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Preface

The past two decades represent a period of explosive growth in 4-manifold
theory. From a desert of nearly complete ignorance, the theory has flourished
into a virtual rain forest of ideas and techniques, a lush ecosystem supporting
complex interactions between diverse fields such as gauge theory, algebraic
geometry and symplectic topology, in addition to more topological ideas.
Numerous books are appearing that discuss smooth 4-manifolds from the
viewpoint of other disciplines. The present volume is intended to introduce
the subject from a topologist’s viewpoint, bridging the gaps to other dis-
ciplines and presenting classical but important topological techniques that
have not previously appeared in expository literature.

For a better perspective on the rise of 4-manifold theory, it is useful to
consider the history of topology. Manifolds have been a central theme of
mathematics for over a century. The topology of manifolds of dimensions
≤ 2 (curves and surfaces) has been well understood since the nineteenth cen-
tury. Although 3-manifold topology is much harder, there has been steady
progress in the field for most of the twentieth century. High-dimensional
manifold topology was revolutionized by the s-cobordism and surgery theo-
rems, which were developed in the 1960’s into powerful tools for analyzing
existence and uniqueness questions about manifolds of dimension ≥ 5. The
resulting theory has long since matured into a subject with a very alge-
braic flavor. In dimension 4, however, there was not enough room to apply
the fundamental “Whitney trick” to prove these theorems, and as a result,
very little was known about 4-manifold topology through the 1970’s. The
first revolution came in 1981 with Michael Freedman’s discovery that the
Whitney trick could be performed in dimension 4, provided that we ignore
smooth structures and work with the underlying topological manifolds up

xi

                

                                                                                                               



xii Preface

to homeomorphism (and provided that the fundamental group is suitably
“small”). The resulting theory [FQ] led quickly to a complete classifica-
tion of closed, simply connected topological 4-manifolds, and topological 4-
manifold theory now seems closely related to the theory of high-dimensional
manifolds. Freedman’s revolution was immediately followed by the 1982
counterrevolution of Simon Donaldson. Using gauge theory (differential ge-
ometry and nonlinear analysis), Donaldson showed that smooth 4-manifolds
are much different from their high-dimensional counterparts. In fact, the
predictions made by the s-cobordism and surgery conjectures for smooth
4-manifolds failed miserably, resulting in a dramatic clash between the the-
ories of smooth and topological manifolds in this dimension. For example,
this is the only dimension in which a fixed homeomorphism type of closed
manifold is represented by infinitely many diffeomorphism types, or where
there are manifolds homeomorphic but not diffeomorphic to Rn. (In fact,
there are uncountably many such “exotic R4’s”.) One might think of dimen-
sion 4 as representing a phase transition between low- and high-dimensional
topology, where we find uniquely complicated phenomena and diverse con-
nections with other fields. Donaldson’s program of analyzing the self-dual
Yang-Mills equations [DK] was central to smooth 4-manifold theory for 12
years, until it was superseded in 1994 (several revolutions later) by analysis
of the Seiberg-Witten equations [KKM], [Mr1], [Sa], which simplifies and
expands Donaldson’s original approach and results.

The results of gauge theory, from Donaldson through the Seiberg-Witten
equations, are primarily in a negative direction, and require balance by
positive results. That is, gauge theory proves the nonexistence of smooth
manifolds satisfying various constraints, the nonexistence of connected-sum
splittings, and the nonexistence of diffeomorphisms between pairs of mani-
folds. One needs a different approach for the corresponding existence results.
While many useful examples come from algebraic geometry [BPV] and sym-
plectic topology [McS1], perhaps the most powerful general technique for
existence results (particularly for manifolds with small Betti numbers) is
Kirby calculus. This technique, which allows one to see the internal struc-
ture of a 4-manifold (or its boundary 3-manifold) without loss of information,
was created and developed into a fine art in the late 1970’s by topologists
such as Akbulut, Fenn, Harer, Kaplan, Kirby, Melvin, Rourke, Rolfsen and
Stern. However, the theory was handicapped by the pre-Donaldson absence
of any way to prove negative results. Much time was spent on ambitious
goals that gauge theory now shows are impossible. Eventually, the theory
was abandoned by all but the most stalwart practitioners. Since the ad-
vent of gauge theory, however, Kirby calculus has entered a Renaissance.
Armed with the knowledge of what not to attempt, topologists are using

                

                                                                                                               



Preface xiii

the calculus to construct new manifolds with novel gauge-theoretic proper-
ties, some of which are nonalgebraic or even nonsymplectic, and to show
that other examples are diffeomorphic or to decompose them into simple
pieces. The insight provided by the calculus into the internal structure of
manifolds meshes with gauge theory to create an even more powerful tool
for analyzing 4-manifolds. In addition, surprising connections have emerged
with affine complex analysis and contact topology [G13], [G14] since a dis-
covery of Eliashberg led to a theory of Kirby diagrams for representing Stein
surfaces.

One of the main goals of the present book is to provide an exposition
of Kirby calculus that is both elementary and comprehensive, since there
appears to be no previous reference in the literature that satisfies either
of these conditions. We have attempted a complete exposition, providing
careful proofs of the main theorems and constructions, either directly or
through references to the literature (notably to [M4] and [RS] for careful
treatments of handlebody theory in general dimensions). This is at least
partly to avoid conveying a false impression of Kirby calculus as being “just
pictures and not proofs”. For easy reference, we have included an index of
important diagrams, following the glossary of notation in Chapter 13. The
reader should note that we have included Kirby diagrams representing all
of the main types of closed, simply connected 4-manifolds (as viewed from
the current perspective of the theory), namely complex surfaces of rational,
elliptic and general type, a symplectic but noncomplex manifold and an
irreducible nonsymplectic one. (We have also included an example with
even b±2 that might be irreducible.) Chapter 13 also provides an index for
Kirby moves and related operations such as Rolfsen moves, Gluck twists
and logarithmic transformations. The text has been liberally sprinkled with
exercises intended to increase the reader’s comprehension; many of these are
labelled with an asterisk and solved in Chapter 12.

The remaining goal of the book is to introduce 4-manifold theory in its
current state. There are many books avaliable on the subject, but ours is
almost unique in describing the theory from the point of view of differential
topology. The other reference from this viewpoint is Kirby [K2]; our text
is intended to be complementary to it. Parts of the text were inspired by
Harer, Kas and Kirby [HKK]; where overlap occurs we have tried to choose
a more elementary and leisurely approach. There are many references for
gauge theory as applied to 4-manifolds, notably [DK] (one of the most re-
cent references from the viewpoint of the self-dual equations), and [KKM],
[Mr1], [Sa] on Seiberg-Witten theory. These provide detailed treatments,
so our approach to gauge theory is to sketch the main ideas and applica-
tions with references for details. Similarly, the theory of complex surfaces is
covered in detail in [BPV], and symplectic topology is carefully treated in
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[McS1], so we again focus on the main applications to 4-manifold topology
while avoiding unnecessary coverage of other aspects of these theories. For
topological 4-manifolds, the reader is referred to [FQ] after our brief discus-
sions. Although we treat Rolfsen calculus in some detail, the reader is also
referred to [Ro] for this 3-dimensional technique related to Kirby calculus.
One other noteworthy reference is Kirby’s latest list [K4] of problems in
low-dimensional topology; many of these problems are directly related to
4-manifolds and Kirby calculus.

This book is divided into four parts. The first part covers introductory
material and basic techniques for later use, as well as an outline of the current
state of the theory of 4-manifolds and surfaces contained in them. Part 2 is
our main exposition of Kirby calculus. It is essentially independent of Part
1, except for such elementary notions as intersection forms. The logical
dependence of the sections of Part 2 is approximately given by Figure 0.1.
(Dashed arrows indicate only occasional or minor dependence.) Part 3 ties
together the two previous parts by presenting more advanced applications of
Kirby calculus, and consists of five mostly independent chapters intended to
cover current research areas within 4-manifold theory and their connections
to other disciplines. While we have attempted to include the most recent
developments, such a goal is inevitably doomed by the rapid change of the
field. Solutions to exercises and the tables described above comprise Part
4. The book can be used as a graduate text, with each of the first two
parts providing enough material for nearly a semester. The topics in the
third part provide supplementary material intended to introduce a student
to research in 4-manifold topology.

We would like to thank Rob Kirby for extensive comments on prelim-
inary drafts of this book, Margaret Combs for many hours of typing and
technical support, Barbara Beeton for resolving our tex-related problems,
and the Mathematical Sciences Research Institute for their hospitality dur-
ing part of the collaboration. The first author wishes to thank John Et-
nyre, Brendan Guilfoyle and Yoav Rieck for their careful notes in the course
on which Part 2 was based, Selman Akbulut, Yukio Matsumoto and Paul
Melvin for helpful comments, and Cameron Gordon for answering innumer-
able questions on 3-manifolds. The second author would like to thank Paolo
Lisca, John Morgan, Ron Stern and Zoltán Szabó for helpful discussions,
and his family for their constant support and help during the course of this
work. He also wants to thank the Department of Mathematics at UC Irvine
for the support provided during part of the work.

Robert E. Gompf and András I. Stipsicz
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4-Manifolds

                

                                                                                                               



The first part of these notes is devoted to introducing the fundamental
theorems, notions and constructions of 4-manifold theory. The theorems
in Chapter 1 are intended to inform the reader about the present status of
the classification of topological and smooth 4-manifolds. In Chapter 2 we
will pay special attention to surfaces in 4-manifolds — information of this
kind seems to be increasingly important in the understanding of the smooth
structure of a 4-manifold. Finally, Chapter 3 gives further families of ex-
amples of 4-manifolds and a short review of the classification of complex
surfaces. Throughout the first three chapters we will present various exam-
ples of compact 4-manifolds. Most of these examples originate from complex
geometric constructions, and a fairly explicit discussion of the smooth topol-
ogy of these manifolds can be given. More sophisticated examples will be
given in Part 3 (e.g., in Chapters 7, 8 and 10).

                

                                                                                                               



Chapter 1

Introduction

1.1. Manifolds

We assume that the reader is familiar with the basics of algebraic topology,
such as homotopy theory and singular homology and cohomology. We will
use the terms principal G-bundle, tangent bundle of a manifold, associated
vector bundle and section of a bundle without defining them. Similarly,
various forms of Poincaré duality will be used without explicit description
of the theorems. (Detailed treatments of these topics can be found in, e.g.,
[GP], [MS] and [Sp].) Definitions of topological and smooth manifolds , ori-
entability , complex structures and ambient isotopy are given to serve as a
reference in forthcoming discussions. For similar reasons, we have included
two sections (Sections 1.4 and 5.6) introducing characteristic classes and
spin structures. An n-dimensional manifold (with possibly nonempty boun-
dary) is usually denoted by X; we use M in contexts where the manifold is
conveniently thought of as a boundary component of some other manifold. If
we wish to emphasize that the 4-manifold is equipped with a complex struc-
ture, we denote it by S (being a complex surface). We define Rn

+ as the
upper half space of Rn, in coordinates, Rn

+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0};
otherwise we use standard notation.

Definition 1.1.1. A separable Hausdorff topological space X is an n-
dimensional topological (or C0-) manifold if for every point p ∈ X there is an
open neighborhood U of p in X which is homeomorphic to an open subset of
Rn
+. A pair (Uα, φα) of such a neighborhood and homeomorphism is called a

chart . A collection of charts {(Uα, φα) | α ∈ A} is an atlas if it is a cover of
X, that is,

⋃{Uα | α ∈ A} = X. The map φβ ◦φ−1
α (on φα(Uα ∩Uβ)) is the

transition function between the charts (Uα, φα) and (Uβ, φβ). The points of

3

                                    

                

                                                                                                               



4 1. Introduction

X corresponding to points in {(x1, . . . , xn) | xn = 0} = Rn−1 ⊂ Rn
+ form a

submanifold ∂X of dimension n−1, which is called the boundary of X. The
topological manifold X with an atlas {(Uα, φα) | α ∈ A} is a Cr-manifold
(r = 1, 2, 3, . . . ,∞) if the transition functions φβ ◦ φ−1

α (α, β ∈ A) are Cr-
maps. In the case r = ∞, X is called a smooth manifold. In the notation,
we will not specify the atlas giving the Cr-structure of X. Note that by
definition a Cr-structure specifies a Cs-structure on X for all 0 ≤ s ≤ r.
A map f : X → X ′ is a Cr-map between the two Cr-manifolds X and
X ′ if f is Cr on every chart of the given Cr-atlases. A homeomorphism
f : X → X ′ is a Cr-diffeomorphism if both f and f−1 are Cr-maps. Two Cr-
structures on X are isotopic if the identity map idX is isotopic (homotopic
through homeomorphisms) to a Cr-diffeomorphism between the structures.
We will not distinguish between isotopic Cr-structures, and frequently use
Cr-diffeomorphisms to identify Cr-manifolds with each other. We say that
X is closed if it is compact and ∂X = ∅. We call a space X a singular
manifold if there is a finite subset Sing ⊂ X such that X−Sing is a smooth
manifold. The n-dimensional disk {x ∈ Rn | ||x|| ≤ 1} will be denoted by
Dn; in particular, Dn is a compact manifold and the boundary ∂Dn is the
(n− 1)-dimensional sphere Sn−1.

An orientation of the Euclidean vector space Rn is simply a choice of
one orbit of the set of ordered bases under the action of the connected group
GL+(n;R) = {A ∈ GL(n;R) | det(A) > 0}. The chosen equivalence class
is referred to as the set of positive bases; the rest of the bases (which form
the other equivalence class) are the negative bases. An orientation can be
given by fixing an ordering (up to even permutations) of a given basis.

Definition 1.1.2. Let X be a smooth n-dimensional manifold, hence it
admits a tangent bundle TX → X with fibers isomorphic to Rn (see, e.g.,
[GP], [MS]). A consistent choice of orientation of the tangent space at
every point of X is called an orientation of X. (By consistent we mean
that at each point in X there is a chart (V, ϕ) mapping into Rn with its
standard orientation, such that dϕp preserves orientation at every point p of
V .) This choice, however, cannot be made for every manifold. X is called
orientable if it admits an orientation, and X is oriented if an orientation
of X is fixed. The standard convention of “outward normal first” provides
an orientation of ∂X induced by an orientation of X [GP]: At p ∈ ∂X
the basis (v1, . . . , vn−1) of Tp∂X is positive if (ν, v1, . . . , vn−1) is a positive
basis of TpX, where the vector ν stands for the outward normal vector,
which is tangent to X but not to ∂X and points out of X. Since orientation
plays a key role throughout 4-manifold theory, we will always be careful
about specifying a fixed orientation of the manifold X. If we change the
orientation on every component of X, the new object will be denoted by X.

                

                                                                                                               



1.1. Manifolds 5

Remark 1.1.3. It can be shown that an orientation specifies a class [X] in
Hn(X, ∂X;Z), called the fundamental class of the oriented manifold (see,
e.g., the appendix of [MS]). For X noncompact, we should use “locally
finite” homology on infinite chains. In this way, orientability can easily
be extended to topological manifolds as well: An n-dimensional connected
manifold X is orientable if Hn(X, ∂X;Z) ∼= Z, and an orientation of X is
simply a choice of a generator of the group Hn(X, ∂X;Z). The induced
orientation of ∂X can be seen as the image of [X] ∈ Hn(X, ∂X;Z) under
the map Hn(X, ∂X;Z) → Hn−1(∂X;Z) of the long exact sequence of the
pair (X, ∂X); moreover [X] = −[X] ∈ Hn(X, ∂X;Z). In terms of bun-
dles, the orientability of X can be rephrased as follows. The smooth n-
dimensional manifold X is orientable if the structure group of the tangent
bundle TX → X (which is GL(n;R)) can be reduced to its connected com-
ponent GL+(n;R); by fixing a reduction we specify an orientation for X.
Note that this approach to orientability can easily be extended to arbitrary
(real) vector bundles (cf. Lemma 1.4.23).

Definition 1.1.4. An atlas {(Uα, φα) | α ∈ AC} on a (real) 2n-dimensional
manifold X is a complex structure if each φα is a homeomorphism between
Uα and an open subset of Cn (identified with R2n), and the transition func-
tions φβ ◦φ−1

α are holomorphic. Complex manifolds are canonically oriented.
This is because the connected group GL(n;C) lies in GL+(2n;R), so any
complex n-dimensional vector space is canonically oriented — by choosing
a complex isomorphism with Cn = C × . . . × C, with C oriented as a real
vector space by the ordered basis (1, i).

Definition 1.1.5. A smooth (resp. topological) isotopy between embed-
dings ϕ0, ϕ1 : Y → X is a smooth (resp. topological) homotopy ϕt : Y → X
(0 ≤ t ≤ 1) through embeddings. If an isotopy exists, then ϕ0 and ϕ1 are
isotopic. By the Isotopy Extension Theorem (Theorem 5.8 of [M4]), if Y
is compact then any smooth isotopy Y → int X can be extended to an am-
bient isotopy , an isotopy Φt : X → X through diffeomorphisms such that
Φ0 = idX and ϕt = Φt ◦ϕ0 for each t. Two (possibly singular) submanifolds
Y1, Y2 in a manifold X are ambiently isotopic if there is a diffeomorphism of
X homotopic to idX through diffeomorphisms which maps Y1 to Y2.

Having dispensed with the preliminaries, we state a few theorems and
conjectures related to the classification problem of n-dimensional mani-
folds. Theorem 1.1.6 demonstrates the fact that although the notion of
Cr-manifold is defined for every integer r (0 ≤ r ≤ ∞), the r = 0 and
r =∞ cases are the only interesting ones in terms of classification.

Theorem 1.1.6. ([Mu]) Suppose that X is a Cr-manifold and 1 ≤ r ≤ k
(including k = ∞). Then there is a Ck-atlas of X for which the induced

                

                                                                                                               



6 1. Introduction

Cr-structure is isotopic to the original Cr-structure of X. (In fact, idX is
a Cr-diffeomorphism between them.) Moreover, this Ck-structure is unique
up to isotopy (through Cr-diffeomorphisms); consequently the Cr-manifold
X admits a unique induced Ck-structure for every k ≥ r. (As we will see,
this statement does not hold for r = 0.)

Our primary aim in manifold theory is to classify topological manifolds,
i.e., to give a complete list of n-dimensional (closed) topological manifolds,
and to find a way to tell which topological manifolds carry smooth structures
(have C∞-atlases). Furthermore, if there is one such atlas, we would like to
determine the total number of these up to diffeomorphism. In most dimen-
sions this aim cannot be achieved for algebraic reasons (cf. Theorem 1.2.33
and Exercise 5.1.10(c)); in those cases we will impose further conditions (like
simple connectivity) for the manifolds at hand. For a better understanding
of results concerning 4-manifolds, we will conclude this section with theo-
rems concerning manifolds of dimension different from 4. Assume that the
manifolds we are working with are closed, connected and oriented. The clas-
sification problem is easy in dimension 1 and classical in dimension 2. Up
to homeomorphism there is only one topological 1-manifold with the above
properties, and this is the circle S1 = {x ∈ R2 | ||x|| = 1}; it admits a unique
isotopy class of smooth structures. For n = 2, the (oriented) topological 2-
manifolds are precisely the surfaces Σg with genus g (g = 0, 1, 2, . . . ); in par-
ticular, Σ0 is the sphere S2 and Σ1 is the 2-dimensional torus T 2 = S1×S1.
All these topological manifolds carry unique smooth structures (up to iso-
topy); actually these manifolds carry complex structures as well. The classi-
fication problem in dimension 3 is among the most popular in contemporary
mathematics. Although we will discuss constructions of 3-manifolds in the
present volume, we will not address the classification problem in dimension
3. It is known that every topological 3-manifold admits a unique smooth
structure [Mo]; the classification problem of topological 3-manifolds is, how-
ever, still unsolved. Understanding 3-manifolds homotopy equivalent to the
3-dimensional sphere S3 would be a major step in this direction; see the
conjecture below. (For further discussion of 3-manifolds, see for example
[He], [N], [Ro], [Th2].)

Conjecture 1.1.7. (Poincaré Conjecture) A simply connected closed 3-
manifold is homeomorphic to S3.

For topological manifolds of dimension n ≥ 5 there is sophisticated ma-
chinery for dealing with both the existence problem and the number of
nonisotopic smooth structures on a given topological manifold. Parts of this
theory will be mentioned later on in this volume (e.g., Theorem 9.2.2), so
here we only mention one theorem (which is false in dimension 4):
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Theorem 1.1.8. If Xn is a compact n-dimensional topological manifold
and n ≥ 6 (or n ≥ 5 and ∂X = ∅), then there are only finitely many smooth
structures on X (up to isotopy). In particular, there are smooth manifolds
Y1, . . . , Yk homeomorphic to X such that any smooth manifold homeomor-
phic to X is diffeomorphic to some Yi. (Here k might be 0, meaning that
there is no smooth structure on X.)

Finally, we quote a theorem which emphasizes the special behavior of
4-dimensional manifolds. Let X be a smooth noncompact n-dimensional
manifold.

Theorem 1.1.9. If X is homeomorphic to Rn and n �= 4 then X is diffeo-
morphic to Rn. If n = 4, this statement is false, there are “exotic” R4’s;
such examples will be given in Sections 9.3 and 9.4.

In general, the term exotic smooth structure is used to refer to smooth struc-
tures not diffeomorphic to the given one on a smooth manifold X. These
correspond to manifolds homeomorphic to X but not diffeomorphic to it.

Remark 1.1.10. Another sort of structure frequently used by topologists
is a piecewise linear (PL-) structure, which is defined by an atlas whose
transition functions respect a suitable triangulation of Rn (e.g., [RS]). Any
smooth structure determines a PL-structure, and the converse holds for
n ≤ 6 [HM], so for our purposes PL-structures are equivalent to smooth
structures.

1.2. 4-manifolds

We begin our discussion about 4-dimensional manifolds by defining the in-
tersection form of a compact, oriented, topological 4-manifold X. Recall
that when X is oriented, it admits a fundamental class [X] ∈ H4(X, ∂X;Z).

Definition 1.2.1. The symmetric bilinear form

QX : H2(X, ∂X;Z)×H2(X, ∂X;Z)→ Z

defined by QX(a, b) = 〈a ∪ b, [X]〉 = a · b ∈ Z is called the intersection form
of X. Since by Poincaré duality H2(X;Z) ∼= H2(X, ∂X;Z), QX is defined
on H2(X;Z)×H2(X;Z) as well.

Note that for this definition of QX we only need the topological structure
of X. Clearly, QX(a, b) = 0 if a or b is a torsion element, hence QX

descends to a pairing on homology mod torsion. By choosing a basis of
H2(X;Z)/Torsion, we can represent QX by a matrix. The matrix M of
QX transforms under a basis transformation C as CTMC. Consequently
the determinant detM is independent of the choice of the basis over Z; we
sometimes denote this by detQX .
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Remarks 1.2.2. (a) The above definition of QX can be extended to coho-
mology with arbitrary coefficient ring R. When R = Z2, the theory gener-
alizes in the obvious way to nonorientable manifolds. For X orientable, the
inclusion r : H2(X;Z)⊗ Z2 → H2(X;Z2) given by the Universal Coefficient
Theorem preserves the intersection form; note that r is an isomorphism if
H1(X;Z) has no 2-torsion. The definition also generalizes to noncompact
manifolds if we use compactly supported cohomology (which is Poincaré
dual to ordinary homology). The intersection form of a compact manifold
will not change if we remove its boundary.

(b) Using the same idea, another pairing Q′
X can be defined for the oriented

manifold X: The map Q′
X : H2(X;Z) × H2(X, ∂X;Z) → Z is given as

Q′
X(a, b) = 〈a∪ b, [X]〉 (and the second group is compactly supported in the

noncompact case). In our discussion we will mainly use QX .

(c) By the definition of the intersection form we have QX = −QX .

If X is a smooth manifold, then QX(a, b) can be interpreted as the inter-
section number of certain submanifolds in X. For a better understanding of
this relation we need a little preparation. Let Xn be a smooth n-dimensional
manifold. A class α ∈ H2(X

n;Z) is represented by a closed, oriented sur-
face Σ if there is an embedding i : Σ ↪→ X such that i∗([Σ]) = α. (Again,
[Σ] ∈ H2(Σ;Z) is the fundamental class of Σ).

Proposition 1.2.3. Let X be a closed, oriented, smooth 4-manifold. Then
every element of H2(X;Z) can be represented by an embedded surface.

Proof. Elements of H2(X;Z) are in 1-1 correspondence with U(1)-bundles
over X (cf. Proposition 1.4.1). For α ∈ H2(X;Z) take its Poincaré dual a =
PD(α) ∈ H2(X;Z) and denote the corresponding U(1)-bundle by Lα → X.
The zero set of a generic section of the bundle Lα → X will be a smooth
surface representing α.

Remark 1.2.4. The proposition is also true if X has boundary or is non-
compact or nonorientable, and the analogous statement holds with Z2-
coefficients if we allow Σ to be nonorientable. (See Exercise 4.5.12(b).)
Note that if X is simply connected, then by the Hurewicz Theorem π2(X) ∼=
H2(X;Z). This implies that for a simply connected 4-manifold every sec-
ond homology element can be represented by an immersed sphere. Such an
immersion will not be an embedding in general, but one can assume that an
immersion S2 → X4 intersects itself only in transverse double points.

Suppose that X4 is closed and oriented. For a, b ∈ H2(X;Z) take surface
representatives Σα and Σβ of the Poincaré duals α = PD(a) and β = PD(b).
Suppose furthermore that Σα and Σβ have been chosen generically, so that
their intersections are all transverse. The orientations of Σα and Σβ —
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together with the fixed orientation of the ambient 4-manifold X — assign a
sign ±1 to every intersection point of Σα and Σβ in the following way [GP].
By concatenating positive bases of the tangent spaces TpΣα and TpΣβ at
a point p ∈ Σα ∩ Σβ we get a basis of TpX. The sign of the intersection
at p is positive if this basis is positive, and negative otherwise. Note that
the sign does not depend on the order of {α, β}, but does depend on the
orientations of Σα and Σβ. Now we are in the position to give the geometric
interpretation of QX — this description explains the name of it.

Proposition 1.2.5. For a, b ∈ H2(X;Z) and α, β ∈ H2(X;Z) as above,
QX(a, b) is the number of points in Σα ∩ Σβ, counted with sign.

Proof. Assume that η1 is a smooth 2-form on X representing the image of
a ∈ H2(X;Z) under the map H2(X;Z) → H2(X;R) induced by Z ↪→ R.
Assume furthermore that η1 is supported in a small tubular neighborhood
of Σα. Choose a 2-form η2 similarly for b and Σβ . Find a coordinate chart
(x, y, u, v) around each intersection point p ∈ Σα ∩ Σβ in which Σα is given
by {x = 0, y = 0} and Σβ is given by {u = 0, v = 0}, and assume that
η1 = f(x, y)dx ∧ dy, η2 = f(u, v)du ∧ dv (where f is a bump function
localized around 0 ∈ R2 with integral 1). Following [BT] it is easy to see
that QX(a, b) =

∫
X η1 ∧ η2, hence the assertion easily follows. Note that for

the last two propositions we assumed that X is a smooth 4-manifold.

Remarks 1.2.6. (a) Again, the above proposition applies if X4 has boun-
dary or is noncompact (using suitable versions of Poincaré duality), and
a similar statement holds over Z2 without the orientability hypotheses. In
arbitrary dimensions, the same method of counting intersections gives the in-
tersection pairing (including relative versions) for any two homology classes
of complementary dimension, and this is again dual to the cup product pair-
ing [GH]. The only difference is that high-dimensional homology classes
cannot always be represented by submanifolds, so one must allow smooth
cycles with singularities.

(b) Recall that a complex structure on X gives an orientation on it, and
if Σα and Σβ are complex submanifolds, then they are also canonically
oriented. An easy argument shows that the transverse intersection of com-
plex submanifolds is always positive. In particular, QS([C1], [C2]) ≥ 0 if
C1, C2 ⊂ S are transversely intersecting complex curves in a complex sur-
face S. Applying more delicate arguments, one can prove the same positivity
result for any pair of embedded complex curves, provided C1 and C2 have
no common component. (As we will see, the self-intersection of a complex
curve can be negative, cf. Section 2.2.)

We make a short digression and briefly recall the classification of integral
forms. (For a more detailed treatment, see [MH]). For a given symmetric,
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bilinear form Q on the finitely generated free abelian group A the rank,
signature and parity of Q are defined in the following way: The rank rk(Q)
of Q is the dimension of A. Extend and diagonalize Q over A ⊗Z R. The
number of +1’s (−1’s respectively) on the diagonal is denoted by b+2 (resp.
b−2 ); the difference b+2 − b−2 is the signature σ(Q) of Q. Finally, Q is even if
Q(α, α) ≡ 0 (mod 2) for every α ∈ A; Q is odd otherwise.

Exercises 1.2.7. Suppose that Q is an integral form.

(a) Show that Q is even iff Q(αi, αi) ≡ 0 (mod 2) (i = 1, . . . , n) for every
basis {α1, . . . , αn}.
(b) Prove that Q is even iff every matrix representing Q has even diagonal.

(c) Prove the above statements after replacing every with at least one.

(d) Let 〈n〉 be the bilinear form over Z represented by the 1 × 1 matrix
[n] (n ∈ Z). Prove that 〈n〉 and 〈m〉 are equivalent iff m = n.

Definitions 1.2.8. (a) Q is positive (negative) definite if rk(Q) = σ(Q)
(rk(Q) = −σ(Q) resp.). Q is indefinite otherwise.

(b) The direct sum Q = Q1 ⊕Q2 of the forms Q1 and Q2 (given on A1, A2

respectively) is defined on A1⊕A2 in the following way. If a, b ∈ A = A1⊕A2

split as a = a1 + a2 and b = b1 + b2 with ai, bi ∈ Ai, then Q(a, b) =
Q1(a1, b1) + Q2(a2, b2). If k > 0 then kQ denotes the k-fold sum ⊕kQ; for
negative k we take kQ to be |k|(−Q); finally if k = 0, then the form kQ
equals the zero form on the trivial group (represented by the empty matrix
∅) by definition. The form on A = Z ⊕ Z represented by the matrix [ 0 1

1 0 ]
will be denoted by H.

(c) An element x ∈ A is called a characteristic element if Q(α, x) ≡
Q(α, α) (mod 2) for all α ∈ A. Note that Q is even iff 0 ∈ A is characteristic.
An element α ∈ A is primitive if we cannot write α as dβ (β ∈ A, d ∈ Z)
unless d = ±1. For any x ∈ A there is a primitive element α such that
x = dα; the integer |d| is called the divisibility of x.

(d) Q is called unimodular if detQ = ±1.

For an element x ∈ A define Lx ∈ A∗ by Lx(y) = Q(x, y). In this way we
get a homomorphism L : A→ A∗.

Lemma 1.2.9. The form Q is unimodular iff L is an isomorphism.

Proof. Fix a basis a1, . . . , an ∈ A and take the dual basis a∗i ∈ A∗ (given
by a∗i (aj) = δij ∈ Z). Since L(ai) =

∑
j Q(aj , ai)a

∗
j , the matrix of L in these

bases is [Q(ai, aj)]ij. A matrix B over Z is invertible (over Z) iff detB = ±1,
hence the lemma follows.

Exercise 1.2.10. ∗ Prove that if X is a closed 4-manifold (so ∂X = ∅),
then QX is unimodular. (Hint : Apply Poincaré duality.)
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Remark 1.2.11. Exercise 1.2.10 can be extended to show that QX is uni-
modular when ∂X is a homology sphere. (A 3-manifold M is a homo-
logy sphere iff H∗(M ;Z) ∼= H∗(S3;Z), or equivalently, iff it is closed, ori-
entable and connected with H1(M ;Z) = 0.) One simply observes that
by the long exact homology sequence, inclusion induces an isomorphism
H2(X;Z) → H2(X, ∂X;Z). In fact, for a compact, oriented 4-manifold X
with H1(X;Z) = 0, QX is unimodular if and only if ∂X is a disjoint union of
homology spheres. We consider the relation between QX and H1(∂X;Z) in
more detail in Corollary 5.3.12 and Exercise 5.3.13(f). Note that the pairing
Q′

X described in Remark 1.2.2(b) is unimodular for every pair (X, ∂X).

Lemma 1.2.12. Suppose that the restriction of the symmetric bilinear form
Q to the subgroup A1 ⊂ A is unimodular. Then (A,Q) can be split as the sum
of forms (A,Q) = (A1, Q|A1)⊕(A⊥

1 , Q|A⊥
1 ), where A⊥

1 = {y ∈ A | Q(x, y) =
0 for all x ∈ A1}. Moreover, Q|A⊥

1 is unimodular iff Q is.

Proof. If 0 �= a ∈ A1 ∩ A⊥
1 , then Q(a, b) = 0 for all b ∈ A1, contradicting

the fact that Q|A1 is unimodular. For any x ∈ A we can take the linear
function a �→ Q(x, a) on A1; by the unimodularity of Q|A1 there is a unique
element b ∈ A1 with Q(x, a) = Q(b, a) for all a ∈ A1 (cf. Lemma 1.2.9).
Hence x− b ∈ A⊥

1 , so x = b+ (x− b) ∈ A1 +A⊥
1 . We have now proved that

A = A1 ⊕ A⊥
1 ; the unimodularity of (A⊥

1 , Q|A⊥
1 ) follows from the fact that

detQ = detQ|A1 · detQ|A⊥
1 = ±detQ|A⊥

1 .

As a corollary, the following useful observation can be made:

Corollary 1.2.13. Suppose that dimA is equal to n and the determinant
of the matrix of Q on the set {a1, . . . , an} is ±1. Then {a1, . . . , an} is a
basis of the free group A.

For the rest of the section, we only consider unimodular forms. As we
will see (cf. Theorem 1.2.30), indefinite forms will be more interesting for our
purposes. At the same time, indefinite forms admit a very nice classification
scheme.

Theorem 1.2.14. If indefinite unimodular forms Q1, Q2 (defined on A1, A2

respectively) have the same rank, signature and parity, then they are equiv-
alent.

In the following — through a series of exercises — we will give an outline
of the proof of Theorem 1.2.14. The proof rests on the following theorem,
whose proof requires some difficult algebraic geometry (cf. [MH]).

Theorem 1.2.15. If A �= 0 and σ(Q) = 0, then there exists a nonzero
α ∈ A with Q(α, α) = 0.

                

                                                                                                               



12 1. Introduction

Using the above result, we can easily classify intersection forms with signa-
ture 0.

Lemma 1.2.16. If σ(Q) = 0, then Q is equivalent to kH if Q is even, and
to l〈1〉 ⊕ l〈−1〉 if Q is odd (k, l ∈ N).

Proof. Take x ∈ A with Q(x, x) = 0; we can assume that x is primitive.
Since Q is unimodular, there is y ∈ A with Q(x, y) = 1. Now split A as
span(x, y)⊕span(x, y)⊥. Since Q|span(x, y) is unimodular, by Lemma 1.2.12
Q on span(x, y)⊥ is unimodular and obviously has 0 signature. Hence if
span(x, y)⊥ is nonzero, the above splitting process can be repeated.

Exercises 1.2.17. Prove that

(a)∗ If Q(y, y) is even, then Q|span(x, y) ∼= H.

(b)∗ If Q(y, y) is odd, then Q|span(x, y) ∼= 〈1〉 ⊕ 〈−1〉.
(c)∗ H ⊕ 〈−1〉 ∼= 2〈−1〉 ⊕ 〈1〉.

The solutions of the above exercises complete the proof of Lemma 1.2.16.

Proof of Theorem 1.2.14. Note that Lemma 1.2.16 covers the case when
σ(Q1) = 0 in Theorem 1.2.14. Thus, without loss of generality, we can
assume that σ(Q1) > 0, and prove the theorem by induction on σ(Q1). By
induction we know that Q1 ⊕ 〈−1〉 and Q2 ⊕ 〈−1〉 are both isomorphic to
Q = b+2 〈1〉 ⊕ (b−2 + 1)〈−1〉. Assume that x ∈ A = A1 ⊕ Z ∼= A2 ⊕ Z is
the vector spanning the orthogonal complement of Q1 and y ∈ A spans
the complement of Q2 in (A,Q). All we need is an automorphism of (A,Q)
mapping x to y — hence Q1 to Q2. For the proof of the following proposition
see [W1].

Proposition 1.2.18. Suppose that Q ∼= n〈1〉 ⊕ m〈−1〉 (n,m > 1) on A,
and x, y are primitive elements in A such that Q(x, x) = Q(y, y). If both x
and y are characteristic elements, then there is an automorphism of (A,Q)
mapping x to y. A similar automorphism exists if neither x nor y is char-
acteristic.

The above proposition concludes the proof of Theorem 1.2.14, since x, y in
A are characteristic iff Q1 and Q2 are even, and the equalities Q(x, x) =
Q(y, y) = −1 show that x, y are primitive elements.

Remark 1.2.19. The proof of Proposition 1.2.18 given in [W1] goes as
follows. The case n = m = 2 is proved first, by explicit construction of
automorphisms. In this case it is also shown that if x is characteristic, it
can be mapped to a canonical element depending only on Q(x, x). This idea
extends to general n and m, and proves Proposition 1.2.18 in the charac-
teristic case. For x, y not characteristic, the proof of the n = m = 2 case
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provides an automorphism mapping the noncharacteristic vectors either into
the subspace 2〈1〉 ⊕ 〈−1〉 or into 〈1〉 ⊕ 2〈−1〉. Now for general n and m,
the splitting n〈1〉 ⊕m〈−1〉 = (2〈1〉 ⊕ 2〈−1〉) ⊕ ((n − 2)〈1〉 ⊕ (m − 2)〈−1〉)
combined with induction gives the result in the noncharacteristic case. For
details see [W1].

To finish the description of indefinite forms we must determine the triples
(rank, signature, parity) for which a form Q with these invariants exists.
Since rk(Q) = b+2 + b−2 and σ(Q) = b+2 − b−2 , obviously |σ(Q)| < rk(Q) and
σ(Q) ≡ rk(Q) (mod 2). The next lemma gives one further restriction for
invariants of even intersection forms.

Lemma 1.2.20. If x ∈ A is characteristic, then Q(x, x) ≡ σ(Q) (mod 8);
in particular, if Q is even, then the signature σ(Q) is divisible by 8.

Proof. Note that if x is characteristic in (A,Q), then x+ e++ e− is charac-
teristic in (A⊕Z⊕Z, Q⊕〈1〉 ⊕ 〈−1〉), where e± generate the Z summands.
By Theorem 1.2.14, Q′ = Q ⊕ 〈1〉 ⊕ 〈−1〉 ∼= (b+2 + 1)〈1〉 ⊕ (b−2 + 1)〈−1〉,
and a characteristic vector has odd components in this new basis. Since the
square of an odd number is congruent to 1 modulo 8, we have that Q(x, x) =
Q′(x+e++e−, x+e++e−) ≡ (b+2 +1)−(b−2 +1) = σ(Q) (mod 8). If Q is even,
then 0 is a characteristic element, which implies that σ(Q) ≡ 0 (mod 8).

To show that all constraints on the triple (rank, signature, parity) have
been found, we define a particular 8-dimensional intersection form. Consider
the matrix corresponding to the Dynkin diagram of the exceptional Lie
algebra E8:

E8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As the matrix of a bilinear form Q on Z8, E8 gives a positive definite, even,
unimodular form with σ(Q) = 8. (Check these statements by diagonalizing
E8 over Q; beware that the determinant is not an invariant over Q.) By
a slight abuse of notation, from now on E8 will denote that bilinear form.
Recall that H is used for the form corresponding to the matrix [ 0 1

1 0 ]. Using
E8 andH as building blocks, for every pair (σ, r) ∈ Z×N with σ ≡ 0 (mod 8),
r > |σ| and r ≡ σ (mod 2) one can build up an indefinite unimodular form

Q = aE8 ⊕ bH with σ = σ(Q) and r = rk(Q). (Take a = σ
8 and b = r−|σ|

2 .)
Consequently Theorem 1.2.14 implies the following.

                

                                                                                                               



14 1. Introduction

Theorem 1.2.21. Suppose that Q is an indefinite, unimodular form. If
Q is odd, then it is isomorphic to b+2 〈1〉 ⊕ b−2 〈−1〉; if Q is even then it is

isomorphic to σ(Q)
8 E8 ⊕ rk(Q)−|σ(Q)|

2 H.

Remark 1.2.22. Since the negative definite form −E8 appears more com-
monly in 4-manifold theory than E8, some authors use the notation E8 for
the negative definite form. A matrix for the latter form is obtained from
the above matrix by reversing all signs on the diagonal. (Check this by a
basis change reversing the signs of 4 vectors.) We will call this matrix the
−E8-matrix.

Exercises 1.2.23. (a) Let Q be an indefinite, unimodular form. Find a
characteristic element x ∈ A with Q(x, x) = σ(Q). (Hint : Solve the problem
for ±E8, H, 〈±1〉 and apply the Classification Theorem 1.2.21.)

(b) Prove that H ∼= −H and E8 ⊕ (−E8) ∼= 8H.

In the definite case there is no such nice description of all unimodular
forms. For a given rank there are only finitely many definite symmetric
unimodular forms (see [MH]); this number, however, can be very large.
(For example, there are more than 1050 definite forms of rank 40.)

Exercise 1.2.24. Prove that the positive definite forms Q1 = E8⊕n〈1〉 and
Q2 = (8+n)〈1〉 are not equivalent, although they have equal rank, signature
and parity for n > 0. (Hint : Count the number of vectors of length 1 with
respect to Q1 and Q2.)

We now consider the intersection form of a closed 4-manifold X; recall
that this is always unimodular. For the sake of simplicity, let us restrict
ourselves to the simply connected case. Since π1(X) = 0, the first and
the third homologies and cohomologies vanish (by Poincaré duality), and
H2(X;Z) ∼= H2(X;Z) ∼= Hom(H2(X;Z),Z) has no torsion, so QX contains
all the (co)homological information about X. As the next theorem shows,
QX classifies topological 4-manifolds up to homotopy.

Theorem 1.2.25. (Whitehead) The simply connected, closed, topological
4-manifolds X1 and X2 are homotopy equivalent iff QX1

∼= QX2 .

Proof (sketch). Using homotopy theoretic arguments one can show that
a simply connected topological 4-manifold X is homotopy equivalent to a
CW-complex of the form

∨k
i=1 S

2
i ∪g D4 — here

∨k
i=1 S

2
i denotes the wedge

(or bouquet) of k 2-spheres and g is the gluing map S3 → ∨k
i=1 S

2
i of the

4-cell, hence defines a class [g] ∈ π3(
∨k

i=1 S
2
i ). Denoting the additive group

of symmetric k×k matrices with integer entries by M(k×k), we can obtain

an isomorphism L : π3(
∨k

i=1 S
2
i ) → M(k × k) as follows. Take xi ∈ S2

i and
assume that g is transverse to xi and smooth in a neighborhood of g−1(xi).
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Define the matrix L([g]) = [λij(g)] as λij(g) = �k(g−1(xi), g
−1(xj)) (and

λii(g) = �k(g−1(xi), g
−1(x′i)) for x′i close to xi), where �k(L1, L2) denotes

the linking number of the two oriented links L1 and L2. (For more about
linking numbers see Section 4.5.) It is not hard to see that L([g]) represents
QX in an appropriate basis, hence if QX1

∼= QX2 , the gluing maps g1 and g2
corresponding to X1 and X2 are homotopic. The proof of the theorem now
easily follows.

Assume for a moment that X is a finite CW complex with cells of dimension
≤ 4. For a fixed homology element [X] ∈ H4(X;Z) the pair (X, [X]) is called
a (4-dimensional oriented) Poincaré duality space if the map α �→ α ∩ [X]
(with α ∈ H i(X;Z)) defines an isomorphism H i(X;Z) → H4−i(X;Z) for
i = 0, . . . , 4. (It can be shown that any oriented topological 4-manifold is
homotopy equivalent to a finite CW complex, hence, to a Poincaré duality
space.) Note that the formula QX(a, b) = 〈a∪ b, [X]〉 extends the definition
of intersection forms to Poincaré duality spaces. Since the solution of Exer-
cise 1.2.10 applies without change, the intersection form QX of a Poincaré
duality space is unimodular. The proof of Theorem 1.2.25 can be easily
modified to show the following result.

Theorem 1.2.26. Two simply connected (4-dimensional) Poincaré duality
spaces X1 and X2 are homotopy equivalent iff QX1

∼= QX2. Moreover, for
each unimodular form Q there exists a (4-dimensional) Poincaré duality
space X with QX

∼= Q.

Proof. The proof of the first statement proceeds verbatim as the proof of
Theorem 1.2.25. If Q is represented by the symmetric matrix B ∈M(k×k)

in a basis, then take g ∈ L−1(B) ∈ π3(
∨k

i=1 S
2
i ) and form X =

∨k
i=1 S

2
i ∪gD4.

Because of the unimodularity of Q (i.e., detB = ±1), X is a (4-dimensional)
Poincaré duality space satisfying QX

∼= Q.

The following theorem — due to M. Freedman — can be regarded as
the topological strengthening of the above homotopy theoretic classification
results. Some ideas of the proof of Theorem 1.2.27 will be discussed in later
chapters.

Theorem 1.2.27. (Freedman, [F], [FQ]) For every unimodular symmetric
bilinear form Q there exists a simply connected, closed, topological 4-man-
ifold X such that QX

∼= Q. If Q is even, this manifold is unique (up to
homeomorphism). If Q is odd, there are exactly two different homeomor-
phism types of manifolds with the given intersection form. At most one of
these homeomorphism types carries a smooth structure. Consequently, sim-
ply connected, smooth 4-manifolds are determined up to homeomorphism by
their intersection forms.
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One special case (the topological 4-dimensional Poincaré Conjecture) de-
serves a corollary:

Corollary 1.2.28. If a topological 4-manifold X is homotopy equivalent to
S4, then X is homeomorphic to the 4-sphere.

Regarding smooth structures, the two main questions (existence and
uniqueness) can now be formulated as follows.

• Q1. Existence: Which simply connected topological manifolds (or
equivalently, intersection forms) carry smooth structures?

• Q2. Uniqueness: If the intersection formQ does carry a smooth struc-
ture, how many nondiffeomorphic smooth manifolds can be found
with the same intersection form Q?

The following theorems illustrate what we know about the answers for Q1
and Q2. Assume that X is a simply connected, closed, oriented, smooth 4-
manifold.

Theorem 1.2.29. (Rohlin, [R2]) If QX is even, then the signature σ(X)
is divisible by 16.

This theorem tells us, for example, that the topological manifold correspond-
ing to E8 does not carry any smooth structure. Another constraint on the
intersection form of a simply connected smooth 4-manifold was found by
Donaldson, cf. also Corollary 2.4.29.

Theorem 1.2.30. (Donaldson, [D1]) If the intersection form QX of a
smooth, simply connected, closed 4-manifold X is negative definite, then
QX is equivalent to n〈−1〉.

Note that by Remark 1.2.2(c) this theorem takes care of manifolds with pos-
itive definite intersection forms as well. As we will soon see, Theorem 1.2.30
answers Q1 for definite and odd intersection forms. For indefinite even in-
tersection forms — besides Theorem 1.2.29 implying that the coefficient of
E8 is even — the following estimate has been proved:

Theorem 1.2.31. (Furuta, [Fur]) If X is a simply connected, closed, ori-
ented, smooth 4-manifold and QX is equivalent to 2kE8 ⊕ lH, then we have
l ≥ 2|k|+ 1.

The 11
8 -Conjecture states that in the above theorem l ≥ 3|k| should be

the right answer — this conjecture, however, is still open. On the other
hand (as we will see in the next section), all intersection forms allowed
by Theorems 1.2.29, 1.2.30 and the 11

8 -Conjecture can be represented as
intersection forms of simply connected, smooth 4-manifolds. Thus the only
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remaining question for answering Q1 in the simply connected case lies in
the difference between Furuta’s result and the 11

8 -Conjecture.

The next result indicates how much we know about the answer of Q2.
As a consequence of Theorem 1.2.27, the homeomorphism type of a smooth,
simply connected, oriented, closed 4-manifold X is determined by the parity
of QX and the two numerical invariants σ(X) and b2(X) = rkH2(X;Z).
In contrast to Theorem 1.1.8, there is no finiteness result on the number of
nondiffeomorphic smooth structures on a topological 4-manifold. The known
results are of the following type. (An indication of the proof of this result
(and similar ones) will be given later on, cf. Corollary 3.3.7 and subsequent
text. See also Theorem 10.3.9.)

Theorem 1.2.32. ([FM1]) The (simply connected) topological manifolds
corresponding to the intersection forms 2n(−E8) ⊕ (4n − 1)H (n ≥ 1) and
(2k − 1)〈1〉 ⊕ N〈−1〉 (k ≥ 2, N ≥ 10k − 1) each carry infinitely many
distinct (nondiffeomorphic) smooth structures.

Throughout the last part of this section we always assumed that the 4-
manifolds we considered were simply connected. This assumption can be
relaxed in some cases, but the general case (arbitrary fundamental group)
is too difficult to study, since:

Theorem 1.2.33. For every finitely presented group G there is a smooth,
closed, oriented 4-manifold X with π1(X) ∼= G.

In Part 2 of this volume we will prove Theorem 1.2.33 from two different
points of view (Exercises 4.6.4(b) and 5.2.2(c)) and deduce a theorem of
Markov (Exercise 5.1.10(c)) that there can be no algorithm for classifying
closed 4-manifolds (or n-manifolds for any fixed n ≥ 4). Thus, the difficulty
of understanding finitely presented groups leads us to focus mainly on simply
connected 4-manifolds.

The invariants we have discussed until now — the intersection form
QX , or more generally the cohomology ring H∗(X;Z), and the fundamental
group π1(X) — depend only on the homeomorphism type (in fact, homo-
topy type) of the manifold. Our ultimate goal, however, is to study smooth
4-manifolds. On one hand, we need finer invariants and ways to compute
them in order to distinguish nondiffeomorphic 4-manifolds. Seiberg-Witten
invariants and Seiberg-Witten basic classes will be introduced in Section 2.4,
and we will see some applications of the knowledge of the Seiberg-Witten
function to the geometry of the underlying 4-manifold. In this way we
will distinguish homeomorphic but nondiffeomorphic 4-manifolds. On the
other hand, we also need a method to decide when 4-manifolds given by
different constructions result in diffeomorphic manifolds. Part 2 — about

                

                                                                                                               



18 1. Introduction

Kirby calculus — will give a way to deal with 4-manifolds defined by vari-
ous standard constructions. Using Kirby calculus one can (under favorable
circumstances) prove that 4-manifolds defined by different constructions are
actually diffeomorphic.

In the next section we present some familiar examples of (simply con-
nected) 4-manifolds and determine the corresponding intersection forms.
More complicated and more interesting constructions will be shown in Part 3.
For our occasional use of characteristic classes, the reader is referred to Sec-
tion 1.4 for an overview of background material or to [MS] for more details.

1.3. Examples

We now present some basic examples of closed, simply connected mani-
folds. The simplest example of such a 4-manifold is the 4-dimensional sphere
S4 = {x ∈ R5 | ||x|| = 1}; since H2(S

4;Z) = 0, the intersection form QS4

is trivial. Other examples are provided by the complex projective spaces.
Given the obvious free action of C∗ = C − {0} on Cn+1 − {0} (that is,
λ(z0, . . . , zn) = (λ · z0, . . . , λ · zn) for λ ∈ C∗), one can take the quotient
CPn = (Cn+1 − {0})/C∗. The resulting space is the n-dimensional com-
plex projective space CPn; CP1 = S2 is the complex projective line and
CP2 is the complex projective plane. Using R instead of C, one defines the
real projective spaces RPn. If P ∈ CPn and (z0, . . . , zn) ∈ P , then we
can denote P by its homogeneous coordinates [z0 : z1 : . . . : zn], which
are defined up to multiplication by λ ∈ C∗. Note that CPn can be cov-
ered by the affine coordinate charts ψi : C

n → CPn (i = 0, . . . , n), where
ψi(z1, . . . , zn) = [z1 : . . . : zi : 1 : zi+1 : . . . : zn]. The 2-dimensional sphere
S2 has a unique complex structure as CP1, so we can use the symbols S2

and CP1 interchangeably.

Exercises 1.3.1. (a)∗ Prove that CPn is compact and π1(CP
n) = 1. Con-

sequently, CP2 is a closed, simply connected 4-manifold.

(b) Prove that π1(RP
n) ∼= Z2 if n > 1. What is RP1? For which values of

n is RPn orientable?

(c) Prove that Hi(CP
n;Z) ∼= Z if i = 2d (d = 0, . . . , n) and Hi(CP

n;Z) = 0
otherwise. (For a solution, see Example 4.2.4.)

(d) Determine the functions ψ−1
i ◦ψj for the affine coordinate charts of CPn.

(Hint : See Example 4.2.4.)

(e)∗ Show that the homology class h ∈ H2(CP
2;Z) given as the funda-

mental class of the submanifold H = {[x : y : z] ∈ CP2 | x = 0} gene-
rates H2(CP

2;Z). Show furthermore that QCP2(h, h) = 1 and conclude that
QCP2 = 〈1〉.
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(f) We let CP2 denote the manifoldCP2 with the opposite orientation, hence
(by Remark 1.2.2(c)) Q

CP2 = −QCP2 = 〈−1〉. (Caveat : Do not confuse this

notation with complex conjugation, which preserves orientation on CP2k.)
Prove that there is no orientation-preserving diffeomorphism between CP2

and CP2.

As in the real case, it is easy to see that any two distinct points of CP2 lie
on a unique projective line (≈ CP1), and any two (distinct) projective lines
in CP2 intersect each other in exactly one point.

The cartesian product CP1 × CP1 provides the next example of a sim-
ply connected 4-manifold. By the Künneth formula H2(CP

1 × CP1;Z) =
H2(S

2×S2;Z) ∼= Z⊕Z, and it is not hard to see that QS2×S2 = H: Choose
the homology elements α = [S2 × {pt.}] and β = [{pt.} × S2] as a basis
for H2(S

2 × S2;Z); the matrix of QS2×S2 in this basis is equal to [ 0 1
1 0 ].

To construct other 4-manifolds from the above ones we introduce a general
operation for two smooth n-dimensional manifolds with boundary.

Definition 1.3.2. Let X1, X2 be oriented n-dimensional manifolds, and as-
sume that Zi ⊂ ∂Xi (i = 1, 2) are compact, codimension-zero submanifolds
of the boundaries. Assume furthermore that ϕ : Z1 → Z2 is an orientation-
reversing diffeomorphism. By identifying Z1 with Z2 via ϕ (and smoothing
the corners) we get a new oriented manifold, denoted by X1 ∪ϕ X2 (or by
X1 ∪Z X2 if Z = Z1 = Z2 and ϕ = idZ).

Remark 1.3.3. The operation of smoothing corners is easy in dimension 2:
Replace an angular boundary such as {(x1, x2) ∈ R2 | x1 ≤ 0 or x2 ≤ 0} by
a smooth one, using compactly supported smooth functions; see Figure 1.1.
In higher dimensions, the same can be done (canonically) by multiplying
the previous model by the extra dimensions of ∂Zi.

Figure 1.1. Model for smoothing corners in dimension 2.

A special case of the construction of Definition 1.3.2 is the boundary
sum — when we glue along the (n − 1)-dimensional ball Z1 ≈ Z2 ≈ Dn−1.
The result is denoted by X1�X2 and is well-defined (independent of the
embeddings of Dn−1) whenever each ∂Xi is connected. The boundary sum
of m copies of the manifold is denoted by �mX; ifm = 0, then �mX = Dn by

                

                                                                                                               



20 1. Introduction

definition. Another special case of the construction given in Definition 1.3.2
is the connected sum of two connected, oriented n-dimensional manifolds
X1 and X2:

Definition 1.3.4. For i = 1, 2, let Dn
i ⊂ Xi be embedded disks, and let

ϕ : Dn
1 → Dn

2 be an orientation-reversing diffeomorphism. The smooth man-
ifold (X1− int D1)∪ϕ|∂D1

(X2− int D2) is called the connected sum X1#X2

of X1 and X2; it does not depend on the choices of Dn
i or ϕ (since any

two orientation-preserving embeddings of a disk are smoothly isotopic). In
particular, #mX denotes the manifold we get by the connected sum of m
(m ≥ 0) copies of the same manifold X. (Again, if m = 0, then #mX = Sn

by definition.)

Note that, by definition, the boundary sum of X1 and X2 has the connected
sum ∂X1#∂X2 as boundary, so ∂(X1�X2) = ∂X1#∂X2 — this relation
might explain the names of the operations. The iterated application of the
connected sum operation for CP2, CP2 and S2×S2 gives other examples of
simply connected 4-manifolds.

Exercises 1.3.5. (a)∗ Given 4-manifolds X1 and X2 with intersection
forms QXi , show that QX1#X2 = QX1 ⊕QX2 .

(b)∗ More generally, prove that if X = X1 ∪N X2 and N is a homology
3-sphere, then QX = QX1 ⊕QX2 .

Remark 1.3.6. The converse of the above exercise is also true ([FT1],
Theorem 1), namely that if X is a closed, smooth, simply connected 4-
manifold and QX splits as Q1 ⊕ Q2, then there are X1, X2 ⊂ X such that
X = X1∪N X2 giving the splitting Q1⊕Q2 for QX (as Qi = QXi); moreover
N is a (smoothly embedded) homology sphere. Note that by applying the
result of Exercises 1.3.1(e) and 1.3.5(a) one can easily prove that the inter-

section form of #nCP2#mCP2 is equivalent to n〈1〉 ⊕ m〈−1〉 (n,m ≥ 0),
so these intersection forms — which cover all possible definite (cf. Theorem
1.2.30) and odd indefinite candidates — can be realized by smooth mani-

folds. Note also that the intersection form of S2 × S2#CP2 is isomorphic
to the intersection form of CP2#2CP2 (cf. Exercise 1.2.17(c)). By Theo-
rem 1.2.27, this implies that these manifolds are homeomorphic. As we will
see later, S2 × S2#CP2 is, in fact, diffeomorphic to CP2#2CP2.

Polynomials in the variables {z0, . . . , zn} are not well-defined functions
on CPn, but for a homogeneous polynomial p of degree d, i.e., a polynomial
satisfying p(λz) = λdp(z) for all λ ∈ C and z ∈ Cn+1, the zero set of p is
well-defined. (If p vanishes on a point z ∈ Cn+1 − {0} then it vanishes on
its entire equivalence class [z] ∈ CPn.)

Definition 1.3.7. If p is a homogeneous polynomial of degree d then the
set Vp = {[z] ∈ CPn | p(z) = 0} is called the hypersurface corresponding
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to the polynomial p. The complex submanifolds of CPn are called complex
projective manifolds.

It has been proved [GH] that any complex projective manifold can be writ-
ten as the zero set of a collection of homogeneous polynomials. Not every
complex manifold, however, can be embedded in CPn, so not all complex
manifolds are projective.

By considering hypersurfaces in CP3, we will provide further examples of
4-manifolds with even QX ; in particular, we will show that if the indefinite
even form Q satisfies the constraints posed by Theorem 1.2.29 and the 11

8 -
Conjecture, then there exists a smooth 4-manifold X with Q ∼= QX (cf.
Exercise 1.3.12(a)). Consider the hypersurface

Sd = {[z0 : z1 : z2 : z3] ∈ CP3 |
∑

zdi = 0} ⊂ CP3,

where d is a positive integer.

Theorem 1.3.8. (See also [McS1].) The hypersurface Sd is a smooth, sim-
ply connected, complex surface. If d is odd, then QSd

is equivalent to λd〈1〉⊕
μd〈−1〉, where λd = 1

3(d
3−6d2+11d−3) and μd = 1

3(d−1)(2d2−4d+3); if

d is even, then QSd
is equivalent to ld(−E8)⊕mdH, where ld = 1

24d(d
2− 4)

and md = 1
3(d

3 − 6d2 + 11d− 3).

Proof. The Implicit Function Theorem shows that Sd ⊂ CP3 is a smooth
4-manifold; the fact that π1(Sd) = 1 follows from the Lefschetz Hyperplane
Theorem 1.4.22 (see Exercise 8.1.1(b)). For determining QSd

we must com-
pute its parity, rank and signature (cf. Theorem 1.2.21). Note that Sd is
a complex surface, hence it admits Chern classes c1(Sd) ∈ H2(Sd;Z) and
c2(Sd) ∈ H4(Sd;Z). Since c2[Sd] = χ(Sd) = 2 + rk(QSd

) and c21[Sd] =
3σ(Sd) + 2χ(Sd), the classes c2(Sd) and c1(Sd) determine the rank and the
signature of Sd. (Here χ(Sd) denotes the topological Euler characteris-
tic of Sd.) Moreover c1(Sd) ≡ w2(Sd) (mod 2), and (since π1(Sd) = 1)
QSd

is even iff w2(Sd) = 0; hence the parity of QSd
is determined by

c1(Sd). Consequently we only need to determine c1(Sd) and c2(Sd) in or-
der to compute QSd

. Recall that the total Chern class of CP3 is c(CP3) =
(1 + g)4 ∈ H∗(CP3;Z), where g denotes the generator of H2(CP3;Z) satis-
fying 〈g, [CP1]〉 = 1 [MS]. In the next lemma, x will denote the pullback
i∗(g) ∈ H2(Sd;Z) of g ∈ H2(CP3;Z) via the embedding i : Sd ↪→ CP3.

Lemma 1.3.9. The Chern classes of Sd are given by c1(Sd) = (4 − d)x
and c2(Sd) = (d2 − 4d + 6)x2. Moreover, 〈x2, [Sd]〉 = d, hence χ(Sd) =
(d2− 4d+6)d and c21[Sd] = (4− d)2d. In addition, QSd

is even iff d is even.

Proof. Restrict the tangent bundle TCP3 of CP3 to Sd. It splits as the
tangent bundle TSd of Sd and the normal bundle νSd: TCP

3|Sd= TSd⊕νSd.
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By the Whitney product formula we have that c(TCP3|Sd) = (1 + x)4 =
(1 + c1(Sd) + c2(Sd)) · (1 + c1(νSd)), so

1 + c1(Sd) + c2(Sd) = (1 + x)4(1 + c1(νSd))
−1

= (1 + 4x+ 6x2)(1− c1(νSd) + c21(νSd)).

Hence, to prove Lemma 1.3.9 we only need to determine c1(νSd).

Lemma 1.3.10. The first Chern class of the normal bundle νSd equals dx.

Proof. Suppose that S′
d is a hypersurface of degree d (defined by another

homogeneous polynomial of degree d) intersecting Sd transversally in V =
Sd∩S′

d. Since c1(νSd) = e(νSd) and S′
d can be chosen to be a section of νSd →

Sd, we get that c1(νSd) = PD([V ]). Since [Sd] = [S′
d] = d·[S1] ∈ H4(CP

3;Z),
and in H2(Sd;Z) one has PD[S1∩Sd] = i∗(PD[S1]) = i∗(g) = x, the lemma
follows.

Consequently,

1 + c1(Sd) + c2(Sd) = (1 + 4x+ 6x2)(1− dx+ d2x2)

= 1 + (4− d)x+ (d2 − 4d+ 6)x2,

and this implies the first statement of Lemma 1.3.9. The term 〈x2, [Sd]〉 can
be computed in the following way: 〈x2, [Sd]〉 = 〈(i∗g)2, [Sd]〉 = 〈g2, i∗[Sd]〉 =
〈g2 ∪ PD(i∗[Sd]), [CP

3]〉 = 〈g2 ∪ dg, [CP3]〉 = d · 〈g3, [CP3]〉 = d. Note that
for odd d the term 〈x2, [Sd]〉 = QSd

(x, x) is odd, hence QSd
is odd as well. If

d is even, then c1(Sd) = (4−d)x ≡ 0 (mod 2), so w2(Sd) = 0. Consequently,
Proposition 1.4.18 implies that QSd

is even iff d is even, which concludes the
proof of Lemma 1.3.9.

With the results of Lemma 1.3.9, the proof of Theorem 1.3.8 is just a simple
computation.

Our particular choice of the homogeneous polynomial in the definition
of Sd has no importance, since

Claim 1.3.11. If p1 and p2 are two homogeneous polynomials with equal
degree (and not powers of other polynomials) and the hypersurfaces Fi =
{P ∈ CPn | pi(P ) = 0} are smooth submanifolds of CPn (i = 1, 2), then F1

is diffeomorphic to F2.

Proof. By taking the coefficients of the monomials in a (homogeneous)
polynomial of degree d in n+ 1 variables, one defines a point in CN (where
N depends on n and d). Conversely, a point z ∈ CN defines a polynomial
pz by specifying the coefficients. The set Vz = {P ∈ CPn | pz(P ) = 0} is
a hypersurface unless z = 0, and clearly Vλz = Vz for all λ ∈ C∗, hence
the hypersurfaces of degree d in CPn are parametrized by the points of
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(CN − {0})/C∗ = CPN−1. Singular hypersurfaces correspond to points of a
complex codimension-1 subspace of CPN−1, since the singular objects can be
described by equations (specifying that the Implicit Function Theorem fails).
Since this subspace has real codimension 2, the points of CPN−1 correspond-
ing to smooth hypersurfaces form a connected subset, which means that one
smooth hypersurface can be smoothly deformed to any other smooth one,
and this proves that F1 is diffeomorphic to F2. The above proof, in fact,
shows that F1 is ambiently isotopic to F2 in CPn.

In the light of Claim 1.3.11, it is easy to see that S1 = CP2. (Define
S′
1 = {[z0 : z1 : z2 : z3] ∈ CP3 | z3 = 0}.) By taking the quadric surface

S′
2 = {[z0 : z1 : z2 : z3] ∈ CP3 | z0z3 = z1z2} (which is diffeomorphic to

S2 by Claim 1.3.11), we see that S2 ≈ CP1 × CP1. (Notice that the map
([s0 : s1], [t0 : t1]) �→ [s0t0 : s0t1 : s1t0 : s1t1] gives an isomorphism between
CP1 × CP1 and S′

2. See also Exercise 3.2.1.) We need additional tools to

show that S3 = CP2#6CP2 (Lemma 3.1.17 and subsequent text). The case
d = 4 gives an example of a simply connected complex surface with c1 = 0;
such a surface is called a K3-surface. By algebraic geometric methods it
can be shown that all K3-surfaces are diffeomorphic (cf. Theorem 3.4.9), so
from the differential topological point of view we can call S4 the K3-surface.
By the previous formula QS4 = 2(−E8)⊕ 3H.

Exercises 1.3.12. (a)∗ Realize all the (indefinite) even unimodular forms
allowed by Theorem 1.2.29 and the 11

8 -Conjecture as intersection forms of
simply connected, smooth 4-manifolds.

(b)∗ Show that if X is a simply connected, smooth 4-manifold with even
intersection form and b+2 (X) = 0, then X is homeomorphic to S4. (Hint :
Apply Theorems 1.2.30 and 1.2.27.)

More examples of simply connected 4-manifolds can be given by gener-
alizing the above construction of Sd. Take homogeneous polynomials pi of
degree di in n+1 variables (i = 1, . . . , n−2). Note that each pi defines a hy-
persurface in CPn. Suppose that their intersection, S = S(d1, . . . , dn−2) =
{P ∈ CPn | pi(P ) = 0 (i = 1, . . . , n − 2)}, is a smooth submanifold of
complex dimension 2 in CPn. In this case S is called a complete intersection
surface of multidegree (d1, . . . , dn−2). By generalizing Claim 1.3.11 it can
be proved that the diffeomorphism type of S(d1, . . . , dn−2) depends only on
the multidegree (d1, . . . , dn−2). Note that without loss of generality we can
assume that each di ≥ 2. By the Lefschetz Hyperplane Theorem 1.4.22 (cf.
Exercise 8.1.1(b)), we have that π1(S(d1, . . . , dn−2)) = 1.

Exercises 1.3.13. For S = S(d1, . . . , dn−2) prove that

(a) c2[S] = (n(n+1)
2 − (n+ 1)

∑
di +

∑
d2i +

∑
i<j didj)

∏
di;

(b) c21[S] = (
∑

di − (n+ 1))2
∏

di;
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(c) σ(S) = 1
3((n+ 1)−∑

d2i )
∏

di;

(d) the second Stiefel-Whitney class w2(S) vanishes (hence QS is even) iff∑
di − (n+ 1) is even.

(e) Show that c1(S(d1, . . . , dn−2)) = nShS , where nS =
∑

di − (n+ 1) and
hS ∈ H2(S(d1, . . . , dn−2);Z) is a primitive class. (Hint : Let x = i∗g in
H2(S;Z), where g generates H2(CPn;Z) and i : S ↪→ CPn is the embedding.
Show that νS = L1⊕. . .⊕Ln−2, where Li → S is a complex line bundle with
c1(Li) = dix; moreover 〈x2, [S]〉 = ∏

di and x is primitive. Characteristic
class computations and easy arithmetic yield the solution.)

