m(v)|| = 1 if and only if v is
“vertical”, i.e. it has the form (0, ...,0,v,,).

Here and in what follows, the norm ||-|| is the one with respect to the hyperbolic
Riemannian metric on the tangent spaces to H"; the notation | - | is reserved for
the Euclidean norm.

EXERCISE 4.14. Suppose that p = ae,,q = be,,, where 0 < a < b. Let a be
the vertical path a(t) = (1 — ¢)p + tq, ¢ € [0, 1] connecting p to q. Show that « is
the shortest path (with respect to the hyperbolic metric) connecting p to q in H".
In particular, « is a hyperbolic geodesic and

d(p,q) = log(b/a).

Hint: Use the previous exercise.

We note that the metric ds? on H"” is clearly invariant under the “horizontal”
Euclidean translations x — x + v, where v = (v1,...,v,-1,0) (since they preserve
the Euclidean metric and the x,-coordinate). Similarly, ds? is invariant under the
dilations

h:x—Ax,A>0

since h scales both numerator and denominator in (4.2) by A2. Lastly, ds? is in-
variant under Euclidean rotations which fix the x,-axis (since they preserve the
xn-coordinate). Clearly, the group generated by such isometries of H” act transi-
tively on H", which means that H" is a homogeneous Riemannian manifold.

EXERCISE 4.15. Show that H" is a complete Riemannian manifold. You can
either use homogeneity of H"™ or show directly that every Cauchy sequence in H"
lies in a compact subset of H".

EXERCISE 4.16. Show that the inversion J = Jy in the unit sphere X centered
at the origin, is an isometry of H". The proof is an easy but (somewhat) tedious
calculation, which is best done using calculus interpretation of the pull-back Rie-
mannian metric.

EXERCISE 4.17. Show that every inversion preserving H™ is an isometry of
H". To prove this, use compositions of the inversion Jy, in the unit sphere with
translations and dilations.
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In order to see clearly other isometries of H"”, it is useful to consider the unit
ball model of the hyperbolic space.

Unit ball model. Consider the open unit Euclidean n-ball
B":={xeR": x| <1}

in E™. We equip B” with the Riemannian metric
dz? + ...+ d2?

(1—x[?)?
The Riemannian manifold (B", ds?) is called the unit ball model of the hyperbolic
n-space. What is clear in this model is that the group O(n) of orthogonal trans-
formations of R™ preserves dsg (since its elements preserve |z| and, hence, the

denominator of ds%). The two models of the hyperbolic space are related by the
Moebius transformation o : B® — U™ defined in the previous section.

dsh =4

EXERCISE 4.18. Show that dsj = o*(ds?). The proof is again a straightforward
calculation similar to the Exercise 4.16. Namely, first, pull-back ds? via the dilation
x — 2x, then apply pull-back via the translation x — x — %en, etc. Thus, o is an
isometry of the Riemannian manifolds (B", ds%), (U™, ds?).

LEMMA 4.19. The group O(n) is the stabilizer of O in the group of isometries
of (B, ds%).

PRrROOF. Note that if g € Isom(B™) fixes 0, then its derivative at the origin
dgo is an orthogonal transformation w. Thus, the derivative (at the origin) of the
composition h = u~1g € Isom(B") is the identity. Therefore, for every geodesic ~y
in H"™ such that v(0) = 0, Doh(+(0)) = +/(0). Since each geodesic in a Riemannian
manifold is uniquely determined by its initial point and initial velocity, we conclude
that h(y(t)) = ~(¢) for every t. By completeness of H", for every ¢ € B™ there
exists a geodesic 7 connecting p to ¢q. It follows that h(q) = ¢ and, therefore,
g=u€O0(n). O

COROLLARY 4.20. The stabilizer of the point e, € U™ in the group Isom(H™)
is contained in the group of Moebius transformations.

ProOOF. Note that o sends 0 € B” to e, € U", and o is Moebius. Thus,
o : B" — U™ conjugates the stabilizer O(n) of 0 in Isom(B", ds%) to the stabilizer
K = 0710(n)o of e, in Isom(U", ds?). Since O(n) C Mob(S"),o € Mob(S"), the
claim follows. |

COROLLARY 4.21. a. Isom(H") equals the group Mob(H™) of Moebius trans-
formations of S™ preserving H".
b. Isom(H") acts transitively on the unit tangent bundle UH" of H™.

PROOF. a. Since the two models of H™ differ by a Moebius transformation, it
suffices to work with U".

1. We already know that the Isom(H"™) N Mob(H™) contains a subgroup act-
ing transitively on H"™. We also know, that the stabilizer K of p in Isom(H") is
contained in Mob(H™). Thus, given g € Isom(H™) we first find

h € Mob(H™) N Isom(H™)
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such that & = h o g(p) = p. Since k € Mob(H"), we conclude that Isom(H") <
Mob(H™).

2. We leave it to the reader to verify that the restriction homomorphism
Mob(H™) — Mob(S"1) is injective. Every g € Mob(S"!) extends to a com-
position of inversions preserving H™. Thus, the above restriction map is a group
isomorphism. We already know that inversions J € Mob(H™) are hyperbolic isome-
tries. Thus, Mob(H") C Isom(H™).

b. Transitivity of the action of Isom(H™) on UH"™ follows from the fact that
this group acts transitively on H" and that the stabilizer of p acts transitively on
the set of unit vectors in 7, H". |

For the next lemma we recall that we treat straight lines as circles.

LEMMA 4.22. Geodesics in H™ are arcs of circles orthogonal to the boundary
sphere of H™. Furthermore, for every such arc « in U™, there exists an isometry
of H™ which carries « to a segment of the x,-azis.

PRrROOF. It suffices to consider complete hyperbolic geodesics o : R — H".
Since o : B™ — U™ sends circles to circles and preserves angles, it again suffices to
work with the upper half-space model. Let a be a hyperbolic geodesic in U™. Since
Isom(H™) acts transitively on UH", there exists a hyperbolic isometry g such that
the hyperbolic geodesic 8 = g o « satisfies: 5(0) = p = e, and the vector 5'(0) has
the form e, = (0,...,0,1). We already know that the curve

vt ele,
is a hyperbolic geodesic, see Exercise 4.14. Furthermore, 7/(0) = e,, and v(0) = p.
Thus, 8 = ~ is a circle orthogonal to the boundary of H". Since Isom(H") =

Mob(H™) and Moebius transformations map circles to circles and preserve angles,
lemma follows. U

COROLLARY 4.23. The space H™ is uniquely geodesic, i.e. for every pair of
points in H™ there exists a unique unit speed geodesic segment connecting these
points.

PROOF. By the above lemma, it suffices to consider points p,q on the x,-
axis. But, according to Exercise 4.14, the vertical segment is the unique length-
minimizing path between such p and gq. O

COROLLARY 4.24. Let H C H™ be the intersection of H" with a round k-sphere
orthogonal to the boundary of H™. Then H is a totally-geodesic subspace of H™,
i.e. for every pair of points p,q € H, the unique hyperbolic geodesic v connecting
p and q in H", is contained in H. Furthermore, if v : H — H"™ is the embedding,
then the Riemannian manifold (H,*ds?) is isometric to HF.

PROOF. The first assertion follows from the description of geodesics in H". To
prove the second assertion, by applying an appropriate isometry of H", it suffices
to consider the case when H is contained in a coordinate k-dimensional subspace
in R™:

H={0,...,0,Tn—k+1,--,Zn) : T, > 0}.

Then ) )
s — dwn_kH + ... +dx;,
z
is isometric to the hyperbolic metric on H* (by relabeling the coordinates). [
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We will refer to the submanifolds H C H" as hyperbolic subspaces.

EXERCISE 4.25. Show that the hyperbolic plane violates the 5th Euclidean
postulate: For every (geodesic) line L C H? and every point P ¢ L, there are
infinitely many lines through P which are parallel to L (i.e. disjoint from L).

EXERCISE 4.26. Prove that:

e The unit sphere S*~! (with its standard topology) is the ideal boundary
(in the sense of Definition 3.78) of the hyperbolic space H" in the unit
ball model. L

e The extended Euclidean space E® = S™ is the ideal boundary of the
hyperbolic space H™*! in the upper half-space model.

Note that the Moebius transformation ¢ : B — U™ carries the ideal boundary
of B" to the ideal boundary of U™. Observe also that all Moebius transformations
which preserve H" in either model, induce Moebius transformations of the ideal
boundary of H™.

Lorentzian model of H". We refer the reader to [Rat06] and [Thu97] for
the material below.
Consider the Lorentzian space R™!, which is R"*! equipped with the indefinite
nondegenerate quadratic form
Q(x) :mf+...+xi—a:i+1,

which is the quadratic form of the inner product

n
(x,y) = leyz — Tn4+1Yni1-
i=1

Let H denote the upper sheet of the 2-sheeted hyperboloid in R™1!:
Q(X) =-1, x,41>0.

The restriction of @ to the tangent bundle of H is positive-definite and, hence,
defines a Riemannian metric ds? on H. We identify the unit ball B” in R™ with
the ball
{(z1,...,20,0) s 23 + ... 422 <1} CcR™!
via the inclusion R™ «— Rt
(1,...,zn) — (T1,...,2n,0).
Let 7 : H — B™ denote the radial projection from the point —e,,y1:
1
m(x)=tx—(1—t)e,r1, t=—"77-—.
(9 =t~ (1~ ewr, 1= —g
One then verifies that
4dx>
:(H,ds*) > H"= (B", ————
T LA (& o 25r)
is an isometry. Accordingly, intersections of H with k-dimensional linear subspaces
of R**! are k-dimensional hyperbolic subspaces of H".
Instead of working with the upper sheet H of the hyperboloid {Q = —1} it
is sometimes convenient to work with the projectivization of this hyperboloid or,
equivalently, of the open cone

{Q(x) <0}.
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Then the stabilizer O(n,1)" of H in O(n, 1) is naturally isomorphic to the quotient
PO(n,1) = O(n,1)/ £ I. The stabilizer of H in O(n, 1) acts isometrically on H.
Furthermore, this stabilizer is the entire isometry group of (H, ds?).

Thus, Isom(H") = PO(n,1) 2 O(n,1)* < O(n,1); in particular, the Lie group
Isom(H™) is linear.

The distance function in H” in terms of the Lorentzian inner product is given
by the formula:

(4.3) coshd(x,y) = — (x,¥),

which is a direct analogue of the familiar formula for the angular metric on the
unit sphere in terms of the Euclidean inner product. In order to see this, it suffices

to consider the 1-dimensional hyperbolic space H' identified with the hyperbola

22 — 23 = —1,29 > 0, in RY!. This hyperbola is parameterized as

x(t) = (sinh(t), cosh(t)), teR.

It is immediate from the definition of the induced Riemannian metric on H' that
this is an isometric parameterization of H' and, hence,

t = dist(eq,x), x=x(t).
Lastly,
(e2,x) = — cosh(t).
The general case follows from transitivity of the isometry group of H™.
EXERCISE 4.27 (Rigidity of n-point configurations). Every n-tuple of points

1,+..,pn) in H" is uniquely determined, up to an isometry of H", by their mutual
(p Pn) quely p y y
distances

diSt(piapj)7 [ <j'
In particular, a geodesic triangle in H" is uniquely determined (up to congruence) by

its side-lengths. Hint: Use the distance formula (4.3) and the fact that a quadratic
form is uniquely determined (up to an isometry) by its Gram matrix.

The Lorentzian model of H™ is a luxury one has in studying real-hyperbolic
spaces, as the unit ball and the upper half-space models work just fine. How-
ever, linear models become a necessity when dealing with other hyperbolic spaces,
complex-hyperbolic and quaternionic ones (see Section 4.9), as the unit ball and
upper half-spaces models for such spaces become much more awkward to use.

4.3. Classification of isometries

Every continuous map of a closed disk to itself has a fixed point. Since every
isometry of H" (in the unit ball model) extends to a Moebius transformation of the
closed ball D™, isometries of the hyperbolic space are classified by their fixed points
in D™.

DEFINITION 4.28. An isometry g € Isom(H") is elliptic if it fixes a point = € H".

Conjugating an elliptic isometry ¢ (fixing € H") by an isometry h € Isom(H"),
sending x to the center of the ball B"™, we obtain another elliptic isometry

f =hgh™!
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which fixes the center of B". Since f commutes with the inversion .J in the unit
sphere S~ !, we obtain:

f(o0) = JfJ(o0) = Jf(0) = J(0) = oo.

Therefore, in view of Theorem 4.4, we conclude that f has to be a Euclidean
similarity fixing the origin and preserving the unit ball B®. Such f is necessarily
an orthogonal transformation, an element of the orthogonal group O(n). We obtain:

LEMMA 4.29. An element g € Isom(H") = Mob(B™) is elliptic if and only if g
is conjugate in Isom(H"™) to an orthogonal transformation.

Suppose that a Moebius transformation g of the boundary sphere S*~! fixes
three distinct points &1, &, &3 € S*7L. Let C denote the unique round circle through
these three points. The circle C' appears as the boundary circle of a unique hyper-
bolic plane H? C H". Since g fixes the points &1, &y, &3, it has to preserve C' and,
hence, H?. Furthermore, g preserves the hyperbolic geodesic v C H? asymptotic
to &1, &. There exists a unique horoball B C H? centered at ¢3, whose boundary
touches the geodesic v; we let x € v denote this point of tangency. By combining
these observations, we conclude that g fixes the point x and is, therefore, elliptic.
Moreover, we also see that ¢ fixes two linearly independent vectors vy, vs € T,H?:
These are the initial velocity vectors of the geodesic rays pi, ps emanating from z
and asymptotic to &1, & respectively. Therefore, g fixes = and acts as the identity
map on the tangent plane T, H?2.

EXERCISE 4.30. Use these facts to conclude that the isometry g fixes the hy-
perbolic plane H? and the circle C' pointwise. Alternatively, argue that a linear—
fractional transformation fixing three points in C' is the identity map.

We, thus, obtain:

LEMMA 4.31. Each isometry of H" fizing at least three points in the boundary
sphere STV is elliptic and, moreover, fixes pointwise a hyperbolic plane in H™.

Of course, elliptic isometries need not fix any points in S®~', for instance, the
antipodal map
Xx——-x, xeB"
is an elliptic isometry which has unique fixed point in D™. Another example to keep
in mind is that each rotation g € SO(3) is an elliptic isometry of H® = B3, which
has exactly two fixed points in the boundary sphere.

In view of Lemma 4.31, in order to classify non-elliptic isometries, we have to
consider isometries with one or two fixed points in S? 1.

DEFINITION 4.32. An isometry g of H™ is called parabolic if it has exactly one
fixed point in the boundary sphere S"~1.

Note that such an isometry cannot be elliptic, since a fixed point z € H"
together with a fixed point £ € S*~! determine a unique geodesic v C H" through
x asymptotic to £. Therefore, an isometry g fixing both = and ¢ also fixes the entire
geodesic v and, hence, the second ideal boundary point é € S" ! of 4.

It is now convenient to switch from the unit ball model to the upper half-space
model U™; we choose a Moebius transformation h : B® — U™ which sends the
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fixed point £ of g to the point oo in En. Conjugating g via h, we obtain a parabolic
isometry

f=ghg™!

whose unique fixed point is co. Such f has to act as a Euclidean similarity on E*~!
which has no fixed points in E?~!.

EXERCISE 4.33. Suppose that f € Sim(E"~!) has no fixed points in E"~1.
Then f has the form

J(x) = Ax + b,
with A € O(n —1).

A FEuclidean isometry f(x) = Ax + b is called a Euclidean skew motion with
the translational component b if the vector b is non-zero and is fixed by A. Note
that we allow Euclidean translations as special cases as skew motions (with the
identity orthogonal component A).

EXERCISE 4.34. 1. Suppose that f(x) = Ax+Db is a Euclidean isometry without
fixed points in E*~!. Then f is conjugate by a translation in R™ to a Euclidean
skew motion.

2. Conversely, Euclidean skew motions have no fixed points in E*~!.

To summarize:

LEMMA 4.35. An isometry of H" is parabolic if and only if it is conjugate in
Mob(S™) to a Euclidean skew motion.

The last class of isometries of H™ consists of hyperbolic isometries. Each hy-
perbolic isometry ¢ has exactly two fixed points & 7§A in the boundary sphere S*~1.
In order to distinguish such isometries from elliptic isometries, consider the unique
geodesic v in H" asymptotic to the points &, é . This geodesic has to be preserved
by g. Therefore, g induces an isometry v — . The isometry group of R consists
of three types of elements:

1. The identity map.

2. Reflections, R, : z+— a—x, a € R.

3. Nontrivial translations  — z + b, b € R\ {0}.

It is clear that if g induces an isometry of type 1 or 2 of the geodesic v, then g
is necessarily elliptic. This leads to:

DEFINITION 4.36. An isometry g € Isom(H") is hyperbolic if it preserves a
geodesic v C H"™ and acts on this geodesic as a non-zero Euclidean translation
z — x 4+ b. The number b is called the translation number 74 of g. The geodesic ~y
is called the azis of g.

EXERCISE 4.37. Show that each hyperbolic isometry has unique axis. Hint:
Assuming that g has two distinct axes, consider the action of g on their ideal
boundary points.

Note that g, of course, fixes the ideal points £ ,é € S"~1 of its . One can distin-
guish g from an elliptic isometry fixing these points by noting that g is hyperbolic
if and only it its derivative at these points is not an orthogonal transformation.
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EXERCISE 4.38. Prove this characterization of hyperbolic isometries in terms of
their derivatives. Hint: First consider the case when g fixes 0 and oo, and consider
the derivative at the origin. Then reduce the general case to this one.

As with the elliptic and parabolic isometries, we can conjugate each hyperbolic
isometry g to a Euclidean similarity, by sending (via a Moebius transformation
h: B™ — U") the fixed points &, é to 0 and oo respectively. The conjugate Moebius
transformation

f=hgh™!
has the form
fx)=XAx, A€On-1), A>0, A#1

The translation number 7, equals

g = |log(A)],
since
dist(e,, Ae,) = |log(N)].
In the case when n = 3 and we can identify Isom, (H") with the group

PSL(2,C), one can give a simple numerical characterization of elliptic, parabolic
and hyperbolic isometries:

Suppose that g is an orientation-preserving Moebius transformation of C, rep-
resented by the matrices +A,

a b
A= [ e d } € SL(2,C).
We assume that A # £, i.e. ¢ is not the identity map (in which case, ¢ is, of
course, elliptic).

EXERCISE 4.39. 1. g is elliptic iff tr(A) € (-2,2) C C.

2. g is parabolic iff tr(A4) = +2.

3. ¢ is hyperbolic iff tr(A) ¢ [-2,2].

Hint: Use the fact that each g € PSL(2,C) is conjugate to a Euclidean simi-
larity.

Lastly, we note that the elliptic-parabolic-hyperbolic classification of isometries
can be generalized in the context of CAT(—1) spaces X. Instead of relying upon
the (unavailable) fixed-point theorem for general continuous maps, one classifies
isometries g of X according to their translation numbers:

Ty = xlg)f( d(z, gx).

e An isometry g is elliptic if 7, = 0 and the infimum in the definition of 7,
is realized in X.

e An isometry g is parabolic if 7, = 0 and the infimum in the definition of
Tg is not realized in X.

e An isometry g is hyperbolic if 7, > 0.

EXERCISE 4.40. Show that the classification of isometries of H” described in
this section is equivalent to their classification via translation numbers.
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4.4. Hyperbolic trigonometry

In this section we consider geometry of triangles in the hyperbolic plane. We
refer to [Bea83, Rat06, Thu97]| for the proofs of the hyperbolic trigonometric for-
mulae introduced in this section. Recall that a (geodesic) triangle T = T'(A, B, C)
as a 1-dimensional object. From the Euclidean viewpoint, a hyperbolic triangle T is
a concatenations of circular arcs connecting points A, B, C' in H2, where the circles
containing the arcs are orthogonal to the boundary of H2. Besides such “conven-
tional” triangles, it is useful to consider generalized hyperbolic triangles where some
vertices are ideal, i.e. they belong to the (ideal) boundary circle of H2. Such tri-
angles are easiest to introduce by using the FEuclidean interpretation of hyperbolic
triangles: One simply allows some (or, even all) vertices A, B,C to be points on
the boundary circle of H2, the rest of the definition is exactly the same. However,
we no longer allow two vertices which belong to the boundary circle S' to be the
same. More intrinsically, an triangle T'(A, B, C), where, say, B and C are in H?
and A € S! is the concatenation of the geodesic arc BC and geodesic rays C A and
BA (although, the natural orientation of the latter is from A to B).

The vertices of T which happen to be points of the boundary circle S! are called
the ideal vertices of T. The angle of T at its ideal vertex A is just the Euclidean
angle, which has to be zero, since both sides of T" at A are orthogonal to the ideal
boundary circle S*.

In general, we will use the notation a = Z4(B,C) to denote the angle of T at
A. From now on, a hyperbolic triangle means either a usual triangle or a triangle
where some vertices are ideal. We still refer to such triangles as triangles in H?, even
though, some of the vertices could lie on the ideal boundary, so, strictly speaking,
an ideal hyperbolic triangle in H? is not a subset of H2. An ideal hyperbolic
triangle, is a triangle where all the vertices are distinct ideal points in H2. The
same conventions will be used for hyperbolic triangles in H".

C

FIGURE 4.1. Geometry of a general hyperbolic triangle.
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1. General triangles. Consider hyperbolic triangles 7' in H? with the side-
lengths a, b, c and the opposite angles «, 3, v, see Figure 4.1.
a. Hyperbolic Sine Law:
sinh(a)  sinh(b)  sinh(c)
(4.4) - = — = — .
sin(a) sin(8) sin(y)
b. Hyperbolic Cosine Law:

(4.5) cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(7y)
c. Dual Hyperbolic Cosine Law:

(4.6) cos(y) = — cos(a) cos(B) + sin(a) sin(B) cosh(c)
2. Right triangles. Consider a right-angled hyperbolic triangle with the

hypotenuse ¢, the other side-lengths a,b and the opposite angles a, 3. Then, hy-
perbolic cosine laws become:

(4.7) cosh(c) = cosh(a) cosh(b),
(4.8) cos(a) = sin(f) cosh(a),

(4.9) cos(a) = EZEEZC)

In particular,

(4.10) cos(ar) = W.

3. First variation formula for right triangles. We now hold the side a
fixed and vary the hypotenuse in the above right-angled triangle. By combining
(4.7) and (4.5) we obtain the First Variation Formula:

cosh(a) sinh(b)
4.11 '(0) = —————=b'(0) = cos(a)b'(0).
(4.11) ' (0) Sinh(c) (0) = cos(a)b'(0)
The equation ¢/(0) = cos(a)b’(0) is a special case of the First Variation Formula in
Riemannian geometry, which applies to general Riemannian manifolds.

As an application of the first variation formula, consider a hyperbolic triangle
with vertices A, B, C, side-lengths a, b, ¢ and the angles 3,~ opposite to the sides
b,c. Then

LEMMA 4.41. a+ b — ¢ > ma, where
m = min{|1 — cos(p)|, |1 — cos(v)|}.

PRrROOF. We let g(t) denote the unit speed parameterizations of the segment
BC, such that g(0) = C, g(a) = B. Let ¢(t) denote the distance dist(A, g(¢)) (such
that b = ¢(0),c = ¢(a)) and let 5(t) denote the angle LZAg(t)B. We leave it to the
reader to verify that

11— cos(B(1)] > m.
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Consider the function
ft)=t+b—c(t), [f(0)=0, fla)=a+b-c
By the first variation formula,
c(t) = cos(B(t))

and, hence,

F(t) =1 - cos(8(t)) > m
Thus,

a+b—c= f(a) 2ma O

EXERCISE 4.42. [Monotonicity of the hyperbolic distance] Let T;,4 = 1,2 be
right hyperbolic triangles with vertices A;, B;, C; (where A; or B; could be ideal
vertices) so that A = A; = Ay, A1B1 C A3Bs, aq = ap and 71 = 2 = w/2. See
Figure 4.2. Then a; < az. Hint: Use (4.9).

In other words, if o(¢), 7(t) are hyperbolic geodesics with unit speed parame-
terizations, so that o(0) = 7(0) = A € H?, then the distance d(o(t),7) from the
point o(t) to the geodesic 7, is a monotonically increasing function of ¢.

Bs

a2

ai

01 CQ

FIGURE 4.2. Monotonicity of distance.

4.5. Triangles and curvature of H"

Given points A, B,C € H"™ we define the hyperbolic triangle T = [A, B,C] =
AABC with vertices A, B, C'. We topologize the set T'ri(H"™) of hyperbolic triangles
T in H" by using topology on triples of vertices of T, i.e. a subspace topology in
(B

EXERCISE 4.43. Angles of hyperbolic triangles are continuous functions on
Tri(H™).

EXERCISE 4.44. Every hyperbolic triangle T' in H" is contained in (the com-
pactification of) a 2-dimensional hyperbolic subspace H? C H". Hint: Consider a
triangle T' = [A, B, C|], where A, B belong to a common vertical line.
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So far, we considered only geodesic hyperbolic triangles, we now introduce their
2-dimensional counterparts. First, let T'= T'(A, B, C) be a generalized hyperbolic
triangle in H2. We will assume that T is nondegenerate, i.e. is not contained in a
hyperbolic geodesic. Such triangle T cuts H? into several connected components,
exactly one of which is a convex region with the boundary equal to T itself. (For
instance, if all vertices of T are points in H?, then H? \ T' consists of two compo-
nents, while if 7' is an ideal triangle, then H? \ T is a disjoint union of four convex
regions.) The closure of this region is called solid (generalized) hyperbolic triangle
and denoted A = A(A, B,C). It T is degenerate, we set A :=T. More generally, if
T C H" is a hyperbolic triangle, then the solid triangle bounded by T is the solid
triangle bounded by T in the hyperbolic plane H? C H" containing 7. We will
retain the notation A for solid triangles in H™.

EXERCISE 4.45. Let S be a hyperbolic triangle with the sides o;,7 = 1,2, 3.
Then there exists an ideal hyperbolic triangle T in H? with the sides 7;,i = 1,2, 3,
bounding solid triangle A, so that S C A and o is contained in the side 71 of T
See Figure 4.3.

FIGURE 4.3. Triangles in the hyperbolic plane.

LEMMA 4.46. Isom(H?) acts transitively on the set of ordered triples of pairwise
distinct points in O, H2.

PROOF. Let a,b,c € R U oo be distinct points. By applying an inversion we
send a to oo, so we can assume a = co. By applying a translation in R we get
b = 0. Lastly, composing a map of the type z — Az, A € R\ 0, we send ¢ to 1.
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The composition of the above maps is a Moebius transformation of S! and, hence,
equals to the restriction of an isometry of HZ2. ([

COROLLARY 4.47. All ideal hyperbolic triangles are congruent to each other.

EXERCISE 4.48. Generalize the above corollary to: Every hyperbolic triangle
is uniquely determined by its angles. Hint: Use hyperbolic trigonometry.

We will use the notation Ti, 3, to denote unique (up to congruence) triangle
with the angles «, 3, 7.

EXERCISE 4.49. The group Mob(S™) acts transitively on 3-point subsets of S™.
(Hint: Use the fact that any triple of points in S™ is contained in a round circle;
then apply Lemma 4.46.)

LEMMA 4.50. Suppose that (x,y,z), (x',y',2"), (zi,yi, 2i),© € N are triples of
distinct points in S™ and

(4.12) lim (z;, 95, 2:) = (2,9, ).

1—00
Assume that ~v; € Mob(S™) are such that
’Yi(‘ra Y, Z) = (xiv Yiy Z’L)
Then the sequence (g;) belongs to a compact subset of Mob(S™).
PROOF. We let T,T",T; C H"*! denote the (unique) ideal triangles with the

vertices (z,y, 2), (¢',y', 2’), (s, yi, z;) respectively. Then each g; sends T to T; and
maps the center ¢ ot T to the center ¢; of T;. The limit (4.12) implies that

. /
lim ¢; = ¢,
17— 00

where ¢’ is the center of T”. The Arzela-Ascoli theorem now implies precompactness

of the sequence (g;) in Isom(H"*!) and, hence, in Mob(S™). O
We now return to the study of geometry of hyperbolic triangles.

Given a hyperbolic triangle T' bounding a solid triangle A, the area of T is the

area of A,
Area(T) :// dac;iy.
A Y

Area of a degenerate hyperbolic triangle is, of course, zero. Here is an example of the
area calculation. Consider the triangle T" = T 4 /2 (Which has angles 7/2,0, a).
We can realize T as the triangle with the vertices i, 0o, e*®. Computing hyperbolic
area of this triangle (and using the substitution « = cos(t), @ < t < 7/2), we obtain

dedy m
Area(T) = // = - —q«
( ) R y2 2

For T' = Tp,0,, we subdivide T" in two right triangles congruent to Tp o/2 /2 and,
thus, obtain

(4.13) Area(Tp0,0) =7 — a.

In particular, area of the ideal triangle equals 7.
LEMMA 4.51. Area(To g~) =7 — (a+ B +7).
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PRrROOF. The proof given here is due to Gauss, it appears in the letter from
Gauss to Bolyai, see [Gau73|. We realize T' = T}, g as a part of the subdivision of
an ideal triangle Ty 0,0 in four triangles, the rest of which are T 0.a, 10,0, 10,0,4'
where ¢/ = 7 — 6 is the complementary angle. See Figure 4.4. Using additivity of
area and equation (4.13), we obtain the area formula for 7. O

>

FIGURE 4.4. Computation of area of the triangle T

Curvature computation. Our next goal is to compute the sectional curva-
ture of H". Since Isom(H"™) acts transitively on pairs (p, P), where P C T,H" is a
2-dimensional subspace, it follows that H™ has constant sectional curvature x (see
Section 3.6). Since H? C H" is totally geodesic and isometrically embedded (in the
sense of Riemannian geometry), & is the same for H" as for H?.

COROLLARY 4.52. The Gaussian curvature k of H? equals —1.

PRrROOF. Instead of computing the curvature tensor (see e.g. [dC92] for the
computation), we will use Gauss-Bonnet formula. Comparing the area computation
given in Lemma 4.51 with Gauss-Bonnet formula (Theorem 3.22) we conclude that
Kk =—1. (]

Note that scaling properties of the sectional curvature (see Section 3.6) imply
that the sectional curvature of

equals —a~! for every a > 0.

4.6. Distance function on H"

We begin by defining the following quantities:

]2
(4.14) dist (z,w) = arccosh <1 + |2 = vl ) z,w € U?

2Im zImw
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and, more generally,

p—al?
2pnan
It is immediate that dist(p,q) = dist(q,p) and that dist(p,q) = 0 if and only

if p = q. However, it is, a priori, far from clear that dist satisfies the triangle
inequality.

(4.15) dist (p, q) = arccosh (1 + ) p,q € U”

LEMMA 4.53. dist is invariant under Isom(H™) = Mob(U™).

PRrOOF. First, it is clear that dist is invariant under the group Euc(U™) of
Euclidean isometries which preserve U™. Next, any two points in U™ belong to
a vertical half-plane in U”. Applying elements of Euc(U"™) to this half-plane, we
can transform it to the coordinate half-plane U% C U™. Thus, the problem reduces
to the case n = 2 and orientation-preserving Moebius transformations of H2. We
leave it to the reader as an exercise to show that the map z — —% (which is an
element of PSL(2,R)) preserves the quantity

|2 —w?
Im zImw

and, hence, the function dist. Now, the assertion follows from Exercise 4.10 and
Lemma 4.11. ([
Recall that d(p, ¢) denotes the hyperbolic distance between points p,q € U™.

PROPOSITION 4.54. dist(p, q) = d(p,q) for all points p,q € H™. In particular,
the function dist is indeed a metric on H™.

PROOF. As in the above lemma, it suffices to consider the case n = 2. We can
also assume that p # ¢. First, suppose that p = ¢ and ¢ = ib, b > 1. Then, by
Exercise 4.14,

b
) dt
dist(pg) = [ =log0).exp(d(p,0) = b,
1
On the other hand, the formula (4.14) yields:
b—1)2
dist(p, ¢) = arccosh (1 + (2b)> .

Hence,

dist(p,q) —dist(p,q) b—1 2
cosh(dist(p, q)) = ¢ +2€ =1+ %
Now, the equality dist(p, q) = d(p, ¢) follows from the identity
b-—1)2% b+bt
26 2

For general points p,q in H?, by Lemma 4.22, there exists a hyperbolic isometry
which sends p to 7 and ¢ to a point of the form ib,b > 1. We already know that
both hyperbolic distance d and the quantity dist are invariant under the action of
Isom(H?). Thus, the equality d(p,q) = dist(p,q) follows from the special case of
points on the y-axis. [

1+
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EXERCISE 4.55. 1. Deduce from (4.14) that
— |2 a2
log (1 N |z — w| |z — w]

) <d(z,w)<10g(1+ )+10g2

2Im zImw 2ImzImw

for all points z,w € U2,
2. Suppose that A, B are distinct points in S* and A, B are points which belong
to the geodesic in H? connecting A to B. Show that

dist(A, B) = ‘1og[A,B7B7/1]

Hint: First do the computation when A= 0, B = o in the upper half-plane model.

4.7. Hyperbolic balls and spheres

Pick a point p € H” and a positive real number R. Then the hyperbolic sphere
of radius R centered at p is the set

S(p, R) = {z € H" : d(z,p) = R}.

EXERCISE 4.56. 1. Prove that S(e,, R) C H" = U" equals the Euclidean
sphere of center cosh(R)e,, and radius sinh(R). Hint. It follows immediately from
the distance formula (4.14).

2. Suppose that S C U” is the Euclidean sphere with Euclidean radius R and
the center z so that x,, = a. Then S = S(p,r), where the hyperbolic radius r equals

% (log(a + R) — log(a — R)) .

Since the group of Euclidean similarities acts transitively on U", it follows that
every hyperbolic sphere is also a Fuclidean sphere. A non-computational proof of
this fact is as follows: Since the hyperbolic metric dsj on B" is invariant under
O(n), it follows that hyperbolic spheres centered at 0 in B™ are also Euclidean
spheres. The general case follows from transitivity of Isom(H™) and the fact that
isometries of H™ are Moebius transformations, which, therefore, send Euclidean
spheres to Euclidean spheres.

LEMMA 4.57. If B(x1, R1) C B(z2, R2) are hyperbolic balls, then Ry < Rs.

PRrROOF. It follows from the triangle inequality that the diameter of a metric
ball B(x, R) is the longest geodesic segment contained in B(x, R). Therefore, let
v C B(zx1, R1) be a diameter. Then v is contained in B(xs, Re) and, hence, its
length is < 2R,. However, the length of v is 2Ry, therefore, Ry < Rs. [l

EXERCISE 4.58. Show that this lemma fails for general metric spaces.

4.8. Horoballs and horospheres in H"

Horoballs and horospheres play prominent role in the theory of discrete groups
of isometries of hyperbolic n-space, primarily due to the thick-thin decomposition,
which we will discuss in detail in Section 12.6.3. Later on, in Chapter 24 we will
deal with families of disjoint horoballs in H", while proving Schwartz’ theorem on
quasi-isometric rigidity of non-uniform lattices.

Consider a geodesic ray r = € in H" = B™, connecting a point z € H"” to a
boundary point & € S*~1. We let b, denote the Busemann function on H" for the
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ray r (b.(z) = 0). By Lemma 3.86, the open horoball B(£) defined by the inequality
b, < 0, equals the union of open balls

B(¢) = |J B(r(t).1).

t>0

As we saw in Section 4.7, in particular Exercise 4.56, each ball B(r(t),t) is
a Euclidean ball centered in a point r(7;) with T; > ¢. Therefore, this union of
hyperbolic balls is the open Euclidean ball with boundary tangent to S"~! at &,
and containing the point x. According to Lemma 3.88, the closed horoball and the
horosphere defined by b, < 0 and b, = 0, respectively, are the closed Euclidean ball
and its boundary sphere, both with the point £ removed.

EXERCISE 4.59. The isometry group of H" acts transitively on the set of open
horoballs in H".

We conclude that the set of horoballs (closed or open) with center ¢ is the same
as the set of Euclidean balls in B™ (closed or open) tangent to S*~! at &, with the
point £ removed.

Applying the map o : B® — U™ to horoballs and horospheres in B", we
obtain horoballs and horospheres in the upper-half space model U™ of H". Being
a Moebius transformation, o carries Euclidean spheres to Euclidean spheres (recall
that a compactified Euclidean hyperplane is also regarded as a Euclidean sphere).
Recall that o(—e,) = co. Therefore, every horosphere in B™ centered at —e,, is sent
by ¢ to an n — 1-dimensional Euclidean subspace E of U™ whose compactification
contains the point co. Hence, E has to be a horizontal Euclidean subspace, i.e. a
subspace of the form

{xeU":z, =t}
for some fixed t > 0. Restricting the metric ds? to such E we obtain the Euclidean
metric rescaled by ¢t~2. Thus, the restriction of the Riemannian metric ds? to every
horosphere is isometric to the Euclidean n — 1 space E"~'. When working with
horoballs and horospheres we will frequently use their identification with Euclidean
half-spaces and hyperplanes in U™.

On the other hand, the restriction of the hyperbolic distance function to a
horosphere is very far from the Euclidean metric: It follows from Exercise 4.55 that
as the distance D between points z,y in a fixed horosphere ¥ tends to infinity, the
distance dist(x,y) in H" also tends to infinity, but logarithmically slower:

dist(z, y) < log(D).
Thus, horospheres in H” are ezponentially distorted, see Section 8.9.

We next consider intersections of horoballs B(&1) N B(&2). If & = & then
this intersection is either B(&;) or B(&2), whichever of these horoballs is smaller.
Suppose now that & # &. The horoballs B(§;), B(&2) are said to be opposite in
this case. Using the upper half-space model, we find an isometry of H" sending &
to oo and B(&2) to {z, > 1}. After applying this isometry, we can assume that
B(&) = {z, > 1} and B(&) is a Euclidean round ball. Then the intersection of
the horoballs is clearly bounded and, furthermore, the intersection

B(gl) n {xn = 1}
is either empty or is a round Euclidean ball. This proves:
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LEMMA 4.60. 1. The intersection of two horoballs with the same center is
another horoball with the same center.

2. The intersection of two opposite horoballs is always bounded.

8. The intersection of a horoball with the horosphere ¥ bounding an oppo-
site horoball is either empty or is a metric ball with respect to the intrinsic (flat)
Riemannian metric of X.