The surfaces S(2, 3) and S(2, 2, 2) are K3-surfaces (hence diffeomorphic to

S(4) = S4); S(2, 2) is diffeomorphic to CP2#5CP2. (Recall also that S(1) =

S1 = CP2, S(2) = S2 = CP1 × CP1 and S(3) = S3 = CP2#6CP2.) All
other complete intersection surfaces are surfaces of general type. (For the
definition of surfaces of general type see Section 3.4.)

Other complex surfaces can be given by taking n − 2 hypersurfaces of
CPi1 × . . . × CPik (

∑
ij = n) intersecting each other in a smooth complex

surface. These surfaces will be complex projective manifolds (since the prod-
uct CPi1×· · ·×CPik embeds holomorphically in some CPN ) but usually not
complete intersections, and they need not be simply connected. A hypersur-
face of CPi1× . . .×CPik can be defined by a multi-homogeneous polynomial
of degree (d1, . . . , dk): such a polynomial is homogeneous of degree d1 in
the first (i1 + 1) variables, homogeneous of degree d2 in the next (i2 + 1)
variables, and so on. The computation of the characteristic numbers of a
surface given by the above construction is left to the reader.

1.4. Appendix

In this appendix we will present the very basics of characteristic classes —
for a more detailed treatment see [MS]. For alternative definitions see [St],
[We] or Section 5.6 of this volume. At the end of the section we will give
a quick review of spin structures and Dirac operators (see also Sections 2.4
and 5.6). In the following, Xm will denote an m-dimensional manifold. We
will spell out the special relations among the characteristic classes of tangent
bundles of 4-manifolds.

1.4.1. Characteristic classes. The set of isomorphism classes of U(1)-
bundles (O(1)-bundles resp.) over X will be denoted by LX (RX resp.).
Obviously LX and RX admit group structures with the tensor product of
line bundles as multiplication.

Proposition 1.4.1. The groups LX and H2(X;Z) are canonically isomor-
phic; similarly, RX and H1(X;Z2) are canonically isomorphic groups.
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Proof. We only give a hint for proving that LX ∼= H2(X;Z); the proof of the
other statement follows the same pattern. From algebraic topology we know
that H2(X;Z) = [X,K(Z, 2)], where [X,Y ] is the set of homotopy classes
of maps from X to Y , and K(Z, 2) is the Eilenberg-MacLane space with
πi(K(Z, 2)) = 0 for i �= 2 and π2(K(Z, 2)) = Z. Bundle theory tells us that
LX and [X,BU(1)] are isomorphic (where BU(1) is the classifying space for
U(1)-bundles). An easy argument shows that both K(Z, 2) and BU(1) are
homotopy equivalent to CP∞, and this gives the desired isomorphism. The
proof that RX

∼= H1(X;Z2) rests on the fact that both K(Z2, 1) and BO(1)
are homotopy equivalent to RP∞.

The isomorphism LX → H2(X;Z) (with suitably chosen sign) is usu-
ally called c1, and c1(L) is the first Chern class of the complex line bundle
L. Similarly, w1 : RX → H1(X;Z2) is the isomorphism given by Proposi-
tion 1.4.1, and w1(R) is the first Stiefel-Whitney class of the real line bundle
R→ X. An alternative — obstruction theoretic — description of c1 (and of
w1) can be given in the following way. (Compare with Section 5.6.) Suppose
that X has a CW-decomposition and L → X is a U(1)-bundle; note that
for each cell f : Dk → X, the bundle f∗L over Dk is canonically trivial.
Obviously L is trivial on the 0-skeleton of X, and since U(1) is connected,
such a trivialization can be extended over the 1-skeleton. Comparing this
trivialization with the canonical trivialization over each 2-cell defines a map
ϕ : ∂D2 → U(1) = S1 for every 2-cell D2, hence associates a number (the
degree of ϕ) to every 2-cell. In this way we define a cochain c.

Claim 1.4.2. The cochain c is a cocycle, and the class [c] ∈ H2(X;Z)
depends only on the bundle L → X (and is independent of the CW-decom-
position and the trivialization).

Note that if [c] = 0, so the trivialization can be changed over the 1-skeleton
in such a way that it extends over the 2-skeleton, then L is trivial. This
follows from the fact that when we want to extend the trivialization to
higher dimensional cells, we do not find any more obstructions, since all
maps ∂Dk → U(1) = S1 are nullhomotopic once k > 2.

Theorem 1.4.3. The above-defined class [c] ∈ H2(X;Z) of L → X co-
incides with the Chern class c1(L) defined by the isomorphism of Proposi-
tion 1.4.1.

Proof. Both c1 and the above obstruction class [c] are natural with respect
to continuous maps. Since each line bundle can be regarded as the pull-back
of the tautological line bundle τ → CP∞, Theorem 1.4.3 has to be proved
only for τ . That proof, however, is essentially contained in the proof of
Claim 2.2.1.
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A similar argument gives an obstruction theoretic description for w1(R) of
a real line bundle R→ X. (For more about obstruction theory see also [St]
or [FFG].)

Next we outline the definition of the other Chern classes ci(E) in
H2i(X;Z) (i = 2, . . . , n) for a complex n-plane bundle E. (For a real n-
plane bundle F → X one can proceed similarly and get the Stiefel-Whitney
classes wi(F ) ∈ H i(X;Z2), i = 1, . . . , n.) If E = L1 ⊕ . . .⊕ Ln is a sum of
complex line bundles Li, take c(E) ∈ H∗(X;Z) (the total Chern class) to
be the cup product c(E) = (1+ c1(L1))∪ . . .∪ (1+ c1(Ln)) ∈ H∗(X;Z). The
component of c(E) in H2i(X;Z) is called the ith Chern class ci(E) of E, so
c(E) = 1 + c1(E) + . . .+ cn(E). Hence ci(E) is the value of the ith elemen-
tary symmetric polynomial of n variables evaluated on c1(L1), . . . , c1(Ln).
Not all n-plane bundles are sums of complex line bundles, however. For the
definition of Chern classes in those cases we need a theorem.

Theorem 1.4.4. (Splitting Principle) For a given complex n-plane bundle
E → X there is a space Y and a map g : Y → X such that g∗E splits as
L1 ⊕ . . . ⊕ Ln (where Li → Y are complex line bundles), g∗ : H∗(X;Z) →
H∗(Y ;Z) is a monomorphism and the elementary symmetric polynomials of
the classes c1(Li) are in Im g∗.

For the proof and an analogous statement for real bundles see [Sha], [Hu].
Here we only give the inductive step of the construction of Y and g; the
properties should be checked by the reader. Projectivize π : E → X (replace
the fiber Cn with CPn−1), and get the new bundle p : CP(E) → X. Pull
E → X back via the map p : CP(E) → X and get the Cn-bundle p∗(E) →
CP(E). It is easy to see that p∗(E) = L⊕E1, where L is a line bundle and
E1 → CP(E) is a Cn−1-bundle. Applying the Leray-Hirsch Theorem [Hu]
we get that p∗ : H∗(X;Z) → H∗(CP(E);Z) is a monomorphism. Repeat
this inductive step and split E into line bundles; the composition of the
corresponding projections will give the desired g. The classes c(g∗(E)) =
1 + c1(g

∗(E)) + . . . + cn(g
∗(E)) ∈ H∗(Y ;Z) are defined, and since these

classes are elementary symmetric polynomials of the c1(Li)’s, they are in
Im g∗. The homomorphism g∗ is injective, so g∗−1(ci(g

∗(E))) is a well-
defined cohomology class, which is, by definition, the ith Chern class of
E → X. The real analogue of the above process defines Stiefel-Whitney
classes wi(F ) ∈ H i(X;Z2) of a given Rn-bundle F → X. For a real n-plane
bundle F → X the Pontrjagin classes pi(F ) ∈ H4i(X;Z) can be defined by
the formula pi(F ) = (−1)ic2i(F ⊗R C). The next proposition summarizes
the most important properties of the Chern, Stiefel-Whitney and Pontrjagin
classes. Let E → X denote a Cn-bundle and F → X an arbitrary Rn-bundle.
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Proposition 1.4.5. (a) The above-defined characteristic classes ci(E) ∈
H2i(X;Z), wi(F ) ∈ H i(X;Z2) and pi(F ) ∈ H4i(X;Z) are well-defined co-
homology elements. (They depend only on the bundles, not on the particular
splitting used in the definition.)

(b) These classes are natural with respect to continuous maps: ci(f
∗E) =

f∗(ci(E)), wi(f
∗F ) = f∗(wi(F )) and pi(f

∗F ) = f∗(pi(F )) for a continuous
map f : X ′ → X.

(c) (Whitney product formula) For direct sums of bundles we have the
identities c(E ⊕ E′) = c(E) ∪ c(E′), w(F ⊕ F ′) = w(F ) ∪ w(F ′), and
2(p(F ⊕ F ′)− p(F ) ∪ p(F ′)) = 0.

Exercises 1.4.6. (a) Show that if E → X is a complex n-plane bundle,
then E ⊗ C ∼= E ⊕ E. Here E stands for the conjugate bundle of E → X.
(See [MS] for a solution.)

(b) Prove that ci(E) = (−1)ici(E).

There is one more characteristic class that will be used in our arguments,
namely, the Euler class of an oriented real n-plane bundle. We define it only
in the case where Xm is an m-dimensional closed, smooth manifold and
F1 → X is a smooth, oriented Rn-bundle. Let s : X → F1 be a generic
smooth section of F1 → X and Z = s−1(0) be its zero set. (By generic
we mean that the image s(X) intersects the image of the zero section of
F1 → X transversally.) The fundamental class of the zero set Z defines a
homology class [Z] ∈ Hm−n(X;Z), so its Poincaré dual PD([Z]) gives rise
to an element in Hn(X;Z).

Claim 1.4.7. The class e(F1) = PD([Z]) ∈ Hn(X;Z) depends only on the
bundle F1 → X, and by definition this cohomology class is the Euler class
of F1 → X.

For a manifold X, the ith Stiefel-Whitney class of its tangent bundle TX
is denoted by wi(X). Similarly, for an oriented manifold one defines pi(X)
and e(X). If X is a complex manifold, so TX admits a canonical complex
structure, ci(X) is defined as well. For the following computations see [MS].

Examples 1.4.8. (a) The total Chern class of the complex projective space
CPn is given as c(CPn) = (1 + g)n+1, where g is the standard generator of
H2(CPn;Z) ∼= Z. For example, c1(CP

n) = (n + 1)g and c1(CP
2) = 3g,

c2(CP
2) = 3g2.

(b) Using Exercises 1.4.6(a) and (b) we can see that p(CPn) = (1+ g2)n+1;
in particular, p1(CP

2) = 3g2.

(c) The total Stiefel-Whitney class of RPn is w(RPn) = (1 + a)n+1, where
a ∈ H1(RPn;Z2) is the generator of H1(RPn;Z2) = Z2.
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The following proposition describes the most important relations among
characteristic classes.

Proposition 1.4.9. If E → X is an n-dimensional complex bundle, then
the relations cn(E) = e(E) and ci(E) ≡ w2i(E) (mod 2) hold for all i ≤
n; moreover w2i+1(E) = 0. For a smooth, closed, oriented n-dimensional
manifold X we have e(X) ≡ wn(X) (mod 2), while 〈e(X), [X]〉 is equal to
the Euler characteristic χ(X) of X.

Exercise 1.4.10. Find the relation among the Pontrjagin and Chern classes
of a complex bundle E → X. In particular, show that p1(E) is given by
c21(E)− 2c2(E). (Hint : Use Exercises 1.4.6 or see [MS].)

Note that we denote the Euler characteristic of a manifold X by χ(X)
— while the Euler class of a bundle E is denoted by e(E). (The holomorphic
Euler characteristic of a complex manifold will be denoted by χh.) If X is
a closed, complex n-dimensional manifold, and {i1, . . . , ik} is a partition of
n (that is, ij are positive integers and i1 + . . . + ik = n), then the product
ci1(X)∪ . . .∪cik(X) can be evaluated on the fundamental class [X], defining
the Chern number corresponding to the partition {i1, . . . , ik}. A similar
definition gives Stiefel-Whitney (and Pontrjagin) numbers of closed, smooth
(oriented) manifolds. If S is a complex surface, the two Chern numbers are
denoted by c2[S] and c21[S]. (By slight abuse of notation we will often confuse
the Chern numbers c2[S] and c21[S] ∈ Z with the corresponding Chern classes
c2(S), c

2
1(S) ∈ H4(S;Z). In this introductory chapter, however, we would

like to make the distinction clear.)

Exercises 1.4.11. (a) Prove that if X is a closed, orientable manifold of
odd dimension, then χ(X) = 0.

(b)∗ Show that if Σ is a closed, oriented surface embedded in an arbitrary
oriented 4-manifold X, then e(νΣ)[Σ] = QX([Σ], [Σ]) = [Σ]2.

Now we turn our attention to the 4-dimensional case, so X denotes a
4-dimensional (closed, oriented, smooth) manifold. The next theorem gives
a relation between the signature of X and the first Pontrjagin class of its
tangent bundle TX.

Theorem 1.4.12. (Hirzebruch signature theorem for 4-manifolds) If X is
a smooth, closed, oriented 4-dimensional manifold, then its signature σ(X)
is equal to 1

3〈p1(X), [X]〉.

To emphasize that a certain smooth 4-manifold X admits a complex struc-
ture (so it is a complex surface), we will denote it by S. For a complex
surface S we have that p1(S) = c21(S)− 2c2(S) (cf. Exercise 1.4.10), and so
from Theorem 1.4.12 (and from the identity c2[S] = e[S] = χ(S)) it follows
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that the Chern number c21[S] equals 3σ(S) + 2χ(S). Below, we will show
that c1(S) ∈ H2(S;Z) is characteristic for the intersection form (because
it reduces mod 2 to w2(S)), so Lemma 1.2.20 implies that c21[S] ≡ σ(S)
(mod 8), and thus σ(S) + χ(S) ≡ 0 (mod 4). We obtain the following
theorem by expressing this in terms of Chern numbers, and also obser-
ving that for any closed, oriented 4-manifold we have σ(X) + χ(X) =
b+2 (X)− b−2 (X) + (b+2 (X) + b−2 (X)− 2b1(X) + 2) = 2(1− b1(X) + b+2 (X)).

Theorem 1.4.13. (Noether formula) For a complex surface S the integer
c21[S]+c2[S] = 3(σ(S)+χ(X)) is divisible by 12, or equivalently, 1−b1(S)+
b+2 (S) is even. In particular, if S is a simply connected complex surface then
b+2 (S) is odd.

Note that for defining ci(S) we do not really need S to be a complex
manifold. If TX → X is a Cn-bundle, ci already makes sense. Of course, if
X is a complex manifold then TX → X has a natural complex structure.
However, a Cn-structure on the fibers (defining multiplication by i fiberwise)
can be defined for a much wider class of manifolds. Such a structure on a
manifold is called an almost-complex structure. Formally, we have

Definition 1.4.14. An almost-complex structure on the bundle TX → X
is a smooth, fiberwise linear map J : TX → TX covering idX such that
J2 = −idTX .

An almost-complex structure defines a natural orientation on the smooth
manifold X, since the choice of J reduces the structure group of the tangent
bundle to GL(n;C) ⊂ GL+(2n;R). Once an almost-complex structure is
specified, Chern classes ci make sense. In this latter case the Chern classes
will also depend on the almost-complex structure chosen; for an oriented
manifoldX we only consider almost-complex structures generating the given
orientation. For a given J the corresponding Chern classes of (TX, J) are
denoted by ci(X, J) ∈ H2i(X;Z). The following theorem provides a neces-
sary and sufficient condition for the existence of an almost-complex structure
on the 4-manifold X.

Theorem 1.4.15. (Wu [Wu], see also [HH]) For a given 4-manifold X
and almost-complex structure J on X we have c2(X, J) = e(X) ∈ H4(X;Z),
c1(X, J) ≡ w2(X) (mod 2) and c21[X, J ] = 3σ(X) + 2χ(X). Conversely, if
for h ∈ H2(X;Z) the equation h2 = 3σ(X) + 2χ(X) and the congruence
h ≡ w2(X) (mod 2) hold, then there is an almost-complex structure J on
TX with h = c1(X, J).

(For the proof see Exercise 1.4.21(c); cf. also Exercise 10.1.3(a).) Since
the proof of the Noether formula only used properties of c1(S) satisfied by
the first Chern class c1(X, J) of an almost-complex structure J — namely
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that c21[X, J ] = 3σ(X) + 2χ(X) and c1(X, J) ≡ w2(X) (mod 2) — Theo-
rem 1.4.13 holds for an almost-complex manifold as well. By Theorem 1.4.15,
the existence of an almost-complex structure is a cohomological question.

Exercises 1.4.16. (a) Prove that S4, (S2×S2)#(S2×S2) and CP2#CP2

do not admit any almost-complex structure.

(b)∗ More generally, prove (using Theorem 1.4.15) that a simply connected,
smooth, closed 4-manifold X admits an almost-complex structure iff b+2 (X)
is odd.

The definitions c2[X] = χ(X) and c21[X] = 3σ(X) + 2χ(X) extend the
notions of c2 and c21 to all closed, oriented 4-manifolds (even to manifolds
without an almost-complex structure). The next formula has fundamen-
tal importance in the study of the smooth structures of 4-manifolds. (For
generalizations see Theorems 2.4.8 and 11.4.7; for applications see, e.g., The-
orem 2.1.6.) Let S be a complex surface (so a real 4-dimensional manifold)
with i : C ↪→ S a smooth (nonsingular), connected complex curve in it.

Theorem 1.4.17. (Adjunction Formula) Denoting the genus of C by g(C)
and the self-intersection by [C]2, we have 2g(C)−2 = [C]2−c1(S)[C] (where
c1(S)[C] means 〈c1(S), [C]〉 ∈ Z).

Proof. Restrict the tangent bundle of S to C and apply characteristic class
computations: TS|C = TC ⊕ νC, where νC → C is the normal bundle
of C in S; hence c1(S)[C] = c1(TS|C)[C] = c1(TC)[C] + c1(νC)[C] =
e(TC)[C] + e(νC)[C] = χ(C) + e(νC)[C] = 2 − 2g(C) + e(νC)[C]. The
solution of Exercise 1.4.11(b) now gives c1(S)[C] = 2− 2g(C) + [C]2, which
proves the adjunction formula.

A similar argument shows:

Proposition 1.4.18. For a given oriented 4-manifold X and α ∈ H2(X;Z)
we have that 〈w2(X), α〉 ≡ QX(α, α) (mod 2).

Proof. Represent α ∈ H2(X;Z) by an embedded orientable surface
Σ ⊂ X. Then 〈w2(X), α〉 = 〈w2(TX|Σ), [Σ]〉 = w2(TΣ)[Σ] + w2(νΣ)[Σ] +
(w1(TΣ) ∪ w1(νΣ))[Σ] ≡ e(TΣ)[Σ] + e(νΣ)[Σ] ≡ e(νΣ)[Σ] = QX([Σ], [Σ]) =
α2 (mod 2). Note that w1(TΣ) = 0 and e(TΣ)[Σ] = χ(Σ) ≡ 0 (mod 2), since
Σ is orientable. (In the expression 〈w2(X), α〉 we took the mod 2 reduction
of the integral homology class α.)

Assuming that X is orientable, the same relation holds for homology el-
ements with Z2-coefficients: For a ∈ H2(X;Z2) one has 〈w2(X), a〉 =
QX(a, a). This equation is called the Wu formula (cf. Exercise 5.7.3). Note
also that Proposition 1.4.18 holds even if X has boundary or is noncompact.
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Exercise 1.4.19. Prove the Wu formula using Remark 1.2.4. (For a non-
orientable Rn-bundle F , wn(F ) can be defined like the Euler class in
Claim 1.4.7, using Z2-coefficients, and 〈wn(X), [X]〉 ≡ χ(X) (mod 2) for
X closed.)

Proposition 1.4.18 shows that if there is no 2-torsion in H2(X;Z) (for
example, if X is simply connected), then w2(X) vanishing is equivalent to
QX being even. This is not true for all 4-manifolds, since in the presence of
2-torsion the mod 2 reduction H2(X;Z)→ H2(X;Z2) is not onto. There ex-
ists a manifold X (e.g., the Enriques surface, cf. Section 3.4) with nontrivial
w2(X), QX

∼= (−E8) ⊕H and π1(X) ∼= Z2. (In fact, w2(X) lifts to a class
of order 2 in H2(X;Z) and pairs nontrivially with a class in H2(X;Z2) with
no integer lift.) Note also that since c1(X, J) ≡ w2(X) (mod 2), Proposi-
tion 1.4.18 implies that the first Chern class of an almost-complex structure
is a characteristic element, as we needed when proving Theorem 1.4.13.

To demonstrate how useful characteristic classes are, we describe the
classification of U(2), SU(2), SO(3) and SO(4)-bundles over a 4-manifold
X. (Note that the case SO(2) ∼= U(1) was already discussed at the beginning
of this section.)

Theorem 1.4.20. (a) Two U(2)-bundles E1 and E2 on X are isomorphic
iff c1(E1) = c1(E2) and c2(E1) = c2(E2). Moreover, for every pair (c1, c2) ∈
H2(X;Z) × H4(X;Z) there is a U(2)-bundle E with c1 = c1(E) and c2 =
c2(E). Furthermore, a U(2)-bundle E can be reduced to an SU(2)-bundle
iff c1(E) = 0. Consequently, two SU(2)-bundles E1 and E2 are isomorphic
iff c2(E1) = c2(E2).

(b) Two SO(4)-bundles F1 and F2 are isomorphic iff w2(F1) = w2(F2),
p1(F1) = p1(F2) and e(F1) = e(F2).

(c) Two SO(3)-bundles F1, F2 → X are isomorphic iff w2(F1) = w2(F2)
and p1(F1) = p1(F2). Moreover p1(F1) ≡ P(w2(F1)) (mod 4), and for
every pair (p1, w2) ∈ H4(X;Z)×H2(X;Z2) with p1 ≡ P(w2) (mod 4) there
is an SO(3)-bundle F → X such that p1 = p1(F ) and w2 = w2(F ).

In the above theorem, the map P : H2(X;Z2) → H4(X;Z4) denotes the
Pontrjagin square. (If the cohomology class c ∈ H2(X;Z) is an integral lift
of w2 (so c ≡ w2 (mod 2)), then c2 ≡ P(w2) (mod 4). We do not give the
definition of P in full generality.)

Exercises 1.4.21. (a) Prove that if c, c′ ∈ H2(X;Z) are lifts of a fixed
element w2 ∈ H2(X;Z2), then c2 ≡ (c′)2 (mod 4).

(b) Prove Theorem 1.4.20(a). (Hint : Take a CW decomposition of X and
apply obstruction theory. For Theorem 1.4.20(b) and (c) see [DW].)

(c)∗ Using Theorem 1.4.20, prove Theorem 1.4.15.
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(d) Show that for an SO(n)-bundle F we have w2
2i(F ) ≡ pi(F ) (mod 2).

(Hint : Recall that pi(F ) = (−1)ic2i(F⊗RC) ≡ w4i(F⊗RC) (mod 2); by the
Whitney product formula determine w4i(F ⊗R C) in terms of the wj(F )’s.)

We close this subsection by quoting the Lefschetz Hyperplane Theorem
used in various places in the text. (The proof appears in [M2], see also
Exercise 11.2.3(b).)

Theorem 1.4.22. (Lefschetz Hyperplane Theorem) Let X be a compact,
complex n-dimensional submanifold of CPN . If H is a hyperplane in CPN ,
then the homomorphisms πi(X ∩H)→ πi(X) and Hi(X ∩H)→ Hi(X) are
isomorphisms for i < n− 1 and surjections for i = n− 1.

1.4.2. Spin structures. We will now sketch the theory of spin structures
and their relation to w2(X). For an obstruction-theoretic approach of the
same notions see Section 5.6.

For a given real n-plane bundle F → X one can always reduce the
structure group GL(n;R) to O(n) by introducing a Riemannian metric on
F . The Lie group O(n) is not connected, however, and the possibility of a
further reduction of the structure group to SO(n) (a connected component of
O(n)) depends on a characteristic class of F . If such a reduction exists, F →
X is an orientable bundle, and the choice of a reduction is an orientation for
F (cf. Remark 1.1.3; note that by definition GL+(n;R) ∩ O(n) = SO(n)).
Since w1(detF ) = w1(F ) and the line bundle detF is trivial iff the structure
group of F can be reduced to SO(n), we have

Lemma 1.4.23. The bundle F → X is orientable iff w1(F ) ∈ H1(X;Z2)
vanishes; the orientations are parametrized by H0(X;Z2) (which is isomor-
phic to Z2 if X is connected).

If F is the tangent bundle TX, the orientability of F means that X is an
orientable manifold (cf. Section 1.1). Although SO(n) is connected, it is not
a simply connected group; for n ≥ 3 we have π1(SO(n)) ∼= Z2. (We always
reduce to the case n ≥ 3 by summing F with a trivial bundle if neces-
sary.) The universal (double) cover of SO(n) is the spin group Spin(n). Let
F → X be an oriented Riemannian (i.e., SO(n)-) bundle; the corresponding
principal frame bundle will be denoted by PSO(n) → X.

Definition 1.4.24. The bundle F → X is spinnable if PSO(n) → X can be
covered by a principal Spin(n)-bundle PSpin(n) → X such that the double
covering PSpin(n) → PSO(n) is the universal cover ρ : Spin(n)→ SO(n) fiber-
wise, i.e., PSpin(n) ×ρ SO(n) ∼= PSO(n). (Hence a spin structure comprises
a principal Spin(n)-bundle PSpin(n) → X together with an identification
c : PSpin(n) ×ρ SO(n) ∼= PSO(n).) Fixing such a cover of PSO(n) — a spin
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structure — realizes F as a spin bundle. A spin structure on F = TX turns
X into a spin manifold.

From spectral sequences we get an exact sequence

0→ H1(X;Z2)→ H1(PSO(n);Z2)
i∗−→ H1(SO(n);Z2)

δ−→ H2(X;Z2),

where H1(SO(n);Z2) ∼= Z2 and δ(1) equals w2(F ) in H2(X;Z2) (cf. Re-
mark 5.6.9(b)). The exercise below shows that the double covers of PSO(n)

are in 1-1 correspondence with elements of H1(PSO(n);Z2). By the assump-
tion that fiberwise the cover needs to be Spin(n)→ SO(n), the spin struc-
tures are in 1-1 correspondence with elements of (i∗)−1(1) ⊂ H1(PSO(n);Z2).
This means that a required cover exists iff 1 ∈ Im i∗, hence (by exactness)
iff δ(1) = w2(F ) = 0.

Proposition 1.4.25. The SO(n)-bundle π : F → X is spinnable iff its sec-
ond Stiefel-Whitney class w2(F ) ∈ H2(X;Z2) vanishes. If so, then the
different spin structures are parametrized by (i∗)−1(1) ∼= ker i∗, which is
isomorphic to H1(X;Z2). (The identification of H1(X;Z2) with the set of
spin structures is not canonical; it becomes canonical only after choosing a
“base spin structure” corresponding to 0 ∈ H1(X;Z2).)

Exercises 1.4.26. (a)∗ Show that the double covers of a manifold X are
in 1-1 correspondence with elements of H1(X;Z2).

(b) Using obstruction theory, show that if G is a connected Lie group and
X is a CW complex, then any principal G-bundle PG is trivial over the 1-
skeleton X1. If G is simply connected, show that PG|X2 is trivial. (See Sec-
tion 5.6 for related discussions.) What can we say about PG|X3 if π1(G) = 1?
(Hint : Use the fact that for any Lie group, π2(G) = 0.)

We say that the oriented manifold X is spinnable if w2(X) = 0. Note
that when X is simply connected (so H1(X;Z2) = 0), the spin structure is
unique.

Remarks 1.4.27. (a) By slight (and standard) abuse of terminology we
will refer to a manifold with w2(X) = 0 as a spin manifold, although tech-
nically this implies the choice of a particular spin structure.

(b) For a 3-manifold X3 we have w2
1(X) = w2(X) [MS], so an orientable

3-manifold always has a spin structure. (In fact, if X3 is orientable, then its
tangent bundle is trivial, since π2(SO(3)) = 0.)

(c) A simply connected (not necessarily closed) 4-manifold X is spin iff
QX is even (since both statements are equivalent to w2(X) vanishing). If
H1(X;Z) has 2-torsion, this equivalence no longer holds. (See also Corol-
lary 5.7.6.)
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Rohlin’s Theorem (Theorem 1.2.29) was stated only for simply connected
4-manifolds. It can be generalized to arbitrary (closed, smooth) 4-manifolds
with the following theorem — replacing the assumption about QX with the
assumption that X is spin. (See [K2] or [LaM] for a proof.)

Theorem 1.4.28. (Rohlin, [R2]) If X is a smooth, closed, spin 4-manifold,
then σ(X) ≡ 0 (mod 16).

In the rest of this section we will give various bundle constructions and
define operators one can associate to a spin structure. (For further details
see [LaM], [Mr2].) The importance of these constructions in dimension four
becomes clear once we generalize the notion of spin structures to spinc struc-
tures and list the spectacular results based on that theory (cf. Section 2.4).
The group Spin(n) can be constructed as a subgroup of a 2n-dimensional
real algebra, the Clifford algebra Cln. By definition Cln = T (Rn)/I(Rn),
where T (Rn) is the tensor algebra

⊕
k(R

n)⊗k and I(Rn) is the ideal gener-
ated by elements of the form v ⊗ v + 〈v, v〉1 ∈ T (Rn), v ∈ Rn. We denote
the complexification of Cln by Cln. The following algebraic statement can
be found, e.g., in [LaM].

Proposition 1.4.29. If n = 2k+1 is odd, then the complex Clifford algebra
Cln is isomorphic to the direct sum of two isomorphic matrix algebras: Cln ∼=
M2k(C)⊕M2k(C) (where Mm(C) = {m×m complex matrices}). In this way
we get two complex 2k-dimensional representations of Spin(n) ⊂ Cln; these
are irreducible and isomorphic. (We will denote them by Sn.) If n = 2k is
even, then Cln ∼= M2k(C); the corresponding complex 2k-dimensional repre-
sentation Sn of Spin(n) ⊂ Cln splits into two (nonisomorphic) irreducible
representations, hence Sn = S+

n ⊕ S−
n as a Spin(n)-module.

Exercise 1.4.30. Check that for the real Clifford algebras we have Cl1 ∼=
C, Cl2 ∼= H, Cl3 ∼= M2(C) and Cl4 ∼= M2(H) = {2×2 quaternionic matrices}.
Determine Cln for n ≤ 4.

Assume now that X is a spin manifold with a fixed spin structure
PSpin(n) → X and c : PSpin(n)×ρ SO(n) ∼= PSO(n). Using the above complex
representation Sn of Spin(n), one can associate the vector bundle S → X
to PSpin(n) → X. Sections of S → X are the spinors over X. If dimX

is even, then the bundle S splits as S = S+ ⊕ S− (corresponding to the
decomposition Sn = S+

n ⊕ S−
n ); sections of S

+ (S−) are the positive (nega-
tive) spinors, respectively. The bundle associated to PSpin(n) → X by the
Spin(n)-representation Cln is the Clifford bundle Cl(X) of the spin struc-
ture. The action of Cln on Sn induces an action of the Clifford bundle
Cl(X) on the spinor bundle S → X; this action is called the Clifford mul-
tiplication. Recall that for defining the principal bundle PSO(n) → X of
TX → X we fixed a metric g and an orientation on X (or equivalently,

                

                                                                                                               



1.4. Appendix 35

reduced the structure group of TX from GL(n;R) to SO(n)). There is a
canonical object associated to the metric g on X, which is the Levi-Civita
connection ∇g : Γ(X;TX)→ Γ(X;TX ⊗T ∗X). (As usual, Γ(X;F ) denotes
the vector space of C∞-sections of the vector bundle F → X.) This con-
nection can be pulled back to the Spin(n)-bundle PSpin(n) → X, defining
a covariant differentiation ∇ : Γ(X;S) → Γ(X;S ⊗ T ∗X) on the associated
bundle S → X.

Remark 1.4.31. It is a standard fact of differential geometry (cf. [DK])
that a covariant differentiation on the associated bundle F determines a
Lie(G)-valued 1-form on the principal G-bundle PG corresponding to F , and
vice versa. (Here Lie(G) denotes the Lie algebra of the Lie group G.) Hence
the Levi-Civita connection ∇g determines a Lie(SO(n))-valued 1-form on
PSO(n), which can be pulled back to PSpin(n). (Note that the corresponding
Lie algebras satisfy Lie(SO(n)) = Lie(Spin(n)).) In the following∇ denotes
the associated covariant differentiation on the associated bundle S → X.

Since T ∗X is a subbundle of the Clifford bundle Cl(X), T ∗X acts on the
spinor bundle S. Hence one can define a map (the Clifford multiplication)
C : Γ(X;S ⊗ T ∗X)→ Γ(X;S).

Definition 1.4.32. For a given Riemannian manifold X with a fixed spin
structure PSpin(n) → X, the composition

/∂ = C ◦ ∇ : Γ(X;S)→ Γ(X;S)

is called the Dirac operator of the spin manifold X. If dimX is even (so
S = S+ ⊕ S−), the Dirac operator /∂ : Γ(X;S±) → Γ(X;S∓) interchanges
spinors of opposite sign.

Finally, we examine the above constructions on 4-manifolds. Note that
Spin(3) ∼= SU(2) ∼= {unit quaternions} = Sp(1) = S3. (For q ∈ Sp(1)
associate the map q : H→ H given by x �→ qxq−1 (with quaternionic multi-
plication); this determines an action of Sp(1) on the imaginary quaternions
Im H, giving the double cover Sp(1) = SU(2) → SO(3) ≈ RP3.) Similarly,
we have that Spin(4) = SU(2)×SU(2): For a pair (q+, q−) ∈ SU(2)×SU(2),
take the linear transformation H→ H defined by x �→ q+xq

−1
− , and get the

desired universal (double) cover SU(2)× SU(2)→ SO(4).

In dimension 4 there is an alternative (and obviously equivalent) way
of defining spin structures. Let V be a 4-dimensional oriented Euclidean
vector space — so the symmetry group of V is isomorphic to SO(4). We
define a spin structure for V as a pair of 1-dimensional quaternionic vector
spaces V +, V − with hermitian metrics and a fixed isomorphism γ : V →
HomH(V

+, V −) compatible with the metrics.

                

                                                                                                               



36 1. Introduction

Exercise 1.4.33. Prove that the symmetry group of a spin structure
(V +, V −, γ) is isomorphic to SU(2)× SU(2) ∼= Spin(4).

Applying the above definition fiberwise, we get an alternative definition of
spin structures over a 4-manifold: A spin structure for the 4-dimensional
(oriented) Riemannian manifold X4 is a pair of SU(2)-bundles S± → X
and an isomorphism γ : TX → HomH(S

+, S−) compatible with the metrics.
Once the SU(2)-bundles S± are given, the principal bundle PSpin(4) → X

can be easily constructed. (Put the cocycle structures of S+ and S− to-
gether to map into SU(2) × SU(2) ∼= Spin(4) and get PSpin(4) → X; the
isomorphism c : PSpin(4) ×ρ SO(4) ∼= SO(4) can be derived from γ.) This

shows that the triple (S±, γ) determines a spin structure on X in the previ-
ous sense. On the other hand, we have already seen how to derive S± and γ
(which corresponds to the Clifford multiplication) from PSpin(4), so the two
definitions of spin structures over a 4-dimensional manifold X are obviously
equivalent.

Remark 1.4.34. It is known that n = 4 is the unique dimension in
which Lie(SO(n)) splits as a Lie algebra. The splitting of Lie(SO(4)) as
Lie(SO(3))⊕Lie(SO(3)) will be exploited in the definition of the 4-manifold
invariants discussed in Section 2.4.

                

                                                                                                               



Chapter 2

Surfaces in 4-manifolds

In light of gauge-theoretic results (see Section 2.4 and especially Theo-
rem 2.4.8), understanding the genus function G should lead us to a better
understanding of the smooth structure of 4-manifolds. The genus function
G is defined on H2(X;Z) as follows: For α ∈ H2(X;Z), consider

G(α) = min{genus(Σ) | Σ ⊂ X represents α, i.e., [Σ] = α},

where Σ ranges over closed, connected, oriented surfaces smoothly embedded
in the 4-manifold X. Note that by the above definition G(−α) = G(α),
G(0) = 0 and G(α) ≥ 0 for all α ∈ H2(X;Z). The first section of this
chapter is devoted to the description of G for CP2. Later on we will show
certain techniques (removing singularities and the blow-up process) which
give partial information about G for other manifolds as well. We close this
chapter with a brief introduction to Seiberg-Witten theory and its use in
understanding G.

2.1. Surfaces in CP2

In this section we will determine the constraints on the genera of smoothly
embedded surfaces in CP2 representing a given element of H2(CP

2;Z); recall
(Exercise 1.3.1(e)) that H2(CP

2;Z) ∼= Z, and the complex projective line
H = {[x : y : z] ∈ CP2 | x = 0} defines a generator h = [H] ∈ H2(CP

2;Z),
hence G(h) = 0.

Exercise 2.1.1. Show that D = {[x : y : z] ∈ CP2 | xd + yd + zd = 0}
is a smooth, connected submanifold of CP2 representing dh ∈ H2(CP

2;Z).
(Hint : Apply the Implicit Function Theorem to prove that D is smooth
and prove that it intersects H transversally in exactly d points with positive

37

                                    

                

                                                                                                               



38 2. Surfaces in 4-manifolds

sign, so QCP2([D], [H]) = d. Each component intersects some complex line
positively; conclude connectedness from this fact.)

Since D is a connected complex curve in CP2, the adjunction formula shows
that 2g(D)− 2 = [D]2 − c1(CP

2)[D] = d2 − 3d, thus

g(D) =
1

2
(d2 − 3d+ 2) =

1

2
(d− 1)(d− 2).

This proves that G(dh) ≤ 1
2(d − 1)(d − 2); as we will see later on, G(dh)

actually equals 1
2(d− 1)(d− 2). In the above example we chose a particular

representative for dh ∈ H2(CP
2;Z); as it was shown in Claim 1.3.11, the

particular choice of the homogeneous polynomial plays no important role.

In the following, we will present a method for constructing smooth sur-
faces representing various homology classes, by starting with polynomials
defining singular subsets of CP2 and then “resolving” the singular points.
This method will then be generalized to arbitrary ambient 4-manifolds X,
and in this way we can explore the behavior of the genus function G. Assume
that the (closed) smooth, oriented surfaces Σ1 and Σ2 intersect each other
transversally in P ∈ CP2. Although Σ1 ∪ Σ2 is not a smooth surface (at P
it fails to be a manifold), it still defines a homology class, which is equal to
[Σ1] + [Σ2] ∈ H2(CP

2;Z). In a 4-ball neighborhood D of the intersection
point P , the union Σ1 ∪Σ2 is modeled (up to reversing the ambient orienta-
tion) on F = {(z1, z2) ∈ C2 | z1z2 = 0, |z1|2+ |z2|2 ≤ 1}: two 2-dimensional
disks intersecting each other in one point in the 4-ball. We cut out the pair
(D,F ) and replace it with (D,R), where R ⊂ D is obtained by perturbing

R′ = {(z1, z2) ∈ C2 | z1z2 = ε, |z1|2 + |z2|2 ≤ 1} (0 < |ε| � 1)

to achieve that ∂F = ∂R ⊂ ∂D. R′ is simply the graph of z2 = ε
z1
, hence

it is easy to see that topologically it is an annulus (and hence so is R). By
replacing (D,F ) with (D,R) we eliminate the singular point P , but we do
not change either the ambient manifold CP2 (since we cut out D and then
glue it back) or the homology class of Σ1 ∪ Σ2 (since the subsets F and R
are homologous in (D, ∂D)).

Remark 2.1.2. Note that ∂F ⊂ ∂D = S3 is the Hopf link (see Figure 2.1
and Section 4.6) and R is a Seifert surface on the Hopf link (Example 6.2.7).
While we could use any other Seifert surface to eliminate P , the surface R
is the optimal choice because it is the unique minimal genus Seifert surface
for the Hopf link. (For more about links and their Seifert surfaces see Sec-
tion 4.5.) By doing the process described above, one “removes the singular
point P”. Because we worked locally around P , this method is valid for
every 4-manifold X and pair of transversally intersecting surfaces Σ1 and
Σ2 in it, as well as for transverse self-intersections.
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R

Figure 2.1. Seifert surface on the Hopf link.

Exercise 2.1.3. Represent dh ∈ H2(CP
2;Z) by the union of d lines in CP2

in general position. By repeating the above process, remove all the singular
points of this union to get a smooth representative of dh. What is the genus
of the resulting surface?

The polynomial defining the d distinct lines in the above exercise is a product
of d linear polynomials, and so does not satisfy the hypothesis of the Implicit
Function Theorem everywhere. By perturbing this polynomial to a generic
(homogeneous) degree-d polynomial p, one gets a smooth representative of
dh ∈ H2(CP

2;Z) (as the zero set of p) — in this way one changes the surface
defined by the polynomial everywhere, but obtains a complex submanifold.
The desingularization process described above changes Σ1 ∪ Σ2 only in a
small neighborhood of P (so it is a local process), but we lose the property
that the resulting manifold is a complex submanifold. However, the two
processes coincide in a small neighborhood of P , and the resulting smooth
surfaces are related by a small smooth isotopy of CP2. (This connection
with algebraic geometry serves as a further reason to choose R as opposed
to other Seifert surfaces on the Hopf link.)

Both arguments above (the algebro-geometric and the cut-and-paste)
gave that G(2h) = 0 and that 3h ∈ H2(CP

2;Z) can be represented by a
torus. Can we represent this latter homology class with surfaces of genus
different from 1? An easy argument shows that (smoothly) we can always
add to the genus: take a torus in a small 4-disk D4 ⊂ CP2 disjoint from
the surface at hand and tube the two surfaces together. It clearly does not
change the homology class (the torus represents the 0 class, since it is a
boundary in D4), but obviously it adds 1 to the genus. This is the reason
why we are interested in the minimum possible value of genera representing
a given homology class. (See the definition of G.) Since we have found a
torus representative of 3h showing G(3h) ≤ 1, we can now determine G(3h)
by examining its representability by an embedded sphere.

Proposition 2.1.4. The class 3h ∈ H2(CP
2;Z) cannot be represented by a

smoothly embedded sphere.
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The proof of this statement is an interesting application of Rohlin’s The-
orem 1.2.29 and the technique we will discuss in the next section; hence
the proof will be given at the end of the next section. Proposition 2.1.4
suggests that the representatives given by the equations xd + yd + zd = 0
should have minimal genera for the classes dh ∈ H2(CP

2;Z) (d = 1, 2, 3, . . . ).
This conjecture (frequently attributed to Thom) was recently proved using
Seiberg-Witten theory:

Theorem 2.1.5. ([KM1], [MSzT]) A smooth surface representing dh ∈
H2(CP

2;Z) (d ∈ N) has genus at least 1
2(d − 1)(d − 2) (the genus of the

smooth complex curve representing the given homology class). Thus, among
the smooth surfaces representing dh, the complex submanifolds have minimal
genus.

Using Theorem 2.1.5 we can determine the value of the function G on every
element in H2(CP

2;Z): if d ∈ Z is nonzero, then G(dh) = 1
2(|d|−1)(|d|−2).

(Obviously G(0) = 0.) Theorem 2.1.5 has been generalized to all simply
connected complex surfaces:

Theorem 2.1.6. (The generalized Thom Theorem, [OSz]) Suppose that
C ⊂ S is a connected, smooth, complex curve in a closed, simply connected
complex surface S. If a connected, smooth (real 2-dimensional) surface C ′ ⊂
S represents the same homology class as C, then g(C ′) ≥ g(C), i.e., the
minimal genus is attained by the complex representative.

Remarks 2.1.7. (a) Theorem 2.1.6 can be derived as an application of the
generalized adjunction formula (Theorem 2.4.8) and the nonvanishing result
Theorem 2.4.7. Since both 2.4.7 and 2.4.8 hold for symplectic 4-manifolds
(regardless of fundamental groups) as well, Theorem 2.1.6 can be extended
verbatim to 2-dimensional symplectic submanifolds of symplectic 4-mani-
folds. (For more about symplectic manifolds see Chapter 10.) The gener-
alization also shows, in particular, that the requirement in Theorem 2.1.6
that S be simply connected can be weakend to requiring that the first Betti
number b1(S) be even. This is because for complex surfaces the evenness of
b1(S) is equivalent to the Kähler condition (cf. Theorem 10.1.4), and this
latter implies that the manifold is symplectic.

(b) Theorems 2.1.5 and 2.1.6 are false for topological embeddings. Lee
and Wilczynski [LW] showed that dh ∈ H2(CP

2;Z) can be represented by
a topological embedding of a surface F of genus 1

4d
2 − 1 (rounded down)

that has a normal bundle (i.e., the embedding extends to an embedding
of a complex line bundle over F ). Furthermore, π1(CP

2 − F ) is abelian,
and F minimizes the genus of such representatives of dh. They also gave a
topological minimal genus theorem for arbitrary homology classes in simply
connected topological 4-manifolds.

                

                                                                                                               



2.2. The blow-up process 41

Using Theorem 2.1.6 and other arguments involving the existence of
orientation-reversing diffeomorphisms, one can determine G for S2×S2 and
CP2#CP2 (see [Rb2]):

Theorem 2.1.8. (a) Assume that α = [S2×{pt.}] and β = [{pt.}×S2] are
the obvious basis elements of H2(S

2 × S2;Z). If ab �= 0, then G(aα+ bβ) =
(|a| − 1)(|b| − 1). Obviously G(aα) = G(bβ) = 0.

(b) For the homology class a1h1 + a2h2 ∈ H2(CP
2#CP2;Z) with |a1| > |a2|

we have G(a1h1+a2h2) =
1
2(|a1|−1)(|a1|−2)− 1

2 |a2|(|a2|−1). If |a2| > |a1|,
reverse the roles of a1 and a2. For |a1| = |a2| we have G(a1h1+a2h2) = 0.

Exercise 2.1.9. Prove that G(aα) = G(bβ) = 0 in Theorem 2.1.8(a). For
ab �= 0 find a smooth representative for aα + bβ in S2 × S2 with genus
(|a| − 1)(|b| − 1). (Hint : Take |a| disjoint copies of S2 × {pt.}, |b| disjoint
copies of {pt.}×S2 and resolve the singularities.) For Theorem 2.1.8(b) see
Exercise 2.3.6(e).

The examples above are very special 4-manifolds (CP2, S2 × S2 and

CP2#CP2). This is the reason we have so much information about the
genus function G in these cases. For more results of this kind, see [LL] and
[Lw2]. Later on we will show other examples of 4-manifolds for which G
is at least partially known; to do so, however, we have to discuss certain
techniques presented in the following sections.

2.2. The blow-up process

In the previous section we considered a method for constructing smooth
submanifolds from ones having (mild) singularities; we did not change the
ambient manifold X or the homology class of the surface. In the following,
we will discuss another method for resolving singular points — now, however,
we will change both X and the homology class of the surface.

Take τ = {(l, p) ∈ CP1×C2 | p ∈ l} = {([u : v], (x, y)) ∈ CP1×C2 | xv =
yu} ⊂ CP1 ×C2. The space τ can be projected to the first or to the second
factor of CP1 × C2. It is easy to prove that the projection π1 : τ → CP1

gives a complex line bundle structure to τ . (Trivialize τ over CP1 − [0 : 1]
and over CP1− [1 : 0].) This fibration π1 : τ → CP1 is called the tautological
bundle over CP1 (and can be generalized with a similar formula to any CPn

or RPn).

Claim 2.2.1. The Chern number 〈c1(τ), [CP1]〉 of the complex line bundle
π1 : τ → CP1 is equal to −1.

Proof. If we delete the image of the zero section σ0 from τ , we get τ −σ0 ∼=
C2 − {0}. Now take the dual bundle τ∗ = Hom(τ,C); a section α ∈ Γ(τ∗)
of this is by definition a (fiberwise linear) map α : τ → C. Restricting α
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to τ − σ0, we get a continuous map C2 → C, and conversely, a smooth
map C2 → C that is linear along lines in C2 extends to a section of τ∗.
Now the map (z1, z2) �→ z1 (for example) gives a section with a single zero.
(There is a single line — {z1 = 0} — on which the above map is the zero
homomorphism.) The intersection number of the zero section with the image
of this section is +1 (cf. Remark 1.2.6(b)); consequently c1(τ

∗) = 1, hence
c1(τ) = −c1(τ∗) = −1.

Remark 2.2.2. There is an alternative way to prove Claim 2.2.1, by adopt-
ing the definition of the first Chern class given by Theorem 1.4.3. Note that
CP1 admits a CW-decomposition with one 0-, one 1- and two 2-cells; we can
think of the 1-skeleton as the equator while the two 2-cells are the southern
and the northern hemispheres S and N of CP1. To determine c1(τ) (which
can be given by a cochain c, cf. Claim 1.4.2), we compare the trivializations
of τ over the southern and northern hemispheres.

Exercise 2.2.3. Prove that if u (resp. v) denotes the complex coordinate
on the southern (northern) hemisphere of CP1, and y (resp. x) is the fiber
coordinate in a trivialization, then over the equator we have v = 1

u and
x = yu. (For an answer, see the text before Example 7.2.3.)

The generator of H2(CP
1;Z) can be represented by the cycle N −S. By the

above exercise the trivializations give the transition function v �→ 1
v on the

common boundary of the 2-cells, which is a map of degree −1. Consequently
[c](N − S) = −1, which also proves the claim.

Exercise 2.2.4. ∗ Find a smooth section of τ intersecting the 0-section
transversely in a single point with negative sign. (Note that this verifies our
sign convention, and in fact gives a third proof that 〈c1(τ), [CP1]〉 = −1.)

Proposition 2.2.5. For a fixed point P ∈ CP2 the manifold CP2 − {P} is
diffeomorphic to τ .

Proof. The 4-manifold CP2−{P} admits a bundle structure over CP1: Once

we choose a line L0 (≈ CP1) in CP2 missing P , the map π(Q) = LPQ ∩ L0,
where LPQ is the line passing through P and Q, gives a complex line bundle

structure π : CP2 − {P} → L0 ≈ CP1. By taking a generic section (e.g.,

another line not going through P ) we see that 〈c1(CP2−{P}), [CP1]〉 = −1.
Thus, τ and CP2 − {P} are isomorphic as complex line bundles, implying,
in particular, that they are diffeomorphic.

This diffeomorphism preserves the orientations of the 4-manifolds, and we
can choose it to preserve the orientations of the fibers. It follows that if
Z denotes the image of the zero section in τ , then the restriction of the
above diffeomorphism to Z → L0 reverses the given orientations, since Z
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intersects (holomorphic) fibers positively, while L0 in CP2 − {P} intersects
fibers negatively. The projection π2 : τ → C2 to the second factor is no longer
a bundle map, but it has a very interesting property: for a point p ∈ C2

the inverse image π−1
2 (p) is a single point if p �= 0, and π−1

2 (0) = CP1.

This can be verified easily, since π−1
2 (p) consists of all lines in C2 (= points

of CP1) going through p and the origin, which is a unique line if p �= 0
and the space of all lines through 0 if p = 0. Consequently, the map π2 is a
biholomorphism between τ−π−1

2 (0) and C2−{0}. If L1, L2 are complex lines
in C2 intersecting each other in the origin, then although their preimages
π−1
2 (Li) are not manifolds — since π−1

2 (Li) = π−1
2 (Li − {0}) ∪ π−1

2 (0) —

the closures L̃i = c�(π−1
2 (Li − {0})) are complex lines in τ . Note that L̃1

and L̃2 are disjoint, since in τ not only the points of the lines Li, but also
their directions, are recorded (in the CP1-factor). We call π−1

2 (Li) ⊂ τ the

total transform and L̃i ⊂ τ the proper transform of Li ⊂ C2. Let S be a
complex surface with P ∈ S and fix a neighborhood U ⊂ S of P which
is biholomorphic to an open subset V of C2 (with P mapped to 0 ∈ C2).
Removing U and replacing it with π−1

2 (V ) ⊂ τ , we get a new complex

manifold S′. (Recall that U−{P} and π−1
2 (V )−π−1

2 (0) are biholomorphic.)

Definition 2.2.6. The surface S′ is called the blow-up of S at P .

Extending π2 to S′ in the obvious way, one obtains a map π : S′ → S
which has similar properties to π2: the map π is a biholomorphism between
S′−π−1(P ) and S−{P}, and π−1(P ) is biholomorphic to CP1. The subset
π−1(P ) is called the exceptional curve (or exceptional sphere). Informally,
when we blow up S at P , we replace the point P with the space of all lines
going through P , which is a copy of CP1. As in the case of τ → C2, if C1, C2

are complex curves in S intersecting each other transversally (and only) in

P , then the closures C̃i = c�(π−1(Ci − {P})) will be disjoint in S′. More
generally, by blowing up one can reduce the number of intersection points of
transversally intersecting complex curves. Since S′ is constructed from S by
deleting the point P and gluing back τ = CP2−{pt.}, S′ is diffeomorphic to

S#CP2. This observation motivates the following definition — the extension
of blowing up to the smooth category.

Definition 2.2.7. For a smooth, oriented manifold X, the connected sum
X ′ = X#CP2 is called the blow-up of X. The sphere CP1 in the CP2

summand is called the exceptional sphere, and its homology class [CP1] is

usually denoted by e = [CP1] ∈ H2(X
′;Z) = H2(X;Z) ⊕H2(CP2;Z); note

that QX′(e, e) = −1. Extending the map π2 : CP2−{pt.} → C2 ≈ R4 in the
obvious way, we obtain a map π : X ′ → X with the previous properties: π
is a diffeomorphism between X ′ − CP1 and X − {P}, while π−1(P ) = CP1

is the exceptional sphere.
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The choice of the sign of e is somewhat arbitrary in the smooth setting, since
complex conjugation gives an orientation-preserving self-diffeomorphism of
CP2 that reverses signs of second homology classes. We have chosen the
sign of e to agree with that of π−1

2 (0) = L0 in the holomorphic case. Since

X ′ = X#CP2, we have that b2(X
′) = b2(X) + 1 and χ(X ′) = χ(X) + 1

(c2(X
′) = c2(X) + 1). Moreover σ(X ′) = σ(X)− 1, consequently c21(X

′) =
c21(X)− 1.

Exercise 2.2.8. For a complex surface S, prove that the first Chern class
satisfies c1(S

′) = c1(S)−PD(e). (Hint : Use the adjunction formula 1.4.17.)

Definition 2.2.9. Take a smooth surface Σ in the smooth 4-manifold X
and blow up a point P ∈ Σ; denote the projection by π : X ′ → X. The
inverse image Σ′ = π−1(Σ) ⊂ X ′ is called the total transform of Σ; the

closure Σ̃ = c�(π−1(Σ− {P})) is the proper transform of Σ.

Note that since P ∈ Σ, the exceptional sphere is part of the total trans-
form; consequently Σ′ is not a smooth submanifold (even if Σ is smooth),

since Σ′ = Σ̃ ∪ {exceptional sphere}. In fact, Σ′ has a normal crossing, a

singularity at the point Σ̃ ∩ π−1(P ) modeled on {(z1, z2) ∈ C2 | z1z2 = 0}.
The surface Σ̃ has the same genus as Σ, and by the above description (since

[Σ] = [Σ′] ∈ H2(X;Z), cf. Lemma 7.1.4) [Σ̃] = [Σ] − e ∈ H2(X
′;Z). For

this last statement we can argue in a different way: when we blow up P , we
replace its 4-ball neighborhood D by τ = CP2 − {pt.}, and when we take
the proper transform of Σ, we replace a small neighborhood of P in Σ with
a fiber of τ → CP1, which represents the same homology class in CP2 as
minus the exceptional sphere. (Note that when P is not in Σ, the blow-up
process does not affect Σ. Note also that throughout the above arguments
we assumed that Σ is a smooth submanifold of the 4-manifold X.)

Assume now that we have two surfaces Σ1,Σ2 ⊂ X intersecting each
other transversally at P , and that the sign of this intersection is +1. A
more “differential topological” description of the blow-up process and the
proper transforms can be given in the following way. By blowing up P — as
we already saw earlier — we just replace a 4-ball neighborhood D of P with
τ = CP2−{a 4-ball neighborhood D′ of a point Q}. The proper transforms
of Σ1 and Σ2 can easily be seen as follows: We can choose two lines L1, L2

going through Q in CP2 in such a way that the pairs (D,D ∩ (Σ1 ∪ Σ2))
and (D′, D′∩(L1∪L2)) correspond via a diffeomorphism f that reverses the
orientations of D, Σ1 and Σ2. This is possible because we are reversing an
odd number of orientations to identify the positive double point Σ1∩Σ2 with
the negative one L1∩L2. If we use the restriction of f to glue X− int D and
CP2 − int D′ along their boundaries, the proper transforms Σ̃i are equal to
Σi#Li (with the orientations corresponding correctly). Since L1−{Q} and
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L2 − {Q} are disjoint, the intersection point P ∈ Σ1 ∩ Σ2 has disappeared

from the intersection Σ̃1 ∩ Σ̃2. Note that in the case of complex curves in a
complex surface we did not hypothesize that the intersection is positive; the
reason is that the transverse intersection of two complex curves in a complex
surface is always positive (cf. Remark 1.2.6(b)).

We have more freedom if we perform the blow-up in the smooth cate-
gory. Assume that Σ1 and Σ2 intersect each other transversally (and only)
in P , but the sign of the intersection is negative now. By taking CP2 in-
stead of CP2 we reverse the sign of the intersection point of L1 and L2 in
D′ (where D′ is a neighborhood of Q ∈ CP2), hence (D′, D′ ∩ (L1 ∪ L2))
again becomes orientation-reversing diffeomorphic to (D,D ∩ (Σ1 ∪ Σ2)).

In X#CP2 the proper transforms Σ̃i will be disjoint. As before, [Σ̃i] =

[Σi] − e, where e ∈ H2(CP
2;Z) is the generator [CP1]; since e2 = 1, we

have [Σ̃1] · [Σ̃2] = [Σ1] · [Σ2] + 1 = 0 as required. There is no complex
analogue of this process: S#CP2 has no complex structure, since if S is
complex, then 1 − b1(S#CP2) + b+2 (S#CP2) = 2 − b1(S) + b+2 (S) has the
wrong parity, cf. Theorem 1.4.13. The above process is not well-suited
for gauge theoretic purposes either; we have described it here because it
will be used in Part 2. There is, however, another way to get around
the problem of having a negative intersection point P ∈ Σ1 ∩ Σ2: take
the connected sum of Σ1 and Σ2 with L1 and L2 in CP2. One can eas-
ily see that (D′, D′ ∩ (L1 ∪ L2)) will be orientation-reversing diffeomor-
phic to (D,D ∩ (Σ1 ∪ Σ2)) as required, hence the operation can be car-
ried out. In computing the homology classes and self-intersections we have
[Σ̃1] = [Σ1] + [L1] = [Σ1] − e, but [Σ̃2] = [Σ2] − [L2] = [Σ2] + e. Note

that in this case [Σ̃1] · [Σ̃2] = [Σ1] · [Σ2] − e2 = [Σ1] · [Σ2] + 1, so we have

raised the intersection number (and P has disappeared from Σ̃1 ∩ Σ̃2). To
complete our description, we mention the counterpart of this last operation:
If P ∈ Σ1 ∩ Σ2 is a transverse intersection point with positive sign (so the
regular blow-up would work perfectly), we might use CP2 with L1 and L2

inside to resolve P . Needless to say, this last operation is purely topological
and has no algebraic geometric counterpart. These versions of the blow-up
process will be used in resolving double points of immersed spheres. Until
now, P ∈ Σ has always been a smooth point of Σ. (Actually, for the sake
of simplicity we assumed that Σ was a smooth submanifold.) The blow-up
process is even more useful in treating singularities of a surface Σ; this topic
will be discussed in the next section.

The following algebraic geometric result (see, e.g., [BPV]) gives rise to
the notion of blow-down (the reverse process).

Proposition 2.2.10. Suppose that the smooth complex surface S contains a
rational curve C (a complex submanifold biholomorphic to CP1) with [C]2 =
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[C] · [C] = −1. Then there is a smooth complex surface T such that S is
biholomorphic to the blow-up T ′ of T and C is the exceptional curve. We
say that C can be contracted in S.

A corresponding statement holds for smooth 4-manifolds:

Proposition 2.2.11. If the 4-manifold X contains a sphere Σ− with

[Σ−]2 = −1, then X = Y#CP2 for some 4-manifold Y . Similarly, if X
contains a sphere Σ+ with [Σ+]

2 = +1, then X = Y#CP2. The copy of

CP2 − {pt.} (CP2 − {pt.} resp.) can be chosen to be a tubular neighborhood
of Σ− (Σ+ resp.).

Proof. A tubular neighborhood of Σ− in X is diffeomorphic to the normal
bundle νΣ− → Σ−, which is an oriented 2-plane bundle over Σ−. Since
e(νΣ−)[Σ−] = [Σ−]2 = −1, the total space of νΣ− is obviously diffeomorphic

to CP2 − {pt.}, consequently ∂(X − νΣ−) = S3. By taking the union
Y = (X − νΣ−) ∪S3 D4, we obtain our first assertion. The case of Σ+ ⊂ X
with [Σ+]

2 = 1 follows a similar pattern; note that the conclusion now has
no holomorphic counterpart.

In algebraic geometry, a complex surface is called minimal if it does not
contain any rational −1-curve, so it is not the blow-up of another complex
surface. Since the blow-down operation reduces the second Betti number b2
of the manifold, it can be repeated only finitely many times. Starting from S
and blowing down the rational −1-curves, we get a new surface Smin, called
a minimal model of S. The minimal model is not always unique, since for
some S the order of blowing down is important. For example, blowing up
CP2 twice and blowing up CP1 × CP1 once can produce the same complex
surface S (as we will prove later), so S has more than one minimal model.

Exercises 2.2.12. (a) Prove that CP1 × CP1 and CP2 are minimal.

(b)∗ Show that if d is even, then the hypersurface Sd (of Section 1.3) is mini-
mal. (Actually, for any d ≥ 4, the corresponding surface Sd of Section 1.3
is minimal. The proof of this statement is more complicated if d is odd.)

Now we return to Proposition 2.1.4, and prove it.

Proof of Proposition 2.1.4. Assume that 3h ∈ H2(CP
2;Z) can be repre-

sented by an embedded sphere Σ ⊂ CP2. Then [Σ]2 = (3h)2 = 9, so

blowing up Σ ⊂ CP2 eight times gives a sphere Σ̃ ⊂ CP2#8CP2 (the proper

transform) with [Σ̃]2 = +1. If ei denotes the homology class of the excep-

tional sphere in the ith blow-up (i = 1, . . . , 8), then [Σ̃] = 3h −∑8
i=1 ei in

H2(CP
2#8CP2;Z). Applying Proposition 2.2.11 to Σ̃, we write CP2#8CP2

in the form Y#CP2, where Y is a smooth, simply connected, closed man-
ifold, and {e1 − e2, e2 − e3, . . . , e7 − e8, e6 + e7 + e8 − h} gives a basis of
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H2(Y ;Z). To verify the latter assertion, one only needs to check that all the

above elements are orthogonal to [Σ̃] = 3h−∑8
1 ei and that the matrix of QY

in these elements has determinant ±1 (cf. Corollary 1.2.13). The intersec-
tion matrix of QY in this basis is exactly the (−E8)-matrix, so Y is an even,
simply connected (hence spin) manifold with signature σ(Y ) = −8. Such a
smooth manifold, however, does not exist (by Rohlin’s Theorem 1.2.29), so
our original assumption about the representability of 3h ∈ H2(CP

2;Z) was
false. This proves Proposition 2.1.4.

A similar argument gives the following theorem; the proof is left to the
reader as an exercise. (See Exercises 5.7.7(b) and 5.7.17(d) for more general
versions.)

Theorem 2.2.13. ([KeM1]) Assume that Σ ⊂ X is an embedded sphere
in the simply connected, closed, smooth 4-manifold X, and that [Σ] in
H2(X;Z) is characteristic, i.e., for all α ∈ H2(X;Z) we have QX(α, α) ≡
QX(α, [Σ]) (mod 2). Then [Σ]2 ≡ σ(X) (mod 16).

(Hint : Prove that the blow-up of a characteristic element is characteris-
tic, and that the complement of a neighborhood of a characteristic sphere
has an even intersection form, then apply Theorem 1.2.29; cf. also Exer-
cise 5.7.7(b).)

2.3. Desingularization of curves

After quoting two theorems to demonstrate the usefulness of the blow-up
process, we will perform the blow-up of a singular curve in detail; more
examples will be given in Section 7.2. We begin with the two (algebraic
geometric) theorems demonstrating that one can use blow-ups to turn an
arbitrary (singular) complex curve into a smooth one. (For the proofs see
[BPV] or [La1].)

Theorem 2.3.1. Let S be a nonsingular complex surface and C ⊂ S a
(possibly singular) complex curve. Then there is a complex surface T and
a map π : T → S such that π is a composition of several blow-ups and the
proper transform C̃ ⊂ T is a smooth complex curve.

Theorem 2.3.2. Let S and C be as above. Then there is a complex surface
T ′ (which can be chosen to be a further blow-up of T of Theorem 2.3.1)
and a map π : T ′ → S such that π is a composition of several blow-ups and
the total transform C ′ ⊂ T ′ has only normal crossings (like the origin in
V = {(z1, z2) ∈ C2 | zn1 zm2 = 0}) as singularities.

The following two simple examples will be worked out in detail:

C1 = {[x : y : z] ∈ CP2 | zy2 = x3 + zx2} ⊂ CP2,
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C2 = {[x : y : z] ∈ CP2 | zy2 = x3} ⊂ CP2.

First we will determine the topology of C1 and C2, and then we will describe
the proper and total transforms of C1 in the blow-up (and ask the reader to
do the same for C2).

Proposition 2.3.3. The curves C1 and C2 are smooth except at the point
P = [0 : 0 : 1] ∈ CP2. The first curve C1 is homeomorphic to a sphere with
two points identified, while C2 is homeomorphic to S2 and has one singular
point.

Proof. The first statement is an obvious consequence of the Implicit Func-
tion Theorem. Parametrize C1 in the following way: Take the space of
projective lines in CP2 passing through P = [0 : 0 : 1]; this space can be
parametrized by [t0 : t1] ∈ CP1 as L[t0:t1] = {[x : y : z] ∈ CP2 | t0x = t1y}.
A line L[t0:t1] intersects C1 in exactly one more point besides P — except
for the lines L[1:1] and L[1:−1], which intersect C1 only in P . Hence, the map

CP1 �→ C1 sending [t0 : t1] to the other intersection point of L[t0:t1] with C1

(and [1 : ±1] to P ) is a 1-1 map except that both [1 : ±1] map to P , so C1 is
homeomorphic to CP1 with [1 : 1] and [1 : −1] identified. We use the same
idea for parametrizing C2. Starting with the same set of lines going through
P , one can easily prove that C2 ∩ L[t0:t1] = {P,Q[t0,t1]}, except in the case
of [0 : 1] when we have C2 ∩L[0:1] = {P}. Hence, the map [t0 : t1] �→ Q[t0:t1]

(with Q[0:1] = P ) gives the desired homeomorphism between CP1 and C2.

Remark 2.3.4. The above point P ∈ C2 is a singular point, whose neigh-
borhood can be modeled (up to homeomorphism) on a cone over the right-
handed trefoil knot in S3. (See Figure 2.2.)

Figure 2.2. Right-handed trefoil knot.

Next we will blow up CP2 at P ∈ C1 and analyze its total and proper
transforms. We will work on the chart Uz = {[x : y : 1] ∈ CP2 | x, y ∈ C}
containing P ; in this chart C1 is described by the equation y2 = x3 +
x2. When performing the blow-up, we replace the chart Uz ≈ C2 with
τ = {([u : v], (x, y)) ∈ CP1 × C2 | xv = yu} ⊂ CP1 × C2. Consequently,
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the total transform of C1 in τ ⊂ (CP2)′ = CP2#CP2 is given by the two
equations y2 = x3 + x2 and xv = yu. Now CP1 × C2 can be covered with
two charts: A1 = {(u, 1, x, y)} ≈ C3 and A2 = {(1, v, x, y)} ≈ C3; for
u �= 0 the point (u, 1, x, y) ∈ A1 corresponds to (1, 1

u , x, y) ∈ A2. The subset

τ ⊂ CP1 × C2 is given by x = yu in A1 and by xv = y in A2, so in A1

the total transform of C1 has the form {y2 = x3 + x2, x = yu}, which is
equivalent to {y2(u3y+u2−1) = 0, x = yu}. This curve is the union of two
curves:

{y2 = 0, x = yu} and {u3y + u2 − 1 = 0, x = yu}.