EXERCISE 4.61. Consider the upper half-space model for the hyperbolic space
H™ and the vertical geodesic ray r in H":

r={(0,...,0,z,) : z, > 1}
Show that the Busemann function b, for the ray r is given by
br(z1, ..., xn) = —log(xy).
Consider the boundary horosphere ¥ C H™ of the horoball
B={(x1,...,2pn) : xyp, > 1}
Define the projection
7: B :=H"\B—>X%, m(x,...,2¢p-1,2n)=(Z1,...,Zn_1,1).

EXERCISE 4.62. For z € B¢, the norm (computed with respect to the hyperbolic
metric) of the derivative dm, equals x,,. In particular, ||dm,| < 1 with equality iff
r €.

We now switch to the Lorentzian model H of the hyperbolic n-space. In view of
the projection 7 : H — B™ = H", can identify the ideal boundary points & € S*~!
of H" with lines in the future light cone

CT={xeR"": 2,1 >0,Q(x) =0}.

EXERCISE 4.63. Given a point £ € CT, show that the corresponding Busemann
function b on H™ (up to constant) equals

—log(— (x,€)).
Accordingly, horospheres in H" are projections of intersections of affine hyperplanes
{{x,£) = a} N H, where a < 0. Similarly, show that open horoballs are projections

of the intersections
{{x,) >a}NH, a<0.

4.9. H" as a symmetric space

A symmetric space is a complete simply connected Riemannian manifold X
such that for every point p there exists a global isometry of X which is a geodesic
symmetry o, with respect to p, that is, for every geodesic v through p, o,(v(t)) =
~v(=t), where v(0) = p. We will discuss general symmetric spaces and their discrete
groups of isometries in more details in Chapter 12; we also refer the reader to
[BH99, 11.10], [Ebe96] and [Hel01] for a detailed treatment.

Let us verify that each symmetric space X is a homogeneous Riemannian man-
ifold. Indeed, given points p,q € X, let m denote the midpoint of a geodesic
connecting p to ¢. Then o,,(p) = ¢. Thus, X can be naturally identified with
the quotient G/K, where G is a Lie group (acting transitively and isometrically
on X) and K < G is a compact subgroup. In the case of the symmetric spaces of
nonpositive curvature we are interested in, the group G is semisimple and K is its

112



maximal compact subgroup. Another important subgroup, in the non-positively
curved case, is the minimal parabolic subgroup B < (G, it is a minimal subgroup of
G such that the quotient G/B is compact. Geometrically speaking, the quotient
G/ B is identified with the Furstenberg boundary of X.

In the case of negatively curved symmetric spaces, G/B is the ideal boundary
OsoX of X in the sense of Section 3.11.3. The solvable group B has a further
decomposition as the semidirect product

N x (T x Kp),

where the group T is abelian and the subgroup N is nilpotent, while Ky < B is
maximal compact. The subgroup T is a mazimal (split) torus of G. Both groups
play important role in geometry of symmetric spaces. The dimension of T is the
rank of X (and of G). A symmetric space is negatively curved if and only if it
has rank 1. In this situation, the group N acts simply-transitively on a horosphere
in X. Accordingly, X can be identified with a one-point compactification of
N. This algebraic description of 0., X plays an important role in proofs of rigidity
theorems for rank 1 symmetric spaces.

In this section we describe how the real-hyperbolic space fits into the gen-
eral framework of symmetric spaces. We will also discuss briefly other negatively
curved symmetric spaces, as it turns out that besides real-hyperbolic spaces H",
there are three other families of negatively curved symmetric spaces: CH",n > 2
(complex-hyperbolic spaces), HH",n > 2 (quaternionic hyperbolic spaces) and
OH? (octonionic hyperbolic plane).

Generalities of negatively curved symmetric spaces H”, CH", HH", OH?.
All four classes symmetric spaces can be described via a “linear algebra” model, gen-
eralizing the Lorentzian model of H™, although things become quite complicated in
the case of OH? due to lack of associativity.

In the first three cases, the symmetric space X appears as a projectivization
of a certain open cone V_ in a vector space (or a module in the case of HH"),
equipped with a hermitian form (-,-). The distance function in X is given by the
formula:

=

(p,q) (a4, p)

sh? (dis =V
(4.16) cosh”(dist(p, q)) pp) (@)

where p,q € V_ represent points in X.

In the case of all negatively curved symmetric spaces, the maximal torus T
isn isomorphic to Ry, while the group N is 2-step nilpotent. Accordingly, the Lie
algebra of N splits (as a vector space) as a direct sum

n=n; 4ny

and this decomposition is T-invariant (one of these Lie algebras is trivial in the real-
hyperbolic case). The subalgebra ny is the Lie algebra of the center of N. Each
element ¢ € T acts on n with two distinct eigenvalues A1, A2, which are evaluations
on t of two homomorphisms A1, Ay : T'— R, called characters.

Special features of rank 1 symmetric spaces. The rank one symmetric
spaces X are also characterized among symmetric spaces by the property that any
two segments of the same length are congruent in X, i.e. the subgroup K < G (the
stabilizer of a point p € X) acts transitively on each R-sphere S(p, R) centered at
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p. Another distinguishing characteristic of negatively curved symmetric spaces X is
that their horospheres are exponentially distorted in X (cf. Section 4.8), while for all
other non-positively curved symmetric spaces, horospheres are quasi-isometrically
embedded. Furthermore, two horoballs with distinct centers in negatively curved
symmetric spaces have bounded intersection, while it is not the case for the rest of
the symmetric spaces.

Real-hyperbolic spaces H". We note that in the unit ball model of H" we
clearly have the symmetry o, with respect to the origin p = 0, namely, o¢ : x = —x.
Since H™ is homogeneous, it follows that it has a symmetry at every point. Thus,
H™ is a symmetric space.

EXERCISE 4.64. Prove that the linear-fractional transformation o; € PSL(2,R)
defined by +5;, where
0 -1
= (V)

fixes 7 and is a symmetry with respect to i.

We proved in Section 4.5 that H" has negative curvature —1. In particular, it
contains no totally-geodesic Euclidean subspaces of dimension > 2 and, thus, H"
has rank 1.

The isometry group of H" is PO(n, 1), its maximal compact subgroup is K ~
O(n), its subgroup B is the semidirect product

R x (R xO(n—1)) =N x (T x Kp).

In the upper half-space model, the group N consists of Euclidean translations in
R™ !, while T consists of dilations x — tx,t > 0.

There are many properties which distinguish the real-hyperbolic space among
other rank 1 symmetric spaces, for instance, the fact that the subgroup N is abelian,
which, geometrically, reflects flatness of the intrinsic Riemannian metric of the
horospheres in H". Another example is the fact that only in the real-hyperbolic
space triangles are uniquely determined by their side-lengths: This is false for other
hyperbolic spaces.

Complex-hyperbolic spaces. Start with the complex vector space V = Cn*1
equipped with the Hermitian form
n
(v,w) = Z VE Wk — Vpp 1 Wit 1-
k=1

The group U(n, 1) is the group of complex-linear automorphisms of C"** preserving
this bilinear form. Consider the negative cone
Vo={v:(v,v) <0} cC"t

Then the complez-hyperbolic space CH™ is the projectivization of V_. The group
G = PU(n,1) acts naturally on X = CH". One can describe the Riemannian
metric on CH" as follows. Let p € V_ be a vector such that (p, p) = 1; the tangent
space Tip X of X at the projection [p] of p, is the projection of the orthogonal
complement pt in C*"*1. Let v,w € C"*! be vectors orthogonal to p, i.e.

(p,v) = (p,w) =0.
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Then define
(v,w)p := Re (v, w).
This determines a PU (n, 1)-invariant Riemannian metric on X. The corresponding
distance function (4.16) is PU(n,1)-invariant. The geodesic symmetry fixing the
point [e,41] is the projectivization of the diagonal matrix Diag(—1,...,—1,1).
The maximal compact subgroup of PU(n,1) is U(n), the nilpotent subgroup
N < B < G is the Heisenberg group, its Lie algebra splits as

C" R,

where one should think of R as the set of imaginary complex numbers (the reason
for this will become clear shortly).

An important special feature of complex-hyperbolic spaces is the fact that they
are Kdhler manifolds: The PU(n,1)-invariant complex structure on CH" is the
restriction of the complex structure on the ambient complex-projective space. The
corresponding almost complex structure on the tangent bundle of CH"™ is given by
the multiplication by 4:

J(v)=iv, veTI,CH".
This complex structure is hermitian, i.e. J preserves the Riemannian metric on
CH". Furthermore, J and (v, w)p together define a PU(n,1)-invariant symplectic
structure on CH" (a closed nondegenerate 2-form), given by

wv,w) = (v, Jw).

This Kéahler nature of CH™ means that one can use tools of complex analysis and
complex differential geometry in order to study complex-hyperbolic spaces and their
quotients by discrete isometry groups.

As we noted earlier, geodesic triangles T' C CH"™ are not uniquely determined
by their side-lengths. The additional invariant which determines geodesic triangles
is their symplectic area, which is defined as the integral

[

of the symplectic form w on CH™ over any surface S C CH" bounded by T'. (The
fact that the area is independent of the choice of S follows from Stokes Theorem,
since the form w is closed.)

Quaternionic-hyperbolic spaces. Consider the ring H of quaternions; the
elements of the quaternion ring have the form

qg=xz+iy+jz+kw, z,y,z,welR.
The quaternionic conjugation is given by
g=x—1y—jz—kw

and

lg| = (¢9)"/* € Ry

is the quaternionic norm. A wunit quaternion is a quaternion of the unit norm. Let
V be a left n 4+ 1-dimensional free module over H:

V={a=1(q1,---,qn+1) : ¢m € H}.
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Consider the quaternionic-hermitian inner product of signature (n,1):

n
<pa q> = Z PmGm — Pn+1Gn+1-
m=1
Then the group G = Sp(n,1) is the group of automorphisms of the module V
preserving this inner product. The quotient of V' by the group of non-zero quater-
nions H* (with respect to the left multiplication action) is the n-dimensional
quaternionic-projective space PV. Analogously to the case of real and complex
hyperbolic spaces, consider the negative cone

Vo={aeV:(q,q) <0}

The group G acts naturally on PV_ C PV through the group PSp(n,1), the
quotient of G by the subgroup of unit quaternions embedded in the subgroup of
diagonal matrices in G,
q+—ql.

The space PV_ is called the n-dimensional quaternionic-hyperbolic space HH™. As
in the real and complex cases, the geodesic symmetry fixing the point [e,+1] is the
projectivization of the diagonal matrix Diag(—1,...,—1,1).

The maximal compact subgroup of G is Sp(n), the Lie algebra of the nilpotent
subgroup IV < B splits as a real vector space as

n dng = H" &) I’ITL(H)7
where I'm(H) is the 3-dimensional real vector space of imaginary quaternions.

The octonionic-hyperbolic plane. One defines the octonionic-hyperbolic
plane OH? analogously to HH", only using the algebra O of Cayley octonions
instead of quaternions. An extra complication comes from the fact that the algebra
O is not associative, which means that one cannot talk about free O-modules.

The space OH? has dimension 16. It is identified with the quotient G /K, where
G is a real form of the exceptional Lie group Fj and the maximal compact subgroup
K < @G is isomorphic to Spin(9), the 2-fold cover of the orthogonal group SO(9).
The Lie algebra of the nilpotent subgroup N < B < G has dimension 15; it splits
as a real vector space as

ndny, =0 EBIm(O),
where I'm(O) is the 7-dimensional vector space counsisting of imaginary octonions.

We refer to Mostow’s book [Mos73] and Parker’s survey [Par08] for a more
detailed discussion of negatively curved symmetric spaces.
4.10. Inscribed radius and thinness of hyperbolic triangles

Suppose that T is a hyperbolic triangle in the hyperbolic plane H? with the
sides 7,7 = 1,2, 3, so that T bounds the solid triangle A. For a point © € A define

AL (T) := Jmax, d(z, ;).
and
A(T) := wlreni AL (T).

The goal of this section is to estimate A(T) from above. It is immediate that the
infimum in the definition of A(T) is realized by a point x, € A which is equidistant
from all the three sides of T', i.e. by the intersection point of the angle bisectors.
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Define the inscribed radius inrad(T) of T is the supremum of radii of hyperbolic
disks contained in A.

LEMMA 4.65. A(T) = inrad(T).

PROOF. Suppose that D = B(X,R) C A is a hyperbolic disk. Unless D
touches two sides of T, there exists a disk D’ = B(X’, R') C A which contains D
and, hence, has larger radius, see Lemma 4.57. Suppose, therefore, that D C A
touches two boundary edges of T, hence, the center X of D belongs to the bisector
o of the corner ABC of T. Unless D touches all three sides of T', we can move the
center X of D along the bisector o away from the vertex B so that the resulting
disk D' = B(X',R’) still touches only the sides AB,BC of T. We claim that
the (radius R’ of D’ is larger than the radius R of D. In order to prove this,
consider hyperbolic triangles [X,Y, B] and [X',Y”’, B'], where Y, Y’ are the points
of tangency between D, D’ and the side BA. These right-angled triangles have the
common angle /X BY and satisfy

d(B,X) <d(B,X").
Thus, the inequality R < R’ follows from the Exercise 4.42. O

Thus, we need to estimate the inradius of hyperbolic triangles from above.
Recall that by Exercise 4.45, for every hyperbolic triangle S in H? there exists
an ideal hyperbolic triangle T', so that S C A, the solid triangle bounded by T.
Clearly, inrad(S) < inrad(T). Since all ideal hyperbolic triangles are congruent, it
suffices to consider the ideal hyperbolic triangle T in U? with the vertices —1, 1, co.
The inscribed circle C in T has Euclidean center (0,2) and Euclidean radius 1.
Therefore, by Exercise 4.56, its hyperbolic radius equals log(3)/2. By combining
these observations with Exercise 4.44, we obtain

o . 10g(3)
PROPOSITION 4.66. For every hyperbolic triangle T, A(T) = inrad(T) < °g2( .

In particular, for every hyperbolic triangle in H", there exists a point p € H" so
that distance from p to all three sides of T is < @.

Another way to measure thinness of a hyperbolic triangle T is to compute
distance from points of one side of T to the union of the two other sides. Let T be
a hyperbolic triangle with sides 7;,j = 1,2, 3. Define

O(T) := max sup d(p, Tj+1 U Tjt2),
J  peT;
where indices of the sides of T' are taken modulo 3. In other words, if 6 = 0(7)
then each side of T is contained in the §-neighborhood of the union of the other
two sides.

PROPOSITION 4.67. For every geodesic triangle S in H", §(S) < arccosh(v/2).

PRrOOF. First of all, as above, it suffices to consider the case n = 2. Let
0j,7 = 1,2,3 denote the edges of S. We will estimate d(p, o2 Uos) (from above) for
p € o1. We enlarge the hyperbolic triangle S to an ideal hyperbolic triangle T as
in Figure 4.5. For every p € o1, every geodesic segment g connecting p to a point
of 7 U 73 has to cross o9 U o3. In particular,

d(p, 02 Uos) < d(p, 72 UT3).

Thus, it suffices to show that §(7") < arccosh(v/2) for the ideal triangle T as above.
We realize T as the triangle with the (ideal) vertices A1 = 00, A2 = =1, A3 =1 in
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H2
02
T3 T2
01

1

R

FI1GURE 4.5. Enlarging the hyperbolic triangle S.

OssH2. We parameterize the sides 7; = Aj_1Aj11,5 = 1,2,3 modulo 3, according
to their orientation. Then, by the Exercise 4.42, for every j,

d(7;(t), 7j-1)
is monotonically increasing. Thus,

sup d(71(t), 72 U Ts)
¢

is achieved at the point p = 71(t) = i = v/—1 and equals d(p, q), where ¢ = —14+/2i.
Then, using formula 4.15, we get d(p,q) = arccosh(y/2). Note that alternatively,
one can get the formula for d(p,q) from (4.8) by considering the right triangle
[p, ¢, —1] where the angle at p equals /4. a

As we will see in Section 11.1, the above propositions mean that all hyperbolic
triangles are uniformly thin.

COROLLARY 4.68.

sup  6(T) = arccosh(v/2).
TEeTri(H")

4.11. Existence-uniqueness theorem for triangles

Proof of Lemma 3.54. We will prove this result for the hyperbolic plane H?,
this will imply the lemma, for all £ < 0 by rescaling the metric on H?. We leave the
cases K > 0 to the reader as the proof is similar. The proof below is goes back to
Euclid (in the case of E?). Let ¢ denote the largest of the numbers a,b,c. Draw a
geodesic v C H? through points x,y such that d(z,y) = c¢. Then

Y=Yz Uy Uy,

where 7., 7, are geodesic rays emanating from z and y respectively. Now, consider
the hyperbolic circles S(z,b) and S(y,a) centered at x,y and having radii b,a
respectively. Since ¢ > max(a, b),

Ve NS(y,a) C{z}, vy NSz, b) C{y},
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while
S(x,0)Nzy=p, S(y,a)Nay=q.

By the triangle inequality on ¢ < a + b, p separates ¢ from y (and ¢ separates x
from p). Therefore, both the ball B(x,b) and its complement contain points of the
circle S(y, a), which (by connectivity) implies that S(z,b) N S(y,a) # . Therefore,
the triangle with the side-lengths a, b, ¢ exists. Uniqueness (up to congruence) of
this triangle follows from Exercise 4.27; alternatively it can be derived from the
hyperbolic cosine law. (]






CHAPTER 5

Groups and their actions

This chapter covers some basic group—theoretic material as well as group ac-
tions on topological and metric spaces. We also briefly discuss Lie groups, group
cohomology and its relation to the structural theory of groups. For detailed treat-
ment of the basic group theory we refer to [Hal76] and [LS77].

Notation and terminology. With very few exceptions, in a group G we use
the multiplication sign - to denote its binary operation. We denote its identity
element either by e or by 1. We denote the inverse of an element g € G by g~ 1.
Note that for abelian groups the neutral element is usually denoted 0, the inverse
of x by —x and the binary operation by +. We will use the notation

[z, y] = zyz~ 'y~

for the commutator of elements x,y of a group G.

A surjective homomorphism is called an epimorphism, while an injective ho-
momorphism is called a monomorphism. If two groups G and G’ are isomorphic
we write G ~ G’. An isomorphism of groups ¢ : G — G is also called an auto-
morphism. In what follows, we denote by Aut(G) the group of automorphisms of

G.
We use the notation H < G or H < G to denote that H is a subgroup in G.
Given a subgroup H in G:

e the order |H| of H is its cardinality;
e the index of H in G, denoted |G : H|, is the common cardinality of the
quotients G/H and H\G.

The order of an element g in a group (G, -) is the order of the subgroup (g) of
G generated by g. In other words, the order of g is the minimal positive integer n
such that g™ = 1. If no such integer exists, then g is said to be of infinite order. In
this case, (g) is isomorphic to Z.

For every positive integer m we denote by Z,, the cyclic group of order m,
Z/mZ. Given x,y € G we let x¥ denote the conjugation of x by y, i.e. yzy~!.
5.1. Subgroups
Given two subsets A, B in a group G we denote by AB the subset
{ab : a€ A,be B} CG.
Similarly, we will use the notation
At ={a"t:a€ A}

A normal subgroup K in G is a subgroup such that for every g € G, gKg=! = K
(equivalently gK = Kg). We use the notation K <0 G to denote that K is a normal
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subgroup in G. When H and K are subgroups of G and either H or K is a normal
subgroup of G, the subset HK C G becomes a subgroup of G.

A subgroup K of a group G is called characteristic if for every automorphism
¢: G — G, ¢(K) = K. Note that every characteristic subgroup is normal (since
conjugation is an automorphism). But not every normal subgroup is characteristic:

EXAMPLE 5.1. Let G be the group (Z2,+). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z x {0} is not invariant under the
automorphism ¢ : Z2 — Z2 | ¢(m,n) = (n,m).

DEFINITION 5.2. The center Z(G) of a group G is defined as the subgroup
consisting of elements h € G so that [h,g] =1 for each g € G.

It is easy to see that the center is a characteristic subgroup of G.
DEFINITION 5.3. A subnormal descending series in a group G is a series
G=Ny> N >--->N,>---

such that N;y; is a normal subgroup in N; for every ¢ > 0.

If all N;’s are normal subgroups of GG, then the series is called normal.

A subnormal series of a group is called a refinement of another subnormal series
if the terms of the latter series all occur as terms in the former series.

The following is a basic result in group theory:

LEMMA 54. If G is a group, N < G, and A < B < G, then BN/AN s
isomorphic to B/A(BNN).

DEFINITION 5.5. Two subnormal series
G=A>A1>...>A,={1} and G=By> By >...> B,, ={1}

are called isomorphic if n = m and there exists a bijection between the sets of
partial quotients {A4; /4,11 |i=1,...,n—1}and {B;/B;41 | i=1,...,n— 1} such
that the corresponding quotients are isomorphic.

LEMMA 5.6. Any two finite subnormal series
G=Hoy>H,>...2H,={1} and G=Ko 2Ky >...2 K, = {1}
possess isomorphic refinements.
PRrROOF. Define H;; = (K; N H;)H; 1. The following is a subnormal series
Hi=H; >2Hy >2...2 Hiypy = Hiy1 .

When inserting all these in the series of H; one obtains the required refinement.
Likewise, define K, = (Hs N K,)K,;1 and by inserting the series

Kow=K,2K12>2...2Kn=K,

in the series of K., we define its refinement.
According to Lemma 5.4

Hij/Hij1 = (KjNH)Hipr /(Kja W H ) Hipr ~ KN H; /(Ko N H) (KGN Higa)
Similarly, one proves that Kji/Kji+1 >~ Kj n Hi/(Kj+1 n HZ)(KJ N Hi+1)- [l
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DEFINITION 5.7. A group G is a torsion group if all its elements have finite
order.

A group G is said to be without torsion (or torsion-free) if all its non-trivial
elements have infinite order.

Note that the subset TorG = {g € G | g of finite order} of the group G,
sometimes called the torsion of G, is in general not a subgroup.

DEFINITION 5.8. A group G is said to have property * virtually if some finite-
index subgroup H of G has the property *.

For instance, a group is virtually torsion-free if it contains a torsion-free sub-
group of finite index, a group is virtually abelian if it contains an abelian subgroup
of finite index and a wirtually free group is a group which contains a free subgroup
of finite index.

REMARK 5.9. Note that this terminology widely used in group theory is not
entirely consistent with the notion of virtually isomorphic groups, which involves not
only taking finite-index subgroups but also quotients by finite normal subgroups.

The following properties of finite-index subgroups will be useful.

LEMMA 5.10. If N < H and H <« G, N of finite index in H and H finitely
generated, then N contains a finite-index subgroup K which is normal in G.

PROOF. By hypothesis, the quotient group F' = H/N is finite. For an arbitrary
g € G the conjugation by g is an automorphism of H, hence H/gNg~! is isomorphic
to F. A homomorphism H — F' is completely determined by the images in F' of
elements of a finite generating set of H. Therefore there are finitely many such
homomorphisms, and finitely many possible kernels of them. Thus, the set of
subgroups gNg~!, g € G, forms a finite list N, Ny,.., N,. The subgroup K =
ﬂgEG gNg~! = NN N;N---N Ngis normal in G and has finite index in N, since
each of the subgroups Ny, ..., Ni has finite index in H. O

PROPOSITION 5.11. Let G be a finitely generated group. Then:
(1) For every n € N there exist finitely many subgroups of index n in G.

(2) Ewery finite-index subgroup H in G contains a subgroup K which is finite
index and characteristic in G.

PrOOF. (1) Let H < G be a subgroup of index n. We list the left cosets of H:
H=¢.-Hg-H,...,90-H,

and label these cosets by the numbers {1,...,n}. The action by left multiplication
of G on the set of left cosets of H defines a homomorphism ¢ : G — S, such that
¢(G) acts transitively on {1,2,...,n} and H is the inverse image under ¢ of the
stabilizer of 1 in S,,. Note that there are (n — 1)! ways of labeling the left cosets,
each defining a different homomorphism with these properties.

Conversely, if ¢ : G — S, is such that ¢(G) acts transitively on {1,2,...,n},
then G/¢~1(Stab (1)) has cardinality n.

Since the group G is finitely generated, a homomorphism ¢ : G — S, is deter-
mined by the image of a generating finite set of GG, hence there are finitely many
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distinct such homomorphisms. The number of subgroups of index n in H is equal
to the number 7,, of homomorphisms ¢ : G — S,, such that ¢(G) acts transitively
on {1,2,...,n}, divided by (n — 1)!.

(2) Let H be a subgroup of index n. For every automorphism ¢ : G — G,
©(H) is a subgroup of index n. According to (1) the set {¢(H) | ¢ € Aut (G)} is
finite, equal {H, Hy, ..., H;}. It follows that

K = ﬂ o(H)=HNH, N...NHy.
peAut (G)

Then K is a characteristic subgroup of finite index in H hence in G. O

EXERCISE 5.12. Does the conclusion of Proposition 5.11 still hold for groups
which are not finitely generated?

Let S be a subset in a group G, and let H < G be a subgroup. The following
are equivalent:

(1) H is the smallest subgroup of G' containing S ;

(2) H = ﬂscalga Gi;
(3) H={s152---sn : n€N,s; € Sor s;1 € S for every i € {1,2,...,n}}.
The subgroup H satisfying any of the above is denoted H = (S) and is said
to be generated by S. The subset S C H is called a generating set of H. The
elements in S are called generators of H.

When S consists of a single element x, (S) is usually written as (x); it is the
cyclic subgroup consisting of powers of z.

We say that a normal subgroup K < G is normally generated by a set R C K
if K is the smallest normal subgroup of G which contains R, i.e.

K= () N.
RCN<G
We will use the notation
K = ((R))
for this subgroup. The subgroup K is also called the normal closure or the conjugate

closure of R in G. Other notations for K which appear in the literature are R
and (R)“.

5.2. Virtual isomorphisms of groups and commensurators

In this section we consider a weakening of the notion of a group isomorphism to
the one of a virtual isomorphism. This turns out to be the right algebraic concept
in the context of Geometric Group Theory.

DEFINITION 5.13. (1) Two groups Gy and G5 are called co-embeddable if
there exist injective group homomorphisms G; — G2 and Go — G;.

(2) The groups G and Gq are commensurable if there exist finite-index sub-
groups H; < G;, ¢ = 1,2, such that H; is isomorphic to Hs.

An isomorphism ¢ : Hy — Hs is called an abstract commensurator of G
and Gs.
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(3) We say that two groups Gy and Go are virtually isomorphic (abbreviated
as VI) if there exist finite-index subgroups H; C G; and finite normal
subgroups F; < H;, i = 1,2, so that the quotients Hq,/F; and Hs/F5 are
isomorphic.

An isomorphism ¢ : Hi/F; — Hy/F5 is called a virtual isomorphism of
G1 and G2. When Gy = Ga, ¢ is called virtual automorphism.

ExAMPLE 5.14. All countable free groups are co-embeddable. However, a free
group of infinite rank is not virtually isomorphic to a free group of infinite rank.

PROPOSITION 5.15. All the relations in Definition 5.18 are equivalence relation
between groups.

PROOF. The fact that co-embeddability is an equivalence relation is immediate.
It suffices to prove that virtual isomorphism is an equivalence relation. The only
non-obvious property is transitivity. We need:

LEMMA 5.16. Let Fy, F5 be normal finite subgroups of a group G. Then their
normal closure F = ((Fy, Fy)) (i.e. the smallest normal subgroup of G containing
Fy and Fy) is again finite.

PROOF. Let f1: G — Gy = G/F1, f2 : G1 — G1/f1(F2) be the quotient maps.
Since the kernel of each fi, fs is finite, it follows that the kernel of f = fs o f; is
finite as well. On the other hand, the kernel of f is clearly the subgroup F'. O

Suppose now that G is VI to G2 and G is VI to G3. Then we have
Fi<lHi<Gi,|Gi:Hi‘<OO,‘Fi‘<OO, 1=1,2,3,
and
Fy < H) < Go,|Gs : H)| < 00, |Fj| < 00,
so that
Hy/F = Hy/F>, Hy/F)= Hs/F3.
The subgroup HY := Hs N H) has finite index in G5. By the above lemma, the
normal closure in HY
KQ = <<F2 N Hg,FQI N Hé/>>
is finite. We have quotient maps
fi Hy — C; = fi(Hy) < H;/F;,i=1,3,
with finite kernels and cokernels. The subgroups E; := f;(K3), are finite and normal
in C;, i =1,3. We let H/, F/ C H; denote the preimages of C; and E; under the
quotient maps H; — H;/F;, i = 1,3. Then |F/| < o0,|G; : Hl| < 00,i = 1,3.
Lastly,
H/F = Ci/E; = Hy |Ko,i = 1,3.

Therefore, G1, G are virtually isomorphic. O

Given a group G, we define VI(G) as the set of equivalence classes of virtual
automorphisms of G with respect to the following equivalence relation. Two virtual
automorphisms of G, ¢ : Hy/Fy — Hy/F5 and ¢ : H{/F| — H}/F}, are equivalent
if for ¢ = 1,2, there exist H;, a finite-index subgroup of H; N H, and F}, a normal
subgroup in H; containing the intersections H; N F; and H; N F/, such that ¢ and
¥ induce the same automorphism from H;/F; to Hy/F5.
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Lemma 5.16 implies that the composition induces a binary operation on VI(G),
and that VI(G) with this operation becomes a group, called the group of virtual
automorphisms of G.

Let Comm(G) be the set of equivalence classes of virtual automorphisms of G
with respect to the equivalence relation defined as above, with the normal subgroups
F; and F! trivial. As in the case of VI(G), the set Comm(G), endowed with the
binary operation defined by the composition, becomes a group, called the abstract
commensurator of the group G.

Similarly to the notion of virtually isomorphic groups and abstract commen-
surators of groups one defines commensurable subgroups and commensurators of
subgroups:

DEFINITION 5.17. Two subgroups I'1, I's of a group G are called commensurable
if their intersection has finite index in both I'; and in I'y. The commensurator of a
subgroup I' < G is defined as the set of elements g in G such that the subgroups
I',gI'g~! are commensurable. The commensurator of a subgroup I' < G is denoted
Commg (T).

EXERCISE 5.18. Show that Commg(T") is a subgroup of G.

EXERCISE 5.19. Show that for G = SL(n,R) and I" = SL(n,Z), Commg(T")
contains SL(n, Q).

5.3. Commutators and the commutator subgroup
Recall that the commutator of two elements x,y of a group G is defined as
[z,y] = zyz~ty~!. Thus:
e two elements z,y commute, i.e. xy = yx, if and only if [z,y] = 1.
o zy = [z,ylyz.
Thus, the commutator [z,y] ‘measures the degree of non-commutation’ of the

elements h and k. In Lemma 13.30 we will prove some further properties of com-
mutators.

Let H, K be two subgroups of G. We denote by [H, K] the subgroup of G
generated by all commutators [h, k] with h € H, k € K.

DEFINITION 5.20. The commutator subgroup (or derived subgroup) of G is the
subgroup G’ = [G, G]. As above, we may say that the commutator subgroup G’ of
G ‘measures the degree of non-commutativity’ of the group G.

A group G is abelian if every two elements of G commute, i.e. ab = ba for all
a,beq.

EXERCISE 5.21. Suppose that S is a generating set of G. Then G is abelian if
and only if [a,b] =1 for all a,b € S.

PROPOSITION 5.22. (1) G’ is a characteristic subgroup of G;
(2) G is abelian if and only if G' = {1};
(3) Ga» = G/G' is an abelian group (called the abelianization of G);
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(4) if o : G = A is a homomorphism to an abelian group A, then ¢ factors
through the abelianization: Given the quotient map p : G — Ggup, there
exists a homomorphism @ : Gap, — A such that ¢ = @ o p.

PrOOF. (1) The set S = {[z,y] | =,y € G} is a generating set of G’ and for
every automorphism ¢ : G — G, ¢¥(S) = S.

Part (2) follows from the equivalence zy = yr < [z,y] = 1, and (3) is an
immediate consequence of (2).

Part (4) follows from the fact that ¢(S) = {1}. O

Recall that the finite dihedral group of order 2n, denoted by Da, or Is(n), is
the group of symmetries of the regular Euclidean n-gon, i.e. the group of isometries
of the unit circle S' C C generated by the rotation r(z) = e’z and the reflection
s(z) = z. Likewise, the infinite dihedral group D is the group of isometries of Z
(with the metric induced from R); the group D, is generated by the translation
t(x) = x 4+ 1 and the symmetry s(z) = —z.

EXERCISE 5.23. Find the commutator subgroup and the abelianization for the
finite dihedral group Ds, and for the infinite dihedral group D..

EXERCISE 5.24. Let S,, (the symmetric group on n symbols) be the group of
permutations of the set {1,2,...,n}, and A, < S, be the alternating subgroup,
consisting of even permutations.

(1) Prove that for every n & {2,4} the group A, is generated by the set of
cycles of length 3.

(2) Prove that if n > 3, then for every cycle o of length 3 there exists p € S,

such that 02 = pop~ 1.

(3) Use (1) and (2) to find the commutator subgroup and the abelianization
for A,, and for S,,.

(4) Find the commutator subgroup and the abelianization for the group H of
permutations of Z defined in Example 7.8 in Chapter 7.

Note that it is not necessarily true that the commutator subgroup G’ of G
consists entirely of commutators {[z,y] : z,y € G}. However, occasionally, every
element of the derived subgroup is indeed a single commutator. For instance, every
element of the alternating group A4, < S, is the commutator in S,,, see [Ore51].

This leads to an interesting invariant (of geometric flavor) called the commu-
tator norm (or commutator length) £.(g) of g € G’, which is the least number k so
that g can be expressed as a product

g= [Ilvyl] e [xkayk}a

as well as the stable commutator norm of g:

lim sup le(g") .

n— 00 n

See [Bav91, Cal08, Cal09] for further details. For instance, if G is the free group
on two generators (see Definition 7.20), then every non-trivial element of G’ has
stable commutator norm greater than 1.
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5.4. Semidirect products and short exact sequences
Let G;,i € I, be a collection of groups. The direct product of these groups,
denoted
¢=]]¢:

il
is the Cartesian product of the sets G; with the group operation given by

(a;) - (b;) = (asb;).

Note that each group G; is the quotient of G by the (normal) subgroup

II &

Jen{i}
A group G is said to split as a direct product of its normal subgroups N; <
G,i=1,...,k, if one of the following equivalent statements holds:

e G=Nj---Nj and
N;NANy-...:Nj—1-Niy1-...- Ny = {1} for all ¢;
e for every element g of G there exists a unique k-tuple
(n1,...,ng),n; € Nyyi=1,....k
such that g =nq -+ - ng.
Then, G is isomorphic to the direct product Ny X ... X Ni. Thus, finite direct

products G can be defined either eztrinsically, using groups N; as quotients of G,
or intrinsically, using normal subgroups N; of G.

Similarly, one defines semidirect products of two groups, by taking the above
intrinsic definition and relaxing the normality assumption:

DEFINITION 5.25. (1) (with the ambient group as the given data) A group
G is said to split as a semidirect product of two subgroups N and H, which
is denoted by G = N x H, if and only if N is a normal subgroup of G, H
is a subgroup of G, and one of the following equivalent statements holds:
e G=NHand NNH ={1};
e G=HN and NNH ={1};
o for every element g of G there exists a unique n € N and h € H such

that g = nh;
e for every element g of G there exists a unique n € N and h € H such
that g = hn;

e there exists a retraction G — H,i.e. a homomorphism which restricts
to the identity on H, and whose kernel is V.
Observe that the map ¢ : H — Aut (N) defined by ¢(h)(n) = hnh™1,
is a group homomorphism.

(2) (with the quotient groups as the given data) Given any two groups N and
H (not necessarily subgroups of the same group) and a group homomor-
phism ¢ : H — Aut (IV), one can define a new group G = N x, H which
is a semidirect product of a copy of N and a copy of H in the above sense,
defined as follows. As a set, N x, H is defined as the cartesian product
N x H. The binary operation * on G is defined by

(nl,hl) * (ng,hz) = (nlgﬁ(hl)(ng)7h1h2), an,TLQ S N and hl,hg S H
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The group G = N %, H is called the semidirect product of N and H
with respect to .

REMARKS 5.26. (1) If a group G is the semidirect product of a normal
subgroup N with a subgroup H in the sense of (1), then G is isomorphic
to N X, H defined as in (2), where

o(h)(n) = hnh™t.

(2) The group N %, H defined in (2) is a semidirect product of the normal
subgroup N1 = N x {1} and the subgroup H = {1} x H in the sense of
(D).

(3) If both N and H are normal subgroups in (1), then G is a direct product
of N and H.

If ¢ is the trivial homomorphism, sending every element of H to the
identity automorphism of N, then N x4 H is the direct product N x H.

Here is yet another way to define semidirect products. An ezact sequence is a
sequence of groups and group homomorphisms

Pn—1 Pn
...Gn,1 — Gn —>Gn+1...

such that Imp,_1 = Kery, for every n. A short exact sequence is an exact
sequence of the form:

(5.1) 1y — N -5 6% H— {1},

In other words, ¢ is an isomorphism from N to a normal subgroup N’ <1 G and
descends to an isomorphism G/N’ ~ H.

DEFINITION 5.27. A short exact sequence splits if there exists a homomorphism
o : H — G (called a section) such that

Yoo=1Id.
When the sequence splits we shall sometimes write it as
1-N-GS H—1.

Every split exact sequence determines a decomposition of G as the semidirect prod-
uct p(N) xo(H). Conversely, every semidirect product decomposition G = N x H
defines a split exact sequence, where ¢ is the identity embedding and ¢ : G — H
is the retraction.

EXAMPLES 5.28. (1) The dihedral group Dsy, is isomorphic to Z, X, Zs,

where p(1)(k) =n — k.

(2) The infinite dihedral group Do is isomorphic to Z X, Zs, where ¢(1)(k) =
—k.

(3) The permutation group S, is the semidirect product of A, and Zs =
{14, (12)}.

(4) The group (Aff(R), o) of affine maps f : R — R, f(z) = ax + b, with
a € R* and b € R is a semidirect product R x, R*, where ¢p(a)(z) = ax.

PROPOSITION 5.29. (1) Every isometry ¢ of R™ is of the form ¢(x) =
Ax + b, where b € R™ and A € O(n).
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(2) The group Isom(R™) splits as the semidirect product R™ x O(n), with the
obvious action of the orthogonal group O(n) on R™.

Sketch of proof of (1).  For every vector a € R™ we denote by T, the translation
of vector a, x — x + a.

If (0) = b, then the isometry 1) = T_y, o ¢ fixes the origin 0. Thus, it suffices
to prove that an isometry fixing the origin is an element of O(n). Indeed:

e an isometry of R™ preserves straight lines, because these are bi-infinite
geodesics;

e an isometry is a homogeneous map, i.e. ¥(Av) = Ap(v); this is due to the
fact that (for 0 < A < 1) w = Av is the unique point in R™ satisfying

d(0,w) + d(w,v) =d(0,v).
e an isometry map is an additive map, i.e. ¥(a+b) = ¢ (a)+ ¥(b) because
an isometry preserves parallelograms.