The first curve in this union consists of the set {(u, 0, 0) | u ∈ C}, which is the
intersection of the exceptional curve with A1. (Note that since the exponent
of y is 2, the curve has multiplicity two. We will discuss multiplicities more
thoroughly in Section 7.1.) The curve {u3y + u2 − 1 = 0, x = yu} is the

intersection of the proper transform C̃1 of C1 with A1; the Implicit Function
Theorem shows that it is a smooth curve. Similarly, on A2 the equations
describing the total transform are {y2 = x3 + x2, xv = y}, and these are
equivalent to {x2(v2 − x− 1) = 0, xv = y}. Again, this is the union of

{x2 = 0, xv = y} and {v2 − x− 1 = 0, xv = y};

the first curve {(v, 0, 0)} is the intersection of the exceptional curve with A2,
while the other curve {v2 − x − 1 = 0, xv = y} is the intersection of the

proper transform C̃1 with A2. Of course, on A1∩A2 the two equations define
the same curve. (Replace v with 1

u .) According to the Inverse Function

Theorem, C̃1 is smooth and intersects the exceptional curve transversally
in the two points {([1 : ±1], 0, 0)} = {([±1 : 1], 0, 0)} ∈ τ. Consequently, a
single blow-up has given the configuration guaranteed by Theorem 2.3.1.

Note that P is not a smooth point of the curve C1, consequently the
homology class of the proper transform in CP2#CP2 is no longer the dif-
ference of the original curve and the exceptional curve. Instead, we have

[C̃1] = [C1] − 2e, as can be seen in the following way: Taking the total
transform does not change the homology class (cf. Lemma 7.1.4). In our
case, we saw that the total transform contained the exceptional curve with
multiplicity 2, so when we took the proper transform (threw the exceptional
curve away), we were left with [C1]−2e. (In Chapter 7 the delicate notion of
the multiplicity of a complex curve will be discussed in detail.) There is an
alternative interpretation of the term −2e appearing in the above formula:
Two branches of the curve C1 meet in the double point P , and each branch
will be connected to a copy of a projective line in CP2. Since P is a positive
double point, the signs of the homology classes of the two projective lines are
the same for each branch. Note that if we blow up a negative double point,
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the homology class of the proper transform will be the same as the homo-
logy class of the original (immersed) surface, since we add [L1] and [L2] to

[Σ], and these two terms cancel each other. In particular, [Σ̃]2 = [Σ]2 in this
case. Recall that in discussing the smooth interpretation of the blow-up pro-
cess we introduced an additional operation (without an algebraic geometric
analogue), namely taking the connected sum with CP2 and using L1, L2 or
L1, L2 to resolve an intersection point (the choice depending on the sign of
the intersection point). Using this latter method in the case of a negative
self-intersection of an immersed surface Σ, we will change the homology class
to [Σ̃] = [Σ]− 2e with [Σ̃]2 = [Σ]2+4; for a positive double point the homo-
logy class (and so the self-intersection) of Σ will be unchanged under this
process. Taking the connected sum with CP2, however, not only destroys
any complex structure on X but also annihilates the Seiberg-Witten invari-
ants of it (cf. Section 2.4). For this reason, we usually prefer the ordinary
blow-up as opposed to the connected sum with CP2. Summing up, we have:

Proposition 2.3.5. Blowing up a positive transverse double point of Σ us-
ing CP2 reduces [Σ]2 by 4; blowing up a negative double point using CP2

increases [Σ]2 by 4. For the other two choices of sign, the homology class
[Σ] and its self-intersection are preserved. Only the first of these four oper-
ations has a holomorphic interpretation.

For dimension reasons, a generic C∞-map α : Σ→ X of a surface Σ into
a 4-manifold X is an immersion [GP] with only transverse double points
as singularities. Hence, by blowing up the double points of a generic map,
we can turn it into an embedding, and the homology class of the resulting
submanifold Σ̃ can easily be computed using the above principles.

Exercises 2.3.6. (a) Let X be a simply connected 4-manifold. Prove that

for n large enough, the second homology of the n-fold blow-up X#nCP2

admits a basis such that all basis elements can be represented by embedded
spheres (cf. Remark 1.2.4).

(b) Go through the above computation for the curve C2 = {zy2 = x3}.
Prove that the proper transform C̃2 is a smooth curve in (CP2)′ = CP2#CP2

and it is tangent to the exceptional curve. Thus the smoothing of the sin-
gular curve C2 (guaranteed by Theorem 2.3.1) can be achieved by a single
blow-up, while the configuration guaranteed by Theorem 2.3.2 needs more
blow-ups. (For more complicated examples, see Section 7.2.)

(c)∗ Prove that 3h ∈ H2(CP
2;Z) ⊂ H2(CP

2#CP2;Z) cannot be represented

by an embedded sphere in CP2#CP2. (Hint : Imitate the proof of Proposi-
tion 2.1.4 and conclude with Theorem 1.2.30.)

(d)∗ Prove that if 3h ∈ H2(CP
2;Z) is represented by an immersed sphere

f : S2 → CP2, then this immersion has positive double point. (Hint : After
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blowing up all the double points, follow the proof of Proposition 2.1.4 and
conclude with Theorem 1.2.30.)

(e) Realize the minimum genus given by Theorem 2.1.8(b) for each homo-

logy class in CP2#CP2. (Hint : How many smooth curves can be separated
by a single blow-up?)

Remark 2.3.7. Note that by blowing up C1 at P = [0 : 0 : 1] we can rep-

resent the proper transform C̃1 by an embedded sphere — we have just sep-
arated the images of [1 : 1] and [1 : −1] under the map CP1 → C1 of Propo-

sition 2.3.3. This means that [C̃1] = [C1]− 2e = 3h− 2e ∈ H2(CP
2#CP2;Z)

can be represented by a sphere although 3h cannot (cf. Exercise 2.3.6(c)).
Hence G(3h) = 1, G(2e) = 0 and G(3h − 2e) = 0, showing that the genus
function G is far from being linear.

2.4. Appendix: Introduction to gauge theory

We close this chapter by introducing the Seiberg-Witten invariants of a
smooth, closed, oriented, simply connected 4-manifold X. The definition
involves notions such as spinc structures, Dirac operators and various bun-
dle constructions — these are outlined at the end of this section. (For a
complete treatment see [Sa], [KKM], [Mr1] or [Mr2], for example.)

Let X be a smooth, closed, oriented, simply connected 4-manifold with
b+2 (X) > 1 and odd. Let CX = {K ∈ H2(X;Z) |K ≡ w2(X) (mod 2)} be the
set of characteristic elements; recall that for K ∈ CX and α ∈ H2(X;Z) this
means 〈K,α〉 ≡ α2 = QX(α, α) (mod 2). For a given metric g on X, K ∈ CX
and perturbation δ ∈ Ω+(X) the moduli space Mδ

K(g) of solutions of the
(perturbed) monopole equation can be defined. For a generic metric and
perturbation this moduli space is a closed, orientable manifold of dimension
dimMδ

K(g) = 1
4(K

2 − (3σ(X) + 2χ(X))), cf. Theorem 2.4.24. The space

Mδ
K(g) is a subset of an infinite dimensional space B∗K which is homotopy

equivalent to CP∞. (We postpone the definition of the monopole equations,
Mδ

K(g) and B∗K until the end of this section.) The above homotopy equiva-
lence means H∗(B∗K ;Z) is a polynomial ring ∼= Z[μ], where μ ∈ H2(B∗K ;Z);
note that since K ∈ CX and b+2 (X) is odd, dimMδ

K(g) = 2m is even. Since
Mδ

K(g) is a closed and oriented manifold (cf. Remark 2.4.4(c)), it defines a
homology class [Mδ

K(g)] ∈ H2m(B∗K ;Z).

Exercise 2.4.1. ∗ Verify that if X is simply connected, K ∈ CX and b+2 (X)
is odd, then dimMδ

K(g) is even. For even b+2 (X) show that dimMδ
K(g) is

odd.

Definition 2.4.2. The Seiberg-Witten invariant SWX : CX → Z of the sim-
ply connected, smooth 4-manifold X (with b+2 (X) > 1 and odd) on K ∈ CX
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is defined as SWX(K) = 〈μm, [Mδ
K(g)]〉, where dimMδ

K(g) = 2m. If
dimMδ

K(g) < 0 then SWX(K) = 0 by definition.

Theorem 2.4.3. The Seiberg-Witten function SWX : CX → Z is a diffeo-
morphism invariant of the smooth 4-manifold X, i.e., SWX does not depend
on the chosen metric g or perturbation δ. For an orientation-preserving dif-
feomorphism f : X → X ′ we have SWX′(K) = ±SWX(f∗K).

Remarks 2.4.4. (a) One could use the same definition if b+2 (X) > 1 was
even, but since in that case [Mδ

K(g)] ∈ H2m+1(B∗K ;Z) ∼= 0, the Seiberg-
Witten function would contain no information about X. (For the case
b+2 (X) = 0, see the end of this section.)

(b) The case b+2 (X) = 1 is not covered by our definition; in this case the
value of SWX depends on the chosen metric g and perturbation δ. This
dependence is well-understood; we skip this case only for sake of brevity, cf.
Exercise 2.4.26(c).

(c) The ambiguity of the sign in Theorem 2.4.3 comes from the fact that the
orientation of the moduli spaceMδ

K(g) depends on an additional choice (an
orientation forH0(X;R)⊕H+(X;R), that is, a homology orientation forX),
and depending on whether f∗ preserves or reverses this latter orientation,
we have a plus or a minus sign in the formula of Theorem 2.4.3.

(d) As a consequence of a certain symmetry in the equations defining SWX ,
we have that SWX(−K) = (−1)εSWX(K), where ε = 1

2(1 + b+2 (X)) in the
simply connected case.

(e) For the sake of simplicity we assumed that π1(X) = 1. This assumption
can be easily relaxed — in the general case we meet only a few technical
rather than essential difficulties.

Definition 2.4.5. The cohomology class K ∈ CX ⊂ H2(X;Z) is a Seiberg-
Witten basic class of X if SWX(K) �= 0. The set of basic classes of X
will be denoted by BasX ⊂ H2(X;Z). Note that, as a consequence of
Remark 2.4.4(d), K ∈ BasX iff −K ∈ BasX . The simply connected 4-
manifold X is of simple type if each basic class K satisfies the equation
K2 = c21(X) = 3σ(X) + 2χ(X), hence the moduli spaces Mδ

K(g) giving
nonzero invariants have dimension zero. (There is no known example of a
simply connected 4-manifold with b+2 > 1 which is not of simple type; the
existence of a symplectic structure, for example, implies that the manifold
at hand has simple type.)

Before turning our attention to outlining the gauge-theoretic background
needed for defining SWX , we give the most important theorems concerning
Seiberg-Witten invariants and Seiberg-Witten basic classes. No proofs of
these statements will be given in the present volume; we will use these
results to analyze the smooth topology of the 4-manifolds discussed in later
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chapters. (Regarding the proofs, see the short notes towards the end of
this section.) First we quote vanishing and nonvanishing results concerning
SWX .

Theorem 2.4.6. (Vanishing theorems) Suppose that X is a smooth, closed,
oriented, simply connected 4-manifold with b+2 (X) > 1 and odd.

1. If X = X1#X2 and b+2 (Xi) > 0 (i = 1, 2), then SWX ≡ 0.

2. If X admits a metric with positive scalar curvature, then SWX ≡ 0.

3. If Σ ⊂ X is an embedded sphere with [Σ]2 ≥ 0 and 0 �= [Σ] in
H2(X;Z), then SWX ≡ 0.

Theorem 2.4.7. (Nonvanishing theorems)

1. If S is a simply connected complex surface (hence b+2 (S) is odd) and
b+2 (S) > 1, then SWS(±c1(S)) �= 0.

2. (Taubes [T2]) More generally, if (X,ω) is a simply connected sym-
plectic manifold and b+2 (X) > 1, then SWX(±c1(X,ω)) = ±1.

Recall that a 2-form ω is a symplectic form on X if it is nondegenerate
(ω ∧ ω > 0) and dω = 0. Every symplectic manifold admits an almost-
complex structure, hence simply connected symplectic manifolds have odd
b+2 . The space of almost-complex structures tamed by ω is nonempty and
connected, consequently c1(X,ω) can be defined for a symplectic manifold
(X,ω) as c1(X, J) for any J tamed by ω. (For the definition of tame almost-
complex structures and more about symplectic manifolds see Chapter 10.)
Since every simply connected complex surface is Kähler, hence symplectic,
2.4.7(2) generalizes 2.4.7(1). In light of Definition 2.4.5 one can interpret
Theorem 2.4.7 as saying that the classes ±c1(S) are basic classes of the com-
plex surface S (and the classes ±c1(X,ω) are Seiberg-Witten basic classes
of the symplectic 4-manifold (X,ω)). The following important relation be-
tween basic classes and the smooth topology of the 4-manifold X was first
proved by Kronheimer and Mrowka [KM1] in the case [Σ]2 ≥ 0. The case
of negative self-intersections (with the assumption that X is of simple type)
was proved by Ozsváth and Szabó [OSz].

Theorem 2.4.8. (Generalized adjunction formula) Assume that Σ ⊂ X is
an embedded, oriented, connected surface of genus g(Σ) with self-intersection
[Σ]2 ≥ 0 (and [Σ] �= 0). Then for every Seiberg-Witten basic class K ∈ BasX
we have 2g(Σ) − 2 ≥ [Σ]2 + |K([Σ])|. If X is of simple type and g(Σ) > 0,
then the same inequality holds for Σ ⊂ X with arbitrary square [Σ]2.

The following theorem describes the connection between Seiberg-Witten ba-
sic classes and the blow-up process.
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Theorem 2.4.9. (The blow-up formula) Let X be a simply connected 4-

manifold of simple type with BasX = {Ki | i = 1, . . . , s}. If X ′ = X#CP2

is the blow-up of X and E ∈ H2(X ′;Z) denotes the Poincaré dual of the
homology class e ∈ H2(X

′;Z) of the exceptional sphere, then the set of basic
classes of X ′ equals {Ki ±E | i = 1, . . . , s}.

The blow-up formula has been proved for every 4-manifold (without the as-
sumption that X is a manifold of simple type); the general case is similar
to Theorem 2.4.9, but somewhat more complicated to formulate [FS1]. In
particular, it has also been shown that X is of simple type iff the blown up
manifold X#CP2 is. Theorem 2.4.9 can be generalized to an arbitrary con-
nected sum X#N with b+2 (N) = 0; again, we formulate this generalization
only for X of simple type.

Theorem 2.4.10. Assume that the simply connected 4-manifold X ′ decom-
poses as X ′ = X#N , where X is of simple type. If b+2 (N) = 0, whence
H2(N ;Z) has an orthogonal basis {Ei ∈ H2(N ;Z) | i = 1, 2, . . . , b2(N)}
with E2

i = −1, then BasX′ = {Ki ± E1 ± . . .± Eb2(N) | Ki ∈ BasX}.
Remark 2.4.11. In accordance with the definition of the Seiberg-Witten
invariants, we assumed that the 4-manifolds in the above theorems are sim-
ply connected. These results can be easily extended to the general case —
once again, the difficulties are technical rather than essential in nature. The
assumption b+2 (X) > 1 is, however, more fundamental. Note, for example,
that CP2 admits both a complex structure and a metric with positive scalar
curvature — so Theorems 2.4.6(2) and 2.4.7(1) would conflict without the
assumption on b+2 .

Exercises 2.4.12. (a) Combining Theorem 2.4.8, the adjunction formula
(1.4.17) and Theorem 2.4.7, prove Theorem 2.1.6 — at least for simply
connected complex surfaces with b+2 (S) > 1.

(b)∗ Using the generalized adjunction formula, prove that a manifold has
only finitely many basic classes. (Hint : Apply Theorem 2.4.8 to a basis
{α1, . . . , αn} of H2(X;Z).)

(c) Using the blow-up formula (Theorem 2.4.9) and (1) of Theorem 2.4.6,
prove (3) of Theorem 2.4.6 for X of simple type. (Hint : If [Σ]2 = n > 0,
then blow it up n − 1 times and split off a copy of CP2 from the resulting
manifold; if [Σ]2 = 0, blow up X once, represent the classes n[Σ] + e by
spheres of square −1 and then conclude the existence of infinitely many
basic classes if SWX �= 0.) Now prove Theorem 2.4.6(3) without the simple
type assumption using the generalized adjunction formula of Theorem 2.4.8.

By analyzing the genera of embedded surfaces and applying Theorem
2.4.8, one gets restrictions on the set of basic classes; for example, by choos-
ing appropriate representatives of certain homology classes in H2(S4;Z) and
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then applying Theorems 2.4.7 and 2.4.8, one can show that 0 ∈ H2(S4;Z) is
the unique basic class of the K3-surface S4 (cf. Section 3.1). On the other
hand, through the generalized adjunction formula of Theorem 2.4.8, know-
ledge of the set of basic classes gives information about the genus function
G introduced at the beginning of this chapter.

Exercise 2.4.13. ∗ Show that X = S4#CP2 and Y = #3CP2#20CP2 are
homeomorphic but nondiffeomorphic 4-manifolds. (As we will see in Sec-
tion 9.3, the existence of such pairs leads us to a proof of the existence of
exotic R4’s.)

The remainder of this section consists of a discussion of spinc structures
and the definition of the moduli spaceMδ

K(g). (This outline is intended to
be short; for a more detailed discussion see [A5], [KKM], [Mr1], [Mr2] or
[Sa]).

2.4.1. Spinc structures. First we discuss spinc structures on 4-manifolds.
Recall that U(2) = {2 × 2 complex unitary matrices}, while by definition
SU(2) = {A ∈ U(2) | det(A) = 1}. This latter Lie group is isomor-
phic to the group of unit quaternions, so SU(2) is diffeomorphic to S3.
We also know that Spin(4) = SU(2) × SU(2), hence SO(4) is isomor-
phic to SU(2) × SU(2)/{±(I, I)}, while U(2) = S1 × SU(2)/{±(1, I)} (cf.
text following Definition 1.4.32). The spinc group Spinc(4) is defined as
Spinc(4) = {(A,B) ∈ U(2)× U(2) | det(A) = det(B)}.
Exercise 2.4.14. ∗ Prove that Spinc(4) is isomorphic to the Lie group
S1 × SU(2) × SU(2)/{±(1, I, I)}. (Using similar ideas, one can define the
3-dimensional spinc group Spinc(3) as S1×SU(2)/{±(1, I)}; note that this
group is isomorphic to U(2).)

Recall that for an oriented Riemannian 4-manifold X, a spin structure
means a double cover PSpin(4) → PSO(4) of the oriented orthonormal frame
bundle PSO(4) → X by a principal Spin(4)-bundle PSpin(4) → X. Since there

is a natural S1-fibration Spinc(4)
ρ−→ SO(4), the above analogy results in

the following definition.

Definition 2.4.15. A spinc structure L for X is specified by fixing a prin-
cipal Spinc(4)-bundle PSpinc(4) → X and a bundle map PSpinc(4) → PSO(4)

which is ρ : Spinc(4) → SO(4) fiberwise, i.e., PSpinc(4) ×ρ SO(4) = PSO(4).
Hence a spinc structure is given by fixing a principal Spinc(4)-bundle
PSpinc(4) → X together with an identification c : PSpinc(4)×ρSO(4) ∼= PSO(4).

By associating det(A) to the pair (A,B) ∈ Spinc(4), we get a homomor-
phism α : Spinc(4) → S1; using α a line bundle L = PSpinc(4) ×α C can be
associated to the spinc structure L. The resulting complex line bundle L is
called the determinant line bundle of the given spinc structure.
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Proposition 2.4.16. Suppose that L is a given spinc structure with de-
terminant line bundle L. Then the first Chern class c1(L) ∈ H2(X;Z) of
L satisfies c1(L) ≡ w2(X) (mod 2), hence it is a characteristic element.
For every characteristic element K ∈ CX there is a spinc structure with
determinant line bundle L satisfying c1(L) = K. Every oriented (possibly
noncompact) 4-manifold admits a spinc structure. If X is simply connected,
the determinant line bundle determines the spinc structure, and the set of
spinc structures Sc(X) is in 1-1 correspondence (via c1(L)) with the set
CX = {K ∈ H2(X;Z) | K ≡ w2(X) (mod 2)} of characteristic elements.

Proof. Let PS1 denote the principal S1-bundle corresponding to L. By
Exercise 2.4.14 there is an exact sequence

1→ Z2 → Spinc(4)→ S1 × SO(4)→ 1,

hence Spinc(4) is a double cover of S1 × SO(4). Consequently, there exists
a spinc structure with determinant line bundle L iff the principal bundle
PS1×SO(4) (obtained by combining the cocycle structures of PS1 and PSO(4))

admits a double cover which is Spinc(4)→ S1 × SO(4) fiberwise.

The group S1 × SO(4) admits three different nontrivial double covers.
(This follows from the fact that H1(S1 × SO(4);Z2) ∼= Z2 ⊕ Z2, cf. also
Exercise 1.4.26.) It is easy to see that these double covers are S1×Spin(4),
S1 × SO(4) (where S1 → S1 is a double cover) and Spinc(4). Note that
since S1 ∼= SO(2), the group S1 × SO(4) can be embedded in SO(6).

Exercise 2.4.17. ∗ Prove that the double cover ϕ : G → SO(2) × SO(4)
extends to a double cover of SO(6) iff Im ϕ∗ ⊂ π1(S

1)⊕π1(SO(4)) = 〈x〉⊕〈a〉
is generated by the element (x, a). (For G = S1 × Spin(4) the group Im ϕ∗
equals 〈(x, 0)〉; while for G = S1 × SO(4) we have Im ϕ∗ = 〈(0, a), (2x, 0)〉.
If G = Spinc(4), then we have Im ϕ∗ = 〈(x, a)〉; consequently Spinc(4) →
SO(2)×SO(4) is the unique double cover which can be extended to a double
cover of SO(6).)

By the above exercise there exists a spinc structure with determinant bun-
dle L iff PS1×SO(4) is spinnable, hence iff 0 = w2(PS1×SO(4)) = w2(L) +
w2(X); since w2(L) is the mod 2 reduction of c1(L), this observation proves
Proposition 2.4.16. Note that if X is simply connected, the spin structure
on PS1×SO(4) (i.e., the spinc structure with determinant line bundle L) is

unique; the same holds if H1(X;Z2) = 0 (i.e., when there is no 2-torsion
in H2(X;Z)). The existence of a spinc structure on an arbitrary 4-mani-
fold X now follows from the fact that CX �= ∅, which is a consequence of
Proposition 5.7.4 (cf. also Remark 5.7.5).

Note that for a fixed element c ∈ CX the map a �→ c+2a (a ∈ H2(X;Z))
gives a mapping from H2(X;Z) to CX . If H2(X;Z) has no 2-torsion (e.g.,
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if X is simply connected), the above map is obviously a bijection. Note,
however, that this map is not canonical; it depends on the choice of c ∈ CX .
If H2(X;Z) has 2-torsion, neither of the above maps (i.e., the one Sc(X)→
CX associating the first Chern class of the determinant line bundle to a spinc

structure, and the above map H2(X;Z) → CX) will remain isomorphisms
— both maps are surjections but not injections in general. In Section 10.4
we will define a new map H2(X;Z)→ Sc(X) which will be an isomorphism
even in the presence of 2-torsion in H2(X;Z). In this section, however, we
restrict ourselves to the case when X is simply connected, hence we can
identify the set of spinc structures Sc(X) with CX via c1(L) as described in
Proposition 2.4.16.

By taking the two projections μ± : Spinc(4) → U(2) (determined by
Spinc(4) ⊂ U(2) × U(2)), we define the positive (negative) spinor bun-
dles W± as the associated U(2)-bundles W± = PSpinc(4) ×μ± C2. The

sections of W+ (resp. W−) are the positive (negative) spinors. The def-
inition of Spinc(4) (as a subgroup of U(2) × U(2)) implies that detW+

and detW− are both isomorphic to the determinant line bundle of the
spinc structure. Next we exhibit the above representations μ± using the
presentation of Spinc(4) as S1 × SU(2) × SU(2)/{±(1, I, I)}. An element
a = [λ, q1, q2] ∈ S1 × SU(2)× SU(2)/Z2 = Spinc(4) is given by a unit com-
plex number λ and two unit quaternions q1, q2. If h ∈ H is a quaternion, then
the representation ρ0([λ, q1, q2])(h) = q1hq2 (quaternionic multiplication) re-
sults in PSpinc(4) ×ρ0 H ∼= TX; the map ρ+ defined as ρ+([λ, q1, q2])(h) =

q1hλ gives PSpinc(4) ×ρ+ H ∼= W+; finally ρ−([λ, q1, q2])(h) = q2hλ yields

PSpinc(4) ×ρ− H ∼= W−. (These statements can be checked using the iso-
morphism described in Exercise 2.4.14.) One can easily see from this
representation-theoretic description that TX ⊗ C ∼= HomC(W

+,W−). Us-
ing this isomorphism we define the Clifford multiplication C as the obvious
map C : Γ(X;W+ ⊗ T ∗X)→ Γ(X;W−).

Remark 2.4.18. As in Section 1.4.2, there is an alternative way to de-
fine spinc structures: Assume that V is a 4-dimensional Euclidean vector
space. A spinc structure for V is given once we fix a pair of Hermit-
ian 2-dimensional complex vector spaces W+ and W−, an isomorphism of
the corresponding determinant lines Λ2

CW
+ ∼= Λ2

CW
− and an isomorphism

γ : V ⊗ C→ HomC(W
+,W−) satisfying γ(v)∗γ(v) = −|v|2idW+ . Note that

the symmetry group of a spinc structure is isomorphic to Spinc(4). Globally,
if X is a Riemannian manifold, then a pair of U(2)-bundles W± → X with
identified determinant line bundles Λ2

CW
+ ∼= Λ2

CW
− and an isomorphism

γ : TCX → HomC(W
+,W−) (with γ(v)∗γ(v) = −|v|2idW+) is by definition

a spinc structure for X; this spinc structure is frequently denoted by the
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triple (W±, γ). As in the spin case, the proof of the equivalence of the two
definitions is an easy exercise.

Let L→ X denote the determinant line bundle of the spinc structure L
corresponding to K ∈ CX . (Recall that we have assumed π1(X) = 1, hence

the map Sc(X)
c1−→ CX is an isomorphism.) Furthermore, let AL denote

the space of U(1)-connections on L. By choosing A ∈ AL and coupling
it with the Levi-Civita connection on X we get a covariant differentiation
∇A : Γ(X;W+)→ Γ(X;W+ ⊗ T ∗X).

Remark 2.4.19. Recall that a connection on PSpinc(4) → X is a Spinc(4)-
equivariant Lie algebra-valued 1-form giving a fixed isomorphism along the
tangent of each fiber. Since Lie(Spinc(4)) = Lie(SO(4)) ⊕ Lie(S1), the
pull-back of the Levi-Civita connection defined on PSO(4) will not provide a
connection on PSpinc(4). On the other hand, the pull-back of a connection
on PSO(4)×S1 does define a connection on PSpinc(4). By fixing A ∈ AL (and
the Levi-Civita connection on PSO(4)) we specify a connection on PSO(4)×S1 ,
hence — by pulling it back — on PSpinc(4); the associated covariant differ-

entiation on W+ is denoted by ∇A : Γ(X;W+)→ Γ(X;W+ ⊗ T ∗X).

The composition of the Clifford multiplication C and ∇A gives an operator

/∂A = C ◦ ∇A : Γ(X;W+)→ Γ(X;W−),

which is called the coupled (or twisted) Dirac operator of the spinc structure
K coupled to the connection A ∈ AL.

2.4.2. The Seiberg-Witten moduli space. We close this section with a
short description of the Seiberg-Witten equations and Seiberg-Witten mod-
uli spaces, followed by an indication of the proofs of the most important
results concerning Seiberg-Witten invariants.

Recall that on a 4-dimensional, oriented, Riemannian manifold X, the
Hodge ∗g-operator ∗g : Ω2(X) → Ω2(X) (given by the metric g) is defined
on a basis {ei ∧ ej} as ∗g(ei ∧ ej) = ek ∧ el whenever (i, j, k, l) is an even
permutation of (1, 2, 3, 4). (By convention, Λp(X) is the bundle of exterior p-
forms, Ωp(M) = Γ(X; Λp(X)), and {e1, . . . , e4} is a positively oriented local
orthonormal frame of T ∗X.) If the metric g is obvious from the context, we
will drop it from the notation and denote the Hodge star-operator by ∗.
Definition 2.4.20. The vector space Ω+(X) of self-dual 2-forms is defined
as Ω+(X) = {ω ∈ Ω2(X) | ∗ω = ω}. Similarly, Ω−(X) = {ω ∈ Ω2(X) | ∗ω =
−ω} is the vector space of anti-self-dual (ASD) 2-forms. For ω ∈ Ω2(X)
set ω+ = 1

2(ω + ∗ω) and ω− = 1
2(ω − ∗ω); note that ω = ω+ + ω−, and

since ∗2 = idΩ2(X), we have ω± ∈ Ω±(X). If it is necessary, we will use the

notation Ω±
g (X) to indicate that we are considering 2-forms self-dual (or

anti-self-dual) with respect to the metric g.
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Exercise 2.4.21. ∗ Prove that the dimension of the space H+(X;R) of
self-dual closed 2-forms (considered as a subspace of H2(X;R)) is equal to
b+2 (X).

One can identify the space of 2-forms Λ2(R4) on R4 with the Lie al-
gebra Lie(SO(4)) = Lie(SU(2) × SU(2)) (or more generally Λ2(Rn) with
Lie(SO(n))) by the following definition: If A ∈ Lie(SO(n)) — i.e., A is a
matrix satisfying A+AT = 0 — then for α, β ∈ Rn the formula wA(α, β) =
〈Aα, β〉 gives a 2-form wA. Realizing that dimLie(SO(n)) = dimΛ2(Rn),
one can show that the above map w : Lie(SO(n)) → Λ2(Rn) is an iso-
morphism. Since Lie(SO(3)) = Lie(SU(2)) ∼= Im H, we have a splitting
of Lie(SO(4)) as Im H ⊕ Im H. (As we mentioned earlier, the splitting
of the Lie algebra Lie(SO(n)) is unique to dimension n = 4.) On the
other hand, by Definition 2.4.20, Λ2(R4) splits as Λ+ ⊕ Λ−. It is a fun-
damental fact that these two splittings coincide via w, hence the bundles
Λ±(X) can be given by the following representations of Spinc(4) on Im H: If
h ∈ Im H, then r+([λ, q1, q2])(h) = q1hq1 gives PSpinc(4)×r+ Im H ∼= Λ+(X),

and r−([λ, q1, q2])(h) = q2hq2 gives PSpinc(4) ×r− Im H ∼= Λ−(X).

For a U(1)-connection A ∈ AL, the curvature FA is a Lie algebra-valued
2-form, and since Lie(U(1)) ∼= iR, the 2-form FA is in iΩ2(X). The splitting
Ω2(X) = Ω+(X)⊕ Ω−(X) can be extended to imaginary-valued 2-forms as
well; F+

A will denote the self-dual part of the curvature FA.

If Spinc(4) acts on H via ρ+ and on Im H via r+, then the map σ : H→
ImH defined as h �→ −hih is Spinc(4)-equivariant. As such, it induces a map
σ : Γ(W+)→ Ω+(X) between the sections of the associated bundles, hence
for a positive spinor ψ ∈ Γ(W+) the expression iσ(ψ) defines an imaginary
valued self-dual 2-form. The group of maps G = Map(X,S1) (the gauge
group) acts on Γ(X;W+) as ψ �→ −g · ψ (where g ∈ G, ψ ∈ Γ(X;W+) and
g acts by pointwise multiplication), and on AL as A �→ A+2dg (where A ∈
AL). (In fact, G can be identified as the group of bundle automorphisms of
PSpinc(4) → X inducing the trivial action on the frame bundle PSO(4) → X.
The factor of two in the above action is a manifestation of the fact that the
map α : Spinc(4)→ S1 (defined after Definition 2.4.15) is the double cover
map when restricted to the central S1 ⊂ Spinc(4).) Consequently G acts on
the product AL×Γ(X;W+); the quotient BK = AL×Γ(X;W+)/G is called
the configuration space, while B∗K = {[A,ψ] ∈ BK | ψ is not identically 0}.

Remarks 2.4.22. (a) It is not hard to see that the pairs (A,ψ) with ψ not
identically 0 form the subspace of AL×Γ(X;W+) on which the gauge group
G = Map(X,S1) acts freely. The constant functions X → S1 obviously fix
all elements of the form (A, 0) ∈ BK ; by the above description of the G-
action, it is easy to see that the stabilizer Stab(A,0) is equal to the subgroup
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{f ∈ G | f is constant}. Consequently, the based gauge group G0 given as
{g ∈ G | g(x0) = 1 for a fixed x0 ∈ X} acts freely on AL × Γ(X;W+).

(b) For analytic reasons, it is more convenient to consider certain Sobolev
completions of the spaceAL×Γ(X;W+) and the gauge group G. Using these
completed spaces one can prove that the quotient BK of the completion of
AL×Γ(X;W+) by the (appropriate) completion of G is a (singular) Banach
manifold, and the usual theorems of analysis (e.g., the Implicit Function
Theorem) generalize to this infinite dimensional setting. For more about
Sobolev completions and the necessary analytic background see [KKM] or
[Sa].

After this quick preparation, we are ready to describe the Seiberg-Witten
(or monopole) equations. For A ∈ AL and ψ ∈ Γ(X;W+), these equations
are given by

/∂Aψ = 0 and F+
A = iσ(ψ).

The moduli spaceMK(g) is defined as the set of [A,ψ] ∈ BK satisfying these
equations. As the definition suggests, the monopole equations are gauge
invariant , that is, if (A,ψ) ∈ AL × Γ(X;W+) satisfies the above equations
and g ∈ G, then g∗(A,ψ) ∈ AL × Γ(X;W+) will satisfy the equations as
well. In general, it is not clear whetherMK(g) ⊂ BK is a smooth manifold,
but if we take a generic perturbation δ ∈ Ω+

g (X), the solution setMδ
K(g) of

the perturbed equations

/∂Aψ = 0 and F+
A + iδ = iσ(ψ)

gives rise to a smooth manifold.

Remark 2.4.23. Singularities of the moduli space Mδ
K(g) can arise from

two sources: The equations defining the moduli space may not cut it out
transversally from BK (i.e., the hypotheses of the Implicit Function Theorem
may not be satisfied) or the gauge group G may not act freely. Consider the
map SW : AL × Γ(X;W+)× Ω+(X)→ Γ(X;W−)× Ω+(X) given by

(A,ψ, δ) �→ (/∂Aψ, F
+
A + iδ − iσ(ψ)).

Direct computation shows that the linearization of SW at a solution is
onto. Consequently, SW−1(0) is a smooth (infinite dimensional) manifold,
so a Sard-type argument implies that for almost all fixed δ ∈ Ω+(X) the
subset {(A,ψ, δ) | (A,ψ) solves the perturbed equation with the fixed δ}
is a smooth (infinite dimensional) manifold. Hence a generic choice of g
and δ eliminates singularities of the first type encountered. On the other
hand (as we have already seen), G does not act freely in general. At this
point we must use our assumption that b+2 (X) > 0. It turns out that
in the space of perturbations Pert(X) = {(g, δ) ∈ Met(X) × Ω+

g (X) | g
is a metric on X and δ ∈ Ω+

g (X)} there is a codimension-b+2 (X) subset
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for which the corresponding moduli space will not lie in B∗K . If (g, δ) is
from that subspace, then the Seiberg-Witten equation will admit solutions
of the form (A, 0) (called reducible solutions), cf. Exercise 2.4.26(a). In
that case the gauge group G does not act freely on the space of solutions
(cf. Remark 2.4.22(a)), hence the quotient Mδ

K(g) will have singularities
corresponding to the reducible solutions. On the other hand, if b+2 (X) > 0
then for a generic pair (g, δ) the space of solutions Mδ

K(g) is, in fact, a
smooth submanifold of B∗K . Since the based gauge group G0 acts freely
on AL × Γ(X;W+), the space of G0-equivalence classes of solutions of the
Seiberg-Witten equations — the so-called based moduli space (Mδ

K(g))0 —
is a smooth manifold of dimension dimMδ

K(g)+1 for arbitrary b+2 . (Again,
we assume generic choices of g and δ.) It admits a G/G0 ∼= S1 action with
fixed points corresponding to reducible solutions. We will take advantage of
the above based setting and the S1-action later (cf. Exercise 2.4.26(d)).

The next theorem summarizes the most important properties of the
moduli space Mδ

K(g); these properties ensure that Definition 2.4.2 gives
a diffeomorphism invariant of X.

Theorem 2.4.24. Let X be a simply connected, oriented, closed 4-manifold
with b+2 (X) odd; fix the spinc structure corresponding to K ∈ CX . For a
generic metric g and perturbation δ ∈ Ω+

g (X) the moduli spaceMδ
K(g) is a

smooth, closed submanifold of B∗K of dimension

d =
1

4
(K2 − (3σ(X) + 2χ(X))).

Furthermore, a homology orientation of X (that is, an orientation of the
vector space H0(X;R)⊕H+(X;R)) determines an orientation forMδ

K(g).
If b+2 (X) > 1, the homology class [Mδ

K(g)] ∈ Hd(B∗K ;Z) is independent of
the choice of g and δ, hence the map SWX : CX → Z given in Definition 2.4.2
is a smooth invariant of X.

Proof (sketch). As Remark 2.4.23 outlines, for generic choices of g and
δ the moduli space Mδ

K ⊂ B∗K is a smooth manifold. Its dimension can
be computed using the Atiyah-Singer Index Theorem, which shows that
dimMK(g) = 1

4(K
2−(3σ(X)+2χ(X))). The proof of orientability ofMδ

K(g)
proceeds in the following way: The determinant line bundle of the elliptic
operator SWδ (with a fixed perturbation δ) over the moduli space can be
identified with the top power ΛmaxTMδ

K(g) of its tangent bundle. Since
the determinant line bundle is trivial over B∗K , orientability follows. Note
that by restricting trivializations of this bundle from the connected space
B∗K toMδ

K(g) we get two preferred orientations of the moduli space — even
if it consists of more than one component. By analyzing the determinant
line bundle it can be shown that a trivialization depends on the orientation
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of H0(X;R)⊕H+(X;R) (and of H0(X;R)⊕H1(X;R)⊕H+(X;R) in the
nonsimply connected case).

The above-listed properties ofMδ
K(g) (i.e., smoothness and orientabil-

ity) follow from general analytic properties of the operators involved in the
defining equations. The compactness of the moduli space, however, is special
to Seiberg-Witten theory — for example, the moduli spaces encountered in
Donaldson theory fail to be compact, although they possess all other prop-
erties discussed above. The compactness of Mδ

K(g) originates from the
existence of a bound on solutions ψ ∈ Γ(X;W+) depending only on the
geometry of X: If (A,ψ) solves the Seiberg-Witten equations, then either
ψ ≡ 0 or

|ψ(x)|2 ≤ s(X,g) = max{−s(x) | x ∈ X},

where s(x) denotes the scalar curvature of (X, g) at x. Since this bound
provides a bound for A as well, standard analysis provides the compactness
ofMδ

K(g). (See also Exercise 2.4.26(b).)

As we saw in Remark 2.4.23, for b+2 (X) > 0 almost every pair (g, δ)
gives rise to a smooth moduli space — we can choose (g, δ) outside of a
codimension-b+2 (X) subspace. On the other hand, SWX will be a diffeo-
morphism invariant only in the case b+2 (X) > 1. The general way to prove
independence from g and δ proceeds as follows: Choose perturbations (gi, δi)
(i = 0, 1) and try to prove that the corresponding moduli spaces are homol-
ogous in B∗K . The two perturbations can be joined by an arc γt = (gt, δt)

in the space Pert(X), and the parametrized moduli space
⋃

t∈[0,1]Mδt
K(gt)

gives the desired homology — if γt does not meet the codimension-b+2 (X)
subspace giving reducible solutions. For b+2 (X) > 1 it is not hard to find such
a path; if b+2 (X) = 1, however, there will in general be finitely many points
t1, . . . , tn ∈ [0, 1] with the property that for (gti , δti) the Seiberg-Witten
equations admit reducible solutions. Hence, for b+2 (X) = 1 the homology
class [Mδ

K(g)] does depend on (g, δ). (To produce smooth invariants for
manifolds with b+2 (X) = 1 and obtain results about the smooth structure of

these manifolds, one must understand the relation between [Mδt
K(gt)] and

[Mδt′
K (gt′)] for t < ti < t′. The resulting formulae are usually called wall-

crossing formulae, cf. also Exercise 2.4.26(c).)

Remark 2.4.25. The definition of a spinc structure and the choice of a
homology orientation of X require a metric g on the 4-manifold X. In the
above argument, however, we used a 1-parameter family of moduli spaces
corresponding to various metrics. It can be shown [Mr2] that a spinc struc-
ture and homology orientation fixed for one metric g canonically determine
such structures for all other metrics on X.
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Exercises 2.4.26. (a) Show that the (unperturbed) Seiberg-Witten equa-
tions admit reducible solutions iff the harmonic representative of c1(detL)
is ASD. Conclude that if b+2 (X) > 0 and c1(detL) �= 0, then for generic
metric g and small perturbation δ ∈ Ω+(X) the moduli spaceMδ

K(g) does
not contain reducibles.

(b)∗ Applying the Weitzenböck formula

/∂A/∂Aψ = ∇∗
A∇Aψ +

1

4
sψ +

1

2
FA · ψ,

show that if ψ solves the Seiberg-Witten equations and ψ is not identically
zero, then |ψ|2 ≤ s(X,g). (The curvature term FA acts on ψ by Clifford
multiplication.)

(c) Suppose that π1(X) = 1 and b+2 (X) = 1. For a generic metric g, take
the 2-form ωg of unit length generating H+(X;R) ∼= R and positive with
respect to a preassigned homology orientation. (Recall from Exercise 2.4.21
that the dimension of H+(X;R) is one for X with b+2 (X) = 1.) Show that
for a given spinc structure L the Seiberg-Witten equations admit reducible
solutions iff the number cg = c1(detL) ∪ [ωg] is zero. Prove that in that
case the reducible solution is unique (up to gauge equivalence). Suppose
that g1, g2 are generic metrics and δ1, δ2 ∈ Ω+(X) are sufficiently small
perturbations. Conclude from the above discussion that if cg1 · cg2 > 0, then
the Seiberg-Witten invariants of X on L using moduli spaces corresponding
to (g1, δ1) and (g2, δ2) are equal. Furthermore, show that if cg1 · cg2 < 0,

then the values of the Seiberg-Witten invariants usingMδ1
K(g1) andMδ2

K(g2)
differ by 1. (As usual, K denotes the first Chern class of the determinant
bundle of the spinc structure L.)
(d) Suppose that π1(X) = 1 and b+2 (X) = 0. Show that for a spinc structure
L the moduli space contains a unique reducible solution. Show furthermore
that a neighborhood of the (singular) point corresponding to this reducible

solution can be modeled on the cone over the projective space CP
d−1
2 , where

d denotes the dimension of the moduli space corresponding to the spinc

structure L. (Hint : The uniqueness of the reducible solution — up to gauge
equivalence — follows from standard Chern-Weil theory. Considering the
S1-action given by G/G0 on the based moduli space (cf. Remark 2.4.23)
completes the solution.)

The above exercise gives a fairly detailed description of the moduli space
MK(g) for a manifold with b+2 (X) = 0. By deleting an open neighbor-
hood of the singular point of the moduli space we get a manifold V ⊂ B∗K
with boundary diffeomorphic to CP

d−1
2 . This shows, in particular, that

[∂V ] ∈ Hd−1(B∗K ;Z) is nullhomologous. On the other hand, the generator
μ ∈ H2(B∗K ;Z) can be identified as the first Chern class of the S1-fibration
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provided by the base point fibration (Mδ
K(g))0 → Mδ

K(g). Since this fi-

bration is the tautological S1-bundle over ∂V ≈ CP
d−1
2 , we conclude that

〈μ d−1
2 , ∂V 〉 = ±1. This shows, however, that [∂V ] is nonzero in Hd−1(B∗K ;Z)

— implying a contradiction with the above observation for all character-
istic elements K with d(K) − 1 = 1

4(K
2 − (3σ(X) + 2χ(X))) − 1 ≥ 0,

i.e., d(K) > −1. (Recall that the parity of d(K) is determined by X, cf.
Exercise 2.4.1.) This contradiction shows that if X is a smooth (simply
connected) 4-manifold with b+2 (X) = 0, then no characteristic element K
can exist for which 1

4(K
2 − (3σ + 2χ)) > −1. Since b+2 = 0, we have

that 1
4(K

2 − (3σ + 2χ)) = 1
4(K

2 + b2(X)) − 1, which is greater than −1 iff

K2 + b2(X) > 0. Hence we get a contradiction once we find a characteristic
element K ∈ CX having square less than b2(X) in absolute value.

Exercises 2.4.27. (a) Show that there exists no smooth simply connected
4-manifold X with QX = 2(−E8). (Hint : Since 2(−E8) is even, we have
that 0 is characteristic, so the contradiction described above implies the
solution.) In fact, this result — coupled with Freedman’s Theorem 1.2.27
— already implies the existence of (large) exotic R4’s, cf. Section 9.4.

(b) Prove that if Q is a nontrivial, negative definite, even intersection form,
then for n ≥ 0 the form Q⊕n〈−1〉 cannot be realized as the intersection form
of a smooth, simply connected 4-manifold X. (Hint : Take the characteristic
element K =

∑n
i=1 ei, where the vectors ei are linearly independent with

square −1. For this K we have |K2| = n < rk(Q) + n = rk(Q ⊕ n〈−1〉),
leading to a contradiction.)

The above argument, coupled with the purely algebraic Theorem 2.4.28
due to Elkies, quickly lead us to a proof of Donaldson’s Theorem 1.2.30.

Theorem 2.4.28. ([Elk]) The form n〈−1〉 can be characterized as being
the only negative definite rank n unimodular form with the property that
min{−Q(K,K) | K is characteristic} equals n. For all other negative def-
inite forms of rank n, min{−Q(K,K) | K is characteristic} < n.

Corollary 2.4.29. (Donaldson) If X is a simply connected smooth 4-
manifold with negative definite intersection form (i.e., b+2 (X) = 0), then
QX
∼= n〈−1〉.

Remark 2.4.30. The above theorem holds, in fact, for closed 4-manifolds
with arbitrary fundamental groups [KKM], [Sa]. The original proof of
Corollary 2.4.29 (which is the same as Theorem 1.2.30) used an analysis
of ASD SU(2)-connections on the principal SU(2)-bundle P → X with
〈c2(P ), [X]〉 = 1 [D1]. (Recall that an SU(2)-bundle over a 4-manifold X is
determined by its second Chern class c2(P ).) The analysis required for the
original proof, however, is much more delicate than that outlined above.
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Finally, we give a sketch of the proof of Theorem 2.4.6(1). (A similar
outline of the proof of Theorem 2.4.7 will be given in Section 10.4.) We
restrict ourselves to indicating the proof that under the given hypotheses,
SWX(K) = 0 for spinc structures with d(K) = 1

4(K
2− (3σ(X)+2χ(X))) =

0. The basic idea of the proof is that if X decomposes as X1#X2 with
b+2 (Xi) > 0, then for an appropriate metric the moduli space MK(g) is
empty. Decompose X as (X1 − D4) ∪S3 S3 × [0, t] ∪S3 (X2 − D4), equip
Xi − D4 with fixed metrics hi and define the metric gt on X as the given
hi’s on Xi−D4 and the natural product metric on S3× [0, t]. (Assume that
each hi is chosen in such a way that this construction provides a smooth
metric on X.) In this way the sequence gt introduces a long “neck” between
X1−D4 and X2−D4. It can be shown that for t large enough,MK,X(gt) is

diffeomorphic to the direct productMK1,X1(h̃1)×MK2,X2(h̃2) for suitable

metrics h̃i on Xi. (Here Ki = K|Xi ∈ H2(Xi;Z) is the restriction of the
spinc structure on Xi.) The dimension formula, however, tells us that 0 =

dimMK,X(gt) = dimMK1,X1(h̃1)+dimMK2,X2(h̃2)+1, implying that one

of the smooth manifoldsMKi,Xi(h̃i) is negative dimensional, hence empty.

(The assumption b+2 (Xi) > 0 is used in the argument that both moduli

spacesMKi,Xi(h̃i) are smooth manifolds of the expected dimension.) This
argument shows that for t large enough MK,X(gt) = ∅, completing the
outline of the proof of Theorem 2.4.6(1). Note that, for example, we conclude
that SW

#nCP2#mCP2 ≡ 0 for n ≥ 2 and odd, cf. Exercise 2.4.13. Similar

ideas prove Theorems 2.4.9 and 2.4.10 as well; in these cases b+2 (X2) =
0, hence we encounter reducible solutions on X2. By studying reducibles
along the lines of Exercise 2.4.26(d), one can obtain the required formulae.
Similar reasoning gives the proof of Theorem 2.4.8. After we decompose X
as (X − νΣ) ∪T νΣ, however, extra complications arise from the fact that
the 3-manifold T , along which X is pulled apart, is a circle bundle over Σ
with Chern number [Σ]2 — rather than S3. In addition, the description
of reducibles over νΣ (in the case of negative self-intersection [Σ]2) is more
complicated than in the case of the blow-up formulae.

                

                                                                                                               



                

                                                                                                               



Chapter 3

Complex surfaces

Having introduced the theory of 4-manifolds, it is time to present more ex-
amples. This chapter is devoted to the description of certain families of
complex surfaces. We will always pay special attention to the genus func-
tion G introduced in Chapter 2. We begin with a detailed study of elliptic
surfaces; these examples of complex surfaces form a class wide enough to
show the special properties of 4-manifolds — for example, the existence of
infinitely many exotic smooth structures. On the other hand, we under-
stand elliptic surfaces fairly well, so these surfaces serve as good examples
for the theory of Kirby calculus presented in the further chapters of the
present volume. For that reason we will return to the discussion of elliptic
surfaces in Chapter 7 from a more algebraic and in Chapter 8 from a more
topological point of view. Most of the theorems stated in this chapter will
be proved in Chapters 7 and 8. We finish this chapter with an outline of
the classification of complex surfaces; more examples of complex surfaces
(e.g., surfaces of general type) will be given in Chapter 7. We will examine
complex surfaces from the differential topological point of view, hence (un-
less otherwise stated) we will regard diffeomorphic complex surfaces as the
same.

3.1. E(1) and fiber sum

Definition 3.1.1. A complex surface S is an elliptic surface if there is a
holomorphic map π : S → C to a complex curve C such that for generic t ∈ C
the inverse image π−1(t) is a smooth elliptic curve — that is, topologically
a real 2-dimensional torus. The map π is called a (holomorphic) elliptic
fibration. A smooth map π : X → C (X a closed, oriented 4-manifold) will be
called a (C∞-) elliptic fibration if each (possibly singular) fiber π−1(t) “looks

67

                                    

                

                                                                                                               



68 3. Complex surfaces

like” a fiber in a holomorphic elliptic fibration, i.e., it has a neighborhood
U and an orientation-preserving diffeomorphism ϕ : U → ϕ(U) ⊂ S into an
elliptic surface, with ϕ commuting with the maps π.

Before giving examples of elliptic surfaces, we construct a CP1-fibration
over CP1 for sake of motivation. Take all complex projective lines in CP2

going through the point P = [0 : 0 : 1] ∈ CP2. By associating [t0 : t1] ∈ CP1

to the line {[x : y : z] ∈ CP2 | t0x = t1y}, we parametrize the set of such
lines by CP1. It is easy to see that this family of lines gives a one-sheet cover
of CP2 − {P}, i.e., for each point Q ∈ CP2 − {P} there is a unique element
of the above family going through Q. Moreover, all these lines intersect each
other transversally in P . A map f : CP2−{P} → CP1 can be defined in the
following way: For Q ∈ CP2 − {P} associate the parameter of the unique
line of the above family going through Q. This map cannot be extended to
CP2, but by blowing up CP2 at P we replace P by the set of all lines going
through it, so f can obviously be extended to (CP2)′ = CP2#CP2, resulting

in a CP1-fibration of CP2#CP2 over CP1.

Exercise 3.1.2. ∗ Prove that this fibration is not the trivial S2-bundle over
S2. (The complex surfaces admitting CP1-fibrations over CP1 are also called
Hirzebruch surfaces; these complex surfaces will be discussed in Section 3.4.
More general S2-fibrations will be discussed in detail later on.)

The total space of the above bundle CP2#CP2 → CP1 sometimes will also
be denoted by S2×̃S2. Note that the exceptional sphere intersects each fiber
of S2×̃S2 → CP1 transversally in one point, so it is a section of the fibration.
(In our subsequent discussions we will not distinguish between a section —
a map — and its image, which is a submanifold.)

Next we generalize the above construction. As we saw, the polynomi-
als defining the lines passing through P ∈ CP2 are linear combinations of
two linear polynomials. (In our case, these two linear polynomials were
p0 = x and p1 = y.) Generalizing this point of view, take two generic ho-
mogeneous quadratic polynomials p0 and p1 in the variables x, y, z. By a
general position argument, Vp0 = {[x : y : z] ∈ CP2 | p0(x, y, z) = 0} and
Vp1 = {[x : y : z] ∈ CP2 | p1(x, y, z) = 0} (the curves in CP2 correspond-
ing to the polynomials) intersect each other in 4 points P1, P2, P3 and P4.
Take the family Q = {t0p0 + t1p1 | [t0 : t1] ∈ CP1} of quadratic polynomi-
als. The curves corresponding to the polynomials of this family obviously
give a one-sheet cover of CP2 − {P1, . . . , P4}, and any two curves in Q in-
tersect each other transversally in {Pi | i = 1, . . . , 4}. Thus, as before, a
map f : CP2 − {P1, . . . , P4} → CP1 can be defined, and although f can-
not be extended to CP2, blowing up each Pi defines an extension to a map
f̃ : CP2#4CP2 → CP1. Note, however, that this map is not a bundle map,
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since although the generic fiber is CP1 (because a generic quadric curve in
CP2 is a copy of CP1), there are singular fibers as well — namely quadric
curves which are unions of two lines. (Since there are no singular linear
subspaces of CP2, the first construction (resulting in S2×̃S2 → CP1) gave a

fiber bundle.) By a little abuse of notation we still call f̃ : CP2#4CP2 → CP1

a (singular) fibration, although f̃ : CP2#4CP2 → CP1 is not a fiber bundle,
since different fibers may not be diffeomorphic. This kind of fibration —
called a Lefschetz fibration — will be discussed in Chapter 8 in detail. Note
that each exceptional sphere intersects each fiber f̃−1(t) transversally in
a unique point, so the exceptional spheres of the blow-ups are sections of
f̃ : CP2#4CP2 → CP1.

Exercise 3.1.3. Prove that the same fibration can be defined by choosing
4 points in CP2 in general position and taking all quadric curves passing
through these points. What are the singular fibers and how many of them
can be found in such a fibration? What goes wrong if the points are not
in general position, for example, if all four are on the same (projective)
line? Can we generalize this approach to curves of higher degree? (See also
Exercise 8.1.8(b).)

Now taking two generic cubics p0 and p1 (intersecting each other in
P1, . . . , P9) and constructing the corresponding pencil of curves {t0p0 +
t1p1 | [t0 : t1] ∈ CP1}, we can define the map f : CP2 −{P1, . . . , P9} → CP1

in the same way: For Q ∈ CP2−{P1, . . . , P9} take the unique cubic p[t0:t1] =
t0p0 + t1p1 which passes through Q, and then define f(Q) = [t0 : t1] ∈ CP1.
(In the notation we sometimes confuse the curve in CP2 with the homoge-
neous polynomial defining it.) By blowing up CP2 at P1, . . . , P9, we extend

f to a fibration π : CP2#9CP2 → CP1 whose fibers are cubic curves, hence
the generic fiber is a smooth elliptic curve (i.e., a torus). Consequently, this

process provides a holomorphic elliptic fibration on CP2#9CP2. Depending
on the choice of the cubic polynomials p0 and p1, we will have different types
of singular fibers. Note that if π : X → CP1 is a fibration such that all fibers
are tori, then χ(X) = 0; this argument shows that π : CP2#9CP2 → CP1

must have fibers not diffeomorphic to the torus T 2. The above procedure
easily generalizes to curves with degree higher than 3: Take p0, p1 generic
smooth curves in CP2 of degree d. The family {t0p0 + t1p1 | [t0 : t1] ∈ CP1}
of degree-d curves gives a (one-sheet) cover of CP2 − p0 ∩ p1. Blowing up
the d2 points of the intersection {p0 ∩ p1}, we get

Lemma 3.1.4. The manifold CP2#d2CP2 admits a (singular) fibration

CP2#d2CP2 → CP1, where the generic fiber is a complex curve of genus
1
2(d− 1)(d− 2).
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We will return to this kind of fibration in Chapter 8; now we turn back to
the case of elliptic (degree-3) curves. The next proposition describes the

singular fibers of certain elliptic fibrations of CP2#9CP2. For a proof, see
Exercise 8.1.2(b).

Proposition 3.1.5. For a generic choice of the degree-3 curves p0 and p1,
the singular curves in the family Q = {t0p0 + t1p1 | [t0 : t1] ∈ CP1} are
ambiently isotopic to C1 = {[x : y : z] ∈ CP2 | zy2 = x3 + zx2} ⊂ CP2.

The fibers in CP2#9CP2 → CP1 coming from blowing up curves am-
biently isotopic to C1 are called fishtail fibers. A fiber originating from a
curve ambiently isotopic to C2 = {[x : y : z] ∈ CP2 | zy2 = x3} ⊂ CP2 is
called a cusp fiber . Note that the polynomials p0 and p1 can be chosen so
that at least one singular curve in the family Q will be ambiently isotopic to
C2: Take, for example, p0 = x3 − zy2 and p1 = x3 + y3 + z3. A fishtail fiber
has Euler characteristic 1, hence the fact that χ(CP2#9CP2) = 12 implies
that a generic fibration has 12 singular fibers. As we will see in Chapter 7,
CP2#9CP2 admits elliptic fibrations with only cusp fibers as singular fibers.
Since a cusp fiber has Euler characteristic 2, there are 6 such fibers in those
fibrations. For a complete list of singular fibers in elliptic fibrations, see
[HKK] or [BPV]. In the next section we will show other constructions of
elliptic surfaces having singular fibers different from the above examples.

If we think of CP2#9CP2 as being equipped with an elliptic fibration,
we denote it by E(1). The invariants of E(1) are easy to compute:

Lemma 3.1.6. For the 4-manifold E(1) we have π1(E(1)) = 1, χ(E(1)) =
12, σ(E(1)) = −8, b2(E(1)) = 10, b+2 (E(1)) = 1, c21(E(1)) = 0, and finally,
c2(E(1)) = 12. Since E(1) is a complex surface, c1(E(1)) is defined and

equals the Poincaré dual of 3h−∑9
1 ei ∈ H2(CP

2#9CP2;Z).

Here we use the convention that h denotes the canonical generator origi-
nating from H2(CP

2;Z) in H2(CP
2#9CP2;Z) = H2(CP

2;Z)⊕ 9H2(CP2;Z),
while ei is the homology class of the exceptional sphere of the ith blow-up
(generating the ith H2(CP2;Z)-factor). Since the fiber of the elliptic fibration
is exactly the blow-up of a cubic curve, its homology class is equal to 3h−∑9

1 ei. As before, every exceptional sphere of the blow-up will be a section
of π : E(1)→ CP1. Thus E(1) has 9 disjoint sections, whose corresponding
homology elements are the classes ei ∈ H2(E(1);Z) (i = 1, . . . , 9). A more
convenient basis for H2(E(1);Z) can be given by changing 〈h, e1, . . . , e9〉 to
〈f = 3h−∑9

1 ei, e9, e1−e2, e2−e3, . . . , e7−e8,−h+e6+e7+e8〉. In the first
basis, QE(1) explicitly splits as 〈1〉 ⊕ 9〈−1〉, while in the second basis QE(1)

is given by
[
0 1
1 −1

]
⊕ (−E8). Assume that E(1)→ CP1 contains a cusp fiber

and let N(1) denote the (closure of the regular neighborhood of the union

                

                                                                                                               



3.1. E(1) and fiber sum 71

of a cusp fiber and the 9th exceptional sphere. Then N(1) is simply con-
nected, H2(N(1);Z) = Z ⊕ Z and the intersection form QN(1)

∼=
[
0 1
1 −1

]
is unimodular, hence (by Corollary 5.3.12, cf. also Remark 1.2.11) the
boundary ∂N(1) is a homology sphere; that is, H∗(∂N(1);Z) ∼= H∗(S3;Z).
The manifold N(1) is called the nucleus of E(1). Since the remaining
basis elements {e1 − e2, . . . , e7 − e8, e6 + e7 + e8 − h} are orthogonal to
H2(N(1);Z), these homology classes can be represented in the complement
Φ(1) = E(1) − int N(1); the intersection matrix of H2(Φ(1);Z) in this ba-
sis is −E8. Note that Φ(1) = E(1) − int N(1) is not a closed manifold; it
has a (homology sphere) boundary. Thus Rohlin’s Theorem 1.2.29 does not
apply in this case, and the intersection form is allowed to be −E8 (which
is impossible for a smooth, closed 4-manifold). Actually, every unimodular
form occurs as the intersection form of a 4-manifold with (homology sphere)
boundary — we will give an easy proof of this statement later on (see Ex-
ercise 5.3.13(e)). The intersection form QΦ(1) being −E8 can be explained
by the fact that Φ(1) is the manifold we get by plumbing according to the
diagram corresponding to the −E8-matrix. (For the definition of plumbing
see Example 4.6.2; for a proof of the above statement see Corollary 7.3.23
and Exercise 8.3.4(c).)

Exercises 3.1.7. (a) Show that ei−ei+1 (i = 1, . . . , 7) and e6+e7+e8−h
can be represented by embedded spheres in Φ(1).

(b) Prove that a homology element a ∈ H2(Φ(1);Z) with a2 = −2 has one
of the following forms: ei − ej (i �= j), ±(h − ei − ej − ek) (i, j, k different
indices), ±(2h − ei1 − . . . − ei6) (where i1, . . . , i6 are six different indices),
or ±(3h− 2ei1 − ei2 − . . .− ei8) (where i1, . . . , i8 are eight different indices).
(Hint : From the fact that an element a = α · h+

∑9
1 βiei is in H2(Φ(1);Z),

one gets two equations (a · e9 = 0 and a · f = 0), giving constraints for the
integers α, β1, . . . , β9. The condition a2 = −2 and the Cauchy inequality
(
∑n

1 ki)
2 ≤ n

∑n
1 k

2
i imply that |α| ≤ 4, and then a case-by-case argument

concludes the solution.)

(c) Prove that every homology element with square −2 in H2(Φ(1);Z) can
be represented by a sphere in Φ(1). (Hint : The first 3 cases can be answered
by tubing the spheres representing h, 2h and ei together — a good choice
of the points where the blow-ups are performed insures that the resulting
surface is actually in Φ(1). For the homology elements of the last type, one
can represent 3h by the curve C1 of Section 2.3, and proceed further.)

Using the fiber sum operation, many elliptic surfaces can be constructed
from the single example E(1). Assume that C∞-elliptic fibrations πi : Si →
Ci (i = 1, 2) are given. The fiber sum S1#fS2 is defined as follows: Take

ti ∈ Ci (i = 1, 2) such that the fibers Fi = π−1
i (ti) are generic, and take

regular neighborhoods of these fibers in Si; topologically we specify a copy
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of D2 × T 2 in each Si. Using a fiber-preserving, orientation-reversing dif-
feomorphism ϕ between the boundary 3-tori of the manifolds Si − νFi, we
can glue these manifolds together and construct a new manifold S1#fS2,
which will admit a C∞-elliptic fibration π : S1#fS2 → C1#C2. The diffeo-
morphism type of the resulting 4-manifold might depend on the choice of
the diffeomorphism ϕ. If one of the fibrations contains a cusp fiber, how-
ever, there is no such dependence on ϕ (see Lemma 8.3.6), and S1#fS2 is
a well-defined 4-manifold. The elliptic surface E(n) is defined as the n-fold
fiber sum of copies of E(1); in particular, E(n) = E(n− 1)#fE(1).

Remark 3.1.8. Since the fibration E(1) → CP1 can be chosen to contain
a cusp fiber, the above construction gives a well-defined 4-manifold. It is
not clear from the definition of fiber summing that the resulting manifold
will have a complex structure as well. The cyclic n-fold branched covering
construction can be applied to E(1) along 2 regular fibers to construct a
complex elliptic surface which is diffeomorphic to the 4-manifold E(n) de-
fined above (see Section 7.3). In this way we can talk about E(n) as a
complex surface. Note that the complex structure on E(n) is not unique —
it depends on the choices we make in the construction. We always think of
E(n) as a smooth 4-manifold, and equip it with an arbitrary (compatible)
complex structure when we need it. It is also worth mentioning that the
restriction that the fibration S1 → C1 contains a cusp fiber is not very seri-
ous. In fact, if an elliptic surface S has χ(S) �= 0, then it admits an elliptic
fibration with a cusp fiber (cf. Theorem 8.3.12). We will not need this fact
in our later arguments.

Next we determine the relevant invariants of E(n), beginning with E(2).
Suppose that F is a regular fiber in E(1), a neighborhood of which will be
denoted by νF . Observe that E(1) − νF is simply connected: The normal
circle to the fiber can be contracted along the remaining hemisphere of any
section. Using the Seifert-Van Kampen theorem, this implies that E(2) =
(E(1)− νF )∪T 3 (E(1)− νF ) is simply connected. Well-known properties of
the Euler characteristic χ imply that χ(E(2)) = 2χ(E(1)− νF )− χ(T 3) =
2χ(E(1)− νF ) and χ(E(1)− νF ) = χ(E(1))− χ(νF ) + χ(T 3) = 12, so the
Euler characteristic of E(2) is 24. This means that b2(E(2)) = 22, and since
π1(E(2)) = 1, we have H2(E(2);Z) ∼= Z22. In the following we describe a
convenient basis for this free abelian group. Choose the regular fibers along
which the fiber sum is performed to be in the two copies of the nucleus
N(1) ⊂ E(1). Thus the two copies of Φ(1) ⊂ E(1) are in E(2), providing 16
spheres of square −2 (corresponding to {e1−e2, . . . , e7−e8, e6+e7+e8−h}),
which realize two −E8’s in the intersection matrix. The 9th section of each
E(1) intersects the boundary of E(1)− νF in a circle, and we may assume
that the gluing map ϕ identifies these circles. Then a section σ : CP1 → E(2)
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is constructed by sewing the two sections of the E(1)’s together. Since
σ2 = −2, the homology classes σ and f of the section and the fiber give
two more homology elements (orthogonal to the previous 16), for which the
intersection matrix has the form

[
0 1
1 −2

]
. To find the missing 4 homology

elements for a basis of H2(E(2);Z), we have to go back to E(1) − νF for a
moment. Note that H2(∂(E(1)−νF );Z) = H2(T

3;Z) is spanned by 3 copies
of the 2-torus T 2; one is the fiber of E(1) → CP1, and the two others are
homologous to 0 in E(1) but give nonzero homology elements in E(1)− νF .
We choose the gluing map ϕ : ∂(E(1)− νF )→ ∂(E(1)− νF ) in such a way
that these tori are identified, so 2 new homology elements (represented by
tori) have been detected.

Exercise 3.1.9. Prove that these tori have self-intersection 0. As we will
see in a moment, these tori are homologically nontrivial. Applying Seiberg-
Witten theory, prove that the homology classes of these tori cannot be rep-
resented by spheres in E(2). (Hint : Use the fact that E(2) admits a complex
structure and b+2 (E(2)) > 1.)

Each of the above-mentioned 2-dimensional tori in T 3 = ∂(E(1) − νF )
has a dual circle in T 3 (“the third circle”) intersecting it transversally at
a point, and since E(1) − νF is simply connected, these two circles can
be contracted in E(1) − νF . By contracting each circle on both sides, we
can construct two new closed surfaces (hence homology elements) in E(2);
these surfaces will pair nontrivially with the tori of Exercise 3.1.9 in QE(2)

(proving that those tori are not homologous to zero).

Lemma 3.1.10. The dual circles in ∂(E(1)−νF ) bound embedded disks in
E(1) − νF . These disks can be chosen to be in N(1) and disjoint from the
section and from each other. The spheres in E(2) defined by the above disks
have self-intersection −2.

(For the proof of Lemma 3.1.10 see Section 8.2.) The above spheres of
square −2 intersect only the tori to which the corresponding circles were
dual. Hence we have found 22 homology elements (19 spheres and 3 tori), for
which the intersection matrix is 2(−E8)⊕3

[
0 1
1 −2

]
. Note that this matrix has

determinant −1, implying that the homology classes listed above form a ba-
sis ofH2(E(2);Z) (cf. Corollary 1.2.13). A similar argument provides a basis
for H2(E(n);Z) with intersection matrix n(−E8)⊕2(n−1)

[
0 1
1 −2

]
⊕
[
0 1
1 −n

]
.

Recall that E(n) = E(1)#fE(n − 1), hence the assertions π1(E(n)) = 1
and H2(E(n);Z) ∼= Z12n−2 can be proved by induction. The elements of
square 0 in the above basis are tori (and cannot be represented by spheres);
all other elements in this basis are spheres. The sphere with square −n
is constructed by sewing sections of E(1) together, hence it gives rise to a
section of E(n)→ CP1 (cf. also Exercise 3.1.12(a)). In this way we can find
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9 disjoint sections in E(n). By Exercises 1.2.17(a) and (b) we know that[
0 1
1 −n

]
represents H or 〈1〉 ⊕ 〈−1〉 depending on the parity of n; thus the

intersection form of E(n) is equivalent to n(−E8) ⊕ (2n − 1)H if n is even
and to (2n− 1)〈1〉 ⊕ (10n− 1)〈−1〉 if n is odd. (Recall the classification of
indefinite forms.) We conclude

Proposition 3.1.11. The invariants of the elliptic surface E(n) are given
as follows: χ(E(n)) = 12n and π1(E(n)) = 1, hence b2(E(n)) = 12n − 2.
For the signature we have σ(E(n)) = −8n; hence b+2 (E(n)) = 2n − 1 and
c21(E(n)) = 0. Moreover, E(n) is spin iff n is even.

Since E(n) admits a complex structure (cf. Remark 3.1.8), it has a first
Chern class as well. We just remark here that c1(E(n)) is the Poincaré
dual of (2− n)f (where f is the homology class of the fiber); in particular,
c1(E(2)) = 0, meaning that E(2) is a K3-surface. (By the classification
of complex surfaces, E(2) is in fact diffeomorphic to the K3-surface S4 of
Section 1.3.) Taking a regular neighborhood of a cusp fiber and a section
in E(n), one can define the nucleus N(n) ⊂ E(n). The complement Φ(n) =
E(n) − int N(n) is a simply connected manifold with boundary. ∂Φ(n)
is a homology sphere and the intersection form of Φ(n) is equivalent to
n(−E8) ⊕ 2(n − 1)H, hence Φ(n) is spin for all n. We just note here that
Φ(n) is a well-known manifold, called the Milnor fiber associated to the
polynomial f(x, y, z) = x2 + y3 + z6n−1, and ∂Φ(n) is the Seifert-fibered
homology sphere Σ(2, 3, 6n− 1). (For more details, see Sections 6.3, 7.3, 8.3
or [G9].)

Exercises 3.1.12. (a)∗ Prove that if C ⊂ E(n) is a rational complex curve
(so C ≈ CP1) with [C]2 = −n �= −2, then C is a section of the elliptic
fibration E(n) → CP1. (Hint : Use the adjunction formula 1.4.17 and the
fact that c1(E(n)) = PD((2− n)f).)

(b)∗ Show that N(n+ 2) embeds in E(n). Find an embedding of N(n+ 1)

in the blow-up E(n)#CP2.

(c) Identify 3 disjoint copies of N(2) in E(2). Similarly, show that 2(n− 1)
disjoint copies of N(2) can be embedded in E(n).

(d) Show that the sum of the fiber and a section in E(3) can be represented
by a torus of square−1. (Hint : Resolve the singularity of the union of a torus
and a sphere representing a fiber and a section as discussed in Section 2.1.)

(e) Take the fiber sum of E(n) with the trivial elliptic fibration Σg × T 2,
where Σg is the Riemann surface of genus g. Determine the characteristic
numbers of the resulting manifold E(n, g)→ Σg.

Next we will determine the Seiberg-Witten basic classes of E(n) (n ≥ 2).
Let K ∈ H2(E(n);Z) be a Seiberg-Witten basic class; we will find the con-
straints forK provided by the generalized adjunction formula Theorem 2.4.8.
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Lemma 3.1.13. Given a copy of Φ(1) embedded in a 4-manifold X which
has simple type, any Seiberg-Witten basic class K ∈ H2(X;Z) of X will
vanish on H2(Φ(1);Z) ⊂ H2(X;Z).

Proof. The generalized adjunction formula shows that for any sphere S in
Φ(1) ⊂ X having square −2 we have |K([S])| ≤ 2. (Add a trivial torus to
the sphere to obtain g(S′) > 0 and apply Theorem 2.4.8.) An elementary
combinatorial argument shows that on (H2(Φ(1);Z), QΦ(1)) ∼= (Z8,−E8)
only the identically 0 function has the property that it is linear and takes
one of the values 0,±2 on each element of square −2. Exercise 3.1.7(c) now
proves the lemma.

Exercise 3.1.14. Prove that if a linear function ϕ : (Z8,−E8) → Z takes
the values 0,±2 on each element of square −2, then ϕ is identically 0. (For
the solution, see [S1].)

If t, s ∈ H2(E(n);Z) are the classes induced by a torus and sphere as
above generating a

[
0 1
1 −2

]
summand, then the generalized adjunction for-

mula shows that K vanishes on t and t + s (since each can be represented
by a torus with self-intersection 0), hence it vanishes on the subgroup they
generate. Since the intersection matrix of E(n) is n(−E8)⊕2(n−1)

[
0 1
1 −2

]
⊕[

0 1
1 −n

]
, K vanishes on the subspace n(−E8)⊕ 2(n− 1) [ 0 1

1 0 ]. (Note that we
have actually proved that if Φ(n) is a submanifold of a 4-manifold X of
simple type and K ∈ H2(X;Z) is a Seiberg-Witten basic class of X, then
K vanishes on H2(Φ(n);Z) ⊂ H2(X;Z).) To finish the computation of the
Seiberg-Witten basic classes of E(n), we have to determine the values K(f)
and K(σ). (Recall that f and σ are the homology classes of the fiber and a
section respectively.) Again, the generalized adjunction formula shows that
for any basic classK we have K(f) = 0 and so K(nf+σ) = K(σ). The class
nf + σ can be represented by a surface of genus n — take n disjoint copies
of the fiber, one copy of the section and resolve the singular points. Since
(nf+σ)2 = n, the generalized adjunction formula shows that |K(σ)| ≤ n−2.
Since K(σ) ≡ σ2 = −n (mod 2), the possibilities for K are the elements of
the set

{PD(k · f) ∈ H2(E(n);Z) | k ≡ n (mod 2), |k| ≤ n− 2}.
Delicate gauge theoretic arguments [FS2] show that all these classes are
actually SW basic classes.

Corollary 3.1.15. The set of basic classes of E(n) (n ≥ 2) is equal to
{PD(k · f) ∈ H2(E(n);Z) | k ≡ n (mod 2), |k| ≤ n− 2}.
Exercises 3.1.16. (a)∗ Show that the result of Exercise 3.1.12(c) is op-
timal, i.e., we cannot embed 2n − 1 disjoint copies of N(2) in E(n) when
n > 2. Show that E(2) does not contain 4 disjoint copies of N(2).
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(b)∗ Show that the homology class of the −1-torus in E(3) found in Exer-
cise 3.1.12(d) cannot be represented by an embedded sphere.

The values of the Seiberg-Witten function on the above classes have

been determined: SWE(n)(PD(k · f)) = ±
(
n−2
|k|

)
[FM3]. Note that for the

K3-surface E(2) the class 0 ∈ H2(E(2);Z) is the only basic class. From
the fact that SWE(n) �= 0, the genus function G can be computed on many
elements of H2(E(n);Z) — including the given basis. This, however, does
not imply the knowledge of G : H2(E(n);Z) → Z in general. We have seen
that G is not linear, and in general there is no known way of computing
G(α+ β) in terms of G(α) and G(β).

Finally we show that S3 = {[z0 : z1 : z2 : z3] ∈ CP3 | ∑ z3i = 0} ⊂ CP3 of

Section 1.3 is, in fact, diffeomorphic to CP2#6CP2. Note that cubic curves
in CP2 can be parametrized by points of the projective space CP9. (A homo-
geneous cubic polynomial in 3 variables has 10 coefficients, hence determines
a point of CP9; conversely a point in CP9 determines a polynomial up to a
constant factor, cf. Claim 1.3.11.)

Lemma 3.1.17. Fix six different points {P1, . . . , P6} ∈ CP2 in general po-
sition. (By general position we mean here that the points Pi are not on a
quadric curve and no three of them are collinear.) The set of cubics passing
through these points forms a subspace Z of CP9 isomorphic to CP3. If we add
a point Q to {P1, . . . , P6}, the set of cubics passing through P1, . . . , P6, Q
defines a hyperplane HQ ⊂ Z.

Note that if Q ∈ {P1, . . . , P6}, then HQ = Z. For Q not belonging to the
set {P1, . . . , P6}, the hyperplane HQ in Z ≈ CP3 determines a point in the
dual projective space (CP3)∗ ≈ CP3, hence the above construction gives a
map f : CP2 − {P1, . . . , P6} → CP3 by Q �→ HQ ∈ Z∗ ≈ CP3. The map
f cannot be extended to CP2, but by blowing up the latter at the points
{P1, . . . , P6}, we can extend the map to f̃ : CP2#6CP2 → CP3. (A point Q′

of the exceptional sphere over Pi corresponds to a direction through Pi, so
we can interpret f̃(Q′) as the set of cubics passing through {P1, . . . , P6} and
having a prescribed tangent at Pi.) One can easily see that f̃ is injective,
and since we know the Euler characteristics of the complex surfaces in CP3

(cf. Section 1.3), we have that S3 ≈ CP2#6CP2.

Exercises 3.1.18. (a) By choosing {P1, . . . , P6} ⊂ CP2 explicitly (i.e., fix-
ing homogeneous coordinates for each Pi), go through the above construction

and prove that Im f̃ = S3.

(b) Prove that Im f̃ is, in fact, a cubic hypersurface by showing that the
intersection of it with a hyperplane is a cubic curve.
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3.2. Other constructions of elliptic fibrations

In this section we will present other methods for constructing the same el-
liptic surfaces E(n). In Section 7.3 we will prove that the newly constructed
manifolds are diffeomorphic to the ones defined above. For more about
elliptic surfaces see also Section 8.3.

First we will show that the K3-surface S4 ⊂ CP3 admits an elliptic fi-
bration. We have already mentioned that all K3-surfaces are diffeomorphic,
and since both S4 and E(2) are K3-surfaces, S4 admits a smooth elliptic
fibration. In the following, we will explicitly describe a holomorphic ellip-
tic fibration for S4 (see also [HKK]). Recall that S4 has been defined as
{[z0 : z1 : z2 : z3] ∈ CP3 | z40 + z41 + z42 + z43 = 0}. We change this setup
slightly (cf. Claim 1.3.11), and redefine S4 by the more convenient equation

S4 = {[z0 : z1 : z2 : z3] ∈ CP3 | z40 − z41 + z42 − z43 = 0}.
(The following constructions would work perfectly for the original equation
as well; we merely change the signs for the sake of simplicity.) Let L1 =
{z0 = z1, z2 = z3} and L2 = {z0 = −z1, z2 = −z3} be skew projective lines
in CP3. Recall that skew means that there is no hyperplane CP2 ⊂ CP3

containing both L1 and L2; note that L1, L2 ⊂ S4. A map π : S4 → L2 ≈
CP1 will be constructed, and by explicitly determining the fibers we will
show that π is an elliptic fibration. For P ∈ S4 we define π(P ) in the
following way:

• if P ∈ S4 is not in L1, then take the unique hyperplane HP (≈ CP2)
spanned by P and L1, and define π(P ) = HP ∩ L2;

• if P ∈ L1 ⊂ S4, then let HP be the tangent plane of S4 at P , and
define π(P ) = HP ∩ L2.

To prove that π : S4 → L2 is an elliptic fibration, we need to check that
for generic Q ∈ L2 the inverse image π−1(Q) ⊂ S4 is a smooth elliptic
curve. By the (complicated) definition of π, if HQ denotes the hyperplane
spanned by Q and L1, then π−1(Q) = ((HQ ∩ S4) − L1) ∪ {P ∈ L1 | the
tangent plane of S4 at P intersects L2 in Q}. A generic point Q ∈ L2 has
coordinates [y : −y : x : −x], and the corresponding equation of HQ is
x(z0− z1) = y(z2− z3). Intersecting this plane with S4, we get that HQ∩S4

equals

{[z0 : z1 : z2 : z3] ∈ CP3 | z40 − z41 + z42 − z43 = 0, x(z0 − z1) = y(z2 − z3)}.
Note that L1 ⊂ HQ ∩ S4 for every Q, since both HQ and S4 contain L1 by
definition. A little computation (factorization of z40 − z41 and z42 − z43) shows
that the intersection HQ ∩S4 is equal to the union of {z0 = z1 and z2 = z3}
with {y(z30+z20z1+z0z

2
1+z31)+x(z32+z22z3+z2z

2
3+z33) = 0 and x(z0−z1) =

y(z2 − z3)}. The first component of this union is L1, hence to determine
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π−1(Q) we only have to drop the points of L1 from the set {x(z0 − z1) =
y(z2− z3) and y(z30 + z20z1 + z0z

2
1 + z31) + x(z32 + z22z3 + z2z

2
3 + z33) = 0}, and

then add those points P ∈ L1 for which the tangent intersects L2 in Q. For
P = [u : u : v : v] ∈ L1, the tangent plane of S4 is given by the equation
u3(z0−z1)+v3(z2−z3) = 0. This plane intersects L2 in Q = [y : −y : x : −x]
iff u3y + v3x = 0, meaning that P ∈ L1 ⊂ S4 actually satisfies

y(z30 + z20z1 + z0z
2
1 + z31) + x(z32 + z22z3 + z2z

2
3 + z33) = 0.

Consequently, we have identified π−1([y : −y : x : −x]) with
{y(z30+z20z1+z0z

2
1+z31)+x(z32+z22z3+z2z

2
3+z33) = 0, x(z0−z1) = y(z2−z3)},

which is a cubic curve in the hyperplane H = {x(z0−z1) = y(z2−z3)}, that
is, it is an elliptic curve. For generic Q ∈ L2 this inverse image is smooth.
Note also that L2 is a section of π.

Exercise 3.2.1. Using the same method, prove that the complex surface
S2 = {[z0 : z1 : z2 : z3] ∈ CP3 | z20 − z21 + z22 − z23 = 0} admits a CP1-fibration
over CP1. Note that (since S2 has even intersection form) this implies that
S2 is diffeomorphic to CP1 × CP1.

Another description of E(2) can be given in the following way. (This time
the new description can be generalized to E(n) for all n ≥ 2.) It is easy to see
that if we divide C2 by the Z4-action (z1, z2) �→ (z1+n1+n2i, z2+n3+n4i)
(nj ∈ Z, j = 1, . . . , 4), we get the 4-dimensional real torus T 4 as a quotient.
Dividing it further by the Z2-action (z1, z2) �→ (−z1,−z2), we get a new

(singular) manifold X̃. The singularities of X̃ correspond to the fixed points
of the Z2-action on T 4, since — in contrast to the Z4-action above — the
action of Z2 is not free; for example, 0 ∈ C2 is a fixed point.

Exercises 3.2.2. (a) Prove that the induced Z2-action on T 4 = C2/Z4 has
exactly 16 fixed points {p1, . . . , p16}.
(b) Show that a neighborhood of the image of each fixed point pi in X̃ is a
cone over the 3-dimensional real projective space RP3.

(c) Define a Z2-action on T 2 in the same manner as on T 4 (cf. also the
hyperelliptic action defined before Exercises 3.2.5). Prove that T 2/Z2 is
homeomorphic to S2 and has 4 “corner” points (corresponding to the fixed
points of the Z2-action), where the induced metric is singular but over which
the complex (and smooth) structure naturally extends. (Hint : Compute
χ(T 2/Z2).) The quotient T 2/Z2 is usually called the pillowcase, see Fig-
ure 3.1.

There is a canonical way to resolve complex singularities (cf. Sec-
tion 7.2); this process is particularly simple in the above case. Recall that
the unit disk bundle of the cotangent bundle of the sphere S2 is a smooth
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Figure 3.1. The pillowcase T 2/Z2.

manifold W = {v ∈ T ∗S2 | ||v|| ≤ 1} with ∂W = RP3. Now delete the

cone-like neighborhoods of the singular points in X̃ and get a manifold X1

with ∂X1 =
⋃16

1 RP3. Gluing 16 copies of W to X1, one gets a smooth
manifold X = X1 ∪16RP3

⋃16
1 W .

Remark 3.2.3. For the sake of convenience, we write down the desin-
gularization process in this special case explicitly. Blow up T 4 at the
fixed points {p1, . . . , p16} and extend the Z2-action to the resulting sur-

face T 4#16CP2 — it extends trivially to the exceptional curves. The quo-
tient X = T 4#16CP2/Z2 obviously admits a complex structure. It is a

smooth manifold, since the quotient of τ = CP2 − [1 : 0 : 0] by the Z2-
action [x : y : z] → [−x : y : z] is (despite the presence of the fixed points
{[0 : y : z]}) a manifold diffeomorphic to τ ⊗ τ = τ2 ≈ T ∗S2. (Recall the
definition of the tautological bundle τ → CP1 from Section 2.2.) In the lan-

guage of branched covers, we have just shown that T 4#16CP2 is the double
branched cover of X branched along 16 spheres (the images of the excep-

tional curves in T 4#16CP2), cf. Section 7.1. Resolution of more general
singularities will be discussed in Chapter 7.

Exercises 3.2.4. (a) Prove that π1(X) = 1. (Hint : First determine the
fundamental group of X1 using the fact that T 4−{p1, . . . , p16} is the double
cover of X1, and then apply the Seifert-Van Kampen theorem).

(b) Compute the Euler characteristic χ(X).

(c) Show that c1(X) = 0 (cf. [HKK], page 30).

Note that by Exercise 3.2.4(a) and (c) the complex surface X is a K3-
surface, so (by the algebro-geometric statement we quoted in Section 1.3) it
is diffeomorphic to S4 and E(2). The projection pr1 : T

4 = T 2×T 2 → T 2 to
the first factor is an elliptic fibration, and it descends to an elliptic fibration
π̃ : X̃ → T 2/Z2 ≈ S2. The fibers of π̃ : X̃ → T 2/Z2 are tori except over
the corner points, where the fibers are pillowcases themselves. Resolving
the 16 singular points does not change the generic fiber, so we have defined
an elliptic fibration of X over T 2/Z2 ≈ S2. Note that the first factor of
T 4 = T 2×T 2 gives a section of π : X → CP1 — this section is a copy of the
pillowcase T 2/Z2 in X.
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Figure 3.2. Hyperelliptic action on Σ3.

Now take Σn to be a surface of genus n (e.g., Σ0 = S2 and Σ1 = T 2).
Imagine Σn ⊂ R3 such that the y-axis intersects it in 2n + 2 points and
Σn is invariant under the 180◦ rotation around the y-axis. (See Figure 3.2.)
This rotation defines a Z2-action σn : Σn → Σn with 2n + 2 fixed points
— frequently called the hyperelliptic action. Taking the Z2-action σn × σ1
on Σn × T 2 and resolving the 4(2n + 2) singular points of (Σn × T 2)/Z2

as before, we get a smooth manifold X(n + 1). The ideas of Exercise 3.2.4
extend to solve the following

Exercises 3.2.5. (a) Prove that π1(X(n)) = 1 and that χ(X(n)) = 12n.

(b) Show that Σn/σn is homeomorphic to S2 with 2n+ 2 “corner points”.

(c) Extend the projection pr1 : Σn × T 2 → Σn to the quotient and then
to the resolution. Show that the resulting map π : X(n + 1) → CP1 is an
elliptic fibration and that it admits a section.

(d) Prove that X(n) decomposes as the fiber sum of n copies of X(1).

(e) Determine the number of singular fibers in π : X(n)→ T 2/Z2 and com-
pute the Euler characteristic of a singular fiber. Describe the topology of
the singular fibers of this fibration.

Remarks 3.2.6. (a) By taking the product of the surfaces Σn and Σm,
resolving the singularities of the quotient Σn×Σm/(σn×σm) and extending
pr1 : Σn × Σm → Σn to the resulting manifold X(n + 1,m + 1), we get a
singular fibration X(n+1,m+1)→ Σn/σn ≈ S2. In this case, the fiber has
genus m. Similar fibrations will be discussed in Chapter 8.

(b) Since the product T 4 = S1×S1×S1×S1 admits six different projections
to factors T 2, the K3-surface X(2) = X(2, 2) has six different (C∞) elliptic
fibrations. The other manifolds X(n) (for n > 2) have no such freedom
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— the above construction gives only one way to find an elliptic fibration on
these manifolds. Note that if we project Σn×T 2 to the second factor, we get
a Σn-fibration X(n + 1) → T 2/Z2 ≈ S2. More generally, the identification
X(n,m) = X(m,n) provides two different fibrations on the same complex
manifold X(n,m); both fibrations admit sections, cf. Exercise 7.3.16(d). In
Section 7.3 we will prove that X(2, n) = X(n) is, in fact, diffeomorphic to
the elliptic surface E(n).

(c) The map Σn → Σn/σn ≈ S2 is a manifestation of the fact that a surface
Σn of genus n can be given as a double branched cover of CP1 branched in
2n+ 2 points (in the “corner points” of Σn/σn). The actions σn on Σn and
σ1 on T 2 induce a Z2 ×Z2-action 〈σn, σ1〉 on Σn × T 2. Thus Z2 acts on the
(singular) manifold (Σn × T 2)/Z2.

Exercise 3.2.7. Determine the topology of the quotient (Σn×T 2)/〈σn, σ1〉,
and find the fixed point set. (Answer : See Lemma 7.3.4.)

Finally, we give one more description of E(n): Take a generic biho-
mogeneous polynomial Pn of bidegree (n, 3) in the variables (x, y; z0, z1, z2)
(that is, Pn is homogeneous of degree n in the variables (x, y) and of de-
gree 3 in (z0, z1, z2)). While a homogeneous polynomial in the variables
(z0, . . . , zn) defines a subset of CPn, a bihomogeneous polynomial in the
variables (x0, . . . , xn; z0, . . . , zm) gives rise to a subset of CPn×CPm (cf. the
last paragraph of Section 1.3). Define V (n) as {p ∈ CP1×CP2 | Pn(p) = 0};
projecting V (n) to the first factor of CP1 × CP2, we obtain a map whose
fibers are cubic curves in CP2, hence V (n) admits an elliptic fibration.

Exercise 3.2.8. Show that the bihomogeneous polynomial Pn can be cho-
sen in such a way that the above elliptic fibration admits a section. (Hint :
Consider Pn of the form xnp0(z0, z1, z2) + ynp1(z0, z1, z2) for generic cubic
polynomials p0, p1, and show that each component of the curve given as
{([x : y], [z0 : z1 : z2]) ∈ CP1 × CP2 | p0(z0, z1, z2) = p1(z0, z1, z2) = 0} ⊂ Vn

is a section of the elliptic fibration. How many sections of V (n) → CP1 do
we find in this way?)

Note that since CP1 × CP2 is a complex submanifold of CP5 (by the
same method that we used to embed CP1×CP1 ⊂ CP3 as a quadric surface,
cf. S′

2 in Section 1.3), the surface V (n) is a complex projective manifold
(cf. Definition 1.3.7). A deep result (due to Kas [Ks] for holomorphic
elliptic surfaces, and Moishezon [Msh] in general) shows that for fixed n
all the above 4-manifolds E(n), X(n) and V (n) are diffeomorphic. These
diffeomorphisms will be discussed in Section 7.3, cf. also Theorem 8.3.12.

Theorem 3.2.9. Two minimal, simply connected, elliptic surfaces with sec-
tions are diffeomorphic iff their Euler characteristics are equal.
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Exercises 3.2.10. (a) Prove that V (1) ≈ E(1) using the construction of

E(1) (= CP2#9CP2) discussed at the beginning of Section 3.1. (For the
solution, see Lemma 7.3.10.)

(b)∗ Show that although V (n) is a complex projective manifold, it is not a
complete intersection unless n = 2. (Hint : Use Exercise 1.3.13 and the fact
that V (n) ≈ E(n).)

3.3. Logarithmic transformation

There is one more important construction regarding elliptic surfaces besides
the fiber sum operation — this is the logarithmic transformation (cf. also
Sections 8.3 and 8.5). We begin the discussion by outlining the definition in
the complex category. (For more details see [GH].)

For a given elliptic surface π : S → C choose t ∈ C and a neighborhood
Δ of t isomorphic to {z ∈ C | |z| < 1} such that there is no singular fiber
in π−1(Δ). Fix a holomorphic section α : Δ→ π−1(Δ) ⊂ S of the fibration
π : π−1(Δ)→ Δ. Note that for z ∈ Δ the elliptic curve π−1(z) has a unique
holomorphic (abelian) group structure, once we declare the origin to be
α(z) ∈ π−1(z) (z ∈ Δ). Taking the elements of order p in each fiber (for p
any fixed positive integer), we get a cover of Δ. Choosing one branch of that
cover gives a section β : Δ → π−1(Δ); by definition p · β(z) = α(z) for all
z ∈ Δ. Pull back π−1(Δ)→ Δ by the map φ : Δ→ Δ given as φ(z) = zp;
in other words, take Ψ = {(w, r) ∈ Δ×π−1(Δ) | π(r) = wp} ⊂ Δ×π−1(Δ).
The projection Ψ → Δ is an elliptic fibration whose fiber over each point

e
2πi
p

n
w ∈ Δ is canonically identified with π−1(wp). Now if we divide Ψ by

the (non-free) Zp-action (w, r)→ (e
2πi
p w, r), we get back π−1(Δ)→ Δ. On

the other hand, if Zp acts freely as ϕ(w, r) = (e
2πi
p w, r + β(wp)), then the

quotient Ψ1 = Ψ/Zp will have a different fibration.

Exercise 3.3.1. Prove that Ψ1 is diffeomorphic to T 2 × D2 ≈ π−1(Δ),
but it has a different elliptic fibration. (Hint : For x = [(w, r)] ∈ Ψ1 take
ψ(x) = wp ∈ Δ and determine the fibers of ψ.) Visualize the fiber over
0 ∈ Δ. Draw an analogous S1-fibration of S1 ×D2.

The free Zp-action identifies p different fibers over each w �= 0, so when
w approaches 0 in Δ, the corresponding fibers ψ−1(w) give a p-fold cover of
ψ−1(0). We see from the construction that ψ−1(Δ−{0}) and π−1(Δ−{0})
are isomorphic fibrations: the map λ(w, r) = (wp, r−( p

2πi logw)β(w
p)) gives

the isomorphism. Hence by cutting π−1(Δ) out of S and gluing in Ψ1 via
this isomorphism we get a new elliptic surface Sp. Since a regular fiber is
a p-fold cover of the multiple fiber ψ−1(0), the homology class of a regular
fiber is given by f = p[ψ−1(0)] ∈ H2(Sp;Z). The resulting surface Sp will not
depend significantly on the choices made (namely t ∈ Δ, the trivialization α
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and the section β). More precisely, if χ(S) �= 0 (hence we may assume that
S has a cusp fiber), then different choices of Δ, α and β give diffeomorphic
(actually deformation equivalent, see Definition 3.4.1) surfaces. The proce-
dure described above is called the logarithmic transformation of multiplicity
p along the fiber π−1(t).

Next we discuss the C∞ (smooth) version of the operation (cf. also
Section 8.3). Since we simply removed T 2 × D2 (≈ π−1(Δ)) and glued it
back in (as Ψ1) with a different fibration, we can reformulate the definition
of logarithmic transformation in the following way: Consider the elliptic
surface π : S → C and fix a generic fiber π−1(t) = F (t ∈ C). We denote
a closed tubular neighborhood of the fiber F in S by νF ; this is obviously
diffeomorphic to T 2 × D2. Deleting int νF from S and regluing T 2 × D2

via a diffeomorphism ϕ : T 2 × S1 → ∂(S − int νF ) = ∂νF , we get a new
manifold Sϕ. Note that ∂νF inherits a trivial T 2-fibration over S1.

Definition 3.3.2. For a diffeomorphism ϕ : T 2 × S1 → ∂νF as above, let
p denote the absolute value of the degree of the map π ◦ ϕ : {pt.} × S1 →
π(∂νF ) = S1. Then gluing by ϕ as above is called a (generalized) logarithmic
transformation of multiplicity p.

Theorem 3.3.3. ([G9], see also Theorem 8.3.5) Assume that the elliptic
fibration π : S → C contains a cusp fiber. If ϕ, ϕ′ determine logarithmic
transformations with the same multiplicity p, then Sϕ and Sϕ′ are diffeo-
morphic (and will be denoted by Sp).

Our first (algebraic geometric) construction of logarithmic transforma-
tion gave a specific identification ϕ for each p ≥ 1. Note that both pro-
cesses can be performed simultaneously on k fibers: Starting with k regu-
lar fibers F1, . . . , Fk, nonnegative integers p1, . . . , pk, and diffeomorphisms
ϕi : T

2×S1 → ∂νFi with multiplicity pi, a new manifold Sp1,... ,pk can be con-
structed. As the notation suggests, the diffeomorphism type of the resulting
manifold will depend only on the multiplicities pi of the maps ϕi. (Again, we
assume that S contains a cusp fiber.) The smooth version of the logarithmic
transformation makes sense even for multiplicity p = 0; this construction,
however, has no complex analog and destroys the fibration. Note that a log-
arithmic transformation with p = 1 is trivial. Since the nuclei N(n) ⊂ E(n)
contain regular fibers in addition to the cusp fiber, logarithmic transforma-
tions can be performed within N(n), resulting in N(n)p1,... ,pk ⊂ E(n)p1,... ,pk .

Lemma 3.3.4. ([G9]) The inclusion N(n)p1,... ,pk ⊂ E(n)p1,... ,pk induces
an isomorphism on the fundamental groups. The nucleus N(n)p1,... ,pk
(p1, . . . , pk �= 1) is simply connected iff k ≤ 1 or k = 2 and gcd(p1, p2) = 1.
Assuming that gcd(p, q) = 1 and n ∈ N, the complex surface E(n)p,q is
spin iff N(n)p,q is spin, and this occurs iff n is even and pq is odd. For
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the invariants of E(n)p,q we have b2(E(n)p,q) = b2(E(n)) = 12n − 2 and
σ(E(n)p,q) = σ(E(n)) = −8n.

Hence, using fiber sum and logarithmic transformation repeatedly, a
family F = {E(n)p,q | n, p, q ∈ N, gcd(p, q) = 1} of simply connected elliptic
surfaces can be constructed from the basic example E(1). By Lemma 3.3.4
and Theorem 1.2.27, two elements E(n)p,q and E(n′)p′,q′ of F are homeo-
morphic iff n = n′ and (n−1)(pq−p′q′) is even. Thus for odd n, all E(n)p,q
with gcd(p, q) = 1 are homeomorphic, but if n is even, there are two homeo-
morphism types: those with odd pq (when E(n)p,q is spin) and those with
even pq (when E(n)p,q is nonspin).

Remark 3.3.5. Remember that by performing a logarithmic transforma-
tion with multiplicity p > 1 on the elliptic surface S we create a new homo-
logy class fp (the class of the multiple fiber over the chosen point t) with
the property that f = pfp (where f is the homology class of a regular fiber).
Consequently — since f is no longer a primitive class — there is no section
for Sp → C even if S → C has a section. (A section intersects a generic
fiber in one point, but in H2(Sp;Z) the class f is divisible by p.)

By introducing the notion of rational blow-down, Fintushel and Stern
gave a simple way to determine the Seiberg-Witten basic classes of
E(n)p,q (n ≥ 2). (See Section 8.5.)

Theorem 3.3.6. ([FS2]) Assume that gcd(p, q) = 1 and let fp,q denote the

primitive class f
pq ∈ H2(E(n)p,q;Z). The Seiberg-Witten basic classes of

E(n)p,q (n ≥ 2) comprise the set

B = BasE(n)p,q = {PD(k ·fp,q)) | k ≡ npq−p−q (mod 2), |k| ≤ npq−p−q}.

Note that E(n)p,q = N(n)p,q ∪∂ Φ(n) (where Φ(n) is the Milnor fiber of
f(x, y, z) = x2 + y3 + z6n−1), and — as we saw in Section 3.1 — any
Seiberg-Witten basic classK is orthogonal toH2(Φ(n);Z) ⊂ H2(E(n)p,q;Z).
We also have K(fp,q) = 0, since fp,q can be represented by a torus with
square 0. By finding a suitable representative for the other basis element
of H2(N(n)p,q;Z) ∼= Z ⊕ Z, we can find an additional restriction on the
set of basic classes, as shown for E(n) earlier. (Details are left to the
reader.) Given an appropriate representative, the generalized adjunction
formula (Theorem 2.4.8) shows that any basic class must be an element of
the set B given in Theorem 3.3.6. To show that all elements of B are, in
fact, basic classes (i.e., SWE(n)p,q (h) �= 0 for all h ∈ B), we need delicate
gauge theoretic arguments, cf. Section 8.5. Since the Seiberg-Witten ba-
sic classes are diffeomorphism invariants of the smooth 4-manifolds E(n)p,q
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(n ≥ 2), the following corollary can be derived from Theorem 3.3.6 (cf.
Theorem 8.3.12).

Corollary 3.3.7. (see also [MM], [SSz], [Ls1]) Assume that n ≥ 2. Then
E(n)p,q is diffeomorphic to E(n)p′,q′ iff {p, q} = {p′, q′} (as unordered
pairs).

Thus, for a fixed odd n all manifolds E(n)p,q are homeomorphic, but they
are pairwise nondiffeomorphic. (For even n, the parity of pq determines the
homeomorphism type.) Consequently, the topological manifold E(n) admits
infinitely many smooth structures. Applying the blow-up formula (Theo-

rem 2.4.9), one can prove the same for E(n)#kCP2; note that by computing

the intersection form of E(n)#kCP2 we obtain a proof of Theorem 1.2.32.

Seiberg-Witten theory becomes more complicated for the manifolds
E(1)p,q since b+2 (E(1)p,q) = 1, cf. Remark 2.4.4. The surfaces E(1)p,q with
gcd(p, q) = 1 and p, q ≥ 2 are called Dolgachev surfaces. The diffeomor-
phism classification in this case is:

Theorem 3.3.8. ([Fr], see also Theorem 8.3.11) E(1)1,p and E(1)1,q are
diffeomorphic for all p and q. If p, q, p′, q′ > 1 then E(1)p,q is diffeomorphic
to E(1)p′,q′ iff {p, q} = {p′, q′}; these are never diffeomorphic to E(1).

Remarks 3.3.9. (a) Throughout the last few paragraphs, we focused only
on the simply connected case, i.e., when k ≤ 2 and gcd(p1, p2) = 1. If
k = 2 and gcd(p1, p2) = p, then π1(E(n)p1,p2)

∼= Zp, and similar statements
(to Theorems 3.3.6 through 3.3.8) hold for these elliptic surfaces with finite
fundamental group. If k ≥ 3, then the classification is much easier: The
diffeomorphism type of E(n)p1,... ,pk is determined by n and the fundamental
group π1(E(n)p1,... ,pk) (cf. Theorem 8.3.12).

(b) In Lemma 8.3.10 we will see that all diffeomorphisms of the boun-
dary ∂Φ(n) of the Milnor fiber extend to Φ(n), proving that E(n)p1,... ,pk
is uniquely determined from its nucleus by gluing Φ(n) to its boundary.
(See also [G9].)

(c) We mainly focused on the logarithmic transformations with nonzero
multiplicity — these are the ones which have a holomorphic interpretation.
In [G9] it is shown by Kirby calculus that a logarithmic transformation with
multiplicity 0 transforms the elliptic surface into a trivial connected sum:
E(n)0 ≈ (2n− 1)CP2#(10n− 1)CP2 (cf. Exercise 8.3.16(d)).

3.4. Classification of complex surfaces

In this final section we describe results concerning the Enriques-Kodaira
classification of compact complex surfaces. We assume that the reader is
familiar with the basic notions of algebraic geometry (see, e.g., [GH]).
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Definition 3.4.1. Two complex surfaces S1, S2 are deformation equivalent
if there are connected complex spaces T and C, a surjective, proper holo-
morphic map π : T → C with smooth fibers and points t1, t2 ∈ C such that
Si is biholomorphic to π−1(ti) (i = 1, 2).

Two complex surfaces are considered to be the same (from the classifi-
cation point of view we adopt now) if they are deformation equivalent. It
is not hard to see that if S1 and S2 are deformation equivalent, then S1 is
diffeomorphic to S2 [FM1]. In the following we will describe the deforma-
tion equivalence classes of compact complex surfaces. In order to discuss the
classification, we first define the Kodaira dimension of a complex surface.
The canonical bundle KS is by definition the determinant line bundle of the
cotangent bundle T ∗S (in particular, c1(KS) = −c1(S)). The space of holo-
morphic sections of the tensor power K⊗n

S is a finite-dimensional (complex)
vector space, whose dimension is denoted by Pn(S).

Definition 3.4.2. The Kodaira dimension κ(S) of the complex surface S
is defined in the following way:

• κ(S) = −∞ if Pn(S) = 0 for all n.

• κ(S) = 0 if some Pn(S) is nonzero and {Pn(S)} is a bounded sequence.

• κ(S) = 1 if {Pn(S)} is unbounded but {Pn(S)/n} is bounded.
• κ(S) = 2 if {Pn(S)/n} is unbounded.

Remarks 3.4.3. (a) A (partially defined) map φL : S
∗ → CPn is defined

by a holomorphic line bundle L → S in the following way: Fix a basis
f0, . . . , fn for the vector space H0(L) of holomorphic sections of L and
associate [f0(x) : . . . : fn(x)] ∈ CPn to x ∈ S∗ = {p ∈ S | there is an i
with fi(p) �= 0}. (Note that although fi(x) is not a well-defined element of
C, the ratio [f0(x) : . . . : fn(x)] ∈ CPn makes sense if x ∈ S∗.) The maps
φn = φK⊗n

S
induced by the powers of the canonical line bundle are called

the pluricanonical maps. Now κ(S) can be given as the maximum over all
n of dimφn(S

∗
n), and κ(S) = −∞ if S∗

n = ∅ for all n [BPV], [Bea]. Note
that the condition κ(S) = 0 implies that each Pn(S) ∈ {0, 1}: If Pm(S) ≥ 2
for some m, then there are linearly independent sections f1, f2 ∈ H0(K⊗m

S ),

hence K⊗nm
S admits linearly independent sections f⊗i

1 f
⊗(n−i)
2 (i = 0, . . . , n);

consequently Pnm(S) ≥ n+ 1, i.e., Pn(S) is unbounded.

(b) A similar definition of the Kodaira dimension for complex curves gives
the following: κ(CP1) = −∞ (since the tensor powers K⊗n

CP1 do not ad-
mit holomorphic sections). If C is a complex curve of genus 1 (i.e., a 2-
dimensional torus), then KC is (holomorphically) trivial, hence the space
of holomorphic sections of K⊗n

C is 1-dimensional; this implies κ(C) = 0.
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For a complex curve of genus ≥ 2 we find that Pn(C) = dimH0(K⊗n
C ) is

unbounded, hence κ(C) = 1.

It is easy to verify that κ(CP2) = −∞ and κ(CP1 × CP1) = −∞; since
the canonical bundle of the K3-surface E(2) is trivial, each Pn(E(2)) = 1,
hence κ(E(2)) = 0. A standard algebraic geometric argument shows that
the blow-up process does not change the Kodaira dimension, so if S′ is a
blow-up of S, then κ(S′) = κ(S). Recall that a surface S is called minimal
if there is no rational −1-curve in S (which could be blown down). Every
complex surface S admits a minimal model Smin, but — as we have already
mentioned — the minimal model might not be unique, cf. the explanation
before Exercise 2.2.12. (It turns out, however, that if κ(S) ≥ 0, then S has
a unique minimal model [BPV].) In the following we will focus on minimal
surfaces.

Definition 3.4.4. The holomorphic Euler characteristic χh(S) of a surface
S is given by χh(S) = 1

12(c
2
1[S] + c2[S]). (Note that by Theorem 1.4.13,

χh(S) =
σ(S)+χ(S)

4 = 1
2(1− b1(S) + b+2 (X)) ∈ Z.)

Exercise 3.4.5. Suppose that C1 and C2 are complex curves. Determine
the Kodaira dimension and holomorphic Euler characteristic of C1 × C2.
(Hint : Suppose that g(C1) ≤ g(C2). Consult Remark 3.4.3(b) and conclude
that κ(C1×C2) is −∞ if g(C1) = 0, it is 0 or 1 if C1 is an elliptic curve (i.e.,
it is of genus 1) and κ(C1×C2) = 2 if g(C1), g(C2) ≥ 2.) The above compu-
tation can be extended to determine the Kodaira dimension κ(X(n,m)) of
the complex surfaces X(n,m) introduced in Section 3.2. Assuming n ≤ m
we get that κ(X(n,m)) = −∞ if n = 1, κ(X(n,m)) = 0 or 1 for n = 2 and
κ(X(n,m)) = 2 if n ≥ 3.

A surface S is geometrically ruled if there is a holomorphic map π : S →
C to a complex curve C such that π−1(p) ≈ CP1 for every p ∈ C. Appealing
to Remark 3.4.3(b), it is easy to see that if S is geometrically ruled, then
κ(S) = −∞. As the following theorem shows, the converse of the above
statement essentially holds for simply connected surfaces. (The general case
will be given in Theorem 3.4.29.)

Theorem 3.4.6. If S is a simply connected, minimal surface with κ(S) =
−∞, then S is either geometrically ruled or biholomorphic to CP2.

Hence, in order to understand surfaces with κ = −∞, we only need to
discuss geometrically ruled surfaces.

Example 3.4.7. Consider the holomorphic line bundle Ln → CP1 with
c1(Ln) = n (n ≥ 0). Let Fn denote the (fiberwise) projectivization of the
C2-bundle Ln⊕C→ CP1. The complex surface Fn obviously inherits a map
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Fn → CP1 which turns it into a geometrically ruled surface. The surfaces
Fn (n ≥ 0) are called Hirzebruch surfaces; in particular, F0 = CP1 × CP1.
(For the discussion of ruled surfaces over curves of positive genus, see the
text after Theorem 3.4.29.)

Theorem 3.4.8. If S is a simply connected, minimal, geometrically ruled
surface, then S is biholomorphic to a Hirzebruch surface Fn. The surface
Fn is biholomorphic to Fm iff n = m. Fn is deformation equivalent to Fm iff
n ≡ m (mod 2). We have F0 = CP1×CP1 and F1 = (CP2)′ = CP2#CP2 (cf.
the explanation before Exercise 3.1.2); moreover, Fn is minimal iff n �= 1
(cf. Exercise 7.1.10(c)).

The above description asserts that F1 = (CP2)′ = CP2#CP2 is nonmin-
imal; consequently minimal and nonminimal surfaces can be deformation
equivalent — for example F3 and F1. By Theorems 3.4.6 and 3.4.8, the
simply connected minimal surfaces with Kodaira dimension −∞ comprise
three deformation equivalence classes, represented by CP2, CP2#CP2 and
CP1 × CP1. (The discussion of the nonsimply connected case is postponed
until the end of the section.) Note that although CP2 is not ruled, it can
be blown up to admit a ruling, cf. Section 3.1. Hence Theorem 3.4.6 can
be rephrased as follows: A simply connected complex surface has Kodaira
dimension −∞ iff (after possibly blowing up) it admits a (possibly singular)
CP1-fibration. Next we turn to the cases κ(S) = 0 and 1.

Theorem 3.4.9. If S is a simply connected, minimal surface with κ(S) = 0,
then S is a K3-surface. All K3-surfaces are deformation equivalent, hence
diffeomorphic.

We have already given several constructions of K3-surfaces (S4 in Sec-
tion 1.3, E(2) in Section 3.1, X(2) and V (2) in Section 3.2). We will see
more about these complex surfaces in Chapters 7 and 8.

Theorem 3.4.10. If S is a minimal complex surface with κ(S) = 1, then
S is an elliptic surface.

Remark 3.4.11. Note that κ(S) = 1 implies (by Remark 3.4.3(a)) that
for appropriate n the pluricanonical map φn maps S to a complex curve C.
By determining the genus of the generic fiber, one can complete the above
reasoning to show that a complex surface with κ(S) = 1 admits an elliptic
fibration [GH]. Note that the converse is not true: the K3-surface E(2)

and the rational surface CP2#9CP2 both admit elliptic fibrations, although
the Kodaira dimensions of these surfaces are 0 and −∞, respectively.

Recall that the family F = {E(n)p,q | n, p, q ∈ N, p ≤ q, gcd(p, q) = 1}
of simply connected elliptic surfaces was defined in Section 3.3. It turns out
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that the family F contains a representative from each deformation equiva-
lence class of simply connected elliptic surfaces. More precisely,

Theorem 3.4.12. If S is a minimal, simply connected elliptic surface, then
there is a surface E(n)p,q ∈ F such that S and E(n)p,q are deformation
equivalent. Moreover, E(n)p,q and E(n′)p′,q′ are deformation equivalent iff

• n = n′ and {p, q} = {p′, q′} or
• n = n′ = 1 and min(p, q) = min(p′, q′) = 1, i.e., E(1)1,q is deforma-
tion equivalent to E(1)1,q′ for all q, q′.

Coupling the above result with Corollary 3.3.7 and Theorem 3.3.8, we have

Theorem 3.4.13. Two simply connected complex surfaces S1 and S2 with
κ(Si) ≤ 1 are deformation equivalent iff S1 is diffeomorphic to S2.

(Again, the case of elliptic surfaces with nontrivial fundamental group will
be considered later, see Definition 3.4.26 and the subsequent text.)

Finally, we turn our attention to the κ = 2 case.

Definition 3.4.14. If κ(S) = 2, then S is a surface of general type.

Examples 3.4.15. By Exercise 3.4.5, the product C1 × C2 of two com-
plex curves of genus ≥ 2 is a surface of general type. Similarly, the sur-
faces X(n,m) (n,m ≥ 3) are surfaces of general type — as we will see,
π1(X(n,m)) = 1 (cf. Exercise 7.4.16); hence we have found examples of
simply connected complex surfaces of general type.

Exercise 3.4.16. Prove that the complex surface C1×C2 is minimal when
g(Ci) ≥ 1 (i = 1, 2). (Hint : Determine π2(C1 × C2) and conclude that
C1 × C2 does not contain a homologically essential sphere.) A somewhat
more complicated argument shows that X(n,m) is minimal when n,m ≥ 2.
For the case n = 1 see Exercise 7.3.8(b).

Not much is known about the classification of minimal surfaces of general
type. Here we give a few relevant results and examples; more examples will
be given in Chapter 7. The following theorem (due to Gieseker) shows
that for a fixed topological type there are only finitely many (deformation
equivalence classes of) surfaces of general type — in contrast to what we
saw for elliptic surfaces.

Theorem 3.4.17. For fixed nonnegative integers b1 and b2, there are only
finitely many deformation equivalence classes of surfaces of general type with
the given b1, b2 as first and second Betti numbers.

Remark 3.4.18. It can be shown that the condition κ(S) = 2 implies

that Pn(S) = n(n−1)
2 c21(S) + χh(S), where c21(S) and χh(S) depend only
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on χ(S) and σ(S) [BPV]. By the equivalent formulation of κ(S) (given in
Remark 3.4.3(a)) we know that if S is a surface of general type, then for
some n the image of the pluricanonical map φn is 2-dimensional. By a result
of Bombieri [Bm], in fact, the 5-canonical map φ5 essentially embeds each

complex surface S of general type in CPP5(S)−1 with degree d, with d only
depending on χ(S) and σ(S). By applying a result of Gieseker, it can be
proved that for n and d fixed the projective space CPn contains only finitely
many deformation types of complex surfaces of degree d. Since P5(S) de-
pends only on the topology of S, the above argument leads to the proof of
Theorem 3.4.17, and also shows that a surface S of general type is projec-
tive, implying that it is Kähler, hence, for example, b1(S) is even. By the
procedure given in Section 8.1, a surface of general type — as a submani-
fold of some CPn — can be equipped with a Lefschetz pencil, hence (after
blowing up) with a Lefschetz fibration. The above classification results and
Theorem 3.4.19 now show that the genus of such a fibration is necessarily
at least 2.

The question of determining the simply connected topological manifolds
(in particular, intersection forms) corresponding to minimal surfaces of gen-
eral type is called (after Persson [Pe]) the geography question for minimal
surfaces of general type. Recall that the homeomorphism type of a simply
connected smooth 4-manifold X is determined by three data: its Euler char-
acteristic χ(X), its signature σ(X) and the parity of its intersection form.
The geography literature mainly discusses the possible values of χ and σ of
minimal surfaces of general type, so we only return to the parity question
briefly (cf. Theorem 7.4.18). For historical reasons, geography deals with the
characteristic numbers χh(S) =

1
4(σ(S) + χ(S)) and c21(S) = 3σ(S)+ 2χ(S)

rather than the equivalent invariants χ(S) and σ(S). Thus we would like to
determine the set of pairs (a, b) ∈ Z× Z corresponding to minimal surfaces
S of general type with χh(S) = a and c21(S) = b.

Theorem 3.4.19. ([BPV]) Suppose that S is a minimal surface of general
type. Then c21(S) > 0, c2(S) > 0 and 2χh(S) − 6 ≤ c21(S) ≤ 9χh(S). (See
Figure 3.3.)

(The above inequalities are frequently called the Noether and Bogomolov-
Miyaoka-Yau inequalities [BPV].) As we will see in Section 7.4, almost all
pairs (a, b) ∈ Z×Z satisfying b > 0 and 2a−6 ≤ b ≤ 9a actually correspond
to surfaces of general type (via χh = a and c21 = b). If we restrict ourselves
to simply connected surfaces, the answer becomes less satisfactory and more
complicated — for the precise statement see Section 7.4. (See also [Pe].)
The above results only deal with χh(S) and c21(S); from these the parity of
QS cannot always be recovered. By Rohlin’s Theorem 1.2.29, if S is spin
then σ(QS) is divisible by 16; thus Rohlin’s Theorem allows an even form
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Figure 3.3. Geography of minimal surfaces of general type.

QS iff 8 divides c21(S) and
c21(S)
8 ≡ χh(S) (mod 2). In these cases there are

two intersection forms having equal χh and c21; in all other cases (χh, c
2
1)

determines QS . In [PPX] a discussion about the geography of spin surfaces
can be found (cf. also Theorem 7.4.18). We will return to the geography
problem for surfaces of general type in Section 7.4.

Summarizing the classification results we have quoted so far, we have

Theorem 3.4.20. Any minimal, simply connected, complex surface is de-
formation equivalent to one of the surfaces CP2, CP2#CP2, CP1 × CP1, a
member of the family F = {E(n)p,q | n, p, q ∈ N, gcd(p, q) = 1} or a surface
of general type. (Note that F contains the K3-surface as E(2).)

One might hope for a natural generalization of Theorem 3.4.13 showing a
very close connection between the smooth and the holomorphic structures of
complex surfaces — this question is, however, still open (cf. Corollary 7.3.28
and the subsequent text):

Conjecture 3.4.21. Two simply connected complex surfaces S1 and S2 are
deformation equivalent iff S1 is diffeomorphic to S2.

1

Before outlining the Enriques-Kodaira classification of complex surfaces
(without the simple connectivity assumption), we describe the Seiberg-
Witten invariants of surfaces of general type.

Theorem 3.4.22. ([Wi], [Mr1]) If K is a Seiberg-Witten basic class of
a minimal surface S of general type with b+2 (S) > 1, then K = ±c1(S).
Moreover, SWS(±c1(S)) = ±1.

1A recent preprint of Manetti [Man] claims that the conjecture is false under slightly weaker
hypotheses. He asserts that for each k there exists a smooth 4-manifold Xk with b1(Xk) = 0
supporting at least k deformation inequivalent complex structures.
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Note that by Theorem 2.4.7, the classes ±c1(S) are always basic classes of
a Kähler surface. The above theorem states that for a minimal surface of
general type these are the only basic classes. By analyzing the Seiberg-
Witten function for simply connected complex surfaces (remembering that
the case b+ = 1 needs special attention), one can prove

Theorem 3.4.23. ([FM2]) The cohomology classes ±c1(S) of a minimal,
simply connected complex surface S are diffeomorphism invariants; more
precisely, if f : S → S′ is an orientation preserving diffeomorphism between
minimal, simply connected complex surfaces, then f∗(c1(S′)) = ±c1(S).

More examples of simply connected surfaces of general type are provided
by the complete intersections described in Section 1.3. We have already
seen that S(2) ≈ CP1 × CP1, S(3) ≈ CP2#6CP2, S(2, 2) ≈ CP2#5CP2 and
S(4), S(2, 3) and S(2, 2, 2) are K3-surfaces. For all other multidegrees we
have

Theorem 3.4.24. The complete intersection surface S(d1, . . . , dn−2) is a
minimal, simply connected surface of general type, except in the above cases
(i.e., when (d1, . . . , dn−2) is (2), (3), (4), (2, 2), (2, 3) or (2, 2, 2)).

Ebeling [Eb] observed that the complete intersection surfaces with mul-
tidegrees (3,3,6,7,7,10) and (2,2,3,3,3,3,3,5,9) are homeomorphic but nondif-
feomorphic 4-manifolds. This statement can be proved by computing the
characteristic numbers of the surfaces at hand (see Exercise 1.3.13); apply-
ing Freedman’s Theorem 1.2.27 then provides the desired homeomorphism.
By Theorem 3.4.23 the first Chern class of a minimal complex surface is
a diffeomorphism invariant, but in the above two examples c1(S) has dif-
ferent divisibilities in H2(S;Z) (see Exercise 1.3.13(e)), consequently these
complete intersections are nondiffeomorphic.

We close this section with a quick overview of the classification of com-
plex surfaces in general (without the simple connectivity assumption). The
definitions of the Kodaira dimension κ(S) and of surfaces of general type
were given regardless of the fundamental group; the same can be said about
Theorems 3.4.17, 3.4.19, 3.4.22, 3.4.23 and Remark 3.4.18. In the rest of
this section we will reconsider complex surfaces with κ ≤ 1 of arbitrary
fundamental group — we will say more about surfaces of general type in
Section 7.4. If the Kodaira dimension κ is 0 or 1, we have the following
result.

Theorem 3.4.25. If κ(S) = 0 or 1, then the minimal complex surface S is
deformation equivalent to a complex surface which admits a (holomorphic)
elliptic fibration (in the sense of Definition 3.1.1).

Definition 3.4.26. A surface S with κ(S) = 1 is called properly elliptic (cf.
also Remark 3.4.11).
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The diffeomorphism type of an elliptic surface S with χ(S) > 0 and
|π1(S)| = ∞ is determined by its fundamental group (cf. Theorem 8.3.12).
The case of finite fundamental group is much more interesting; results about
the smooth structures of elliptic surfaces with finite fundamental group were
given in Section 3.3. Every elliptic surface with χ > 0 can be constructed
(up to diffeomorphism) from the basic examples E(1) and T 2 × T 2 using
the fiber sum and the logarithmic transformation operations. For more
about (properly) elliptic surfaces see [FM1]. Surfaces with κ(S) = 0 —
besides the K3-surfaces — are the primary and secondary Kodaira surfaces,
hyperelliptic surfaces, complex tori and Enriques surfaces. (For a detailed
description of each of these classes see [BPV].) A complex surface S is
called a hyperelliptic (resp. primary Kodaira) surface if it has b1(S) = 2
(resp. b1(S) = 3) and admits a locally trivial T 2-fibration over T 2. There are
seven deformation equivalence classes of hyperelliptic surfaces [GH], [Bea];
all these surfaces are projective. A surface is called a secondary Kodaira
surface if it admits a finite cover which is a primary Kodaira surface. A
secondary Kodaira surface admits a T 2-fibration over CP1 and has first
Betti number equal to 1. A complex torus is a quotient of C2 by a lattice
isomorphic to Z4, hence it is diffeomorphic to T 4. A complex surface S is
an Enriques surface if the double cover of S is a K3-surface.

Lemma 3.4.27. (see [BPV]) All Enriques surfaces are deformation equiv-
alent, hence diffeomorphic. The intersection form of an Enriques surface is
even. All Enriques surfaces are projective.

Obviously an Enriques surface S has π1(S) ∼= Z2. Since the double cover of
S is a K3-surface, we have χ(S) = 12, σ(S) = −8, hence QS = (−E8)⊕H.
Note that Rohlin’s Theorem 1.4.28 implies that an Enriques surface is not
spin. In fact, an Enriques surface is diffeomorphic to E(1)2,2 of Section 3.3.
Note that the above classification results imply Theorem 3.4.25. By Theo-
rem 10.1.4 we also see that surfaces with κ(S) = 0 are Kähler except for the
primary and secondary Kodaira surfaces.

Example 3.4.28. Suppose that pi, qi (i = 1, 2, 3) are quadratic polynomials
in 3 variables and the submanifold S = {[z0 : . . . : z5] ∈ CP5 | pi(z0, z1, z2)+
qi(z3, z4, z5) = 0, i = 1, 2, 3} ⊂ CP5 is smooth. (Recall that S = S(2, 2, 2)
is a K3-surface.) It is easy to see that if pi, qi satisfy {[x : y : z] ∈
CP2 | pi(x, y, z) = 0, i = 1, 2, 3} = ∅ and {[x : y : z] ∈ CP2 | qi(x, y, z) =
0, i = 1, 2, 3} = ∅, then the intersection S ∩{[z0 : . . . : z5] ∈ CP5 | z0 = z1 =
z2 = 0 or z3 = z4 = z5 = 0} is empty. (Generic choices of pi, qi satisfy these
properties.) Now the Z2-action [z0 : z1 : z2 : z3 : z4 : z5] �→ [z0 : z1 : z2 :
−z3 : −z4 : −z5] (given on CP5) induces a fixed-point free involution on S,
hence the quotient S/Z2 is an Enriques surface.

Finally, we list the surfaces with κ = −∞.

                

                                                                                                               



94 3. Complex surfaces

Theorem 3.4.29. A minimal complex surface S with κ(S) = −∞ is either
CP2, geometrically ruled or of Class VII.

The generalization of Theorem 3.4.8 shows that a geometrically ruled sur-
face S is biholomorphic to the projectivization P(E) of a C2-bundle E → C
(where C is called the base curve of the ruling), and it is deformation equiv-
alent to one of the form P(L ⊕ C), where L → C is a holomorphic line
bundle. Moreover, P(L1 ⊕ C) and P(L2 ⊕ C) are deformation equivalent
iff c1(L1) ≡ c1(L2) (mod 2). For a geometrically ruled surface S we have
H2(S;Z) ∼= Z⊕Z; QS is even iff the corresponding Chern number c1(L)[C] is
even. Hence the deformation type of a ruled surface S is determined by the
parity of its intersection form QS and by its first Betti number b1(S); this
last integer is equal to 2g(C). An easy computation shows that the signature
σ(S) of a geometrically ruled surface is 0, and χ(S) = 2χ(C). Consequently
we have c21(S) = 4χ(C) = 8 − 8g(C) and χh(S) = 1 − g(C). The genus
function G (introduced in Section 2.1) has been determined for geometri-
cally ruled surfaces over base curves of arbitrary genus [LL]. Extending the
notation introduced at the beginning of Section 3.1, we can represent the
two deformation equivalence classes of geometrically ruled surfaces over the
curve C by the 4-manifolds C × CP1 and C×̃CP1 — the former is spin,
and the latter is a nonspin 4-manifold. Along the lines of the observation
following Theorem 3.4.8, we get that S has κ(S) = −∞ iff it can be blown
up to admit a (possibly singular) CP1-fibration or it is of Class VII.

Exercise 3.4.30. Show that (C × CP1)#CP2 and (C×̃CP1)#CP2 are dif-
feomorphic. (Hint : Take a section of the trivial CP1-bundle C × CP1 → C
and blow up the intersection of a fiber with that section. Show that after
blowing down the proper transform of the fiber we get C×̃CP1.)

A surface of Class VII is by definition a complex surface S with κ(S) =
−∞ and b1(S) = 1. An example of a surface of Class VII can be constructed
by taking the quotient of C2 − {0} by the Z-action generated by (z1, z2) �→
(12z1,

1
2z2). A surface S with C2 − {0} as its universal cover is called a Hopf

surface; these surfaces are of Class VII. The above example of a Hopf surface
is, in fact, diffeomorphic to S1 × S3, giving a complex structure on this
latter manifold; note that b2(S

1 × S3) = 0. Any surface S of Class VII
has b+2 (S) = 0, i.e., its intersection form is negative definite. There are
surfaces of Class VII other than Hopf surfaces (cf. [BPV]); the complete
classification of these surfaces, however, is still lacking. We only note that
a surface of Class VII has χh = 0, c21 ≤ 0 and c2 ≥ 0.

In summary, a minimal complex surface S is either

(1) CP2,

(2) geometrically ruled,
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(3) of Class VII,

(4) deformation equivalent to a surface with an elliptic fibration, or

(5) a surface of general type.

As we remarked earlier, surfaces in classes (1) and (2) admit CP1-fibrations
(after possibly blowing up); surfaces in (4) can be equipped with (possibly
singular) torus fibrations. Finally, surfaces of general type (i.e., in class (5))
admit Lefschetz fibrations of genus ≥ 2 — after possibly blowing up. For
the characteristic numbers of complex surfaces the following can be proved.

Theorem 3.4.31. If S is not a ruled surface, then we have c2(S) ≥ 0 and
χh(S) ≥ 0. (Recall that for a minimal ruled surface, c2(S) = 4− 4g(C) and
χh(S) = 1− g(C).) If S is minimal and κ(S) ≥ 0, then c21(S) ≥ 0.

We close this overview with a statement which will be useful later on:

Theorem 3.4.32. A complex surface S is deformation equivalent to a pro-
jective surface iff b1(S) is even. If b1(S) is odd, the complex surface S is
either elliptic or of Class VII.

The books [FM1], [BPV] and [Bea] give systematic and complete de-
scriptions of complex surfaces — here we have just highlighted the aspects
which might be most interesting from the topological point of view we have
adopted in this volume.

                

                                                                                                               



                

                                                                                                               



Part 2

Kirby Calculus

                

                                                                                                               



The aim of Kirby calculus is to understand smooth 4-manifolds by de-
composing them into simple pieces (diffeomorphic to balls after smoothing
corners) and analyzing the resulting gluing maps. The analogous proce-
dure in arbitrary dimensions is called handlebody theory and is equivalent
to Morse theory. The main theorems of handlebody theory are proved in
careful detail in Milnor’s Lectures on the h-Cobordism Theorem [M4] (from
the Morse theory viewpoint) and in Rourke and Sanderson [RS] (in the PL-
category, which is equivalent to the smooth category in dimensions ≤ 4), so
we will sometimes refer to these references for detailed proofs. Throughout
Part 2 we assume (except where otherwise stated) that all manifolds and
maps are smooth. Local diffeomorphisms between oriented manifolds are
assumed to preserve orientation unless otherwise stated. Recall that Fig-
ure 0.1 approximately indicates the logical dependence of the sections of
Part 2.

                

                                                                                                               



Chapter 4

Handlebodies and
Kirby diagrams

4.1. Handles

Definition 4.1.1. For 0 ≤ k ≤ n, an n-dimensional k-handle h is a copy of
Dk×Dn−k, attached to the boundary of an n-manifoldX along ∂Dk×Dn−k

by an embedding ϕ : ∂Dk ×Dn−k → ∂X.

There is a canonical way to smooth corners (cf. Remark 1.3.3), so we will
interpret X ∪ϕ h as a smooth n-manifold. Note that there is a deformation

retraction of X ∪ϕ h onto X ∪ϕ|∂Dk×0 D
k × 0, so up to homotopy, attaching

a k-handle is the same as attaching a k-cell. (It is often useful to think of
a k-handle as being a k-cell “thickened up” to be n-dimensional.) As in
Figure 4.1, we will call Dk×0 the core of the handle, 0×Dn−k the cocore, ϕ
the attaching map, ∂Dk×Dn−k (or its image ϕ(∂Dk×Dn−k)) the attaching
region, ∂Dk × 0 (or its image) the attaching sphere and 0× ∂Dn−k the belt
sphere. (The attaching and belt spheres are sometimes called descending
and ascending spheres, respectively.) The number k is called the index of
the handle.

Exercise 4.1.2. Figure 4.1 shows a 2-dimensional 1-handle. Draw pictures
of the other handles with 0 ≤ k ≤ n ≤ 3. For n = 4, a handle has boundary
S3 = R3 ∪ {∞}. What do the attaching region and attaching and belt
spheres look like in R3 for each k?

Since we are mainly interested in the diffeomorphism type of X ∪ϕ h,
it suffices to specify ϕ up to isotopy. More precisely, an isotopy between
ϕ and ϕ′ specifies (up to ambient isotopy) a diffeomorphism X ∪ϕ h ≈
X ∪ϕ′ h. (By the Isotopy Extension Theorem (see Definition 1.1.5), we can
extend the isotopy of ϕ to an ambient isotopy Φ: I × ∂X → ∂X. The
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belt sphere

cocore

core

attaching sphere

attaching region

Figure 4.1. Anatomy of a handle.

required diffeomorphism can easily be constructed from the diffeomorphism
idI ×Φ: I × ∂X → I × ∂X by identifying I × ∂X with a neighborhood of
∂X in X, cf. [RS].) By the Tubular Neighborhood Theorem [GP], an
embedding ϕ : ∂Dk ×Dn−k → ∂X can be constructed from an embedding
ϕ0 : ∂D

k × 0 → ∂X together with an identification f of the normal bundle
of Imϕ0 with ∂Dk × Rn−k, and this data determines ϕ up to isotopy. (We
require ϕ|∂Dk×0 = ϕ0 and dϕ|0×T0D

n−k = f−1.) Thus, X∪ϕh is specified
by two pieces of data:

1. an embedding ϕ0 : S
k−1 → ∂X (a knot in ∂X) with trivial normal

bundle, and

2. a (normal) framing f of ϕ0(S
k−1), or identification of the normal

bundle νϕ0(S
k−1) with Sk−1 × Rn−k.

Note that it makes sense to talk about an isotopy (smooth family paramet-
rized by [0, 1]) of framed embeddings (ϕ0, f), and an isotopy from (ϕ0, f) to
(ϕ′

0, f
′) determines (up to isotopy) a diffeomorphism between the resulting

manifolds X ∪ϕ h and X ∪ϕ′ h. In particular, the diffeomorphism type of
X ∪ϕ h depends only on the isotopy class of (ϕ0, f).

Example 4.1.3. For 2(l + 1) ≤ m, two homotopic embeddings N l ↪→Mm

of an l-manifold into an m-manifold will always be isotopic. This is because
a generic homotopy F : I ×N → M will be an embedding of I ×N unless
2(l + 1) = m, in which case F will be an immersion with isolated double
points. Each double point will correspond to a pair of points in I ×N with
distinct I-coordinates, so F will be an isotopy whenever 2(l + 1) ≤ m. We
conclude that for 2k ≤ n − 1 the diffeomorphism type of Xn ∪ k-handles
is determined by X, the number of handles and the framing and homotopy
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class of ϕ0 in ∂X for each. In particular, Dn∪k-handles is determined by the
number and framings of the k-handles (2k ≤ n− 1). In contrast, we will see
that for handles of larger index (e.g. 2-handles in 4-manifolds) the isotopy
class of ϕ0 can contain much more information than just its homotopy class.

To understand framings on a sphere Sk−1 in ∂Xn with trivial normal
bundle (up to isotopy fixing Sk−1), we pick one framing f0. When we com-
pare any framing f with f0, we obtain an element of GL(n − k) at each
point of Sk−1. By composing ϕ with a self-diffeomorphism of the second
factor of Dk × Dn−k, we can arrange for this element to be the identity
I at a preassigned base point p ∈ Sk−1. Thus, we obtain an element of
πk−1(GL(n − k)) ∼= πk−1(O(n − k)), where we have suppressed the base
point I from the notation. (The Gram-Schmidt procedure gives a defor-
mation retraction from GL(m) onto O(m).) It is easy to check that this
procedure determines a bijection from isotopy classes of framings of Sk−1 in
∂Xn (fixed at p) onto πk−1(O(n− k)), which is a known abelian group for
small n. Note, however, that the bijection depends on our initial choice of
framing f0. In general, the set of framings will not have a canonical group
structure, but rather a canonical group action by πk−1(O(n−k)) that is free
and transitive. We will see that under some circumstances there is a canon-
ical choice of f0, and then the set of framings will be canonically identified
with πk−1(O(n− k)).