Thus, % is a linear transformation of R", ¢(x) = Ax for some matrix A. The
orthogonality of the matrix A follows from the fact that the image of an orthonormal
basis under v is again an orthonormal basis. [

EXERCISE 5.30. 1. Prove the statement (2) of Proposition 5.29. Note that R™
is identified with the group of translations of the n-dimensional affine space via the
map b — Tg,.

2. Suppose that G is a subgroup of Isom(R™). Is it true that G is isomorphic
to the semidirect product T x @, where T = GNR" and Q is the projection of G
to O(n)?

In sections 5.9.5 and 5.9.6 we discuss semidirect products and short exact se-
quences in more detail.

5.5. Direct sums and wreath products

Let X be a non-empty set, and let G = {G, | z € X} be a collection of groups
indexed by X. Consider the set of maps Mapy(X,G) with finite support, i.e.

Mapf(X’g) ::{f:X% |_| Gl|f('r)€G.L7f(x)7é1G.t

zeX

for only finitely many z € X}.

DEFINITION 5.31. The direct sum @, y G, is defined as Map; (X, G), endowed
with the pointwise multiplication of functions:

(f-9) (@) = f(z)-g(x), Vo e X.

Clearly, if A, are abelian groups, then @ .y A, is abelian.
When G, = G is the same group for all z € X, the direct sum is the set of
maps

Maps(X,G) :={f: X = G| f(z) # 1 for only finitely many z € X},

and we denote it either by G or by G®¥X,

zeX
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If, in this latter case, the set X is itself a group H, then there is a natural
action of H on the direct sum, defined by

v: H— Aut (@ G) ,oh)f(x) = f(h'z),Va € H.

heH
Thus, we define the semidirect product

(5:2) (EB G) gy H.

heH

DEFINITION 5.32. The semidirect product (5.2) is called the wreath product of
G with H, and it is denoted by G H. The wreath product G = ZyZ is called the
lamplighter group.

This useful construction is a source of many interesting examples in group
theory, for instance, we will see in Section 14.5 how it is used to prove failure of QI
rigidity of the class of virtually solvable groups.

5.6. Geometry of group actions

5.6.1. Group actions. Let G be a group or a semigroup and X be a set. An
action of G on X on the left is a map
p:GxX =X, wpg,a)=g(a),
so that

(1) M(lax) =Z;
(2) u(g192,x) = p(g1, (g2, x)) for all g1,¢92 € G and z € X .

REMARK 5.33. If G is a group, then the two properties above imply that

w(g,p(g "t m) ==
forallge Gand x € X .

An action of G on X on the right is a map
p:XxG—=X, plag)=(ayg,
so that

(1) p(x,1) =x;
(2) w(x,9192) = p(p(r,g1),g2) for all g1,92 € G and z € X .

Note that the difference between an action on the left and an action on the
right is the order in which the elements of a product act.

If not specified, an action of a group G on a set X is always on the left, and it
is often denoted G ~ X. Every left action amounts to a homomorphism from G
to the group Bij(X) of bijections of X. An action is called effective or faithful if
this homomorphism is injective. Given an action y : G x X — X we will use the
notation g(z) for u(g, x).

If X is a metric space, an isometric action is an action so that u(g,-) is an
isometry of X for each ¢ € G. In other words, an isometric action is a group
homomorphism

G — Isom(X).
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A group action G ~ X on a set X is called free if for every z € X, the
stabilizer of x in G,
Gy ={9€G:g(x)=un}
is {1}.

Given an action g : G ~ X, amap f: X — Y is called G-invariant if

g, ) = f(z), VgeG,xeX.
Given two actions g : G ~» X andv : G ~ Y, amap f: X — Y is called
G—equivariant if

f(u(g,z) =v(g, f(z)), VgeG,zeX.

In other words, for each g € G we have a commutative diagram,

g

X X

y —9 vy

A topological group is a group G equipped with a structure of topological space,
so that the group operations (multiplication and inversion) are continuous maps. If
G is a group without a specified topology, we will always assume that G is discrete,
i.e. it is given the discrete topology. When referring to homomorphisms or isomor-
phisms of topological groups, we will always mean continuous homomorphisms and
homeomorphic isomorphisms.

The usual algebraic concepts have local analogues for topological groups. One
says that a map ¢ : Go — G7 is a local embedding of topological groups if it is
continuous on its domain, which is an (open) neighborhood U of 1 € G3, ¢(1) =1
and

?(9192) = ¢(91)9(92),
whenever all three elements g1, g2, g1g2 belong to U.
Accordingly, topological groups G, Gy are said to be locally isomorphic if G
locally embeds in G5 and vice-versa.
A topological group G is called locally compact, if it admits a basis of topology
at 1 € G consisting of relatively compact neighborhoods. A topological group is
o-compact if it is the union of countably many compact subsets.

LEMMA 5.34. Each open subgroup H < G is also closed.

PROOF. The complement G \ H equals the union
U gH
g¢H
of open subsets. Therefore, H is closed. ([l
A topological group G is said to be compactly generated if it there exists a com-
pact subset K C G generating G. Every compactly generated group is o-compact.

The converse is not true in general: For locally compact o-compact spaces (even
compactly generated groups) second countability may not hold. Nevertheless, for
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every locally compact o-compact group G there exists a compact normal subgroup
N such that G/N is second countable [Com84, Theorem 3.7].

THEOREM 5.35 (See [Str74]). Every locally compact second countable Haus-
dorff group has a proper left-invariant metric.

THEOREM 5.36 (Cartan—Iwasawa—Mal’cev). Every connected locally compact
topological group contains a unique' mazimal compact subgroup.

We will us this theorem in the context of Lie groups discussed in the next
section.

If G is a topological group and X is a topological space, a continuous action of
G on X is a continuous map p satisfying the above action axioms.

A continuous action g : G ~ X is called proper if for every compact subsets
K1, Ky C X, the set

GK:[,KQ :{QEGZQ(Kl)ﬁKQ 7&@} cG

is compact. If G has discrete topology, a proper action is called properly discontin-
uous action, as G, k, is finite.

EXERCISE 5.37. Suppose that X is locally compact, Hausdorff and G ~ X is
proper. Show that the quotient X/G is Hausdorff.

Recall that a topological space X is called Baire if it satisfies the Baire property:
Countable intersections of open dense subsets of X are dense in X. According to
Baire theorem, each complete metric space is Baire.

LEMMA 5.38 (R. Arens, [Ared6]). Suppose that G x X — X is a continuous
transitive action of a o-compact group on a Hausdorff Baire space X. Then for

each x € X the orbit map G — X, g — g(x) descends to a homeomorphism
$:G/Gy — X.

Proor. We let p: G — G/G,, denote the quotient map. The map ¢ is defined
by &(p(g)) = g(x). We leave it to the reader to verify that ¢ is a continuous
bijection, equivariant with respect to the G-action on G/G, and X. Since X is
Hausdorff, for each compact subset K C G the restriction of the map ¢ to p(K) is
a homeomorphism to its image, which is necessarily closed. Since G is o-compact,
there exists a countable collection K;,i € I, of compact subsets of G, whose union
equals G. Since the orbit map G — X is surjective and X is Baire, there exists
a compact subset K C G whose image has non-empty interior in X. Therefore,
the restriction of ¢~1 to the interior U of ¢(p(K)) is continuous. Since ¢ is G-
equivariant and the G-orbit of U is the entire X, we conclude that ¢~ : X — G/G,,
is continuous. (]

A topological action G ~ X is called cocompact if there exists a compact C' C X
so that
G-C:= U gC = X.
geqG
EXERCISE 5.39. If the action G ~ X is cocompact, then the quotient space
X/G (equipped with the quotient topology) is compact.

The following is a converse to the above exercise:

1up to conjugation
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LEMMA 5.40. Suppose that X is a locally compact space and the action G ~ X
is such that the quotient space X/G is compact. Then G acts cocompactly on X.

PROOF. Let p : X — Y = X/G be the quotient. For every x € X choose a
relatively compact (open) neighborhood U, C X of x. Then the collection

{p(UZL’)}CEEX

is an open cover of Y. Since Y is compact, this open cover has a finite subcover

{p(Uy,) :i=1,...,n}

The union
C =] lUs,)
i=1
is compact in X and projects onto Y. Hence, G- C = X. (I

In the context of non-proper metric spaces, the concept of a cocompact group
action is replaced with the one of a cobounded action. An isometric action G ~ X
is called cobounded if there exists D < oo such that for some point x € X,

U 9(B(x. D)) = x.

geG

Equivalently, given any pair of points z,y € X, there exists g € G such that
dist(g(x),y) < 2D. Clearly, if X is proper, the action G ~ X is cobounded if and
only if it is cocompact. We call a metric space X quasihomogeneous if the action
Isom(X) ~ X is cobounded.

Similarly, we have to modify the notion of a properly discontinuous action. A
continuous isometric action G ~ X of a topological group G on a metric space is
called metrically proper if if for every bounded subset B C X, the set

Gpp={9€G:9(B)NB #0}

is relatively compact in G.
Note that if X is a proper metric space then a continuous isometric G-action
on X is proper if and only if it is metrically proper.

EXERCISE 5.41. 1. A continuous isometric action G ~ X is metrically proper
if and only if for some (equivalently, every) z € X the function g — d(g(x),x) has
relatively compact sublevel sets in G.

2. Suppose that G is a discrete group. Then an isometric action G ~ X
is metrically proper if and only if for every sequence (g,) consisting of distinct
elements of G and for some (equivalently, every) 2 € X we have

nl;rrgo dist(gn(z), ) = 0.

EXAMPLE 5.42. Let G be an infinite discrete group equipped with the dis-
crete metric, taking only the values 0 and 1. Then the action G ~ G is properly
discontinuous as a topological action, but is not metrically proper.
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5.6.2. Linear actions. In this section, V' will denote a finite-dimensional vec-
tor space over a field K whose algebraic closure will be denoted K. We let End(V)
denote the algebra of (linear) endomorphisms of V' and GL(V') the group of invert-
ible endomorphisms of V. Linear actions of groups G on V are called representations
of GonV.

A group I" which is isomorphic to a subgroup of GL(V') for some V, is called a
matriz group or a linear group.

LEMMA 5.43.
7: End(V) x End(V) — K, 7(A, B) = tr(ABT)
is a nondegenerate bilinear form on End(V'), regarded as a vector space over K.

PROOF. Representing A and B by their matrix entries (a;;), (bxi), we obtain:
tI‘(ABT) = Zaijbij.
]

Therefore, if for some 14, j, a;; # 0, we take B such that by; = 0 for all (k,1) # (4, )
and b;; = 1. Then tr(ABT) = a;; # 0. O

If V is a vector space and A C End(V) is a subsemigroup, then A is said to act
wrreducibly on V if V' contains no proper subspaces V/ C V such that aV’ C V' for
all a € A. An action is said to be absolutely irreducible iff the corresponding action
on the vector space V ®x K is irreducible.

A proof of the following theorem can be found, for instance, in [Lan02, Chapter
XVII, §3, Corollary 3.3]:

THEOREM 5.44 (Burnside’s theorem). If A C End(V) is a subalgebra which
acts absolutely irreducibly on a finite-dimensional vector space V', then A = End(V).
In particular, if G C End(V) is a subsemigroup acting irreducibly, then G spans
End(V) as a vector space.

LEMMA 5.45. If a linear action of a group G on V is absolutely irreducible,
then so is the action G on W = A*V.

PROOF. Since G spans End(V), the action of G on W is absolutely reducible iff
the action of End(V') is. However, all exterior product representations of End(V)

are absolutely irreducible; this is a special case of irreducibility of Weyl modules,
see e.g. [FH94, Theorem 6.3, Part 4]. O

EXERCISE 5.46. Suppose that K C L is a field extension and the linear action
G ~ V is absolutely irreducible. Show that the action of G on V @k LL (regarded as
a vector space over L) is also absolutely irreducible. Give example of an irreducible
representation which is not absolutely irreducible.

5.6.3. Lie groups. References for this section are [FH94, Hel01, OV90,
War83].

A Lie algebra is a vector space g over a field F', equipped with a binary operation
[-,] : g% — @, called the Lie bracket, which satisfies the following axioms:
1. The Lie bracket is bilinear:

z,y] = Aulz,yl, [ty 2] =[x, 2] + [y, 7]
forall A€ F, x,y,z € g.
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2. The Lie bracket is anti-symmetric:

[x,y] = —[y,x].
3. The Lie bracket satisfies the Jacobi identity:

[, [y, 2]] + [y, [z, z]] + [2, [z, y]] = 0.

In this book we will consider only finite-dimensional real and complex Lie al-
gebras, i.e. we will assume that F' = R or F' = C and g is finite-dimensional as a
vector space.

ExXAMPLE 5.47. Lie algebra g which is the vector space of n X n matrices
Mat, (F) with coefficients in the field F', with the Lie bracket given by the com-
mutator

[X,)Y]=XY -YX.

An iddeal in a Lie algebra g is a vector subspace J C g such that for every
x € g,y € J we have:

[z,y] € J.
For instance, the subspace J consisting of scalar multiplies of the identity matrix
I € Mat,(F) is an ideal in g = Mat,(F). A Lie algebra g is called simple if it is
not 1-dimensional and every ideal in g is either 0 or the entire g.

If g1,...,9m are Lie algebras, their direct sum is the direct sum of the vector
spaces
GD...0gm
with the Lie bracket, given by
m
[T+ Ty o Y] = Z[‘Thyl]
i=1

for z;,y; € g;, i =1,...m. A Lie algebra g is called semisimple if it is isomorphic
to the direct sum of finitely many simple Lie algebras.

A Lie group is a group G which has the structure of a smooth manifold, so
that the binary operation G x G — G and inversion g — ¢g~!,G — G are smooth
maps. Actually, every Lie group G can be made into a real analytic manifold with
real analytic group operations. We will mostly use the notation e for the neutral
element of G. We will assume that G is a real n-dimensional manifold, although we
will sometimes also consider complex Lie groups. A homomorphism of Lie groups
is a group homomorphism which is also a smooth map.

EXAMPLE 5.48. Groups GL(n,R),SL(n,R), O(n), O(p, q) are (real) Lie groups.
Every countable discrete group (a topological group with discrete topology) is a Lie
group. (Recall that we require our manifolds to be second countable. If we were to
drop this requirement, then any discrete group becomes a Lie group.)

Here O(p, q) is the group of linear isometries of the quadratic form

2 2 2 2
i+ Ty =Ty — s~ Ty

of the signature (p,q). The most important, for us, case is the group O(n,1) ~
O(1,n). The group PO(n,1) = O(n,1)/ £ I is the group of isometries of the
hyperbolic n-space.
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EXERCISE 5.49. Show that the group PO(n, 1) embeds in O(n, 1) as the sub-
group stabilizing the future light cone
w%—l—...—!—x%—xi_ﬂ >0, op41>0.
The tangent space V = T,.G of a Lie group G at the identity element e € G
has the structure of a Lie algebra, called the Lie algebra g of the group G.

EXAMPLE 5.50. 1. The Lie algebra sl(n,C) of SL(n,C) consists of trace-free
n X n complex matrices. The Lie bracket operation on sl(n,C) is given by

[A, Bl = AB — BA.
2. The Lie algebra of the unitary subgroup U(n) < GL(n,C) equals the space
of skew-hermitian matrices
u(n) ={A € Mat,(C): A= —-A"}.
3. The Lie algebra of the orthogonal subgroup O(n) < GL(n,R) equals the
space of skew-symmetric matrices
o(n) = {A € Mat,(R) : A= —AT}.

EXERCISE 5.51. u(n) @ iu(n) = Mat,(C), is the Lie algebra of the group
GL(n,C).

Every Lie group G has a left-invariant Riemannian metric, i.e. a Riemannian
metric invariant under the left multiplication

Ly:G— G, Ly(z)=gzx
by elements of G. Indeed, pick a positive-definite inner product (-,-), on T.G.
The map L, : G — G is a diffeomorphism and the action of G' on itself via left
multiplication is simply-transitive. We define the inner product (-, ), on TyG as the
image of (-, -), under the derivative DL, : T.G — T,G. Similarly, if G is a compact
Lie group, then it admits a bi-invariant Riemannian metric, i.e. a Riemannian

metric invariant under both left and right multiplication. Namely, if (-,-) is a left-
invariant Riemannian metric on G, define the right-invariant metric by the formula:

(u,0) = /G (DR, (u), DR, (v)) dVol(g),

where dVol is the volume form of the Riemannian metric (-,-) and Ry is the right
multiplication by g:
R;:G— G, Ry(z)=uzyg.

Every Lie group G acts on itself via inner automorphisms

p(9)(x) = Inn(g)(z) = gzg™".

This action is smooth and the identity element e € G is fixed by the entire group G.
Therefore, G acts linearly on the tangent space V' = T.G at the identity e € G. The
action of G on V is called the adjoint representation of the group G and denoted
by Ad. Thus, one obtains a homomorphism

Ad: G — GL(V).

LEMMA 5.52. For every connected Lie group G the kernel of Ad: G — GL(V)
is contained in the center of G.
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PROOF. There is a local diffeomorphism
exp:V —- G

called the exponential map of the group G, sending 0 € V to e € G. In the case
when G = GL(n,R) this map is the ordinary matrix exponential map. The map
exp satisfies the identity

gexp(v)g™" = exp(Ad(g)v), YveV,geG.

Thus, if Ad(g) = Id, then g commutes with every element of G of the form
exp(v),v € V. The set of such elements is open in G. Now, if we are willing
to use a real analytic structure on G, then it would immediately follow that g be-
longs to the center of G. Below is an alternative argument. Let g € Ker(Ad). The
centralizer Z(g) of g in G is given by the equation

Z(g) ={h e G:[h,g] =1}

Since the commutator is a continuous map, Z(g) is a closed subgroup of G.
Moreover, as we observed above, this subgroup has non-empty interior in G (con-
taining e). Since Z(g) acts transitively on itself by, say, left multiplication, Z(g) is
open in G. As G is connected, we conclude that Z(g) = G. Therefore the kernel of
Ad is contained in the center of G. The opposite inclusion is immediate. (]

DEFINITION 5.53. A connected noncommutative Lie group G is called simple
if G contains no closed connected proper normal subgroups.

Equivalently, a connected Lie group G is simple if its Lie algebra g is simple.

EXAMPLE 5.54. 1. The group SL(2,R) is simple, but its center is isomorphic
to Zs. Thus, a simple Lie group need not be simple as an abstract group.
2. Examples of simple Lie groups are SL(n,R), Og(p,q),q = 2,q > 1, unless

p=gq=2, Sp(n,R).

DEFINITION 5.55. A connected Lie group G is semisimple if its Lie algebra is
semisimple. For instance, the Lie group Oy(2,2) is semisimple but not simple.

Below are several deep structural theorems about Lie groups:

THEOREM 5.56 (S. Lie). 1. For every finite-dimensional real Lie algebra g there
exists a unique® simply-connected Lie group G whose Lie algebra is isomorphic to
g.

2. Two Lie groups are locally isomorphic if and only if their Lie algebras are
isomorphic.

THEOREM 5.57 (E. Cartan). Ewvery closed subgroup H of a Lie group G has
a structure of Lie group so that the inclusion H — G is an embedding of smooth
manifolds.

The next theorem is a corollary of the Peter-Weyl theorem, see e.g., [OV90,
Theorem 10, page 245]:

THEOREM 5.58. Every compact Lie group is linear, i.e. it embeds in GL(V)
for some finite-dimensional real vector space V.

2up to an isomorphism

138



While there are nonlinear (connected) Lie groups, e.g. the universal cover of
SL(2,R), each Lie group is locally linear.

THEOREM 5.59 (I. D. Ado, [Ado36]). Every finite-dimensional Lie algebra g
over a field F' of characteristic zero (e.g. over the real numbers) admits a faithful
finite-dimensional representation. In particular, every Lie group locally embeds in
GL(V) for some finite-dimensional real vector space V.

We refer the reader to [FH94, Theorem E.4] for a proof. Note that if a Lie group
G has discrete center, then the adjoint representation of G is a local embedding of
G in GL(g), where g is the Lie algebra of G. The difficulty is in the case of groups
with non-discrete center.

5.6.4. Haar measure and lattices.

DEFINITION 5.60. A (left) Haar measure on a locally compact Hausdorff topo-
logical group G is a countably additive, non-trivial measure p on Borel subsets of
G satisfying:

(1) u(gE) = u(E) for every g € G and every Borel subset E C G.
(2) p(K) is finite for every compact K C G.
(3) Every Borel subset E C G is outer regular:

w(E) =inf{u(U): ECU, U is open in G}.
(4) Every open set E C G is inner regular:
w(E) =sup{u(K): K C E, K is compact in G}.

Accordingly, topological groups G, Gy are said to be locally isomorphic if G
locally embeds in G5 and vice-versa.

By Haar’s Theorem, see [Bou63], every locally compact Hausdorff topological
group G admits a Haar measure and this measure is unique up to scaling. Similarly,
one defines right Haar measures. In general, left and right Haar measures are not
the same, but they are for some important classes of groups:

DEFINITION 5.61. A locally compact Hausdorff topological group G is unimod-
ular if left and right Haar measures are constant multiples of each other.

Important examples of Haar measures come from Riemannian geometry. Let G
be a Lie group. We equip G with a left-invariant Riemannian metric. The volume
form of this metric defines a left Haar measure on G.

Let I' < G be a discrete subgroup of a locally compact Hausdorff topological
group G. A measurable fundamental set in G for the left action of v on G is a
measurable subset of D C G such that

Up=¢6, w(rDnD)=0, vyeTl\{e}
~el’

LEMMA 5.62. Every discrete subgroup I' < G admits a measurable fundamental
set.

PrOOF. Since I' < G is discrete, there exists an open neighborhood V of e € G
such that TNV = {e}. Since G is a topological group, there exists another open
neighborhood U of e € G, such that UU~! C V. Then for v € T’ we have

yu=v,uclUuv eU=>y=vutleV=y=e.
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In other words, I'-images of U are pairwise disjoint. Since G is a second countable,
there exists a countable subset

E={gieG:ieN}
such that
Clearly, each set

W, :=Ugn \ | JTUg:

i<n
is measurable, and so is their union

D= Ej W,
n=1

Let us verify that D is a measurable fundamental set. First, note that for every
x € G there exists the least n such that x € Ug,,. Therefore,

G= n@l (Ugn\ U Ugl-> :

i<n
Next,

D= G (FUgn\UFUgi> =

n=1 <n

r-g (Ugn\ U Ugi> > G (Ugn\ U Ugi> =G.

i<n n=1 i<n
Therefore, I' - D = G. Next, suppose that
zeyDND.
Then, for some n, m
x e W, NyWy,.
If m < n, then
YW T |J Ugi,

i<n
which is disjoint from W,,, a contradiction. Thus, W,, N yW,, = (§ for m < n and
all vy € T'. If n < m, then

W NyWo =7~ (YW, N W) = 0.
Thus, n = m, which implies that
Ugn NYUgn Z0=UNAU #D=v=e.
Therefore, for all vy € T'\ {e}, yDN D = 0. O

If T’ < G is a discrete subgroup, then the left Haar measure p on G descends to

a Borel measure [ the quotient space Q = I'\G: If A C G is a Borel subset such that

the restriction of the projection p : G — @ is injective on A, then fi(p(A)) = p(A).

The measure i can be defined using a measurable fundamental domain D in G as:
a(TA) .= u(An D).
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Note that when G is unimodular, the measure [ is invariant under the right action
of G.

EXERCISE 5.63. Prove that i is independent of the choice of a measurable
fundamental set D.

If G is a Lie group, then the measure i (up to a scalar multiple) can also
be described by using the volume form of the projection to @ of a left-invariant
Riemannian metric on G.

DEFINITION 5.64. Let G be a locally compact Hausdorff topological group and
1 a left Haar measure on G. A lattice in G is a discrete subgroup I' < G so that
the quotient @ = I'\G has finite measure, fi(Q) < co. A lattice T is called uniform
if the quotient @ is compact.

EXERCISE 5.65. If G is a Lie group acting transitively and faithfully on a
Riemannian manifold X, then I' < G is a lattice if and only if the quotient space
X/T has finite volume.

THEOREM 5.66. A locally compact second countable Hausdorff group G is uni-
modular, provided that it contains a lattice.

PROOF. For arbitrary g € G consider the push-forward v = Ry(u) of the (left)
Haar measure i on G here R, is the right multiplication by g:

v(E) = p(Eg™").
Then v is also a left Haar measure on G. By the uniqueness of the Haar measure,
v = cu for some constant ¢ > 0.
Let I' < G be a lattice and let D C G be its measurable fundamental set. Then
0 < (D) = u(I\G) < oo
since I' is a lattice. For every g € G, Dy is again a measurable fundamental set for
I’ and, thus, u(D) = u(Dg). Hence,
n(D) = u(Dg) = cv(D).
It follows that ¢ = 1. Thus, p is also a right Haar measure. O
5.6.5. Geometric actions. Suppose now that X is a metric space. We
will equip the group of isometries Isom(X) of X with the compact-open topology,

equivalent to the topology of uniform convergence on compact sets. A subgroup
G < Isom(X) is called discrete if it is discrete with respect to the subset topology.

EXERCISE 5.67. Suppose that X is proper. Show that the following are equiv-
alent for a subgroup G < Isom(X):
a. G is discrete.
b. The action G ~ X is properly discontinuous.
c. For every x € X and an infinite sequence of distinct elements g; € G,
lim d(z, g;(x)) = oo.
1—> 00

Hint: Use Arzela—Ascoli theorem.

DEFINITION 5.68. A geometric action of a group G on a metric space X is an
isometric properly discontinuous cobounded action G ~ X.
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For instance, if X is a homogeneous Riemannian manifold with the isometry
group G and I' < (G is a uniform lattice, then I' acts geometrically on X. Note that
every geometric action on a proper metric space is cocompact.

LEMMA 5.69. Suppose that a group G acts geometrically on a proper metric
space X. Then G\X has a metric defined by

(5.3)  dist(a,b) = inf{dist(p, q) ; p € Ga, q € Gb} = inf{dist(a, q) ; ¢ € Gb},
where @ = Ga and b= Gb.

Moreover, this metric induces the quotient topology of G\X.

PRrROOF. The infimum in (5.3) is attained, i.e. there exists g € G such that

dist(a, b) = dist(a, gb).
Indeed, take gg € G arbitrary, and let R = dist(a, gb). Then
dist(a, b) = inf{dist(a,q) ; ¢ € GbN B(a, R)}.
Now, for every gb € B(a, R),
99y "B(a, R) N B(a, R) # 0.

Since G acts properly discontinuously on X, this implies that the set GbN B(a, R)
is finite, hence the last infimum is over a finite set, and it is attained. We leave it
to the reader to verify that dist is the Hausdorff distance between the orbits G - a
and G - b. Clearly the projection X — G\X is a contraction. One can easily check

that the topology induced by the metric dist on G\X coincides with the quotient
topology. (I

5.7. Zariski topology and algebraic groups

The proof of the Tits Alternative relies in part on some basic results from
theory of affine algebraic groups. We recall some terminology and results needed
in the argument. For a more thorough presentation, see [Hum?75| and [OV90].

The proof of the following general lemma is straightforward, and left as an
exercise to the reader.

LEMMA 5.70. For every commutative ring A the following two statements are
equivalent:
(1) every ideal in A is finitely generated;

(2) the set of ideals satisfies the ascending chain condition (ACC), that is,
every ascending chain of ideals

Lclhc---CL,C--

stabilizes, i.e. there exists an integer N such that I, = In for every
n>N.

DEFINITION 5.71. A commutative ring is called noetherian, if it satisfies one
(hence, both) statements in Lemma 5.70.

Note that a field seen as a ring is always noetherian. Other examples of noe-
therian rings come from the following theorem:

THEOREM 5.72 (Hilbert’s ideal basis theorem, see [DF04]). If A is a noetherian
ring then the ring of multivariable polynomials A[X,...,X,] is also noetherian.
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From now on, we fix a field K.

DEFINITION 5.73. An affine algebraic set in K™ is a subset Z in K" that is the
solution set of a system of multivariable polynomial equations p; = 0, Vj € J, with
coefficients in K:

Z={(z1,...,zn) € K" ; pj(z1,...,2,) =0,j € J}.

We will frequently say “algebraic subset” or “affine variety” when referring to an
affine algebraic set.

For instance, algebraic subsets in the affine line (the 1-dimensional vector space
V over K) are finite subsets and the entire of V| since every non-zero polynomial
in one variable has at most finitely many zeroes.

There is a one-to-one map associating to every algebraic subset in K™ an ideal
in K[Xq,...,X,]:

Zw— Iz ={peK[Xy,...,X,]; p|, =0}.

Note that Iz is the kernel of the homomorphism p — p|z from K[X7,..., X,]
to the ring of functions on Z. Thus, the ring K[X1,...,X,]/Iz may be seen as a
ring of functions on Z; this quotient ring is called the coordinate ring of Z or the
ring of polynomials on Z, and denoted K[Z].

Theorem 5.72 and Lemma 5.70 imply the following.

LEMMA 5.74. (1) The set of algebraic subsets of K™ satisfies the descend-
ing chain condition (DCC): every descending chain of algebraic subsets

212432242
stabilizes, i.e. for some integer N > 1, Z; = Zn for every i > N.
(2) Ewvery algebraic set is defined by finitely many equations.

DEFINITION 5.75. A morphism between two affine varieties Y in K™ and Z in
K™ is a map of the form ¢ : Y — Z, ¢ = (p1,...,%m), such that each ¢; is in
K[Y],i € {1,2,...,m}.

Note that every morphism is induced by a morphism ¢ : K* - K™, 6 ¢ =
(P15, Pm), with @; : K™ — K a polynomial function for every ¢ € {1,2,...,m}.

An isomorphism between two affine varieties Y and Z is an invertible map
¢ Y — Z such that both ¢ and ¢ ~! are morphisms. When Y = Z, an isomorphism
is called an automorphism.

EXERCISE 5.76. 1. If f : Y — Z is a morphism of affine varieties and W C Z
is a subvariety, then f~1(W) is a subvariety in Y. In particular, every linear
automorphism of V' = K" sends subvarieties to subvarieties and, hence, the notion
of a subvariety is independent of the choice of a basis in V.

2. Show that the projection map f : C* — C, f(z,y) = x, does not map
subvarieties to subvarieties.

Let V be an n-dimensional vector space over a field K. The Zariski topology
on V is the topology having as closed sets all the algebraic subsets in V. It is
clear that the intersection of algebraic subsets is again an algebraic subset. Let
Z = Z1U...UZ; be a finite union of algebraic subsets, Z; defined by the ideal I,.

Then Z is defined by the ideal
Ip=1z -...-1Iz

(2
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generated by the products

‘
sz‘
i=1

of elements p; € I,.

The induced topology on a subvariety Z C V is also called the Zariski topology.
Note that this topology can also be defined directly using polynomial functions in
K[Z]. According to Exercise 5.76, morphisms between affine varieties are continuous
with respect to the Zariski topologies.

The Zariski closure of a subset E C V can also be defined by means of the set
Pg of all polynomials which vanish on F, i.e. it coincides with

{r eV |p(x)=0,Vp € Pg}.
A subset Y C Z in an affine variety is called Zariski-dense if its Zariski closure
is the entire of Z.

Lemma 5.74, Part (1), implies that closed subsets in Zariski topology satisfy
the descending chain condition (DCC).

DEFINITION 5.77. A topological space such that the closed sets satisfy the DCC
is called noetherian.

LEMMA 5.78. Ewvery subspace of a noetherian topological space (with the sub-
space topology) is noetherian.

PROOF. Let X be a space with topology T such that (X, T) is noetherian, and
let Y be an arbitrary subset in X. Consider a descending chain of closed subsets
inY:

1222222y 2 ...
Every Z, is equal to Y N C; for some closed set C; in X. We leave it to the reader
to check that C; can be taken equal to the closure Z; of Z; in X.
The descending chain of closed subsets in X,

71273227y 2...
stabilizes, hence, so does the chain of the subsets Z;. ([l
PROPOSITION 5.79. FEvery noetherian topological space X is compact.

ProoF. Compactness of X is equivalent to the condition that for every family
{Z; : i €I} ofclosed subsets in X, if (,.; Z; = ), then there exists a finite subset .J
of I such that (1. ; Z; = 0. Assume that all finite intersections of a family as above
are non-empty. Then we construct inductively a descending sequence of closed sets
that never stabilizes. The initial step consists of picking an arbitrary set Z;,, with
i1 € I. At the nth step we have a non-empty intersection Z;, N Z;, N...N Z; ;
hence, there exists Z;, , with i,11 € I such that Z; NZ;,n..NZ;, NZ; ., isa
non-empty proper closed subset of Z;, N Z;, N...N Z; ([l

n

We now discuss a strong version of connectedness, relevant in the setting of
noetherian spaces.

LEMMA 5.80. For a topological space X the following properties are equivalent:
(1) every open non-empty subset of X is dense in X;

(2) any two open non-empty subsets have non-empty intersection;
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(3) X cannot be written as a finite union of proper closed subsets.
We leave the proof of this lemma as an exercise to the reader.

DEFINITION 5.81. A topological space is called irreducible if it is non-empty
and one of (hence all) the properties in Lemma 5.80 is (are) satisfied. A subset of
a topological space is irreducible if, when endowed with the subset topology, it is
an irreducible space.

EXERCISE 5.82. (1) Prove that K™ with Zariski topology is irreducible,
provided that the field K is infinite.

(2) Prove that an algebraic variety Z is irreducible if and only if K[Z] does
not contain zero divisors.

The following properties are straightforward and their proof is left as an exercise
to the reader.

LEMMA 5.83. (1) The image of an irreducible space under a continuous
map 1s irreducible.

(2) The cartesian product of two irreducible spaces is an irreducible space,
when endowed with the product topology.

Note that the Zariski topology on K"*™ = K" x K™ is not the product topology
(unless nm = 0 or K is finite). Hence, irreducibility of products of irreducible
varieties cannot be derived from Lemma 5.83.

LEMMA 5.84. Let Vi,Vy be finite-dimensional vector spaces over K and let
Z; C Vi, 1 =1,2, be irreducible subvarieties. Then the product Z == Zy X Zy CV =
Vi x Vo s an irreducible subvariety in the vector space V.

ProoF. Let Z = W7 U W5 be a union of two proper subvarieties. For every
z € Zj the product {z} x Z is isomorphic to Z; (via the projection to the second
factor) and, hence, is irreducible. On the other hand,

{2} x Zo = ({2} x Zo) n W) U (({z} x Z3) N Wa)

is a union of two subvarieties. Thus, for every z € Z7, one of these subvarieties has
to be the entire {2} x Z5. In other words, either {z} X Zy C Wj or {z} x Zy C Wha.
We then partition Z; in two subsets A7, Ao:

Ai:{ZezlZ{Z}XZQCWi},iil,Q.

Since each W7, W5 is a proper subvariety, both A;, Ay are proper subsets of Z;.
We will now prove that both A, Ay are subvarieties in Z;. We will consider the
case of A; since the other case is obtained by relabeling. Let fi,..., fx denote
generators of the ideal of W;. We will think of each f; as a function of two variables
f = f(X31,X2), where X}, stands for the tuple of coordinates in Vi, k = 1,2. Then

Ay ={z€Zy: fi(z,20) =0,Vz € Z1,i=1,...,k}.

However, for every fixed z € Zy, the function f;(z,-) is a polynomial function f; .
on Zy. Therefore, A; is the solution set of the system of polynomial equations on
Zli

{fi.=0:i=1,...,k,z€ Z1}.

It follows that A, is a subvariety, which contradicts irreducibility of Z5. O
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LEMMA 5.85. Let (X, T) be a topological space.

(1) A subset Y of X is irreducible if and only if its closure Y in X is irre-
ducible. -
(2) If Y is irreducible and Y C A CY then A is irreducible.

(3) Ewery irreducible subset Y of X is contained in a maximal irreducible
subset.

(4) The mazimal irreducible subsets of X are closed and they cover X.

PROOF. (1) For every open subset U C X, UNY # () if and only if UNY # ().
This and Lemma 5.80, (2), imply the equivalence.
(2) Follows directly from (1).

(3) The family Zy of irreducible subsets containing Y has the property that
every ascending chain has a maximal element, which is the union. It can be easily
verified that the union is again irreducible, using Lemma 5.80, (2). It follows from
Zorn’s Lemma that Zy contains a maximal element.

(4) Singletons are irreducible and cover X. Now, the statement follows from
(1) and (3), since . O

THEOREM 5.86. A noetherian topological space X is a union of finitely many
distinct mazimal irreducible subsets X1, Xo, ..., X, such that for every i, X; is not
contained in Ujﬂ Xj. Moreover, every mazimal irreducible subset in X coincides
with one of the subsets X1, Xo,..., X, . This decomposition of X is unique up to
a renumbering of the X;’s.

PrOOF. Let F be the collection of closed subsets of X that cannot be written
as a finite union of maximal irreducible subsets. Assume that F is non-empty.
Since X is noetherian, F satisfies the DCC, hence by Zorn’s Lemma it contains a
minimal element Y. As Y is not irreducible, it can be decomposed as Y = Y; UY5,
where Y; are closed and, by the minimality of Y, both Y; decompose as finite unions
of irreducible subsets (maximal in Y;). According to Lemma 5.85, (3), Y itself can
be written as union of finitely many maximal irreducible subsets, a contradiction.
It follows that F is empty.

IfX; C Uj# X, then X; = Uj# (X; NX;). As X; is irreducible it follows that
X; C X, for some j # ¢, hence, by maximality, X; = X, contradicting the fact
that we took only distinct maximal irreducible subsets. A similar argument is used
to prove that every maximal irreducible subset of X must coincide with one of the
sets X;.

Now assume that X can be also written as a union of distinct maximal irre-
ducible subsets Y1,Ya,...,Y,, such that for every i, Y; is not contained in | J i Y;.
For every i € {1,2,...,m} there exists a unique j; € {1,2,...,n} such that ¥; = Xj,.
The map i — j; is injective, and if some &k € {1,2,...,n} is not in the image of this

map then it follows that
m
x.clJvicx,
i=1 j#k
a contradiction. O
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DEFINITION 5.87. The subsets X; defined in Theorem 5.86 are called the irre-
ducible components of X. In other words, irreducible components of X are maximal
irreducible subsets of X.

Note that we can equip every Zariski-open subset U of a (finite-dimensional)
vector space V' with the Zariski topology, which is the subset topology with respect
to the Zariski topology on V. Then U is also Noetherian. We will be using the
Zariski topology primarily in the context of the group GL(V'), which we identify
with the Zariski open subset of V' ® V*, the space of n x n matrices with non-zero
determinant.

DEFINITION 5.88. An algebraic subgroup of GL(V) is a Zariski-closed subgroup
of GL(V).

Given an algebraic subgroup G of GL(V), the binary operation G x G —
G, (g,h) — gh is a morphism. The inversion map g — g~!, as well as the left-
multiplication and right-multiplication maps g — ag and g — ga, by a fixed element
a € G, are automorphisms of the variety G.

EXAMPLE 5.89. (1) The subgroup SL(V) of GL(V) is algebraic, defined
by the equation det(g) = 1.

t
group SL(n+1,K) by mapping every matrix A € GL(n,K) to the matrix

(0 in)
0 detl(A) .

Therefore, in what follows, it will not matter if we consider algebraic
subgroups of GL(n,K) or of SL(n,K).

(3) The group O(V) is an algebraic subgroup, as it is given by the system of
equations MTM =Idy .

(4) More generally, given an arbitrary quadratic form ¢ on V, its stabilizer
O(q) is obviously algebraic. A special instance of this is the symplectic
group Sp(2k,K), preserving the form with the following matrix (given
with respect to the standard basis in V = K?")

(
(2) The group GL(n,K) can be identified with an algebraic subgroup of the
b,

0 ... 1
J= 0 K , where K= 0 .7 0
-K 0 1 0

~ LEMMA 5.90. IfT is a subgroup of an algebraic group G, then its Zariski closure
' in G is also a subgroup.

PrROOF. We let 4 : G x G — G, : G — G denote the multiplication and
inversion maps respectively. Both maps are continuous if we equip G x G, G with
their respective Zariski topologies. Therefore, for each subset £ C G,

AE) C AME),
which implies that o
AT T
Hence, T is closed under the inversion. Similarly, for each g € T,
u(g,T) cT
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and, thus, for each h € T,
w(T,h) CT.
It follows that u(T',T) C T. O

When K = R or K = C, the vector space V = K" also has the standard
or classical topology, given by the suitable norm on V. We use the terminology
classical topology for the induced topology on subsets of V. Classical topology, of
course, is stronger than Zariski topology.

THEOREM 5.91 (See for instance Chapter 3, §2, in [OV90]). (1) An alge-
braic subgroup of GL(n,C) is irreducible in the Zariski topology if and only
if it is connected in the classical topology.

(2) A connected (in classical topology) algebraic subgroup of GL(n,R) is irre-
ducible in the Zariski topology.

We will not need this theorem; the following proposition will suffice for our
purposes:

PROPOSITION 5.92. Let G be an algebraic subgroup in GL(V).

(1) Only one irreducible component of G contains the identity element. This
component is called the identity component and is denoted by Gj.

(2) The subset G is a normal subgroup of finite index in G whose cosets are
the irreducible components of G.

PRrOOF. (1) Let X3, ..., X}, be irreducible components of G containing the iden-
tity. According to Lemma 5.84, the product set X; X ... x X} is irreducible. Since
the product map is a morphism, the subset X; --- X, C G is irreducible as well;
hence by Lemma 5.85, (3), and by Theorem 5.86 this subset is contained in some
X,. The fact that every X; with ¢ € {1,...,k} is contained in Xj --- X}, hence in
X, implies that k£ = 1.

(2) Since the inversion map g + g~ ! is an algebraic automorphism of G' (but

not a group automorphism, of course) it follows that Gy is stable with respect to
the inversion. Hence for every g € Gy, gGo contains the identity element, and is
an irreducible component. It follows that gGy = Gy. Likewise, for every z € G,
xGox~ ! is an irreducible component containing the identity element, hence it equals
Go. The cosets of Gy (left or right) are images of Gy under automorphisms, therefore
also irreducible components. Thus, there can only be finitely many of them. (]

REMARK 5.93. Proposition 5.92, (2), implies that for algebraic groups the irre-
ducible components are disjoint. This is not true in general for algebraic varieties,
consider, for instance, the subvariety {zy = 0} C K.

We now relate Lie groups and algebraic groups. For F = R or C, each algebraic
subgroup G < GL(n,TF) is necessarily closed in the classical topology, hence, is a
(complex, resp. real) Lie subgroup of GL(n,F) by Theorem5.57. Below is a simpler
argument which does not rely upon Cartan’s theorem.

THEOREM 5.94. Each algebraic subgroup G < GL(n,F) is a Lie subgroup.
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PROOF. Since G is a subgroup, it is a (real or complex) submanifold in GL(n, F)
iff it contains a non-empty open subset which is a submanifold in GL(n,F). The
subgroup G is the zero-set of a polynomial map p : GL(n,F) — F*. Let r denote
the maximum of ranks of the derivative dp of p on G, it is attained on an open
non-empty subset U of G. Let V denote the subset of GL(n,F) where dp has rank
r. By the constant rank theorem (Theorem 3.2), V is a smooth submanifold of
GL(n,F). Applying the constant rank theorem to the restriction p : V. — F¥  we
conclude that U = GNV is a smooth submanifold in V' and, hence, in GL(n,F). O

5.8. Group actions on complexes

5.8.1. G—complexes. Let G be a (discrete) topological group and let X be
a cell complex, defined via disjoint unions of balls U,, and attaching maps e”, see
section 1.7.2. We say that X is a G-complex, or that we have a cellular action
G X, if G x X = X is a topological action and for every n we have a G-action
G ~ U, such that the attaching map

e" : U, — X1
is G-equivariant.

DEFINITION 5.95. A cellular action G ~ X is said to be without inversions if
whenever g € GG preserves a cell s in X, it fixes this cell pointwise.

A topological action G ~ X on the geometric realization of a simplicial complex
is called simplicial if it sends simplices to simplices and is affine on each simplex. As
with cellular actions, a simplicial complex equipped with a simplicial group action
is called a simplicial G-complex.

Equivalently, one describes simplicial G-complexes as follows. Let G ~ V(X)
be a (set-theoretic) action of G' on the vertex set of a simplicial complex X, which
sends simplices to simplices. Then this action defines a simplicial action of G on
X. (Use the canonical affine extension of G ~ V(X)) to the geometric realization
of each simplex.)

The following is immediate from the definition of X", since barycentric subdi-
visions are canonical:

LEMMA 5.96. Let X be an almost reqular cell complex and let G ~ X be
an action without inversions. Then G ~ X induces a simplicial action without
inversions G ~ X"

EXERCISE 5.97. Given a cellular action G ~ X on a cell complex X, there
exists a simplicial complex Z, a simplicial action without inversions G ~ Z and a
G-equivariant homotopy-equivalence X — Z. Moreover, if X is finite-dimensional,
then Z can be also taken finite-dimensional. Hint: Follow the proof of the fact that
every cell complex is homotopy-equivalent to a simplicial complex.

LEMMA 5.98. Let X be a simplicial compler and G ~ X be a free simplicial
action. Then this action is properly discontinuous on X (in the weak topology).

PROOF. Let K be a compact in X. Then K is contained in a finite union of
simplices 01, ...,0% in X. Let F C G be the subset consisting of elements g € G so
that gK N K # (. Then, assuming that F is infinite, it contains distinct elements
g, h such that g(o) = h(o) for some o € {01,...,0,}. Then f := h~lg(o) = 0.
Since the action G ~ X is linear on each simplex, f fixes a point in o. This
contradicts the assumption that the action of G on X is free. (]
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5.8.2. Borel and Haefliger constructions. Every group G admits a clas-
sifying space E(G), which is a contractible cell complex admitting a free cellular
action G ~ E(G). The space E(G) is far from being unique, we will use the one
obtained by the Milnor’s Construction, see for instance [Hat02, Section 1.B]. A
benefit of this construction is that E(G) is a simplicial complex and the construc-
tion of G ~ E(G) is canonical. Simplices in E(G) are ordered tuples of elements of
g: [90,---,9n] is an n-simplex, with the obvious inclusions of simplices. To verify
the contractibility of E = F(G), note that for every i > k > 0 the map

Wk(Ei) — ’R'k(Ei—H)
is trivial. Here and in what follows, E* is the i-skeleton of E = E(G).
The group G acts on E(G) by the left multiplication

g-1905---59n) = [990,- - -, 99n]-

Clearly, this action is free and, moreover, each simplex has trivial stabilizer. The
action G ~ E(G) has two obvious properties that we will be using:
(1) If the group G is finite, then each skeleton E* of E(G) is a finite simplicial
complex.

(2) Every monomorphism G; < G, induces a canonical equivariant embed-
ding E(G1) — E(G2).

Suppose now that X is a cell complex and G ~ X is a cellular action without
inversions. The main goal of this section 1s to replace this action with a free cellular
action G ~ X on a new cell complex X such that there exists a G- -equivariant
homotopy-equivalence X — X. We will describe two constructions of complexes
X: the Borel construction and the Haefliger construction. The second will be the
most useful to us; it first appeared in Haefliger’s paper [Hae92|.

First, we consider the product of X with the classifying space E(G). The
group G acts on E(G) x X diagonally. The product space E(G) x X equipped with
the G-action is called the Borel Construction. We will use the notation B for the
quotient

B = (E(G) x X)/G.
This space has a natural projection p: B — X = X/G coming from the coordinate
projection p : E(G) x X — X. The product E(G) x X is a cell complex. The
action of G on the product is free since G acts freely on the first factor. For every
open cell o in X, the fiber p~1(0) C B is naturally homeomorphic to the quotient

(E(G) x5)/Gs,
where ¢ is a component of the preimage of ¢ in X and G5 is the stabilizer of & in
G (the conjugacy class of this subgroup of G is independent of the choice of 7).
In view of Exercise 5.97, we will assume that X is a simplicial complex and

G ~ X is a simplicial action without inversions. The product F(G) x X then is a
regular cell complex.

The second construction (due to Haefliger) is considerably more complicated.
We summarize it in the following theorem:

THEOREM 5.99. There ezists a regular cell complex X a G-action without
inversions on X and a projection q : X — X such that:
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1. There exists a G-equivariant homotopy-equivalence h:X— E(G) x X such
that

poh=4q.
2. For every open simplex & in the barycentric subdivision X' of X, g (o) is

equivariantly isomorphic to the product E(Gg) x &, where G5 is the stabilizer of &
in G.

PROOF. We will construct X as a suitable covering space of a certain complex
Y'; the map T will be a lift of a homotopy-equivalence h : Y — B.

Set X := X /G; it is an almost regular cell complex where cells are simplices.
Let X’ denote the barycentric subdivision of X. Then the vertices of X’ are in
bijective correspondence with the faces of X. The inclusion of faces of X induces
a natural orientation of the edges of X', where an edge [u,v] is oriented whenever
o O 7 with 0,7 the faces with the barycenters u, v respectively. Observe that the
vertex set V(X’) of X’ forms a natural poset where u < v if and only if there exists
an oriented edge [u, v] in X’. Given a face o of X’ we let min(o) and max(o) denote,
respectively, the minimal and the maximal vertices of o. For every vertex u € X'
corresponding to a simplex o in X, we pick a simplex ¢ C X projecting to o. Let
G, < G denote the stabilizer of ; it equals the stabilizer G, of a lift of v to &.
Then for each vertex v of X’ we have a distinguished subcomplex E(G,) C E(G).
Projecting F(G,) to B we obtain a subcomplex

X, = E(G,)/G, Cp~'(v) C B=(E(G) x X)/G,

with 1 (X,) =~ G,. This subcomplex has a distinguished vertex x,, the projection
of the vertex of F(G,) defined by the neutral element 1 of the group G,.

We fix the following data in the complex B. For each vertex v of X’ we pick a
base-point
z, € X, Cp '(v) C B.

We also pick a base-vertex vg of X', set zp := x,,. Since E(G) x X 5> Bisa
covering map, we will identify the group G with a quotient of the fundamental
group 71 (B, xo),

7T1(B,{E()) — G.

We pick a maximal tree T in the 1-skeleton of the complex X’. We construct a
(partial) section s : T'— B of p: B — X so that for every vertex v of X', s(v) = x,
belongs to the complex X,,. In particular, for every vertex v of X’ we obtain a path
&, in B connecting xg to x,: This path equals the image under s of the geodesic
path in T connecting o to v. Lastly, we extend the section s to every edge e of X’
which is not in T. As the result, for every oriented edge € of X’ we obtain a path
Ne := s(€) in B. Furthermore, the system of paths £, and ¢,, determines group
isomorphisms

m1(p~t(v), zy) ~ Gy < G,
as well as isomorphisms of simplicial complexes p~1(v) 2 E(G)/G,, sending z,, to
the projection of [1] € E(G).

The choice of the paths £ and 7. yields the following elements of G, homomor-
phisms of groups and simplicial maps:



i. For each oriented edge ¢ = [u,v] of X’ we have an element g. € G,
represented by the concatenation of paths

(5.4) Curnex &t
It is convenient to set
ge = Glvu] ‘= g[;,lv] = g;I
ii. The conjugation by g,
(5.5) Ye: g 9. 99e

defines a monomorphism ¢, : G,, — G,. More specifically, given a loop
Ain X, based at x,, and representing g € G, the image of g in G, is
represented by the concatenation

s(€) 71 x A xs(e).

iii. For each oriented edge ¢ = [u,v] of X’ we have a canonical simplicial
embedding?®

(5.6) U (X, 2y) = (Xoy )
which induces the monomorphism v, : G, — G,.
iv. Given an oriented 2-dimensional simplex 7 = [v1,v9, v3] in X’ with edges
a = [v1, 2], B = [v2,v3],77 = [v1,v3], there is no reason to expect g, to be
the product of g, and gg. Thus, define the monodromy
(57) gr = g;lgagﬁ = Glvz,v1]9[v1,v2]9[v2,v3] € Gvg-
The element g, is represented by the concatenation of paths
§v3 * Ny—1 X Na * N * 5’[}_31

The reader can think of the map 7 — g¢,, where 7 runs over the two-
dimensional faces of X', as a nonabelian cocycle on the simplicial complex

X'.
v. We also define monodromy maps
(5.8) U, Xy, X [0,1] = Xy,
such that:

o U (2,0)=",(2), z € X,,.
o Ur(zy,,t) =y, t € {0, 1}
e The loop ¥, (z,,,t),t € [0,1] represents the element g, € G,,.

We will build a complex Y by attaching products X, x I™ by induction on
the dimension of the skeleta of X’. The attaching maps will be guided by certain
maps 6 of n-dimensional cubes I"™ (n-fold products of the unit interval I = [0,1])
to n-dimensional simplices in X.

We introduce some notation useful for constructing the maps 6 and the attach-
ing maps. For each i = 1,...,n we have the following parallel facets of I™:

ID =Ix..xIx{0}; xIx..xI

3Recall that each group monomorphism H; — Hsz defines a canonical simplicial embedding
E(Hl) — E(HQ))



and
INi=Tx . oxIx{l}; xIx..xI.

Here 0; and 1; means that 0 (resp. 1) appears in the i-th place. We let top(I™)
denote the top-facet of I, namely, I,F.
Furthermore, for o = [vg,...,v,] and i = 1,...,n, we let ;0 = [vg, ..., Vi, ..., Up]
denote the facet of o obtained by skipping the vertex v;.
We define maps
Oy =0po:I" — 0 =[vg,..., U]
such that fori=1,....n

Ono i I = 00y ey Vim1, Vit 1y oeey Unl,

’ K3
and
On.o : top(I™) — {v,}.
We define these maps by induction on n. Namely, we start with the map
{0} =1° = {vo}.
Then, given a map
Gk,r : Ik — T = [’Uo,...,Uk],
we extend it to a map

— Ik‘-‘rl

Or+1.0 = p = [V0, e Vk41]

by sending the face I* x {1} to vy, and then “coning off the map 6 ., i.e. so that
9k+1,p’1k x{0} = 9/(:,7’

and 6y41,, is linear on the vertical segments r x [0, 1], 7 € I*. From now on, we will
suppress the subscript n for the maps 6,, , but will sometimes keep the subscript o
to indicate that 6, maps I" to the simplex o.

We now build a complex Y and a projection ¢ : ¥ — X.

For each vertex v of X’ we have a pointed simplicial complex (X, x,) isomor-
phic to (E(G,)/Gy, [1]). Define

Yorm [ X a:Y 5 X, qXy)={v}), veV(X)).

veV (X')

We then proceed inductively. Assume that the spaces Yy, k < n — 1, and the
projections
qr Yy — X,
are constructed, as well as the maps
fo = For )t Xvg X IF = Y4, 0 = [vo, ..., i),
so that we have commutative diagrams

f

Xy X I" 22— Y,

qk



We will construct a space Y, and a projection ¢, : Y,, — X’. In order to
construct Y,,, for every n-dimensional face o = [v,...,v,] of X’ we will need an
attaching map

Ofy: Yy X OI" — Yy_1,

whose image is contained in ¢, ', (0,(81")). Then Y, will be obtained as the quo-
tient (by an equivalence relation ~) of the disjoint union

Y1 U HXmin(U) x 1" )

where the disjoint union is taken over all n-dimensional faces o of X’ and min(o)
is the minimal vertex of ¢ as defined earlier. The equivalence relation is given by

ywafa(y), NS Xmin(o) x OI™.
This will yield also maps
fO’ : Xmin(a) X I" — Yn

extending the maps Jf,.
For each n and each n-simplex o = [vg,...,v,] in X', the map Jf, will be
defined on

Xy X (0I™ — top(I™))

by the same inductive formula independent of n. However, the definition of the
map O0f, on top(I™) will depend on n.

Definition of the attaching maps on X,, x (0I" — top(I™)).
For each facet I, ,i=1,...,n, we set
(5.9) Of (2,81, y 0, o tn) = foro (2ot oo b1y bigts ooos b))
0Kt <l k=1,...i—1i+1,...nz€Y,.

In order to define the attaching map on the facet I;r,z' =1,...,n—1, we first
note that, by the induction assumption, since f,,, ... »,) is a lift of the map

Oog, o)+ 1= [vo, ooy 03],
we have that
Frvoron) + Xog X top(I") = X,,.
Furthermore, we also have an inductively defined map

f[vi,“.,vn] : XU,- x 1" — Yo i CYy1.

Therefore, we define the attaching map on X, x I;7 = (X, xtop(I")) x I"~%, i < n,
as the composition

v w1 X Id
X, % IF Tlwos.ovi]

X, x I"7°
(510) f[vi,...mn]

Ynfi
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We will introduce the attaching map on X,, X top(I™) later; for now, let us
check that the attaching maps introduced so far are well defined. For instance,
consider the intersection of two facets

I;-=I7nI;,
where 7 < j < n. We have
faia-(Z,tl, ...,tAh ...,Oj, ,tn) = faig(z,tl, ...,t}‘, ...,tj, ,tn) =

fajg(z,tl, ...,tAi, oy Ty vy tn) = fa],,(z,th ey 0y 00y 85, vy tn).
Therefore, df, is well defined on I;;™.
Consider also the intersection of two facets
++ _ 7+ + s
;T =L"nI i<

We will compare two attaching maps on this face, which appear as restrictions of
the attaching maps coming from the facets I, j' and If. These restrictions are given
by the formulae

(511) f[vi,...,vn](f[vo,...,vi](z7t1» ceey ]-i)a ti+1~', ]-ja cey tn)»
and

(512) f[vj7~~;vn](f[UO;~-~7Uj](Z7 tl, ceey li, ceey lj), tj+1..., tn),
respectively.

The first map, described in (5.11), is the composition of
Jwo,evi] * Xvg X top(li) — Xy,

with the map f,, .., Due to the inductive nature of the definition of the latter,
it equals the composition of

Jwirvy) + Xvs X top(]j_i) — X,

with the map f,;, .. v, + Xo; X "7 Y, .
The second map, described in (5.12), is the composition of the maps

Siworovy) : Xug X top(I) = Xy, i =1,

and fly; v, Xoy X T "=J — Y, _;. The former map is again inductively defined
as the composition
f[vo,.“,vi] : Xvo X tOP(IZ) - Xvi
with the map
Jiviseowy) @ Xog X top(IP7") — X,

From this description, it is immediate that the two restriction maps, defined by
(5.11) and (5.11), are the same.

The proofs for the faces I' N I; = I;™ and I, NI}7 = I;" (i < j) are similar
and left to the reader.

Our next task is to define the attaching map on X,,, xtop(I™). This map will be
obtained by extending the already defined map on X,,, x d(top(I™)). The definition

depends on n, the case n = 3 it is the most complicated and we discuss this case
last.

We will need the following technical lemma:
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LEMMA 5.100. Let V,W be cell complexes with W aspherical and let m be an
integer > 2. Let
Oh:V xS™ 1 W
be a cellular map such that for each v € V the map Oh : {v} x S*~1 — W s
null-homotopic. Then h extends to a continuous map V x D™ — W.

PRrROOF. It suffices to consider the case when V is a simplicial complex. We
construct the extension by induction on skeleta of V. By the null-homotopy as-
sumption, the map

8h|V0><Sm*1
extends to a map
h:VOxD™ — W.

Consider ¢ > 1 and suppose that the extension h : Vi1 x D™ — W is defined.
For each i-dimensional simplex ¢ in V', the product ¢ x D™ is a ball of dimension
1+ m and the map h is already defined on the boundary sphere of this ball. Since
this sphere has dimension > m > 2 and W is assumed to be aspherical, the map h
extends to the ball ¢ x B™. O

We now proceed with the construction of the attaching map on X, x top(I"™).

1. For n =1 we use the map Wi, ) : Xy, = Xy, for

8f[v07v1] |X,UO xtop([0,1]) 3f[vo,v1] |qu0 <{1} -
2. For n = 2 we use the monodromy map*
\I/[U(),vl,q)Q] :Xvo x I — _Xv,u2 .

3. For n > 4 we let & denote the boundary of the top-face top(I™); X is, of
course, a topological sphere of dimension n — 2 > 2. Notice that for each x € X,
the restriction map

3f[v07“_71,n] : {a:} X 3 — Xyn
is null-homotopic since X, is K(G,,,1). Therefore, according to Lemma 5.100,
there exists a continuous extension of the map X,, x £ — X, to a map

Of + Xy X top(I"™) = X,

4. The proof for n = 3 is similar to the one for n > 4, but we need to show

that the maps

6f[v0,m’v3] : {x} X X — ng
are null-homotopic. This is not automatic since in this case ¥ 2 S! and X, is not
(in general) simply-connected. As X, is connected, it suffices to show that the
map

8f[v0’,,,,v3] : {xvo} X 2 — Xva
is null-homotopic. In order to simplify the notation, we let 0f denote Ofjy,. .. v,
defined on the closure of X,,, x (cl(I® — top(I?)). The boundary of top(I3) consists
of the segments

Lt Lt I 1T,

which we orient in the direction of the increase of their natural parameters, ¢, (for
the first two segments) and ¢, (for the other two segments). The null-homotopy
will follow from:

4given by equation (5.8)



LEMMA 5.101. The loops based at x,, € Xy,,
M = 0f (I3 % OF (1Y), Ao = O0f (I15") * O (1357)
are homotopic in X,, relative to the base-point.
PRrROOF. By construction (see equations (5.9) and (5.10)),
Of (I57) = Wpug 0y 03] (Togr 1), 0 <E <,
Of(I57) = Wiy vy ws) (T, 1), 0<E<T
O (I57) = Vg vmws) (Togr 1), 0 <L,
OF (L") = Uy 03] (Plg,00.00) (Twg 1), 0 < E
Hence, the based loop A\; represents the element
Glvo,v1,vs) 91, 02,05) € Gug,s
while the second loop, A, represents the element
w0 ,v2,03] ¥ [2,v5] (I[ve,01,02]) = g[vo,vz,US]Q[;;%]Q[UO,M,v2]9[v2,v3]-
The first product, A1, equals
Glvsz,v0]Y[vo,v1]19[v1,v3])9[v3,v1])9[v1,v2]9[v2,v3] = YG[vz,v0]9[vo,v1]9[v1,v2]9[v2,v5]>

and the second product Ay equals

g[?}s,Uo]g[vo,1}2]9[1)2,1}3]9[@;’@3]g[U2,UU]g[U0,111]g[U1,UQ]g[’Uz,Ug] = Glvs,v0]Y[vo,v1]9[v1,v2]9[v2,v3]
(See equations (5.7) and (5.4).) Lemma follows. O

Thus, we obtain the required attaching map 9 fjy v, vs,04]- This concludes the
construction of the complex Y,,. We define the projection ¢, : ¥, — X by using
the maps

Y, xI" 51" 22 g c X7
We let Y denote the direct limit of the complexes Y,,:
YocYic...CY,C...
The maps ¢,, then define a map ¢: Y — X.

PROPOSITION 5.102. There exists a homotopy-equivalence h : Y — B such that
po h is homotopic to q, poh ~ q.

Proor. We will construct h by induction on the the dimension of the skeleta
of X’. Recall that for each vertex v of X', p~!(v) is naturally isomorphic (as a
simplicial complex) to the quotient E(G)/G,, inducing the isomorphism

T (p (), z) = Go.
The inclusions G, — G induce G, -equivariant simplicial embeddings
E(G,) = E(G)

which, therefore, project to homotopy-equivalences h, : X, — p~!(v). This yields
a map

ho : Yo = p~ ' (V(X"))
such that p o hg =~ qo.



For n = 1 we define a map h; : Y1 — B by sending, for every oriented edge
€ = [u,v] of X’ the product X, x [0,1] to p~*(e) so that
h1|Xu><{u} = hO‘XuX{u}
and the map
ha |Xu x{v}
comes from the composition of natural simplicial maps
X, = E(Gy)/Gu ~5 X, = BE(G,)/Gy — E(G)/Gy.

The extension to the product X, x (0,1) is the projection of the straight-line ho-
motopy in E(G) x [0,1].

Suppose that n > 1 and a map h,, : Y,, — B satisfying poh,, ~ ¢, is constructed.
Together with this map h,, we have a collection of maps

ho : Xpg x I" = X, x 0 Cp (o)
commuting with the maps f, : X, X I" = Y,
hpo fo = he.
Here o = [vy, ..., U] are n-dimensional simplices in X.

We now construct an extension h,.; of the map h, to Y,,;1. Consider an
(n 4 1)-dimensional simplex o = [vg, ..., Vp+1] in X’. We observe that the maps U,
(associated with the oriented edges of X’; see (5.6)) yield natural embeddings

Xy =+ Xy, = X 0<s<n.

Therefore, the maps given by the induction hypothesis,

Un+1)

haio : Xmin(é)ia) X 1" — p_l(a)’

yield maps
Ohy : Xy x I = X, | x Do
is aspherical, Lemma 5.100 yields an extension of 0h, to

Un+1
Unless n = 1, since X, ,,
(5.13) he @ Xy x I"T = X
which projects to the map 6, : I"*! — 0. When n = 1, one needs to verify that
for each z € X, the loop

Un+1 X 0—7

8h0|{w}xa12 — Xy, X 00
is null-homotopic. This follows from the equation

9795 9ags = 1,
see (5.7).
Since Y,,+1 is obtained by attaching product spaces X,,, x I"*! to Y,,, the maps
h, defined above, yield the required map

hn+1 : Yn+1 — B.

The homotopies poh,, ~ ¢ extend to a homotopy poh,4+1 =~ g due to contractibility
of simplices, cf. (5.13).

We next construct a homotopy-inverse h : B — Y. The construction is again
by induction on the dimension of the skeleta (X’)* of X’. For each vertex v of X’
we define M, the partial star of v in X’, which consists of all the simplices in X’
having v as their mazimal vertex. For instance, if v was a vertex of X, then M,
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is the ordinary star of v in X’. In general, if v corresponds to a face ¢ of X, then
vertices of M, correspond to the faces of X containing c¢. For each vertex v € X’
we define the (partial) star St(X,,Y) of X, in Y as the union

U fU(Xmin(a) X Idim(o)) cY ’
oceM,
where the union is taken over all simplices ¢ in M,,.
The maps
Xpo = Xoy = ... > X, vp =min(o),v = v, =max(c),
defined as compositions of edge-maps® ¥, e = [v;,v;41],7 = 0,1,...,n — 1, yield a
deformation-retraction
St(Xw,Y) = X
In particular, each St(X,,Y") is homotopy-equivalent to X,,.
Observe furthermore, that for each vertex w of X', the inclusion map
Xo = p~H(w) = BE(G)/G
is a homotopy-equivalence whose homotopy-inverse
hw = p~H(w) = Xy

is a retraction to X,,. We then construct a homotopy-inverse map h : B — Y
by induction on the dimension of the skeleta of X', starting with the maps Ay,
w € V(X'). Assuming that h,_; is defined on p~*((X")"~!), we extend this map
to p~1((X’)"), one n-dimensional simplex at a time, using Lemma 5.100 for the
maps
hy_1:p *(00) = St(X,,Y), v =max(o).

We leave it to the reader to verify that A is a homotopy-inverse of h: This is again
proven using Lemma 5.100. (I

We can now define the space X. In view of the homotopy-equivalence Y — B,
there exists a covering map
XY
corresponding to the homomorphism of fundamental groups
m(Y) = m(B) = G,

where the latter is the homomorphism associated with the G-covering map

E(G)x X — B.
The homotopy-equivalence h : Y — B lifts to a G-equivariant homotopy-equivalence
h: X — X. This concludes the proof of Theorem 5.99. O

We note that the complex Y has a natural filtration
Fo(Y) C Fl(Y> cC...,
where F;(Y") is obtained by attaching, for every simplex ¢ in X’, not the entire X,
for v = min(o), but only E/(G,)/G, x I", where n = dim(o) and E’(G,) is the
j-skeleton of E(G,). If each group G,, v € V(X'), is finite, then each E7(G,) is
also finite. In addition to this filtration, we also have the filtration

YoCcYiC...

5see (5.6)



coming from the inductive construction of the complex Y.

One application of these observation is the following;:

LEMMA 5.103. Suppose that G ~ X is a properly discontinuous cocompact
action. Then the Haefliger model X can be chosen so that the action G ~ X is
cocompact on each skeleton.

PROOF. Suppose that the cell complex X is n—dimensional, n < co. The
simplicial complex Z in Exercise 5.97 can be chosen to have dimension n as well.
Thus, compactness of X' /G implies compactness of A /G and, hence, compactness
of the complexes F;(Y;) defined above. In particular, every skeleton of Y is finite.

O

5.8.3. Groups of finite type. Consider a free group cellular action G ~ X.
In the case when X is a simplicial complex or, more generally, an almost regular
complex, Lemmas 9.5 and 9.5 imply that G acts properly discontinuously on X.

EXERCISE 5.104. Show that a free cellular group action on a cell complex is
always properly discontinuous.

If G is a group admitting a cellular free and cocompact action on a graph I'; then
G is finitely generated, as, by the covering theory, G = m1(I'/G)/p.(m1(T')), where
p:T — T'/G is the covering map. Groups of finite type F,, are higher-dimensional
generalizations of this example.

DEFINITION 5.105. A group G is said to have type F,,, 1 < n < oo, if it admits
a cellular free and cocompact faction on an n — 1- connected n-dimensional cell
complex X. A group G has type F, if it admits a cellular. free cocompact action
on a contractible cell complex X, which is cocompact on each skeleton. A group G
has type F if there exists a finite K(G,1) complex Y, i.e. G acts cellularly, freely
and cocompactly on a contractible finite-dimensional complex X.

In other words, G has type F,, (n < 00) if there exists a finite n — 1-connected
n-dimensional complex Y with m1(Y) ~ G. Similarly, G has type F, if and only
if there exist an aspherical complex Y with 71(Y") ~ G such that every skeleton of
Y is finite.

EXAMPLE 5.106. Every finite group G has type F,

PROOF. Use the action of G on its classifying space F(G), see Section 5.8.2. O
Clearly,
FcF,.,c..F,cF, C...CFy.

We refer the reader to [Geo08, Proposition 7.2.2] for the proof of the following
theorem:

THEOREM 5.107. A group G has type F if and only if it has type F,, for every

EXAMPLE 5.108 (See [Bie76b]| and [BB97]). Let F; be free group on two
generators. Consider the group G = F3' which is the n-fold direct product of F5.
We equip G with the generating set

ag, blv"'aana bn7
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where a;, b; are the free generators of the i-th direct factor of G. Define the homo-
morphism ¢ : G — Z which sends all generators a;,b; of G to the generator 1 € Z.
Let K := Ker(¢). Then K is of type F,,_1 but not of type F,,.

In view of Lemma 5.103, we obtain:

COROLLARY 5.109. A group G has type F,, if and only if it admits a properly
discontinuous cocompact cellular action on an n — 1-connected n-dimensional cell
complex X .

PROOF. One direction is obvious. Suppose, therefore, that we have an action
G ~ X as in the statement of the corollary. If the action were free, it would follow
immediately that G has type F,, (cf. Definition 5.105). Consider now the general
case. Since the action of G is properly discontinuous, the stabilizer of each cell is
finite. We then apply the Haefliger construction (as in Lemma 5.103) to the action
G ~ X and obtain a free properly discontinuous action G ~ X cocompact on each
n-dimensional skeleton X™, since for every finite group G, each skeleton of £ (Gy) is
a finite complex. Recall that the inclusion X" < X induces monomorphisms of all
homotopy groups 7;, j < n— 1. Since X is n — 1—connected, the same holds for X
and, hence, for Xn. Thus, G admits a free cocompact action on an n — 1-connected
complex Xn. ([l

5.9. Cohomology

The purpose of this section is to introduce cohomology of groups and to give
explicit formulae for cocycles and coboundaries in small degrees. We refer the reader
to [Bro82b, Chapter III, Section 1] for the more thorough discussion. We will
also connect group cohomology to two group-theoretic constructions: Semidirect
products and coextensions.

5.9.1. Group rings and modules. Suppose that R is a commutative ring
with unit element 1. The R-ring RG of a group G is the set of formal sums
> geG Mg g, where my are elements of R which are equal to zero for all but finitely
many values of g. The most important examples for us will be the integer group
ring ZG and the rational group ring QG. So far, RG is just a set, but it becomes
a ring once endowed with the two operations:

ngngZ”gg: Z(ngrng)g

geG geG geG

e addition:

e multiplication defined by the convolution of maps to Z, that is

Zmaa+2nbb: Z Zmanb

aceG beG geG \ab=g

According to a Theorem of G. Higman [Hig40|, every integer group ring is
an integral domain. Both R and G embed as subsets of RG by identifying every
m € Z with mlg and every g € G with 1g. Every group homomorphism ¢ : G — H
induces a homomorphism between group rings, which by abuse of notation we shall
denote also by (. In particular, the trivial homomorphism o : G — {1} induces a
retraction o : ZG — R, called the augmentation. If the homomorphism ¢ : G — H
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is an isomorphism, then so is the homomorphism between group rings. This implies
that an action of a group G on another group H (by automorphisms) extends to
an action of G on the group ring ZH (by automorphisms).
Let L be aring and M be an abelian group. We say that M is a (left) L-module
if we are given a map
(m)—€-mLxM— M,
which is additive in both variables and so that
(514) (fl *62) -m:€1 . (52 ~m),
where * denotes the multiplication operation in L.
Similarly, M is a right L-module if we are given an additive (in both variables)
map
(m,0) »m -, M x L — M,
so that
(515) m(& *éz)z(mél)ég

Lastly, M is an L-bimodule if M has structure of both left and right L-module.

In the case when R is a field F' (say, R = Q), a left RG-module is an F-vector
space endowed with a linear G-action. In the case R = Z, we will refer to (left)
ZG-modules simply as G-modules.

5.9.2. Group cohomology. Let G be a group and let M, N be left ZG-
modules; then Homg (M, N) denotes the Z-submodule of G-invariant elements in
the Z-module Hom(M, N), where G acts on homomorphisms (of abelian groups)
u: M — N by the formula:

(gu)(m) = g-u(g™'m).
Suppose that C, is a chain complex of abelian groups endowed with an action of
G and A is a G-module, then Homg(Cy, A) C Hom(C,, A) is the chain subcomplex
formed by the submodules Homg(Ck, A) in Hom(Cy, A). The standard chain
complex C, = C,(G) of G with coefficients in A is defined as follows:

Cy(G) = Z® H?:o G, is the ZG-module freely generated by (k + 1)-tuples
(g0, ---,9gx) of elements of G with the G-action given by

9-(90,---,9k) = (990: -, 99k)-
The reader should think of each tuple as spanning a k-simplex. The boundary
operator on this chain complex is the natural one:
k

(90, 98) = S (=1 (Gos- - v - 1),
i=0
where §; means that we omit this entry in the k+1-tuple. The dual cochain complex
C* is defined by:

C* = Hom(Ck, A), 6(f)((gos---g1+1)) = F(Ok+1(gos-- -, grt1)), f € CF.

Thus, C, and C* are just the simplicial chain and cochain complexes of the simpli-
cial complex defining the Milnor’s classifying space EG of the group G (see Section
5.8.2), with which the reader is probably familiar with from a basic algebraic topol-
ogy course.
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Suppose for a moment that A is a trivial G-module. Then, for BG = (EG)/G,
the simplicial cochain complex C*(BG, A) is naturally isomorphic to the subcom-
plex of G-invariant cochains in C*(G, A), i.e. the subcomplex

(C*(G, A)C = Home(C., A).

If A is a non-trivial G-module, then Homg(Cl, A) is still isomorphic to a certain
natural cochain complex based on the simplicial complex C,(BG) (a cochain com-
plex with twisted coefficients, or coefficients in a certain sheaf), but the definition
is more involved and we will omit it.

DEFINITION 5.110. Define the subspaces of i-cocycles and i-coboundaries in
Homg(C;, A) as

Z'(G, A) .= Ker(5;), BY(G,A):=Im(5;_,),

respectively. The cohomology groups of G with coefficients in the G-module A are
defined as

H*(G,A) := H.(Homg(Cx, A)).
In other words,
HY(G,A) = Z'(G,A)/B'(G, A).
In particular, if A is a trivial G-module, then H*(G, A) = H*(BG, A).

DEFINITION 5.111. The (integer) cohomological dimension of a group G, is
defined as

cd(G) = sup{q € Z : 3A,a ZG-module, such that H(G, A) # 0}.

Note that the definition of cohomological dimension we gave is, in fact, a the-
orem rather than the standard definition. We refer the reader to [Bro82b| for the
usual definition of cohomological dimension in terms of projective resolutions.

EXAMPLE 5.112. 1. Suppose that G admits a K(G,1) CW complex X. Then
cd(G@) < dim(X).
2. If G is a non-trivial finite group, then c¢d(G) = oo.