Examples 4.1.4. (a) A 0-handle is attached to ∂X along ∂D0 ×Dn = ∅,
so attaching a 0-handle to an n-manifold is the same as taking the disjoint
union with Dn. In particular, 0-handles are the only handles we can attach
to the empty set.

(b) The attaching sphere of a 1-handle is ∂D1×0, which is a pair of points.
If ∂X is connected and nonempty, then there is a unique isotopy class of
embeddings ϕ : ∂D1 × 0 → ∂X (up to interchanging the points if n = 2
with ∂X noncompact). Since π0(O(n − 1)) ∼= Z2 for n ≥ 2, there are
exactly two framings on ϕ(∂D1 × 0) (fixed at one point p). Thus, for each
n ≥ 2 there are exactly two n-manifolds that can be obtained by attaching
a 1-handle to a 0-handle (or any other orientable manifold with connected
boundary), distinguished by whether they are orientable. See Figure 4.2 for
the n = 2 case, the annulus and Möbius band. Similarly, for n ≥ 3 there is
a unique orientable manifold obtained by attaching � 1-handles to Dn, and
this is diffeomorphic to the boundary sum ��S1 ×Dn−1. (To construct the
diffeomorphism, begin with the n = 2 case, then cross with Dn−2.) Note
that taking a boundary sum is a special case of attaching a 1-handle.

(c) For (n−1)-handles with n �= 2 and n-handles in general, there is a unique
framing (since πn−2(O(1)) = πn−1(O(0)) = 0 except for π0(O(1)) ∼= Z2.) An
n-handle is the same as Dn attached along ∂Dn = Sn−1. Thus, an n-handle
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Figure 4.2. 1-handles attached to D2.

1

2

0

0

Figure 4.3. Sn = 0-handle ∪id n-handle, n = 1, 2.

can only be attached to a manifold X with a boundary component diffeo-
morphic to Sn−1. For n ≤ 4, it is known that any self-diffeomorphism of
Sn−1 is isotopic to either the identity or a reflection, so there is a unique way
to attach an n-handle to an Sn−1 boundary component. In many higher di-
mensions, however, there are exotic self-diffeomorphisms of Sn−1. Attaching
an n-handle to a 0-handle by the identity map yields Sn (Figure 4.3), but
for most n ≥ 7, exotic diffeomorphisms of Sn−1 yield exotic spheres that are
homeomorphic to Sn but not diffeomorphic to it ([M1], cf. Remark 9.2.10).
In dimensions n ≥ 5, detaching and reattaching an n-handle is equivalent
to taking the connected sum with a possibly exotic n-sphere, so n-handle
attaching is unique in dimensions ≤ 6.

(d) For k < n, there is a unique isotopy class of “unknotted” embeddings
Sk−1 → Sn−1, characterized by the condition that they extend to embed-
dings Dk → Sn−1. (It is not hard to show that there is a unique smooth
embedding ϕ : Dk → Sn−1 up to isotopy (and reflection if k = n − 1) by
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approximating ϕ by dϕ0.) Clearly, ∂Dk×0 ⊂ ∂(Dk×Dn−k) = Sn−1 is such
an unknotted sphere. If we identify a 0-handle Dn with Dk × Dn−k and
attach a k-handle to it by an unknotted embedding of Sk−1, then by isotop-
ing the framed attaching sphere we may assume that the attaching map is
a diffeomorphism ϕ : ∂Dk ×Dn−k → ∂Dk ×Dn−k that projects to id∂Dk in
the first factor and is an element of O(n− k) on each copy of {pt.}×Dn−k.
The resulting manifold X has a canonical projection π : X → Sk induced by
projection onto the first factor in each handle, and each point preimage is a
copy of Dn−k. Thus, if we attach a k-handle to a 0-handle by an unknotted
embedding of the attaching sphere, we obtain a Dn−k-bundle over Sk (with
structure group O(n − k)). Not surprisingly, such bundles π : X → Sk are
classified by the framings of the k-handles, that is, they correspond bijec-
tively to πk−1(O(n−k)). (To see that any Dn−k-bundle over Sk is realized as
Dn ∪ϕ h, note that its restriction to each hemisphere must be trivial.) This
time, the correspondence is canonical, since we have a canonical framing
f0 corresponding to the identity id∂Dk×Dn−k , which determines the trivial

bundle Sk ×Dn−k.

(e) In addition to the special cases of bundles which appeared in previous
examples (k = 0, 1, n− 1, n), we consider the important case k = 2 — that
is, Dn−2-bundles over S2, obtained by attaching a 2-handle to Dn along an
unknot. We have π1(O(n− 2)) ∼= Z for n = 4 and Z2 for n > 4. Thus D2-
bundles X4 over S2 correspond bijectively to integers e(X). It is not hard
to verify that the intersection form on H2(X) ∼= Z is 〈e(X)〉. (Compute the
self-intersection of the 0-section, the generating sphere D2 × 0 ∪ϕ D2 × 0.)
Thus, the oriented 4-manifolds X corresponding to different integers are all
distinct (cf. Exercise 1.2.7(d)). The integer e(X) is called the Euler number
(or Chern number) of X (or more correctly, of the D2-bundle X → S2). It
is easy to see that X arises as the unit disk bundle of a complex (Hermitian)
line bundle L over S2, whose Chern number is 〈c1(L), [S2]〉 = e(X) (cf.
Section 1.4). For � ≥ 3, there are exactly two D-bundles over S2. One is the
trivial bundle S2 ×D, and the other is denoted S2 ×̃D. We have already
encountered the closed 4-manifold S2 ×̃S2 = ∂(S2 ×̃D3) in connection with
Hirzebruch surfaces (Example 3.4.7). We will examine it from a topological
perspective in Exercise 4.2.6(b).

Remark 4.1.5. It is not hard to visualize π1(O(m)). The natural inclusion
O(�)→ O(m), 2 ≤ � < m, preserves the generator g of π1, which is rotation
in the x1-x2 plane through an angle which increases continuously from 0 to
2π. To see that g2 is the identity in π1(O(3)) (hence, in π1(O(m)), m ≥ 3),
think of g as a family of rotations about the z-axis. Now homotope g in O(3)
by continuously rotating R3 so that the z-axis is gradually turned over and
restored to its original position upside down. Then g has been transformed
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into a rotation about the z-axis in the opposite direction, proving g = g−1

in π1(O(3)).

Exercise 4.1.6. Prove that for 2k ≤ n − 1 any n-manifold of the form
Dn ∪ k-handles is diffeomorphic to a boundary sum of Dn−k-bundles over
Sk. (Hint : Example 4.1.3.)

4.2. Handle decompositions

Definition 4.2.1. Let X be a compact n-manifold with boundary ∂X de-
composed as a disjoint union ∂+X

∐
∂−X of two compact submanifolds

(either of which may be empty). If X is oriented, orient ∂±X so that
∂X = ∂+X

∐
∂−X in the boundary orientation. A handle decomposition of

X (relative to ∂−X) is an identification of X with a manifold obtained from
I × ∂−X by attaching handles, such that ∂−X corresponds to {0}× ∂−X in
the obvious way. A manifold X with a given handle decomposition is called
a relative handlebody built on ∂−X, or if ∂−X = ∅ it is called a handlebody .

Note that in the oriented case, the inclusion I × ∂−X → X preserves orien-
tation. (For standard orientation conventions see [GP], for example.) Also
note that since attaching a k-handle is the same up to homotopy as attaching
a k-cell, a handle decomposition of (X, ∂−X) determines a relative cell com-
plex on ∂−X with the same homotopy type. Beware that some 3-manifold
topologists reserve the term “handlebody” for D3 ∪ 1-handles.

1

0

critical points
handles

f

Figure 4.4. A handle decomposition from a Morse function.

Every smooth, compact manifold pair (X, ∂−X) as above admits a han-
dle decomposition, by Morse Theory [M2], [M4]. The basic idea is that any
smooth function f : X → [0, 1] with f−1(0) = ∂−X and f−1(1) = ∂+X can
be perturbed into a special form called a Morse function (with no critical
points on ∂X). By definition, the critical points of a Morse function are

locally modeled on quadratic critical points, −∑k
i=1 x

2
i +

∑n
i=k+1 x

2
i , and

these critical points will correspond to handles (with index equal to the
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Morse index k of the critical point). See Figure 4.4. Similarly, a noncom-
pact manifold with compact boundary will admit a proper Morse function
f : X → [0,∞) with f−1(0) = ∂X, providing a theory of handle decom-
positions of noncompact manifolds. In contrast with the compact case, we
may have infinitely many handles in the noncompact setting. This may lead
to technical complications, since we can only fit finitely many attaching re-
gions into a given compact boundary. Dropping the smoothness condition,
we find that any PL-manifold pair admits a PL handle decomposition con-
structed from a triangulation [RS]. By difficult theorems of Moise [Mo]
(n = 3), Kirby and Siebenmann [KS] (n ≥ 6), Freedman and Quinn [FQ]
(n = 5), a topological manifold pair (X, ∂−X) with dimX = n �= 4 always
admits a topological handle decomposition (with attaching maps that are
homeomorphic embeddings). However, if n = 4, then (X, ∂−X) admits a
topological handle decomposition if and only if X is smoothable, since the
attaching maps can always be smoothed by an isotopy. (Any homeomorphic
embedding of smooth 3-manifolds is uniquely smoothable [Mo], so a handle
decomposition of a topological 4-manifold determines a smooth structure.)
For example, Freedman’s closed 4-manifold with intersection form E8 admits
no handle decomposition (Theorems 1.2.27 and 1.2.29).

Example 4.2.2. The torus T 2 admits a handle decomposition with a 0-
handle, two 1-handles and a 2-handle (Figure 4.5). The projective plane
admits a decomposition with a 0-handle, one 1-handle and a 2-handle. (The
first two handles form a Möbius band as in Figure 4.2.) Compare with the
standard cell decompositions of T 2 and RP2.

1 1

1

1

2

0

0

0

Figure 4.5. Handle decomposition of the torus.
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Exercise 4.2.3. Find a handle decomposition for any closed surface. Find
a decomposition for S2 with four handles.

Example 4.2.4. The manifolds RPn and CPn (Section 1.3) each have a
handle decomposition with n + 1 handles. There is one handle of each
index from 0 through n (for RPn) or each even index from 0 through 2n
(for CPn). We construct such a decomposition for CPn; substituting R

for C throughout gives the decomposition for RPn. Recall that CPn is
covered by n+ 1 local parametrizations ψi : C

n → CPn, i = 0, . . . , n, where
ψi(z1, . . . , zn) = [z1 : . . . : zi : 1 : zi+1 : . . . : zn]. Let D be the closed
unit disk in C, and let Bi = ψi(D × · · · ×D) ⊂ CPn. Each point p ∈ CPn

has homogeneous coordinates [z0 : . . . : zn], which we normalize so that
maxi |zi| = 1. Then p ∈ Bi if and only if |zi| = 1, and p ∈ int Bi if and only
if |zj| < 1 for all j �= i. It follows immediately that the balls Bi cover CP

n,
and that they only intersect along their boundaries. Since Bk intersects⋃

i<k Bi precisely on ψk(∂(D×· · ·×D)× (D×· · ·×D)) (with k copies of D
in the first product), we can interpret Bk as a 2k-handle attached to

⋃
i<k Bi,

exhibiting the required handle decomposition. Note that by symmetry under
coordinate permutations, we can attach the balls Bi in any order, but the
indices of the resulting handles will always increase as we add them.

Exercise 4.2.5. Explicitly compute the attaching maps and draw the han-
dle decompositions for RP1, CP1 and RP2 (and RP3 for a more challenging
example). What does the permutation symmetry look like in these pictures?

We conclude the example by determining the attaching map of the 2-
handle in CP2. A point p in B0 ∩ B1 can be written in two ways: p =
ψ0(w1, w2) = [1 : w1 : w2] and p = ψ1(z1, z2) = [z1 : 1 : z2]. Compar-
ing homogeneous coordinates, we find that w1 = z−1

1 and w2 = z−1
1 z2, so

ϕ(z1, z2) = (z−1
1 , z−1

1 z2) defines the attaching map ϕ : ∂D ×D → ∂D ×D.
This map preserves the fibration by disks z×D, but as we travel once around
∂D (z1 = e2πit, 0 ≤ t ≤ 1), the identification of fibers (z2 �→ e−2πitz2) rotates
once, realizing a generator of π1(O(2)) ∼= Z. Thus, by Example 4.1.4(d),
B0 ∪B1 is the D2-bundle over S2 with Euler class 1. To check the sign, ob-
serve that the holomorphic curves given by w2 = 1 in B0 and z1 = z2 in B1

fit together to form a holomorphic section of the bundle (and a CP1 ⊂ CP2)
whose intersection number with the 0-section is +1. (Compare with our
proof that QCP2 = 〈1〉 in Section 1.3.) This bundle is called the (positive)
Hopf disk bundle . Compare with the Möbius band (a D1-bundle over S1) in
RP2 (Exercise 4.2.5). We conclude that CP2 is obtained from a Hopf disk
bundle by gluing a 4-ball (4-handle) onto its boundary. In particular, the
boundary of the Hopf bundle must be diffeomorphic to S3. Thus, we have
exhibited S3 as a circle bundle over S2, the famous Hopf fibration of S3.
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Exercises 4.2.6. (a) For the D2-bundle over S2 with Euler number n, find
an embedding into a holomorphic line bundle over S2, i.e., a complex line
bundle L over S2 = CP1 whose transition functions are holomorphic, so that
the projection L→ CP1 is a holomorphic map of complex manifolds. Show
that L admits a holomorphic section (not identically zero) iff n ≥ 0.

(b) Show that S2 ×̃S2, the twisted S2-bundle over S2, is diffeomorphic to

the connected sum CP2#CP2. (Hint : Find an embedding CP2− int D4 ↪→
S2 ×̃S2.) Compare with the Klein bottle S1 ×̃S1 = RP2#RP2. (For a
topological solution, see Example 4.6.3. For an algebro-geometric one, see
the beginning of Section 3.1)

In our examples so far, we have observed certain symmetries, and the
handles have been attached in order of increasing index. We will see that
these are general phenomena.

Proposition 4.2.7. Any handle decomposition of a compact pair (X, ∂−X)
can be modified (by isotoping attaching maps) so that the handles are at-
tached in order of increasing index. Handles of the same index can be at-
tached in any order (or simultaneously).

Proof. Suppose we attach a k-handle h to an n-manifold Y , followed by an
�-handle h′, with � ≤ k. Then the belt sphere of h has dimension n− k− 1,
and the attaching sphere of h′ has dimension � − 1. Since dim ∂Y = n − 1
is strictly larger than the sum of the dimensions of these spheres, we can
perturb them to be disjoint. It is now routine to construct an isotopy of
Y ∪ϕ h that pushes the attaching sphere of h′ off of h (for example, by
integrating a vector field directed radially away from the cocore of h).

We will always assume that handle decompositions are ordered in this
manner, by increasing index, and we will use the notation Xk to denote the
union of I×∂−X with all handles of index ≤ k. Note that the proposition is
not true for noncompact manifoldsX with ∂−X compact, since there may be
infinitely many handles of a given index, and we cannot attach them all along
a compact boundary before proceeding to higher index handles. Sometimes
we can attach infinitely many handles in finitely many stages, however, by
(for example) replacing a 0-handle Dn by the half-space (−∞, 0] × Rn−1.
Proposition 4.2.7 generalizes to such a collection of handles.

As for symmetry, any handle decomposition on a compact pair (X, ∂−X)
determines a dual handle decomposition on (X, ∂+X) as follows. (We set
∂+X = ∂+X in the unoriented case.) First, we glue a collar I × ∂+X to X
(setting {1} × ∂+X equal to ∂+X ⊂ X), and remove the collar I × ∂−X on
which the handlebody is built. Then we notice that each k-handleDk×Dn−k

can be interpreted as an (n − k)-handle glued to the part of X above it
(reversing the roles of core and cocore). Intuitively, we turn the handlebody
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“upside down.” In terms of Morse theory, we are replacing a Morse function
f by 1− f . Note that this inversion preserves the property of handles being
attached in order of increasing index. As an example, Figure 4.6 shows
(S1 ×D1, ∅) described as 0-handle ∪ 1-handle, and its dual decomposition
as I × S1 × ∂D1 ∪ 1-handle ∪ 2-handle.

1

core of dual handle

1

2

0

Figure 4.6. Dualizing a handlebody.

1

1

2

0

0

D1 x D1

D2 x D1

D1

Figure 4.7. Handle pair creation.

Exercise 4.2.8. Construct dual decompositions for the handlebodies in Ex-
ample 4.2.2 and Exercise 4.2.3. (It may help to draw the cores and cocores
of the 1-handles.)

As we saw in Exercise 4.2.3, some handle decompositions have more
handles than necessary. We can always create a “cancelling” pair of handles
with indices k − 1 and k, 1 ≤ k ≤ n. (See Figure 4.7.) To see this, write

∂Dk as Sk−1 = Dk−1
+ ∪∂ Dk−1

− . If we form the boundary sum of X with

Dn = Dk × Dn−k by gluing along Dk−1
− × Dn−k, the diffeomorphism type
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of X is not changed. Now we slice a neighborhood of Dk−1
+ off of Dk,

Dk = Dk
0 ∪Dk−1

+
Dk−1

+ ×D1. Then Dk−1
+ ×D1 ×Dn−k is the (k − 1)-handle

attached to ∂X, and Dk
0 ×Dn−k is the cancelling k-handle. This procedure

is reversible:

Proposition 4.2.9. A (k − 1)-handle hk−1 and a k-handle hk (1 ≤ k ≤ n)
can be cancelled, provided that the attaching sphere of hk intersects the belt
sphere of hk−1 transversely in a single point.

Proof (sketch). If we try to push hk off of hk−1 as in the proof of Propo-
sition 4.2.7, we will end up with the attaching sphere of hk intersecting
hk−1 in Dk−1 × p ⊂ Dk−1 × ∂Dn−k+1, and we can reverse the previous
construction. That is, we can explicitly identify hk−1 ∪ hk with the above
standard model, exhibiting it as a ball boundary-summed onto the manifold.
Specifically, we identify hk−1 = Dk−1×Dn−k+1 with Dk−1

+ ×D1×Dn−k by

diffeomorphisms Dk−1 ≈ Dk−1
+ , Dn−k+1 ≈ D1 × Dn−k with p ∈ ∂Dn−k+1

mapping to (−1, 0) ∈ D1 × Dn−k, and we identify hk = Dk × Dn−k with
Dk

0×Dn−k in the obvious way, so as to obtain a well-defined diffeomorphism
hk−1∪hk → Dk×Dn−k. See [M4] Theorem 5.4 for a careful proof from the
Morse theory viewpoint, and [RS] 6.4 for the PL version.

There is one more important move, which we will discuss in detail in
Section 5.1. (See also [M4] Theorem 7.6 and [RS] 6.7.)

A

B

Figure 4.8. Handle slide.

Definition 4.2.10. Given two k-handles h1 and h2 (0 < k < n) attached to
∂X, a handle slide of h1 over h2 is given by the following procedure. Isotope
the attaching sphere A of h1 in ∂(X∪h2), pushing it through the belt sphere
B of h2 (Figure 4.8). At the intermediate stage, the spheres will intersect
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in one point p (with TpA ⊕ TpB of codimension 1 in Tp∂(X ∪ h2)). If we
apply Proposition 4.2.7 to this intermediate stage, we will have a choice of
directions for pushing A off of B. One direction gives the original picture,
and the other gives the result of the handle slide.

Exercise 4.2.11. Show that the Klein bottle is diffeomorphic to RP2#RP2

by sliding handles. (See Figure 5.1 for the answer.)

It is a fundamental fact that handle sliding and cancellation form a
complete set of moves for handlebodies.

Theorem 4.2.12. ([Ce]) Given any two relative handle decompositions (or-
dered by increasing index) for a compact pair (X, ∂−X), it is possible to get
from one to the other by a sequence of handle slides, creating/annihilating
cancelling handle pairs and isotopies within levels.

The basic idea of the proof is that the handlebodies are given by Morse
functions f0, f1 : X → [0, 1], and these are clearly homotopic, so it suffices
to analyze a generic homotopy ft from f0 to f1 (rel ∂X). In the space of all
smooth functions X → [0, 1], Morse functions generating suitably ordered
handlebodies fill the complement of a codimension-1 subset, so there will
only be finitely many values of t for which ft must be analyzed carefully. At
these values, we may find an annihilating pair of critical points (Figure 4.9),
which corresponds to a handle cancellation. At the other anomalous values
of t, the gradient flow of ft has a trajectory running between two critical
points of the same index. This translates into handle theory as the interme-
diate stage of a handle slide, at which A ∩B = {p} in Definition 4.2.10 (cf.
Figure 4.8).

Figure 4.9. Cancelling pair of critical points (handles).

Proposition 4.2.13. If Xn is compact and connected, then (X, ∂−X) ad-
mits a handle decomposition with exactly one 0-handle (if ∂−X = ∅) or
no 0-handles (if ∂−X �= ∅). We can also assume that there is exactly one
n-handle (if ∂+X = ∅) or no n-handles (if ∂+X �= ∅).

Proof. If ∂−X = ∅, then any handle decomposition of (X, ∂−X) has at least
one 0-handle (which is the only type of handle we can attach to ∅). If there
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is more than one 0-handle and X is connected, then two 0-handles must be
connected by a 1-handle (since handles of index ≥ 2 have connected attach-
ing spheres and, hence, cannot connect a disconnected manifold). Clearly,
the 1-handle cancels one 0-handle. Continuing by induction, we eliminate all
but one 0-handle. If ∂−X �= ∅, a similar argument eliminates all 0-handles.
The rest of the proposition follows by applying the same argument to the
dual decomposition.

Exercise 4.2.14. Classify compact, connected manifolds of dimension ≤ 2.

Having discussed the basic topology of handle decompositions, we now
turn to their algebraic topology. As we have already observed, a handle de-
composition of (X, ∂−X) determines a relative cell complex with the same
homotopy type. Thus, the computation of homotopy and homology groups
of a handlebody is essentially the same as for a CW-complex. For ref-
erence, we sketch the computations of π1, H∗ and H∗ in the language
of handle decompositions, and refer the reader to any algebraic topology
text for more details in the language of CW-complexes. (See also [M4],
[RS].) A handle decomposition of (X, ∅) with a unique 0-handle deter-
mines a presentation of π1(X): Each 1-handle (with an orientation chosen
on its core D1) determines a generator, and the attaching circle of each
2-handle, attached by an arc to the base point, gives a relation. Handles
of higher index do not affect π1, since their attaching spheres are simply
connected. For the homology of (X, ∂−X), start with any handle decom-
position (with handles ordered by increasing index) and define the group
of relative k-chains to be Ck(X, ∂−X) = Hk(Xk, Xk−1;Z); this is freely
generated by the k-handles (once we have oriented their core disks). The
boundary operator ∂∗ : Ck(X, ∂−X)→ Ck−1(X, ∂−X) is defined by the long
exact sequence of the triple (Xk, Xk−1, Xk−2), but for X oriented, it can
also be described directly by the formula ∂∗h =

∑
(Bi · A)hi. (Here A

is the attaching sphere of the k-handle h, Bi is the belt sphere of the
(k − 1)-handle hi, and Bi ·A denotes their intersection number in ∂+Xk−1,
cf. Remark 1.2.6(a).) Standard theory shows that ∂2

∗ = 0, so we have
Im ∂∗ ⊂ ker ∂∗ ⊂ Ck(X, ∂−X), and Hk(X, ∂−X;Z) is given by ker ∂∗/ Im ∂∗.
In particular,Hk(X;Z) = Hk(X, ∅;Z). As usual, we obtain the cochain com-
plex Ck(X, ∂−X;G) of (X, ∂−X) (whereG is any abelian group) by dualizing
the chain complex, resulting in Hk(X, ∂−X;G); the groups Hk(X, ∂−X;G)
are obtained by tensoring the chain complex with G (or equivalently, using
Ck(X, ∂−X;G) = Hk(Xk, Xk−1;G)). If Y ⊂ X is a compact, codimension-0
submanifold, we can use excision to interpretHk(X,Y ) asHk(X−int Y, ∂Y )
(and similarly for cohomology), so it suffices to use a handle decomposition
of (X− int Y, ∂Y ) to compute Hk(X,Y ) and Hk(X,Y ). For cohomology, an
equivalent formulation is to take Y to be a subhandlebody of X and define
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Ck(X,Y ;G) ⊂ Ck(X;G) = Ck(X, ∅;G) to be the subcomplex of cochains
vanishing on k-handles in Y ; the resulting cohomology is Hk(X,Y ;G).

Finally, we consider the effect of handle moves on the homology of an
oriented manifold (X, ∂−X). (See [M4], [RS] for more details.) If h is
a k-handle cancelling a (k − 1)-handle hi, then Bi · A = ±1, so ∂∗h =
±hi +

∑
j 
=i ajhj . Cancelling the pair eliminates the generators h, hi from

their respective chain groups via the relations h = 0, hi = ∓∑
j 
=i ajhj .

It is easily checked directly that the homology of (X, ∂−X) is unchanged.
Beware that an algebraically cancelling pair, i.e., one with Bi · A = ±1,
need not actually cancel (geometrically). Much deep topology has been
devoted to this issue — see Section 9.2. If we slide a k-handle h over an-
other k-handle h′, the algebraic result is a change of the canonical basis
for Ck(X, ∂−X). Specifically, we replace the basis element h by h ± h′,
with the sign depending on the direction we push from the intermediate
stage described in Definition 4.2.10 (relative to the orientation induced on
Tp∂(X∪h′)/(TpA⊕TpB) ∼= R by the given ones on the three tangent spaces).
It is easily verified that for 0 < k < n − 1 and ∂+Xk−1 connected, any ba-
sis change of the form h �→ h ± h′ can be realized by a handle slide. (See
Section 5.1 for the 4-dimensional case.) Together with reordering handles
and the moves h �→ −h (by reversing the orientation on the core disk),
these moves generate all changes of basis on Ck(X, ∂−X). Our remaining
operation, dualizing a handlebody, also has an elegant interpretation: It
gives a simple proof of Poincaré duality for compact, oriented n-manifolds,
Hk(X, ∂−X) ∼= Hn−k(X, ∂+X ). (Identify Ck(X, ∂−X) with Cn−k(X, ∂+X )
by the obvious correspondence of canonical bases, then show that the boun-
dary operators correspond up to sign.)

Exercise 4.2.15. Determine the effect of handle moves on the presentation
of π1(X) given above.

4.3. Dimension three — Heegaard splittings

Having dispensed with lower dimensions (Exercise 4.2.14), we now consider
handle decompositions of compact, connected 3-manifolds X with ∂−X = ∅.
By Proposition 4.2.13, we can assume that X has a handle decomposition
with a unique 0-handle and 3-handle (or no 3-handle if ∂+X �= ∅). Re-
call that X1 denotes the union of the 0-handle and 1-handles. By Exam-
ple 4.1.4(b), ifX is orientable thenX1 ≈ �g S1×D2, where g is the number of
1-handles (see Figure 4.10 for g = 3), and the nonorientable case is not much
harder to understand. According to Example 4.1.4(c), the remaining handle
attaching will not depend on choices of framing. Thus, the handlebody will
be completely specified if we draw the attaching circles of the 2-handles in
∂X1, as we have done in Figure 4.11. (If ∂+X = ∅, then the boundary of
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Figure 4.10. X1 for a 3-manifold.

Figure 4.11. Heegaard diagram.

X2 = X1∪2-handles must be S2 so that we can attach the unique 3-handle,
and this gluing is uniquely determined.) When ∂+X = ∅, such a diagram
is called a Heegaard diagram. For an alternate way of understanding this
construction, observe that by turning X − int X1 (= 2, 3-handles) upside
down (dualizing), we can write it as 0-handle ∪ 1-handles ≈ �� S1 × D2

(assuming X is closed and oriented). Since X1 and X − int X1 have the
same boundary, we must have � = g, and so we have written X as H ∪ψ H
for H = �gS1 × D2 and some diffeomorphism ψ : ∂H → ∂H, a Heegaard
splitting of genus g. Thus, handle decompositions of closed 3-manifolds are
essentially the same as Heegaard splittings, and the resulting diagrams are
prescriptions for gluing together two copies of a handlebody H. (That is,
the circles in ∂H determine the images under ψ of the belt circles of H, and
that specifies X = H ∪ψ H up to diffeomorphism.)

If it becomes too cumbersome to draw collections of circles in ∂X1 as in
Figure 4.11, we can represent the same information by a diagram in R2. We
simply note that the 0-handle D3 has boundary S2 = R2 ∪ {∞}, and draw
the attaching regions in R2. The attaching region of each 1-handle is a pair
of disks D2 ∐D2, and attaching the 1-handle is equivalent to gluing together
the disks in ∂D3. The resulting manifold X1 will be orientable if and only
if the gluing map reverses orientation, so without loss of generality we can
take it to be the obvious reflection (x, y) �→ (−x, y) (Figure 4.12) when
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X1 is orientable. We add 2-handles as before, by drawing their attaching
circles in ∂X1, and then attaching the 3-handle (when ∂+X = ∅) is uniquely
determined. Circles need not appear as circles in R2, however, but rather
as collections of arcs with endpoints on the boundaries of the attaching
regions of the 1-handles. They will become circles when we identify these
boundaries by the given reflection to get ∂X1. For example, Figure 4.11
becomes the planar diagram shown in Figure 4.13. Figure 4.14 shows the
(nondiffeomorphic) lens spaces L(5, 1) and L(5, 2), each made with a single
handle of each index 0,1,2,3.

Figure 4.12. Gluing map to attach a 1-handle to D3.

Figure 4.13. Heegaard diagram.

Exercises 4.3.1. (a)∗ Draw diagrams for S1 × S2 and I × T 2. Draw one
for the 3-torus T 3 = S1 × S1 × S1. (Hint : T 3 is obtained from a cube by
gluing opposite faces by translations. Its diagram is most symmetrical if
one 1-handle is attached at ∞ ∈ S2 = R2 ∪{∞}.) Draw a diagram for RP3.
(See Exercise 4.2.5.)

(b)∗ What does a handle cancellation look like in a Heegaard diagram? A
2-handle slide? Identify the familiar manifold shown in Figures 4.11 and
4.13.
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L(5,1) L(5,2)

Figure 4.14. Heegaard diagrams.

(c)∗ For the lens spaces shown in Figure 4.14, compute π1, H∗ and H∗. For
each n ≥ 0, construct a 3-manifold X with π1(X) ∼= Zn.

4.4. Dimension four — Kirby diagrams

A Kirby diagram is a description of a 4-dimensional (relative) handlebody
by a diagram in R3. For now, we consider the case of a compact 4-manifold
X with ∂−X = ∅. (For the relative version ∂−X �= ∅, see Section 5.5.)
The procedure is analogous to that of the previous section. We assume that
there is a unique 0-handle D4, which has boundary S3 = R3 ∪ {∞}, and we
draw the attaching regions of the remaining handles in R3. The attaching
region of each 1-handle is D3 ∐D3, which we draw as a pair of round balls
(Figure 4.15).

Figure 4.15. Gluing map to attach a 1-handle to D4.

Assuming that X is orientable, the union X1 of 0- and 1-handles will be
�nS1×D3, where n is the number of 1-handles (and �0S1×D3 = D4), and
we can form it by gluing 2n 3-balls in pairs by reflecting through the planes
perpendicularly bisecting the segments joining their centers (Figure 4.15).
(For the nonorientable case, one also needs to establish a convention for
orientation-preserving gluings. See, for example, [A2].) We add 2-handles
along circles in ∂X1 as before, but in R3 circles can be knotted and linked
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(see Figure 4.16), and we must also deal with framings. For 3- and 4-handles,
there are no framings (by Example 4.1.4(c)). In the case ∂+X = ∅, we can
assume that there is a unique 4-handle, and by duality the union of 3- and
4-handles will be diffeomorphic to �mS1×D3, where m is the number of 3-
handles. In particular, for ∂+X = ∅, the union X2 of all 0-, 1- and 2-handles
must have ∂X2 = ∂(�mS1 ×D3) = #mS1 × S2. (We present techniques
for analyzing ∂X2 in general in Section 5.3.) Any self-diffeomorphism of
#mS1 × S2 extends over �mS1 ×D3 [LP], so if ∂X2 = #mS1 × S2 there
is a unique manifold with ∂+X = ∅ that can be obtained by attaching 3-
and 4-handles to X2. Thus, if ∂+X = ∅ we do not need to keep track
of the 3- and 4-handles attached to X2. Similarly, if ∂+X is nonempty
but connected and X is simply connected, then X is determined by X2

and the number of 3-handles [Tr]. We conclude that the complexity of a
4-dimensional handlebody is mainly due to the 2-handles.

Figure 4.16. Kirby diagram.

Remark 4.4.1. Laudenbach and Poénaru [LP] use basic 3-manifold theory
to show that any self-diffeomorphism of #mS1×S2 can be written as a com-
posite of handle slides of �mS1×D3 = D4∪1-handles (together with isotopies
in ∂D4 permuting the attaching balls, and reflection in the orientation-
reversing case). This actually implies that any two closed (oriented) han-
dlebodies X2 ∪ 3-handles∪ 4-handle (X2 fixed) are related by a sequence of
3-handle slides. For the basic idea of Trace’s argument [Tr], assume (for the
sake of simplicity) that X,X ′ are each obtained from Y by attaching a single
3-handle, with disjoint attaching spheres S, S′ ⊂ ∂+Y , respectively. If ∂+X
and ∂+X

′ are connected, then one can construct a knot K ⊂ ∂+Y intersect-
ing S, S′ each transversely once. If X (hence Y ) is simply connected, then K
bounds an immersed disk D ⊂ Y , which we may assume is embedded (after
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using parallel copies of S to remove double points). If we interpret D as the
cocore of a 2-handle h attached to Y − νD, then either of the 3-handles will
cancel h, so X ≈ Y − νD ≈ X ′. Note that for ∂X ′ disconnected, we have
the easy counterexample Y = S2 × D2, S = S2 × {pt.} (so X ≈ D4), S′

unknotted (so X ′ ≈ S2 ×D2 − int D4). Similarly, Y = S2 × D2�S1 ×D3,
S = S2 × {pt.}, S′ = {pt.} × ∂D3 (X ≈ S1 ×D3, X ′ ≈ S2 ×D2#S1 × S3)
is a counterexample with ∂X, ∂X ′ connected, π1(X) ∼= Z.

It remains to deal with framings for 2-handles. Recall (cf. Exam-
ple 4.1.4(d)) that these are classified by π1(O(2)) ∼= Z, although the bijection
is not determined until we decide which framing should correspond to 0. If
K is a knot (i.e., embedding of S1) in an oriented 3-manifold M , we can
specify a framing on K by choosing a single nowhere-zero transverse vector
field v to K (Figure 4.17). Then the normal orientation on K induced by the
orientations of S1 and M determines a unique way (up to isotopy) to extend
v to a correctly oriented basis for each normal fiber. Although this fram-
ing depends on our choices of orientation, the ambiguity does not affect the
result of handle attaching (as we implicitly proved in Section 4.1 when we ar-
ranged our map Sk−1 → O(n−k) to be based at I ∈ SO(n−k) ⊂ O(n−k)).
Thus, the pair (K, v) uniquely specifies the result of attaching a 2-handle to
a 4-manifold X with ∂+X = M , and it is common to abuse terminology by
referring to v itself as a framing. An equivalent (and more practical) way to
specify the attachment is to construct a knot K ′ parallel to K by pushing K
in the direction of v (Figure 4.18). (Intuitively, we connect the arrowheads.)
If ϕ : S1 ×D2 →M3 is the attaching map, then K = ϕ|S1 × 0, and we can
interpret K ′ as ϕ|S1 × p for some nonzero p ∈ D2.

Figure 4.17. Framing specified by a vector field.

Once we arbitrarily choose one framing to correspond to 0 ∈ π1(O(2)) ∼=
Z, we immediately see how to get the framing corresponding to any other in-
teger n—we simply add n twists as in Figures 4.18 and 4.19 (with n = 3 and
a nonstandard choice of 0-framing in Figure 4.18). To fix the sign conven-
tion, we endow S3 with the standard orientation as ∂D4 (Definition 1.1.2),
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K

K'

Figure 4.18. Framing specified by a parallel knot K′.

Figure 4.19. Another framing.

which corresponds to the standard orientation on R3 = T(1,0,0,0)S
3 ⊂ R4,

given by a right-handed basis in our pictures. Now we choose the sign so
that a positive integer n corresponds to n right-handed twists (Figure 4.19),
and a negative n corresponds to |n| left twists. Note that while the sign
depends on the orientation of S3 (or M3 in general), it does not depend on
the orientation of S1. (Proof : Unscrew a nut from a bolt, then flip it over
and screw it back on.)

K
KK'

K'

n

n  twists

Figure 4.20. Kirby diagram of a D2-bundle over S2 (with K ′ indicating framing).
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Example 4.4.2. We saw in Example 4.1.4(d) that D2-bundles X over S2

are given by attaching a 2-handle to an unknotted circle K in ∂D4. This is
shown in Figure 4.20 (using the above convention when n is negative). We
introduce the convention of using a box labelled “n” to represent n full (360◦)
twists in a collection of strands. We can explicitly see a 2-sphere S in int X
(the 0-section) generating its homology: Take the obvious disk bounded by
the circle K, imagine its interior being pushed into D4, and then glue on the
core of the 2-handle. (This is a standard procedure for constructing surfaces
in Kirby diagrams; we generalize it to arbitrary surfaces in Section 6.2.) We
can also compute the self-intersection of S: To construct a sphere S′ isotopic
to S but transverse to it, we start with a disk D2 × p parallel to the core
of the 2-handle. This intersects S3 in the parallel curve K ′ = S1 × p of
Figure 4.20. Extend the disk by an annulus that dives straight down into
D4 (i.e., identify a collar of ∂D4 with I × S3 and take the annulus to be
I ×K ′). At some level t×S3 we see the rest of S as a disk spanning K and
intersecting K ′ transversely in |n| points. Below this level, we span K ′ by
a disk to complete S′. (Compare with the 2-dimensional case, Figure 4.21.)
The spheres S and S′ are isotopic and intersect transversely in |n| points
of the same sign, which equals the sign of n (provided that S′ inherits its
orientation from S in the obvious way), as can be computed directly via the
previous paragraph and Definition 1.1.2. Thus, the intersection pairing of
X is given by 〈n〉, and so n is the Euler number of X. In particular, S2×D2

is the case n = 0 (and we can visualize the product structure directly), and

CP2 is obtained by adding a 4-handle to the n = 1 case. Similarly, CP2

corresponds to n = −1.

S

S'

Figure 4.21. Computing a self-intersection number.

Exercise 4.4.3. Check directly in Figure 4.20 that the intersection number
S · S′ is positive for n > 0.

To simplify notation, we will replace the double-strand notation of Fig-
ure 4.20 with the notation of Figure 4.22. However, some simple examples
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such as Figure 4.23 show that this is a more subtle operation than one might
think. Which framing should be called the 0-framing, particularly if K is
knotted? To determine this, we must introduce the concept of a linking
number .

n

Figure 4.22. D2-bundle over S2 with Euler number n.

Figure 4.23. A subtlety of framings.

K

Figure 4.24. A knot in S1 × S2.

Exercise 4.4.4. ∗ For the knot K in S1 × S2 shown in Figure 4.24, find
an isotopy (fixing neighborhoods of the balls) that returns K to itself but
changes any framing on K by two twists. How does this relate to π1(O(3))?
How does it relate to Philippine dancing?

4.5. Linking numbers and framings

Anm-component link in a 3-manifoldM is an embedding of
∐m

i=1 S
1 intoM ,

or equivalently, a collection of m disjoint knots. We are mainly interested in
links up to isotopy. A link diagram of a link L in R3 = S3−{∞} is a generic
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projection of L into R2 (to an immersion of
∐m

i=1 S
1 which is 1–1 except

at transverse double points), together with information specifying which
strand crosses underneath at each double point (denoted as in Figure 4.25).
Clearly, the diagram uniquely determines L up to isotopy. If L is oriented
(i.e., an orientation is fixed on

∐m
i=1 S

1), then each crossing in the diagram
will look like exactly one of the pictures in Figure 4.25 (up to isotopy in
R2), allowing us to assign a sign to each crossing. You should check that for
self-crossings of a single component of L, the sign does not depend on the
orientation of L. Two diagrams represent isotopic links if and only if they
are equivalent via a sequence of isotopies of R2 and the Reidemeister moves
shown in Figure 4.26 [AB]. (The mirror image of the last move should also
be allowed. Sufficiency of these moves can be proved by studying generic
projections into R2 of isotopies I × (

∐
S1) → R3, in the same spirit as the

proof of Theorem 4.2.12.)

Figure 4.25. Signs of crossings in a link diagram.

Figure 4.26. The Reidemeister moves.

If K1 and K2 are components of an oriented link in S3 (i.e., they are
disjoint, oriented knots), we wish to define their linking number �k(K1,K2).
We will give three equivalent ways of doing this. First, note that since
H2(S

3, S3−K1;Z) ∼= H2(νK1, ∂νK1;Z) ∼= Z (where νK1 ≈ S1×D2 denotes
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a tubular neighborhood ofK1), the long exact homology sequence shows that
H1(S

3 − K1;Z) ∼= Z, generated by a meridian μ of K1 (i.e., a circle μ in
S3−K1 bounding a disk D in S3 intersectingK1 exactly once, transversely).
We fix the orientation of μ by the right-hand rule as in Figure 4.27 (so that
the intersection point of D with K1 has positive sign).

K1K1K1

Figure 4.27. A canonically oriented meridian.

Definition 4.5.1. For K1, K2 and μ as above, K2 represents the class
n[μ] ∈ H1(S

3 − K1;Z) for a unique n ∈ Z. We define the linking number
�k(K1,K2) to be n.

Although this definition can actually be applied to any pair of disjoint,
nullhomologous knots in an oriented 3-manifold by replacing H1(S

3−K1;Z)
with ker(H1(M−K1)→ H1(M)) ∼= Z, we will use linking numbers primarily
in the boundary S3 of a 0-handle. Note that �k(K1,K2) reverses sign if we
reverse the orientation on any one of K1 (hence μ), K2 or S3.

Proposition 4.5.2. For K1 and K2 (as above) given by a link diagram,
�k(K1,K2) equals the signed number of times that K2 crosses underneath
K1. (That is, it is the number of positive undercrossings minus the number
of negative undercrossings.)

Proof. First note that if we change K2 into a new knot K ′
2 by changing

each crossing of K2 underneath K1 to an overcrossing, then K ′
2 will lie

entirely over K1, so that we can pass a plane between them in R3. Clearly,
�k(K1,K

′
2) = 0. Now we transform K ′

2 back into K2. It is easy to see that
each crossing change adds the sign of the crossing to the linking number.

Corollary 4.5.3. The linking number is symmetric, that is, �k(K1,K2) =
�k(K2,K1).

Proof. If we stand on the other side of R2, we will see every undercrossing
of K1 as an undercrossing of K2. It is easily checked that the signs are
preserved.
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Exercise 4.5.4. Prove directly that the signed number of undercrossings is
isotopy invariant by checking its invariance under Reidemeister moves.

For the third characterization of �k(K1,K2), note that any knotK1 in S3

(or nullhomologous knot in an orientable 3-manifold) bounds a Seifert sur-
face F , an embedded compact surface (orientable unless otherwise specified)
with ∂F = K1. This can be constructed directly from a link diagram us-
ing Seifert’s algorithm (Exercise 4.5.12(a)), or algebraically as follows: Since
H1(S3−K1;Z) ∼= Z and this cohomology group is classified byK(Z, 1) = S1,
there is a map ϕ : S3 −K1 → S1 inducing a cohomology isomorphism, and
the preimage of a regular value will be the required surface. Let F · K2

denote the intersection number of these two manifolds, where F is oriented
so that its oriented boundary is K1. (See Remark 1.2.6(a) or [GP].)

Proposition 4.5.5. For K1, K2 and F as above, �k(K1,K2) = F ·K2.

Proof. Produce K ′
2 disjoint from F as in the proof of Proposition 4.5.2, then

isotope it back to K2 in S3 as before. The only new complication is that
the isotopy may produce intersections with F away from K2, but it is easy
to see that such intersections appear and disappear in pairs with opposite
sign as in Figure 4.28, so they have no effect on the final answer.

Figure 4.28. Cancelling pair of intersections.

Remark 4.5.6. The fact that new intersections appear in cancelling pairs
is the main idea of the proof that the intersection pairing is well-defined on
homology classes (Remark 1.2.6(a)). In this case, we are implicitly using the
pairing between H1(S

3 − int νK;Z) and H2(S
3 − int νK, ∂νK;Z), which

shows that F can be taken to be any smooth cycle representing the given
relative class, rather than an embedded surface.

Definition 4.5.7. For a framed knot (K, v) in the boundary of a 0-handle,
we define the framing coefficient to be the integer �k(K,K ′), where K ′ is a
parallel copy of K determined by v as in Section 4.4, and the orientations
of K and K ′ are chosen to be parallel.
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Note that this is independent of the orientation of K, since reversing K also
reverses K ′. Now we have the promised canonical correspondence between
integers and ways of attaching a 2-handle to D4 along K. Clearly, it is
consistent with our previous discussion. (Adding a right twist increases the
framing coefficient by 1, and the coefficient in Figure 4.20 is n.) Henceforth,
we will use integers to denote framings on knots in ∂D4, as in Figure 4.22.
(Note that the integer is always computed in ∂D4. If we obtain a different
copy of S3 by adding other 2-handles and looking at the resulting boundary,
the framing coefficient computed in this other S3 may be different.) For
knots that run over 1-handles, one needs additional care, as Exercise 4.4.4
demonstrates. We will return to this problem in Section 5.4.

To compute the coefficients of all framings on a knot K, it suffices to
do the computation for any one framing on K; any other framing will differ
by n twists, where n is the difference of framing coefficients. A convenient
choice is the blackboard framing , determined by a knot diagram by requiring
v to lie in R2 as in Figures 4.17 and 4.18. (Beware that this is not iso-
topy invariant — see Figure 4.23.) Another useful choice is the 0-framing.
Propositions 4.5.2 and 4.5.5 immediately imply the following:

Proposition 4.5.8. The framing coefficient of the blackboard framing on a
knot K (given by a diagram) equals the writhe w(K), the signed number of
self-crossings of K. The 0-framing is obtained from the outward normal to
any orientable Seifert surface.

Exercise 4.5.9. ∗ What is the framing coefficient in Figure 4.19? What
is the 0-framing? Compare with an orientable Seifert surface. (In this
diagram, you can find such a surface by 2-coloring (like a checkerboard) the
regions in R2 separated by the knot. The pieces will be connected by bands
with 180◦ twists. One color produces an orientable surface; the other is
nonorientable. Compare with Exercise 4.5.12(a).) What framing is induced
by the nonorientable (Möbius band) Seifert surface?

Many interesting 4-manifolds arise as 2-handlebodies, i.e., handlebod-
ies made by attaching 2-handles to D4. In particular, many closed mani-
folds such as CP2 can be described as 2-handlebody ∪ 4-handle. (As we
will see, the hypersurfaces Sd of Section 1.3 have this property (Corol-
lary 6.3.19), as do elliptic surfaces over S2 with as most one multiple fiber
(Corollary 8.3.17) and various other examples. It is not known whether all
smooth, closed, simply connected 4-manifolds have such handle decomposi-
tions.) A 2-handlebody is described by a framed link L in ∂D4 (or R3). If
we orient L and choose an order K1, . . . ,Km for the components of L, then
we may encode the linking number data from K as a matrix.

Definition 4.5.10. Let L be an ordered, oriented framed link in S3 (or R3),
with components K1, . . . ,Km. The linking matrix of L is the symmetric
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m×m matrix [aij ], where aij = �k(Ki,Kj) for i �= j and aii is the framing
coefficient of Ki.

It is sometimes convenient to interpret the linking matrix as a bilinear pair-
ing �k on formal linear combinations of components of L; thus, �k(Ki,Ki)
is the framing of Ki. Do not confuse this linking pairing with the linking
form of a 3-manifold defined in Exercise 4.5.12(c) below.

The basic algebraic invariants of a 2-handlebody X are easy to de-
termine. Since attaching a k-handle is the same up to homotopy as at-
taching a k-cell, X has the homotopy type of a wedge of m 2-spheres
(where m is the number of 2-handles). Thus, X is simply connected and
H2(X) ∼= Zm. Attaching a 4-handle (if possible) merely creates the group
H4(X ∪ 4-handle) ∼= Z. If we orient the link L determining the handlebody,
we obtain a canonical basis for H2(X). We can find surfaces in int X repre-
senting this basis as follows: Each component Ki of L has a Seifert surface
Fi in ∂D4. We push int Fi into int D4 (as we did in Example 4.4.2), then

add the core of the 2-handle to obtain a closed surface F̂i. We orient Fi so
that ∂Fi = Ki in the boundary orientation, and extend the orientation over
F̂i. Now the classes αi = [F̂i] ∈ H2(X), i = 1, . . . ,m, form the canonical
basis. We use this basis to describe the intersection form QX by a matrix.

Proposition 4.5.11. Let X be a connected handlebody without 1- or 3-
handles, described by an ordered, oriented, framed link L. Then the matrix of
QX with respect to the canonical ordered basis α1, . . . , αm (described above)
is given by the linking matrix of L. In short, the intersection form of a
2-handlebody equals its linking pairing.

Proof. We use the method of Example 4.4.2. Fix i �= j and assume that F̂j

is deeper in D4 than F̂i, i.e., F̂i∩D4 is contained in some collar I×S3 of ∂D4

on which F̂j is vertical (I×Kj). Then αi ·αj = F̂i ·F̂j = Fi ·Kj = �k(Ki,Kj).

(Check the signs.) Similarly, we compute α2
i by constructing a copy F̂ ′

i of

F̂i, beginning with a disk D2 × p parallel to the core. This intersects ∂D4

in a parallel copy K ′
i of Ki given by the framing, so as in Example 4.4.2 we

have α2
i = F̂i · F̂ ′

i = Fi ·K ′
i = �k(Ki,K

′
i), which is the framing coefficient of

Ki.

The same method can be used to compute QX for a handlebody with 1-
or 3-handles, although H2(X)/torsion need not have a canonical basis. For
example, if there are 3-handles but no 1-handles, one can apply the above
proposition before attaching the 3-handles, and the latter will simply mod
out a certain subspace on which the pairing vanishes.

Exercises 4.5.12. (a)∗ (Seifert’s algorithm) Given a diagram for an
oriented link L in S3, construct an oriented Seifert surface with oriented
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boundary L as follows: Change the diagram in a small neighborhood of each
crossing to obtain an embedded collection of circles in R2, with orientations
induced by L. This collection bounds an obvious collection of oriented disks
in R3. Now recover L by adding twisted bands.

(b)∗ Let X be an arbitrary 4-manifold (not necessarily compact or ori-
entable). Give a geometric proof that every homology class in H2(X;Z) is
represented by an embedded, closed, oriented surface F . Prove the same
for H2(X;Z2) with F not necessarily orientable. (Hint : As at the end of
Section 4.2, we can realize any 2-homology class by a 2-cycle z ∈ ker ∂∗ ⊂
C2(X) = H2(X2, X1), or by a disjoint union of core disks D2 × {pt.} whose
boundaries form a link (oriented in one case) in ∂X1. Show that by at-
taching bands, you can obtain a link in ∂D4.) Note that a similar (easier)
argument works when dimX > 4, since any link

∐
S1 → Sn is trivial for

n ≥ 4 (by Example 4.1.3).

(c)∗ In an oriented 3-manifold M , let K1 and K2 be disjoint, oriented,
rationally nullhomologous knots (i.e., [Ki] = 0 ∈ H1(M ;Q)). Define a link-
ing number �kQ(K1,K2) ∈ Q. Show that the same answer is obtained by
generalizing Definition 4.5.1 or Proposition 4.5.5. For K rationally nullho-
mologous in M , give a procedure for assigning rational numbers to framings
on K that generalizes framing coefficients in S3. For a fixed K, describe
the image of this map in Q. Now define a Q/Z-valued, symmetric bilinear
form on the torsion subgroup of H1(M ;Z). This is called the linking form
of M . (Also see Exercise 5.3.13(g).) For M closed, prove that the linking
form is nonsingular, that is, every nonzero element pairs nontrivially with
something. (Hint : For this last part, construct K2 representing a suitable
class in H1(M −K1;Z)/torsion by using the dual space H1(M −K1;Z). To
understand the latter, recall that PD[K1] ∈ H2(M ;Z) can be defined to be
the image of one generator of H2(M,M −K1;Z), then consider the long ex-
act sequence.) Nonsingular, Q/Z-valued symmetric forms on finite abelian
groups have been classified [W3], [KK], and any such form is realized by a
closed 3-manifold [KK].

(d)∗ Given an embedding M3 ↪→ S4 (M closed), prove that the torsion
subgroup of H1(M ;Z) splits as a direct sum of two subgroups G1, G2 such
that the linking form vanishes on each Gi. (Hint : The splitting comes from
the Mayer-Vietoris sequence. Now use the fact that QS4 is trivial.) Compute
the linking form of RP3 and prove that RP3 does not embed in S4.

4.6. Examples

So far, we have Kirby diagrams describing the disk bundle over S2 with
Euler number n (Figure 4.22), CP2 and CP2 (Figure 4.22 with n = ±1
and a 4-handle attached), �nS1 ×D3 (D4 ∪ n 1-handles), and of course, S4
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(the empty diagram with a 4-handle attached). The next obvious candidate
is S2 × S2. We begin with the obvious handle decomposition for S2 as a
pair of disks, S2 = D− ∪∂ D+. Then the product S2 × S2 decomposes as
(D− ×D−) ∪ (D− ×D+) ∪ (D+ ×D−) ∪ (D+ ×D+). We can interpret this
as a handle decomposition with 0-handle D−×D−, 4-handle D+×D+, and
a pair of 2-handles in between. (This is a general construction for products
of handlebodies — a product of a k-handle and an �-handle is a (k + �)-
handle. Compare with T 2 = S1×S1, Example 4.2.2 and T 3 = S1×S1×S1,
Exercise 4.3.1(a).) Now (D− × D−) ∪ (D− × D+) = D− × S2, with the
obvious handle decomposition (Example 4.4.2), so it is given by a 0-framed
unknot. Similarly, (D−×D−)∪(D+×D−) = S2×D− is a 0-framed unknot.
Since 4-handles are trivial, the only question is how the unknots are linked.
By Proposition 4.5.11, we should expect them to have linking number 1, but
there are many such links of unknots. (See Figure 4.29.)

0

0

Figure 4.29. Handlebody whose boundary is a nontrivial homology sphere.

0 0

U  4-handle

Figure 4.30. S2 × S2.

To specify the link precisely, we observe that the attaching circles of the
2-handles are given by S1 × 0 and 0× S1 in S3 = ∂(D−×D−). Now 0× S1

is clearly isotopic (disjointly from S1 × 0) to p × S1 for some p ∈ ∂D−.
The latter circle bounds the embedded disk D = p × D− ⊂ ∂(D− × D−).
Clearly, D intersects S1 × 0 transversely in S3, in the unique point p × 0.
Thus, the attaching circle ∂D is (by definition) a meridian of S1 × 0. (It
is routine to check that any two disks in S3 that each intersect a knot K
transversely once are ambiently isotopic, fixing K setwise, so a meridian is
uniquely determined up to isotopy.) The link S1 × 0 ∪ 0 × S1, shown in
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Figure 4.30, is called a Hopf link . We now have our picture of S2×S2. The
linking matrix is [ 0 1

1 0 ] as required, and we can explicitly see a transverse
wedge of 2-spheres with product neighborhoods (by the method of proof of
Proposition 4.5.11) — compare with Figure 4.29, which is not S2×S2. (The
two obvious spheres intersect in three points.) Figure 4.31 shows another
picture of S2×S2, in which one circle goes through∞, and we see the torus
∂D− × ∂D− separating the solid tori ∂D− ×D− and D− × ∂D−.

0

0

Figure 4.31. Genus-1 Heegaard splitting of ∂(0-handle) associated to
the canonical handle decomposition of S2 × S2.

Exercise 4.6.1. ∗ Draw S3 × S1 and S2 ×̃S2.

A diagram of a boundary sum of two handlebodies is obtained by draw-
ing both handle decompositions in the same picture, separated by a plane.
A connected sum X #Y with ∂X = ∅, ∂Y �= ∅ is the same as X∗�Y ,
where X = X∗ ∪ 4-handle. Similarly, a connected sum of closed 4-manifolds
is obtained by removing both 4-handles, boundary summing and attach-
ing a single 4-handle. Now we can draw the manifolds #nS2 × S2 and
#mCP2#nCP2 (n,m ≥ 0) — enough simply connected, closed, smooth
4-manifolds to realize all possible intersection forms except for even forms
with nonzero signature. For examples in the remaining case, we will exhibit
pictures of elliptic surfaces in Section 8.3 (e.g., Figure 8.15).

Example 4.6.2. – Plumbings. Let F be a closed, possibly disconnected
or nonorientable surface, and let π : X → F be a D2-bundle over F . If
D1 and D2 are disjoint disks in F , then each π−1(Di) is a trivial bundle
Di×D2. We plumb X at D1 and D2 by identifying D1×D2 with D2×D2,
using a map that preserves the product structures but interchanges the fac-
tors. (As usual, we smooth corners.) See Figure 4.32 for the corresponding
construction with half as many dimensions. This gluing introduces a trans-
verse self-intersection in F . A plumbing is a manifold obtained by finitely
many applications of this procedure. Such a manifold is a regular neigh-
borhood of (hence, deformation retracts onto) the immersed surface coming
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from F . Conversely, for any immersed closed surface with only transverse
double point singularities in a 4-manifold, a regular neighborhood will be a
plumbing. For any plumbing P , we can form a graph (or plumbing diagram)
with a vertex for each component of F , and an edge for each plumbing that
was performed. If F and X are oriented, then we can assign a sign to each
edge (the sign of the corresponding intersection) and a pair of numbers to
each vertex (the genus and Euler number of the corresponding component),
and this data will determine P . Conversely, any such decorated finite graph
will determine a plumbing.

Figure 4.32. Plumbing.

2222222

2
2 2 2 2 2

2

2 2

Figure 4.33. E8-plumbing (negative).

We will now show how to draw a Kirby diagram for any plumbing of
spheres for which the graph is a tree. (For more general plumbings, see
Section 6.1.) The diagram generalizes that of the plumbing of two 0-framed
spheres, Figure 4.30 without the 4-handle. The generalization will have an
unknot for each vertex of the tree, and these will be linked in the simplest
possible way such that any two vertices joined by an edge form a Hopf link.
(See Figure 4.33 for the (negative) E8-plumbing , whose intersection form
is −E8.) Each framing will be the Euler number of the corresponding D2-
bundle. Each of the plumbed spheres will be visible in the picture as the core
of the corresponding 2-handle union the (pushed in) spanning disk of the
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unknot, and the cocore of the 2-handle will be a fiber of the D2-bundle. (By
the method of Proposition 4.5.11, we can verify directly that these spheres
intersect as desired, cf. Figures 4.29 and 4.30.) To prove that this picture
is correct, we use induction. We have already verified it for the case of a
single vertex. For the general case, if we add a vertex and edge (without
introducing π1 in the graph), this corresponds to plumbing the new sphere
bundle E onto a sphere represented by a certain 2-handle h in the diagram
— that is, we identify one hemisphere of the 0-section of E with the cocore
of h. It is now easy to see (as we did for S2 × S2) that this plumbing
corresponds to attaching a 2-handle along the belt circle of h, and this belt
circle is isotopic to a meridian of the attaching circle of h. The proof is
completed by observing that the new framing must be the Euler number
e(E) by Proposition 4.5.11.

Example 4.6.3. – Doubles. For a compact n-manifold X, we define the
double of X to be DX = ∂(I ×X) = X ∪id∂X

X. Similarly, for a compact
pair (X, ∂−X), the relative double D(X, ∂−X) is (X∪id∂+X

X, ∂−X). (Then

∂−D(X, ∂−X) = ∂−X ⊂ X and ∂+D(X, ∂−X) = ∂−X ⊂ X.) For example,
if X = X∗ ∪ n-handle is closed, then DX∗ = X#X, and the double of any
D2-bundle over S2 is S2 × S2 or S2 ×̃S2, depending on its Euler number
modulo 2. (This solves Exercise 4.2.6(b).) If (X, ∂−X) is given a handle de-
composition, then its double automatically inherits a handle decomposition.
(Use the given decomposition on X, and turn it upside down (dualize) on
X.) If the original decomposition is ordered by increasing index, with no
index exceeding n

2 , then the resulting decomposition will also be ordered by
increasing index.

Now suppose X is a 4-dimensional handlebody without 3- or 4-handles.
We construct a diagram of DX. (See Example 5.5.4 for the relative case.)
Clearly, DX = X ∪ handles, where each 2-handle in X generates a new
2-handle, each 1-handle generates a 3-handle and the 0-handle generates a
unique 4-handle. It suffices to understand the new 2-handles. Since DX is
formed by gluing using id∂X , and each dual 2-handle h′ is a copy of some 2-
handle h ofX with the roles of core and cocore interchanged, h′ is attached to
∂X along the belt circle of h, and the attaching map is essentially id∂D2×D2

(up to interchanging the factors of ∂D2 × D2). Thus, the core of h′ and
cocore of h fit together to create a sphere with trivial normal bundle. As
in the previous example, it follows immediately that h′ is attached along a
0-framed meridian of h. To summarize, we transform the handlebody for
X into one for DX by adding a 0-framed meridian to each link component,
then attaching 3- and 4-handles to create a closed manifold. For example,
the double of the disk bundle over S2 with Euler number n is shown in
Figure 4.34. This must be diffeomorphic to S2 × S2 for n even and to
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S2 ×̃S2 = CP2#CP2 for n odd. We will exhibit such diffeomorphisms in
Section 5.1, and also show that doubles of 4-dimensional 2-handlebodies
always decompose as #m S2 × S2 or #m S2 ×̃S2. It is also possible to
double handlebodies with 3-handles, but more work is required to reorder
the handles by increasing index as in Proposition 4.2.7.

n 0

U  4-handle

Figure 4.34. S2-bundle over S2.

Exercises 4.6.4. (a)∗ What is D(�mSk×Dn−k)? (It has a simple descrip-
tion.) What can you say about the double of a boundary sum in general?

(b)∗ Prove Theorem 1.2.33, that any finitely presented group G can be real-
ized as the fundamental group of a closed, oriented 4-manifold (or n-manifold
for any fixed n ≥ 4). Given a presentation for G, how do you construct a
Kirby diagram representing a closed 4-manifold with fundamental group G?
We will deduce from this construction (Exercise 5.1.10(c)) that there can be
no algorithm for classifying closed 4-manifolds with arbitrary fundamental
groups. For the unclassifiability of manifolds of fixed dimension n ≥ 4, see
Exercise 5.2.2(c).

Example 4.6.5. – Bundles over surfaces. We now consider bundles
π : X → F , where F is a closed, connected but not necessarily orientable
surface, X is oriented, and the fibers are D2 or S2. Since the inclusion
O(2) ↪→ Diff(D2) is a homotopy equivalence, any D2-bundle can be assumed
to have structure group O(2) as in Example 4.1.4(d) (i.e., it is the unit
disk bundle in a vector bundle with fiber R2). Similarly, the homotopy
equivalence O(3) ↪→ Diff(S2) implies that any S2-bundle is the unit sphere
bundle in some R3-vector bundle. (For these homotopy equivalences, see e.g.
Theorem 3.10.11 of [Th2].) In particular, any S2-bundle over a surface F
will be the double of a D2-bundle (since the R3-bundle will have a nonzero
section by transversality, splitting it as an R2-bundle summed with R).

First, we assume that X is a D2-bundle. Fix a handle decomposition of
F with a unique 0- and 2-handle, and hence, m = 2− χ(F ) 1-handles. (As
usual, χ denotes the Euler characteristic.) We obtain a handle decompo-
sition of X whose k-handles are the preimages under π of k-handles in F .
Since X is oriented, the union of 0- and 1-handles is determined by m. (In
fact, the bundle π : X → F is determined over F−{pt.}, since the orientabil-
ity of X implies that the bundle is twisted over a 1-handle (π0(O(2)) ∼= Z2)
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if and only if the 1-handle in F is twisted; w1(π) = w1(F ) in the language
of Section 1.4.) Now it only remains to determine the framed attaching
circle of the 2-handle in ∂(�mS1 × D3). We will compute this explicitly
in examples below. As we saw for F = S2 (Example 4.4.2), the framing
will be determined by an integer invariant called the Euler number e(X)
(which also determines the bundle structure since it is already specified over
F − {pt.}). If F is orientable, then e(X) is defined (as in Example 4.1.4(d)
or Section 1.4) to be the entry in the 1 × 1 intersection matrix of X. If F
is nonorientable, then H2(X;Z) = 0, but one can interpret e(X) as before
using homology with twisted coefficients. More geometrically, we can define
e(X) to be the self-intersection number of the 0-section F0. (To define this,
let F ′

0 be a surface transverse to F0 and isotopic to it. Then the intersections
p ∈ F0 ∩ F ′

0 have well-defined signs, since an orientation defined near p on
F0 defines one on F ′

0, and reversing both orientations preserves the sign of

p.) Alternatively, e(X) = 1
2e(X̃), where X̃ is the cover of X corresponding

to the orientable double cover of F .

The case of S2- (D3-) bundles is simpler. As before, such a bundle
π : X → F is determined over F−{pt.} (given that X is oriented). However,
the last framing lies in π1(O(3)) ∼= Z2, so for fixed F there are only two
S2-bundles π : X → F with X oriented. (These bundles are distinguished
by the fact that exactly one X is spin, or by their intersection pairings,
using Z2-coefficients if F is nonorientable.) If F is oriented, these bundles
will be X = F × S2 and F ×̃S2. In general, the two bundles will arise
as doubles of D2-bundles X ′ over F , and the resulting bundle X = DX ′

will be determined by e(X ′) modulo 2. (When e(X ′) is even, so is the
Z2-intersection pairing of X, and assuming F is orientable, X = F × S2.)

Now we draw D2-bundles X over T 2 explicitly, keeping track of the
0-section T0, beginning with the standard handle decomposition of T 2, Fig-
ure 4.35. The 0-handle of T0 lies in the 0-handle of X, and is visible in
Figure 4.36(a) as a disk whose interior has been pushed into int D4. We
attach the 1-handles of (X,T0) pairwise, i.e., attach the 1-handles of X so
that they contain the 1-handles of T0. We obtain Figure 4.36(b), where
each 1-handle is given by a pair of diametrically opposite balls, and the
gluing identifies arcs on the boundary of the 0-handle of T0 as required (cf.
Figure 4.35). Now T0 appears in Figure 4.36(b) as a punctured torus T ∗

0

in S1 × D3 � S1 × D3, bounded by the given circle. Since the attaching
circle of the 2-handle must be this same circle ∂T ∗

0 , we are done once we
specify the framing. Although we have not yet defined framing coefficients
for circles running over 1-handles, we can do so in this case by taking 0 to
represent the blackboard framing in the given diagram, or equivalently, de-
fining the coefficient n to be the intersection number of a parallel curve with
the obvious punctured-torus Seifert surface. (In fact, the latter definition
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is isotopy-invariant; see Section 5.4.) We immediately see (as in the proof
of Proposition 4.5.11) that n = e(X). Note that T0 is clearly visible as T ∗

0

union the core of the 2-handle, and the cocore of the 2-handle represents a
fiber of π : X → T 2.

0 1

1 2

Figure 4.35. Handle decomposition of T 2.

n
n

(a) (b)

T0

Figure 4.36. D2-bundle over T 2 with Euler number n.

Exercises 4.6.6. (a)∗ Visualize the fibration of T 2×D2 (Figure 4.36 with
n = 0) by tori T 2 × {pt.}.
(b)∗ Draw pictures of arbitrary D2- and S2-bundles over orientable surfaces,
and prove your answer correct. Do the same for a plumbing of two D2-
bundles over T 2.