REMARK 5.113. 1. Analogously to the integer cohomological dimension, one
defines the rational cohomological dimension cdg(G) as the supremum of degrees g
such that H?(G, A) # 0 for some QG-module A, i.e. a vector space over Q on which
G acts linearly.% One advantage cdg has over the integer cohomological dimension
is that (unlike the latter) the former is an invariant under virtual isomorphisms
of groups (see [Bro82b|) and, for finitely generated groups, is invariant under
quasiisometries, see Theorem 9.64.

2. Similarly to the cohomological dimension of G one defines its homological
dimension over a ring R, as the supremum of degrees ¢ such that H (G, A) # 0 for
some RG-module A.

3. One defines the geometric dimension of a group G as the least number k
such there exists a k-dimensional cell complex X which is K(G,1). Thus, geometric
dimension of G is always > cd(G).

6Even more generally, given an arbitrary commutative ring R one defines the appropriate
group cohomology using the group ring RG instead of ZG, and the cohomological dimension
cdr(G), see [Bro82b].
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So far, all definitions looked very natural. Our next step is to reduce the
number of variables in the definition of cochains by one using the fact that cochains
in Homg(Cy, A) are G-invariant. The drawback of this reduction, as we will see,
will be lack of naturality, but the advantage will be new formulae for cohomology
groups which are useful in some applications.

By G-invariance, for f € Homg(Cy, A) we have:

Fgos---s98) =90 (1,95 91, 90 " 9r)-
In other words, it suffices to restrict cochains to the set of (k + 1)-tuples where the
first entry is 1 € G. Every such tuple has the form
(L,91,9192, -, 91~ gk)

(we will see below why). The latter is commonly denoted

[g11g2]- - - |gr]-
Note that, computing the value of the coboundary,

Ok—1f(1,91,9192,-- - 91~ 9r) = Sp—1f([g1192] - - - [gx])

we get

Ok—1f(1,91,9192,---,91 - gk) =
flgrsoosg1--gx) — (1, 9192, 91 - gk) + f(1,91,919293, - - -, 91+~ gk) — .. =
91 f(1,92,...,92- - gk) — f([9192195] - - - |gw]) + f([91]9295|94] - - - [g]) — ... =

g1 - f(lg2|---1gx]) — f([9192]g3] - - -|9x]) + f([91|9295]94] - - - |gx]) —
Thus,

Se—1f([g1lg2l .- lgr]) = g1 - f([g2] - |gx]) — f(lg192l93| . |gr])+

f(g1lg2g3lg4] - - - 1gr]) —

Then, we let C* (k > 1) denote the abelian group of functions f sending k-tuples
[g91] ... |gk] of elements of G to elements of A; we equip these groups with the above
coboundary homomorphisms ;. For k = 0, we have to use the empty symbol [ ],
f([]) = a € A, so that such functions f are identified with elements of A. Thus,
Cy = A and the above formula for §, reads as:

do:a—cq, ca(lg]) =9 -a—a.

The resulting chain complex (C,,d,) is called the inhomogeneous bar complex of G
with coefficients in A. We now compute the coboundary maps § for this complex
for small values of k:

(1) do:a fo, fa([9]) =g -a—a.

(2) 01(f)([g1,92]) = g1 - f(l92]) — f(lg192]) + f([g1])-

(3) 02(f)([g1l92195]) = 91 - f(lgzlgs]) — f([g192193]) + f(l91lg9295]) — f([g1lg2])-
Therefore, spaces of coboundaries and cocycles for (C, d,) in small degrees are

(we now drop the bar notation for simplicity):

(1) BHG,A) ={f.:G— ANac A|f.(9) =g -a—a}.

(2) ZH(G.A) = {f : G — Alf(g192) = Flon) + 91 - Flon)}-

®3) 32(G( A))}— {h:GxG— ABf: G — Ah(g1,92) = f(91) — f9192) +
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4) Z2*(G,A) = {f : G x G — Algr- f(92,93) — [(91,92) = [f(9192,95) —
f(91,9293)}-
Let us look at the definition of Z!(G, A) more closely. In addition to the left
action of G on A, we define a trivial right action of G on A: a-g = a. Then a
function f : G — A is a 1-cocycle if and only if

f(g192) = f(g1) - g2 + 91 - f(g2).

The reader will immediately recognize here the Leibnitz formula for the derivative of
the product. Hence, 1-cocycles f € Z(G, A) are called derivations of G with values
in A. The 1-coboundaries are called principal derivations or inner derivations. If A
is trivial as a left G-module, then, of course, all principal derivations are zero and
derivations are just homomorphisms G — A.

Nonabelian derivations. The notions of derivation and principal derivation
can be extended to the case when the target group is nonabelian; we will use the
notation N for the target group with the binary operation * and ¢ -n for the action
of G on N by automorphisms, i.e.

g-n=e(g)(n), wherep:G — Aut(N) is a homomorphism.
DEFINITION 5.114. A function d : G — N is called a derivation if

d(g9192) = d(g91) x g1 - d(g2), VYg1,92 € G.
A derivation is called principal if it is of the form d = d,,, where

dn(g) =n""x(g-n).
The space of derivations is denoted Der(G, N) and the subspace of principal deriva-
tions is denoted Prin(G, N) or, simply, P(G,N).
EXERCISE 5.115. Verify that every principal derivation is indeed a derivation.

EXERCISE 5.116. Verify that every derivation d satisfies
e d(1)=1;

o dig Y=g [d(g)] .

We will use derivations in the context of free solvable groups in section 13.6.
In section 5.9.5 we will discuss derivations in the context of semidirect products,
while in section 5.9.6 we explain how second cohomology group H?(G, A) can be
used to describe central coextensions.

Nonabelian cohomology. We would like to define the 1-st cohomology
HY(G,N), where the group N is nonabelian and we have an action of G on N.
The problem is that neither Der(G, N) nor Prin(G, N) is a group, so taking quo-
tient Der(G, N)/Prin(G, N) makes no sense. Nevertheless, we can think of the
formula

f=f+ds,ae A,
in the abelian case (defining action of Prin(G, A) on Der(G, A)) as the left action
of the group A on Der(G, A):

a(f) =1, flg)=-a+flg)+ (g a)
The latter generalizes in the nonabelian case, as the group N acts to the left on
Der(G, N) by

n(f)=rf, f(9=n""xflg)x(g-n).
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Then, one defines H!(G, N) as the quotient
N\Der(G,N).

EXAMPLE 5.117. 1. Suppose that G-action on N is trivial. Then Der(G,N) =
Hom(G,N) and N acts on homomorphisms f : G — N by postcomposition with
inner automorphisms. Thus, H(G, N) in this case is

N\Hom(G, N),

the set of conjugacy classes of homomorphisms G — N.

2. Suppose that G = Z = (1) and the action ¢ of Z on N is arbitrary. We
have 7 := ¢(1) € Aut(N). Then H*(G, N) is the set of twisted conjugacy classes
of elements of N: Two elements my, mo € N are said to be in the same n-twisted
conjugacy class if there exists n € N so that

my =n"t xmy xn(n).

Indeed, every derivation d € Der(Z, N) is determined by the image m = d(1) € N.
Then two derivations d; so that m; = d;(1) (i = 1,2) are in the same N-orbit if
mi,my are in the same 7-twisted conjugacy class.

5.9.3. Bounded cohomology of groups. An isometric Banach ZG-module
V' is a Banach space equipped with an isometric action of the group G. Using
C.(G), which is the bar-complex of G, one defines the bounded cochain complex

C;(G,V) = Homg(C., V),

where CF (G, V) consists of G-equivariant bounded maps G**1 — V, with the usual
coboundary operator. Accordingly, one defines the bounded cohomology groups of
G with coefficients in V:

Hy (G, V) := H(Cy (G, V).

Alternatively, one can use the subcomplex of bounded functions C; (G, V) in the
inhomogeneous bar-complex of the group G and obtain

Hy (G, V) = Zy(G,V)/B; (G, V),

where the spaces of cocycles and coboundaries on the right hand-side refer to the
bounded elements of the group of homogeneous cocycles, respectively to the images
by 6*~1 of bounded cochains.

The same definitions go through if instead of the entire V' one uses a ZG-
submodule A C V; then one defines the bounded cohomology groups H, f(G, A) via
maps GFT1 — A,

We now consider the special case, when V' (and, hence, A) is a trivial G-module.
(The most important cases are, of course, V =R and A = Z.) Then for a classifying
space Y = BG of G one defines the subcomplex C} (Y, A) of the cochain complex
C*(Y, A). The homology of this subcomplex is the bounded cohomology H} (Y, A)
of Y with coefficients in A.

EXERCISE 5.118. Verify that H; (Y, A) = H} (G, A).

Note that the above isomorphism holds even if Y is not a K (G, 1) but merely
has G as its fundamental group, see [Bro81b| and [Gro82|.
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It is instructive to identify elements of ZZ(G, A), where A is a subgroup of R,
which appear as ordinary coboundaries: For f € C1(G, A), ie. f:G — A,

o1(f)([g1, 92]) = f(g2) — fg192) + f(91)
is a bounded 2-cocycle if and only if there exists a constant D so that for all
91,92 € G,

(5.16) |f(g1) + f(g2) — f(9192)| < D.

In other words, such f is “almost a homomorphism f : G — A”, with an error < D
in the definition of a homomorphism.

DEFINITION 5.119. A map f : G — R is called a quasimorphism if it satisfies
the inequality (5.16) for all g1, g2 € G and a fixed constant D.

Quasi-morphisms appear frequently in Geometric Group Theory; they were
first used by R. Brooks in [Bro81b]|, who proved that, while for the free group F),
of rank n > 2, H?(F,,R) = 0, nevertheless, the vector space HZ(F,,R) is infinite-
dimensional. Namely, he constructed an infinite-dimensional space of equivalence
classes of quasimorphisms F,, — R, where

fr~fo = |lfi = foll < oo

Taking coboundaries of these quasimorphisms shows that H?(F,,R) has infinite
dimension.

Many interesting groups do not admit non-trivial homomorphisms of R but
admit unbounded quasimorphisms. For instance, a hyperbolic Coxeter group G
does not admit non-trivial homomorphisms to R. However, if G is a nonelemen-
tary hyperbolic group, it has infinite-dimensional space of equivalence classes of
quasimorphisms, see [EF97a] for details. We refer the reader to Monod’s paper
[Mon06] for a survey of applications of bounded cohomology of groups, as well as
Calegari’s book [Cal09] for the in-depth discussion of quasimorphisms defined by
the commutator norm.

We will encounter elements of the group HZ(G,Z) in Section 11.19 when dis-
cussing central coextensions of hyperbolic groups, as we will be proving subjectivity
of the homomorphism HZ(G,Z) — H*(G,Z).

Analogously to the bounded cohomology, one defines ¢,-cohomology and £,,-

homology groups, we refer the reader to [AG99, BP03, Pan95| for the detailed
discussion.

5.9.4. Ring derivations. Our next goal is to extend the notion of derivation
in the context of (noncommutative) rings. Typical rings that the reader should
have in mind are integer group rings.

DEFINITION 5.120. Let M be an L-bimodule. A derivation (with respect to
this bimodule structure) is a map d : L — M such that:
(1) d(ty + £3) = d(b1) + d(¢s),
(2) d(gl *EQ) = d(gl) “ly + ¥y - d((g)
The space of derivations is an abelian group, which will be denoted Der(L, M).
Below is the key example of a bimodule that we will be using in the context

of derivations. Let G, H be groups, ¢ : G — Bij(H) is an action of G on H by
set-theoretic automorphisms. We let L := ZG, M := ZH be the integer group
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rings, where we regard the ring M as an abelian group and ignore its multiplicative
structure.
Every action ¢ : G ~ H determines the left L-module structure on M by:

(Z aigi) - (Z bjh;) == Zaibjgi “hj, a; € Z,b; € Z,
i J 2
where g-h = ¢(g)(h) for g € G,h € H. We define the structure of a right L-module
on M by:
(m,£) = mo(f) = o({)m, o(f)€Z,

where o : L — Z is the augmentation of ZG = L.
Derivations with respect for the above group ring bimodules will be called group
ring derivations.

EXERCISE 5.121. Verify the following properties of group ring derivations:
(P1) d(1g) = 0, whence d(m) = 0 for every m € Z.

(Py) d(g™') = —g~"-d(g).
(P3) d(g1---gm) =2 ie1(91- - gi—1) - d(g:)o(gis1 -~ Gm) -
(P1)

P,) Every derivation d € Der(ZG,ZH) is uniquely determined by its values
d(x) on the generators x of G.

d
d

Fox Calculus. We now consider the special case when G = H = Fy, is the
free group on the generating set X. In this context, the theory of derivations was
developed by R. H. Fox in [Fox53].

LEMMA 5.122. Every map d : X — M = ZG extends to a group ring derivation
d € Der(ZG,M).

PrOOF. We set
diz™) = —z7'-d(z), VrxeX
and d(1) = 0. We then extend d inductively to the free group G by

d(yu) = d(y) +y - d(u),

where y = 2 € X or y = 2! and yu is a reduced word in the alphabet X U X!,
Lastly, we extend d by additivity to the rest of the ring L = ZG. In order to verify
that d is a derivation, we need to check only that

d(uv) = d(u) + u - d(v),
where u,v € Fx. The verification is a straightforward induction on the length of

the reduced word u and is left to the reader. O

DEFINITION 5.123. To each generator x; € X we associate a derivation 0,
called the Foz deriwative, defined by 0;x; = 6;; € {0,1}, which is regarded as the
subset of Z-1¢ C ZG. The maps 0; then extend to derivations 9; € Der(ZFx,ZFx)
as in Lemma 5.122. In particular,

Opa; ) = —a; .

Importance of the derivations 9; comes from:
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PROPOSITION 5.124. Suppose that G = F,. is the free group of rank r < oo.
Then every derivation d € Der(ZG,ZG) can be written as a sum

d= Z k;0;, where k; = d(x;) € Z.

i=1
Furthermore, Der(ZG,ZG) is a free abelian group with the basis 0;,1 =1,...,7.

PRrROOF. The first assertion immediately follows from Exercise 5.121 (part (Py)),
and from the fact that both sides of the equation evaluated on z; equal k;. Thus,
the derivations 9;,7 = 1,..., k, generate Der(ZG,ZG). Independence of these gen-
erators follows from the fact that 0;x; = d;;. O

5.9.5. Derivations and split extensions. Components of homomor-
phisms to semidirect products.

DEFINITION 5.125. Let G and L be two groups and let N, H be subgroups in
G.
(1) Assume that G = N x H. Every group homomorphism F : L — G
splits as a product of two homomorphisms F = (f, f2), f1 : L = N and
fo: L — H, called the components of F.

(2) Assume now that G is a semidirect product N x H. Then every homo-
morphism F : L — G determines (and is determined by) a pair (d, f),
where

e f: L — H is a homomorphism (the composition of F' and the re-
traction G — H);

e amap d =dr : L — N, called derivation associated with F. The
derivation d is determined by the formula

F(&) = d(0)f(£).

EXERCISE 5.126. Show that d is indeed a derivation in the sense of Section
5.9.2.

EXERCISE 5.127. Verify that for every derivation d and a homomorphism f :
L — H there exists a homomorphism F': . — G with the components d, f.
Extensions and coextensions.
DEFINITION 5.128. Given a short exact sequence
{1} — N —G—H — {1},
we call the group G an extension of N by H or a coextension of H by N.

Given two classes of groups A and B, the groups that can be obtained as
extensions of N by H with N € A and H € B, are called A-by-B groups (e.g.
abelian-by-finite, nilpotent-by-free etc.).

Our terminology is a bit nonstandard, as both constructions are called extensions in the
literature. We settled on the coextension terminology following the paper [MIN82| where it was
used for semigroups.
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Two extensions defined by the short exact sequences
(1} — N 26 B H— (1)
(i =1,2) are equivalent if there exist isomorphisms
fi: N1 = Noy, fo:Gy —Ge, f3:Hy — Ho

that determine a commutative diagram:

1 » N >~ (71 - H; > 1
fi fo f3
1 » Ny > GGy - Hy > 1

We now use the notion of an isomorphism of exact sequences to reinterpret the
notion of a split extension.

PRrROPOSITION 5.129. Consider a short exact sequence
(5.17) I1-N5G5Q—1.

The following are equivalent:

(1) the sequence splits;

(2) there exists a subgroup H in G such that the projection 7 restricted to H
becomes an isomorphism.

(3) the extension G is equivalent to an extension corresponding to a semidirect
product N x Q;

(4) there exists a subgroup H in G such that G = N x H.

PROOF. It is clear that (2) = (1).

(1) = (2): Leto:Q — o(H) C G be a section. The equality 7 oo = Idg
implies that 7 restricted to H is both surjective and injective.

The implication (3) = (3) is obvious.

(3) = (2):  Assume that there exists H such that w|g is an isomorphism.
The fact that it is surjective implies that G = NH. The fact that it is injective
implies that H N N = {1}.

(2) = (3):  Since 7 restricted to H is surjective, it follows that for every
g € G there exists h € H such that 7(g) = m(h), hence gh™! € Kerm = Im .

The intersection ¢(IN) N H is the preimage of 1 by 7 restricted to H, hence it
must be {1}.

(4) = (2):  The existence of the decomposition for every g € G implies that
m restricted to H is surjective.

The uniqueness of the decomposition implies that H N Im¢ = {1}, whence 7
restricted to H is injective. O

REMARK 5.130. Every sequence (5.17) where the group @ is free splits; see
Lemma 7.24.



EXAMPLES 5.131. (1) For n > 1, the short exact sequence
1— (2Z2)" — Z" — Zy — 1
does not split.

(2) Let F,, be a free group of rank n > 2 (see Definition 7.20) and let F, be its
commutator subgroup (see Definition 5.20). Note that the abelianization
of F,, as defined in Proposition 5.22, (3), is Z". The short exact sequence

1—F —F, —7Z"—1

does not split.

From now on, we restrict to the case of exact sequences
(5.18) 1-A5G5Q—1,

where A is an abelian group. Recall that the set of derivations Der(Q, A) has a
natural structure of an abelian group.

REMARKS 5.132. (1) The short exact sequence (5.18) uniquely defines an
action of @ on A. Indeed, G acts on A by conjugation and, since the kernel
of this action contains A, it defines an action of (Q on A. In what follows
we shall denote this action by (¢q,a) — ¢-a, and by ¢ the homomorphism
@ — Aut(A) defined by this action.

(2) If the short exact sequence (5.18) splits, the group G is isomorphic to
Ax, Q.

Classification of splittings.

Below we discuss classification of all splittings of short exact sequences (5.18)
which do split. We use the additive notation for the binary operation on A. We
begin with few observations. From now on, we fix a section oy and, hence, a
semidirect product decomposition G = A x ). Note that every splitting of a
short exact sequence (5.18), is determined by a section o : Q — G. Furthermore,
every section ¢ : @ — G is determined by its components (d,,7) with respect
to the semidirect product decomposition given by oy (see Remark 5.125). Since
7 is fixed, a section o is uniquely determined by its derivation d,. Conversely,
every derivation d € Der(Q, A) determines a section o, so that d = d,. Thus, the
set of sections of (5.18) is in bijective correspondence with the abelian group of
derivations Der(Q, A).

Our next goal is to discuss the equivalence relation between different sections
(and derivations). We say that an automorphism a € Aut(G) is a shearing (with
respect to the semidirect product decomposition G = Ax Q) if «(A) = A, |4 =1d
and « projects to the identity on ). Examples of shearing automorphisms are
principal shearing automorphisms, which are given by conjugations by elements
a € A. Tt is clear that shearing automorphisms act on splittings of the short exact
sequence (5.18).

EXERCISE 5.133. The group of shearing automorphisms of G is isomorphic
to the abelian group Der(Q, A): Every derivation d € Der(Q, A) determines a
shearing automorphism a = a4 of G by the formula

alaxq) = (a+d(q))*q,

which gives the bijective correspondence.
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In view of this exercise, the classification of splittings modulo shearing auto-
morphisms yields a very boring answer: All sections are equivalent under the group
of shearing transformations. A finer classification of splittings is given by the fol-
lowing definition. Two splittings o1, 02 are said to be A-conjugate if they differ by
a principal shearing automorphism: There exists a € A such that

o2(q) = aoi(q)a™",Vq € Q.

If dy, dy are the derivations corresponding to the sections o1, 09, then

(d2(q), q) = (a,1)(d1(q), ¢)(—a, 1) & da(q) = di(q) — [¢-a —a].

In other words, di,dy differ by the principal derivation corresponding to a € A.
Thus, we proved the following

PRrROPOSITION 5.134. A-conjugacy classes of splittings of the short exact se-
quence (5.18) are in bijective correspondence with the quotient

Der(Q,A)/Prin(Q, A),

where Prin(Q, A) is the subgroup of principal derivations.

Note that Der(Q,A) = Z1(Q, A), Prin(Q,A) = B(Q,A) and the quotient
Der(Q, A)/Prin(Q, A) is H'(Q, A), the first cohomology group of Q with coeffi-
cients in the ZQ—-module A.

Below is another application of H'(Q, A). Let L be a group and let
F:L-G=AxQ

be a homomorphism. The group G, of course, acts on the homomorphisms F' by
postcomposition with inner automorphisms. Two homomorphisms are said to be
conjugate if they belong to the same orbit of this G-action.

LEMMA 5.135. 1. A homomorphism F : L — G is conjugate to a homomor-
phism with the image in Q if and only if the derivation dr of F is principal.

2. Furthermore, suppose that F; : L — G are homomorphisms with components
(di,m),i =1,2. Then Fy and Fy are A-conjugate if and only if

[di] = [do] € H' (L, A).

PROOF. Let ¢ = ga € G,a € A,q € Q. If (ga)F(¢)(qa)~* € @, then
aF(f)a=! € Q. Thus, for (1) it suffices to consider A-conjugation of homomor-
phisms F : L — G. Hence, (2) = (1). To prove (2) we note that the composition
of F' with an inner automorphism defined by a € A has the derivation equal to
dr — dg, where d, is the principal derivation determined by a. ([

5.9.6. Central coextensions and second cohomology. We restrict our-
selves to the case of central coextensions (a similar result holds for general ex-
tensions with abelian kernels, see e.g. [Bro82b]). In this case, A is trivial as a
G-module and, hence, H*(G, A) = H*(K(G,1),A). This cohomology group can
be also computed as H*(Y, A), where G = 7;(Y) and Y is a k + 1-connected cell
complex.

Let G be a group and A an abelian group. A central coextension of G by A is
a short exact sequence

1-A-5G-5G—1
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where ¢(A) is contained in the center of G. Choose a set-theoretic section
s:G—G,s(1)=1,ros=1d.
Then, the group G is be identified (as a set) with the direct product A x G. With

this identification, the group operation on G has the form
(a,9) - (b;h) = (a+b+ f(g,h), gh),
where f(1,1) =0 € A. Here the function f : G x G — A measures the failure of s
to be a homomorphism:
Flg,h) = s(g)s(h) (s(gh)) ™.
Not every function f : G x G — A corresponds to a central extension:

EXERCISE 5.136. A function f gives rise to a central coextension if and only if
it satisfies the cocycle identity:

f(g:h) + f(gh, k) = f(h, k) + f(g, hk).

In other words, the set of such functions is the abelian group of cocycles
Z2(G, A), see Section 5.9.2. We will refer to f simply as a cocycle.

Two central coextensions are said to be equivalent if there exist an isomorphism
7 making the following diagram commutative:

1 - A Gy - G > 1
id T id
1 - A Gy > G > 1

EXERCISE 5.137. A coextension is trivial, meaning equivalent to the product
A x @G, if and only if the central coextension splits.

We will use the notation E(G, A) to denote the set of equivalence classes of
coextensions. In the language of cocycles, r1 ~ 79 if and only if

Ji— f2=dc,
where ¢: G — A, and
dc(g,h) = c(g) + c(h) — c(gh)
is the coboundary, éc € B?(G, A). Recall that
H*(G, A) = Z*(G, A)/B*(G, A)

is the 2-nd cohomology group of G with coefficients in A.
The set E(G, A) has natural structure of an abelian group, where the sum of
two coextensions

A= G 5 G
is defined by
G3 ={(g1,92) € G1 x Ga|r1(g1) = r2(g2)} — G,

7(g1,92) = r1(g1) = r2(g2)-
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The kernel of this coextension is the subgroup A embedded diagonally in G; x Gs.

In the language of cocycles f : G x G — A, the sum of coextensions corresponds to

the sum of cocycles and the trivial element is represented by the cocycle f = 0.
To summarize:

THEOREM 5.138 (See Chapter IV in [Bro82b|.). There exists an isomorphism
of abelian groups

H?*(K(G,1),A) = H*(G, A) = E(G, A).

The conclusion, thus, is that a group G with non-trivial 2-nd cohomology group
H?(G, A) admits non-trivial central coextensions with the kernel A. How does one
construct groups with non-trivial H?(G, A)? Suppose that G admits a finite 2-
dimensional K (G, 1) complex Y, such that x(G) := x(Y) > 2. Then for A = Z, we
have
The universal coefficients theorem shows that, for such groups G, if A is an abelian
group which admits an epimorphism to Z, then H?(G, A) # 0.

Pull-backs of central coextensions. We fix an abelian group A and consider

behavior of the groups E(G, A) under group homomorphisms f : G; — G.

LEMMA 5.139. Every homomorphism f : Gy — Gg induces a homomorphism
fF i E(Ge, A) = E(Gq, A).
Moreover, f lifts to a homomorphism of the corresponding central extensions G —
Gs.
PrROOF. Given a central coextension es:
OHA%QQP—%GQHL
we define a group Gy as the fiber product:

Gi = {(91,32) € G1 x G : f(g1) = p2(32)}-

The reader will verify that G, is a subgroup of the direct product G; x Ga. The
subgroup A < 1x Gy is contained in the center of the product group. The subgroup
G1 < G1 X G2 admits two projections: The projection to the first factor, G, which

we denote p; and the projection to the second factor G-, which we denote f. Let
us identify the kernel of the homomorphism p;:

P1(91,92) =1 <= p2(§2) =1 <= G2 € A.

Therefore, the kernel of p; is naturally isomorphic to the group A. Hence, we obtain
a central coextension e; = f*(e2):

(5.19) 02A—-G -G —1

and a homomorphism f : G1 — Go, such that the following digram is commutative:

G1 Go
yat p2| -
G1 / G4
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Thus, f indeed determines a natural map f* : E(Gs, A) — E(G1,A). We leave it
to the reader to verify that f* is a homomorphism. ([

EXERCISE 5.140. 1. If f is surjective, so is f.
2. If s5 is a set-theoretic section of po, then

s1(91) = (91,52 (91))
is a set-theoretic section of p;.
3. Use Part 2 to verify commutativity of the diagram:

H*(G3, A) ﬂl H*(Ga, A)

E(Ga, A) E(G2o, A)
Here the vertical arrows are the isomorphisms given by Theorem 5.138 and H?(f)

is the homomorphism of second cohomology groups induced by f : G; — G3. On
the level of cocycles, the homomorphism H?(f) is given by

wy € Z%(Ga, A) = wy € Z%(Gy, A),
wi(z,y) = w2(f(2), f(y)).

Let us also identify the kernel of the homomorphism f . Suppose that sq, so are
the sections as in Part 2 of Exercise 5.140. Assume that the section s is normalized:
s2(1) = 1. Then for each k € K = Ker(f), s1(k) = (k,1), i.e. the restriction of s;

to K is a homomorphism (even though, s; : G; — G is not, in general). Since f
is the restriction of the projection to the second factor, we conclude that

K =Ker(f) = s1(K).

In particular, kernels of f and f are isomorphic.

Suppose for a moment, that the central coextension (5.19) splits, i.e. there
exists a homomorphism s : G; — G4 right-inverse to p;. Then the homomorphisms
S‘K and s; ’K differ by a homomorphism ¢ : K — A:

s1(k) = s(k)p(k),

where we identify A with the subgroup 1 x A < G1. Since the subgroup A is
contained in the center of G, we obtain:

¢lgkg™) = p(k)
for all k € K, g € G1. In other words, the action of G; by conjugation on K fixes
the homomorphism ¢.






CHAPTER 6

Median spaces and spaces with measured walls

Median spaces discussed in this chapter compose a large class of metric spaces
containing, among others, metric trees, L!-spaces and 1-skeleta of CAT(0) cube
complexes equipped with the standard metric. Spaces with walls (more precisely,
spaces with a measured wall structure) provide key examples of median spaces. In
this section we establish basic properties of median spaces and spaces with walls
which will be used later on, in chapter 19, in order to establish geometric criteria
for Properties (T) and a-T-menability of groups in terms of their actions on median
spaces and spaces with walls.

6.1. Median spaces

DEFINITION 6.1 (intervals and geodesic sequences). Let (X, pdist) be a pseudo-
metric space. A point b is between a and ¢ if pdist(a, b)+pdist(b, ¢) = pdist(a, c). We
denote by I(a,c) the set of points that are between a and ¢, and we call I(a, ¢) the
interval between a and c. A (finite, discrete) path in (X, pdist) is a finite sequence
of points (a1, as,...,a,). A path is called a geodesic sequence if and only if

pdist(ay, a,) = pdist(ay, az) + pdist(ag, az) + - - - + pdist(an—1,ay) .
Thus, (a,b,c) is a geodesic sequence if and only if b € I(a,¢).

DEFINITION 6.2 (median point). Let a,b, ¢ be three points of a pseudo-metric
space (X,dist). We denote the intersection I(a,b) N I(b,c) N I(a,c) by M(a,b,c),
and we call any point in M(a, b, c) a median point for a,b,c.

We note that
I(a,b) ={z € X,z € M(a,z,b)}.

DEFINITION 6.3 (median spaces). A median pseudo-metric space is a pseudo-
metric space in which for any three points z, y, z the set M (z,y, z) is non-empty and
of diameter zero (any two median points are at pseudo-distance 0). In particular
a metric space is median if any three points x,y, z have one and only one median
point, which we will denote by m(z,y, 2).

Note that a pseudo-metric space is median if and only if its metric quotient is
median.

A subset Y C X in a median space is a median subspace if for any three points
x,y,z in Y, we have M(z,y,z) C Y. Note that Y is then median for the induced
pseudo-metric. The intersection of median subspaces is a median subspace, thus
any subset Y C X is contained in a smallest median subspace, which we call the
median hull of Y.

CONVENTION 6.4. Throughout the book, we call median metric spaces simply
median spaces.



DEFINITION 6.5. We say that a metric space (X, dist) is submedian if it admits
an isometric embedding into a median space.

A median space together with the ternary operation (z,y, z) — m(z,y, 2) is a
particular instance of a median algebra. For literature on median algebras, we refer
the reader to [Sho54a], [Sho54b]|, [Nie78], [Isb80|, [BH83|, [vdV 93|, [Bas01].
Geometrical approaches of median spaces can be found in [Rol16] and [Nic08].

In what follows we use some classical results in the theory of median algebras,
leaving it as an exercise to the reader to reprove them in the metric context.

6.1.1. A review of median algebras. The notion of median algebra ap-
peared as a common generalization of trees and distributive lattices, cf. Exam-
ple 6.11. We recall here some basic definitions and properties related to me-
dian algebras. For proofs and further details we refer the reader to the books
[vdV 93], [Ver93], the surveys [BH83|, [Isb80], and the papers [BK47], [Sho54a],
[Sho54b| and [Rol16].

DEFINITION 6.6 (median algebra, the first definition). A median algebra is a
set X endowed with a ternary operation (a, b, ¢) — m(a,b,c) such that:
(1) m(a,a,b) =a;
(2) m(a,b,c) =m(b,a,c) =m(b,c,a);
(3) m(m(a,b,c),d,e) =m(a,m(b,d,e),m(c,d,e)).
The property (3) can be replaced by:
(3" m(a, m(a,c,d),m(b,c,d)) = m(a,c,d).

The element m(a, b, ¢) is the median of the points a,b,c. In a median algebra
(X, m), given any two points a,b the interval with endpoints a,b is the set

I(a,b) = {x; x = m(a,b,x)}.

This defines a map I : X x X — P(X). We say that points € I(a,b) are
between a and b.

A homomorphism of median algebras is amap f : (X, mx) — (Y, my) such that
my (f(x), f(y), f(2)) = f(mx(z,y, z)). Equivalently, f is a homomorphism if and
only if it preserves the betweenness relation. If moreover f is injective (bijective)
then f is called embedding or monomorphism (respectively isomorphism) of median
algebras.

The following are straightforward properties of median algebras, see e.g. [Sho54a]
and [Rol16, §2].

LEMMA 6.7. Let (X, m) be a median algebra. For x,y,z € X we have that
(1) I(z,z) = {z};

) I(z,y) N I(z,2) = I(x,m(x,y,2));

) I(z,y) N I(x,2) N 1(y,z) = {m(z,y,2)};

) if a € I(z,y) then for any t, I(z,t) N I(y,t) C I(a,t) (equivalently
m(z,y,t) € I(a,t) );

(5) ifx € I(a,b) and y € I(z,b) then x € I(a,y).

A sequence of points (a1, as, ..., a,) is geodesic in the median algebra (X, m) if
a; € I(ay,a;41) for all i =2,... n—1. This is equivalent, by Lemma 6.7, part (5),
to the condition that a;1+1 € I(a;,a,) for alli=1,2,....,n — 2.
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LEMMA 6.8. If (z,t,y) is a geodesic sequence, then:
(1) Iz, t) UI(t,y) € I(z,y);
(2) I(z,t) N I(t,y) = {t}.

According to [Sho54a], [Sho54b] there is an alternative definition of median
algebras, using intervals:

DEFINITION 6.9 (median algebra, the second definition). A median algebra is
a set X endowed with a map I : X x X — P(X) such that:
(1) I(z,z) =A{x};
(2) if y € I(z, z) then I(z,y) C I(x, 2);
(3) for every x,y,z in X the intersection I(z,y) N I(x,z) N I(y,z) has cardi-
nality 1.

EXERCISE 6.10. Let (X,dist) be a median space. Then the metric inter-
vals I(x,y) satisfy the properties in Definition 6.9, and thus the metric median
(z,y,2) — m(z,y, z) defines a structure of median algebra on X.

EXAMPLE 6.11. For any set X, the power set P(X) is a median algebra when
endowed with the Boolean median operation

(6.1) m(A,B,C)=(AnB)UANCYU(BNC)=(AUB)N(AUC)N(BUC).
The median algebra (P(X),m) is called a Boolean median algebra.

EXERCISE 6.12. Show that in this example
(6.2) I(A,B)={C; AnBCCC AUB}.

6.1.2. Convexity.

DEFINITION 6.13. A convex subset A in a median algebra is a subset such that
for all a,b € A, I(a,b) C A.

A subset h in a median space (X,m) is called a convex half-space if both h
itself and the complementary set h® = X \ h are convex. The pair {h, h°} is called a
convex wall. We denote by D.(X) the set of convex half-spaces in X and by W,(X)
the set of convex walls in X. When there is no possibility of confusion we simply
use the notations D. and W.,.

EXERCISE 6.14. A subset A in a median algebra (X, m) is convex if and only
if for every z € X, and a,b in A, the element m(a,z,b) is in A.

A convex wall {h, h¢} is said to separate subsets A, B C X if A C hand B C h°
or vice versa.

The above algebraic notion of convexity coincides with the metric notion of
convexity introduced in Definition 6.23, in the case of the median algebra associated
with a median metric space (see Exercise 6.10).

The following theorem shows abundance of convex walls in median algebras:

THEOREM 6.15. Let X be a median algebra, and let A, B be convex non-empty
disjoint subsets of X. Then there exists a convex wall separating A and B.

A proof of Theorem 6.15 when A is a singleton can be found in [Nie78]; in its
most general form it follows from [dV84, Theorem 2.5]. Other proofs can be found
in [Bas01, §5.2] and in [Rol16, §2|.



COROLLARY 6.16. Given any two distinct points z,y in a median space (X, dist)
there exists a convexr wall w = {h, h} with x € h,y € h°.

DEFINITION 6.17. Given a median algebra X, we define the map
0:X —>PD.),o0(x)=0,={h€D.; x €h}.

EXERCISE 6.18. The map ¢ is a monomorphism of median algebras, where
P(D.) is endowed with the median algebra structure described in Example 6.11.
Hint: Use Theorem 6.15.

This shows that Boolean algebras, in a sense, are “universal” median algebras.

6.1.3. Examples of median metric spaces.

EXAMPLES 6.19. (1) In the real line R, the metric intervals are precisely
the closed order intervals, i.e. I(z,y) = [z,y]. The median function sends
the triple (a,b,c) to the “middle” element of the set {a,b,c}, i.e.

mg(a,b,¢) =a+ b+ ¢ — [max(a,b, c) + min (a, b, c)|.

(2) More generally, in R”™ with the ¢; norm, the interval I(x,y) between two
points x,y € R™ is the product of intervals

[$17y1] X X [xnayn]-

The median point is given by

m(xvy7z) = (mR(Ilu Y1, Z1)7 cee 7m]R(xna Yn, Zn))

(3) The ¢1-product of two pseudo-metric spaces (X1, pdist;) and (Xs, pdist,)
is the set X7 x X5, endowed with the pseudo-metric

pdist((x1,22), (Y1, y2)) = pdist (21, y1) + pdisty (2, y2).

Intervals in the product are the Cartesian products of intervals, i.e.

Ix,xx,((x1,22), (Y1,92)) = Ix, (x1,91) X Ix,(22,y2) .

The space (X; x Xs,pdist) is median if and only if (X7, pdist;) and
(X, pdist,) are median (the components of a median point in X; X X»
are median points of the components).

(4) (trees) Every R-tree is a median space, with intervals equal to closed
geodesic segments.

(5) (motivating example: CAT(0) cube complexes) The 0-skeleton of a CAT'(0)
cube complex with the standard metric is a (discrete) median space. In
fact, according to [Che00, Theorem 6.1] the converse is also true: the set
of vertices of a simplicial graph is median if and only if the graph is the
1-skeleton of a CAT(0) cube complex.

(6) If (W,95) is a Coxeter system and distg is the word distance on W with

respect to S then (W, dist}g/Q) is submedian, [BJS88|.

(7) Metric versions of Boolean median algebras. These examples are explained
in Lemma 6.21
(8) (L' spaces) Every space L'(X, ) is median.
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Given a measured space (X,B,u) we let £1(X, ) denote the vector space of
real-valued functions f : X — R with finite integral

T /X (@) ldu(z).

Thus, £(X,p) is a pseudo-metric space with the pseudo-distance function given
by dist(f,g) = ||f — gll1. The quotient metric space of £}(X, ) is L (X, ).

LEMMA 6.20. For every measured space (X, B, 1), the metric space L' (X, i) is
median.