Finally, we consider disk bundles X over RP2. We proceed as before,
beginning with the standard decomposition of RP2 in Figure 4.37. Since
the 0-handle of the 0-section F0 must be glued to itself with a half-twist, we
obtain Figure 4.38, with the framing on the 2-handle still to be determined.
The 0-section F0 is visible as a Möbius band F ∗

0 in S1 ×D3, together with
the core of the 2-handle. It is more delicate to deal with framings now,
since the attaching circle K is not nullhomologous in S1×S2. Our previous
argument still shows that the framing coefficient on K should equal e(X),
provided that we define coefficients by declaring that the outward normal v
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1

2

0

Figure 4.37. Handle decomposition of RP2.

nm

(a) (b)

or

Figure 4.38. D2-bundle over RP2 with Euler number m− 2 = n+ 2.

to the Möbius band should determine the 0-framing. (The argument works
even though the normal bundle νF ∗

0 is nontrivial, since it still has a trivial
summand. Specifically, we form a parallel copy of F ∗

0 bounded by a curve
K ′ determined by v, by dropping K ′ below the level of F ∗

0 in D4, and then
filling in the Möbius band.) Defining v to be 0 is not a natural convention,
however — even in S3, nonorientable Seifert surfaces may not determine
the 0-framing. (See Exercise 4.5.9.) A better convention in Figure 4.38 (see
Section 5.4) is to generalize Proposition 4.5.8, defining the coefficient of the
blackboard framing to equal the writhe w(K), +1 and −1 in Figure 4.38(a)
and (b), respectively. (Beware that the isotopy from (a) to (b) (by flipping
one strand around a ball) does not preserve the 0-framing!) Now we can
measure any framing by counting undercrossings, and the coefficient of v is
+2 and −2 in (a) and (b), respectively. Thus, Figure 4.38 represents a given
X if m = e(X) + 2 and n = e(X)− 2.

Exercises 4.6.7. (a) Verify directly that form,n = e±2 as above (e fixed),
the manifolds of (a) and (b) of Figure 4.38 are diffeomorphic. (Isotope one
picture to the other, using the double-strand notation (Figures 4.18–4.20)
for framings.) Generalize to a picture with any odd number of half-twists.

(b) Draw a picture for any oriented 4-manifold arising as aD2- or S2-bundle
over a nonorientable surface.

Example 4.6.8. – Products with 3-manifolds. We give procedures for
constructing diagrams for I × M3 and S1 × M3. (The latter generalizes
to M3-bundles over S1. For a different approach, see Exercise 6.2.5(b) or
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U  3-handle

blackboard framing

Figure 4.39. I × L(5, 1).

U  3-handle

0

0

0

U  3-handle

0

0

0

Figure 4.40. I × T 3.

[A6].) We saw in Section 4.3 that any handle decomposition of a 3-manifold
M can be given by a diagram in R2. To obtain the corresponding handle
decomposition of I ×M , simply cross the diagram with I to get a Kirby
picture in I × R2 ⊂ R3. For example, Figure 4.39 shows I × L(5, 1) (cf.
Figure 4.14), and Figure 4.40 shows I × T 3 (cf. Exercise 4.3.1(a)). (In the
latter figure, one 1-handle is added at 0 and ∞, with the spheres identi-
fied by a radial contraction.) The 2-handles will always be framed by the
blackboard framing, coming from the unique framing of the corresponding
attaching circle in R2. To see this construction more clearly, recall that
R2 ∪ {∞} = ∂D3, so I × R2 represents I × ∂D3 ⊂ I × D3 = D4. The re-
maining boundary of D4, {0, 1}×D3 ⊂ I ×D3, is given by the two balls Di

(oppositely oriented) obtained by one-point compactifying the components
of R3−(int I×R2). If M is closed, then R2 is filled by attaching regions (in-
cluding the 3-handle boundary), and I ×R2 will also be filled, i.e., the part
not in I × (diagram) is part of the attaching region of the 3-handle. Thus,
∂(I ×M) is seen as the two balls Di, together with the parts of the handles
lying over {0, 1}×R2. These parts comprise 3-dimensional handles added to
the balls Di by the original diagram, so we see directly that the boundary of
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U  2  3-handles
 4-handle

0

blackboard framing

Figure 4.41. S1 × L(5, 1).

our 4-dimensional handlebody is M
∐

M . (We will discuss boundaries more
generally in Section 5.2.)

We now turn to S1 ×M . Since S1 = 0-handle ∪ 1-handle, S1 ×M will
inherit a handle decomposition, with each k-handle of M generating a k-
and a (k + 1)-handle. We have just described the subhandlebody coming
from the 0-handle of S1, so we only need to determine how a k-handle h of
M generates a (k+1)-handle h′ of S1×M . If h has core C, then h′ has core
(S1 ×C)− (int I)×C and attaching sphere {0, 1} ×C ∪ (S1 − int I)× ∂C,
and h′ has the effect of gluing h×{0} to h×{1}. The 0-handle generates a
1-handle whose attaching region is D0∪D1. For convenience, we will shrink
these balls to standard size. (See Figure 4.41.) Then one ball will lie in each
boundary component of I×M if M is closed. Each 1-handle of M generates
a 2-handle, whose attaching circle is made from {0, 1} × C (where C is the
core of the 1-handle) by connecting {0}×∂C to {1}×∂C with product arcs
in the new 1-handle. In fact, the union of the 0-handle, old and new 1-handle
and the 2-handle is a copy of T 2 ×D2, generated from 0-handle ∪ 1-handle
≈ S1×D2 inM3. Thus, the framing on the 2-handle is the one determined by
the punctured torus Seifert surface. Since the remaining handles of S1 ×M
have index ≥ 3, the construction is now complete. We obtain Figures 4.41
and 4.42. (Again, one 1-handle in Figure 4.42 is attached at ∞.)

Exercises 4.6.9. (a) Find four ways of identifying Figure 4.42 as S1×T 3.
Find six copies of T 2 in the figure. Find three plumbings of pairs of copies
of T 2 ×D2.

(b) Verify that the graph in S3 given by Figure 4.42 represents the inter-
section of S3 with the four coordinate axes and six coordinate 2-planes in
R4. Use this for a different proof that the diagram represents T 4. (Hint :
See Exercise 4.3.1(a).) Where are the attaching spheres of the 3-handles?

(c) Use the method of Example 4.6.8 to verify the correctness of our previ-
ous pictures of F ×D2, F oriented (Exercise 4.6.6).
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U  4  3-handles
 4-handle

0

0

0

0

0

0

Figure 4.42. T 4.

(d)∗ Draw a handle picture of I×RP3. (See Exercise 4.3.1(a).) Explain the
similarity with Figure 4.38. What is the corresponding value of e(X) given
by Figure 4.38? Why?

                

                                                                                                               



                

                                                                                                               



Chapter 5

Kirby calculus

In Section 4.2, we introduced a complete set of moves for handlebodies,
namely handle pair creation/cancellation and handle sliding, which (to-
gether with isotopies) are sufficient for getting between any two relative
handle presentations of a given pair (X, ∂−X) (Theorem 4.2.12). We begin
this chapter with a section describing these moves in the context of Kirby di-
agrams, as well as the operations of blowing up and down that we introduced
in Section 2.2. These Kirby moves are the basic tools of Kirby calculus. In
the next two sections, we study the boundaries of handlebodies, leading to
surgery and related constructions. These constructions allow us to study
3-manifolds with the techniques of Kirby calculus. They also facilitate our
introduction of new notation for 1-handles (Section 5.4), with which we can
eliminate the ambiguity of framing coefficients that we encountered in the
presence of 1-handles in Chapter 4. In Section 5.5, we use surgery on 3-
manifolds to develop Kirby diagrams for relative handlebodies (X4, ∂−X4).
Finally, we return to spin structures, studying them in arbitrary dimensions
from the perspective of handlebodies (obstruction theory) in Section 5.6, and
then specializing to dimensions 3 and 4 with Kirby calculus in Section 5.7.

5.1. Handle moves

We begin with handle sliding (Definition 4.2.10). Given a pair of handles h1
and h2 of the same index k attached to a manifold Y , we isotope the attach-
ing sphere for h1 in ∂(Y ∪h2), sliding it along a disk Dk×{pt.} ⊂ ∂h2 (where
h2 = Dk×Dn−k), and returning it to ∂Y . For example, Figure 5.1 shows a 1-
handle slide on a 2-manifold, which proves (after we attach a 2-handle) that
the Klein bottle is diffeomorphic to RP2#RP2 (Exercise 4.2.11). Note that
the handle slide changed the attaching sphere of h1 (unlinked it from that of

139
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Figure 5.1. Handle slide — S1×̃S1 ≈ RP2 #RP2.

Figure 5.2. 1-handle slide.

h2), and also changed the framing (which in this case is a well-defined ele-
ment of π0(O(1)) ∼= Z2), since it no longer respects the orientation of D2. It
is also easy to draw 1-handle slides in Kirby diagrams. One simply takes one
attaching ball of h1 and pushes it through the 1-handle h2 as in Figure 5.2
(where the attaching balls of each 1-handle are aligned vertically). One can
keep track of framings in the obvious way using the double-strand notation.
(See Section 5.4 for defining and keeping track of framing coefficients in this
setting.)

Exercise 5.1.1. Figure 5.3 shows a D2-bundle over the Klein bottle. Prove
(by Kirby calculus) that it is aD2-bundle over RP2#RP2. How do the Euler
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n

Figure 5.3. D2-bundle over Klein bottle with Euler number n.

Figure 5.4. 2-handle slide.

numbers correspond? (The coefficient of the blackboard framing is taken to
be w(K) = −1.)

Sliding 2-handles requires a bit more work. Figure 5.4 shows how the
core disks move in the 3-dimensional case. In the 4-dimensional version, 2-
handles h1 and h2 will be attached along framed knotsK1 andK2. A parallel
curve K ′

2 determining the framing on K2 will bound a disk D2 × {pt.} ⊂
∂(Y ∪ h2); in fact, the framing determines arbitrarily many such parallel
curves bounding disjoint disks. We slide h1 by isotoping K1 over one such
disk. In practice, this means we form a band-sum of K1 and K ′

2, i.e., we
form the connected sum along some band as in Figure 5.5. Since we may
precede the slide by any isotopy, we are allowed to use any band disjoint
from the rest of the link, and the choice will affect the resulting link. If K1

and K2 are oriented, we call the move a handle addition if the sum respects
the orientations of K1 and K ′

2, and a handle subtraction otherwise.

We still need to determine the new framing of h1. The most elementary
and general way to do this is with the double-strand notation. One simply
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2

K2K1

2

5

5

3

2
add subtract

Figure 5.5. 2-handle slides.

2

3

3 2

5

Figure 5.6. Change of framing under a handle slide.

isotopes both strands over parallel disks in ∂h2 by making two parallel band-
sums as in Figure 5.6 (which justifies the addition in the previous figure).
If our 2-handles are attached to D4, however, it is easier to use framing
coefficients. Recall that if we orient the framed link L representing a 2-
handlebody X, then we obtain a canonical basis α1, . . . , αm for H2(X), and
the intersection form is given with respect to this basis by the linking matrix
of L (Proposition 4.5.11). Now observe that if we slide hi over hj, then we
change the basis for H2(X) by replacing αi by α′

i = αi ± αj , adding or
subtracting depending on whether we add or subtract handles (Figure 5.7).
(Thus, changing the band by a half-twist reverses the sign, and the formula
is otherwise independent of the choice of band.) Now the new framing
coefficient will be given by

(∗) (αi ± αj)
2 = α2

i + α2
j ± 2αi · αj = ni + nj ± 2�k(Ki,Kj),
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'2 2

'1 1 2

1

1 2

2

Figure 5.7. Change of basis induced by handle addition.

where nk is the framing coefficient of Kk, and the sign is (+) for handle
addition and (−) for subtraction. Note that this is independent of our choice
of orientation of L (as the double strand notation implies), since changing
the orientation of either Ki or Kj will change both the linking number and
the sign appearing in the formula. This formula can also be applied in the
presence of 1-handles; see Section 5.4.

Exercises 5.1.2. (a) Check Formula (∗) by using the double-strand nota-
tion. How does the linking number come in?

(b)∗ Show that any handle slide can be followed by another slide that re-
verses it. Describe the reversing slide explicitly, and check that the framing
coefficients transform as required.

(c)∗ Give an algorithm for simultaneously sliding many strands of one at-
taching curve over another one and computing the resulting framing, as in
Figure 5.8. (Check the figure.) In particular, what happens to the framing
when the signed number of strands is 0?

1 1

2 2

Figure 5.8. Multiple handle slide.
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n 0 0

n 2

n 2

0

Figure 5.9. Diffeomorphism of S2-bundles over S2.

Examples 5.1.3. (a) Consider an S2-bundle over S2 realized as the dou-
ble of the disk bundle with Euler number n, Figure 5.9 with a 4-handle
added. If we subtract handles as shown, we will recover a Hopf link, but
n will be reduced by 2. This gives a direct proof that the diffeomorphism
types of these manifolds only depend on n modulo 2. Note that instead of
applying Formula (∗), we can keep track of the entire linking matrix: We
start with [ 0 1

1 0 ], then the change of basis subtracts the second row from the
first, followed by the same operation on columns, and we obtain

[
n−2 1
1 0

]
.

This can be a useful technique when the algebra guides the topology.

(b) The slide indicated in Figure 5.10 shows that S2 ×̃S2 is diffeomorphic

to CP2#CP2. This slide is suggested by diagonalizing the matrix [ 0 1
1 1 ].

Compare with S1 ×̃S1, Figure 5.1.

1

1

10

1

1

Figure 5.10. S2 ×̃S2 is diffeomorphic to CP2#CP2.

Proposition 5.1.4. Let X4 be a handlebody given by a Kirby diagram. Sup-
pose that K1 and K2 are attaching circles in the diagram such that K1 lies
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K2

K1

0

0

0

Figure 5.11. Changing a crossing by a handle slide.

entirely in ∂D4 and K2 is a 0-framed meridian of K1 (i.e., K2 bounds a
disk in ∂D4 intersecting the link in a single transverse intersection with
K1). Then X = Y #S, where Y is obtained from X by erasing K1 and K2,
and S equals S2 × S2 if the framing coefficient n of K1 is even and S2 ×̃S2

otherwise.

Proof. By Figure 5.11, we can change any undercrossing of K1 to an
overcrossing. In the case of a self-crossing, n will change by 2, and otherwise
all framings will be unchanged. We can use this procedure to bring K1 and
K2 entirely in front of the rest of the picture, and then to unknot K1. Then
we can isotope K1 and K2 away from the rest of the diagram, where they
form an S2-bundle summand as in Figure 5.9.

Corollary 5.1.5. Let X4 be a handlebody without 1-handles and with an
odd intersection form QX . Then X#S2 × S2 and X#S2 ×̃S2 are diffeo-
morphic.

Proof. Since X has an odd intersection form, its Kirby diagram has a
component K with odd framing. Sum X with S2×S2 by adding a 0-framed
Hopf link to the diagram, and slide one component of this over K, so that
its framing becomes odd. Now apply Proposition 5.1.4.

This corollary is a special case of a theorem of Wall; see Proposition 5.2.4.

Corollary 5.1.6. Let X4 be a 2-handlebody with m 2-handles. Then
the double DX is diffeomorphic to #mS2 × S2 if QX is even, and to
#mCP2#mCP2 otherwise. In particular, if Y is a closed 4-manifold built
without 1- or 3-handles, then Y #Y admits such a connected sum splitting.

Again, examples of such manifolds Y include Sd and E(n)p, and it is not
known if all closed, simply connected 4-manifolds have such handle decom-
positions. For more on connected sum splittings, see Theorem 9.1.15 and
the associated text (cf. also Exercise 5.1.10(b)).
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Figure 5.12. Cancelling handle pair.

Exercises 5.1.7. (a) Prove Corollary 5.1.6.

(b)∗ Prove that Proposition 5.1.4 is still true if K1 is allowed to run over 1-
handles, provided that it is nullhomotopic in the boundary of the unionX1 of
0- and 1-handles. Is it still true if K1 is only required to be nullhomologous?

Next, we consider handle cancellation. Recall (Proposition 4.2.9 and
Figure 4.7) that a (k − 1)-handle and a k-handle can be cancelled if the
attaching sphere of the latter intersects the belt sphere of the former trans-
versely in a unique point (regardless of framings). For k = 2, this is shown
in Figure 5.12. The cancellation consists of erasing both handles. Note that
since there is a unique isotopy class of framed embeddings of an interval
in any 3-manifold, there is essentially a unique way to draw a cancelling
1-handle/2-handle pair. That is, we can unknot the attaching circle and
slide it off of any other 1-handles by an isotopy in ∂X1. The only com-
plication occurs when there are other 2-handles running over the 1-handle
(Figure 5.13, with the framing indicated by double-strand notation). If this
occurs, we can reduce to the previous case by sliding the extra handles over
the 2-handle that we wish to cancel, removing them from the 1-handle (and
then untangling and erasing the cancelling pair as before).

n

n

Figure 5.13. Cancelling handle pair.

Exercises 5.1.8. (a) Verify the equivalence in Figure 5.13. (Remember
that handle slides can be performed simultaneously, Exercise 5.1.2(c).)
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(b) Show that if we attach two 2-handles to T 2 × D2 as in Figure 5.14
(with framing coefficients given relative to the blackboard framings), we get
a 2-handlebody on a 0-framed (right-handed) trefoil knot (Figure 4.27). (To
compute the framings easily, see Exercise 5.1.2(c).)

1

1

0

Figure 5.14. T 2 ×D2∪ two 2-handles.

U  3-handle

0

Figure 5.15. Cancelling handle pair.

A model for a cancelling 2-handle/3-handle pair is shown in Figure 5.15.
The 3-handle is attached to the obvious S2 in ∂(D4∪2-handle) = ∂(S2×D2),
which intersects the belt sphere of the 2-handle (a meridian, i.e., {pt.}×S1)
in a unique point, as required. We cancel by erasing both handles. In fact,
any cancelling 2-3 pair can be made to look like Figure 5.15 by suitably
sliding the 2-handle. To see this, suppose that X is an arbitrary handlebody
with a cancelling 2-3 pair. Then we can assume that the attaching sphere of
the 3-handle intersects the cancelling 2-handle h in D2×{pt.} ⊂ D2×∂D2.
The complementary disk D of the attaching sphere will be embedded in ∂Y ,
where Y is the union of D4 with the 1,2-handles other than h, with ∂D
sharing a tubular neighborhood ν∂D = νK with the attaching circle K of
h (cf. the 1-2 pair given by Figure 5.12). We can arrange D to lie in ∂D4 by
precomposing the embedding D ↪→ ∂Y with an isotopy radially shrinking
D, and extending to an ambient isotopy in ∂Y , dragging along K ⊂ ν∂D.
This isotopy in ∂Y will appear in the diagram as a sequence of handle slides
by K. After the slides, D will appear in ∂D4 as a spanning disk to K as in
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Figure 5.15 (with no other 1,2-handles intersecting the picture), where the
framing must be 0 since ∂D bounds D2 × {pt.} ⊂ ∂h.

There is also a converse that allows us to cancel 0-framed unknots. Sup-
pose that X is an orientable handlebody with ∂+X = ∅, and that we have
located a 2-handle h attached to a 0-framed unknot in ∂D4 that is isolated
from the rest of the diagram. If Y = D4 union the 1,2-handles other than
h, then ∂(Y ∪h) is diffeomorphic to #m S1×S2 (since ∂+X = ∅). Clearly,
h determines an S1 × S2-summand of ∂(Y ∪ h). By uniqueness of prime
connected-sum decompositions of oriented 3-manifolds [He], it follows that
∂Y = #(m−1) S1×S2. Thus, we can make a closed manifold Z from Y ∪h
by first cancelling h and then adding other 3,4-handles. By uniqueness of
3,4-handle addition Z is diffeomorphic to X, and there is a 3-handle in X
that cancels h (after 3-handle slides). Thus, when ∂+X = ∅, any time we
find an isolated 0-framed unknot in the diagram we can cancel it against a 3-
handle. If ∂+X is nonempty but connected and X is simply connected (with
at least one 3-handle), we obtain a similar result from [Tr]. Summarizing,
we have the following:

Proposition 5.1.9. Let X be an oriented handlebody with ∂+X = ∅. Then
a 3-handle can be cancelled (after sliding 2- and 3-handles) if and only if it is
possible to slide 2-handles to obtain a 0-framed unknot isolated from the rest
of the diagram. If so, then we cancel by erasing the unknot and 3-handle.
Similarly, if ∂+X is connected and X is simply connected, then erasing an
isolated 0-framed unknot and 3-handle will preserve the diffeomorphism type
of the manifold X.

In practice, it can be quite difficult to apply this proposition, since it gives
no clue as to how to slide the 2-handles.

Exercises 5.1.10. (a)∗ Identify the familiar closed manifold shown in Fig-
ure 5.16. Check your answer by computing the intersection form.

U  3-handle

4-handle0

Figure 5.16. Identify this 4-manifold.
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(b)∗ Let X be a handlebody of the form D4∪ (� 1-handles)∪ (m 2-handles).
Prove that if X is simply connected, then DX# �S2 × S2 is diffeomorphic
to #mS2×S2 or #mCP2#mCP2. (Hint : For each 1-handle h in X, there
is a knot K in ∂X such that attaching a 2-handle to X along K cancels h.
What does the π1-condition imply about K?)

(c)∗ Prove Markov’s theorem that there exists no algorithm that can be
applied to arbitrary pairs of closed, orientable 4-manifolds to determine
whether or not they are diffeomorphic. Use the fact ([Ad], [Ra], see also
[Mi]) that there is no algorithm that can be applied to arbitrary finite group
presentations to determine whether they present the trivial group. (Hint :
Apply (b) above to Exercise 4.6.4(b).)

(d)∗ Let P be a presentation of the trivial group with the same number
of relators as generators. Then we can manipulate P by Andrews-Curtis
moves, namely inversion and permutation of generators and of relators, con-
jugation of relators by generators, multiplying one generator (resp. relator)
by another one, and adding or deleting a generator g together with a re-
lator equal to g. (Recall that relators are elements of the free group on
the generators, normally generating the kernel of the epimorphism to the
desired group. They are determined up to Andrews-Curtis moves by a com-
plete set of relations, by writing the relations in the form relator = 1.) It
is easy to see that Andrews-Curtis moves do not change the (trivial) group
presented by P . Suppose that P is Andrews-Curtis trivial , i.e., it can be
reduced to the empty presentation by Andrews-Curtis moves. Prove that
the closed 4-manifold constructed using P in Exercise 4.6.4(b) (the double
of a handlebody realizing P ) is diffeomorphic to S4.

Remark 5.1.11. The Andrews-Curtis Conjecture, that any P as above
(presenting the trivial group with the same number of generators as re-
lators) should be Andrews-Curtis trivial, is still unresolved, but there are
many likely counterexamples. For example, for presentations of the form
〈x, y | y = w−1xw, xn+1 = yn〉, where w is any word in x±1 and y±1,
even the simple cases w = yx, n ≥ 3, are not known to be Andrews-Curtis
trivial. (Check for yourself that the cases n = 0, 1 are AC-trivial, as are
the cases w = xkyl for all n. The case w = yx, n = 2 is also triv-
ial by [Ge].) However, these presentations always give the trivial group,
since the element xn+1 (being equal to yn) commutes with both genera-
tors, so yn+1 = (w−1xw)n+1 = w−1xn+1w = xn+1 = yn. The manifolds
DXP associated to conjecturally AC-nontrivial presentations P by Exer-
cise 4.6.4(b) are candidates for exotic 4-spheres. (They are homeomorphic
to S4 by Freedman’s Theorem 1.2.27 since they are simply connected with
Euler characteristic 2, but are not generally known to be diffeomorphic to
S4.) Note, however, that even when P is not known to be Andrews-Curtis
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trivial, it is sometimes possible to trivialize the handle decomposition of XP

(if ∂XP = S3) by introducing a cancelling 2-handle/3-handle pair (introduc-
ing a new relator with no corresponding generator). This is done for w = yx
(for example) in [G8].

1

1

1

1

1

Figure 5.17. Blowing up.

Finally, we consider the effect of blowing up on Kirby diagrams. Re-
call (Section 2.2) that this consists of taking a connected sum with CP2, or
sometimes with CP2 in the smooth setting. In its simplest form, the blow-
up operation consists of adding a ±1-framed unknot to a diagram (without
linking it). To obtain the general case, we then slide handles over the new
unknot as in Figure 5.17. In this form, the operation consists of choosing
some strands of the attaching circles, putting a full ±1 twist in the bunch,
and then drawing a ±1-framed unknot around the twist. (We choose the
signs consistently throughout, with the top sign corresponding to CP2 and
the bottom one to CP2.) If an attaching circle has k strands in the bunch
(counted with sign), its framing will increase by ±k2 (by Exercise 5.1.2(c)).
The change in linking numbers of the strands corresponds to the change in
intersection number when we blew up an intersection point of two surfaces in
Section 2.2. The reverse operation, blowing down, is shown in Figure 5.18.
We start with any ±1-framed unknot K in our diagram, and remove it after
applying a ∓1 twist to all curves running through it, adding ∓(�k(K,Ki))

2

to the framing of each component Ki (cf. Figure 5.8). This procedure shows
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that any ±1-framed unknot in a link diagram (possibly linking other com-

ponents) represents a CP2 (CP2) summand, and shows how to obtain the
complementary summand (cf. Proposition 2.2.11).

1
1

Figure 5.18. Blowing down.

The blow-up operation is useful in settings where we are allowed to
change our 4-manifold by sums with CP2 or CP2. For example, nontriv-
iality of the Seiberg-Witten invariants is preserved under sum with CP2

(Theorem 2.4.9). Blowing down is useful for simplifying connected sums

with CP2 or CP2. For example, many simply connected complex surfaces
S have the property that S#CP2 ≈ #mCP2#nCP2 (Theorem 9.1.15), as
one can sometimes show by blowing up and down. (See Exercise 8.3.4(d)
for the example S = E(n).) Another important application is when we are
mainly interested in the 3-manifold bounding the handlebody, which does
not change under blowing up and down (since the connected sum occurs
in the interior of the 4-manifold). We will examine this application more
closely in Section 5.3, where we will see that blowing up and down provide
a complete set of moves reducing the theory of closed, oriented 3-manifolds
to that of link diagrams. Some useful moves with blow-ups include revers-
ing crossings in a link diagram (Figure 5.19), undoing clasps (Figure 5.20)
and changing the sign of a clasp (Figure 5.21, which is taken from [Kp]).
(The framing changes in Figures 5.19 and 5.21 are given for the case of self-
crossings of a knot, oriented as shown.) Compare Figure 5.19 with Proposi-
tion 2.3.5. Note that Figure 5.20, followed by blowing down the rightmost
circle, shows again that S2 × S2 #CP2 ≈ S2 ×̃S2 #CP2 ≈ CP2#2CP2

(cf. Exercise 4.2.6(b)), with the last diffeomorphism obtained by blowing
down the left diagram when n = 1. In fact, this is a translation into Kirby
calculus of the corresponding algebro-geometric proof for CP1-bundles over
CP1 (which are classified as complex surfaces by the integer |n| (cf. Theo-
rem 3.4.8) but are all equivalent to CP2 up to holomorphically blowing up
and down). Note that the effect of the blow-up was to make the two spheres
disjoint (changing their self-intersection).
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1

4

1
1

4

1

n

n n n n

n

Figure 5.19. Blowing up to reverse a crossing.

n 0 1

1

n 1

Figure 5.20. Blowing up to undo a clasp.

1

n 9n

Figure 5.21. Blowing up to reverse a clasp.

Exercises 5.1.12. (a)∗ Let P denote the (negative) E8-plumbing, Fig-
ure 4.33. (This is actually the same as the Milnor fiber Φ(1) that we en-
countered in Section 3.1. There are copies of P embedded in elliptic surfaces
E(n)p1,... ,pk and many other complex surfaces, cf. Chapters 7 and 8.) Let Q
be the 2-handlebody on the left-handed trefoil knot shown in Figure 5.22.
Prove that P #CP2 ≈ Q#CP2#7CP2. (Hint : Blow up along a meridian

                

                                                                                                               



5.2. Surgery 153

Figure 5.22. 4-manifold bounded by the Poincaré homology sphere.

at the end of the long arm of the E8-plumbing. This creates a −1 that you
can blow down.) What happens if you change the length of the long arm
of the E8-graph (leaving all coefficients −2)? The 3-manifold ∂P = ∂Q is
called the Poincaré homology sphere. See [KSc] for other descriptions of
this ubiquitous manifold.

(b)∗ Let L and L′ be framed links in R3, and suppose L′ is obtained from L
by a handle slide. Prove that L′ can also be obtained from L by a sequence
of blow-ups and blow-downs. (Hint : First do the case of sliding over a +1-
framed unknot as in Figure 5.23. Then obtain the general case by Figure 5.19
and blowing up meridians.) This is due to Fenn and Rourke [FR]. Note
that the assertion is false if we replace R3 by a more general 3-manifold —
for example, if we are sliding over a homologically nontrivial curve.

1slide

Figure 5.23

5.2. Surgery

To understand boundaries of handlebodies, we consider surgery theory . (For
more applications of this theory in high dimensions, see e.g., [Br].) When
we add a handle to a manifold, what happens to its boundary? The interior
of the attaching region disappears into the interior of the new manifold, and
it is replaced by the rest of the boundary of the handle. This motivates the
following definition. For uniformity of notation, we define the −1-sphere
S−1 to be ∂D0 = ∅.
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Definition 5.2.1. Let ϕ : Sk → Mn (−1 ≤ k ≤ n) be an embedding of
a k-sphere in an n-manifold, with a (normal) framing f on ϕ(Sk) (which
we assume lies in int M). Then the pair (ϕ, f) determines an embedding
ϕ̂ : Sk ×Dn−k → M (uniquely up to isotopy), and surgery on (ϕ, f) is the
procedure of removing ϕ̂(Sk× int Dn−k) and replacing it by Dk+1×Sn−k−1,
with gluing map ϕ̂|Sk × Sn−k−1.

The smooth manifold obtained by surgery on (ϕ, f) is uniquely determined
up to diffeomorphism by the isotopy class of (ϕ, f) (and an isotopy of
(ϕ, f) determines a diffeomorphism up to isotopy). For k ≤ 3, any self-
diffeomorphism of Sk is isotopic either to the identity or a reflection, so in
this case it suffices to specify the image of ϕ, and we talk about surgery on
a sphere in M with framing f .

There are several relations between surgery and attaching handles. As
we have seen, attaching a handle to (X, ∂−X) has the effect of surgery on
∂+X, and conversely any surgery on a closed manifold M is realized as
∂+(I ×M ∪ h) where h is attached by (ϕ, f). In particular, for closed, un-
oriented manifolds M1 and M2, we can transform M1 to M2 by a sequence
of surgeries if and only if there is a compact, unoriented manifold whose
boundary is M1 ∪M2. Similarly, closed, oriented manifolds M1 and M2 are
oriented cobordant , i.e., there is a compact, oriented manifold with boun-
dary M1 ∪M2 (cf. Chapter 9), if and only if M1 can be transformed to M2

by surgeries such that each surgery on a 0-sphere preserves orientations (Ex-
ercise 5.2.2(d)). A different relation with attaching handles is that surgery
on ϕ : Sk → Mn can be interpreted as attaching a (k + 1)-handle and an
n-handle to the complement of ϕ̂(Sk × int Dn−k) in Mn (by turning the
obvious handle decomposition of Dk+1×Sn−k−1 upside down). The (k+1)-
handle attaches to ϕ̂(Sk × {pt.}) with the product framing induced by the
embedding ϕ̂.

Note that surgery onM produces a manifold with a canonical embedding
of Dk+1×Sn−k−1. If we surger on this framed Sn−k−1, we recover M . This
corresponds to turning the relative handlebody I ×M ∪h upside down. We
call this procedure reversing the surgery .

Exercises 5.2.2. (a) Draw surgeries and their reversals for all choices of
k, n ≤ 2 (cf. Exercise 4.1.2). What is surgery on S−1? (Answer: Disjoint
union with Sn.) Try to visualize the n = 3 case. Describe connected sum-
ming as surgery.

(b)∗ Prove that for any smooth (proper) embedding Nk ↪→Mn of manifolds
of dimensions n and k, the inclusion map i : M − N ↪→ M induces an
isomorphism on π1 for k ≤ n − 3 and an epimorphism for k = n − 2. In
the latter case, show that ker i∗ is generated by meridians of N (attached
somehow to the base point). (Hint : Any continuous map between smooth
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manifolds can be approximated by a smooth map homotopic to it. Now use
transversality.)

(c)∗ Fix n ≥ 4. Use surgery to prove that any finitely presented group
G is the fundamental group of a closed, oriented n-manifold. Why is this
construction the same as in Exercise 4.6.4(b)? Rework Exercise 5.1.10(c)
in this language (n ≥ 4). (See Example 4.1.3.) Prove that any n-manifold
constructed by this procedure from an Andrews-Curtis trivial presentation
will be diffeomorphic to Sn (Exercise 5.1.10(d)).

(d) Prove the above statements relating cobordism (oriented or not) and
equivalence up to surgery.

Proposition 5.2.3. Let M be an n-manifold (not necessarily compact) with
n ≥ 4, and let C be a nullhomotopic circle embedded in M . Then any surgery
on C produces a manifold diffeomorphic to M #S, where S is one of the
two Sn−2-bundles over S2 (with structure group O(n− 1)).

Proof. Write M = M #Sn, and let C0 ⊂ M #Sn be the circle ∂D2 × 0 ⊂
∂(D2 × Dn−1) = Sn. Since C is nullhomotopic, it is homotopic to C0.
But homotopic embedded circles in an n-manifold with n ≥ 4 are isotopic
(Example 4.1.3). Thus, we can assume C = C0, and surgery on C produces
M #S, where S is obtained by surgering Sn on C0. But S = ∂(Dn+1 ∪ h),
where h is a 2-handle attached to C0 in Sn = ∂Dn+1, and Dn+1 ∪ h is a
Dn−1-bundle over S2 (Example 4.1.4(d)).

When M is spin, the two manifolds M #S2×Sn−2 and M #S2 ×̃Sn−2

are different (Exercise 5.6.8(b)), since the latter one has no spin structure.
(In fact, 〈w2, α〉 �= 0, where α is the homology class of the section of S2×̃Sn−2

determined by the north pole of each fiber. See Section 1.4 or 5.6 for further
discussion of spin structures and w2. A simply connected 4-manifold M
is spin if and only if QM is even.) When M is not spin, however, these
manifolds may be the same, by the following (which is essentially due to
Wall [W2]).

Proposition 5.2.4. Let M be a simply connected n-manifold with n ≥ 4.
If M is not spin, then M #S2 × Sn−2 is diffeomorphic to M #S2 ×̃Sn−2.

Proof. Since M is simply connected, we have H2(M ;Z2) ∼= H2(M ;Z)⊗ Z2

(Universal Coefficient Theorem) and H2(M ;Z) ∼= π2(M) (Hurewicz Theo-
rem), so every element of H2(M ;Z2) is represented by an immersed sphere
(which we can assume is embedded if n > 4). Since w2(M) �= 0, it has
nonzero value on some 2-sphere Σ, whose normal bundle is twisted (and has
odd Euler number if n = 4, cf. Exercise 6.1.1(a)). Now M #S2×Sn−2 is ob-
tained from M by surgery on a circle C bounding some 2-disk D ⊂M , with
framing determined by the unique normal framing of D, and M #S2 ×̃Sn−2
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is obtained by surgery on C with the other framing. If we take D to be
the north polar cap of Σ, then isotoping C over Σ to the south polar cap
(avoiding collisions at double points when n = 4 as in Example 4.1.3) will
interchange the framings.

Example 5.2.5. Setting n = 4, we see (yet again) that S2 × S2 #CP2 ≈
S2 ×̃S2 #CP2 ≈ CP2#2CP2. We see that we can replace CP2 by any sim-
ply connected, nonspin manifold. (We proved this for manifolds without
1-handles in Corollary 5.1.5.) A corollary of Proposition 5.2.3 and Ex-
ercise 5.2.2(b) is that if F ⊂ M4 is any embedded sphere with a trivial
normal bundle in a 4-manifold, and if a meridian of F is nullhomotopic in
M − F , then we can split M as N #S2 × S2 or N #S2 ×̃S2, with F a
fiber of the bundle. (Surger out F , then reverse the surgery.) Compare
with K2 in Proposition 5.1.4 and Exercise 5.1.7(b). Note that the condi-
tion on the meridian of F is satisfied if and only if there is an immersed
sphere in M intersecting F transversely in a single point. (In particular,
[F ] ∈ H2(M ;Z)/torsion must be nonzero.)

Exercises 5.2.6. (a) By reducing dimensions in the proof of Proposi-
tion 5.2.4, construct an analogous argument to show that for any surface
F , F #S1 × S1 ≈ F #S1 ×̃S1 if and only if F is nonorientable.

(b)∗ For an arbitrary orientable n-manifold M with n ≥ 4, prove the equiv-
alence of the following statements:

(i) M #S2 × Sn−2 ≈M #S2 ×̃Sn−2.

(ii) The universal cover of M is nonspin.

(iii) w2(M) has nonzero value on some immersed 2-sphere in M .

One more variation of these ideas is the Gluck construction [Gk]. Given
a 2-sphere S with a trivial normal bundle in a 4-manifoldM , we can obtain a
new manifold M ′ by surgering out S, switching the framing on the resulting
framed circle, and then surgering again. (Equivalently, we cut out S2 ×D2

and reglue it by the self-diffeomorphism of S2 × S1 that rotates each 2-
sphere S2 × {θ} through the angle θ.) Applying this to a knotted 2-sphere
in S4, we obtain a manifold homeomorphic to a 4-sphere (Exercise 5.2.7(a)).
Many such examples are potentially exotic 4-spheres. (For some families of
knots these are standard ([Gk], [Go], [Me], [P], Exercise 6.2.11(b)), but the
general case is still open.) For drawing Kirby diagrams of such manifolds,
see Exercises 5.4.3(d), 6.2.4(e) and 6.2.12(d).

Exercises 5.2.7. (a) Suppose that M is simply connected. Prove that M ′

is simply connected. If M is also closed and S is nullhomologous, prove
that M ′ has the same intersection form (hence, homeomorphism type by
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Freedman’s Theorem 1.2.27) as M . Find a counterexample to this if S is
nontrivial in homology.

(b)∗ For any M and S, prove that M and M ′ become diffeomorphic after
connected summing with any simply connected, nonspin manifold. (Now

summing with CP2 shows that under the hypotheses of the previous exercise,
M and M ′ cannot be distinguished by their Seiberg-Witten invariants; cf.
Theorem 2.4.9.)

5.3. Dehn surgery

On 3-manifolds, surgery on circles has a natural generalization, called Dehn
surgery or rational surgery (or sometimes just surgery , a term that we will
avoid in this context). (See Rolfsen [Ro] for further reading.)

Definition 5.3.1. Let K be a knot in an oriented 3-manifold, with a closed
tubular neighborhood νK ≈ S1×D2. A Dehn surgery on K is the operation
of removing int νK and gluing in S1 ×D2 by any diffeomorphism ϕ of the
boundary tori.

The self-diffeomorphisms of a torus T 2 = R2/Z2 are given (up to isotopy) by
GL(2,Z). However, since a solid torus S1 ×D2 is built from its boundary
with a 2-handle and a 3-handle, it suffices to keep track of the attaching
circle of the 2-handle, ϕ({pt.} × ∂D2). This circle is determined by its
homology class α in H1(∂νK;Z) ∼= Z ⊕ Z, which can be any primitive
element. To specify this class, we orient K and let μ be a right-handed
meridian (Section 4.5, Figure 4.27). We let λ ∈ H1(∂νK;Z) be a longitude
given by some parallel copy of K. If M = S3, we define λ using the 0-
framing. (For the general case, we may have to choose λ arbitrarily.) Then
(μ, λ) is an oriented basis for H1(∂νK;Z), and α = pμ + qλ for unique
relatively prime integers p and q. Reversing the orientation of K or α
reverses the signs of both p and q but doesn’t affect the diffeomorphism
type obtained by the Dehn surgery, so we lose no information by taking the
quotient p/q, and we call this a Dehn surgery with coefficient (or slope)
p
q ∈ Q ∪ {∞}. For a general 3-manifold M , this depends on our choice of

longitude λ, but for links in S3 a diffeomorphism type is uniquely determined
by specifying a surgery coefficient in Q∪{∞} for each link component. Note
that a Dehn surgery with coefficient ∞ is trivial. For a standard surgery
on S3 (arising as the boundary of a 2-handlebody as in Section 5.2), α is
the parallel copy of K determined by the framing, which can be any class
with q = ±1. Thus, standard surgeries correspond to Dehn surgeries with
integer coefficients, and the surgery coefficient equals the framing coefficient.
Now we can specify 3-manifolds by rational surgeries on links in S3, and
without ambiguity think of them as boundaries of 2-handlebodies whenever
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p
q

Figure 5.24. Lens space L(p, q).

all coefficients are integral. (In the latter case, we frequently use the term
integral surgery , to avoid confusion with more general rational surgeries.)

Example 5.3.2. The lens space L(p, q) is defined to be −p
q -surgery on the

unknot (Figure 5.24). Since the complement of a tubular neighborhood of
the unknot is a solid torus D2 × S1 ⊂ ∂(D2 ×D2), lens spaces are precisely
those closed, oriented 3-manifolds that have genus-1 Heegaard splittings (cf.
Figure 4.14). Each lens space L(p, 1) arises as the boundary of the disk
bundle over S2 with Euler number −p. In particular, L(0, 1) = S2×S1 and
L(±1, 1) = S3 = L(1, 0).

Exercises 5.3.3. (a) Prove that L(±2, 1) = RP3 (cf. Exercise 4.3.1(a)).

(b) For p, q > 0, let M be the quotient of S3 ⊂ C2 by the Zp-action gen-

erated by (z, w) �→ (e2πi/pz, e2πiq/pw). Prove that M is diffeomorphic to
L(p, q) as an oriented manifold. (This explains our sign convention. Note
that the flow (eitz, eiqtw) is right-handed on S3, in the sense that its trajec-
tories are circles with positive linking numbers.) (Hint : Split S3 into solid
tori along S1×S1 ⊂ C×C (for S1 of radius 1√

2
). Now Zp acts on each solid

torus. Find fundamental domains and obtain a splitting of M into solid tori.
Which one corresponds to the unknot complement?)

(c)∗ Prove that for p ≥ 2, the lens space L(p, q) does not embed in S4.
(Hint : Exercise 4.5.12(d).)

(d)∗ We will see later (Exercise 5.4.3(c)) that T 3 is obtained by 0-surgery
on the Borromean rings, Figure 5.25. Find a torus in T 3 as described by the
figure that is disjoint from two of the solid tori attached during the surgery
and intersects the third in a disk. (Hint : Ambiently perform surgery on
S2.) By pushing your torus through the 3-manifold, visualize its structure
as S1 × T 2. What does the 3-fold symmetry represent? Find two tori
intersecting transversely in a (homologically nontrivial) circle and three tori
intersecting in a point.

It is natural to ask which 3-manifolds can be obtained by rational or
integral surgery on links in S3. Clearly, such manifolds are always closed
and oriented. The converse follows from the following theorem of Rohlin.
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0

00

Figure 5.25. 3-torus T 3.

Theorem 5.3.4. ([R1]) Any closed, oriented 3-manifold M bounds a com-
pact, oriented 4-manifold X.

Corollary 5.3.5. Any closed, oriented, connected 3-manifold M is realized
by integral surgery on a link L in S3.

(We can also assume the framing coefficients are even; see Theorem 5.7.14.)

Proof. Use the theorem to write M as ∂X, and decompose X as a handle-
body. Then the union of 0- and 1-handles is �nS1×D3. By surgery on circles
in X, we can replace this by �nS2 × D2, so without loss of generality we
can assume (after changing X) that X has no 1-handles. Similarly, we can
eliminate 3-handles by turning the handlebody upside down and surgering
I ×M�mS1 ×D3. Now M bounds a 2-handlebody and hence the corollary
follows.

The basic idea of Rohlin’s proof is to immerse M in S5, then surger
M to eliminate curves of self-intersection, resulting in a new manifold M ′

embedded in S5 which is oriented cobordant to M . Now M ′ bounds a 4-
dimensional “Seifert surface” in S5 (by the same argument as preceding
Proposition 4.5.5) and we are done. An alternate approach, due to Licko-
rish [L1], is to prove Corollary 5.3.5 directly by 3-dimensional techniques,
then obtain Theorem 5.3.4 as a corollary. For this proof, we begin with a
Heegaard splitting of M . There is a standard Heegaard splitting of S3 with
the same genus, and so we can get from S3 to M by cutting along a surface
F and regluing by some orientation-preserving diffeomorphism of F . As was
first shown by Dehn [De], any such diffeomorphism is a composition of Dehn
twists (cutting F along a circle and regluing it after a 360◦ twist). It is not
hard to realize these Dehn twists by ±1-surgeries in S3. (See Exercise 8.2.4.)

Since we now know that any closed, oriented 3-manifold can be realized
by integral surgery on a link in S3, we would like to reduce the theory of
such 3-manifolds to that of framed links in S3 — that is, we wish to find a
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set of moves that suffices for getting between any two surgery descriptions of
the same 3-manifold. In fact, we have already found such moves — namely,
blowing up and down (Section 5.1), as the following theorem of Kirby [K1]
(augmented by Fenn and Rourke [FR]) shows.

Theorem 5.3.6. Let L and L′ be two framed links in S3 describing
(orientation-preserving) diffeomorphic 3-manifolds (by integral surgery).
Then L can be transformed into L′ by blowing up and down (and isotopy). In
fact, any preassigned orientation-preserving diffeomorphism can be realized
in this manner.

Kirby [K1] proved the analogous theorem with handle slides also al-
lowed, and Fenn and Rourke [FR] eliminated the handle slides as in Ex-
ercise 5.1.12(b). The latter paper also proves a corresponding theorem for
nonorientable 3-manifolds, where S3 is replaced by the twisted S2-bundle
over S1, handle sliding is retained and an additional move is introduced.
Kirby’s proof, which we sketch below, generalizes to the case where S3 is
replaced by any fixed compact 3-manifold (with boundary) [Rob]. In that
case, one needs blow-ups, handle slides, the slam-dunk move described below
and (in the nonorientable case only) a fourth move. For a different approach
to Kirby’s Theorem using Heegaard splittings, see [Lu] or [MP]. Kirby’s
Theorem has turned out to be particularly useful in the discovery in recent
years of many new 3-manifold invariants. One can define such invariants
by means of integral surgery diagrams, and then one only needs to prove
invariance under blowing up and down. For introductions to the various
types of new invariants, see e.g., [KMe1], [L2], [O], [Tu]. For additional
reading, see e.g., [BHMV], [CM], [KMeZ], [LMO].

To interpret the last assertion of the theorem, which is implicit in Kirby’s
proof but not explicit in previous literature, recall from Section 4.1 that an
isotopy of a framed attaching circle (hence a handle slide) determines a
diffeomorphism between the corresponding handlebodies (up to isotopy).
Blowing up an isolated ±1-framed circle in a surgery diagram only changes
the 3-manifold by replacing a 3-ball with another 3-ball (exhibited as ±1-
surgery on the first ball), so the resulting 3-manifold is canonically diffeomor-
phic to the original one. (Any self-diffeomorphism of ∂B3 extends uniquely
over B3.) We will exhibit this diffeomorphism explicitly in Exercise 5.3.8(a)
below. The same applies to adding a 0-framed Hopf link (which can be
achieved by blowing up and down as in Figure 5.20). By our construc-
tion of arbitrary blow-ups (Figure 5.17), it should now be clear that these
canonically induce diffeomorphisms of the corresponding 3-manifolds.

Proof of Theorem 5.3.6 (sketch). The given framed links L,L′ determine
2-handlebodies X,X ′ with a specified diffeomorphism ψ : ∂X → ∂X ′. After
blowing up, we may assume that the closed 4-manifold X∪id∂X

I×∂X∪ψX ′

                

                                                                                                               



5.3. Dehn surgery 161

has signature 0, so by a theorem of Thom (Theorem 9.1.6) it bounds a com-
pact, oriented 5-manifold W . Let f : W → I be a Morse function with
f−1(0) = X, f−1(1) = X ′ and f |I × ∂X given by projection to the first
factor. The last condition guarantees that Morse theory still works as it did
in Chapter 4 (when we assumed ∂X = ∅), so we obtain a handle decom-
position of (W,X). As before, we can cancel 0- and 5-handles, and as in
the proof of Corollary 5.3.5 we can surger W to eliminate 1- and 4-handles.
Now W = I ×X ∪ 2-handles ∪ 3-handles, and by Proposition 5.2.3, ∂+W2

is obtained from X by summing with copies of S2 × S2 or S2 ×̃S2. By
turning W upside down, we see that ∂+W2 is also obtained similarly from
X ′ = ∂+W . Thus, after blowing up or adding 0-framed Hopf links to L,L′,
we obtain a diffeomorphism between the corresponding 4-manifolds (which
we still denote by X,X ′) extending ψ : ∂X → ∂X ′. (This is a standard
argument going back to Wall, cf. Theorem 9.1.12.) Now we apply Cerf
theory as in Theorem 4.2.12. We identify the 2-handlebodies X and X ′

by the above diffeomorphism and compare the given handle structures. If
we could get between these just by sliding 2-handles, we would be done.
However, we must expect the creation of cancelling handle pairs in general.
By a long computation using Cerf’s machinery, one can eliminate 0- and
4-handles and arrange the 1- and 3-handles to be trivial in the sense that
we create them in our original handlebody X, after which they remain un-
changed until we reach our final handlebody X ′. Now we can surger out
these 1- and 3-handles (which adds 0-framed Hopf links to L and L′ after
we apply Figure 5.11), and the resulting links will be equivalent by handle
slides as required.

Exercises 5.3.7. (a)∗ Prove that for each integer k there is an oriented
3-manifold M that can be realized both by (k2 + 1)-surgery on a knot K+

and by −(k2 + 1)-surgery on a knot K−. (Hint : Figure 5.26 can be used to
solve the k = 0 case.)

1

1

Figure 5.26

(b)∗ Let X be a closed, simply connected 4-manifold. Use Kirby’s Theo-

rem 5.3.6 to deduce that for sufficiently large m, X#mCP2#mCP2 is dif-
feomorphic to #(b+2 (X) + m)CP2#(b−2 (X) + m)CP2. (Hint : In the case
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without 1- or 3-handles, ∂X2 ≈ S3.) This also follows directly from Wall’s
Theorem 9.1.12; see Corollary 9.1.14.

Although it suffices to use integral surgeries with blow-ups and blow-
downs to represent 3-manifold theory, it is convenient to enlarge our family of
moves and allow rational coefficients. We will begin by generalizing the blow-
up operation to a move called a Rolfsen twist [Ro]. We will see that these
twists (together with inserting and deleting link components with coefficient
∞) suffice for getting between any two rational surgery diagrams of a given
3-manifold. To perform a Rolfsen twist, we need an unknotted component
K in our surgery diagram. Then S3 − int νK is a solid torus S1 × D2,
and we perform the Rolfsen twist by putting a Dehn twist ϕ in this solid
torus. (That is, we map S1 ×D2 → S1 ×D2 by ϕ(eiθ, z) = (eiθ, eiθz), and
then perform an isotopy so that the twist is supported near a single disk
D = {pt.} × D2.) By iterating and/or inverting this map, we can add n
twists for any n ∈ Z, as shown in Figure 5.27. If K initially has coefficient
r = p

q ∈ Q ∪ {∞}, it is easily checked that the resulting coefficient should

be p
q+np = (1r + n)−1. The rest of the link will be unchanged except near

D, where it picks up n full (360◦) twists as shown. For each component Ki

intersecting D, the surgery coefficient changes from ri to ri+n(�k(Ki,K))2.
(To see this, draw each twist as in Figure 5.28, and note that the writhe ofKi

increases by Δwi = n(�k(Ki,K))2. Thus, the new longitude and meridian
of Ki are given by μ′

i = ϕ∗μi, λ
′
i = ϕ∗λi −Δwiμ

′
i.)

K

n

p
q

p
q np

Figure 5.27. Rolfsen twist.

Exercises 5.3.8. (a)∗ Show by Rolfsen twists that the 3-manifolds in Fig-
ure 5.29 are diffeomorphic to S3 (as given by the empty link). (Recall that
we showed this abstractly while proving that we can add a 4-handle to ob-
tain CP2, CP2 and S2 ×̃S2, respectively.) Now show that blowing up and
down are special cases of Rolfsen twists.

(b)∗ Prove that the lens spaces L(p, q) and L(p, q+np) are diffeomorphic for
any integer n. (See Example 5.3.2.) Thus, when considering lens spaces we
can assume that either 0 < q < p or (p, q) = (1, 0) or (0, 1). (The only other
relations among lens spaces (up to orientation-preserving diffeomorphism)
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K

Figure 5.28

1 0 1

Figure 5.29. Surgery diagrams of S3.

are L(p,−q) = L(p, q) and L(p, q) = L(p, q′) for qq′ ≡ 1 (mod p), the latter
obtained by interchanging the solid tori, cf. also Exercise 5.3.9(b).)

Another useful move is the slam-dunk , a classical operation whose recent
dynamic name is due to T. Cochran. This move can be derived from Rolfsen
twists (assuming our link L is in S3, Exercise 5.3.9(c)), but it is most easily
seen directly. Suppose that one component K1 of our link is a meridian of
another component K2, and that the coefficients of these are r ∈ Q ∪ {∞}
and n ∈ Z, respectively (Figure 5.30). Let M be the manifold obtained from
S3 by surgery on just K2, and let T ⊂M be the solid torus glued in during
the surgery. Then K1 is a knot in M that we can pull into T through the
boundary torus. Since the surgery coefficient n of K2 was integral, K1 will
intersect the disk {pt.} ×D2 in T exactly once, and so it will be isotopic to
S1×{pt.} in T . (It cannot be knotted, since it is isotopic to a circle in ∂T .)

Q    {  }

n r
1

r U

K2

K1

n

K2

8

Figure 5.30. Slam-dunk.
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Then T will be a tubular neighborhood of K1, so the required surgery on
K1 will be the same as cutting out T and regluing it a second time. Thus,
we obtain a new surgery diagram with K1 deleted and a new coefficient on
K2 (and the remaining surgeries unchanged). To compute the coefficient,
note that in the n = 0 case, the first surgery was obtained from the trivial
gluing of T by a 90◦ rotation of H1(∂T ) (μ �→ λ, λ �→ −μ). This changes
the slope of the surgery on K1 from r to its orthogonal slope −1

r . For the

general case, we add n twists to get n− 1
r .

Exercises 5.3.9. (a)∗ Show by a slam-dunk that surgery on a Hopf link
with coefficients 0 and n gives S3. (Try both choices forK1.) More generally,
let X be a 4-dimensional handlebody without 3- or 4-handles. We showed
(Example 4.6.3) how to construct a handlebody for the double DX. Check
that the union of 0-, 1- and 2-handles of DX has boundary #mS1 × S2,
where m is the number of 1-handles of X.

(b)∗ LetX be a plumbing of spheres whose graph is linear. (See Figure 5.31.)
Prove that ∂X is a lens space L(p, q). Which one is it? (The expression
you get is called a continued fraction expansion of −p

q .) Note that you get

two different answers, depending on where you begin. This corresponds to
the diffeomorphism L(p, q) ≈ L(p, q′) if qq′ ≡ 1 mod p. Prove that every
lens space has a description as in Figure 5.31, i.e., lens spaces are precisely
the class of 3-manifolds occurring as boundaries of plumbings of spheres
on linear graphs. Now find an algorithm for turning any rational surgery
diagram into an integral surgery diagram for the same manifold.

(c)∗ Suppose that K2 (in our above notation for the slam-dunk) is unknot-
ted. (See Figure 5.32.) Show that the slam-dunk is the same as a sequence
of Rolfsen twists. (Hint : Reduce to the case n = 1, then “blow down.”
Where does K1 end up? Now remove the extra twist.) Now prove that
any slam-dunk (on a link in S3) is a sequence of Rolfsen twists. (See Exer-
cise 5.1.12(b).)

a1 a2 a3 an

. . . .

Figure 5.31. Lens space as boundary of a linear plumbing.

Combining these exercises with Theorem 5.3.6, we obtain the following:

Proposition 5.3.10. Let L and L′ be links with rational coefficients in
S3. If the resulting 3-manifolds obtained by Dehn surgery are (orientation-
preserving) diffeomorphic, then L can be transformed into L′ by a sequence of
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nr

K1
K2

Figure 5.32

Rolfsen twists (together with isotopies and inserting and deleting components
with coefficient ∞), and any preassigned orientation-preserving diffeomor-
phism can be realized in this manner.

Proof. Turn L and L′ into integral surgery diagrams by inverse slam-dunks,
or equivalently by Rolfsen twists (Exercises 5.3.9(b) and (c)), then apply
Theorem 5.3.6 and Exercise 5.3.8(a). To realize a preassigned diffeomor-
phism ψ, note that our discussion of Rolfsen twists produced a canonical
diffeomorphism between the manifolds in Figure 5.27. Thus, ψ determines
a diffeomorphism between the integral surgery diagrams constructed from
L and L′, and this is realized by blowing up and down by Theorem 5.3.6.

Finally, we consider the homology of a 3-manifold M obtained by ratio-
nal surgery on an m-component oriented link L. As in Section 4.5, the long
exact homology sequence of (S3, S3 − L) shows that H1(S

3 − L;Z) is free
abelian of rank m, and the right-handed meridians μi to the components
Ki of L form a canonical basis. Since M is obtained from S3 − int νL by
adding a 2-handle and a 3-handle for each component Ki, H1(M ;Z) will
be a quotient of H1(S

3 − L;Z) by m relators, one for each 2-handle. If Ki

has surgery coefficient pi
qi

and 0-framed longitude λi, then the corresponding

relation is piμi + qiλi = 0. But λi is the boundary of a Seifert surface Fi in
S3 for Ki. In S3−L, Fi will be punctured by the other components Kj , re-
sulting in a surface with additional boundary components representing ±μj ,
so Fi determines a relation λi =

∑
j 
=i �k(Ki,Kj)μj. We conclude:

Proposition 5.3.11. For M given by Dehn surgery as above, H1(M ;Z) is
generated by the meridians μi (i = 1, . . . ,m) with a complete set of relations
given by piμi + qi

∑
j 
=i �k(Ki,Kj)μj = 0, i = 1, . . . ,m.

Corollary 5.3.12. Let X4 be a 2-handlebody. Then any matrix for the
intersection form of X is also a presentation matrix for H1(∂X;Z). (That
is, the matrix determines a homomorphism ϕ : Zm → Zm with Zm/ Imϕ ∼=
H1(∂X;Z).) In particular, H1(∂X;Z) is finite if and only if detQX �= 0,
and if so, |H1(∂X;Z)| = | detQX |.
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Proof. Since the surgery coefficients for ∂X are integral, we can set each
qi = 1 in Proposition 5.3.11. The matrix for QX with respect to the stan-
dard ordered basis (determined by orienting and ordering L) is the linking
matrix (Proposition 4.5.11), which obviously gives the required presentation.
Clearly, a change of basis in H2(X) corresponds to a change of presentation
of H1(∂X).

The corollary is true for any compact 4-manifold X with H1(X;Z) = 0
(cf. Exercise 5.3.13(f)). In particular, this hypothesis implies that ∂X is
a (possibly empty) disjoint union of homology spheres if and only if QX is
unimodular. (If H1(X) �= 0, unimodularity still follows from ∂X being a
union of homology spheres by Remark 1.2.11, but S1 ×D3 is a counterex-
ample to the converse.) See Section 5.4 for computing H1(∂X) for a general
handlebody X4. A statement analogous to Proposition 5.3.11 can be proved
for π1(M), using the Wirtinger presentation of π1(S

3−L). (See [Ro].) The
latter group is generated by meridians (Exercise 5.2.2(b)), but now there
will be more than m of them. One obtains a generator for each segment
of L bounded by a pair of consecutive undercrossings in the diagram, and
each crossing contributes a relator. As before, we obtain π1(M) using m
additional relators.

Exercises 5.3.13. (a) Compute H1(M) for rational surgery on any knot.
Visualize the relation for an unknot (when M = L(p, q)) or an integral
surgery on the trefoil knot (Figure 5.22).

(b) Compute H1(M) for rational surgery on a Hopf link, and visualize the
relations when one coefficient is 0 or 1. For integral surgery with one coef-
ficient 0, visualize why any loop in M is nullhomotopic.

(c) ComputeH1(M) for integral surgery on a 2-component link with linking
number 2. (It may not be cyclic.)

(d) Check that the boundary of the E8-plumbing (Figure 4.33) is a homo-
logy sphere. Compare with (a) and Exercise 5.1.12(a).

(e)∗ Freedman [F], [FQ] proved that any homology 3-sphere bounds a com-
pact, contractible topological 4-manifold. Deduce that any unimodular sym-
metric form Q on Zn can be realized as the intersection form of a closed,
simply connected topological 4-manifold. This is a main ingredient of Freed-
man’s Classification Theorem 1.2.27. Find a homology sphere that doesn’t
bound a smooth, contractible 4-manifold.

(f)∗ Let M be the boundary of a compact, oriented 4-manifold X with
H1(X;Z) = 0. Prove that any matrix for QX presents H1(M ;Z). Interpret
your proof geometrically in the case when X is a 2-handlebody. (Hint : Ex-
ercise 1.2.10 — Note that the hypothesis implies H2(X;Z) and H2(X,M ;Z)
have no torsion.)
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(g)∗ Let M3 be a rational homology 3-sphere (i.e., H1(M ;Q) = 0) given
by integral surgery on an oriented, framed link L in S3 with linking ma-
trix A. Show that the linking form on M (Exercise 4.5.12(c)) is given with
respect to the generating set {μ1, . . . , μm} by the matrix (−A)−1 (reduced
mod 1). Show that the same holds for Dehn surgery, where A is interpreted
to have the rational surgery coefficients on its diagonal. Now for any com-
pact, oriented 4-manifold X with H1(X;Z) = 0 and M = ∂X a rational
homology sphere, show that if A represents QX then (−A)−1 represents the
linking form on H1(M ;Z). (Hint : Lift the form from Q/Z to Q by choos-
ing the obvious circles representing the classes μi. How does the relator
piμi + qi

∑
j 
=i �k(Ki,Kj)μj pair with μk? For the case of arbitrary X, see

the previous exercise.)

5.4. 1-handles revisited

As we saw in dealing with disk bundles over RP2 (Example 4.6.5), our nota-
tion for 1-handles causes technical problems related to framings of 2-handles.
We will now introduce new notation for (orientation preserving) 1-handles
that resolves these problems and also makes our handle pictures with 1-
handles compatible with our discussion of surgery on links in S3. This
notation was developed by S. Akbulut [A1], [AK1].

The main observation is that the handlebody 0-handle ∪ m 1-handles
≈ �mS1 ×D3 has the same boundary as �mS2 ×D2, which is obtained by
adding 0-framed 2-handles to an m-component unlink (i.e., the boundary
of an embedding in S3 of m disjoint disks). In fact, the latter 4-manifold
contains a canonical collection of m (uniquely) framed 2-spheres S2 × 0 ⊂
S2 ×D2, which are obtained from the disks in S3 by pushing their interiors
into int D4 and adding the cores of the 2-handles, and surgery on these
framed spheres gives back �mS1 × D3. We will denote such a surgery by
erasing the framing coefficient of the unknot and putting a dot on it as
in Figure 5.33. (The symbol “∂” in the figure indicates that we have a
diffeomorphism between the boundaries of the pictured 4-manifolds.) Thus,
an m-component unlink with a dot on each component is the same as m
1-handles.

Exercise 5.4.1. ∗ Visualize the S1-family of 2-spheres S2×{pt.} ⊂ S2×S1

in each picture of Figure 5.33, and compare the pictures.

For an alternate description of this construction, recall that a 1-handle
can be cancelled by attaching an appropriate 2-handle (Proposition 4.2.9),
X ∪ 1-handle∪ 2-handle ≈ X. Thus, adding a 1-handle to X is the same as
removing the cancelling 2-handle. It is easy to check that the cocore of the
2-handle corresponds to an unknotted 2-disk in X (obtained from a 2-disk in
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0
6

Figure 5.33. Surgering a 2-handle to a 1-handle.

∂X by pushing the interior into int X). Thus, adding a 1-handle is the same
as pushing the interior of a disk D into int X and then removing a tubular
neighborhood of D. The disk D is visible in Figure 5.33 spanning the dotted
circle. Compare with the 3-dimensional case, Figure 5.34, where we first dig
a ditch underneath the 1-handle, then slide the attaching region into the
ditch. The bridge (the 1-handle) becomes level with ∂X, and the underpass
(the region under the 1-handle) becomes a tunnel (a deleted νD1).

Figure 5.34. 3-dimensional 1-handle.

Exercises 5.4.2. (a)∗ Examine a pair of curves in Figure 5.34, where one
runs over the 1-handle and the other runs underneath it (between the at-
taching disks in ∂X). Where do they go when we push down the 1-handle?
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Then do the same in Figure 5.33, with a curve running over the 1-handle
and a surface separating the two balls. Now compare with Exercise 5.4.1.

(b)∗ For each picture in Figure 5.33, find the torus inducing the genus-1
Heegaard splitting of S1 × S2. How do these correspond? How do the solid
tori in the Heegaard splitting correspond under the diffeomorphism?

It is sometimes helpful to imagine a dotted circle as being obtained by
squeezing together the two balls, so that they become flat and close together
like pancakes. Then we can simultaneously visualize curves running over
the 1-handle and surfaces running underneath (between the pancakes); we
merely need to remember that these are disjoint from each other. (See the
solution to Exercise 5.4.2(a).) Yet another viewpoint is to imagine D in a
collar I × ∂X of ∂X, with the I-coordinate represented by time. Then as
we descend into X, D will appear as a dotted circle that persists until a
particular time when it bounds a disk and disappears. This way, we can see
the 4-manifold I × ∂X − νD ≈ I × ∂X ∪ 1-handle in its entirety.

33

blackboard framing

or

Figure 5.35. Changing notation for 1-handles.

Now if X4 is an arbitrary handlebody in our old notation, we can isotope
the attaching circles so that they avoid the regions between the attaching
balls of the 1-handles. Then we can push the balls together and switch
to dotted circle notation. We obtain a picture in which every attaching
circle is given by a knot in S3, so there is a canonical way to define framing
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coefficients, and these transform in the usual way under 2-handle slides. (See
Figure 5.35. Note that the blackboard framing is preserved when we push the
balls together.) Thus, we have removed the previous ambiguity in framing
coefficients. In fact, the previous difficulties with framings arose when we
slid a 2-handle h under a 1-handle — that is, through the region between
the attaching balls. In our new notation, this appears as in Figure 5.36.
Note the formal similarity with sliding over a 0-framed 2-handle. In fact,
the latter operation differs from sliding under a 1-handle only by a surgery
in the interior of the 4-manifold to which h is attached. In particular, the
coefficient of h must transform the same way — it changes by twice the
linking number of the attaching circle with the dotted circle. Because of this
similarity, this move is frequently referred to as sliding “over” a 1-handle,
when in fact we are sliding under it.

(b)

(a)

Figure 5.36. Sliding a 2-handle under a 1-handle.

Exercises 5.4.3. (a) Check the equivalence of the two bottom pictures of
Figure 5.35 directly.
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(b)∗ Check directly that if a framed knot K slides under a 1-handle given
by a dotted circle K0, then its framing coefficient changes by 2�k(K,K0).
(What happens to w(K)?)

(c) Draw an arbitrary D2-bundle X over T 2 (Figure 4.36(b)) in dotted
circle notation. Where does the 0-section T0 go? Compare your answer
with Figure 5.25 and Exercise 5.3.3(d). (Answer : Figure 6.1.) Do the
same for bundles over RP2 (Figure 4.38). (Answer : Figure 6.2.) Using the
new notation, verify that (a) and (b) of Figure 4.38 are diffeomorphic for
m = e+ 2, n = e− 2 (e fixed) as in Example 4.6.5 (cf. Exercise 4.6.7(a)).

(d)∗ Given a Kirby diagram for a 4-manifold X, suppose that one attaching
circle K is a 0-framed unknot in the boundary of the 0-handle. Then K
determines an embedded 2-sphere S in X with a trivial normal bundle.
How can a diagram be constructed for the manifold obtained from X by the
Gluck construction on S (Exercises 5.2.7 and the preceding text)?

The above observations suggest an alternate approach to dealing with
framings. We return to the old notation, but draw reference arcs (with
dashed lines or in a different color) to indicate how each pair of balls should
be joined to obtain dotted circle notation (Figure 5.37). Now framing co-
efficients are well-defined (via dotted circle notation), and we are free to
perform isotopies. The only catch is that whenever an attaching circle iso-
topes through a reference arc, we must recalculate its framing as above.
Note that for a nullhomologous knot in ∂(D4∪1-handles), framings are well-
defined without reference arcs. In practice, the reference arcs are frequently
suppressed from the notation when this can be done without confusion; cf.
Figure 5.14. (Beware that if a 2-handle runs over two 1-handles whose refer-
ence arcs cross, its framing coefficient will depend on which arc crosses over
the other, unless its attaching circle has intersection number 0 with one belt
sphere.)

5

5

Figure 5.37. Specifying a framing using a reference arc.

Another advantage of the dotted circle notation for (oriented) handle-
bodies X is that we have a general formula for H1(∂X) — If there are no
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3-handles, we simply surger out all 1-handles in X (i.e., replace dots with
0 coefficients) to obtain a 2-handlebody Y with ∂Y = ∂X, and then apply
Corollary 5.3.12. If there are 3-handles, then each 3-handle surgers out an
S2 from the 2-handlebody ∂Y , so it either disconnects ∂Y (undoing a con-
nected sum) or removes an S1 × S2 summand (deleting a Z-summand from
H1(∂Y )).

Exercise 5.4.4. ∗ Compute H1(M) for an arbitrary circle bundle M → F
over a closed surface (M orientable), using your answers to Exercises 5.4.3(c),
4.6.6(b) and 4.6.7(b). (See also Figure 6.4.)

To complete our discussion of Kirby calculus on handlebodies, we must
see what Kirby moves look like in the new notation. The discussion of
2-handle/3-handle cancellations is unchanged (provided we allow slides un-
der 1-handles in Proposition 5.1.9). A cancelling 1-handle/2-handle pair is
shown in Figure 5.38. Note that the attaching circle of the 2-handle inter-
sects the spanning disk of the dotted circle in a unique point as required.

n

n 3

Figure 5.38. Handle cancellation.

As before, other 2-handles must be slid off of the 1-handle (which we can
easily do simultaneously), and then we erase the 1-2 pair. If we think of
the 2-handle h as being attached before we remove the disk D spanning
the cancelling dotted circle, then we can identify D with the cocore of h
(since the dotted circle is a meridian of the attaching circle of h), making
it clear why deleting νD is the same as removing h. Alternatively, if h is
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attached to a 0-framed meridian of the dotted circle, then we can identify h
with νD. (We can always reduce to this case by slides under the 1-handle
and Figure 5.42, discussed below.) A 2-handle slide proceeds as before (and
slides under 1-handles are formally similar). A 1-handle slide is shown in
Figure 5.39. Note the formal similarity to sliding 0-framed 2-handles, except
that the sliding 2-handle corresponds to the 1-handle that does not slide.
We must be careful, however, to make sure that the union of dotted circles
remains an unlink; Figure 5.40 shows a 2-handle slide with no analogue
for 1-handles in the present notation (although we will return to this in
Section 6.2). We can ensure that our handle slide is valid by imagining
a plane separating the two 1-handles (and disjoint from any other dotted
circles), and then choosing the band so that its core only intersects the plane
once. The picture will then be isotopic to Figure 5.39. (Shrink one half-space
to a small ball and pull on the band to eliminate any knotting of it in the
other half-space, then repeat with the half-spaces interchanged.) Thus, we
can slide dotted circles over each other as if they were 0-framed 2-handles,
provided that the band satisfies the above property. Changing the manifold
X by blowing up or down proceeds as in Section 5.1; we need only make
sure that the ±1-framed unknot is unlinked from the dotted circles.

Figure 5.39. 1-handle slide.

Exercises 5.4.5. (a)∗ Identify the familiar closed manifold shown in Fig-
ure 5.41.

(b)∗ Repeat Exercise 5.1.1 using dotted circle notation.
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0

0

Figure 5.40. 2-handle slide producing a nontrivial link.

2

U  3-handle
4-handle

Figure 5.41. Identify this manifold.

One more useful trick is shown in Figure 5.42. It is obtained by rotat-
ing one attaching ball 360◦ as shown. A different derivation using standard
Kirby moves in dotted circle notation is given in Figure 5.43; see also Exer-
cise 5.5.2.

11

Figure 5.42. Twisting a 1-handle.
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11

11
1

1

Figure 5.43. Derivation of previous figure using Kirby moves.

5.5. Relative Kirby calculus

As we saw in Section 4.2, handle decompositions are defined in greatest
generality on manifold pairs (X, ∂−X). So far, we have only drawn Kirby
diagrams for the case ∂−X = ∅. We now generalize to the case of an ar-
bitrary compact pair (X4, ∂−X) with ∂−X oriented. (Recall that if X is
oriented then ∂X = ∂+X

∐
∂−X in the boundary orientation.) We con-

tinue to assume X is connected (or work with each component separately).
Thus, without losing generality, we can assume that there are no 0-handles
if ∂−X �= ∅, and (by the following remark) that ∂−X is connected.

Remark 5.5.1. If ∂−X is disconnected, there is a family of 1-handles in X
connecting the components of I×∂−X (cf. Proposition 4.2.13), and deleting
these 1-handles from X (along with I × (attaching balls)) creates a new

boundary ∂#
− X that is the connected sum of the original components of

∂−X. We can build the rest of the handlebody on the connected manifold

I×∂#
− X by the techniques of this section, and then recover X by attaching

dual 3-handles to {0} × ∂#
− X along the 2-spheres on which we summed.

To describe (X, ∂−X) with ∂−X �= ∅, we must begin by describing the
3-manifold ∂−X. We can always do this by a rational (or integral) surgery
diagram in R3 as in Section 5.3. Then we interpret the resulting diagram as
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{1}×∂−X ⊂ I×∂−X, and use our previous notation for attaching the han-
dles of X, obtaining a Kirby diagram superimposed on a surgery diagram.
To distinguish the two diagrams, we put brackets around the surgery coef-
ficients of ∂−X, as in 〈r〉. (Using a different color is also helpful.) We call
the resulting diagram a (relative) Kirby diagram for (X, ∂−X). Note that
∂+X is obtained by doing surgery on the entire diagram, ∂−X is obtained
by just doing surgery on the components with coefficients in brackets, and
∂X = ∂+X

∐{0}×∂−X. We always define framing coefficients with respect
to the copy of R3 in which the diagram is drawn. (Even if ∂−X = S3,
framings defined with respect to ∂−X may differ from those defined by R3

— consider a meridian to a 〈1〉-framed unknot.)

Now that we have described (X, ∂−X) by a link with coefficients attached
and two kinds of components (or a suitable generalization thereof to allow
1-handles), we wish to understand the allowable moves of such diagrams.
First, we can clearly perform Kirby and Rolfsen moves on the 〈r〉-framed
components representing ∂−X, avoiding the spanning disks of dotted circles
(which are necessarily disjoint from the components representing ∂−X) and
interpreting the 2-handles of X as a framed link in ∂−X, dragging it along in
the obvious way (changing coefficients as usual during Rolfsen twists, etc.).
Next, we can isotope the 2-handle attaching circles in ∂−X, in particular,
sliding handles over 〈n〉-framed link components. Finally, we can perform
Kirby moves on the handles of X. Of course, we are not allowed to slide
an 〈r〉-framed component over an n-framed component, which also restricts
blow-downs of ±1-framed unknots. If we use dotted circles to represent 1-
handles in X, these will be unlinked from the surgery diagram of ∂−X, and
we can slide surgery curves under them provided that we use suitable bands
to avoid linking (cf. Figure 5.40) as we did for 1-handle slides. (Check this
by switching to ball notation for 1-handles.) To see that our previous theory
of Kirby moves works without change on the handles of X, simply turn the
rational surgery diagram into an integral surgery diagram (by inverse slam-
dunks as in Exercise 5.3.9(b)). Then we have implicitly written ∂−X as the
boundary of a 2-handlebody, so we have reduced to the case ∂−X = ∅. In
particular, the framing formulas are still valid.

Exercise 5.5.2. ∗ Derive the move in Figures 5.42 and 5.43 by removing
int D4 and performing Kirby moves on the new ∂−X = S3.

Theorem 5.5.3. Given relative Kirby diagrams for the (compact) pairs
(Xi, ∂−Xi) (i = 1, 2, ∂−Xi nonempty, connected and oriented), any dif-
feomorphism ψ from (X1, ∂−X1) to (X2, ∂−X2) that preserves orientation
on ∂−X1 can be realized by isotopy in R3 and a sequence of Rolfsen twists
and ∞-insertions/deletions in the Dehn surgery diagram for ∂−X1 (or by
blow-ups/blow-downs if all coefficients are integral), together with handle
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pair creations/cancellations and handle slides (and switching 1-handles from
dotted circle to ball notation).

Proof. We can make the Dehn surgery diagrams of ∂−Xi agree (realizing
ψ|∂−X1) by Rolfsen twists (Proposition 5.3.10) or blowing up and down in
the integral case (Theorem 5.3.6). We can assume all coefficients are inte-
gral (Exercises 5.3.9(b) and (c)). Now we can identify ∂−X2 with ∂−X1 and
(X2, ∂−X2) with (X1, ∂−X1) by ψ to obtain two relative handle decomposi-
tions of the same manifold. By Theorem 4.2.12 we can then make the decom-
positions agree by pair creations/cancellations, slides and isotopy in ∂−X1.
The latter includes slides over 〈n〉-framed knots, but Exercise 5.1.12(b) re-
duces such slides to 〈±1〉-blow-ups. If there are 1-handles in dotted circle
notation, isotopy in ∂−X1 may also require slides under these 1-handles. If
we switch to ball notation, these moves become isotopies in R3.

Example 5.5.4. – Relative doubles. Recall from Example 4.6.3 that
the relative double D(X, ∂−X) of (X, ∂−X) is (X ∪id∂+X

X, ∂−X), and a

handle decomposition of (X, ∂−X) that is ordered by increasing index and
has no handles of index > 1

2 dimX induces a decomposition of D(X, ∂−X)
that is also ordered by index. In that example, we saw how to construct
a Kirby diagram for this decomposition in the case dimX = 4, ∂−X = ∅.
The construction generalizes immediately to the relative case, starting with
a relative Kirby diagram for (X, ∂−X) without 3- or 4-handles. Each 2-
handle h induces a dual 2-handle in (X, ∂+X) that attaches to a 0-framed
meridian of the attaching circle of h. Each 1-handle induces a 3-handle, and
if ∂−X �= ∅ there are (by assumption) no 0- or 4-handles.

Example 5.5.5. – Turning handlebodies upside down. As we saw in
Section 4.2, any handle decomposition of (X, ∂−X) induces a dual decom-
position of (X, ∂+X ). We will see how to obtain this dual decomposition,
beginning with the case without 3- or 4-handles in (X, ∂−X). Given such a
decomposition of (X, ∂−X), we have already obtained the required decompo-
sition of (X, ∂+X) inside D(X, ∂−X). To see it by itself, we merely need to
remove (X, ∂−X), i.e., interpret the picture of the latter inside D(X, ∂−X)
as the 3-manifold ∂+X. Thus, we begin with the diagram of (X, ∂−X), using
dotted circle notation for 1-handles, surger these to 0-framed 2-handles, and
put brackets on all coefficients to obtain ∂+X. To build (X, ∂+X), we simply
add a 0-framed meridian to each of the original 2-handles of (X, ∂−X), then
add a 3-handle for each 1-handle of (X, ∂−X), and a 4-handle if ∂−X = ∅.
If we wish to obtain (X, ∂+X ) with the original orientation on X, we must
then take the mirror image of the diagram and reverse the signs of all coef-
ficients. (Sometimes it is easier to fix the orientation on ∂+X and allow the
orientation on X to reverse when we dualize.) In practice, we can usually
simplify ∂+X significantly by Kirby or Rolfsen moves.
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1

Figure 5.44

Exercise 5.5.6. ∗ Turn the handlebody X of Figure 5.44 upside down.

To turn a more general relative handlebody (X, ∂−X) upside down, we
lift off the 3- and 4-handles to get a new relative handlebody (X2, ∂−X),
and then apply the above procedure, obtaining a handlebody on ∂+X2. If
∂+X = ∅, then the 3- and 4-handles dualize to �mS1×D3 (m ≥ 0), and there
is a unique way to glue this into the manifold. Thus, the surgery diagram we
obtain for ∂+X2 can be transformed into a 〈0〉-framed unlink (#mS1×S2),
and we can mount it on top of �mS1×D3 simply by turning the components
into dotted circles, obtaining the required dual handle decomposition of
(X, ∂+X) (up to 1-handle slides). A similar procedure works if ∂+X is
nonempty but connected and X is simply connected. In that case ∂+X2 ≈
∂+X#mS1×S2, and the choice of identification of it with the corresponding
boundary ∂+(I × ∂+X ∪m1-handles) does not matter by [Tr].

Exercises 5.5.7. (a)∗ Embed T 2×D2 (Exercise 5.4.3(c)) in S4 by attach-
ing cancelling handles to it to obtain D4. Draw a Kirby diagram of the
complement X of T 2× int D2, with ∂−X = ∅. Repeat for bundles over RP2.
(Which two bundles work?) Compare with Section 6.2.

(b)∗ Show directly that a pair of consecutive applications of the algorithm
for dualizing results in the original manifold pair (X, ∂−X).

(c)∗ Let h1 and h2 be 2-handles in a relative Kirby diagram, and let h∗1 and
h∗2 be the corresponding dual 2-handles in the dual handle decomposition.
Verify that sliding h1 over h2 corresponds to sliding h∗2 over h∗1 in the dual
diagram, and if we orient the handles (so that the cores of hi and h∗i have
intersection number +1) then adding handles corresponds to subtracting
dual handles. (Hint : What does the slide look like in the dual diagram?
What must the dual handles look like?)

Example 5.5.8. – Gluing along a common boundary. Suppose we are
given relative handlebodies (X, ∂−X) and (Y, ∂−Y ) and a diffeomorphism
ϕ : ∂+X → ∂−Y . Then we can obtain a handle decomposition of the pair
(X ∪ϕ Y, ∂−X), simply by pulling the attaching data back from ∂−Y to
∂+X via ϕ. In the context of Kirby calculus, we are typically given ϕ in the
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following form: ∂+X is exhibited by taking the diagram for X, converting
1-handles to dotted circles and then to 〈0〉-framed unknots, and then putting
brackets on all remaining coefficients. We are then given a sequence of Kirby
or Rolfsen moves making the picture identical to that of ∂−Y , followed by
an explicit identification of the pictures. (Beware that a different choice of
identification may result in a different diffeomorphism ϕ and a different 4-
manifold X ∪ϕ Y .) To obtain X ∪ϕ Y , we pull the handle diagram for Y in
∂−Y back to ∂+X, and reverse the above construction (removing brackets
and replacing dotted circles) to convert ∂+X back into X. A common sit-
uation is where we have handlebodies X and Y with connected ∂X ≈ ∂Y
and wish to form a closed manifold X ∪∂ Y . In this case, we turn one han-
dlebody upside down and then apply the previous procedure using the given
diffeomorphism.

Exercises 5.5.9. (a)∗ Split ∂(T 2 × D2) as T 2 × ∂D2 = (S1 × S1) × S1.
What familiar manifold is obtained from two copies of T 2×D2 by gluing by
a cyclic permutation ϕ of the three S1 factors? What manifold is obtained
by embedding T 2 × D2 in S4 with complement X as in Exercise 5.5.7(a),
then cutting it out and regluing it by ϕ? What is X ∪ϕ X?

(b)∗ Let P denote the (negative) E8-plumbing (Figure 4.33) and let Q de-
note D4 ∪ 2-handle glued along a −1-framed left trefoil knot (Figure 5.22).
We showed in Exercise 5.1.12(a) that ∂P ≈ ∂Q. Prove that P ∪∂ Q ≈
CP2#8CP2. (There is only one such manifold, since any self-diffeomorphism
of the Poincaré homology sphere ∂P is isotopic to the identity [BO].)

Remarks 5.5.10. (a) There are times when it is useful to have a general
solution to a gluing problem as above. For example, suppose we wish to
understand in general how to cut a copy of Z out of a manifold and replace
it by X via a fixed diffeomorphism ϕ : ∂X → ∂Z. Then we will begin with
a family {Yi} of manifolds containing Z, which are given as handlebodies
built on ∂Z, and we wish to simultaneously pull all sets of gluing data back
to ∂X via ϕ. This can be done using a Heegaard splitting of ∂Z. (See
Exercise 6.2.2 for locating such a splitting.) If H ≈ �gS1 ×D2 is one of the
resulting 1-handlebodies in ∂Z, we can assume that all attaching data for 1-
and 2-handles of manifolds Yi lie in H, so it suffices to pull H back to ∂X
via ϕ. One way to do this is to identify the 0-handle of H with a copy of
D3 at ∞ in the diagram, and leave this fixed during the Kirby moves. Now
the 1-handles of H can be represented as arcs with endpoints attached to
the fixed ∂D3, with framing coefficients that are well-defined because there
is essentially a unique arc in ∂D3 connecting each pair of endpoints. The
Kirby moves will send this family of framed arcs to a similar family in ∂X,
and the correspondence between these framed arcs will determine how the
handles of each Yi pull back to ∂X. (This procedure reflects the fact that a
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diffeomorphism between closed 3-manifolds is determined up to isotopy by
its restriction to a 1-handlebody H as above.) As an example, we will use
this procedure for analyzing logarithmic transformations in Section 8.3.

(b) Given a relative Kirby diagram for (X, ∂−X), there is also a procedure
for turning over a single boundary component, which in turn allows us to glue
components of ∂X in pairs. For example, we can construct a handlebody
for (X, ∅) (with the entire boundary appearing as ∂+X). First, we find a
Heegaard decomposition for ∂−X. (We can always do this by the method
of Exercise 6.2.2.) Then we construct (I × ∂−X, ∅) as a handlebody as in
Example 4.6.8, where we explicitly see the Heegaard decomposition of the
3-manifold {1}× ∂−X. Finally, we add handles to {1}× ∂−X as prescribed
by the original diagram of (X, ∂−X). Similarly, we can turn over a single
component of ∂−X or glue two components of ∂X by a diffeomorphism (as
we did to create S1 ×M in Example 4.6.8). For a different approach, see
Exercise 6.2.5(b) or [A6].

5.6. Spin structures

We now describe w2 and spin structures from an elementary viewpoint, for
the purpose of analyzing their meaning for Kirby diagrams in the next sec-
tion. Some of this discussion is parallel to that of Section 1.4, but the two
discussions are essentially independent. The division of material reflects the
differing viewpoints of high- and low-dimensional topology. In the present
section, our technique for classifying spin structures will be a special case of
obstruction theory [St], [Wh], a general approach for understanding fiber
bundles and structures on them. This theory works for bundles over arbi-
trary CW -complexes, but for our purposes it is convenient to take the base
to be a handlebody X (ordered by increasing index). Recall that at the
end of Section 4.2 we described the homology and cohomology of X using
its handle structure, via the chain complex Ck(X) = Hk(Xk, Xk−1). This
description allows us to conveniently define obstructions such as w2 in the
cohomology group H∗(X).

Let E be a real vector bundle over X, with oriented fibers of dimen-
sion m. After summing with a trivial bundle if necessary, we can assume
m ≥ 3. (It is easily verified that for m ≥ 3, summing with an additional
trivial bundle will have no effect on our subsequent discussion of spin struc-
tures, since the inclusion SO(m) → SO(m + r) induces isomorphisms on
π1 and π2.) By Milnor [M3] (or Remark 5.6.9(a) below) we can define a
spin structure on E to be a (positively oriented) trivialization of E|X2 (up
to fiber homotopy). To construct a spin structure, we begin with a triv-
ialization τ of E|X1. (Such trivializations exist because E is oriented; cf.
Exercise 5.6.2(b).) Now we wish to extend τ over each 2-handle h. But E|h
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is canonically trivial, so τ over the attaching region determines an element
of π1(SO(m)) ∼= Z2 (cf. Example 4.1.4(d)), and τ extends over h if and only
if this element vanishes. Applying this to each 2-handle of X2, we obtain an
element of Z2 assigned to each 2-handle, that is, a cochain c(τ) ∈ C2(X;Z2),
and τ extends over X2 if and only if c(τ) = 0. Of course, we may have made
a bad choice for τ . For a different τ ′, we can assume (by homotopy) that
τ |X0 = τ ′|X0. Then the difference between τ and τ ′ will be an (arbitrary)
element of π1(SO(m)) assigned to each 1-handle, or equivalently, a cochain
d(τ, τ ′) ∈ C1(X;Z2). For each 2-handle h, the extendability over h of τ
and τ ′ will be equivalent if and only if 0 = 〈d(τ, τ ′), ∂∗h〉 = 〈δd(τ, τ ′), h〉.
Thus, c(τ ′) − c(τ) = δd(τ, τ ′), so changing τ corresponds to changing c(τ)
by arbitrary coboundaries. Now for any 3-handle h3, E|h3 is trivial, so for
any τ we must have 0 = 〈c(τ), ∂∗h3〉 = 〈δc(τ), h3〉, hence δc(τ) = 0, i.e., c(τ)
is a cocycle. Since c(τ) is independent of τ up to coboundaries, we obtain
a class w2(E) = [c(τ)] ∈ H2(X;Z2), the second Stiefel-Whitney class of E.
We conclude (cf. Proposition 1.4.25):

Proposition 5.6.1. An oriented vector bundle E over X admits a spin
structure if and only if w2(E) = 0 in H2(X;Z2).

Since π2(SO(m)) = 0, any trivialization over X2 extends over X3.
Thus, if dimX ≤ 3 or if dimX = 4 and X has no closed components,
we conclude that E → X admits a spin structure if and only if it is triv-
ial. For a spin bundle over a closed, connected, oriented 4-manifold X,
E|(X−{pt.}) is trivial, and the remaining obstruction to trivializing E is in
H4(X;π3(SO(m))) ∼= π3(SO(m)). This is Z⊕Z for m = 4, and Z for other
m ≥ 3. The resulting integer obstructions are the Pontrjagin class p1(E)
and (when m = 4) the Euler class e(E) in H4(X;Z) (cf. Theorem 1.4.20).
The vanishing of π2(SO(m)) also implies that if τ extends from X1 to X2,
then the extension is unique. Thus we can define a spin structure to be a
trivialization of E|X1 that extends over X2. (It can be shown [G15] that
spinc structures have an analogous characterization, as complex structures
on E|X2 that extend over X3, provided we arrange the fibers of E to have
even dimension ≥ 4.)

Exercises 5.6.2. (a)∗ Suppose that E is an oriented vector bundle over
X = Y ∪ handles, where E|Y is given a spin structure s. Define a relative
class w2(E, s) ∈ H2(X,Y ;Z2) that vanishes if and only if s extends to a
spin structure on E.

(b) Let E be an arbitrary (unoriented) vector bundle over X (not necessar-
ily connected). We can define a (fiber) orientation of E to be a trivialization
of E|X0 that extends over X1 (up to fiber homotopy). Show that this is the
same as a continuous choice of orientation of all fibers. Define the first
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Stiefel-Whitney class w1(E) ∈ H1(X;Z2) so that E is fiber-orientable if
and only if w1(E) = 0 (cf. Lemma 1.4.23).

(c) For a complex vector bundle E → X, the first Chern class c1(E) ∈
H2(X;Z) is the obstruction to a complex trivialization of E|X2. Construct
this as above. (The determinant function det : U(m) → S1 induces an iso-
morphism on π1.) Show that c1(E)|2 = w2(E), i.e., c1(E) maps to w2(E)
under the coefficient homomorphism H2(X;Z) → H2(X;Z2). Generalize
to the relative case as in (a). (Compare with Theorem 1.4.3 and Proposi-
tion 1.4.9.)

(d) For a real, oriented 2-plane bundle E, define the Euler class e(E) ∈
H2(X;Z) so that E is trivial if and only if e(E) = 0. How does e relate to
w2? To c1? (Compare with Proposition 1.4.9.) How does this compare with
the usual definition of e(E) ∈ Hm(X;Z) (m = fiber dimension of E) as the
Poincaré dual to the zero set of a generic section (Claim 1.4.7)?

The other Stiefel-Whitney classes wi(E) ∈ H i(X;Z2) and Chern classes
ci(E) ∈ H2i(X;Z) (cf. Proposition 1.4.5) can be defined using the obstruc-
tions to finding a trivial subbundle of codimension i − 1 over E|Xi (resp.
E|X2i) [MS]. If E is nonorientable, a subtlely of the theory arises that we
have managed to avoid — the coefficient groups of the cohomology may be
twisted.

Now suppose that E admits a spin structure s. We wish to classify all
spin structures s′ on E. The structures s and s′ determine trivializations τ
and τ ′ of E|X1 up to homotopy. As before, we can homotope τ to agree with
τ ′ on E|X0, and then define d(τ, τ ′) ∈ C1(X;Z2). Since τ and τ ′ both extend
over X2, we have δd(τ, τ ′) = c(τ ′) − c(τ) = 0 − 0 = 0. Thus, d(τ, τ ′) is a
cocycle. However, it depends on our choice of homotopy to make τ = τ ′ over
X0. If we change the homotopy, it changes τ ′ by a full twist (the generator
of π1(SO(m))) over a collection of 0-handles comprising a 0-cochain b, and
so d(τ, τ ′) will change on any 1-handle h for which 0 �= 〈b, ∂∗h〉 = 〈δb, h〉.
Thus, d(τ, τ ′) changes by the (arbitrary) coboundary δb, and so we obtain
a well-defined difference class Δ(s, s′) = [d(τ, τ ′)] ∈ H1(X;Z2). Clearly,
Δ(s, s′) = 0 if and only if s = s′. Furthermore, Δ(s, s′)+Δ(s′, s′′) = Δ(s, s′′).
In the other direction, given s, any cocycle d ∈ C1(X;Z2) changes τ = s|X1

to τ ′ with c(τ ′) = c(τ) + δd = 0, so τ ′ extends uniquely to a spin structure
s′ with Δ(s, s′) = [d]. We immediately obtain (cf. Proposition 1.4.25):

Proposition 5.6.3. If E → X is an oriented vector bundle with w2(E) = 0,
then the group H1(X;Z2) acts freely and transitively on the set S(E) of spin
structures on E. Equivalently, choosing a base point s ∈ S(E) identifies
S(E) with H1(X;Z2) by s′ �→ Δ(s, s′).
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Exercises 5.6.4. (a)∗ For E → X = Y ∪ handles as in Exercise 5.6.2(a),
classify spin structures that restrict to a fixed s on E|Y .

(b)∗ Show that for spin structures s and s′ on an oriented bundle E over a
compact n-manifold X, we have

[I]×Δ(s, s′) = w2(E
∗, s∗) ∈ H2(I ×X, ∂I ×X;Z2),

where [I] ∈ H1(I, ∂I;Z2) is the relative fundamental class of I = [0, 1],
E∗ is E pulled back over I × X, and s∗ equals s on E|{0} × X and s′ on
E|{1}×X. Equivalently, the Poincaré duals of Δ(s, s′) in Hn−1(X, ∂X;Z2)
and w2(E

∗, s∗) in Hn−1(I × X, I × ∂X;Z2) correspond under the obvious
isomorphism. (By the relative version of Proposition 5.6.7 below, you can
choose the handle decomposition conveniently.)

(c) Classify fiber orientations on a bundle E → X with X not necessarily
connected. What group acts? (Answer: Lemma 1.4.23.)

(d)∗ For a complex vector bundle E → X, classify the complex trivializa-
tions of E|X2 up to homotopy. (Note that π2(U(m)) = 0.) How do these
relate to spin structures? What happens in the relative case?

Proposition 5.6.5. Let π : E → X and π′ : E′ → X ′ be oriented vector
bundles with a smooth function f : X ′ → X that is covered by a bundle
map F : E′ → E (i.e., for each x ∈ X ′, F maps (π′)−1(x) isomorphically to
π−1(f(x))). Then w2(E

′) = f∗w2(E), and any spin structure s on E induces
a spin structure f∗s on E′ (depending on F ). Furthermore, Δ(f∗s0, f∗s1) =
f∗Δ(s0, s1). (Compare with Proposition 1.4.5.)

Proof. After a homotopy, we can assume that f(X ′
i) ⊂ Xi for each i.

Then f∗ : Hk(X;G)→ Hk(X ′;G) is obtained as usual by dualizing the map
f# : Ck(X

′)→ Ck(X) that sends each handle h′ to
∑

aihi, where ai is the
intersection number of the core of h′ with the cocore of hi. Clearly, any
trivialization τ of E|X1 determines a trivialization f∗τ of E′|X ′

1, and the
obstruction cochain c(f∗τ) will be f#c(τ). Thus, w2(E

′) = f∗w2(E). Simi-
larly, spin structures and difference classes pull back as required. The only
difficulty is that the construction of f∗s depends on a choice of homotopy
of f , so we must check that for a homotopy ft (with f0 and f1 preserving
handles as above) we will have f∗

1 s = f∗
0 s. But we may assume that for all

t, ft(X
′
1) ⊂ X2. Since s trivializes E|X2, we obtain the required homotopy

from f∗
0 τ to f∗

1 τ .

Exercise 5.6.6. Prove analogous propositions for w1 and c1.

Proposition 5.6.7. For an oriented bundle E → X, it follows that spin
structures, w2 and Δ are independent of the choice of handle decomposition
of X.
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Proof. Apply the previous proposition to the identity map.

Our main interest is in tangent bundles. As in Section 1.4, we define
wi(X) to be wi(TX) and refer to spin structures on TX as spin structures
on X. A spin structure s on X restricts to a spin structure s|∂X on ∂X,
and (∂X, s|∂X) is called the spin boundary of the spin manifold (X, s).
Proposition 5.6.5 shows that for any local diffeomorphism f : Y → X, we
have w2(Y ) = f∗w2(X), and any spin structure s on X pulls back to a
structure f∗s on Y . (Set F = df .)

Exercises 5.6.8. (a)∗ Prove that for n ≥ 2, the manifold S1×Dn admits an
orientation-preserving self-diffeomorphism that is trivial in homology (and
also in H∗(S1 × ∂Dn) if n ≥ 3) but not isotopic to the identity map.

(b)∗ Prove that the two Sn-bundles over S2 (with structure group O(n+1),
n ≥ 2) are nondiffeomorphic.

Remarks 5.6.9. (a) To verify that the present notion of spin structure
agrees with that of Section 1.4, let PSpin(n) → X be a spin structure in
the previous sense associated to a bundle E → X. Since πi(Spin(n)) = 0
for i = 0, 1, 2 and n ≥ 3, obstruction theory shows that PSpin(n)|X2 has a
unique section (up to homotopy). Pushing this section down to PSO(n)|X2

determines a trivialization of E|X2. We have now defined a map from the
spin structures of Section 1.4 to those of the present section. By tracing
through the definitions, one can verify that this map is equivariant under
the H1(X;Z2)-action, so it must be a bijection. (The possibility of empty
domain and nonempty range is ruled out by the next remark.)

(b) We now have three versions of the characteristic class w2: Subsec-
tion 1.4.1, δ(1) as in Subsection 1.4.2 following Definition 1.4.24, and the
present section. One can prove that these are the same by using the uni-
versal bundle ESO(n)→ BSO(n) [MS]. For any bundle E → X there is a
bundle map E → ESO(n). Since all three versions of w2 are natural with
respect to bundle maps as in Proposition 5.6.5, it now suffices to check that
they agree for the bundle ESO(n). But since H2(BSO(n);Z2) ∼= Z2 (n ≥ 3)
and none of the versions of w2 is identically zero, w2(ESO(n)) is the unique
nonzero element in each case.

5.7. Spin structures in Kirby diagrams

Let X1 = D4 ∪ 1-handles be given by a Kirby diagram in dotted circle
notation. Then X1 is given as a submanifold of D4, so it inherits a canon-
ical spin structure s0 from D4. Thus, the set S(X1) of all spin structures
on X1 is canonically identified with H1(X1;Z2) ∼= Zm

2 (where m is the
number of 1-handles) by the correspondence s �→ Δ(s0, s), once we have
drawn X1 in this notation (Proposition 5.6.3). (Note, however, that the
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orientation-preserving diffeomorphisms of X1 act transitively on S(X1) (cf.
Exercise 5.6.8(a)), so the correspondence depends on our choice of repre-
sentation of X1 by a Kirby diagram.) The canonical spin structure on X1

has the following characterization, which also allows us to define it in the
other notation for 1-handles once we have specified a suitable convention for
framing coefficients.

Proposition 5.7.1. The canonical spin structure s0 on an oriented 1-
handlebody X1 in dotted circle notation is the unique spin structure that
extends over an arbitrary 2-handle h attached to X1 if and only if the fram-
ing coefficient n of h is even. Any other structure s extends over h if and
only if n ≡ 〈Δ(s0, s),K〉 (mod 2), where K is the attaching circle of h.

Proof. First we try to extend s0 over h. Since s0 extends over D4, it
suffices to assume that h is attached to D4 (with its unique spin structure).
Now K bounds an immersed disk in D4, which we glue to the core of h
to obtain a sphere S immersed in D4 ∪ h. The immersion extends to a
local diffeomorphism of some disk bundle Y over S, and extending s0 over
h is equivalent to putting a spin structure on the 2-handlebody Y . Since
S2×D2 admits a spin structure (for example, it embeds in R4), it is easy to
see that Y admits a spin structure if and only if e(Y ) is even. (Each twist in
the bundle Y twists TY |S2 by the generator of π1(SO(4)).) However, n =
[S]2 ≡ e(Y ) (mod 2) (since each self-intersection of S contributes an even
number to [S]2, cf. Exercise 6.1.1(a)). Thus, s0 extends over h if and only
if n is even. The generalization to an arbitrary s on X1 follows immediately
from the definition of Δ(s0, s), and now s0 is uniquely characterized, by the
classification of spin structures.

Figure 5.45. The two spin structures on ∂D2.

Beware that the spin structure that extends over h is the unique product
framing of h = D2 × D2, not the one induced by the tangent vector field
to K and the given normal framing, as Figure 5.45 indicates. (The outward
normal to D2 in the first picture of D2 × {0} matches up with the inward
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normal to X1, and the normal framing of D2 × {0} ⊂ D2 ×D2 matches the
normal framing of K.)

Corollary 5.7.2. For an oriented handlebody X given by a Kirby diagram
in dotted circle notation, w2(X) ∈ H2(X;Z2) is represented by the cocy-
cle c ∈ C2(X;Z2) whose value on each 2-handle is its framing coefficient
modulo 2.

Exercise 5.7.3. ∗ Prove the Wu formula, that for any oriented 4-manifold
X (not necessarily compact) and x ∈ H2(X;Z2) we have 〈w2(X), x〉 = x2

(using the Z2-intersection pairing). Note that this formula completely de-
termines w2(X), since H2(X;Z2) is the dual vector space of H2(X;Z2).
(Hint : Use Exercise 4.5.12(b) to represent x by a (possibly nonorientable)
surface, then apply the method of the previous proof.) Compare with Propo-
sition 1.4.18.

Proposition 5.7.4. (Hirzebruch and Hopf [HH]). For any compact, ori-
ented 4-manifold X, w2(X) is the mod2 reduction of a class in H2(X;Z).
Thus, the Poincaré dual of w2(X) is represented by an oriented surface
(W,∂W ) ⊂ (X, ∂X).

Proof. Let Ti ⊂ Hi(X;Z) and T i ⊂ H i(X;Z) be the torsion sub-
groups. By the Universal Coefficient Theorems, we have H3(X;Z) ∼=
Hom(H3(X;Z),Z) ⊕ Ext(H2(X;Z),Z), implying that T 3 ∼= T2. Similarly,
H2(X;Z2) ∼= H2(X;Z)⊗Z2⊕T 3∗Z2 andH2(X;Z2) ∼= H2(X;Z)⊗Z2⊕T1∗Z2

(where the star denotes torsion product). The natural pairing between
H2(X;Z2) and H2(X;Z2) is nondegenerate, but the first term of H2(X;Z2)
pairs trivially with T2 ⊗ Z2 because the pairing on these subspaces lifts to
the integers (killing all torsion elements). Thus, the pairing between T 3 ∗Z2

and T2⊗Z2 is nondegenerate (since these spaces have the same dimension).
But the Z2-intersection pairing on H2(X;Z)⊗ Z2 also vanishes on T2 ⊗ Z2

(since it lifts to Z), so the Wu formula (Exercise 5.7.3) shows that w2(X)
pairs trivially with T2⊗Z2, hence lies in H2(X;Z)⊗Z2. The last statement
of the proposition follows from the fact that any class in H2(X, ∂X;Z) is
represented by an embedded surface with boundary, which follows by the
method of either Proposition 1.2.3 or Exercise 4.5.12(b) (applied to a relative
handle structure on (X, ∂X)).

Remark 5.7.5. The proposition is true even for noncompact 4-manifolds
(where the surface may be noncompact but properly embedded), and it
implies that all oriented 4-manifolds admit spinc structures (cf. Proposi-
tion 2.4.16). For completeness, we sketch a proof by Teichner and Vogt
that applies to any oriented 4-manifold X. The map Z → Z2 induces a
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commutative diagram of short exact sequences:

Ext(H1(X;Z),Z) −→ H2(X;Z) −→ Hom(H2(X;Z),Z)⏐⏐� ⏐⏐� ⏐⏐�
Ext(H1(X;Z),Z2) −→ H2(X;Z2) −→ Hom(H2(X;Z),Z2)

The left vertical map is an isomorphism by homological algebra (Ext2Z =
0). Thus, to lift w2(X) by the middle map, it suffices to lift its image
w ∈ Hom(H2(X;Z),Z2) by the right map. Now each y ∈ H2(X;Z) defines
a map H2(X;Z) → Z by x �→ x · y. Let T be the kernel of the direct
product H2(X;Z)→ ΠyZ of these maps. (Thus, T = T2 when X is closed.)
By the Wu formula, the map w : H2(X;Z) → Z2 is given by w(x) = x2,
so w descends to a map w′ : H2(X;Z)/T → Z2. But the new domain is
a countable subgroup of the free product ΠyZ, so it is free abelian (e.g.
Theorem 19.2 of [Fs]). Thus, w′ lifts to an integer-valued homomorphism,
as required.

If w2(X
4) �= 0 then connected surfaces W dual to w2 are characterized

by the fact that X−W admits spin structures, but these cannot be extended
across a normal disk to W . (For X a connected 4-manifold, it follows that
T (X − W ) is trivial.) If X is closed, then the Wu formula shows that
any integral homology class dual to w2 projects (into H2(X,Z)/T2) to a
characteristic element of QX (cf. Proposition 1.4.18). For more general 4-
manifolds, we have (cf. Remark 1.4.27(c)):

Corollary 5.7.6. For any oriented 4-manifold X (not necessarily compact),
if X is spin then QX is even. The converse holds if H1(X;Z) has no 2-
torsion.

Proof. Apply the Wu formula and the observation that if T1 ∗ Z2 = 0 then
every element of H2(X;Z2) lifts to H2(X;Z).

We have already seen a counterexample to the converse of the corollary in the
presence of 2-torsion, namely the Enriques surface E(1)2,2 (Lemma 3.4.27).
For a simpler example, we have the following exercise.

Exercises 5.7.7. (a)∗ Consider the two oriented manifolds X that are S2-
bundles over RP2 (Exercise 4.6.7(b)). These are drawn in Figure 5.46, and
only depend on n mod2. (Why?) Compute H2(X;Z) and the intersection
pairings over Z and Z2, and determine w2(X) in each case. For n = 1, find
a closed, orientable surface dual to w2(X). Note that the corresponding
integral homology class is not divisible by 2 — why does this not contradict
the above discussion about QX (which is even) and characteristic elements?
Draw the attaching sphere of the 3-handle and compute ∂∗ : C3(X)→ C2(X)
explicitly. (Hint : For the attaching sphere, simplify ∂X2 by changing the
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U  3-handle
4-handle

n

0

Figure 5.46. S2-bundle over RP2.

meridian to a dotted circle and cancelling it. Then find the attaching sphere
and pull it back to the original picture.)

(b)∗ LetX be a closed, oriented 4-manifold with an embedded sphere S dual
to w2(X). Prove that [S]2 ≡ σ(X) (mod 16). (Hint : See Theorem 2.2.13
and Rohlin’s Theorem 1.4.28.)

Now let X be a handlebody in dotted circle notation, and suppose that
w2(X) = 0. By Corollary 5.7.2, the cocycle c ∈ C2(X;Z2) given by the
framings mod 2 must be a coboundary (since [c] = w2(X) = 0). That
is, there is a class Δ ∈ H1(X1;Z2) ∼= C1(X;Z2) with δΔ = c. Then Δ
determines a spin structure s on X1 with Δ(s0, s) = Δ, and it follows that
s extends (uniquely) over X. The structure s is determined from Δ by
twisting s0 on each 1-handle h1 for which 〈Δ, h1〉 �= 0. We can realize these
twists by self-diffeomorphisms of the 1-handles as in Figures 5.42 and 5.43,
so that s is the canonical spin structure of the new picture and all 2-handles
have even framing coefficients. Suitable classes Δ for this procedure can be
recognized by the condition that δΔ = c, or equivalently, that the framing
coefficient of each 2-handle h2 must be congruent mod 2 to 〈Δ, ∂∗h2〉 (which
is the mod 2 number of times that h2 runs over 1-handles on which we have
twisted). In general, Δ is not unique, since we can change it by any class
with vanishing coboundary, or equivalently, any class in H1(X;Z2). Thus,
we recover the classification of spin structures given in the previous section.
Summarizing, we have

Proposition 5.7.8. Any spin structure on a compact 4-manifold X can be
realized as the canonical spin structure of a Kirby diagram in dotted circle
notation with all framing coefficients even.

Exercise 5.7.9. ∗ Describe all spin structures on oriented manifolds X dif-
feomorphic to S2-bundles over RP2, using Kirby diagrams with the canonical
framing on X1, and verify that the orientation-preserving diffeomorphisms
of X act transitively on S(X). (See Exercise 5.7.7(a).)
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Next, we analyze spin structures on 3-manifolds. Any oriented 3-
manifold M has a trivial tangent bundle (Remark 1.4.27(b)), and there is
an obvious correspondence between the spin structures on M and on I×M .
If we pick a collection of circles Ki in M representing a basis of H1(M ;Z2),
then we can specify a spin structure as before, by choosing (mod 2) a framing
coefficient ni for each Ki and requiring that the structure should extend over
a 2-handle attached to Ki with framing given by ni. For a less cumbersome
approach for closed 3-manifolds, however, we follow Kaplan [Kp], writing
M as the boundary of a 2-handlebody X on a framed link L in S3 and de-
fining a correspondence between spin structures and certain sublinks of L.
By Exercise 5.6.2(a), any spin structure s on M = ∂X determines a relative
obstruction to extending s over X, w2(X, s) ∈ H2(X,M ;Z2) ∼= H2(X;Z2)
(where the isomorphism comes from Poincaré duality), and this maps to
w2(X) ∈ H2(X;Z2) ∼= H2(X,M ;Z2). Now classes in H2(X;Z2) correspond
bijectively to sublinks L′ of L (where the sublink L′ corresponds to the sum
of all handles attached to L′). Recall the correspondence between the in-
tersection form QX and the linking pairing of L (Proposition 4.5.11), which
also holds with Z2-coefficients.

Definition 5.7.10. Let L = {K1, . . . ,Km} be a framed link in S3. A
characteristic sublink L′ ⊂ L is a sublink such that for each Ki in L, its
framing �k(Ki,Ki) is congruent mod 2 to �k(Ki, L

′).

Proposition 5.7.11. The map s �→ w2(X, s) ∈ H2(X;Z2) determines a
bijection from S(M) to the set of characteristic sublinks of L.

Proof. By the Wu formula (Exercise 5.7.3), a sublink is characteristic
if and only if it corresponds to a class in H2(X;Z2) mapping to w2(X)
in H2(X,M ;Z2) (up to Poincaré duality). Thus, a spin structure s on
M determines a characteristic sublink via w2(X, s). To check surjectivity,
observe that a characteristic sublink determines a class in H2(X;Z2) that is
represented by a closed surface W dual to w2(X). Then X −W admits a
spin structure whose restriction to M corresponds to the given sublink. For
injectivity, let s′ be a different spin structure on M . Starting with s and W
as before, we change s to s′ on ∂X by adding a collar I×M to X (with s′ on
the outside boundary of I×M and s inside as before). By Exercise 5.6.4(b)
applied to I × M , this will change the dual of w2(X, s) in H2(X;Z2) to
that of w2(X, s′) by adding the dual of Δ(s, s′). Since inclusion induces an
injection H2(M ;Z2) → H2(X;Z2) (as we see by turning the 2-handlebody
upside down), we conclude that the characteristic sublink changes if s′ �= s,
so the correspondence is injective.

Now we can specify spin structures by their characteristic sublinks L′.
The spin structure corresponding to a given L′ is characterized by the fact
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that it extends over a new 2-handle h attached to a knot K with framing
n if and only if n ≡ �k(K,L′) (mod 2). (This is because when the structure
extends, the resulting structure on ∂(X ∪ h) still has characteristic sublink
L′.)

Exercises 5.7.12. (a)∗ For disk bundles over RP2, analyze the map
S(∂X) → H2(X;Z2) given by s �→ w2(X, s). Compare with the case of
2-handlebodies.

(b)∗ Use characteristic sublinks to classify spin structures on the 3-manifold
given in Figure 5.47, and describe these in terms of extending over new
handles.

(c) For a relative handlebody (X, ∂−X) with a fixed spin structure s0 on
∂−X, analyze w2(X, s0) and spin structures on X extending s0 the way we
did for handlebodies with ∂−X = ∅ in Corollary 5.7.2 and the text following
Exercises 5.7.7.

3

3

2 4K1

K2

K3

K4

Figure 5.47

Having expressed spin structures on 3-manifolds in terms of character-
istic sublinks of their surgery diagrams, we wish to understand the effect of
Kirby moves. Given a spin structure s on M = ∂X as above, suppose we
slide a 2-handle h1 over h2. The resulting 4-manifold is canonically diffeo-
morphic to X, so its boundary inherits a spin structure from s, and if we
identify the new manifolds and spin structure with (X,M, s) in the obvious
way, the relative class w2(X, s) is preserved. The new canonical basis for
H2(X;Z2) is given by h′i = hi, i �= 1, and h′1 = h1+h2. If w2(X, s) =

∑
εihi

(εi ∈ Z2), then in terms of the new basis it is given by −ε1h′2 +
∑

εih
′
i.

Thus, if we draw characteristic sublinks in a different color from the other
link components, the only color change induced by sliding h1 over h2 is that
K2 changes color if and only if K1 is in the characteristic sublink. (This
can also be seen by the method of Exercise 5.5.7(c).) To understand blow-
ing up and down, note that the unique characteristic sublink of an isolated
±1-framed unknot is the unknot itself. The general case easily follows by
sliding handles (Figure 5.17): If we blow up an unknot K, then the new

                

                                                                                                               



5.7. Spin structures in Kirby diagrams 191

characteristic sublink includes K if and only if �k(K,L′
0) is even (where

L′
0 is the original characteristic sublink), and the original colors of L are

preserved. To blow down, note that this condition on K is guaranteed by
Definition 5.7.10.

Exercise 5.7.13. ∗ We can obtain RP3 as either +2- or −2-surgery on the
unknot. Realize the diffeomorphism between these by Kirby moves and de-
termine how the spin structures correspond. Check your answer by keeping
track of the framing on a meridian.

Theorem 5.7.14. Any closed, connected, spin 3-manifold (M, s) is the spin
boundary of a spin 2-handlebody X.

Of course, a 2-handlebody admits a spin structure if and only if all framings
are even. Since H1(X;Z2) = 0, the spin structure on X is unique, and
so s is uniquely determined by the Kirby diagram of X by restricting the
spin structure to ∂X (or equivalently, taking the characteristic sublink to
be empty). The theorem can be proved in the manner of Corollary 5.3.5,
using the fact that every spin 3-manifold is a spin boundary, which was
known to Milnor [M3]. (See also [K2].) The following proof, relying only
on Theorem 5.3.4 (that an oriented 3-manifold is an oriented boundary), is
Kaplan’s application of characteristic sublinks [Kp].

Di

1

Figure 5.48

1

Figure 5.49

Proof. Represent (M, s) by integral surgery on a link L (Corollary 5.3.5)
with a characteristic sublink L′. We assume L′ �= ∅. (Otherwise, we are
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done.) By sliding one component of L′ over the others, we arrange for L′

to be a knot K0. Blowing up as in Figure 5.19, we may unknot K0 by
changing suitable crossings, at the expense of adding a collection of un-
knots K1, . . . ,Kr to the characteristic sublink. Each of the new circles Ki

(i = 1, . . . , r) bounds a canonical disk Di that intersects K0 in two points.
We can visualize each disk Di as a band-sum of a pair of meridianal disks of
K0 (Figure 5.48), but if we draw K0 as round, the bands will appear tangled
with each other and K0. By blowing up as in Figure 5.49, we can reverse
a crossing of any band with any strand of K0, . . . ,Kr without adding com-
ponents to the characteristic sublink (since the blown-up curve links an odd
number of strands of

∐
Ki). Now we can assume the characteristic sublink

has the simple form of Figure 5.50 (where n1, . . . , nr ∈ 1
2Z). Blowing up as

in Figure 5.21 allows us to change the sign of any clasp without otherwise
changing the characteristic sublink, so we can change each ni ∈ 1

2Z arbitrar-
ily as in Figure 5.51. Now we can assume that the characteristic sublink is
an unlink. After blowing up meridians, we can assume that all framings on
the sublink are ±1. Now we can blow down the sublink, so that the new
characteristic sublink is empty and the spin structure s extends over the 4-
manifold.

K0

n1

n2

nr

. . . . .

Figure 5.50

blow up

Figure 5.51
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Exercises 5.7.15. (a)∗ For the lens spaces L(p, 1), p > 0, realize all spin
structures as spin boundaries. (If you are careful, you can get plumbings on
linear graphs.) Repeat for 0-surgery on the trefoil knot.

(b)∗ Prove that every closed, oriented 3-manifold embeds smoothly in
#mS2 × S2 for some m.

Definition 5.7.16. For a closed, spin 3-manifold (M, s), the Rohlin in-
variant (or mu invariant) μ(M, s) ∈ Z16 is the signature σ(X) reduced
modulo 16, where X is any (smooth) compact, spin 4-manifold with spin
boundary (M, s).

To see that this invariant is well-defined, first observe that for any orien-
ted manifold X there is a canonical correspondence between spin structures
on X and on X (by reversing the sign of the first vector in the trivializa-
tion). Now if X and Y are two compact spin 4-manifolds with spin boun-
dary (M, s), then the closed manifold X ∪M Y inherits a spin structure. By
Rohlin’s Theorem 1.4.28, σ(X∪MY ) ≡ 0 (mod 16). But by Novikov additiv-
ity of the signature (see Remark 9.1.7), we have σ(X∪MY ) = σ(X)+σ(Y ) =
σ(X)− σ(Y ), and so σ(X) ≡ σ(Y ) (mod 16).

Note that μ(M, s) = −μ(M, s), and that μ(M1#M2, s1 # s2) =
μ(M1, s1)+μ(M2, s2). (We define s1# s2 in the obvious way by interpreting
the sum as attaching a 4-dimensional 1-handle and extending the trivializa-
tion over the 1-handle.) If M is a Z2-homology sphere (i.e., H1(M ;Z2) = 0),
then it admits a unique spin structure s, and μ(M) = μ(M, s) is an in-
variant of the oriented 3-manifold. If M is an integral homology sphere
(that is, H1(M ;Z) = 0), then any compact spin manifold X with boun-
dary M has an even, unimodular intersection pairing (Remark 1.2.11; cf.
also Corollary 5.3.12 and the subsequent discussion), so (by Lemma 1.2.20)
σ(X) ≡ 0 (mod 8), and the Rohlin invariant descends to an invariant
1
8μ(M) ∈ Z2 of the unoriented manifold.

Exercises 5.7.17. (a)∗ Compute the Rohlin invariant of every spin struc-
ture on a lens space L(p, 1). For even p �≡ 0 (mod 16), show that L(p, 1)
admits no orientation-preserving self-diffeomorphism that interchanges the
two spin structures. What can you say about orientation-reversing diffeo-
morphisms? What happens when p = 2?

(b)∗ Prove that the Poincaré homology sphere Σ (−1-surgery on the left
trefoil (Figure 5.22), see Exercise 5.1.12(a)) is not the boundary of any con-
tractible (or even acyclic) smooth 4-manifold. (Many homology spheres do
bound contractible 4-manifolds. For example, surger out a 2-sphere in Fig-
ure 4.29.) Prove that Σ does not embed smoothly in R4. By Freedman,
all homology spheres bound contractible topological 4-manifolds (cf. Ex-
ercise 5.3.13(e)). (Gluing such a contractible manifold with boundary Σ
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onto the 4-manifold Q of Figure 5.22 produces Freedman’s unsmoothable
manifold homotopy equivalent to CP2.) Using Freedman, prove that I × Σ
embeds topologically in R4.

(c)∗ Compute the Rohlin invariants of the 8 spin structures on T 3. Which
one is exceptional? (Hint : You can keep track of the signature in Kaplan’s
algorithm by counting blow-ups.)

(d)∗ Let X be a compact, oriented 4-manifold with a spin structure s on
∂X. Suppose that S ⊂ X is an embedded sphere dual to w2(X, s). What
can you say about [S]2? (Hint : Exercise 5.7.7(b).)

It is natural to ask how the previous discussion of spin structures and
characteristic sublinks extends to rational surgery diagrams. To answer this,
we observe that if M is obtained by rational surgery on a link L in S3 with
coefficients pi

qi
, then a spin structure on M is determined by its restriction

to the link complement S3 − νL.

Claim 5.7.18. If a new manifold M ′ is obtained from M by changing each
pi and qi by even integers, then a spin structure on S3−νL will extend over
M ′ if and only if it extends over M .

The claim gives us a canonical isomorphism S(M) ∼= S(M ′). Now we can
replace each even qi by 0 and each odd qi by 1, reducing to the previous
case.

Definition 5.7.19. Let L be a link in S3 with rational surgery coeffi-
cients pi

qi
. Let L′′ be the sublink of components with qi odd. A charac-

teristic sublink L′ of L is a sublink of L′′ such that for each Ki in L′′,
pi ≡ �k∗(Ki, L

′) (mod 2), where �k∗ is the linking pairing obtained by set-
ting each framing �k∗(Kj ,Kj) = pj .

As before, we obtain a canonical bijection S(M) ∼= {characteristic sublinks},
and the spin structure corresponding to a given L′ is characterized as ex-
tending over a 2-handle attached to I ×M along a knot K with framing n
if and only if n ≡ �k(K,L′) (mod 2).

Proof of Claim 5.7.18. Identify each boundary component of S3 − νL with
T 2 = R2/Z2. The group of orientation-preserving diffeomorphisms of this
(up to isotopy) is given by SL(2,Z), and the integers pi and qi correspond
to the first column of the matrix of a gluing diffeomorphism. It is easily
checked that our hypothesis on the change in pi and qi guarantees that
after a column operation (on the second column) corresponding to a self-
diffeomorphism of the solid torus, the matrices of the two gluing maps will
agree modulo 2. Each matrix acts on H1(T 2;Z2) ∼= Z2 ⊕ Z2 through its
mod 2 reduction in SL(2,Z2), so it clearly suffices to show that any matrix
acting trivially on H1(T 2;Z2) corresponds to a diffeomorphism of T 2 fixing
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all spin structures. (The corresponding statement for general manifolds is
false by Exercise 5.6.8(a).) But there is a canonical trivialization τ of the
tangent bundle of T 2 descending from the standard basis of R2. For any
A ∈ SL(2,Z), the trivialization A∗τ induced by the diffeomorphism is also
obtained from τ by applying A to the tangent space at each point sepa-
rately. Thus, A∗τ is homotopic to τ via a path in GL(2,R) connecting A to
the identity, so τ determines a spin structure that is fixed by all diffeomor-
phisms of T 2. Since any other spin structure differs from this by an element
of H1(T 2;Z2) (and difference classes pull back under diffeomorphisms by
Proposition 5.6.5), we are done.

Exercise 5.7.20. Define a canonical spin structure on T 3. Which one is
it? (See Exercise 5.7.17(c).) Verify (using difference classes) that the self-
diffeomorphisms of T 3 act transitively on the remaining spin structures;
cf. the solution of Exercise 5.7.17(c). (The group of orientation-preserving
diffeomorphisms of T 3 up to isotopy is SL(3;Z).)

To analyze the effects of Rolfsen moves on characteristic sublinks, it is
convenient to keep track of a spin structure by adding a 2-handle hi to I×M
along a meridian μi of each link component Ki in such a way that the spin
structure extends over the 2-handles. Thus, the framing on μi is odd if and
only if Ki is in the characteristic sublink L′ (which we again imagine drawn
in a different color). It is now clear that if we transform the diagram by
a Rolfsen twist or slam-dunk, then the colors will be preserved except for
a possible change on the unknot that is being twisted or slam-dunked. A
Rolfsen twist as in Figure 5.27 will change the meridian μ of the unknot
K on which we twist by adding n twists to its framing and wrapping it n
times around the other strands passing through K. We can return it to its
original position (as a meridian of K) by an isotopy in the spin 4-manifold
I ×M ∪ ⋃

hi, sliding it over the new handles hi when necessary (and then
unlinking it from the attaching circles μi with nonzero framing by passing μ
through μi). The net change in framing (mod 2) is n(1 + �k(K,L∗)), where
L∗ is obtained from L′ by deleting K if it is present. Thus, K changes color
if and only if this number is odd. For a slam-dunk as in Figure 5.30, K1

disappears and (as we have already seen) the other colors are unchanged. To
understand the inverse move, simply note that the color of K1 is determined
by the colors of the other link components, by Definition 5.7.19 applied to
K1 and K2. For example, if the coefficient of K1 is p

q with p odd, then K1

is in L′ if and only if K2 is not in L′ and q is odd. (Compare with blowing
up.)

To complete the discussion, we observe that Rohlin invariants are not de-
termined by the mod 2 residues of pi and qi. (Consider lens spaces L(p, 1).)
However, we can still compute Rohlin invariants by obtaining an integral
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surgery diagram (Exercise 5.3.9(b)) and applying Kaplan’s method (Theo-
rem 5.7.14).

Exercises 5.7.21. (a) Analyze the behavior of characteristic sublinks un-
der Rolfsen moves by reducing to the case where all coefficients are 0, 1 or
∞ as in Claim 5.7.18 and applying the integral theory. Verify that your
answers are equivalent to the ones given above.

(b)∗ Compute the Rohlin invariant of any spin structure on an arbitrary
lens space L(p, q) in terms of a continued fraction expansion of −p

q . (Hint :

There is such an expansion with at most one odd entry.) For a related
discussion of spin structures on T 2-bundles over S1, see [KMe2] (Section 5
and Appendix).

                

                                                                                                               



Chapter 6

More examples

We now turn to more advanced examples of Kirby diagrams. We begin by
discussing plumbings in full generality (in the context of oriented 4-man-
ifolds). A related example is given by Casson handles, which are infinite
handlebodies that are fundamental in Freedman’s work (as we will see in
Chapter 9). As an application, we draw a Kirby diagram of an exotic R4,
a smooth manifold homeomorphic to R4 but not diffeomorphic to it. In
Section 6.2, we discuss how to draw arbitrary surfaces in 4-manifolds. For
example, we draw arbitrary smooth complex curves in CP2. We also give
an algorithm for constructing Kirby diagrams of the complements of sur-
faces in 4-manifolds. The third section discusses Kirby diagrams of covers
and branched covers. This construction is particularly useful in that many
complex surfaces arise as branched covers, as we will see in Chapter 7. Ad-
ditional examples will be given in Part 3, for example elliptic surfaces in
Chapter 8.

6.1. Plumbings and related constructions

First, we summarize what we already know about plumbings, beginning
with the case with a trivial graph, i.e., disk bundles over closed, connected
surfaces. We considered arbitrary D2-bundles π : X → F (X oriented) in
Example 4.6.5, and saw that they are classified by F and the Euler number
e(X). The case F = T 2 was given by Figure 4.36 with n = e(X). By chang-
ing to dotted circle notation (Exercise 5.4.3(c)), we obtain the Borromean
rings, Figure 6.1. (Note that while dotted circles representing 1-handles are
required to form an unlink, it is frequently convenient to draw this unlink in
a plane projection with crossings. In this case, they form the Bing double of
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 e(X)  e(X) 

Figure 6.1. D2-bundle X over T 2.

a meridian of the attaching circle, and we should think of them as represent-
ing a trivial pair of disks in D4 that have been bent like taco shells around
each other and then deleted from D4.) Similarly, we drew bundles over RP2

(Figure 4.38), which we can redraw as in Figure 6.2. By the same method
of building handlebodies pairwise, we saw how to draw any D2-bundle over
a surface (Exercises 4.6.6(b) and 4.6.7(b)). This is most easily described
using the connected sum operation for oriented knots. The connected sum
K1 #K2 of two oriented knots is formed by drawing them in the same pic-
ture, separated by a plane, and then connecting them by a surgery following
a band (respecting preassigned orientations) that only passes through the
plane once (Figure 6.3). Since the connected sum of two surfaces is obtained
by fusing together (boundary summing) their 0-handles and replacing their
2-handles by a single 2-handle, it should be clear from Example 4.6.5 that a
bundle over a connected sum is obtained from bundles over the summands
by connected summing their attaching circles (Figure 6.4). The framing will
be e(X) + 2w, where w is the sum of the writhes of the dotted circles if we
draw them as on the right side of Figure 6.2.

We considered more general plumbingsX previously in Section 4.6.2. We
saw that such oriented manifolds are classified by their decorated graphs,
with each vertex corresponding to a disk bundle over a connected surface as
above (with the surface oriented if possible) and each edge corresponding to a
plumbing, with an associated sign if the corresponding surfaces are oriented.
We drew explicit pictures of plumbings of spheres on trees (Figure 4.33),
and saw how to generalize the technique to arbitrary plumbings on trees
(Exercise 4.6.6(b)). The main idea is that when each plumbing is performed,
a new disk bundle over a surface F is introduced, and the 0-handle of F is
identified with a cocore of some 2-handle h. Since this cocore is isotopic to
an unknotted disk in D4 bounded by a meridian of h, the plumbing will be
accomplished by applying the previous paragraph to this meridian. Thus,
for an arbitrary plumbing on a tree, we draw a disk bundle as before for each
vertex, linking their 2-handles in the simplest possible way for each edge as in
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or

 e(X)  2  e(X)  2 

 e(X)  2  e(X)  2 

Figure 6.2. D2-bundle X over RP2.

K1 K2 K1 # K2

Figure 6.3. Connected sum of knots.

 e(X)  2l 

k l 

. . . . . . . .

Figure 6.4. D2-bundle X over # kT 2 # �RP2.
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2

2

5

9

3

3

4

4

# T 2 T 2 

T 2 

S2 

I I R P2I I R P2 #

Figure 6.5. A typical plumbing on a tree.

1

20

D

Figure 6.6. Handle decomposition of (D2, ∂D2).

Figure 6.5. As part of the induction hypothesis, we see that each 2-handle
cocore is a fiber of a bundle. We can also see each 0-section by starting
with a spanning disk for the corresponding attaching circle and modifying
it to avoid the dotted circles, using a Möbius band for each RP2-summand
(Figure 6.2) and a surgery for each T 2-summand (Exercises 5.3.3(d) and
5.4.3(c)).

It remains to consider plumbings on nonsimply connected graphs (in-
cluding self-plumbings). These are obtained from plumbings on trees by
plumbing the 2-handles. In general, if h and h′ are 2-handles attached to a
4-manifold X (possibly with h = h′), we can plumb them as follows: Start-
ing with the relative handle decomposition of the core (D, ∂D) of h with
a single handle, introduce a cancelling 0- and 1-handle (Figure 6.6). We
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or

h h'

Figure 6.7. Plumbing 2-handles of a connected handlebody.

identify the 0-handle with a cocore of h′ (realized as a disk in X bounded
by a meridian of the attaching circle of h′). Then we attach h by attach-
ing the 1-handle and 2-handle (pairwise, as we did to draw disk bundles in
Example 4.6.5). See Figure 6.7. In dotted circle notation, we create a clasp
just as in the previous case, but now it also runs through a dotted circle.
Note that we can choose the sign of the clasp as prescribed by the graph.
(For plumbings on trees, we can change signs arbitrarily by changing orien-
tations of the surfaces, but in the general case, signs may affect the resulting
diffeomorphism type.) Clearly, for h �= h′ this plumbing operation does not
change the relation between framing and Euler number (since each attach-
ing circle by itself was only changed by an isotopy), so we have a complete
picture of plumbings without self-plumbings of components of the surface.
See Figure 6.8. Note that although we have choices in the bands we use to

3

3

2

2

T 2 S2 

Figure 6.8. Plumbing on a nonsimply connected graph.
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Figure 6.9. Self-plumbing in dimension 2.

create the clasps, these do not affect the resulting diffeomorphism type, as
we see from the old notation for the 1-handles. (In dotted circle notation,
we can change the band by sliding curves under the 1-handle.) Similarly,
we can switch one of the dotted circles of Figure 6.8 onto the center clasp
by a 1-handle slide.

Finally, we consider self-plumbings, h = h′. (See Figure 6.9.) Since the
segments pictured in Figure 6.7 are arbitrary on the attaching circle K, we
can take them to be contiguous as in Figure 6.10(a) and (b). Then we can
straighten K again by an isotopy (Figure 6.10(c)), twisting the dotted circle
into a Whitehead double of a meridian of K. When we analyze the framing,
we encounter a new complication. For an immersion of a closed, oriented
surface F in a 4-manifold, we still have a well-defined normal bundle νF
(defined by pulling back to the domain F ), but its Euler number no longer
gives F ·F . In fact, when F is generically immersed, F ·F−e(νF ) equals twice
the signed number self(F ) of self-intersections (transverse double points) of
F , as can be seen by forming a transverse copy F ′ of F and examining
F ∩F ′ at the self-intersections of F (Exercise 6.1.1(a)). Now if we interpret
h as a 2-handle attached to D4 (ignoring dotted circles), it determines (up
to sign) a homology class represented by an oriented surface F made from
the core union a Seifert surface. If we add self-plumbings to h by drawing
dotted Whitehead curves as in Figure 6.10(c) without changing the framing
on h, then the framing coefficient will be preserved, and hence, so will the
self-intersection number [F ] · [F ]. Thus, e(νF ) will drop by twice the signed
number of clasps (= 2 self(F )). Equivalently, the framing on h determines
a (different) framing in Figure 6.10(b) if we create the clasps by a regular
homotopy of K, and this choice of framing will preserve e(νF ), but now
the framing coefficient (and hence, self-intersection number) will increase
by 2 self(F ) (as we see directly by the change in writhe of K). Either
way, we can relate the framing coefficient for a self-plumbing to the Euler
number (and for an oriented surface, to the self-intersection number F · F
— this equals the framing coefficient). For example, Figure 6.11 represents
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(c)

(a)

(b)

or

Figure 6.10. A self-plumbing.

k

k k

S2 

Figure 6.11. Self-plumbed D2-bundle over S2 (D4 ∪ kinky handle),
F · F = k = e(νF ) + 2.

a sphere with three self-plumbings (with the indicated signs), F ·F = k and
e(νF ) = k − 2.

Exercises 6.1.1. (a)∗ Prove that for a generic immersion F 2 → X4 (both
oriented), F · F = e(νF ) + 2 self(F ).

(b) Draw a generic homotopy ϕt : S
1 → R3, t ∈ I = [0, 1], such that

ϕ0 = ϕ1 = idS1 , ϕ 1
2
is a figure-eight (i.e., two strands intersect) and for each

t �= 1
2 , ϕt is an embedding. Consider the immersed surface F comprising the
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image of (idI , ϕ) : I × S1 → I × R3, with a unique transverse double point.
Draw a normal framing of F , using double-strand notation in each picture
{t} × R3. Compare the framings at t = 0, 1. How does this relate to part
(a)?

Remark 6.1.2. Bing and Whitehead doubling are actually operations that
can be performed on any framed circle K in an oriented 3-manifold. One
simply uses the framing and orientation to identify a tubular neighborhood
of K with one of the solid tori in Figure 6.12, obtaining a new knot or link.
(There are two ways to do this, depending on the orientation of K, but the
answers are the same because of the symmetry, rotating 180◦ about the z-
axis in Figure 6.12.) For K ⊂ S3, one usually uses the 0-framing; the case of
framing n is called the n-twisted Bing (positive/negative Whitehead) double
of K. For example, the (untwisted) positive Whitehead double of the right
trefoil knot is shown in Figure 6.13.