PROOF. It is enough to see that the vector space £!(X, i) is a median pseudo-
metric space. A function p € L£L1(X, u) belongs to I(f,g) if and only if the set of
points z such that p(z) is not between f(z) and g(z) has measure 0. This is due
to two observations:

e given u,v € LY(X, p), |[u+v|]1 = ||ul|1 +]||v||1 if and only if uv > 0 almost
everywhere;

b hence, given fagap € ﬁl(Xa/u’)v Hf 7g||1 = Hf 7p||1 + ||p7 ng if and
only if p(x) is in the interval with endpoints f(z), g(x) for almost every
zeX.

Define on £!(X, 1) the ternary operation (f, g, h) — m(f,g,h) by
m(f,g,h)(x) =mr(f(z),g(z), h(z)).
The function
m=m(f,g,h) = f+g+h—max(f,g,h) —min(f,g,h)

is measurable because the sum, the maximum and the minimum of measurable
functions is measurable. Since m is (a.e.) pointwise between f and g, m € I(f,g).
Similarly, we have m € I(g,h) and m € I(f,h), and thus m(f,g,h) is a median
for the functions f,g,h. It follows that M(f,g,h) is the set of functions that
are almost everywhere equal to m(f, g, h), and hence £ (X, i) is a median pseudo-
metric space. We conclude that L' (X, ;1) is median because it is the metric quotient
of LY(X, ). O

A measure-theoretic version of the Example 6.11 yields a metric version of
Boolean algebras, which, moreover, appear as subspaces of £!-spaces. Let (X, B, i)
denote a measured space. For each subset A C X, we define

By={BCX|AABEeB, ulAA B) < +oc0}.

Notice that we do not require the sets in B4 to be measurable, only their symmetric
difference with A should be. Denote as usual by x¢ the characteristic function of
C C X. The map x* : Ba — L£(X,u) defined by B + xap is injective. The
range of x“ consists of the set S'(X, ) of all characteristic functions of measurable
subsets with finite measure. Indeed the preimage of x g/ (with B’ € B, u(B’) < 4+00)
is the subset B := A A B’. Observe that the £!'-pseudo-distance between two
functions xp and x¢r in S(X, ) equals u(B’ A C'). Since we have

(AAB)A(AAC)=BAC,

it follows that for any two elements By, B € B4 the symmetric difference B; A Bs is
measurable with finite measure, and the pull-back of the £!-pseudo-distance via the
bijection B4 — S1(X, ) is the pseudo-metric pdist, defined by pdistz(By, Ba) =
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w(B1 A Bs). The interval I(Bj, Bs) is composed of subsets C' € B4 such that there
exists C’ satisfying u(C’ A C) =0 (hence C’ € B4) and By N By C C' C By U Bs.

LEMMA 6.21. (Bg,pdistg) is a median pseudo-metric space, equivalently, the
space S (X, 1) is a median subspace of LY(X, ), cf. Lemma 6.20.

PrOOF. The claim follows from the explicit formula:
m(By, Ba, Bs) = (B1UB2)N(B1UB3)N(B2UB3) = (B1NBg)U(B1NBs)U(B2NBs) .
We leave details to the reader. d

Later on (Corollary 6.59) we will prove that every median space embeds iso-
metrically as a median subspace of some space L'(X, i) (compare with the similar
result in the context of median algebras appearing in Exercise 6.18).

REMARK 6.22. It is impossible, in general, to define for a given submedian
space Y its “median completion,” that is, a median space Y containing an isometric
copy of Y, and such that any isometric embedding of Y into a median space X
extends to an isometric embedding ¥ — X. This can be seen in the following
example.

Let E = R” endowed with the ¢; norm, and let {e; ; i = 1,2,...,7} be the
canonical basis in E. Given t € [0, 1] let Y; be the set composed of the four points
A,B,C,D in F defined by A= %(81 + e +e3)+(1—t)e4, B = %(—el — €2 +63)+
(1—t)es, C="L(e; —ex—e3)+ (1 —tles, D = L(—e1 +ex —e3) + (1 — t)er.

Any two distinct points in Y; are at the £;-distance 2. Thus, all the subsets
Y; C F equipped with the /;-distance are pairwise isometric. The median hull of
Y; in F is composed of Y; itself and of the eight vertices of a cube of edge length ¢,
namely,

t
§(Z|:el + €9 + 83).

Thus, for two distinct values ¢t # t' the median hulls of Y; and of Yy are not
isometric.

Furthermore, the median hull of Y} is a 5-point set (Yo U{0}), while the median
hull of Y;,t # 0 consists of 12 points. Consequently, in general, the median hulls of
two isometric submedian spaces may not even be isomorphic as median algebras.

6.1.4. Convexity and gate property in median spaces.

DEFINITION 6.23. Let (X, pdist) be a pseudo-metric space. A subset Y C X
is said to be convez if for all a,b € Y, the set I(a,b) is contained in Y. A subset
Y C X is quasi-convex if there exists R < oo such that for all a,b € Y the set I(a,b)
is contained in N'g(Y). The convex hull of a subset Y C X is the intersection of
all convex subsets containing Y.

Note that any convex subspace of a median space is median but not vice versa,
as for instance any subset E of cardinality two is a median subspace, while E might
not be convex. The median hull of a subset is contained in the convex hull, and
the example above shows the inclusion may be strict.

We now introduce a notion related to convexity in median spaces, which is
commonly used in the theory of Tits buildings (see for example [Sch85]) and in
graph theory ([Mul80], [vdV93]).
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DEFINITION 6.24 (gate). Let (X, dist) be a metric space, let Y be a subset of
X, and z a point in X.

We say that a point p € X is between x and Y if p is between = and every
y €Y. When a point p € Y is between = and Y, we say that p is a gate between x
and Y. Note that there is always at most one gate p between = and Y, and that
dist(z, p) = dist(z,Y).

We say that a subset Y C X is gate-convex if for every point x € X there exists
a gate (in V') between = and Y. We then denote by 7y (x) this gate, and call the
map 7y the projection map onto Y.

EXERCISE 6.25. 7y restricts to the identity map on Y.

LEMMA 6.26 (gate-convex subsets). (1) The projection map my onto a
gate-convex subset Y C X is 1-Lipschitz.

(2) Any gate-convex subset is closed and convez.

(3) In a complete median space, any closed convex subset is gate-convexr.

In other words, for closed subsets of a complete median space, convexity is
equivalent to gate-convexity.

PRrROOF. (1) Let x,2’ be two points in a metric space X, and let p,p’ be the
respective gates between z,z’ and a gate-convex subset Y. Since (z,p,p’) and
(2, p’, p) are geodesic sequences, we have that

dist(z, p) + dist(p,p’) < dist(z,z’) + dist(a’, p)
dist(2/,p’) + dist(p’,p) < dist(a’,z) + dist(z, p)

By summing up the two inequalities, we conclude that dist(p, p’) < dist(z, z').

(2) Assume that Y is gate-convex and that (z,y,z) is a geodesic sequence
with z,z € Y. Let p be the gate between y and Y, so that (y,p,z) and (y,p, z)
are geodesic sequences. Hence (z,p,y,p,z) is a geodesic sequence, which forces
y=peY.

Any point z in the closure of Y satisfies dist(x,Y) = 0. Thus, if p is the gate
between z and Y we have dist(z,p) = 0, hence x € Y. We conclude that Y is
closed.

(3) Let Y be a closed convex subset of a complete median space X. For
x € X choose a sequence (yi)r>0 of points in Y such that dist(yy,z) tends to
dist(z,Y’). First observe that (yx)r>0 is a Cauchy sequence. Indeed, denote by
er, = dist(yg, z) — dist(Y, z), which clearly is a sequence of positive numbers con-
verging to zero. Let my , be the median point of (x, yx,ye). Then

dist (2, yx) + dist(z, ye) = 2dist(z, my,e) + dist(yx, ye)
and so by convexity of Y we have
dist(x, yx) + dist(x, ye) > 2dist(z,Y) + dist(y, ye).

It follows that dist(yg, ye) < €x+€e. Since X is complete, the sequence (yi)xr>0 has a
limit p in X. Since Y is closed, the point p is in Y. Note that dist(z, p) = dist(x,Y).
It remains to check that p is between x and Y.

Let y be some point in Y, and let m be the median point of z, p,y. By convexity
of Y we have m € Y, so that dist(z,m) > dist(z,Y). We also have dist(x,p) =
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dist(z, m)+dist(m, p). Since dist(z, p) = dist(z,Y) we get dist(m, p) = 0 as desired.
(]

We now prove that in a median space metric intervals are gate-convex.

LEMMA 6.27. In a median metric space X any interval I(a,b) is gate-convez,
and the gate between an arbitrary point x and I(a,b) is m(x,a,b).

PRrROOF. Consider an arbitrary point « € X; let p be the median point m(z, a, b)
let and y be an arbitrary point in I(a,b). We will show that (z,p,y) is a geodesic
sequence.

We consider the median points o' = m(x,a,y), ¥ = m(z,b,y) and p’ =
m(z,a’, V). Note that p’ € I(z,ad’) C I(z,a) and similarly p’ € I(z,b). Since
(a,y,b), (a,a’,y) and (y,b’,b) are geodesic sequences, the sequence (a,a’,y,V',b) is
geodesic as well. Thus I(a/,b’) C I(a,b), hence p’ € I(a,b).

We proved that p’ € I(x,a) N I(x,b) N 1I(a,b), which by the uniqueness of the
median point, implies p’ = p. It follows that p € I(z,ad") C I(z,y). O

We can now deduce that the median map is 1-Lipschitz, in each variable and
on X x X x X endowed with the ¢;-metric.

COROLLARY 6.28. Let X be a median space.

(1) For any two fixed points a,b € X the interval I(a,b) is closed and convez,
and the map © — m(x,a,b) is 1-Lipschitz.

(2) The median map m : X x X x X — X is 1-Lipschitz (here X x X x X is
endowed with the {1-product metric as defined in Example 6.19, (1)).

ProoF. Combine Lemma 6.27 and Lemma 6.26, and use the fact that, given
six points a,b,c,a’,b’ ;¢ € X, the distance between the median points m(a,b, c)
and m(a’, V', ') is at most

dist(m(a, b, c),m(a’, b, c))+dist(m(a’, b, c),m(a’, V', ¢))+dist(m(a’, b, c), m(a’, V', ') .
[l

6.1.5. Rectangles and parallel pairs. In a median space X, the following
notion of rectangle will allow us to treat median spaces as continuous versions of
the 1-skeleta of C AT(0) cube complexes.

DEFINITION 6.29. A quadrilateral in a metric space (X, dist) is a closed path
(a,b,c,d,a), which we denote by [a,b,c,d]. A quadrilateral [a,b, ¢, d] is a rectangle
if the four sequences (a, b, c), (b,c,d), (¢,d,a) and (d, a,b) are geodesic.

REMARK 6.30. Suppose that X is a median metric space. Then:

(1) By the triangle inequality, in a rectangle [a, b, ¢, d] in X the following equal-
ities hold: dist(a,b) = dist(c,d), dist(a,d) = dist(b,c) and dist(a,c) =
dist(b, d).

(2) (rectangles in intervals) If z,y € I(a,b) C X then [z, m(z,y, a),y, m(z,y,b)]
is a rectangle.

(3) (subdivision of rectangles) Let [a,b,c,d] C X be a rectangle. Let e €
I(a,d) and f =m(e,b,c). Then [a,b, f,e] and [c, d, e, f] are rectangles.

DEFINITION 6.31. (parallelism on pairs) Two pairs (a,b) and (d,c¢) in X are
parallel if [a,b, c,d] is a rectangle.
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The following property of median spaces is analogous to transitivity of paral-
lelism for geodesics in C AT (0) spaces:

PROPOSITION 6.32. In a median space X the parallelism of pairs is an equiva-
lence relation.

PROOF. Suppose now that pairs (a,d) and (b,c) are parallel and the pairs
(b,c) and (f,e) are parallel; in other words, we have two rectangles [a, b, ¢,d] and
[b,c,e, f]. We will show that (a,d) is parallel to (f,e), i.e. the quadrilateral
[a,d, e, f] is also a rectangle.

We will prove that f € I(a,e); the rest of the proof of the rectangle properties
is left as an exercise to the reader, as they are obtained by relabelling the points.
Define the point

m =m(a.c, f) = I(a,c) N I(c, {) N I(f, ).

Regarding m as the gate between a and the interval I(c, f), containing e, Lemma
6.27 implies that m € I(a,e), i.e. the triple (a,m, e) is geodesic. Similarly, regarding
m as the gate between f and the interval I(a,c) containing b, Lemma 6.27 implies
that m € I(b, f), i.e. the triple (b, m, f) is geodesic.

Since the triples (b, m, f) and (b, f, e) are both geodesic, the quadruple (b, m, f, ¢)
is geodesic and, hence, (m, f,e) is geodesic. Since (a,m,e) is geodesic and (m, f, e)
is geodesic, we conclude that the quadruple (a, m, f, ) is geodesic. Hence, the triple
(a, f,e) is geodesic, i.e. f € I(a,e) as required. O

We now explain how to any 4-tuple of points one can associate a rectangle.

LEMMA 6.33. Let [z,a,y,b] be any quadrilateral in a median space. Then there
exists a unique rectangle [x',a’,y', V'] satisfying the following properties:

(1) the following sequences are geodesic:
(mv :C/a Cl/, Cl), (a/a Cl/, y/a y>7 (y7 yla bla b)a (b7 bl> xla CL‘) 5

(2) (a,d,b,b) is a geodesic sequence;
(3) (x,2',y") and (y,y',2") are geodesic sequences.

PROOF. Euxistence. Let ' = m(x,a,b) and y' = m(y,a,b), and let a’ = m(a, 2, y")
and ' = m(b,2’,y’) (see Figure 6.1). Then [2/,d’,y’, V] is a rectangle by Remark
6.30, part (3). Properties (1) and (2) follow immediately from the construction,
property (3) follows from Lemma 6.27 applied to x and y’ € I(a,b), respectively to
y and 2’ € I(a,b).

Uniqueness. Let [¢,a’,y’, V'] be a rectangle satisfying the three required properties.
Properties (1), (2) and the fact that [¢/,a’,y',V'] is a rectangle imply that o’ =
m(x,a,b) and y' = m(y,a,b). Again property (2) and the fact that [2/,a’,y, V'] is
a rectangle imply that o’ = m(a,2’,y’) and b’ = m(b, ', ). O
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FIGURE 6.1. Central rectangle.

DEFINITION 6.34. We call the rectangle [2/,a’,y’, '] described in Lemma 6.33
the central rectangle associated with the quadrilateral [z, a, y, b].

REMARK 6.35. Property (3) cannot be improved to “(z,2’,y’,y) is a geodesic
sequence”, as shown by the example of a unit cube in R?, with a,b two opposite
vertices of the lower horizontal face, and x, y the two opposite vertices of the upper
horizontal face that are not above b or d (see Figure 6.2).

Note also that in general the central rectangle associated with [z,a,y,b] is
distinct from the central rectangle associated with [a, z, b, 3] (again see Figure 6.2).

FIGURE 6.2. Example of a central rectangle.
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Property (3) in Lemma 6.33 can be slightly improved as follows.

LEMMA 6.36. Let x,y,p,q be four points such that (x,p,q) and (p,q,y) are
geodesic sequences. Then there exists a geodesic sequence (x,x',y',y) such that
(a',y") and (p,q) are parallel.

PROOF. Applying Lemma 6.33 to the quadrilateral [p, ¢, y, =], we note that the
resulting central rectangle [p’, ¢',y’, 2] satisfies p’ = p, ¢’ = q.
[

6.1.6. Approximate geodesics and medians; completions of median
spaces. In this section we prove that the median property is preserved under met-
ric completion. We will need an auxiliary result stating that in a median space,
approximate geodesics are close to geodesics, and approximate medians are close
to medians. We begin by defining approximate geodesics and medians.

DEFINITION 6.37. Let (X, dist) be a metric space and let § be a non-negative
real number. We say that z is between = and y up to the error § provided that
dist(z, z) + dist(z,y) < dist(z,y) + 4.
We say that (a1, as,...,a,) is a 0-geodesic sequence if
dist(ay, ag) + dist(ag, asg) + - - - + dist(ayp—1, an) < dist(as,a,) + 6.

NOTATION 6.38. Let z,y be two points of X. We denote by Is(a,b) the set of
points that are between a and b up to the error 4.
Let x,y, z be three points of X. We denote by Mjs(a,b, c) the intersection

Ir5(a,b) N Iys(b, ) N Izs(a,c) .

In accordance with the previous notation, whenever § = 0, the subscript § is
dropped.

LEMMA 6.39. Given 6,6" > 0, for every c € Is(a,b) the set Iy (a,c) is contained
m 15+5/ (CL, b).

DEFINITION 6.40. Let x,y, z be three points in a metric space. If Ms(x,y, z)
is non-empty then any point in it is called a §-median point for x,y, z.

LEMMA 6.41. Let (X,dist) be a median space, and a,b, c three arbitrary points
mn X.
(i) The set Is(a,b) coincides with N's (I(a,b)).
(ii) The following sequence of inclusions holds:

(6.3) B(m(a,b,¢),6) C Ms(a,b,c) C B(m(a,b,c),3d).

PROOF. Statement (i) immediately follows from Lemma 6.27.

The first inclusion in (6.3) is obvious. We prove the second inclusion. Consider
the median pOil’ltS P11 = m(pa a, b)7p2 = m(p7 bv C)7p3 = m(pa a, C)a q= m(pla b? C)v r=
m(q,a,c).

First we show that r = m(a,b,¢). Indeed r € I(a,c) by definition. We also
have r € I(q,c), and since g € I(c,b) it follows that r € I(b,¢). Finally we have
r € I(a,q). Now ¢q € I(p1,b) and p; € I(a,b), so ¢ € I(a,b). It follows that
r € I(a,b).
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It remains to estimate the distance between p and r. According to (i) and
Lemma 6.27 the point p is within distance at most § from p1, p2 and ps respectively.
By Corollary 6.28 we have dist(pe, q) < dist(p,p1) < 0. Hence dist(p, q) < 24.
Applying Corollary 6.28 again we get dist(ps,r) < dist(p,q) < 24, consequently
dist(p,r) < 34. O

The following result is also proved in [Ver93, Corollary 11.3.5]. For the sake of
completeness we give another proof here.

PROPOSITION 6.42. The metric completion of a median space is a median space.

PROOF. Let (X, dist) be a median space, and let X — X be the metric com-
pletion. For simplicity we denote the distance on X also by dist.

The median map m : X x X x X - X C X is 1-Lipschitz by Corollary 6.28.
Thus it extends to a 1-Lipschitz map XxXxX— X, also denoted by m.

Clearly for any three points a,b,c in )A(, the point m(a,b,c) is median for
a,b,c. We now prove that m(a,b,c) is the unique median point for a,b,c. Let
p be another median point for a,b,c. The points a, b, c are limits of sequences
(an), (bn), (cn) of points in X. Let m, be the median point of a,,b,,c,. Set
dn, = dist(a, a,) + dist(b, by,) + dist(c, ).

We show that p is a d,-median point for a,,b,,c,. Indeed we have that
dist(ay,, p) + dist(p, b, ) is at most

dist(an, a)+dist(a, p)+dist(p, b) +dist (b, by, ) = dist(an,, a) +dist(a, b)+dist(b, b,,) <
2dist(a, a,) + dist(ay, b,) + 2dist(b, by,) < dist(an,b,) + 20,.

The other inequalities are proved similarly.

The point p is also the limit of a sequence of points p, in X, such that
dist(p,pn) < d,. It follows that p, is a 2J,-median point for a,,b,,c,. By
Lemma 6.41 we then have that dist(p,,m,) < 6d,. Since é, — 0 we get p =
m(a, b, c).

O

6.2. Spaces with measured walls

In this section we discuss measured wall structures on sets. Every such structure
induces a pseudo-metric on the underlying set. The resulting class of metric spaces
turns out to coincide with the class of submedian metric spaces (i.e. spaces which
can be embedded isometrically in a median space). Examples of such submedian
spaces that are not median include real hyperbolic spaces and complex hyperbolic
spaces equipped with the square root of the Riemannian distance function.

6.2.1. Definition and basic properties. Following [HP98|, a wall on a
set X is a partition X = h U h¢ (where h is possibly empty or the entire X). A
collection D of subsets of X is called a collection of half-spaces if for every h € D
the complementary subset h€¢ is also in D. Given a collection of half-spaces on X,
defines a collection of walls on X, which is the collection Wp of pairs w = {h, h“}
with h € D. For a wall w = {h, h®} we call h and h¢ the two half-spaces bounding
w.

We say that a wall w = {h,h¢} separates two disjoint subsets A, B in X if
A C h and B C h€ or vice-versa. We denote by W(A|B) the set of walls separating
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A and B. In particular, W(A|0) is the set of walls w = {h, h“} such that A C h or
A C h¢; hence W(0]0) = W.
When A ={x,...,z,} and B = {y1,...,ym} We write

W(A|B) =W(21,. . s Zn|y1, -, Ym) -

In particular, we use the notation W(z|y) instead of W({z}|{y}). We call any
set of walls of the form W(x|y) a wall-interval. By convention, W(A|A) = ( for
every non-empty set A.

DEFINITION 6.43 (space with measured walls [CMVO04]). A space with mea-
sured walls is a 4-uple (X, W, B, 1), where W is a collection of walls on X, B is a
o-algebra of subsets in W and p is a measure on 5, such that for every two points
x,y € X the set of separating walls W(x|y) is in B and it has finite measure. We
denote by pdist, the pseudo-metric on X defined by pdist,,(z,y) = p(W(zly)),
and we call it the wall pseudo-metric.

LEMMA 6.44. The collection R of disjoint unions | |, W(F;|G;), where n €
N U {0}, and F;,G; are finite non-empty sets for every i = 1,2,....,n, is a ring
with respect to the boolean operations on the sets (complementation, intersection
and union).

PROOF. First observe that given finite sets F, F’, G, G':
e W(FIG)NW(F'|G) =W(F UF|GUG)YUW(FUG'|GUF');

* W(FIG)® = Usur—ruc,sry2(r.ay WESIT).

From the above it follows that R is closed with respect to the operation \ , and
as it is also closed with respect to the intersection, and the union. O

Theorem 1.11 and Lemma 6.44 imply the following.

PROPOSITION 6.45 (minimal data required for a structure of measured walls).
Let X be a set and let W be a collection of walls on it. A structure of measured walls
can be defined on (X, W) if and only if on the ring R composed of disjoint unions
L%, W(F;|G;), where n € NU{oo}, and F;,G;,i = 1,2, ...,n, are finite non-empty
sets, there exists a premeasure p such that for every x,y € X, n(W(zl|y)) is finite.

Let (X, W,B,u) and (X', W', B, /) be two spaces with measured walls, and
let ¢ : X — X' be a map.

DEFINITION 6.46. The map ¢ is a homomorphism between spaces with measured
walls provided that:
e for any w' = {I/,h/} € W we have {¢p~1(I),¢s"1 (W)} € W — this
latter wall we denote by ¢*(w');
e the map ¢* : W — W is surjective and for every B € B, (¢*)"1(B) € B
and 1/ ((6")71(B)) = u(B).

EXERCISE 6.47. Every homomorphism ¢ as above preserves pseudo-distances.

Consider the set D of half-spaces determined by W, and the natural projection
map p : D = W, h— {h,h°}. The preimages of the sets in B define a o-algebra
on D, which we denote by BP; hence on D we obtain a pull-back measure that we
also denote by p. This allows us to work either with D or with W. Notice that the
o-algebra BP does not separate points in D, as sets in B are unions of fibers of p.
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DEFINITION 6.48. [CNO05], [Nic04]] A section s for p is called admissible if its
image contains together with a half-space h all the half-spaces h’ containing h.

In the sequel we identify an admissible section s with its image o = s(W); with
this identification, an admissible section becomes a collection of half-spaces, o, such
that:

e for every wall w = {h, h¢} either h or h® is in o, but never both;
e if hCh and h € o then b’ € 0.

For any x € X we denote by s, the section of p associating to each wall the
half-space bounding it and containing . Obviously this is an admissible section.
We denote by o, its image, that is the set of half-spaces h € D such that = € h.
Observe that o, is not necessarily in BP. Note also that p(o, A 0,) = W(z|y).

Among standard examples of spaces with measured walls are the real hyperbolic
spaces Hp. Here the half-spaces are closed or open geometric half-spaces, bounded
by hyperbolic hyperplanes, isometric copies of Hﬁfl, so that each wall consists of
one closed half-space and its (open) complement, as in Section 3 of [CMV04].
Recall that the full group of orientation-preserving isometries of Hy is SOgy(n,1).
The associated set of walls Wy is naturally identified with the homogeneous space
S0y (n,1)/SOg(n — 1,1). The group SOy(n — 1,1) is unimodular, therefore there
exists an SOg(n, 1)-invariant borelian measure pgy on the set of walls [Nac65,
Chapter 3, Corollary 4]. The set of walls separating two points is relatively compact
and has finite measure. Thus

(Hg, Whg, B, pmp )

is a space with measured walls. By Crofton’s formula [Rob98, Proposition 2.1] the
wall pseudo-metric on H is a constant multiple of the usual hyperbolic distance
function.

Another example is given by the vertex set V(T) of a simplicial tree T'. Every
edge e of T defines a partition of V(T') as follows. Let m denote the midpoint of
e. Then T — {m} consists of two components C* and we let V(T) = eT Ue™, with
et consisting of vertices contained in C*. Thus, the set of edges of T defines a
collection of walls W. We equip W with the counting measure. The reader will
verify that this measure defines a structure of measured walls on V(7).

More generally, suppose that T is a real tree which contains a dense subset
M C T of points such that for every m € M the complement 7" — {m} consists
of exactly two components, m™, m~. This again determines a wall structure D on
T defined via the collection of half-spaces h = m™,h¢ = m~ U {m}. For every
geodesic arc a« C T we let W,, denote the set of walls defined by points in M N a.
The metric on « determines a measure on W, with the total mass of W,, equal to

sup d(p,q).
p,qeMNa

We define the o-algebra B in 2P generated by the subsets W, with o’s the geodesic
arcs in T'. We leave it to the reader to verify that the measures on W, ’s extend to
a measure on B, defining a measured walls structure on 7. We refer the reader to
[CMV04] for details.

The structure of measured walls behaves well with respect to pull-back.
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LEMMA 6.49 (pull-back of a space with measured walls). Let (X, W, B, 1) be
a space with measured walls, let S be a set and f : S — X a map. There exists a
pull-back structure of space with measured walls (S, Ws, Bs, us) turning f into a
homomorphism. Moreover:

(i) if S is endowed with a pseudo-metric pdist and f is an isometry between
S, pdist) and (X, pdist,,), then the wall pseudo-metric pdist,, . coincides
1% us
with the original pseudo-metric pdist;

(ii) if a group G acts on S by bijective transformations and on X by automor-
phisms of the space with measured walls, and if f is G-equivariant, then
G acts on (S, Ws,Bs, pug) by automorphisms of the space with measured
walls.

PROOF. Define the set of walls Wg on S as the set of walls {f~1(h), f~1(h°)},
where {h,h¢} is a wall in X. This yields a surjective map f* : W — Ws. We
then consider the push-forward structure of measured space on Wg. This defines a
structure of a space with measured walls on S such that f is a homomorphism of
spaces with measured walls.

(i) It is easily seen that for every z,y € S, (f*) 1 (Ws(z|y)) = W(f(x), f(v)),
hence pdist,, (z,y) = pdist, (f(z), f(y)) = pdist(z, y).

(ii) If f is G-equivariant then the structure of a space with measured walls
(S, Ws, Bs, pus) is G-invariant. O

One of the main reasons for the interest in actions of groups on spaces with
measured walls is given by the following result.

PROPOSITION 6.50 ([CMV04], [dCTVO08|). Let G be a group acting by auto-
morphisms on a space with measured walls (X, W,B, ). Let p > 0 and let 7, be
the representation of G on LP(D, up) defined by m,(g)f = fog™ .

Then for every x € X, the map b : G — LP(D, up) defined by b(g) = Xo,, —Xo.
is a 1-cocycle in Z*(G,m,). In other words, we have an action of G on LP(D, up)
by affine isometries defined by:

g-f=mp(9)f +0(g).
PRrROOF. We check the cocycle property for b. Indeed
b(gh) = Xoghe — Xow = Xogha — Xoge + Xoge = Xow = 7T-(g)b(h) + b(g)
O

See Remark 2.97 for the definition of metric (and therefore the meaning of “an
affine isometry”) on an LP—space with p € (0,1).

6.2.2. Relationship between median spaces and spaces with mea-
sured walls.

THEOREM 6.51. (1) Any space X with measured walls embeds isometri-
cally in a canonically associated median space M(X). Moreover, any ho-
momorphism between two spaces with measured walls induces an isometry
between the associated median spaces.

191



(2) Any median space (X, dist) has a canonical structure of a space with mea-
sured walls such that the wall metric coincides with the original metric.
Moreover, any isometry between median spaces induces an isomorphism
between the structures of measured walls.

(3) Any median space (X,dist) embeds isometrically in L*(W, ), for some
measured space (W, ).

We will prove this theorem in sections 6.2.3 and 6.2.4.

The fact that each median space embeds into an L'-space was known previ-
ously, although the embedding was not explicitly constructed, but obtained via a
result of Assouad that a metric space embeds isometrically into an L'-space if and
only if every finite subspace of it embeds (see section 10.9 of this book as well as
[AD82|, [Ass84]|, [Ass81], [Ver93]). That all finite median spaces can be em-
bedded into ¢!-spaces seems to be well known in graph theory; all proofs usually
refer to finite median graphs only, but can be adapted to work for finite median
spaces (see for instance [Mul80]). There exist even algorithms which isometrically
embed a given median graph into an ¢!-space; the same method yields algorithms
in sub-quadratic time recognizing median graphs [HIK99|. The statement that all
finite median spaces can be embedded into ¢! was explicitly stated and proved for
the first time in [Ver93, Theorem V.2.3].

It is moreover known that complete median normed spaces are linearly isometric
to L'-spaces [Ver93, Theorem I11.4.13].

We recall that there is no hope of defining a median space containing a space
with measured walls and having the universality property with respect to embed-
dings into median spaces (see Remark 6.22). Nevertheless, the medianization M(X)
of a space with measured walls X appearing in Theorem 6.51, Part (1), is canoni-
cally defined and is, in some sense, minimal. This is emphasized for instance by the
fact that, under some extra assumptions, a space with measured walls X is at finite
Hausdorff distance from M(X), see [CD17|. In particular, it is the case when X is
the n-dimensional real hyperbolic space with the standard structure of space with
measured walls.

6.2.3. Embedding a space with measured walls in a median space.
Let (X, W, B, 1) be a space with measured walls, and let 2 be a base point in X.

Recall from Example 6.19, (7), that B(ZO denotes the collection of subsets
A C D such that A A 05, € B and u(A A 04,) < 400, and that endowed with
the pseudo-metric pdist, (A, B) = u(A A B) this collection becomes a median
pseudo-metric space. The map

(6.4) X BE 5 81D, 1), X (A) = Xaen,

is an isometric embedding of Bfmo into the median subspace SY(D, u) C L1(D, u),
where SY(D, ) = {x5 ; B measurable and u(B) < +00}.

The formula A A 0, = (A A 04y) A (02, A 0, ) and the fact that o, A 0y, is
measurable with finite measure shows that the median pseudo-metric spaces Bgo
and Bg’ml are identical: we simply denote this space by BY. In particular, o, € BY
for each = € X.

For z,y € X we have pdist,,(v,y) = p(o, A 0y), thus x +— 0, is an isometric
embedding of X into (B)’%,pdistu). Composing with the isometry x® : BY —
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SY(D, pn) , we get the following well-known result stating that a wall pseudo-distance
is of type 1, in the terminology of [BDCK66, Troisiéme partie, §2]:

LEMMA 6.52. Let (X, W, B, u) be a space with measured walls, and xg € X a
basepoint. Then the map T — Xy (z|z,) 15 an isometry from X to LYW, ). Thus,
if the wall pseudo-distance is a distance then (X, dist,) is isometric to a subset of
LYW, ).

We could probably define the median space associated to a space with measured
walls (X, W, B, 1) to be the (closure of the) median hull of the isometric image of X
inside L' (W, u). We give here an alternative construction which is more intrinsic.

NOTATION 6.53. We denote by M(X) the set of admissible sections, and by
M(X) the intersection M(X) N BY. Every section o, belongs to M(X), thus
X isometrically embeds in M(X). We denote by ¢ : X — M(X) this isometric
embedding.

PROPOSITION 6.54. Let (X, W, B, u) be a space with measured walls. Then:

(1) The space M(X) defined as above is a median subspace of BY.
(ii) Any homomorphism ¢ : X — X' between X and another space with mea-
sured walls (X', W', B, 1)) induces an isometry M(X) — M(X’).
(iii) In particular, the group of automorphisms of (X, W, B, u) acts by isome-
tries on M(X).

PROOF. (i) Given an arbitrary triple (o1, 02,03) € M(X)3, let us denote by
m(oy,09,03) the set of half-spaces h such that there exist at least two distinct
indices ¢,j € {1,2,3} with h € ¢;,h € ¢;. In other words

m(O'l,JQ,O'g) = (0'1 M 0'2) U (01 M 0'3) U (0’2 N 0'3)
(see also Example 6.11). o

Clearly m = m(o1,02,03) belongs to M(X). Fix a point z¢ in X and take

Xo = Xx*°, the function defined in (6.4). We want to show that
Xo(m) =m(xo(o1), Xo(02), x0(03))-
This will prove that m € Bg and that m is a median point of o1, 09, 03.

For our set-theoretical calculation it is convenient to treat characteristic func-
tions as maps from D to Z/2Z. We may then use the addition (mod. 2) and
pointwise multiplication on these functions. We get

XANB = XAXBs; XAaB = XA T XB, XAUB = XA + XB + XAXB -
It follows easily that for any three subsets A, B, C' we have

X(ANB)U(ANC)U(BNC) = XAXB + XAXc + XBXC -
Thus
X[(ANB)U(ANC)U(BNC)]aD = XAXB + XAXc + XBXC + XD-
On the other hand
X((AaD)N(BAD))U((AAD)N(CaD))U((BaD)N(CAD)) =
(xa +xp)(xB +xp) + (x4 +XxD)(Xc +xp) + (XB + XD)(XC + XD) =
XaxB + Xaxc +xBXc +2xaxp +2xBXp + 2xoxp +3xp =
XAXB + XAXc + XBXC + XD-
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We have thus checked that (AN B)U (ANC)U(BNC)] A D coincides with
[(AAD)N(BAD)]JU(AAD)N(CAD)]U[BAD)N(C A D).
Applying this to A = 01, B = 03,C = 03, D = 0,, yields the desired result.

(ii) Consider a homomorphism of spaces with measured walls ¢ : X — X'. It
is easily seen that the surjective map ¢* : W' — W induces a surjective map ¢* :
D' — D such that for every B € BP, (¢*)~1(B) € B and 1/ ((¢*)"H(B)) = u(B).

Let o denote any admissible section. Set

0u(0) = (") (0) = {W €D'; ¢~ (K) € 0}.
Since ¢ is a homomorphism, ¢. (o) is an admissible section of (X', W', B’, 1’). Note

that ¢.(0;) = 04(z) and that ¢.(c A 0') = ¢.(0) A ¢«(0’). This implies that ¢,
defines a map from M (X) to M(X"). Moreover

Deist g (x1) (6 (0), 6:(0")) = 1 (9(0) & 6.(0")) = W (6.0 & ")) =

=1 .
W6 (0 8.0) = (o & 0") = pdist py) (7, 0").
Thus ¢, is an isometry.
The statement (iii) is an immediate consequence of (ii). O

The results in Proposition 6.54 justify the following terminology.
DEFINITION 6.55. We call M(X) the median space associated to (X, W, B, u).

REMARK 6.56. The space M(X) can be replaced by Mo(X), the metric com-
pletion of the median closure of X in M(X). The two spaces are, in general,
different, but they become equal when the space My (X) is locally convex [Fiol7].

The space My(X) has the advantage of being a complete geodesic metric me-
dian space when X is connected. This follows from the fact that Mg(X) is con-
nected, and a result of Bowditch [Bow16|, stating that a complete median space
that is connected is geodesic. The connectedness of My(X) is due to the fact that
the median map is 1-Lipschitz, and as the median completion of X in M(X) equals
the increasing union of (connected) sets obtained by iterative applications of the
median map to X, it is itself connected. The space Mo (X) is the metric completion
of this latter median completion, hence it is itself connected.

The first part of Theorem 6.51 is now proved. The second part will be a
corollary of Theorem 6.57 proven in the next section. In order to prove it we will
need some preliminary results on the geometry of median spaces allowing to define
measured walls in a consistent manner.

6.2.4. Median spaces have measured walls. The aim of this section is to
prove the following.

THEOREM 6.57. Let (X,dist) be a median space. Let W be the set of convex
walls, and let B be the o-algebra generated by the following subset of P(W):
U= {W(zly); =,y points of X}.
Then there exists a measure i on B such that:
(1) uW(z|y)) = dist(z,y); consequently, the quadruple (X, W,B,u) is a
space with measured walls;

(2) any isometry of (X, dist) is an automorphism of the space with measured

walls (X, W, B, 11).
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REMARK 6.58. In general, a measure p on the og-algebra B is not uniquely
defined by the condition (1) in Theorem 6.57. It follows from the Caratheodory’s
Theorem (theorem 1.11), the measure is uniquely determined if there exists, say,
a sequence of points (z,) in X such that W = U, ,, W(zn|z,). This happens
for instance if there exists a countable subset in X whose convex hull is the entire
X. Uniqueness is also guaranteed when for some topology on W the measure p is
borelian and W is locally compact second countable.

Combining Theorem 6.57 above and Lemma 6.52 we get the following:

COROLLARY 6.59. Let (X, dist) be a median space. Then X isometrically em-
beds in LY (W, 1), where (W, i) is as in Theorem 6.57. More precisely, given any
xg € X, the space X is isometric to

{owialan) 5 @ € X}
regarded as a subset of L*(W, 1) endowed with the induced metric.

COROLLARY 6.60. A metric space (X,dist) is submedian in the sense of Def-
inition 6.5 if and only if it admits a structure of a space with measured walls
(X, W, B, 1) such that dist = dist,. Moreover, all walls in W may be assumed
to be convex.

PROOF. The direct part follows from Theorem 6.57 and Lemma 6.49. The
converse part follows from Lemma 6.52. O

REMARK 6.61. Corollary 6.60 for finite metric spaces was already known. More
precisely, according to [Ass80] and [AD82] a finite metric space (X, dist) is iso-
metrically ¢'-embeddable if and only if

dist = > Mgy,
SCX

where \g are non-negative real numbers, and dg(z,y) = 1 if z # y and SN {z,y}
has cardinality one, dg(z,y) = 0 otherwise.

The strategy of the proof of Theorem 6.57 is to use Proposition 6.45. We
first show that for any pair of finite non-empty sets F,G in X, W(F|G) is equal
to W(alb) for some pair of points a,b. In order to do this we need the following
intermediate results.

LEMMA 6.62. Let (x,y,z) be a geodesic sequence in (X,dist). Then we have
the following decomposition as a disjoint union:

W(z|z) = W(zly) UW(yl2).

PROOF. First notice that by convexity of half-spaces, the intersection W(z|y)N
W(y|z) is empty. Then the inclusion W(z|z) C W(x|y) UW(y|z) is clear because
if a half-space h contains x but does not contain z, then either h contains y (in
which case the wall {h, h¢} separates y from z) or h® contains y (in which case the
wall {h, h°} separates x from y). The inclusion W(z|y) UW(y|z) C W(x|z) holds
because if h contains x and y € h, again, by convexity, we cannot have z € h and
hence {h, h¢} separates z from z. O

As an immediate consequence we get the following:
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COROLLARY 6.63. For any geodesic sequence (1,2, ...,T,) we have the fol-
lowing decomposition:

W(z1|zn) = W(xq|z) U - - UW(zp_1|zn)-
COROLLARY 6.64. If (z,y) and (2',y") are parallel pairs then
Wizly) = W('ly') = W(z, 2|y, y) .

and
Wizly') = W(2'|ly) = W(z|y) UW(z]z").

LEMMA 6.65. Given three points x,vy, z with the median point m, we have
W(zly, z) = W(x|m).

PROOF. According to Lemma 6.62 we have that W(z|y) = W(z|m) U W (mly)
and that W(z|z) = W(z|m) UW(m|z). It follows that

Wi(zly, z) = W(zly) N W(x|z) = W(xz|m) U W (mly) N W(m|z)).
But by convexity of the walls W(ml|y) N W(m|z) = 0, and we are done. O
We will use intensively the following two operations:

DEFINITION 6.66 (projection and straightening). Let (z,y), (a,b) be two pairs
of points of a median space X.

The projection of (x,y) with the target (a,b) is the pair (2’,y’) defined by
' =m(x,a,b),y =m(y,a,b).

If furthermore z,y € I(a,b), we also counsider the straightening of the path
(a,z,y,b), which by definition is the path (a,p, ¢, b), where the pair (p, ¢) is defined
by p = m(a> €, y)7 q= m(b7 €, y)

Observe that given two pairs of points (z, y), (a, b), the central rectangle [z, a’, i/, V']
associated with [z,a,y,b] (as in Definition 6.34) is obtained by first projecting
(z,y) with the target (a,b) — this yields the pair (2/,y’), and then straightening
(a,2',y,’ ,b) — which yields the pair (a’,0’). We now describe some properties of
both procedures.

LEMMA 6.67. Let (z,y), (a,b) be two pairs of points.
(1) Let («',y") be the projection of (x,y) with target (a,b). Then
W(z'ly') = W(zly) n W(alb).

(2) Assume x,y € I(a,b), and let (p,q) be the projection of (a,b) with the tar-
get (z,y). Then [p,x,q,y] is a rectangle, W(p|q) = W(z|y), and (a,p,q,b)
is a geodesic sequence (thus (a,x,y,b) really has been straightened to a ge-
odesic).

(3) Let [2',a',y', V'] be the central rectangle associated with [x,a,y,b]. Then

W('ly") = Wizly) N W(alb), W(2'ly") = W(d[') .

PROOF. Since the central rectangle is in fact obtained by composing the pro-
jecting and straightening operations, it is enough to prove the part 3 of the lemma.
The equality W(z'|y") = W(da'|V’) follows from Corollary 6.64.
By Lemma 6.65 we have W(z|z') = W(x|a,b). In particular, W(z|z') N
W(alb) = 0. Similarly,
W(yly') " W(alb) = 0.
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Consider now a half-space h such that « € h,y € h and {h, h¢} € W(a|b). Since
W(z|z") N W(alb) = 0,

we deduce that 2/ € h. Similarly we have 3y’ € h®. We have thus proved that
W(zly) N W(alb) € W(a'ly").

On the other hand, since W(z'|y") = W(d'|b') and (a,a’,b’,b) is a geodesic, it
follows that W(z'|y") € W(a|b).

According to Lemma 6.36, (z/,y’) is parallel to a pair (z”,y”) such that the
sequence (z,z”,y",y) is geodesic. This and Corollary 6.64 imply that W(z'|y’) C

PROPOSITION 6.68. Let F' and G be two finite non-empty subsets in X. There
exist two points p,q € X such that

W(F|G) = W(plq) -

PROOF. We use an inductive argument over n = card F' + card G. For n = 2
the result is obvious, while for n = 3 it is Lemma 6.65.

Assume that the statement holds for n and let F,G be such that card F' +
cardG = n+ 1 > 3. Without loss of generality we may assume that card F' > 2.
Then F = Fy U{z}, and W(F|G) = W(F1|G) " W(z|G). The inductive hypothesis
implies that W(F1|G) = W(al|b) and W(z|G) = W(c|d), for some points a, b, c, d.
Hence W(F|G) = W(alb) N W(c|d). We conclude by applying Lemma 6.67. O

At this stage we have proven that the ring R defined in Proposition 6.45 coin-
cides with the set of disjoint unions | |, W(z;|y;). It remains to show that there
is a premeasure p : R — RT on the ring R such that p(W(z|y)) = dist(z,y). We
first define p as an additive function.

LEMMA 6.69. If W(z|y) = W(alb) then dist(x,y) = dist(a, b).

PRrROOF. First let (2/,y") be the projection of (z,y) with target (a,b). Then by
Lemma 6.67(1) we have W(z'|y") = W(z|y) N W(alb) = W(a|b). By Corollary 6.28
the median map is 1-Lipschitz, thus d(z’,y’) < d(z,y).

We now straighten (a, 2’,y’, b) to (a, p, q,b) (thus (p, ¢) is the projection of (a, b)
with target (2/,y)). Then by Lemma 6.67(2) we have W(p|q) = W(a'|y’) = W(a|b),
and (a,p,q,b) is a geodesic sequence. By Corollary 6.63 we deduce W(alp) =
W(qlb) = 0, and thus a = p,q = b. It follows that d(a,b) = d(p, q), and thus by
Corollary 6.64 we have d(a,b) = d(2',y’) < d(x,y). We conclude by symmetry. O

PROPOSITION 6.70. Assume that for two points a,b the set of walls W(alb)
decomposes as W(alb) = ||j_, W(z;ly;). Then there exists a geodesic sequence
(a1 = a,aq,...,a9n =b) and a partition {1,2,...,2" =1} =L Ul U---U T, such
that:

(1) for each j € {1,...,n} the set I; has 27! elements and we have a decom-
position of W(z;ly;) = I-'iel,- Wi(ailait1)
(2) for each j € {1,...,n} we have dist(x;,y;) = >

In particular, dist(a,b) = 3, dist(2;,y;).

i€l diSt(CLi, 0,1'_;'_1)
We easily deduce the following:

COROLLARY 6.71. There is a unique additive function p : R — RT such that
puW(zly)) = dist(z,y).
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To prove the Proposition we need the following auxiliary result:

LEMMA 6.72. In a median space (X,dist), consider two geodesic sequences
with common endpoints (a,p,q,b) and (a,p’,q’,b), such that W(plg) "W(p'|¢’) = 0.
Let (s,t) be the projection of (p,q') with target (a,p). Similarly, let (u,v) be the
projection of (p',q") with target (q,b). Then dist(p’,q") = dist(s, t) + dist(u, v).

PRrOOF. Consider two more points: m = m(t,p’,q"),n = m(u,p’, q") (see Figure
6.3). Let us check that [s,t,m,p’] is a rectangle. By the construction (¢,m,p’) is
a geodesic sequence. Since s,t are projection of p’,¢’ onto the interval I(a,p)
we deduce that (¢',m,t,s), (p', s,t) are geodesic sequences. Since (z,p’,¢,y) is a
geodesic sequence we see that (z,s,p’,m,q,y) is geodesic.

We thus have dist(p’, m) = dist(s, ), and also W(p'|m) = W(s|t) (by Corol-
lary 6.64). Hence W(p'|m) = W(alp) " W(p'|¢') (by Lemma 6.67(1)). Similarly we
get dist(n, ¢') = dist(u,v), and W(n|q¢') = W(q|b) "N W({'|¢).

We claim that W(m|q¢') = W(g|b) N W(p'|¢'). Indeed applying Lemma 6.62
several times we get

W' |m) UW(mlq') = W(p'lq") € W(alb) = W(alp) U W(plg) LW (q|b)
and the claim follows, since, by the assumption, W(p|q) N W(p'|¢’) = 0 and we
already have W(p'|m) = W(alp) " W(®'|¢).
We conclude that W(m|q') = W(n|q'). This implies the dist(m, ¢') = dist(n,¢") =
dist(u, v), cf. Lemma 6.69. Since (p’, m, ¢’) is a geodesic sequence we get dist(p’, ¢') =
dist(p’, m) + dist(m, ¢') = dist(s, t) + dist(u, v). O

FIGURE 6.3. The construction in Lemma 6.72.

PROOF OF PROPOSITION 6.70. We argue by induction on n. The case n = 1
follows from Lemma 6.69.

Now let us assume that n > 1 and that the lemma is holds for partitions
of any wall-interval into n — 1 wall-subintervals. Notice first that, according to
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Lemma 6.67, Part (1), and Lemma 6.69, after replacing (z;,y;) by its projection
with target (a,b), we can assume that the x;’s and y;’s belong to the interval I(a, b).

We straighten (a, z1,y1,b) to (a,p1,q1,0). Then by Lemma 6.67, Part (2), the
sequence (a,p1,q1,b) is geodesic, and we have W(z1|y1) = W(p1|q1)-

By Lemma 6.62 we have W(alb) = W(a|p1) UW(p1|q1) LU W(q1]b). It follows
that W(alp1) UW(q1|b) = Li_oW(@:ilys).

We now straighten each path (a, ;, y;,b) to (a,p;, ¢;,b) (when ¢ > 1). Again we
have W(z;|y;) = W(pilq;) and moreover dist(z;,y;) = dist(pi, ¢;) (since [x4, pi, Yi, ¢i]
is a rectangle). Now let us project the points p; and ¢; onto I(z,p1) and I(q1,y).
We set s; := m(ps, z,p1), ti = m(qs, z,p1), wi := m(pi, q1,y) and v; := m(qi, q1,).

Applying again Lemma 6.67, Part (1), we see that W(p;|q;) N W(a|p1) =
W(si[ti) and W(pi|gi) "W (q1|b) = W(ui|vi). Thus W(pilgi) = W(si[t:) UW (us|vi),
and we get two decompositions:

W(alp1) = Lo W(silti)
and
W(q1[b) = LioW(wilv;).
We conclude the proof by applying the induction hypothesis to the two de-

compositions above, since Lemma 6.72 ensures that dist(p;,q;) = dist(s;, ;) +
dist (’UJZ‘, ’Uz'>. [l

The following proposition shows that the premeasure p satisfies the property
(MY').

PROPOSITION 6.73. Let (X, dist) be a median space, endowed with convex walls.
If (In)nen is a non-increasing sequence of finite disjoint unions of wall-intervals
such that N, I, = 0, then I, = 0 for k large enough.

PRrOOF. In what follows we identify a half-space with its characteristic function.
First note that the set of half-spaces bounding a convex wall (i.e. the set of convex
subsets whose complement is convex as well) is a closed subset of {0,1}%. Then the
set D(z|y) of half-spaces containing  but not y is a closed subset of the compact
subset of {0,1}* consisting in functions f : X — {0,1} such that f(z) =1, f(y) =
0. Therefore, D(x|y) is compact.

It is enough to argue when Iy = W(z|y). Since (I,)nen is non-increasing for
each n we have I, C W(z|y). We then define H,, as the set of half-spaces h such
that {h,h} € I, and = € h. Tt follows that (H,)necn is non-increasing, and has
empty intersection. By projecting onto I(x,y) we have

I, = H W(Iz|y1)

for some points z;,y; € I(x,y) (Lemma 6.67(1)). We know that W(x;|y;) =
Wi(pilg:) for pi = m(z,xi,y:i), ¢ = m(y,zi,yi), and furthermore (z,p;,q;,y) is a
geodesic sequence. Thus

H, = H W(pilg:)

and H,, is compact. It follows that there exists k such that H) = (), which implies
that I, = 0. O

We now have all the ingredients to finish the proof of Theorem 6.57.
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PRrROOF OF THEOREM 6.57. That the premeasure p is well-defined on R is the
content of Proposition 6.70. It obviously satisfies properties (Mp) and (M), while
(M) is proved in Proposition 6.73.

By the Carathédory’s Theorem, Theorem 1.11, u* restricted to A* is a measure
extending p, hence its restriction to B is also a measure extending pu.

Obviously any isometry of (X,dist) defines a bijective transformation on W
preserving R and the premeasure p, hence the outer measure p* and A*, hence it
defines an automorphism of the measured space (W, B, u). (]
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CHAPTER 7

Finitely generated and finitely presented groups

7.1. Finitely generated groups
A group which has a finite generating set is called finitely generated.

DEFINITION 7.1. The rank of a finitely generated group G, denoted rank (G),
is the minimal number o generators of G.

REMARK 7.2. In French, the terminology for finitely generated groups is groupe
de type fini. On the other hand, in English, being a group of finite type is a much
stronger requirement than finite generation (typically, this means that the group
has type F).

EXERCISE 7.3. Show that every finitely generated group is countable.

EXAMPLES 7.4. (1) The group (Z,+) is finitely generated by both {1}
and {—1}. Also, any set {p,q} of coprime integers generates Z.
(2) The group (Q,+) is not finitely generated.

EXERCISE 7.5. Prove that the transposition (12) and the cycle (12...n) gen-
erate the permutation group .S,.

REMARKS 7.6. (1) Every quotient G of a finitely generated group G is
finitely generated; we can take as generators of G the images of the gen-
erators of G.

(2) If N is a normal subgroup of G, and both N and G/N are finitely gen-
erated, then G is finitely generated. Indeed, take a finite generating set
{n1,...,nx} for N, and a finite generating set {¢g1 N, ..., g, N} for G/N.
Then

{gisnj; : 1<i<m,1<j<k}

is a finite generating set for G.

We will see in examples below that if IV is a normal subgroup in a group G and
G is finitely generated, it does not necessarily follow that IV is finitely generated
(not even if G is a semidirect product of N and G/N).

EXAMPLE 7.7. Let G be the wreath product Z17Z = N X Z, where N is
the (countably) infinite direct sum of copies of Z. Then G is 2-generated (take a
generator of the quotient group Z and a generator of one of the direct summands
of N). On the other hand, the subgroup N is not finitely generated.

ExamMpLE 7.8. Let H be the group of permutations of Z generated by the
transposition ¢ = (01) and the translation map s(i) = ¢+ 1. Let H; be the group of
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permutations of Z supported on [—i,4] = {—i,—i+1,...,0,1,...,4— 1,i}, and let
H,, be the group of finitely supported permutations of Z (i.e. the group of bijections
f:Z — Z such that f is the identity outside a finite subset of Z),

H, = EOJHZ
i=0

Then H, is a normal subgroup in H and H/H, ~ Z, while H, is not finitely
generated.

Indeed from the relation s¥ts=% = (kk+1), k € Z, it immediately follows that
H,, is a subgroup in H. It is, likewise, easy to see that s*H;s™* C H; , whence
s*H,s™* c H, for every k € Z.

If g1,..., gk is a finite set generating H,,, then there exists an i € N so that all
g;’s are in H;, hence H,, = H;. On the other hand, clearly, H; is a proper subgroup
of H,,.

EXERCISE 7.9. 1. Let F be a non-abelian free group (see Definition 7.20). Let
@ : F — Z be any non-trivial homomorphism. Prove that the kernel of ¢ is not
finitely generated.

2. Let F be a free group of finite rank with free generators zi,...,z,; set
G := F x F. Then G has the generating set
Define homomorphism ¢ : G — Z sending every generator of G to 1 € Z. Show that
the kernel K of ¢ is finitely generated. Hint: Use the elements (x;, xj_l), (mixj_l, 1),

(l,xixj_l), 1 < 4,7 < n, of the subgroup K.

We will see later that a finite index subgroup of a finitely generated group is
always finitely generated (Lemma 7.86 or Theorem 8.37). The next lemma shows
that extensions of finitely generated groups are again finitely generated:

LEMMA 7.10. Suppose that we have a short exact sequence of groups
125G 5 G5 Gy—1

such that the groups G1,G3s are finitely generated. Then Go is also finitely gener-
ated.

PROOF. Let Sy, S3 be finite generating sets of G1,G3. For each § € S3 pick
s € 17185, We claim that

Sy :=i(S1) U {s|5 € S5}
is a generating set of Go. Indeed, each g € G projects to m(g), which is a product
st 5L s €8s
Therefore, by normality of i(G1) in G, the element g itself has the form
h-sit-osEl hei(Gh).

Since h is a product of the elements s € S; (and their inverses), the claim follows.
O

A similar proof applies to wreath products. Recall that the wreath product A1C
of groups A and C' is the semidirect product

(BcA) x C

202



where C' acts on the direct sum by precompositions: f(z) ~ f(xc™!). Thus,
elements of wreath products A C are pairs (f,c), where f : C — A is a function
with finite support and ¢ € C. The product structure on this set is given by the
formula
(fi(@), 1) - (fal@), c2)) = (fr(wez ) fo(), crca).

Here and below we use multiplicative notation when dealing with wreath products.
For each g € A we define the function §, : C — A is the function which sends 1 € C
to a € A and sends all other elements of C to 1 € A.

LeMMA 7.11. Ifas,i € I,cj,5 € J are generators of A and C, respectively, the
elements (1,¢;),j € J and (0q,,1),i € I, generate G4 := AVC. In particular, if A
and C' are finitely generated, so is Al C.

PROOF. It is enough to show that each (f,1) € G4 is a product of the elements
(1,¢;), (6a,,1). Since the maps J, generate

@CAa
it suffices to prove this claim for each é,. If
a=a...a,

then, clearly,
(6as1) = (0a;, s 1) - (Gay, 5 1)
Lemma follows. U
Below we describe a finite generating set for the group GL(n,Z). In the proof
we use the elementary matrices N; ; = I, + E; j (i # j); here I, is the identity
n x n matrix and the matrix F; ; has a unique non-zero entry 1 in the intersection
of the i—th row and the j—th column.

PROPOSITION 7.12. The group GL(n,Z) is generated by

0 ... .. 01
.. : 0 1 0 0 0
L ' 0 1 0 0 0 0
0o . . Co 0O 0 1 ... 0 0
81: . . . . . . 782: . . ... ... ... . . ... ’
0 0 0 1 0
0 0 0 0 1
0 0 1 0
1 1 0 0 0 -1 0 0 0
0 1 0 0 0 0 1 0 0 0
o 0 1 ... 0 0 0 1 0 0
§3 = y S4 =
o 0 0 ... 1 0 0O 0 0 ... 1 0
0 0 0 1 o 0 0 ... 0 1

PROOF. Step 1. The permutation group S, acts (effectively) on Z™ by per-
muting the basis vectors; we, thus, obtain a monomorphism ¢ : S, — GL(n,Z),
so that ¢©(12...n) = s1, ¢(12) = s3. Consider now the corresponding action of
S, on n X n matrices. Multiplication of a matrix by s; on the left permutes rows
cyclically, multiplication to the right does the same with columns. Multiplication
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by s3 on the left swaps the first two rows, multiplication to the right does the same
with columns. Therefore, by multiplying an elementary matrix A by appropriate
products of sq, sfl and sy on the left and on the right, we obtain the matrix s3. In
view of Exercise 7.5, the permutation (12...n) and the transposition (12) gener-
ate the permutation group S,,. Thus, every elementary matrix N;; is a product of
31,31_1732 and s3.

Let d; denote the diagonal matrix with the diagonal entries (1,...,1,—-1,1,...1),
where —1 occurs in j-th place. Thus, d; = s4. The same argument as above, shows
that for every d; and s = (15) € Sy, sd;s = dq. Thus, all diagonal matrices d;
belong to the subgroup generated by s1, s3 and s4.

Step 2. Now, let g be an arbitrary element in GL(n,Z). Let aq,...,a, be the
entries of the first column of g. We will prove that there exists an element p in
(s1, 82, 83,84) C GL(n,Z), such that pg has the entries 1,0, ..., 0 in its first column.
We argue by induction on k = C1(g) = |a1|+ - - + |an|. Note that k > 1. If k =1,
then (ay,...,ay) is a permutation of (+1,0,...,0); hence, it suffices to take p in
(s1, $2,84) permuting the rows so as to obtain 1,0,...,0 in the first column.

Assume that the statement is true for all integers 1 < i < k; we will prove
it for k. After to permuting rows and multiplying by di = s4 and ds, we may
assume that a; > ag > 0. Then Nj2dag has the following entries in the first
column: aj —ag, —az, as, ... a,. Therefore, Cy (N7 2d2g) < C1(g) . By the induction
assumption, there exists an element p of (s1, s2, 83, 54) such that pNy 2d2g has the
entries of its first column equal to 1,0,...,0. This proves the claim.

Step 3. We leave it to the reader to check that for every pair of matrices
A,B € GL(n — 1,R) and row vectors L = (I1,...,l,—1) and M = (mq,...,Mp_1)

(o 5) (o %)=(o"i5")

Therefore, the set of matrices

1 L n—
{(0 A);AeGL(n—l,Z),LeZ 1}

is a subgroup of GL(n,Z) isomorphic to Z"~* x GL(n — 1,7Z).

Using this, an induction on n and Step 2, one shows that there exists an element
p in (s1, S2, 83, 84) such that pg is upper triangular and with entries on the diago-
nal equal to 1. It, therefore, suffices to prove that every integer upper triangular
matrix as above is in (s, $2, 83, $4). This can be done for instance by repeating the
argument in Step 2 with multiplications on the right. O

The wreath product (see Definition 5.32) is a useful construction of a finitely
generated group from two finitely generated groups:

EXERCISE 7.13. Let G and H be groups, and S and X be their respective
generating sets. Prove that G H is generated by

{(fs;1u) | s€ S}U{(f1,2) |z € X},
where fs; : H — G is defined by

[o(lu) = s, fo(h) =16, Vh # 1n.
In particular, if G and H are finitely generated then so is G! H .
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EXERCISE 7.14. Let G be a finitely generated group and let S be an infinite
set of generators of G. Show that there exists a finite subset F' of S so that G is
generated by F.

EXERCISE 7.15. An element g of the group G is a non-generator if for every
generating set S of G, the complement S\ {g} is still a generating set of G.

(a) Prove that the set of non-generators forms a subgroup of G. This subgroup
is called the Frattini subgroup.

(b) Compute the Frattini subgroup of (Z, +).

(¢) Compute the Frattini subgroup of (Z™,+). (Hint: You may use the fact
that Aut(Z"™) is GL(n,Z), and that the GL(n,Z)-orbit of e; is the set of
vectors (ki,...,ky) in Z™ such that ged(kq,...,k,) = 1.)

DEFINITION 7.16. A group G is said to have bounded generation property (or
is boundedly generated) if there exists a finite subset {t1,...,tm} C G such that
every g € G can be written as

g :t]flté:z ...tkm’

m

where ki, ko, ..., ky are integers.

Clearly, all finitely generated abelian groups have the bounded generation prop-
erty, and so are all finite groups. On the other hand, the nonabelian free groups,
which we will introduce in the next section, obviously, do not have the bounded
generation property. For other examples of boundedly generated groups see Propo-
sition 13.73. We also note that Alexey Muranov [Mur05] constructed examples of
infinite boundedly generated simple groups.

7.2. Free groups

Let X be a set. Its elements are called letters or symbols. We define the set
of inverse letters (or inverse symbols) X1 = {a™! | a € X}. We will think of
X UX ! as an alphabet.

A word in X U X~ is a finite (possibly empty) string of letters in X U X1
i.e. an expression of the form

€1 €2

€k
ail aiz aik 5

where a; € X, ¢; = £1; here ' = x for every x € X. We will use the notation 1 for
the empty word (the one which has no letters).

1

CONVENTION 7.17. Sometimes, by abusing the terminology, we will refer to
words in X U X! as words in X.

Denote by X* the set of words in the alphabet X U X!, where the empty
word, denoted by 1, is included. For instance,

alagaflagagal e X"

The length of a word w is the number of letters in this word. The length of the
empty word is 0.

A word w € X* is reduced if it contains no pair of consecutive letters of the
L or a~'a. The reduction of a word w € X* is the deletion of all pairs of

Lor a la.

form aa™
consecutive letters of the form aa™

205



For instance, the words
1, 112(11,(11@&1_1
are reduced, while
a2a1a1_1a3

is not reduced.

More generally, a word w is cyclically reduced if it is reduced and, in addition,
the first and the last letters of w are not inverses of each other. Equivalently,
conjugating w by an element of X U X~ !:

w =awa !, aeXUX!

results in a word w’ whose reduction has length >> the length of w.

We define an equivalence relation on X* by w ~ w’ if w can be obtained from
w’ by a finite sequence of reductions and their inverses, i.e. the relation ~ on X*
is generated by

1 -1
ua;a; v~ Uv,  UG; ;U ~ U

where u,v € X*.
PROPOSITION 7.18. Any word w € X* is equivalent to a unique reduced word.

PROOF. Euxistence. ~ We prove the statement by induction on the length of a
word. For words of length 0 and 1 the statement is clearly true. Assume that it is
true for words of length n and consider a word of length n + 1, w = a; - - - anapny1,
where a; € X UX 1. According to the induction hypothesis, there exists a reduced
word u = by --- by, with b; € X U X1 such that as - -+ apy1 ~ u. Then w ~ aqu. If
ay # bfl then aqu is reduced. If a1 = bfl then aju ~ by - - - by and the latter word
is reduced.

Uniqueness.  Let F(X) be the set of reduced words in X U X 1. For every
a € X UX ! we define a map L, : F(X) = F(X) by

o foabiebe B a#byt,
La(by bk)_{ bp--by if a=0byt.

For every word w = ay - - - a,, define L,, = Lo, 0---0 L, . For the empty word
1 define L, = id. It is easy to check that L, o L,—: = id for every a € X U X!,
and to deduce from it that v ~ w implies L, = L,,.

We prove by induction on the length that if w is reduced then w = L,,(1). The
statement clearly holds for w of length 0 and 1. Assume that it is true for reduced
words of length n and let w be a reduced word of length n+1. Then w = au, where
a € XUX ! and u is a reduced word that does not begin with a~!, i.e. such that
Lo(u) = au. Then Ly (1) = Ly o Ly (1) = Ly(u) = au = w.

In order to prove uniqueness it suffices to prove that if v ~ w and v,w are
reduced then v = w. Since v ~ w it follows that L, = L,,, hence L,(1) = L, (1),
that is v = w. O

EXERCISE 7.19. Give a geometric proof of this proposition using identification
of w € X* with the set of edge-paths p,, in a regular tree T of valence 2|X|,
which start at a fixed vertex vg. The reduced path p* in T corresponding to the
reduction w* of w is the unique geodesic in T' connecting vy to the terminal point
of p. Uniqueness of w* then translates to the fact that a tree contains no circuits.

Let F(X) be the set of reduced words in X U X ~!. Proposition 7.18 implies
that X*/ ~ can be identified with F(X).
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DEFINITION 7.20. The free group over X is the set F(X) endowed with the
product * defined by: w x w’ is the unique reduced word equivalent to the word

ww’. The unit is the empty word.
The cardinality of X is called the rank of the free group F(X).

We note that, at the moment, we have two, a priori distinct, notions of rank
for (finitely generated) free groups: One is the least number of generators and the
second is the cardinality of the set X. We will see, however, that the two numbers
are the same.

The set F' = F(X) with the product defined in Definition 7.20 is indeed a
group. The inverse of a reduced word

is given by

—1 _  —€p  —€k—1 —€1
w —aik aikﬂ ail .

It is clear that the product ww ™! projects to the empty word 1 in F.

EXERCISE 7.21. A free group of rank at least 2 is not abelian. Thus, free
non-abelian means ‘free of rank at least 2.’

The free semigroup F*(X) with the generating set X is defined in the fashion
similar to F(X), except that we only allow the words in the alphabet X (and not
in X 1), in particular the reduction is not needed.

PROPOSITION 7.22 (Universal property of free groups). A map ¢ : X — G
from the set X to a group G can be extended to a homomorphism ® : F(X) — G
and this extension is unique.

PROOF. Eristence. The map ¢ can be extended to a map on X UX ~! (which
we denote also ) by p(a™!) = p(a)~!.
For every reduced word w = a; -+ - a,, in F' = F(X) define
D(ar---an) = plar) - - p(an).

Set ®(1p) := 1¢, the identity element of G. We leave it to the reader to check that
® is a homomorphism.

Uniqueness. Let ¥ : F(X) — G be a homomorphism such that ¥(z) = ¢(z)
for every x € X. Then for every reduced word w = a; - - - a,, in F(X),

U(w) = V(ar) - W(an) = p(ar) - p(an) = S(w).

COROLLARY 7.23. Every group is the quotient of a free group.

ProoF. Apply Proposition 7.22 to the group G and a generating set X of G
(e.g., X =G). O

LEMMA 7.24. Every short exact sequence 1 — N — G 5 F(X) — 1 splits. In
particular, G contains a subgroup isomorphic to F(X).
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PrOOF. Indeed, for each x € X consider choose an element ¢, € G projecting to
x; the map x — t, extends to a group homomorphism s : F(X) — G. Composition
r o s is the identity homomorphism F(X) — F(X) (since it is the identity on
the generating set X). Therefore, the homomorphism s is a splitting of the exact
sequence. Since r o s = Id, s is a monomorphism. O

COROLLARY 7.25. FEvery short exact sequence 1 - N — G — Z — 1 splits.

7.3. Presentations of groups

Let G be a group and S a generating set of G. According to Proposition 7.22,
the inclusion map i : S — G extends uniquely to an epimorphism 7g : F(S) = G.
The elements of Ker(wg) are called relators (or relations) of the group G with the
generating set S.

N.B. In the above, by an abuse of language we used the symbol s to designate
two different objects: s is a letter in F(.S), as well as an element in the group G.

If R={r;| i€ I} C F(S) is such that Ker(ng) is normally generated by R
(i.e. ((R)) = Ker(mg)) then we say that the ordered pair (S, R), usually denoted
(S|R), is a presentation of G. The elements r € R are called defining relators (or
defining relations) of the presentation (S|R).

A group G is said to be finitely presented if it admits a finite presentation, i.e.
a presentation with finitely many generators and relators.

By abuse of language we also say that the generators s € S and the relations
r =1, r € R, constitute a presentation of the group G. Sometimes we will write
presentations in the form

<Si77; S I|T‘j = 1,] S J>
where
S=Awitier, R={rj}jes

If both S and R are finite, then the pair S, R is called a finite presentation of G.
A group G is called finitely presented if it admits a finite presentation. Sometimes
it is difficult, and even algorithmically impossible, to find a finite presentation of a
finitely presented group, see [BW11].

Conversely, given an alphabet S and a set R of (reduced) words in the alphabet
S, we can form the quotient

G:=F(S)/ ((R)).
Then (S|R) is a presentation of G. By abusing notation, we will often write
G = (S|R),

if G is a group with the presentation (S|R). If w is a word in the generating set .S,
we will use [w] to denote its projection to the group G. An alternative notation for
the equality

is
V=g w.

Note that the significance of a presentation of a group is the following:
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e every element in GG can be written as a finite product z; - - - z,, with
r; e SUST = {st:5€ 8}
i.e. as a word in the alphabet S U S~1;
e a word w = z1 --- 2, in the alphabet S U S™! is equal to the identity in

G, w =g 1, if and only if in F(S) the word w is the product of finitely
many conjugates of the words r; € R, i.e.

m
— Us
w=1I
i=1

for some m € N, u; € F(S) and r; € R.
Below are few examples of group presentations:

EXAMPLES 7.26. (1) {a1,...,an | [ai,a;],1 < i,j < n) is a finite presen-
tation of Z" ;

(2) (z,y | 2", y? yxyz) is a presentation of the finite dihedral group Da,, ;
(3) <x, y |22 93 [z, y]> is a presentation of the cyclic group Zg .

Let (S|R) be a presentation of a group G. Let H be a group and ¢ : X — H
be a map which “preserves the relators”, i.e. ¥(r) =1 for every r € R. Then:

LEMMA 7.27. The map ¢ extends to a group homomorphism ¢ : G — H.

PROOF. By the universal property of free groups, the map ¢ extends to a
homomorphism ¢ : F(X) — H. We need to show that ((R)) is contained in
Ker(v)). However, ((R)) consists of products of elements of the form grg=!, where

g € F,r € R. Since &(grgfl) =1, the claim follows. a

EXERCISE 7.28. The group @, y Z» has presentation
<x € X|2% [x,9],Vr,y € X> )

PRrROPOSITION 7.29 (Finite presentability is independent of the generating set).
Assume that a group G has finite presentation (S| R), and let (X |T) be an ar-
bitrary presentation of G, such that X is finite. Then there exists a finite subset
To C T such that (X | Tp) is a presentation of G.

PRrROOF. Every element s € S can be written as a word a4(X) in X. The map
isx : S — F(X), isx(s) = as(X) extends to a unique homomorphism p : F(S) —
F(X). Moreover, since mx o igx is an inclusion map of S into F'(S), and both mg
and mx op are homomorphisms from F(S) to G extending the map S — G, by the
uniqueness of the extension we have that

g = Tx O P.

This implies that Ker(mx) contains p(r) for every r € R.

Likewise, every € X can be written as a word b;(S) in S, and this defines
amap ixs : X — F(5),ixs(x) = by(S), which extends to a homomorphism
q: F(X)— F(S). A similar argument shows that 7g o q = 7x.

For every x € X,

mx (p(q(2))) = ws(q(x)) = mx (2).
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This implies that for every z € X, 27 !p(¢(x)) is in Ker(rx). Let N be the normal
subgroup of F'(X) normally generated by

{p(r) |7 € RYU{z7"p(q(2)) | = € X} .
We have that N < Ker(wx). Therefore, there is a natural projection
proj : F(X)/N — F(X)/Ker(mx).
Let p: F(S) = F(X)/N be the homomorphism induced by p. Since p(r) = 1 for
all » € R, it follows that p(Ker wg) = 1, hence, p induces a homomorphism
v : F(S)/Ker(rs) — F(X)/N.

We next observe that the homomorphism ¢ is onto. Indeed, F(X)/N is generated
by elements of the form N = p(¢(x))N, and the latter is the image under ¢ of
q(x) Ker(rmg).

Consider the homomorphism

projo ¢ : F(S)/Ker(rg) - F(X)/Ker(nx)

Both the domain and the target groups are isomorphic to G. Each element z of the
generating set X is sent by the isomorphism G — F(S)/Ker(ng) to q(z) Ker(ng).
The same element z is sent by the isomorphism G — F(X)/Ker(rx) to z Ker(mx).
Note that
proj o ¢ (g(z) Ker(wg)) = proj(zN) = x Ker(mx).

This means that, modulo the two isomorphisms mentioned above, the map projo ¢
is idg. This implies that ¢ is injective, hence, a bijection. Therefore, proj is also
a bijection. This happens if and only if N = Ker(nx). In particular, Ker(mx) is
normally generated by the finite set of relators

R={p(r) |reRyU{a""pg(x)) | 2 € X}.
Since R = ((T')), every relator p € R can be written as a product
I+
icl,
with v; € F(X),t; € T and I, finite. It follows that Ker(7x) is normally generated
by the finite subset

Ty=|J{tiliel,}
pER
of T. O

Proposition 7.29 can be reformulated as follows: If G is finitely presented, X
is finite and
15 N—=>FX)—->G—1

is a short exact sequence, then IV is normally generated by finitely many elements
n1,...,Nk. This can be generalized to an arbitrary short exact sequence:

LEMMA 7.30. Consider a short exact sequence
(7.1) 1-N—=>KS5G—1, withK finitely generated.

If G 1is finitely presented, then N is normally generated by finitely many elements
Ni,...,Nk € N.



PROOF. Let S be a finite generating set of K; then S = 7(9S) is a finite gener-
ating set of (G. Since G is finitely presented, by Proposition 7.29 there exist finitely
many words r1,...,7, in S such that

<§ | r1(S), .. .,rk(§)>

is a presentation of G.

Define n; = r;(S), an element of N by the assumption.

Let n be an arbitrary element in N and w(S) a word in S such that n = w(S) in
K. Then w(S) = m(n) = 1, whence in F(S) the word w(S) is a product of finitely
many conjugates of r1,...,r,. When projecting such a relation via F(S) — K we

obtain that n is a product of finitely many conjugates of ny,...,ng. O

PRrROPOSITION 7.31. Suppose that N a normal subgroup of a group G. If both
N and G/N are finitely presented then G is also finitely presented.

PRrROOF. Let X be a finite generating set of NV and let Y be a finite subset of
G such that Y = {yN | y € Y} is a generating set of G/N. Let (X | r1,...,7%) be
a finite presentation of N and let <7 | p1,- .. ,pm> be a finite presentation of G/N.
The group G is generated by S = X UY and this set of generators satisfies a list
of relations of the following form:

(7.2) ri(X)=1,1<i<k, pj(Y) =u(X), 1<j<m,

(7.3) z¥ = vgy(X), a¥ = Way (X)
for some words u;, Vgy, Wgy in S.

We claim that this is a complete set of defining relators of G.

All the relations above can be rewritten as ¢(X,Y) = 1 for a finite set T of
words ¢t in S. Let K be the normal subgroup of F'(S) normally generated by T

The epimorphism 7g : F(S) — G defines an epimorphism ¢ : F(S)/K — G.
Let wK be an element in Ker(y), where w is a word in S. Due to the set of
relations (7.3), there exist a word w;(X) in X and a word ws(Y) in Y, such that
wK = w(X)ws (Y)K.

Applying the projection 7 : G — G/N, we see that 7(p(wK)) = 1, ie.
m(p(w2(Y)K)) = 1. This implies that wy(Y) is a product of finitely many conju-
gates of p;(Y'), hence wo(Y)K is a product of finitely many conjugates of u;(X)K,
by the second set of relations in (7.2). This and the relations (7.3) imply that
w1 (X)w2(Y)K = v(X)K for some word v(X) in X. Then the image p(wK) =
p(w(X)K) is in N; therefore, v(X) is a product of finitely many conjugates of
relators 7;(X). This implies that v(X)K = K.

We have thus obtained that Ker(y) is trivial, hence ¢ is an isomorphism, equiv-
alently that K = Ker(mwg). This implies that Ker(mg) is normally generated by the
finite set of relators listed in (7.2) and (7.3). O

We continue with a list of finite presentations of some important groups:

EXAMPLES 7.32. (1) Surface groups:
Hn — <a1a bla ceey Qpy, bn|[a1»b1] te [an; bnb 5

is the fundamental group of the closed connected oriented surface of genus
n, see e.g. [Hat02, Mas91].



2)

Right—angled Artin groups (RAAGs). Let G be a finite graph with the
vertex set V' = {x1,...,z,} and the edge set F consisting of the edges
{[xi, x;]}; ;. Define the right-angled Artin group by

Ag = (V|[z;, z;], whenever [z;,z,] € E).
Here we commit a useful abuse of notation: In the first instance [z;, z;]

denotes the commutator and in the second instance it denotes the edge of
G connecting z; to x;.

EXERCISE 7.33. a. If G contains no edges then Ag is a free group on
n generators.
b. If G is the complete graph on n vertices then

Ag =7,
Coxeter groups. Let G be a finite simple graph. Let V and E denote be

the vertex and the edge set of G respectively. Put a label m(e) € N\ {1}
on each edge e = [x;,z;] of G. Call the pair

I':=(G,m: E—N\{1})
a Coxeter graph. Then T' defines the Coxeter group Cr:

Cr:= <xl € Va2, (z2,)™®, whenever there exists an edge e = [xi,xj]> .

(4)

See [Dav08] for the detailed discussion of Coxeter groups.
Artin groups. Let T be a Coxeter graph. Define

Ap = (z; € V| mz;--- = xjz;--- |, whenever e = [z;,2;] € E ).
——— ——
m(e) terms m(e) terms

Then Ar is a right-angled Artin group if and only if m(e) = 2 for every
e € E. In general, Cr is the quotient of Ar by the subgroup normally
generated by the set

{222, €V}

Shephard groups: Let T' be a Coxeter graph. Label vertices of I with
natural numbers n,,z € V(I'). Now, take a group, a Shepherd group,
St to be generated by vertices x € V', subject to Artin relators and, in
addition, relators
", x eV

Note that, in the case n, = 2 for all z € V, the group which we obtain
is the Coxeter group Cr. Shephard groups (and von Dyck groups below)
are complex analogues of Coxeter groups.

Generalized von Dyck groups: Let ' be a labeled graph as in the previous
example. Define a group Dr to be generated by vertices x € V, subject
to the relators
", x eV,
(zy)™) e = [x,y] € E.
If T consists of a single edge, then Dr is called a von Dyck group. Every
von Dyck group Dr is an index 2 subgroup in the Coxeter group Ca,
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where A is the triangle with edge-labels p, ¢, r, which are the vertex-edge
labels of T'.

(7) Integer Heisenberg group:
H2n+1(Z) = <$1, s Ty Y1y ey Yny 2 |

[:Ei?Z] = 17 [yj7z] = 17 [miamj] = 17 [ywyj} = 17 [xwyj] = z(sija 1 < l7] < 7’L> .

(8) Baumslag—Solitar groups:
BS(m,n) = {a,blab™a”! =b"),
where m,n are non-zero integers.

EXERCISE 7.34. Show that Ha,1(Z) is isomorphic to the group appearing in
Example 13.36, (3).

The classes of groups described so far were defined combinatorially, in terms of
their presentations. Below are several important classes of finitely presented groups
which are defined geometrically:

(1) CAT(-1) groups: Groups G which act geometrically on CAT(—1) metric
spaces.

(2) CAT(0) groups: Groups G which act geometrically on CAT(0) metric
spaces.

(3) Automatic groups: We refer the reader to [ECH"92] for the definition.

(4) Hyperbolic and relatively hyperbolic groups, which will be defined in
Chapter 11.

(5) Semihyperbolic groups, see [JA95].

An important feature of finitely presented groups is provided by the following
theorem, see e.g. [Hat02]:

THEOREM 7.35. Ewvery finitely generated group is the fundamental group of a
smooth closed manifold of dimension 4.

Laws in groups.

DEFINITION 7.36. An identity (or law) is a non-trivial reduced word

w=w(xy,...,T,)
in the letters x1, ..., x, and their inverses. A group G is said to satisfy the identity
(law) w = 1 if this equality is satisfied in G whenever z1,...,xz, are replaced by
arbitrary elements in G. In other words, for the group

Q= (x1,...,zo|w),

the pull-back map
Hom(Q,G) — Hom(F,,G)
is surjective.

EXAMPLES 7.37 (Groups satisfying a law). (1) Abelian groups. Here the
law is
w(zy, o) = v197] "1y L



(2) Solvable groups, see section 13.6, equation (13.10).

(3) Free Burnside groups. The free Burnside group

S g,

eyl

B(n,m) = (x1,...,2, | w" for every word w in =

It is known that these groups are infinite for sufficiently large m (see
[Ady79], [OY91a], [Iva94]|, [Lys96]|, [DG] and references therein).

Note that free nonabelian groups (and, hence, groups containing them) do not
satisfy any law.

7.4. The rank of a free group determines the group. Subgroups

PROPOSITION 7.38. Two free groups F(X) and F(Y) are isomorphic if and
only if X and'Y have the same cardinality.

PROOF. A bijection ¢ : X — Y extends to an isomorphism ¢ : F(X) — F(Y)
by Proposition 7.22. Therefore, two free groups F(X) and F(Y) are isomorphic if
X and Y have the same cardinality.

Conversely, let ® : F(X) — F(Y) be an isomorphism. Take N := N(X) <
F(X), the subgroup generated by the subset {g? : g € F(X)}; clearly, N is normal
in F(X). Then, ®(N (X)) = N(Y) is the normal subgroup generated by {h? : h €
F(Y)}. It follows that ® induces an isomorphism ¥ : F(X)/N(X) — F(Y)/N(Y).

LEMMA 7.39. The quotient F := F/N is isomorphic to A = Z;ex, where
F=F(X).

PrROOF. Recall that A has the presentation
(z € X|2%, [z, y),Va,y € X),

see Exercise 7.28. We now prove the assertion of the lemma. Let 7 : F — F denote
the quotient map. Since m(g) = w(g~ ') for all g € F, we conclude that for all
g,he X,

1 =((hg)?) = n(lg, h]),
and, therefore, F is abelian.

Consider the map n : F — A sending the generators of F' to the obvious
generators of A. Since A satisfies the law a? = 1 for all a € A, it is clear that
n = ¢ o, for some homomorphism ¢ : I — A. We next construct the inverse 1
to ¢. We define ¢ on the generators x € X of A: ¢(z) = T = w(z). We need to
show that v preserves the relators of A (as in Lemma 7.27): Since F is abelian,
[¥(z),%(y)] = 1 for all z,y € X. Moreover, ¥(z)? = 1 since F also satisfies the law
g% = 1. Tt is clear that ¢, are inverses to each other. [

Thus, F(X)/N(X) is isomorphic to Z$~, while F(Y)/N(Y) is isomorphic to
79 . 1t follows that Z§~ = Z$Y as Zyvector spaces. Therefore, X and Y have
the same cardinality, by uniqueness of the dimension of vector spaces. O

REMARK 7.40. Proposition 7.38 implies that for every cardinal number n there
exists, up to isomorphism, exactly one free group of rank n. We denote this group
by F,.
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Recall that the rank of a finitely generated group G is the least number of
generators of G. In other words,

rank (G) = min{r : 3 an epimorphism F, — G}.

COROLLARY 7.41. For each finite n, the number n is the least cardinality of a
generating set of Fy,. In other words, rank (F,) = n.

PROOF. If this theorem fails, there exists a epimorphism
h:F(X)—=F(Y), [X|=m<|Y|=n.

This epimorphism projects to an epimorphism of the abelian quotients
h:A=FX)/N(X)— B=FY)/N®Y).

However, A and B are vector spaces over Zsy of dimensions m and n respectively.
This contradicts the assumption that m < n. O

THEOREM 7.42 (Nielsen—Schreier). Any subgroup of a free group is a free group.

This theorem will be proven in Corollary 7.80 using topological methods; see
also [LS77, Proposition 2.11].

7.5. Free constructions: Amalgams of groups and graphs of groups

7.5.1. Amalgams. Amalgams (amalgamated free products and HNN exten-
sions) allow one to build more complicated groups starting with a given pair of
groups or a group and a pair of its subgroups which are isomorphic to each other.

Amalgamated free products. As a warm-up we first define the free product
of groups G1 = (X1|R1) , G2 = (X2|R2) by the presentation:

GixG2 = (G1,Ga| ),
which is a shorthand for the presentation:
(X1 U X5|Ry URs).

For instance, the free group of rank 2 is isomorphic to Z x Z.

More generally, suppose that we are given subgroups H; < G; (i = 1,2) and an
isomorphism

¢ : H1 — H2 .
Define the amalgamated free product
G1*H,~H, G2 = <G1, G2|¢(h)h71, h e H1> .
In other words, in addition to the relators in G1, Gy we identify ¢(h) with h for
each h € Hy. A common shorthand for the amalgamated free product is
G1 *n Ga,

where H & Hy & H, (the embeddings of H into G; and G4 are suppressed in this

notation).

HNN extensions. This construction is named after G. Higman, B. Neumann
and H. Neumann who first introduced it in [HNN49|. It is a variation on the
amalgamated free product where G; = G5. Namely, suppose that we are given
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a group G, its subgroup H and a monomorphism ¢ : H — G. Then the HNN
extension of G wvia ¢ is defined as

Gxp,p = (G, ttht ' = ¢(h),Vh € H).
A common shorthand for the HNN extension is
Gxy
where the monomorphism ¢ is suppressed in this notation.
EXERCISE 7.43. Suppose that H is the trivial subgroup. Then
Gxg 2 G+ Z.

EXERCISE 7.44. Let G = (S|R), where R is a single relator which contains each
letter x € X exactly twice (possibly as 2~1). Show that G is isomorphic to the free
product of the fundamental group of a closed surface and a free group. Give an
example where the free factor is non-trivial.

More generally, one defines simultaneous HNN extension of G along a collec-
tion of isomorphic subgroups: Suppose that we are given a collection of subgroups
Hj,j € J of G and isomorphic embeddings ¢; : H; — G. Then define the group

Gty —ajes = (Goty,j € J|t;ht; " = ¢;(h),Yh € Hj,j € J).

7.5.2. Graphs of groups. In this section, graphs are no longer assumed to
be simplicial, but are assumed to connected. The notion of graphs of groups is
a very useful generalization of both the amalgamated free product and the HNN
extension.

Suppose that I' is a graph. Assign to each vertex v of I' a vertex group G;
assign to each edge e of I' an edge group G.. We orient each edge e so that its head
is ey and the tail is e_ (this allows for the possibility that e, = e_). Suppose,
furthermore, that for each edge e we are given monomorphisms

Ge, 1Ge = GeyyPe_ 1 Ge — Ge_.
REMARK 7.45. More generally, one can allow non-injective homomorphisms

G.— G Ge — Ge_,

€4

but we will not consider them here, see [Mas91].

The oriented graph I' together with the collection of vertex and edge groups
and the monomorphisms ¢, is called a graph of groups G based on the graph I'.

Our next goal is to convert (connected) graphs of groups G into groups. We
first do this in the case when I is simply-connected, i.e. is a tree.

DEFINITION 7.46. Suppose that T' is a tree. The fundamental group n(G) =
m1(G) of a graph of groups based on a tree I' is a group G satisfying the following:
1. There is a collection of compatible homomorphisms

Gy, —»G,G. = GueV({I),eec ET),
i.e. that whenever v = e, we have the commutative diagram
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Gv
Ge -G

2. The group G is universal with respect to the above property, i.e. given any
group H and a collection of compatible homomorphisms G, — H,G. — H, there
exists a unique homomorphism G — H such that we have commutative diagrams

AN

Note that the above definition easily implies that G = 7(G) is unique (up to an
isomorphism). For the existence of 7(G) see [Ser80] and the discussion below. It is
also a non-trivial (but not a very difficult to prove) fact that the homomorphisms
G, — G are injective.

Suppose now that I' is connected but not simply-connected. We then let T' C
I' be a maximal subtree and 7 C G be the corresponding subgraph of groups.
Set Gr := w(T). For each edge e = [v,w] € E(I') which is not in T, we have
embeddings 1., obtained by composing ¢.. : G = Gy,G, with embeddings
Gy, Gy — Gp. Thus, for each edge e which is not in 7', we have two isomorphisms
G. — GF < G and, accordingly, we obtain isomorphisms G — G7. Lastly, using
these isomorphisms, define the simultaneous HNN extension G of Gp. Lastly, set

©(G) =G.

Whenever G 2 7(G), we will say that G determines a graph of groups decom-
position of G. The decomposition G is called trivial if there is a vertex v so that
the natural homomorphism G, — G is onto.

for all v € V(T).

EXAMPLE 7.47. 1. Suppose that the graph I" consists of a single edge e whose
head ey is the vertex called 2 and the tail e_ is the vertex called 1. Assume that
Qse, (Ge) =H; < Gla ¢e+(Ge) = Hy < G3. Then

W(g) = G1 *H,~H, GQ.

2. Suppose that the graph I' is a monogon, consisting of an edge e connecting
the vertex called 1 to itself. Suppose, furthermore, ¢._(G.) = H1 < G1, ¢, (Ge) =
H2 g Gl. Then

m(G) = G1 *H,~H, -
Once this example is understood, one can show that for every graph of groups G,
the group 1 (G) exists by describing this group in terms of generators and relators in

the manner similar to the definition of the amalgamated free product and the HNN
extension. In the next section we will see how to construct 71 (G) using topology.
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7.5.3. Converting graphs of groups into amalgams. Suppose that G is
a graph of groups and G = 71(G). Our goal is to convert G into an amalgam
decomposition of G. There are two cases to consider:

1. Suppose that the graph I" underlying G contains a oriented edge e = [v1, v3]
so that e separates T' in the sense that the graph I obtained form I' by removing
e (and keeping vy, vs) is a disjoint union of connected subgraphs T'; U 'y, where
v; € V(T;). Let G; denote the subgraph in the graph of groups G, corresponding to
T';,2=1,2. Then set

G :=m(G;), i=12 G3:=0Ge.

We have composition of embeddings G, = G,, = G; — G. Then the universal
property of 71 (G;) and 71(G) implies that G & G *g, G2: One simply verifies that
G satisfies the universal property for the amalgam G ¢, Ga.

2. Suppose that T' contains an oriented edge e = [v1,v2] such that e does not
separate I'. Let I'y := I, where I" is obtained from I' by removing the edge e as
in the Case 1. Set G; := 71(G;) as before. Then the embeddings

Ge — Gy, i =1,2

induce embeddings G, — G; with the images Hi, Hy respectively. Similarly to the
Case 1, we obtain

G = Gl*Ge = Gl*ngHz
where the isomorphism H; — Hs is given by the composition
Hy — G, — Hs.

Clearly, G is trivial if and only if the corresponding amalgam G; g, G2 or
G1*q, is trivial.

7.5.4. Topological interpretation of graphs of groups. Let G be a graph
of groups. Suppose that for all vertices and edges v € V(') and e € E(T') we
are given connected cell complexes M, , M, with the fundamental groups G,, G,
respectively. For each edge e = [v, w] assume that we are given a continuous map
fey + Me — M., which induces the monomorphism ¢., . This collection of spaces
and maps is called a graph of spaces

G = {My, M, fe, : M. — M., :veV(T),ec ET)}.

In order to construct Gy, starting from G, recall that each group G admits a
cell complex K (G, 1) whose fundamental group is G and whose universal cover is
contractible, see Section 5.8.2. Given a group homomorphism ¢ : H — G, there
exists a continuous map, unique up to homotopy,

f:K(H,1) — K(G,1)

which induces the homomorphism ¢. Then one can take M, := K(G,,1), M, :=
K(Ge, 1), etc.

To simplify the picture (although this is not the general case), the reader can
think of each M, as a manifold with several boundary components which are home-
omorphic to M,, M,,,..., where e; are the edges having v as their head or tail.
Then assume that the maps f., are homeomorphisms onto the respective boundary
components.



For each edge e we form the product M, x [0,1] and then form the double
mapping cylinders for the maps f._, i.e. identify points of M. x {0} and M, x {1}
with their images under f._ and f., respectively. Let M denote the resulting cell
complex. It then follows from the Seifert—Van Kampen theorem [Mas91]| that

THEOREM 7.48. The group m (M) is isomorphic to w(G).

This theorem allows one to think of the graphs of groups and their fundamental
groups topologically rather than algebraically.

EXERCISE 7.49. Use the above interpretation to show that for each vertex
v € V(T') the canonical homomorphism G, — 7(G) is injective.

EXAMPLE 7.50. The group F(X) is isomorphic to m1(V,exSh).

7.5.5. Constructing finite-index subgroups. In this section we use the
topological interpretation of graphs of groups in order to construct finite-index
subgroups. The main result (Theorem 7.52) will be used in the proof of quasi-
isometric rigidity of virtually free groups in Chapter 20.

Let G be a finite graph of groups. Suppose that we are given a compatible
collection of finite index subgroups G < G,,G, < G. for each vertex and edge
group of G, i..e, a collection of subgroups such that whenever v = e, we have

Gy N ey (G/e) = G; N Pe. (GE)-
We refer to this equality as the compatibility condition.
THEOREM 7.51. For every compatible collection of finite-index subgroups as
above, there exists a finite-index subgroup G' < G such that
GnG,=G), GnNG.=G,
for every vertex v and edge e. Furthermore, G' = w1(G'), where G’ is another finite
graph of groups, for which there exists a morphism of graphs of groups
p:G' =g
imnducing the inclusion G' — G.
PROOF. This theorem is proven by John Hempel in [Hem87| (Theorem 2.2).
Our proof mostly follows his arguments.
Let T' denote the graph underlying G. For each vertex group G, (resp. edge
group G.) of G we let X, (resp. X.) denote a classifying space of this group. Then,

as in Section 7.5.4, we convert the graph of groups G into a graph of spaces X, with
vertex spaces X, and edge spaces X.. We will use the notation

fer 1 Xe = Xey

for the attaching maps inducing the monomorphisms ¢, . It will be convenient to
assume that distinct attaching maps have disjoint images.

We will construct the subgroup G’ as the fundamental group of another graph
of spaces X’ which admits a finite cover p : X’ — X, such that G’ = p,.(m(X")).
The group inclusions G, — G,, G, — G, are induced by finite covers of spaces

X! — X, X.— X..

We now assemble the spaces X!, X! into a finite connected graph of spaces X’. We
let d,,d. denote the degrees of these covers, i.e.

d, = |G, : G| .
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Set

d= H dy .

veV(T")

Now, for each v € V(T') we let X, denote the disjoint union of d/d, copies of X! .

We will use the notation X for components of X,.

Our next goal is to describe how to connect components X, to each other via
copies of the double mapping cones for the maps X, — X/. We then observe that
by the definition of X, and the compatibility assumption, for each edge e with
et = v,e_ = w, the number of components preimages of f., (X.) in X, equals
the number of components of preimages of f. (X.) in X,,. We therefore, match
these subsets of X,,, X, in pairs. For every such pair, we connect the corresponding
vertices v;, w; by an edge e;;. This defines a new graph [’ whose vertices are v;’s
and edges are e;;’s, where v runs through the vertex set of I'. The graph I'is, a
priori, disconnected, we pick a connected component IV of this graph.

We then construct a graph of spaces X’ based on I' as follows. For each vertex
v;, we take, of course, X, as the associated vertex space. For every edge e;; define

X, =X{
where e;; corresponds to the matching of preimages of f., (Xe). Accordingly, we
let the map

feijJr : Xéij - Xllh
be the lift of the attaching map f., : X — X,. Note that these lifts exist by the
compatibility assumption. We do the same for the vertex e;;—. As the result, we

obtain a connected graph of spaces.
We leave it to the reader to verify that the covering maps

X, = Xo, Xl X

assemble to a covering map X’ — X. This covering map is finite-to-one by the
construction. It induces an embedding G’ = m(X') — G = m(X). Again, by
construction, this embedding satisfies the requirements of the theorem. ([

As an application we obtain:

THEOREM 7.52. Let G be a finite graph of finite groups. Then its fundamental
group G = m1(G) is virtually free.

PROOF. For each vertex group G, of G we let G < G, be the trivial subgroup;
we make the same choice for the edge groups. Let G/ < G denote the finite-index
subgroup and the morphism

G =g
given by Theorem 7.51. By construction, G’ has trivial vertex groups. Hence, for
the underlying graph IV of G’ we obtain

G/ =T (F/)
which is free. O



7.5.6. Graphs of groups and group actions on trees. An action of a
group G on a tree T is an action G ~ T such that each element of G acts as an
automorphism of T, i.e. such action is a homomorphism G — Aut(T). A tree T
with the prescribed action G ~ T is called a G—tree. An action G ~ T is said to be
without inversions if whenever g € G preserves an edge e of T', it fixes e pointwise.
The action is called bounded (or trivial) if there is a vertex v € T fixed by the entire
group G.

REMARK 7.53. Later on, in Chapter 11, we will encounter more complicated
(non-simplicial) real trees and group actions on such trees.

Our next goal is to explain the relation between the graph of groups decompo-
sitions of G and actions of G on simplicial trees without inversions.

Suppose that G 2 7(G) is a graph of groups decomposition of G. We associate
with G a graph of spaces M = Mg as in Section 7.5.4. Let X denote the universal
cover of the corresponding cell complex M. Then X is the disjoint union of the
copies of the universal covers M,,, M, x (0,1) of the complexes M, and M, x (0,1).
We will refer to this partitioning of X as the tiling of X. In other words, X has the
structure of a graph of spaces, where each vertex/edge space is homeomorphic to
M,,v € V(I'), M, x [0,1],e € E(T"). Let T denote the graph _corresponding to X
Each copy of M, determines a vertex in 7' and each copy of M, x [0,1] determines
an edge in T

EXAMPLE 7.54. Suppose that I" consists of two vertices 1 and 2 and the edge
[1,2] connecting them, M7 and M are surfaces of genus 1 with a single boundary
component each. Let M, be the circle. We assume that the maps f., are homeo-
morphisms of this circle to the boundary circles of My, My. Then, M is a surface
of genus 2. The graph T is sketched in Figure 7.1.

The Mayer—Vietoris theorem, applied to the above tiling of X, implies that
0= H(X,Z) = Hi(T,Z). Therefore, T = T(G) is a tree. The group G = 71 (M)
acts on X by deck-transformations, preserving the tiling. Thus, we obtain the
induced action G ~ T. If g € G preserves some M, x (0,1), then g comes from the
fundamental group of M.. Therefore, such g also preserves the orientation on the
segment [0,1]. Hence, the action G ~ T is without inversions. Observe that the
stabilizer of each M, in G is conjugate in G to m1(M,) = G,,. Moreover, T/G =T.

EXAMPLE 7.55. Let G = BS(n,m) be the Baumslag-Solitar group described
in Example 7.32, (8). The group G clearly has the structure of a graph of groups
since it is isomorphic to the HNN extension of 7Z,

VAS: N9

where the subgroups H;, Ho C Z have the indices n and m respectively. In order to
construct the cell complex K (G, 1), take the circle St = M,,, the cylinder St x [0, 1]
and attach the ends to this cylinder to M, by the maps of the degrees p and
q respectively. Now, consider the associated G-tree T. Its vertices have valence
n+m: Each vertex v has m incoming and n outgoing edges so that for each outgoing
edge e we have v = e_ and for each incoming edge we have v = ey. The vertex
stabilizer G, & Z permutes (transitively) incoming and outgoing edges among each
other. The stabilizer of each outgoing edge is the subgroup H; and the stabilizer of
each incoming edge is the subgroup Hs. Thus, the action of Z on the set of incoming
edges is via the group Z/m and on the set of outgoing edges via the group Z/n.
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A=5"x[0,1]

FIGURE 7.1. Universal cover of the genus 2 surface.

outgoing
incoming

FIGURE 7.2. Tree for the group BS(2,3).

LEMMA 7.56. The action G ~ T is bounded if and only if the graph of groups
decomposition of G is trivial.

PROOF. Suppose that G fixes a vertex v € T. Then m (M,) = G, = G, where
v € I' is the projection of v. Hence, the decomposition of G is trivial. Conversely,
suppose that G, maps onto G. Let v € T be the vertex which projects to v. Then
m1(M,) is the entire 71 (M) and, hence, G preserves M. Therefore, the group G
fixes 0. ([

Conversely, each action of G on a simplicial tree T yields a realization of G as
the fundamental group of a graph of groups G, such that T = T(G). Here is the
construction of G. Furthermore, an unbounded action leads to a mon-trivial graph
of groups.
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If the action G ~ T has inversions, we replace T" with its barycentric subdivision
T’. Then G acts on T’ without inversions. If the action G ~ T is unbounded, so
is G ~ T'. Thus, from now on, we assume that G acts on T without inversions.
Then, the quotient T/G is a graph I': V(T') = V(T)/G and E(T') = E(T)/G. For
every vertex v and edge € of T we let Gz and Gz be their respective stabilizes in
G. Clearly, whenever € = [0, W], we get the embedding

G: — G3.
If g € G maps oriented the edge é = [0,w] to an oriented edge & = [¢/, @], we
obtain isomorphisms
Gy = Gy, Gp— Gw, Gs:— Go
induced by conjugation via g and the following diagram is commutative:
Ge Gy

Ge (€7
We set G, := G5, Ge := G&, where v and e are the projections of ¥ and edge € to I'.
For every edge e of I' oriented as e = [v, w], we define the monomorphism G, — G,
as follows. By applying an appropriate element g € G as above, we can assume
that & = [0, w]. We then define the embedding G. — G, to make the diagram

commutative. The result is a graph of groups G. We leave it to the reader to
verify that the functor (G ~ T) — G described above is the inverse of the functor
G — (G~ T) for G with G = 71(G). In particular, G is trivial if and only if the
action G ~ T is bounded.

DEFINITION 7.57. G — (G ~ T) — G is the Bass—Serre correspondence be-
tween realizations of groups as fundamental groups of graphs of groups and group
actions on trees without inversions.

We refer the reader to [SWT79| and [Ser80]| for further details on the Bass—
Serre correspondence. Below is a simple, yet non-obvious, example of application
of this correspondence:

LEMMA 7.58. Suppose that G is countable, but not finitely generated. Then G
admits a non-trivial action on a simplicial tree.

PRrROOF. Using countability of GG, enumerate the elements of the group G and
define an exhaustion of G by finitely generated subgroups:

G1 <G <G3< ...
where G 11 = (Gp, gn+1). The inclusion homomorphisms
Lp © Gn — Gn+1
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determine an infinite graph of groups, where vertices are labeled v,,n € N, the
vertex groups are G, = Gy, the edge groups are

Gen =Gn, ep= [Unavn—i-l]
and the map G., — G,, is the identity, while the map G., — G, ., is t,. We

claim that the fundamental group 71 (G) of this graph of groups is G itself. Indeed,
we have natural inclusion homomorphisms

fn:Gp— G.
If H is a group and h,, : G,, - H are homomorphisms, such that
thrl |Gn = hn7

then h,’s determine a homomorphism h : G — H by h(g) = hy,(g) whenever
g € G,. Uniqueness of h is also clear. Thus, G satisfies the universality property
in the definition of 7 (G) and, hence, G = 71(G).

Next, none of the vertex groups GG,, maps onto G via the inclusion homomor-
phism ¢,. Therefore, the action G ~ T of G on a simplicial tree, defined by the
Bass—Serre correspondence, is non-trivial and without inversions. [

7.6. Ping-pong lemma. Examples of free groups

The ping-pong lemma is a simple, yet powerful, tool for constructing free groups
acting on sets. We will see in Chapter 15 how ping-pong is used for the proof of
the Tits Alternative.

We begin with the ping-lemma, a version of the ping-pong lemma for semi-
groups:

LEMMA 7.59 (Ping-pong for semigroups). Let X be a set, and let g : X — X
and h : X — X be two injective maps. Suppose that A C X is a non-empty
subset such that g(A),h(A) are disjoint subsets of A. Then g,h generate a free
subsemigroup of rank 2 in the semigroup of self-maps X — X. Moreover, for two
distinct words w,w’ in the generators g, h,

w(A)Nw'(A) = 0.

PRrROOF. Let w,w’ be distinct non-empty words in the alphabet g, h. We claim
that w(A) Nw’(4) = 0. We prove this by induction on the maximum of lengths
L(w), £(w") of w,w’. If both w, w’ have unit length the claim is immediate. Suppose
that the claim holds for all words w,w’ such that max(¢(w),(w")) < n. Let w,w’
be distinct non-empty words in g, h such that ¢(w) < £(w’) = n+ 1. The words
w,w’ either have the same first letter (the prefix), or distinct prefixes. Suppose first
that w,w’ have the same prefix x € {g, h}; then

w=zu w=azu, y#y, max(l(u),l(u)) <n.
Then, by the induction hypothesis,
w(A) Nl (A) = 0.

Injectivity of x implies that the sets w(A) = zu(A4) and w’'(A4) = zu'(A) are also
disjoint, as claimed. Suppose, next, that w,w’ have distinct prefixes:

w=zu w =2, {z,2'}={g,h}.
Then w(A) C z(A), w'(A) C a'(A) are disjoint and the claim follows. O
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EXERCISE 7.60. Suppose that ¢ € Bij(X) is a bijection such that for some
ACX,
g(A) € A

Then g has infinite order.

We next consider ping-pong for groups of bijections. The setup for the ping-
pong lemma is a pair of bijections g1, g2 € Bij(X) (“ping-pong partners”) and a
quadruple of non-empty subsets

Bfc X, i=1,2
whose union is B C X. Define
C:=B\B;,C; =B\B, i=12.
We require that:
Cii ¢ B]j-[ and C’ilL 04 B;-F for all choices of 7, j and +, —.

Typically, this is achieved by assuming that all the four sets Bf[7 B;[ are pairwise
disjoint and non-empty.

LEMMA 7.61 (Ping-pong, or table-tennis, lemma). Let X, Bii, C’ii be as above,
and suppose that
g (G CBE, i=12
Then the bijections g1, ge generate a rank 2 free subgroup of Bij(X).

PROOF. Let w be a non-empty reduced word in {g,¢g~!,h,h~1}. In order to
prove that w corresponds to a non-identity element of Bij(X), it suffices to check
that w(CJlL) C B for some i, and for some choice of + or —. We claim that
whenever w has the form

w = g;  ug; ",
we have

w(CF) C Bf.
This would immediately imply that w does not represent the identity map X — X.
The claim is proven by induction on the length ¢(w) of w as in the proof of Lemma
7.59. The statement is clear if £(w) = 1. Suppose it holds for all words w’ of length
n, we will prove it for words w or length n + 1. Such w has the form

w =g, f(w')=n.
Since the prefix of w’ cannot equal g;° ! (as w is a reduced word), it follows from
the induction hypothesis that (for some j and a choice of 4, —)
+ +

w'(C5) C CFF.

Since
g0 (CF) € gF(CF) ¢ BE,

the claim follows. O

Lemma 7.61 extends to the case of free products of subgroups. The setup for
this extension is a collection {G; : ¢ € I} of subgroups of Bij(X), and of subsets
A; C X (i € I), whose union is denoted

A=JA.
i€l
For each A; define A = A\ A;.



LEMMA 7.62 (The ping-pong lemma for free products). Given the above data,
suppose that:

(1) For each pairi,j € I,
AT ¢ A
(2) For eachi €I and all g € G; \ {1}, we have the inclusion
g(A7) C A;.
Then the natural homomorphism
¢ : xie1Gi — Bij(X), ¢|Gi =1Idg,,i € I,
is a monomorphism.

PRrOOF. Consider a non-trivial word w in the alphabet
U Gi7
il
where no two consecutive letters belong to the same Gj. Suppose that w has the
prefix g; € G; \ {1} and the suffix g; € G; \ {1}. We claim that

The proof is the induction on the length ¢(w) of w. The claim is clear for ¢(w) = 1.
Suppose that the claim holds for all words w’ of the length n and let w be a word
of the length n + 1. Then w has the form

w=gw, Lw)=n,
where the suffix of w’ is g; € G;. Since the prefix of w’ cannot equal to an element
of G, it follows from the induction hypothesis that
w'(A5) C A;.
Hence, w(A$) C gi(Af) C A;. Since A ¢ A;, we conclude that w(A§) # A§ and,
hence, w # Id. It follows that the homomorphism ¢ is injective. (Il

In the following example we illustrate both forms of ping-pong.

EXAMPLE 7.63. For any real number r > 1 the matrices

(1 7 d710
N=\o 1) MER=r 1

generate a free subgroup of SL(2,R).
First proof. The group SL(2,R) acts (with the kernel =) on the upper half plane
H? = {2 € C | $(2) > 0} by linear fractional transformations

az+b

cz+d’

Define quater-planes
Bf ={z€H?: R(2) >r/2, By ={zcH?*:R(z) < —r/2}
and open disks
B ::{z€H2:|z—1\<1}, By ::{z€H2:|z+l\<1}.
T r r r
The reader will verify that gy, B,f, k = 1,2 satisfy the assumptions of Lemma 7.61.
It follows that the group (g1, g2) is free of rank 2.
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g1

g2

0 2
r
FIGURE 7.3. Example of ping-pong.

Second proof. The group SL(2,R) also acts linearly on R?. Consider the infinite
cyclic subgroups G = {(gx), i = 1,2 of SL(2,R). Define the following subsets of R?

= {(2) e {(5) e

Then for each g € G1 \ {1}, g(A2) C A; and for each g € G2\ {1}, g(41) C As.
Therefore, the subgroup of SL(2,R) generated by g1, g is free of rank 2 according
to Lemma 7.62. O

REMARK 7.64. The statement in the Example 7.63 no longer holds for r = 1.
Indeed, in this case we have

4o (1 A 10 1 -1\ _ (0 1
919291 =\ o 1 11 o 1 )~ \U=10)"

Thus, (g7 ! 9291 1)2 = I, and, hence, the group generated by g1, g2 is not free.

7.7. Free subgroups in SU(2)

As an application of ping-pong in SL(2,R) and the formalism of algebraic
groups, we will now give a “cheap” proof of the fact that the group SU(2) contains
a subgroup isomorphic to Fs, the free group on two generators:

LEMMA 7.65. The subset of monomorphisms Fo — SU(2) is dense (with respect
to the classical topology) in the variety Hom(Fz, SU(2)) = SU(2) x SU(2).

PRrROOF. Consider the space V.= Hom(Fy, SL(2,C)) = SL(2,C) x SL(2,C);
every element w € Fy defines a polynomial function

fw:V = SL2,C),  fulp) = pw).

Since SL(2,R) < SL(2,C) contains a subgroup isomorphic to Fy (see Example
7.63), it follows that for every w # 1, the function f,, takes values different from 1.
In particular, the subset E,, := f, (1) is a proper (complex) subvariety in V. Since
SL(2,C) is a connected complex manifold, the variety SL(2,C) is irreducible; hence,
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V is irreducible as well. Tt follows that for every w # 1, E,, has empty interior (in
the classical topology) in V. Suppose that for some w # 1, the intersection

E!, := E, N SU(2) x SU(2)

contains a non-empty open subset U. In view of Exercise 5.51, SU(2) is Zariski
dense (over C) in SL(2,C); hence, U (and, thus, E,,) is Zariski dense in V. It then
follows that E,, = V, which is false. Therefore, for every w # 1, the closed (in the
classical topology) subset E! C Hom(F»,SU(2)) has empty interior. Since Fj is
countable, by Baire category theorem, the union

E:=JE,
w#1
has empty interior in Hom(Fy,SU(2)). Since every p ¢ E is injective, lemma
follows. O

Since the group SU(2)/{%I} is isomorphic to SO(3), we also obtain:

COROLLARY 7.66. The subset of monomorphisms Fy — SO(3) is dense in the
variety Hom(F», SO(3)).

7.8. Ping-pong on projective spaces

We will frequently use the Ping-pong lemma in the case when X is a projective
space. This application of the ping-pong argument is the key for the proof of the
Tits Alternative.

Let V be an n-dimensional space over a local field K, the reader should think
of R,C, or Q,. We endow the projective space P(V') with the metric d as in Section
2.9. We refer the reader to Section 2.10 for the notion of proximality, attractive
points A, € P(V) and exceptional hyperplanes E, C P(V) for proximal projective
transformations.

DEFINITION 7.67. Two proximal elements g,h € GL(V) will be called ping
partners if
A, ¢ En, Ap ¢ E,.
Two very proximal elements g,h € GL(V) will be called ping-pong partners if
all four pairs pairs (g,h),(g,h~ 1), (g7, h) and (g~ !,h™!) are ping-partners. In
particular, the four points Ay, Agj-1, Ay, Ap—1 are all distinct.

For instance, if n = 2, then g, h are ping-pong partners if and only if they are
both proximal and their four fixed points in the projective line P(V') are pairwise
distinct.

LEMMA 7.68. Assume that g,h € GL(n,K) are ping partners. Then there exists
a positive integer N such that for all m > N, the powers g and h™ generate a
rank two free subsemigroup of GL(n,K). Similarly, if g, h are ping-pong partners,
then there exists N such that for allm > N, g™ and h™ generate a rank two free

subgroup of GL(n,K).

PrOOF. We prove the statement about ping-pong partners, since its proof will
contain the proof in the case of ping-partners. Define

1
e= B min (diSt(Ag, H(g)UELUE,-1), dist(Ag—l,Eg—l UE,UE,-1),
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dist(An, E, UH(g) U ng1), dist(Ap-1, Ep-1 U H(g) U ng1)) .

Since g, h are ping-pong partners, ¢ > 0. Next, by Corollary 2.87, there exists N
such that for all m > N we have:

1. g*™: P(V) = P(V) maps the complement of the e-neighborhood of E,+:1
inside the ball of radius ¢ and center A +1.

2. h™™ maps the complement of the e-neighborhood of Ej+1 inside the ball of
radius € and center Aj+1.

Set
A:=B(Ag,e) UB(Ay-1,¢)
and
B := B(Ap,e) U B(Ap-1,¢).
Clearly,
g"™(A) C B
and
r*™(B) C A

for every k € Z \ {0}. Hence, by Lemma 7.62, regarded as projective transforma-
tions, g" and h™ generate a free subgroup of rank 2 in PGL(n,K). Therefore, the
same holds for ¢, h™ € GL(n,K), see Lemma 7.24. O

7.9. Cayley graphs

One of the central themes of Geometric Group Theory is treating groups as
geometric objects. The oldest, and most common, way to ‘geometrize’ groups,
by their Cayley graphs. Other ‘geometrizations’ of groups are given by simplicial
complexe