Bing Whitehead

Figure 6.12. Bing and Whitehead doubling.

Figure 6.13. Whitehead double of the trefoil.

Example 6.1.3. The case of 2-handles with self-plumbings, or kinky han-
dles [C], is of independent interest because of its importance in Freedman’s
work on topological 4-manifolds [F], [FQ]. The natural convention for fram-
ings is that attaching a kinky handle to a 4-manifoldX should look the same
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as attaching an ordinary handle on the level of intersection forms. That is,
we twist the product framing of ∂D2 × 0 ⊂ ∂D2 ×D2 by twice the signed
number of self-plumbings, and match this new framing with the given one
on the attaching circle in ∂X. Thus, Figure 6.11 shows a kinky handle
attached to a k-framed unknot. (It may be helpful to imagine the dotted
circles isotoped into the 2-handle, so that a kinky handle is obtained from
a 2-handle by removing some disks.) Observe that if we attach 2-handles
to 0-framed meridians of the dotted circles, we obtain a standard 2-handle
attached to the same framed curve K. If we instead attach kinky handles
to these 0-framed meridians, we obtain a 2-stage Casson tower T2 attached
to K. Repeating the process with the new kinky handles yields a 3-stage
tower T3, and so on. Taking the infinite union of T2 ⊂ T3 ⊂ T4 ⊂ . . . , one
obtains a Casson handle (after removing all boundary except the attaching
region of the original kinky handle T1). The simplest Casson handle (with
only one self-plumbing at each stage and all signs positive) is shown in Fig-
ure 6.14, attached to a k-framed unknot. (To interpret this infinite picture,
we replace D4 by the noncompact manifold (−∞, 0] × R3.) More general
Casson handles have branching due to kinky handles with more than one
self-plumbing, and self-plumbings of both signs may be present, Figure 6.15.

0k 0 0

. . . .

Figure 6.14. Simplest Casson handle attached to D4 along a k-framed unknot.

Casson handles are important because of their relevance to a key
lemma from high-dimensional topology. (See Section 9.2.) The main the-
orems of high-dimensional topology depend on a trick of Whitney (Theo-
rem 9.2.7) which involves embedding a 2-handle (D2 ×Dn−2, ∂D2 ×Dn−2)
in (Xn, ∂−Xn) with a specified framed attaching circle in ∂−Xn. For n ≥ 5
this is straightforward, but when n = 4 it usually fails. (Roughly, this is
because a generic map (D2, ∂D2)→ (Xn, ∂−Xn) is an embedding for n ≥ 5
but only an immersion for n = 4.) Casson showed that under the required
hypotheses in dimension 4, we can at least find an embedded Casson handle.
Freedman’s key lemma is that any Casson handle is homeomorphic to an
open 2-handleD2×int D2, such that the given framing on its attaching circle
maps to the product framing. This ultimately allows the high-dimensional
machinery to run for topological 4-manifolds, resulting in the Classification
Theorem 1.2.27 (for example). Casson handles cannot always be diffeomor-
phic to D2 × int D2, since the Classification Theorem is known to fail for
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k

0 0 0

. . . .

0

0

0

. . . .

. . . .

. . . .

0

0

Figure 6.15. Casson handle attached to D4 along a k-framed unknot.

smooth 4-manifolds (e.g., Donaldson’s Theorem 1.2.30). For example, for
k = 0 Figure 6.14 contains no smoothly embedded sphere generating its
homology (by the text following Theorem 11.2.6), so the pictured Casson
handle contains no smoothly embedded disk bounded by its attaching cir-
cle. There are uncountably many diffeomorphism types of Casson handles
[G2], [G6] (see also Exercise 9.4.13(b)), but it is still not known if they
are all distinct, or if any one is diffeomorphic to D2 × int D2. The inte-
rior of any Casson handle is diffeomorphic to R4 by Exercise 9.4.1(c), but
a slight modification of one yields the exotic R4 shown as the interior R of
Figure 6.16 (taken from [BG]), a manifold homeomorphic to R4 but not dif-
feomorphic to it. (See Theorem 9.3.8.) More recent versions of Freedman’s
argument [FQ] involve more complicated towers with some kinky handles
replaced by manifolds of the form F ×D2, for F an orientable surface with
∂F ≈ S1. This replacement corresponds to replacing Whitehead doubles by
Bing doubles.

Exercises 6.1.4. (a)∗ Let Xn,k be the manifold D4 ∪ n-stage tower ob-

tained by cutting off Figure 6.14 after the nth stage. Show directly that
adding a 0-framed meridian to the top stage dotted circle produces a disk
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0

0

0 0

. . . .

Figure 6.16. Exotic R4.

bundle. Now draw a diagram for Xn,k with only one 1-handle and one
2-handle. Describe this in the language of Remark 6.1.2. How does the dia-
gram change if the kinky handles have more self-plumbings? Self-plumbings
of both signs?

(b) Prove that if the Casson handle in Figure 6.16 is replaced by a standard
2-handle, the manifold becomes diffeomorphic to D4. Thus, by Freedman’s
lemma, R is homeomorphic to R4. For a proof that R is not diffeomorphic
to R4, see Theorem 9.3.8.

(c)∗ Prove directly that R is contractible. (It suffices to show that π1(R)
and H∗(R) are trivial.) Prove that R is simply connected at infinity , i.e.,
any compact subset C of R is contained in a compact D with connected
complement such that the inclusion R − D → R − C induces the trivial
map on π1. By Freedman [F], [FQ], any 4-manifold (without boundary)
that is both contractible and simply connected at infinity is homeomorphic
to R4. (Hint : Let Yn be the compact manifold obtained from Figure 6.16
by cutting off the Casson handle after the nth stage. What is the minimum
number of components in a surgery diagram for ∂Yn? Now choose D so that
π1(R−D) is trivial.)

6.2. Embedded surfaces and their complements

In this section we study submanifolds and their complements. After a brief
discussion of ambient handle decompositions of submanifolds (Y, ∂Y ) ⊂
(Dn, ∂Dn) in arbitrary dimensions, we focus on cases of interest to low-
dimensional topologists. We warm up with an exercise on link comple-
ments in S3 and Heegaard decompositions of Dehn surgeries, then turn to
the problem of drawing embedded (and then immersed) surfaces (F, ∂F ) ⊂
(D4, ∂D4), as well as their complements. Finally, we discuss the general
problem of drawing surfaces in arbitrary 4-manifolds, e.g., complex curves
in CP2, and understanding handle moves in such diagrams. In each case, we
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study first the submanifolds themselves, and then handle decompositions of
their complements.

We begin by considering an embedding (Y m, ∂Y m) ↪→ (Dn, ∂Dn) of a
compact pair in a ball, with m < n and Y intersecting ∂Dn transversely.
We identify Dn with I × Dn−1 in such a way that ∂Y ⊂ {1} × Dn−1.
As in Section 4.2, we can perturb the first coordinate t of the embedding
so that it becomes a Morse function on Y (with ∂+Y = ∂Y ). Then t
induces a handle decomposition of Y with a handle for each critical point.
On any interval J ⊂ I without critical values of t|Y , the embedding of Y is
vertical up to isotopy — that is, a routine flow argument produces a product
structure on the pair (Dn, Y m) ∩ (J × Dn−1) as J × (Dn−1, (t|Y )−1(pt.)).
Each index-k critical point of t|Y corresponds to a k-handle h of Y , and
(up to smoothing corners) we can flatten h so that it lies in a single level
t = b. (See Figure 6.17.) As in Proposition 4.2.7, we can ambiently (i.e., in
I ×Dn−1) order the handles of Y by increasing index, with the caveat that
in the codimension-1 case (m = n − 1), we may not be able to interchange
handles of the same index. (To see why this reordering is possible, imagine
attaching a second handle h′ at level t = c in Figure 6.17. The dimension
hypotheses and transversality allow us to assume that the core of h′ and
cocore of h have disjoint projections to Dn−1. It is now routine to construct
an isotopy of Y sliding h′ down to the level t = a.)

h

DD

t  a

t  b

t  c

(c)(a) (b)

Figure 6.17. Local model of ambiently attaching a handle h with core D.

We now wish to describe a handlebody structure on the complement
X of an open tubular neighborhood νY ⊂ I × Dn−1. For t ∈ (0, 1], let
Yt = Y ∩([0, t]×Dn−1), Xt = X∩([0, t]×Dn−1) and ∂+Xt = X∩({t}×Dn−1).
(Note that we have modified our previous convention for ∂+ in that ∂+Xt

has nonempty boundary.) As t increases, the topology of Xt only changes
when we pass a critical value of t|Y . For each k-handle of Y (index-k critical
point of t|Y ), Xt changes by the attachment of a handle, so X inherits a
handle decomposition from Y . This is not hard to visualize by imagining
νY sitting in a basin I ×Dn−1 that is being filled with water (representing
Xt), but for the sake of completeness we check the details carefully:
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Proposition 6.2.1. Let [a, d] ⊂ I (a �= 0) be an interval containing a
unique critical value b ∈ (a, d) of t|Y corresponding to a unique k-handle
h of Y . Then Xd ≈ Xa ∪ (k + n−m− 1)-handle.

Proof. For convenience, pick c ∈ (b, d). Then the local description of
Y ⊂ Dn is ([a, b] × ∂Ya) ∪ h ∪ ([b, c] × ∂Yc) (Figure 6.17). In the case of
codimension 1 (i.e., m = n − 1) we can assume the open k-handle in νY
obtained by thickening h has the form (a, c)× h, so we can write νY locally
as ([a, c)× (ν∂Ya))∪ ((a, c)×h)∪ ((a, c]× (ν∂Yc)). Although the levels ∂+Xt

have different topologies for t = a, b, c, the manifolds Xt are essentially the
same for a ≤ t < c. (Removing h ∪ ν∂h from ∂+Xa to create ∂+Xb merely
puts a depression in ∂Xb, and can be achieved by a suitable flow in I×Dn−1.)
To create ∂+Xc, however, we must add material back in. Specifically, we
must add a neighborhood of the core D of h, extended to the edge of ν∂Ya,
which is a k-handle attached to ∂+Xb. Thus, Xd is obtained from Xa as
required, by attaching a k-handle with core parallel to D. Before passing to
the case of arbitrary codimension, it is useful to consider the dual viewpoint:
∂+Xb is obtained from ∂+Xc by removing h∪ν∂h, which we can interpret as
the open (m−k)-handle h∗ dual to h and attached to ν∂Yc (Figure 6.17(c)).
To reverse the procedure and recover ∂+Xc, we attach a k-handle to ∂+Xb

along the cocore D of h∗. Now the case of arbitrary codimension n −m is
similar. The neighborhood νY is given by the same local picture crossed
with Dn−m−1. (See Figure 6.18 for m = 1, n = 3.) The only difference is
that the (m − k)-handle h∗ has cocore D × Dn−m−1, so ∂+Xc and Xd are
obtained from ∂+Xb and Xa by attaching a (k+n−m−1)-handle with core
D ×Dn−m−1.

h

D  h

k 1

k 0
D

Y Y 

D x D1

Figure 6.18. Local models of νY 1 ⊂ I ×D2.
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For our present purposes, the most interesting case is when the codi-
mension n−m is 2. (The codimension-1 case is also useful — for example,
when studying the Schoenflies problem, whether every smooth embedding
S3 ↪→ S4 is unknotted, cf. [Sch], [G8].) In codimension 2, each k-handle of
Y determines a (k+1)-handle of X (Figure 6.18). When k = 1, the attach-
ing circle ∂(D×D1) of the 2-handle of X consists of two copies D× ∂D1 of
the core D of the 1-handle, attached together at the attaching region of the
1-handle (along ∂D ×D1).

Exercise 6.2.2. ∗ Let K denote the (right-handed) trefoil knot in S3 (Fig-
ure 4.27). Draw a handle diagram representing S3 − νK. Now draw a
Heegaard diagram for the closed 3-manifold obtained by p

q -surgery on K.

Check your answers by computing H1. Generalize to describe a procedure
for drawing a Heegaard diagram (handle diagram with a unique 3-handle)
for any manifold given by Dehn surgery on a link in S3.

Now we restrict to the case where Y is a surface F ⊂ D4, so ∂F ⊂ S3

is a link. An important special case is when F is a disk or disjoint union of
disks. Another important case is when F is embedded without 2-handles.

Definition 6.2.3. If (D, ∂D) ⊂ (D4, S3) is an embedded disk, then it is
called a slice disk for the knot ∂D ⊂ S3, which is called a slice knot . More
generally, if (F, ∂F ) ⊂ (D4, S3) is a disjoint union of disks, then ∂F is called
a (smoothly) slice link . Similarly, a topologically slice link is the boundary of
a topologically embedded union of flat disks, where a topologically embed-
ded surface F is flat if the embedding extends to a homeomorphic embedding
of F ×D2. A smooth surface (F, ∂F ) ⊂ (D4, S3) is called a ribbon surface
(or ribbon disk if F ≈ D2) if it can be isotoped (with ∂F ⊂ S3) so that the
height function D4 = I ×D3 → I induces a handle decomposition without
2-handles (and ∂F ⊂ {1}×D3). Boundaries of ribbon disks are called ribbon
knots, and similarly, ribbon links bound ribbon surfaces which are disjoint
unions of disks.

Note that if we drop the condition of flatness, then any knot K ⊂ S3 bounds
an embedded topological (in fact, PL) disk in D4, as seen by coning the pair
(S3,K) to obtain an embedding D2 ↪→ D4 that is “locally knotted” at the
cone point. Any knot K also bounds a ribbon surface in D4, obtained by
pushing a Seifert surface for K into D4, but we cannot obtain a ribbon
disk in this manner unless K is unknotted. It is an interesting but difficult
problem to understand which knots and links are ribbon or (smoothly or
topologically) slice. Clearly, ribbon implies smoothly slice, which implies
topologically slice. It is not known if smoothly slice knots (or links) are
always ribbon, and it is known via gauge theory and Freedman’s work that
many topologically slice knots are not smoothly slice. For example, any

                

                                                                                                               



6.2. Embedded surfaces and their complements 211

(untwisted) Whitehead double of a knot (or more generally, any knot with
Alexander polynomial 1) is topologically slice [FQ], but the positive double
of the right trefoil, Figure 6.13 (for example), is not smoothly slice. For this
and other examples, see Exercises 6.2.10(b) and 11.4.11(e) or [CG], [Ru1],
[BG]. The trefoil itself is not even topologically slice. By Freedman [F] (and
the fact that any topologically embedded 2-handle contains a Casson handle
[Q]), each component of a flat surface F can be assumed (after a topological
isotopy) to be smooth except at a single point p. Thus, in principle, a
connected, flat surface in D4 can be described by a (usually infinite) handle
decomposition inD4−p ≈ (−∞, 0]×S3, but no explicit description is known
of (e.g.) a topological slice disk for a nonribbon knot. See [K4] for more
open problems.

Figure 6.19. Ribbon disk.

We can describe a smoothly embedded surface F in D4 = I ×D3 by a
level picture, interpreting the first coordinate as time and drawing successive
D3 levels. (See Figure 6.19.) First, we see the 0-handles of F , appearing
as a collection of disks in D3. (This picture is uniquely determined up to
isotopy by the number of 0-handles.) Immediately thereafter, we will see F
as an unlink (the boundaries of the disks). Then the 1-handles will appear
as a collection of bands D1×D1 attached to the unlink along ∂D1×D1. At
later times, F will appear as the link L generated by the band-sums. Any
2-handles will subsequently appear as disks spanning unknotted components
of L, and the remaining components will form ∂F ⊂ S3. For example, Fig-
ure 6.19 (without the fine band in the last picture) shows a ribbon disk
with a knotted boundary. Alternatively, we can draw F from the top down
(reversing time). We begin with ∂F , together with an unknot for each 2-
handle, then make ribbon moves — that is, we do band sums along the
cocores of the 1-handles to turn ∂F into an unlink — see the ribbon move
indicated by the band in the last picture of Figure 6.19. (Note that an anal-
ogous but infinite procedure describes properly embedded (smooth) surfaces
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in (−∞, 0]×D3, and hence, connected flat topological surfaces.) Given such
a level picture (in either direction), we can determine the diffeomorphism
type of each component of F by its Euler characteristic, number of boundary
components, and whether it is orientable. For example, a knot is ribbon if
and only if for some n there is a way to make n ribbon moves to obtain
an (n+1)-component unlink. (This statement does not involve orientations
because no nonorientable, connected surface with boundary S1 has Euler
characteristic 1.)

Now we draw a Kirby diagram for the complement X = D4 − νF . The
case when F has only 0-handles was discussed in Section 5.4; we obtain a dot-
ted circle (a 1-handle) for each 0-handle of F . (Compare with Figures 5.33
and 5.34, the latter of which shows the complement of a 1-dimensional 0-
handle in D3.) In the general case, each 1-handle of F requires us to add a
2-handle to X as in Proposition 6.2.1. If we attach our 1-handles to F at
level t = b (in our previous notation), we have a picture of Xa ≈ Xb as a
collection of dotted circles, and the 1-handles of F are visible as a collection
of bands connecting the dotted circles (as in Figure 6.19). To obtain the 2-
handles of X, we first remove a neighborhood of each band from Xa, drilling
tunnels in ∂+Xa to create ∂+Xb. Then each 2-handle h will be attached to
the boundary of ∂+Xb along two parallel copies of the core of the 1-handle
(one in front of the band and one behind it) which connect in the boundary
of ∂+Xb as in Figure 6.20 (where we have identified Xb with Xa). The fram-
ing will be 0, as we can verify by drawing a parallel copy of the core of h.
To complete the picture of X, we add a 3-handle for each 2-handle of F (if
any). The attaching sphere will bound a neighborhood of the corresponding
disk of F in S3. (That is, we put a roof over the local maximum of F .)

0

Figure 6.20. Ribbon disk complement.

Exercises 6.2.4. (a)∗ In Figure 6.20, locate the torus ∂∂+Xc, i.e., the
boundary torus of a tubular neighborhood of the ribbon knot seen in Fig-
ure 6.19.

(b)∗ Let F ⊂ S3 be an unknotted punctured torus. Push int F into int D4

and then draw D4 − νF . Compare your answer with Exercise 5.5.7(a).

(c)∗ Let F ⊂ S3 be an unknotted Möbius band with a single half-twist.
Push int F into int D4 and prove that D4 − νF is a disk bundle over RP2.
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Conclude that S4 is obtained by gluing two disk bundles over RP2 along their
boundaries. What are their Euler numbers? Compare with Exercise 5.5.7(a)
(and Example 6.3.17). Draw both surfaces in the same level picture of
S4 = I ×D3 ∪ 4-handle.

(d)∗ For any oriented knot K ⊂ S3, the connected sum K#K ⊂ S3 is
ribbon, where K is obtained from K by reversing orientations on both K
and S3. To see this, remove a small ball from S3 at a point on K to obtain
a knotted arc K0 ⊂ D3, and consider the disk I × K0 ⊂ I × D3 ≈ D4.
Find a procedure for drawing the ribbon disk (with boundary isotoped into
{1} × D3) explicitly as above. (Hint : What happens to K0 if you begin
shrinking D3?) Now let K be the trefoil knot and draw a Kirby diagram
(with ∂−X = ∅) for the above ribbon disk complement associated to K#K.

(e)∗ Let S ⊂ S4 be an embedded 2-sphere, and let X = S4 − νS be given
by a handlebody via Proposition 6.2.1. Prove that the homotopy 4-sphere
obtained by the Gluck construction on S (Exercise 5.2.7) is constructed
from X by “blowing down” one dotted circle (as if it were a +1- (or −1-)
framed 2-handle) and adding a 4-handle. (Hint : Start with a relative handle
decomposition of (S2 ×D2, S2 × S1).)

Figure 6.21. Ribbon disk complement.

The dotted circle notation for complements of unknotted disks (1-
handles) can now be generalized to complements of ribbon disks as in [AK2].
Since a given link may bound different collections of ribbon disks, we must
keep track of the ribbon moves defining the desired ribbon disks. The nota-
tion is shown in Figure 6.21, which is equivalent to Figure 6.20. (Sometimes
ribbon moves are denoted by single arcs, with the blackboard framing being
understood, but this carries the danger of not being isotopy invariant. Other
times the ribbons are entirely missing from the picture, which is justified
if there is a canonical ribbon disk being used, for example, in the case of
K#K described above, drawn with the symmetry exhibited.) The new no-
tation has the advantage that we can perform “illegal” 1-handle slides (cf.
Figure 5.40). We simply think of the ribbon disks as representing 2-handles
attached to ∂D4 from the inside, and slide these as usual. (Of course, the
linking matrix of the dotted circles will be identically 0.) The resulting new
disk will be obtained as an ambient boundary sum of one disk with a parallel
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Figure 6.22. Sliding ribbon disks.

copy of the other, and the connecting band will be a 1-handle (ribbon move)
as in Figure 6.22. This move can also be derived from our previous Kirby
moves as in Figure 6.23. (Each diagram in the figure is obtained from the
previous one by a 1- or 2-handle slide as indicated. In the first two diagrams
we have also added an obvious cancelling 1-2 pair.)

Exercises 6.2.5. (a) The exotic R4 in Figure 6.16 is obtained from a rib-
bon disk complement by adding a Casson handle and removing the boun-
dary. To see this, erase the Casson handle from the figure, leaving a han-
dlebody X given by two dotted circles and a 2-handle. If we also erase the
dotted circle C that has linking number zero with the 2-handle, the remain-
ing 1-2 pair will cancel to leave D4. Thus, the disk spanning C will be a slice
disk in D4 whose complement is X. Draw the slice disk in D4 (given by the
empty link), and verify that it is ribbon (and a single ribbon move suffices).
(Hint : Ribbon moves represent 1-handles in int D4, so we are free to push
them through attaching circles in ∂D4. It helps to work on a blackboard,
isotoping by drawing the new position of a strand and then erasing it from
its old position. You should get the ribbon disk for the (−3,−3, 3) pretzel
knot shown in Figure 6.24.)

(b)∗ Give a procedure for using dotted ribbon link notation to draw I ×M
when M is a knot complement in S3. What if M is Dehn surgery on a knot?
On a link? Compare with Example 4.6.8. What about S1 ×M? See also
[A6].

We can also draw the complement X = D4 − νF of a generically im-
mersed surface F in D4. The self-intersections of F will be transverse double
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0
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0

0
0

0

Figure 6.23. Derivation of previous figure using Kirby moves.
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Figure 6.24. A ribbon disk complement.

Figure 6.25. Transverse double point of immersed surface in D4.

points, which will appear in our pictures of I ×D3 as in Figure 6.25. For F
oriented, a positive double point will correspond to a crossing changing from
negative to positive as t increases (or positive to negative as t decreases), as
we can easily verify by examining the obvious spanning disks for a Hopf link
(cf. Proposition 4.5.11). Near the double point, a tubular neighborhood νF
appears as in Figure 6.26. Thus, to build the complement X, we start with
Xa (in the notation of Proposition 6.2.1), drill a tunnel between the tubes
in ∂+Xa to create ∂+Xb (leaving Xb ≈ Xa), then fill in a different tunnel
to create ∂+Xc. This last move is attaching a 2-handle at t = c in the
figure, along a 0-framed meridian K to the tunnel. Pulling this curve back
to t = a, we obtain the curve in ∂+Xa shown in Figure 6.27. Now we see
how to represent a self-intersection of F in our handle picture of X. We can
assume (by isotopy or use of dotted ribbon link notation) that the crossing
occurs between sheets of F that are given by dotted curves. Then we add
a 2-handle to reverse the crossing of ∂F as in Figure 6.27. An example is
given in Figure 6.28.

Exercises 6.2.6. (a)∗ Locate the torus ∂∂+Xc in Figures 6.27 and 6.28.
(It should be nullhomologous in ∂X.)

(b) Let F ⊂ D4 be the obvious disk with unknotted boundary, a unique
self-intersection and no 1- or 2-handles (cf. Exercise 6.1.1(b)). Prove that
the complement D4−νF is obtained as a self-plumbing of a disk bundle over
S2. Conclude that S4 is obtained from a pair of self-plumbings by gluing
along their boundaries (cf. Example 8.4.7). How do the signs of intersection
compare? What are the Euler numbers? Draw both surfaces in the same
level picture.
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t  a t  b t  d

t  c

K

Figure 6.26. Neighborhood of surface at transverse double point.

0

Figure 6.27. Complement of surface at transverse double point.

D 4 FF
0

Figure 6.28. Immersed ribbon disk and complement.

Finally, we consider immersed surfaces (F, ∂F ) in general compact 4-
manifolds (Y, ∂Y ). Given a handle decomposition of Y (or (Y, ∂−Y )), we can
assume (by pushing F off of handles as in the proofs of Propositions 4.2.7
and 4.2.9) that F lies in the subhandlebody Y2 consisting of 0-, 1-, and
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2-handles (and I × ∂−Y in the relative case), and that F intersects each 2-
handle in a collection of disks Di = D2 × {pi} parallel to the core. To draw
F , it now suffices to remove the 2-handles of Y2 and draw the remaining
surface F ′ = F − ⋃

int Di ⊂ Y1. The disks Di will be bounded by a link
in ∂+Y1 consisting of parallel copies (determined by the framings) of the
attaching circles of the 2-handles. If Y1 = D4, we have now reduced to
our previous situation. The case where Y1 = D4 ∪ 1-handles is no harder,
since the dotted circle notation provides a simple embedding Y1 ⊂ D4. (The
dotted circles will appear as disks at, say, t = 1

2 , and as circles thereafter.)
Alternatively, we can deal with 1-handles pairwise as in Example 4.6.5. The
case with ∂−Y �= ∅ (and possibly ∂F ∩∂−Y �= ∅) is analogous. We represent
the first coordinate of I × ∂−Y as time, which we can assume is a Morse
function on F ′, and proceed as before (representing 1-handles of (Y1, ∂−Y )
as complements of trivial disks). The only complication is that the links and
handles of F will appear in a surgery description of ∂−Y , so we must allow
them to slide over surgery curves. (It may also be useful to manipulate the
surgery description by Kirby or Rolfsen moves.)

For an alternate viewpoint, we can assume that F is disjoint from the
cores of the 2-handles of Y2 and think of the disks Di as 2-handles attached
to ∂F ′ in I × ∂+Y2. More generally, we can write F = F+ ∪∂ F−, with
F+ ⊂ I × ∂+Y2 and F− ⊂ Y1. For example, we can choose F+ to project to
an embedding in ∂+Y2. This is particularly convenient if F+ is a canonical
Seifert surface for ∂F+ in ∂+Y2 (for example, a disk in S3 or a fiber for a
fibered knot as in the next example), since in this case we do not need to
keep careful track of F+. This latter method is used by Akbulut and Kirby
[AK2] to study holomorphic submanifolds of CP2.

Example 6.2.7. – Holomorphic curves in CP2. We will now show how
to draw a nonsingular complex curve of any degree d in CP2, recovering the
picture of [AK2] by a different method. We begin by considering an (m,n)-
torus link , which is the oriented link Tm,n in S3 consisting of gcd(m,n)
oriented circles in the boundary of a tubular neighborhood of the unknot,
representing the classmμ+nλ inH1(T

2). Thus, we have Tm,1 = the unknot,
Tm,0 = an m-component unlink, T2,3 = the right-handed trefoil knot and
Tn,m = Tm,n = T−m,n. The link Tm,m is called an m-component (right-
handed) Hopf link . (Note that any two components of Tm,m form the usual
right-handed Hopf link T2,2.) There is a canonical Seifert surface Fm,n for
Tm,n (with ∂Fm,n = Tm,n as an oriented manifold), consisting of n disks
connected by m(n− 1) bands as in Figure 6.29. The complement S3− Tm,n

is a fiber bundle over S1 with fiber Fm,n, implying (by standard 3-manifold
theory) that Fm,n = Fn,m is the unique oriented Seifert surface for Tm,n with
minimal genus. According to [M5], the locus xm+yn = ε in C2 intersects S3
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Figure 6.29. Torus link Seifert surface Fm,n: n disks, m columns of
bands (m = n = 4).

in Tm,n, and D4 in Fm,n (with its interior pushed into int D4). Our current
discussion, however, is independent of these assertions.

Recall (Exercise 2.1.3 and subsequent text) that we can obtain a singular
degree-d curve in CP2 as the union of d generic complex lines. A generic
perturbation of the polynomial will yield a nonsingular curve, and any two
nonsingular curves are smoothly isotopic (Claim 1.3.11). Near each singular
point, the perturbation is given as in Section 2.1 — that is, we remove a pair
of intersecting disks and replace them by an annulus. We now see that the
annulus is the Seifert surface F2,2 of the Hopf link in ∂D4 (cf. Remark 2.1.2).
In level pictures, this surgery corresponds to replacing Figure 6.25 by 6.30.

twist

Figure 6.30. Resolved transverse double point.

Exercises 6.2.8. (a) Check this last assertion carefully. You should be
able to see the 4-ball D in which the surgery occurs in Figure 6.25, and
verify that the 360◦ twist of a horizontal segment in Figure 6.30 corresponds
to the full twist in the annulus F2,2 in ∂D.

(b) Check that both bands can be added at the same level as shown in
Figure 6.31. Compare with F2,2.

Now we draw a smooth degree-d curve F in CP2, beginning with a
singular curve F ∗ consisting of d complex lines. F ∗ intersects the 2-handle
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Figure 6.31. Resolved transverse double point.

in d parallel copies of the core, so in ∂D4 it is visible as a (d, d)-torus link in
the boundary of the attaching region of the 2-handle. Letting t decrease, we
descend into I ×D3, and see the components of the link pull through each
other to form an unlink, which bounds d 0-handles. Each pair of circles has
a unique crossing, corresponding to the unique intersection of each pair of
lines, and we can assume the crossings all lie in a single level, where they
form the configuration shown (for d = 5) in Figure 6.32. (For example, if the
handle decomposition of CP2 is given by Example 4.2.4, we can assume that
in the affine coordinates ψ0 on the 0-handle B0, the function t is constant
on a 2-disk D at 0 in R2 ⊂ C2 and has a unique critical point on the line
C× {0} — e.g., we can take t to be a suitable modification of the function
‖z1 − i

2‖2 + Im z2. Now specify the d lines of F ∗ by equations with real

coefficients, such that over R they form Figure 6.32 in the disk D ⊂ R2. If
these complex lines are sufficiently close to C × {0}, t will have a unique
critical point on each, so the level pictures will have the required description.)

Figure 6.32. Configuration of lines in R2.

We obtain F by resolving the intersections (of F ∗) as in Figure 6.31. Since
a small perturbation of the function t allows us to perform the crossings
in any order as t increases, we can draw F as in Figure 6.33 (where the
crossings occur from bottom to top as t increases). This can clearly be
isotoped (in the t direction) so that all handles of F ∩ I ×D3 occur at the
same level, and then F is a Seifert surface for the link Td,d. It is not hard
to slide handles in Figure 6.33 to exhibit F as the canonical surface Fd,d

as in Figure 6.29. (The bands in Figure 6.33 are arranged in columns of
increasing length, alternately ascending and descending (from left to right).
Proceeding from left to right, slide each band but the first in each ascending
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column leftward and down as far as possible.) Thus, the degree-d surface F
in CP2 is the union of d parallel copies of the core of the 2-handle with the
canonical Seifert surface Fd,d in ∂D4.

Figure 6.33. Surface obtained by resolving the complexification of Figure 6.32.

To obtain a slightly different picture, we begin by assuming that the
disks of F in the 2-handle lie in ∂Y2, where Y2 = D4 ∪ 2-handle. Thus,
we have a decomposition F = F+ ∪ F− as above, with F− = Fd,d (pushed
into D4) and F+ a union of d disks in ∂Y2 ≈ S3. To see F+ explicitly,
observe that ∂Y2 is given by +1-surgery on the unknot K with ∂νK the
torus defining Td,d. Note that K is isotopic in S3 − Td,d to the core K ′ of
the complementary solid torus S3−νK, since the union of either circle with
Td,d is Td+1,d+1. Blowing down K ′ turns Td,d into the unlink T0,d ⊂ ∂Y2,
which bounds the unique collection of disks F+. Now following [AK2], we
observe that any collection of 1-handles of F− can be lifted into ∂Y2, so that
they disappear from F− and attach dually to F+. By blowing down K ′, one
can still see F+ explicitly and check that it is embedded in a single level
∂+Y2. Thus, one obtains many ways of splitting F as F+ ∪ F− with each
of F± a Seifert surface in a copy of S3. In particular, one obtains various
decompositions with F± being canonical Seifert surfaces of torus links. In
the case where we remove one column of 1-handles from F− to obtain Fd−1,d,
F+ will be a disk F−1,d, so we infer:

1

Figure 6.34. Quartic curve in CP2.

Proposition 6.2.9. ([AK2]) A nonsingular degree-d holomorphic curve in
CP2 is given by the canonical Seifert surface Fd−1,d (pushed into D4) for the
(d− 1, d)-torus knot in the boundary of the attaching region of the 2-handle
of CP2 (and linking the attaching circle d times), together with a disk in
∂(D4 ∪ 2-handle). (See Figure 6.34 for the case d = 4.)
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We conclude Example 6.2.7 with the following exercises. See also Ex-
ercises 6.2.12(b) and (c) for drawing complements of holomorphic curves in
the projective plane CP2.

Exercises 6.2.10. (a) Draw F+ explicitly in the case where F− = Fd−1,d,
and verify that it is a disk embedded in ∂+Y2. What happens if we remove
k columns of 1-handles from F−?

(b) Use Theorem 2.1.5 to show that Fm,n realizes the minimum genus of
all oriented surfaces in D4 with boundary Tm,n. This argument can be
generalized to a much larger class of surfaces [Ru1], including the punctured-
torus Seifert surface of Figure 6.13 (inherited from Figure 6.12), which proves
that the positive Whitehead double of the right trefoil is not smoothly slice
(cf. Exercise 11.4.11(e)).

(c) There is a canonical embedding RPn ⊂ CPn inherited from the inclusion
R ⊂ C. (See Example 4.2.4.) Draw RP2 ⊂ CP2.

We have already used various moves for manipulating pictures of pairs
(Y, F ). In general, we can perform handle moves in both F and Y and
isotopies of F in Y . Only a few of these moves require additional comment.
A 2-handle/3-handle cancellation in Y appears as in Section 5.1, with the
additional observation that disks of F running over the 2-handle will become
visible in ∂D4 in the obvious way. (This is a special case of sliding F over
a 3-handle.) To draw 1-2 cancellations in Y , reduce by handle sliding (see
below) to the case of a Hopf link with a 0-framing and a dot. (Adjust the
framing by Figure 5.42 if necessary.) Then cancel the pair by pushing the 2-
handle down so that it refills the disk complement represented by the dotted
circle. The two circles will disappear as before (regardless of the presence
of F ) with disks of F in the 2-handle dropping into ∂D4 as before. If we
slide 2-handles in Y , say h1 over h2, then disks of F in h1 will be dragged
across h2 (cf. Figure 5.7). That is, each will be connected by a ribbon
move to a new disk in h2, as in Figure 6.35. (Note that after we make the
ribbon moves, F ∩ ∂D4 will appear as it did before the slide, so F ∩D4 is
unchanged below the level of the new ribbon moves.) Sliding h1 under a
1-handle (dotted circle) is formally similar, except that the new disks will
be 0-handles parallel to the deleted disk bounded by the dotted circle. (As t
increases, these disks band into the original F to yield parallel copies of the
new attaching circle.) We also note that F can be slid over 2-handles. In
particular, if two disks of F in a 2-handle are connected by a trivial ribbon
move as in Figure 6.36, then we can eliminate them by pushing the ribbon
over the 2-handle as shown. (To verify this, imagine the isotopy occurring in
a copy of I×D2 in the 2-handle, with ∂I×D2 given by the disks and I×∂D2

by the two bands in the figure.) Similarly, if F has no closed components
(and F ∩ ∂−Y = ∅), then we can slide it completely off of the 2-handles by
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h2h2h1

slide

Figure 6.35. Handle slide dragging embedded surfaces.

Figure 6.36. Sliding a surface off of a 2-handle.

F6 F6

Figure 6.37. Sliding a surface with boundary off of a 2-handle.

sliding ∂F over the 2-handles along ribbon moves (Figure 6.37), provided
that none of the required ribbons runs below a 2-handle of F .

Exercises 6.2.11. (a) Show that the reverse of the handle slide in Fig-
ure 6.35 can be realized as a handle slide followed by moves as in Figure 6.36
(cf. Exercise 5.1.2(b)).

(b)∗ Let F ⊂ D4 be a ribbon disk, and let S ⊂ S4 be the sphere obtained by
doubling the pair (D4, F ). Prove that the manifold obtained by the Gluck
construction on S is diffeomorphic to S4. (Hint : First slide 1-handles in
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F to simplify its abstract handle structure. Then double and apply Exer-
cise 6.2.4(e).)

It remains to draw the complementX = Y−νF of an arbitrary immersed
surface (F, ∂F ) → (Y, ∂Y ). We have already done this if Y = D4, and the
relative version Y = I × ∂−Y (assuming that F ∩ ({0} × ∂−Y ) = ∅) is no
harder. Adding 1-handles to D4 (or I × ∂−Y ) also causes no complication;
with dotted circle notation a 1-handle is equivalent to an unknotted disk
added disjointly to F . It now suffices to understand the effect of 2-handles of
Y . If F intersects a 2-handle h in k disks, then h will appear as a hollowed-
out 2-handle in X. That is, the second factor of h = D2 × D2 will be
punctured k times. Since a k-punctured disk is given by D2 ∪ k 1-handles,
h will contribute a 2-handle (essentially h again) and k 3-handles to X.
(Compare with 2-handles of F ⊂ I × D3.) As we have just observed, the
3-handles are frequently unnecessary, since we may often remove F from the
2-handles by sliding ∂F as in Figure 6.37. Similarly, if Y is closed, then we
may eliminate the 4-handle by pushing a disk of F into it and observing
that Y − νF = Y ∗− νF ∗, where F = F ∗ ∪ 2-handle and Y = Y ∗ ∪ 4-handle.
Exercises 6.2.12. (a) Suppose that F is contained in Y with K = ∂F a

knot in ∂Y . Let (Ŷ , F̂ ) be obtained from (Y, F ) by adding a handle pair

(2-handle, core) along K. Prove that Ŷ − νF̂ is obtained from Y − νF by
adding a 2-handle h2 and 3-handle h3, where h2 is attached along a parallel
copy of K. Prove that the attaching sphere of h3 is obtained from the torus
∂νK by surgery along the core of h2.

(b) Let Fd ⊂ CP2 be a smooth holomorphic curve of degree d. Prove that
CP2 − νF2 is a disk bundle over RP2. What is its Euler number? Draw
both surfaces in the same picture. Compare with Exercise 6.2.10(c). (If
F2 = {[x : y : z] ∈ CP2 | x2 + y2 + z2 = 0}, then we can assume the RP2 is
canonically embedded. Note that F2 ∩ RP2 = ∅ in this case. Compare with
Example 6.3.17.)

(c)∗ For Fd as in (b), draw Xd = CP2 − νFd. What is π1(Xd)? Find a
picture of Xd with the minimal number of 1-handles.

(d) Let Y 4 be a closed handlebody, S ⊂ Y be an embedded 2-sphere and
X = Y − νS be the complement, with a handle description as above. Let
C+ and C− be dotted circles corresponding to 0-handles of S in I × D3.
Prove that the manifold Y ′ obtained from Y by the Gluck construction on
S is obtained from X by “blowing down” C+ and C− (as if C± was a ±1-
framed 2-handle) and adding a 3- and 4-handle. (Hint : The Gluck twist on
S2 × S1 has two invariant circles {pt.} × S1. Write (S2 ×D2, S2 × S1) as a
relative handlebody with two 2-handles attached along invariant circles, cf.
Exercise 6.2.4(e).) If Y has no 1-handles and S has at most two 0-handles,
conclude that Y ′ has a handle decomposition without 1-handles (hence, by
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dualizing, a decomposition without 3-handles). This is due to Melvin [Me]
by a different argument.

6.3. Branched covers

Branched (or ramified) coverings have fundamental importance in both al-
gebraic geometry and topology. In Chapter 7, we will examine (possibly
singular) branched coverings in the context of complex surfaces; for now we
consider how to draw nonsingular branched covers of smooth 4-manifolds.
Our discussion is partly based on the paper [AK2] of Akbulut and Kirby,
and we refer the reader there for additional reading. For the present, we use
the following definition.

Definition 6.3.1. A (nonsingular) d-fold branched covering is a smooth,
proper map f : Xn → Y n with critical set B ⊂ Y called the branch locus,
such that f |X−f−1(B) : X−f−1(B)→ Y −B is a covering map of degree d,
and for each p ∈ f−1(B) there are local coordinate charts U, V → C×Rn−2

+

about p, f(p) on which f is given by (z, x) �→ (zm, x) for some positive
integer m called the branching index of f at p.

Clearly, the critical points of f form a codimension-2 submanifold C of X,
and f |C is an immersion whose image is the branch locus B ⊂ Y . The
branching index is constant and ≥ 2 on each component of C (and 1 on
f−1(B)−C), and the sum of the indices of all points in f−1(p) is the degree
of f . Given (Y,B) with dimY ≤ 4 (or B embedded), the branched covering
f : X → Y (X connected) is completely determined by the index-d subgroup
π1(X−f−1(B)) ⊂ π1(Y −B) (since X−f−1(B) is determined, and the circle
bundle ∂νB determines a circle bundle structure on f−1(∂νB), which can be
uniquely filled in by a D2-bundle). In Chapter 7, we will consider singular
branched coverings where B and X may have singularities and the above
local description of f near C only applies to generic points of C. For the
present, we only consider the nonsingular case. We focus on cyclic branched
covers, where f |X−f−1(B) is a (regular) cyclic covering, so it is determined
by an epimorphism π1(Y − B) → Zd, and Y = X/Zd. We sometimes also
assume (after orienting Y and B if d > 2) that each (positively oriented)
meridian of B maps to the same generator of Zd. For a given (Y,B) with
H1(Y ) = 0, there is at most one such branched cover, called the canonical
d-fold cyclic branched cover of (Y,B). For such a branched cover, f maps C
diffeomorphically onto B, and Y = X/Zd with Zd acting freely away from
the fixed set C.

Example 6.3.2. Let (F, ∂F ) be a connected, compact, orientable surface
embedded in a 4-manifold (Y, ∂Y ) with H1(Y ;Zd) = 0, and suppose [F ] =
0 ∈ H2(Y, ∂Y ;Zd). (Consider any (F, ∂F ) ⊂ (D4, S3), for example.) Then
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Figure 6.38. 3-fold cover.

H1(Y − F ;Zd) ∼= Zd. (It is cyclic by the long exact homology sequence; if
it had order < d we could construct a class in H2(Y ;Zd) with nontrivial
Zd-intersection number with [F ].) Thus, Y has a unique d-fold cyclic cover
branched over F . What is this cover when the surface F is an unknotted
disk in Y = D4? When d = 2, the same reasoning gives a unique branched
cover when F is nonorientable.

To understand how Kirby diagrams transform under branched cover-
ings, we first consider the case of empty branch locus, i.e., ordinary finite
coverings. Given such a covering f : X4 → Y 4, we fix a Kirby diagram
for Y and construct a corresponding diagram for X. The simplest case is
when f is cyclic with a single 1-handle h of Y mapping to the generator
1 ∈ Zd and any other 1-handles mapping to 0 ∈ Zd. In this case, we iden-
tify D4 ∪ h with S1 ×D3, and this is d-fold covered in the obvious way by
S1 ×D3 = D4 ∪ 1-handle in X. Each of the remaining handles of Y lifts to
d handles of X. Figure 6.38 shows how the diagram for Y lifts to X (in the
case d = 3); the covering map f : X → Y and the Zd-action on X are easy
to see. The only subtlely arises in computing framing coefficients. To do
this, we revert to double-strand notation, then transform the diagram as in
Figure 6.38. We see that the blackboard framing on each knot lifts to the
blackboard framing on each of the d corresponding knots in the diagram for
X, even though the corresponding writhes may differ. Changing the fram-
ing in Y by 1 twist changes each of the d corresponding framings in X by 1
twist, so we have determined how to lift any framing.
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1 1

f  3 : 1

diagram

diagram

diagram

diagram

Figure 6.39. 3-fold cover.

Exercises 6.3.3. (a)∗ Let Y be a D2-bundle over RP2, drawn as in Fig-
ure 6.2. Construct the corresponding diagram for the double cover X of Y ,
and verify that it represents the D2-bundle over S2 with e(X) = 2e(Y ) as
required.

(b)∗ Draw a disk bundle Y over S2 with a single positive self-plumbing
and intersection pairing 〈n〉. Draw the double cover. Interpret the resulting
diagram as a plumbing and explain the Euler numbers. Repeat for the d-fold
cover.

Now consider a cyclic cover X → Y where two 1-handles h1, h2 of Y map
to the same generator 1 of Zd and any remaining 1-handles map to 0. Write
D4∪h1∪h2 as S1×D3 � S1×D3. Each copy of S1×D3 lifts to an S1×D3 in
X as before, but now the 1-handle joining the copies (forming the boundary
sum) will lift to d 1-handles. Thus, we obtain S1 ×D3 � S1 ×D3 ∪ (d − 1)
1-handles in X. Again, the remaining handles of Y each lift to d handles in
the obvious way (Figure 6.39 when d = 3), and blackboard framings lift as
before. The same basic strategy can be used to draw any cover of Y : First,
understand the cover on the 1-handles of Y , then lift the diagram in the
obvious way.

Exercise 6.3.4. Let Y be a D2-bundle over S2 with two positive self-
plumbings. Draw a diagram of the cyclic cover of Y for which the two
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Figure 6.40. 3-fold branched covers.

1-handles map to (a) 1 in Z5, (b) 1 and 2 in Z5, respectively (c) 1 and 2 in
Z4. Draw an irregular 3-fold cover of Y .

Next, we consider a branched covering f : X → Y with branch locus B
an unknotted collection of disks in the 0-handle of Y . Then D4 − νB ≈
D4 ∪ 1-handles, and we produce a diagram of Y − νB from one of Y by
drawing dotted circles along ∂B. We can now form the cover of Y − νB as
before, and X is obtained from this by filling in f−1(B), that is, erasing the
dotted circles in X coming from B in Y . For example, Figure 6.40 shows
the canonical 3-fold cyclic branched covers of two diagrams, with B given
by 1 and 2 disks, respectively (cf. Figures 6.38 and 6.39). Note that the
canonical d-fold cover of D4 branched along a trivial collection of k disks is
given by D4 ∪ (k − 1)(d − 1) 1-handles, where the 1-handles arise as extra
lifts of the connecting 1-handles in � k S1 × D3, as above. Compare with
Figure 3.2 in Section 3.2.

Exercises 6.3.5. (a)∗ Let Y be a D2-bundle over S2. Use Kirby calculus
to show that the d-fold cyclic cover of Y branched along a pair of fibers is a
disk bundle over S2 with Euler number de(Y ).

(b) For Y as in (a), let B be the pair of disks in the 0-handle indicated
in Figure 6.41. Draw the branched covers of Y corresponding to the covers
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described in Exercise 6.3.4. (Note that in the last 2 cases, B lifts to more
than 2 disks.)

(c)∗ To draw a cyclic branched cover of a knot K ⊂ S3, simply unknot
K by blowing up as in Figure 5.19 with linking number 0, then take the
corresponding branched cover along the unknot. (The zero linking num-
bers insure that the corresponding branched cover of the 4-manifold exists.)
Prove that the 2-fold branched cover of S3 along the right trefoil knot is the
lens space L(3, 2).

(d)∗ We can draw branched covers of ribbon disks in D4 by first drawing
their complements as in Section 6.2. Draw the 2-fold cover of D4 branched
along the disk shown in Figure 6.19. Repeat using the obvious ribbon disk
for the square knot (which is K#K for K the trefoil knot, Exercise 6.2.4(d)
and Figure 12.35). In the latter case, you should get I × (L(3, 2)− int D3).
Why?

B6

 e(Y)

Figure 6.41. Pair of disks B in D2-bundle Y over S2.

In principle, we can now draw an arbitrary branched cover by first draw-
ing Y −B as in Section 6.2 and its corresponding cover, then filling in f−1(B)
by adding a (k + 2)-handle for each k-handle of the surface f−1(B). Each
such (k + 2)-handle cancels a (k + 1)-handle in the cover, since the corre-
sponding handle in Y cancels a (k + 1)-handle. (The intersection condition
of Proposition 4.2.9 lifts.) The method works particularly well for canonical
cyclic branched covers of Y = D4 ∪ handles where B is obtained from an
embedded surface F =

⋃
0, 1-handles in ∂D4 by pushing int F into int D4.

In this case, the isotopy from F to B determines a map I ×F → D4 that is
an embedding away from ∂F . As we saw in Section 6.2, D4−ν(I×F ) ≈ D4,
and D4−νB is obtained from this by adding handles to fill in ν(I×F )−νB,
with a (k + 1)-handle for each k-handle of B. Filling in B adds a (k + 2)-
handle for each k-handle of B, cancelling the previous handles so that we
recover D4. When we pass to the branched cover X with F orientable, we
obtain d maps I × F → X with images intersecting in f−1(B) (and for F
nonorientable we have d = 2 and a similar local picture over each handle).
Each 1-handle of B contributes d 2-handles toX−f−1(B) (one for each copy

                

                                                                                                               



230 6. More examples

XBD 4F
0 6

Figure 6.42. 2-fold branched cover.

of I × F ), and filling in B (or equivalently, deleting one copy of ν(I × F ))
cancels one of these handles as before. Thus, the induced handle struc-
ture on X has d − 1 2-handles for each 1-handle of B. Note that removing
ν(I ×F ) from X breaks the symmetry of the picture, so that the Zd-action
is no longer visible. To show how this construction works in practice, we
give some examples and exercises.

Example 6.3.6. Consider the knotted annulus F ⊂ S3 shown in Fig-
ure 6.42. By Section 6.2, the corresponding manifold D4 −B is the handle-
body shown. The double cover X − f−1(B) has two 2-handles, but one of
these disappears when we fill in f−1(B). The resulting branched cover X
is obtained from D4 by adding a 2-handle along a granny knot K with the
blackboard framing w(K) = 6. An easier way to visualize the construction
is to first take the double cover of D4 branched along the 0-handle of F
(pushed into int D4). We obtain D4 again, but F has become an annulus
made fromK with the blackboard framing, and this new annulus determines
the 2-handle of X.

Exercise 6.3.7. Justify this last description by constructing X from two
copies of Y −I×F , gluing one pair of corresponding faces I×F by attaching
suitable handles. How does this description generalize to d-fold cyclic covers?
(Compare with [AK2].)

Example 6.3.8. The previous example generalizes to any double cover of
Y = D4 ∪ handles branched over B ⊂ D4 obtained from F ⊂ ∂D4 as
above. We first draw the picture so that F appears as a trivial disk for
each component of F , with a band attached for each 1-handle. In general,
the bands will be twisted, knotted and linked (Figures 6.42 and 6.43). The
attaching circles of any 2-handles of Y may wind around and through F as
in Figure 6.43 (but beware that the double branched cover will not exist
unless each attaching circle has even linking number with ∂F ). If F has k
components, then f−1(D4) ⊂ X will have k−1 1-handles, as we observed in
the case of F without 1-handles. In Figure 6.43 we isotoped the dotted circle
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F
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X

 2 : 1

1

2

2
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2

2

Figure 6.43. 2-fold branched cover.

into a position illustrating a special feature of 2-fold branched covers: The
Z2-action is still visible in the diagram, as 180◦ rotation about the y-axis.

Exercises 6.3.9. (a) In Figure 6.43, verify directly that rotation about the
y-axis induces a Z2-action on X whose quotient is Y , and that the fixed-
point set maps to B ⊂ Y . (Hint : The Z2-action extends over the 2-handles
of f−1(D4) as reflection on each factor of D2 ×D2. Verify that the images
of these 2-handles are 4-balls in Y attached to D4 along D3, so they can be
absorbed into D4. What happens to the fixed-point sets in these 2-handles?)

(b)∗ What is the double cover of D4 branched along an unknotted annulus
or Möbius band in S3 (pushed into D4) with k half-twists? Verify your
answer without Kirby diagrams using (a).

(c)∗ What is the double cover of D4 branched along the punctured-torus
Seifert surface of the right trefoil knot? Compare with Exercise 6.3.5(c).

(d)∗ Draw the double cover of D4 branched along the punctured-torus
Seifert surface of the (±) Whitehead double D±K of any knot K. What
about twisted doubles? (Hint : What happens if you knot one band of the
punctured torus visible in Figure 6.43?)

(e)∗ Prove that any plumbing of spheres whose graph is a tree can be realized
as a double cover of D4 branched along a surface pushed in from ∂D4.

Example 6.3.10. – Milnor Fibers. For p, q, r ∈ N and ε ∈ C− {0}, the
manifold M(p, q, r) = {(x, y, z) ∈ C3 | xp + yq + zr = ε} is called the Milnor
fiber of the singularity xp + yq + zr = 0. It is independent of the order of
(p, q, r) and the choice of ε (as seen by suitably rescaling the coordinates)
and it has a canonical compactification as the interior of a smooth manifold
with boundary, namely Mc(p, q, r) = M(p, q, r) ∩ D6, where D6 ⊂ C3 is
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(a)

(b)

Figure 6.44. Torus link Seifert surface Fq,r: r − 1 gates with q − 1
arches (q = r = 4).

any round ball with sufficiently large radius. Clearly, M(1, q, r) ≈ C2 and
Mc(1, q, r) ≈ D4. In Section 7.3 (following Exercise 7.3.17) we will show
that Mc(p, q, r) is the p-fold cover of D4 ⊂ C2 branched along the surface
B = {(y, z) | yq + zr = ε}. According to [M5], B is obtained by pushing in
the canonical Seifert surface Fq,r of the torus link Tq,r (Example 6.2.7), so
we can apply the above theory to draw Mc(2, q, r). Begin with the standard
picture of Fq,r (Figure 6.29 in the case of F4,4). By flipping up the back
disk and sliding its connecting 1-handles down to the front disk, we obtain
Figure 6.44(a). Repeating the procedure for each subsequent disk, we realize
Fq,r as Figure 6.44(b). (In general, the picture has r − 1 gates with q − 1
archways in each gate.)

Exercise 6.3.11. Prove that Mc(2, q, r) is given by Figure 6.45, with q− 1
rings each containing r − 1 circles. (Hint : First separate the archways by
isotoping the top of each gate. It may help to start with special cases.)

                

                                                                                                               



6.3. Branched covers 233
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Figure 6.45. Milnor fiber Mc(2, q, r): q − 1 rings of r − 1 circles (q = r = 4).

all 2

all 2

1 1

1 1
 4 : 1

1 1

1 1

Figure 6.46. 4-fold branched cover.

Note that Mc(2, q, r) ⊂ Mc(2, q
′, r′) whenever q ≤ q′, r ≤ r′. Verify that

Mc(2, 2, r) ≈Mc(2, r, 2).

Example 6.3.12. – d-fold covers. Recall that each 1-handle of B gen-
erates d − 1 2-handles in the canonical d-fold cyclic cover X, since the dth

2-handle is cancelled by a 3-handle when we fill in f−1(B). An example
is given in Figure 6.46. The diagram becomes easier to draw if we slide
each of the d − 1 2-handles over the previous one, proceeding from left to
right in the figure, and then fold the 2-handles down as in the last diagram.
Figure 6.47 shows other examples obtained by this procedure. (Check the
details yourself.)

Exercises 6.3.13. (a)∗ Draw the r-fold cover Mc(r, q, 2) of D4 branched
along the surface Fq,2 (pushed into int D4). Verify that you get Mc(2, q, r)
as drawn in Figure 6.45.
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Figure 6.47. 4-fold branched covers.

(b) Show that Mc(p, q, r) embeds in Mc(p
′, q′, r′) if p ≤ p′, q ≤ q′, r ≤ r′.

Example 6.3.14. – Closed manifolds. If Y is closed, then so is B, and
if B �= ∅ we can draw (Y,B) so that B intersects the 4-handle h of Y in
an unknotted disk D. Since any cover of h branched along D will again
be a 4-ball (or disjoint union of balls), we can draw a cover of Y branched
along B by first drawing the corresponding cover of Y −int h branched along
B − int D, then adding 4-handles.

Remark 6.3.15. Suppose that f : X → Y is a cyclic branched covering
with ∂X ≈ S3 and ∂B �= ∅. Then we can infer that ∂Y ≈ S3, and we can
extend f over 4-handles attached to X and Y as in Example 6.3.14 to obtain
a branched covering of closed manifolds. This follows from the solution of
the Smith Conjecture [MB], which states that any smooth, orientation-
preserving, finite cyclic group action on S3 with nonempty fixed-point set is
equivalent to the standard action (z, w) �→ (z, e2πi/dw) on S3 ⊂ C2.

Exercises 6.3.16. (a)∗ What is the 2-fold cover of S4 branched along the
standard embedding of T 2? of RP2? How does a 2-fold cover of a 4-manifold
Y branched along B change if we tube B into a small standard T 2 or RP2

in Y ? What about a canonical d-fold cyclic cover?

(b)∗ What is the double cover of CP2 branched along a quadric curve? (See
Proposition 6.2.9.)

Example 6.3.17. The above exercises (a) and (b) fit together nicely. We
can identify S2 × S2 with the double of the disk bundle over S2 with Eu-
ler number 2; the 0-sections of the resulting two glued disk bundles have
normal Euler numbers 2 and −2, and can be identified with the diagonal
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and antidiagonal (graph of the antipodal map), respectively. The involution
(x, y) �→ (y, x) on S2×S2 has the diagonal as its fixed-point set, and it acts
as the antipodal map on the antidiagonal. As in (b) above, its quotient is
CP2. The diagonal descends to the quadric curve

∑
z2i = 0 in CP2 (a sphere

with normal Euler number 4), and the antidiagonal descends to RP2. (The
latter has normal Euler number −1. Explain the behavior of these Euler
numbers under the branched covering map.) We recover the decomposition
of CP2 as two disk bundles, Exercise 6.2.12(b). Now complex conjugation
on CP2 has fixed-point set RP2, and it acts without fixed points on the
above quadric curve. As in (a), the quotient is S4, and we have recovered
the decomposition of S4 as two disk bundles over RP2 with normal Euler
numbers ±2, Exercise 6.2.4(c).

Exercise 6.3.18. ∗ Consider the Z2 ⊕ Z2-action on S2 × S2 generated by
the above involution and a simultaneous reflection of both S2-factors. Draw
S2 × S2 so that the Z2 ⊕ Z2-action is visible. What are the quotients by
Z2 ⊕ Z2 and its three Z2-subgroups?

Exercise 6.3.16(b) generalizes in a different way. As we will see in the
next chapter, many interesting complex surfaces arise as branched covers of
CP2 or S2 × S2. Given a nonsingular complex curve Fd of degree d in CP2,
for example, we can take the k-fold cyclic branched cover Xk,d whenever d is
divisible by k. (For Kirby diagrams of some analogous covers of S2×S2, see
Section 8.4.) By Proposition 6.2.9, we can exhibit Fd ⊂ CP2 as a pushed-in
Seifert surface Fd−1,d union a disk in the 4-handle, so by Example 6.3.14 it
is routine (but tedious for large d) to draw Xk,d. Since a branched cover
of D4 along Fd−1,d is a Milnor fiber, Xk,d = Mc(k, d− 1, d) ∪ k 2-handles ∪
4-handle. In fact, many complex surfaces are obtained from Milnor fibers by
attaching a few additional handles — we will show this for elliptic surfaces
in Corollary 7.3.23 and again in Section 8.3. We will also see (Exercise 7.1.6)
that Xd,d is the degree-d hypersurface Sd in CP3. Thus, Exercise 6.3.16(b)
again shows that S2 ≈ S2 × S2. For diagrams of S3, S4 and S5, see [AK2].
We have the following corollary (which was originally proven in the first 2
cases by Harer [H1] using different methods, and generalizes to complete
intersection surfaces in CPN by work of Mandelbaum [Ma2]):

Corollary 6.3.19. The Milnor fibers Mc(p, q, r), hypersurfaces Sd in CP3

and branched covers Xk,d of smooth holomorphic curves in CP2 all admit
handle decompositions without 1- or 3-handles.

Exercise 6.3.20. Draw the manifold X2,8. (This is an example of a Ho-
rikawa surface, which we will encounter again in the next two chapters.)

Draw S3 and prove directly that it is diffeomorphic to CP2#6CP2.
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Applications

                

                                                                                                               



Having introduced the basics of 4-manifold theory and Kirby calculus in
the first two parts, we now give an overview of related topics and problems.
In Chapter 7, a very effective way for constructing complex surfaces — the
branched cover construction — is discussed. Chapter 8 is more topological
in nature, discussing Lefschetz fibrations and providing Kirby diagrams for
them. In particular, elliptic surfaces are reconsidered. In Chapter 9, cobor-
disms and h-cobordisms between 4-manifolds are analysed. We sketch the
proof of the famous h-Cobordism theorem, and from its failure for smooth 4-
manifolds we deduce the existence of exotic 4-dimensional Euclidean spaces.
We study such “exotic R4’s” and related examples in depth. Finally, Chap-
ters 10 and 11 discuss the topological behavior of 4-manifolds admitting
symplectic and Stein structures.

                

                                                                                                               



Chapter 7

Branched covers and
resolutions

Many examples of complex surfaces (and hence real 4-dimensional mani-
folds) are given as branched covers of familiar surfaces along (possibly sin-
gular) complex curves. This chapter is devoted to the study of some simple
branched covers. We begin by reviewing parts of the material discussed in
Section 6.3 from a more algebraic point of view. After showing further ex-
amples of branched covers, in Section 7.2 we will investigate how to resolve
singularities in branched covers and describe the topology of the desingu-
larized objects. For the sake of simplicity we will mainly focus on double
branched covers. We will also show that the various constructions of elliptic
surfaces given in Chapter 3 produce diffeomorphic manifolds. (We will con-
sider elliptic surfaces from another point of view in Chapter 8.) Throughout
this chapter we will adopt a more algebraic attitude in discussing branched
covers than in Section 6.3. We will provide ways of constructing many ex-
amples of 4-manifolds with only partial information about their topology
(e.g., characteristic numbers, fundamental groups) — as opposed to Sec-
tion 6.3, where detailed topological descriptions of certain branched covers
were given.

7.1. Definitions and examples

Recall from Definition 6.3.1 that a smooth, proper map f : X → Y is a
d-fold branched covering if away from the critical set B ⊂ Y the restriction
f |X − f−1(B) : X − f−1(B) → Y − B is a covering map of degree d, and
for p ∈ f−1(B) the map f is (z, x) �→ (zm, x) in appropriate coordinate
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charts around p and f(p) (cf. Definition 6.3.1). The set B ⊂ Y is called
the branch locus of the branched cover f : X → Y . In the following, we will
restrict ourselves to cyclic branched covers, i.e., when the index-d subgroup
π1(X−f−1(B)) ⊂ π1(Y −B) describing the above covering is determined by
a surjection π1(Y −B)→ Zd. In the forthcoming discussions we will mainly
work in the holomorphic category. Suppose that Y is a smooth complex
surface and B ⊂ Y is given as the zero set σ−1

B (0) of a holomorphic section
σB of a holomorphic line bundle LB → Y . If c1(LB) ∈ H2(Y ;Z) is divisible
by d, then a choice [A] ∈ H2(Y ;Z) satisfying PD(c1(LB)) = d[A] determines
a cyclic d-fold branched cover of Y branched along B in the following way.

Construction 7.1.1. Since PD(c1(LB)) = d[A], the line bundle LA → Y
corresponding to [A] ∈ H2(Y ;Z) (via the condition PD(c1(LA)) = [A])

satisfies L⊗d
A = LB. Hence the definition

X = {lp ∈ LA | l⊗d
p = σB(p)}

specifies a subset of the total space of LA.

Lemma 7.1.2. Restricting the projection map π : LA → Y to the above de-
fined subset X = {lp ∈ LA | l⊗d

p = σB(p)}, we get a d-fold (cyclic) branched
cover φ : X → Y branched along B.

Throughout this chapter we will investigate properties of branched cov-
ers given by Construction 7.1.1. In the above construction we did not assume
that B is a smooth submanifold of the complex surface Y ; as we will see,
singularities of B might introduce singularities on X. In Section 7.2 we will
describe a method for resolving these kinds of singularities — at least for
double branched covers. Note that in Construction 7.1.1 the complex curve
B is specified by the section σB ∈ Γ(LB). Based on this definition of B, an
integer mp(B) — the multiplicity of B at p ∈ B — can be defined as the
order of vanishing of σB at p ∈ B. That is, mp(B) is the greatest integer

such that all partial derivatives ∂kσB
∂xi1

...∂xik
(p) vanish (after we locally project

σB into the fiber) for k ≤ mp(B) − 1. Recall that B is not necessarily a
submanifold of Y ; the set of smooth points of B will be denoted by B∗.
Using algebraic geometric arguments [GH], it can be shown that (since B
is of complex dimension 1) B −B∗ consists of finitely many points.

Definition 7.1.3. The closure of a connected component of the topological
space B∗ in B is called a component of the complex curve B.

(Note that in the above sense a curve B might have more than one compo-
nent, even if B is connected as a topological space. Since we will be using
results of algebraic geometry, we will use the term “component” throughout
this chapter in the sense it is given in Definition 7.1.3.) An easy argument
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[GH] shows that if p ∈ B∗, then mp(B) can be identified with the degree
of the map fp : S

1
p → C − {0}, where S1

p ⊂ Y is a small normal circle of

B with center p and fp = σB|S1
p . This description of the multiplicity also

shows that mp(B) is constant along components of B∗; hence we can talk
about the multiplicity of a component of B. We say that B has multiplic-
ity k if each component of it has multiplicity k. To preserve the equality
PD[B] = c1(LB), we must count the homology class represented by each
component of B with the appropriate multiplicity; for example, if B ⊂ Y is
a smooth submanifold with multiplicity d, then the homology class [B] asso-
ciated to B equals dβ ∈ H2(Y ;Z), where β ∈ H2(Y ;Z) is the fundamental
class of the submanifold of Y defined by B.

Recall that for the blown-up manifold Y ′, the second homologyH2(Y
′;Z)

canonically splits as H2(Y ;Z)⊕H2(CP2;Z), hence we obtain an embedding
H2(Y ;Z) ⊂ H2(Y

′;Z). Using this embedding, we may think of [B] as an

element of H2(Y
′;Z). As before, B′ and B̃ denote the total and proper

transforms of the curve B ⊂ Y . The exceptional curve of the blow-up will
be denoted by E, and we assume that the multiplicity of E in B′ is m.

Lemma 7.1.4. Under the above circumstances, [B′] = [B̃] +m[E]; conse-
quently [B] = [B′] in H2(Y

′;Z).

Proof. Recall that B̃ is defined as the closure of B′ − E. Since E has
multiplicity m, we get [B̃] = [B′]−m[E] in homology, which proves the first
assertion. Since the multiplicity of the point p ∈ Y that we blew up is equal
to m, the intersection of B̃ (counted with multiplicity) with the exceptional
curve E is m. (We can make the intersection transversal by using a small
C∞-perturbation of the complex curves.) Consequently [B′] · [E] = 0; since
B and B′ coincide in Y − {p}, the equality [B] = [B′] follows.

To avoid codimension-1 singularities in X, we assume from now on that
the curve B used in Construction 7.1.1 has multiplicity one; for such B
the section σB provides no information other than the subset σ−1

B (0). (We
always assume that the complex surface Y is smooth.) In the desingular-
ization algorithm described in Section 7.2, however, we will frequently meet
curves for which the above distinction between the curve (as an algebraic
geometric object defined by the zero set of a section) and the submanifold
(as a topological subspace of the ambient 4-manifold) becomes crucial. Note
also that in Construction 7.1.1 we had to specify the complex curve B (and
not just its homology class [B]); on the other hand, A was specified only up
to homology. If H2(Y ;Z) is torsion free, then [A] is determined by [B], so in
that particular case Y and the complex curve B are the only necessary data.
A local description of Construction 7.1.1 is given as follows. Suppose that
ϕα : Uα → C2 is a chart for Y , and the image of Uα ∩ B in C2 is given by
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the equation f(x, y) = 0. Then φ−1(Uα) ⊂ X is given in C3 by the equation
{(x, y, z) ∈ C3 | zd − f(x, y) = 0}.
Lemma 7.1.5. If B is a smooth curve (of multiplicity one) in the smooth
complex surface Y , then the branched cover X (branched along B) given by
Construction 7.1.1 is smooth.

Proof. We will use the above local description of X. By the Implicit
Function Theorem, if ( ∂g∂x ,

∂g
∂y ,

∂g
∂z ) �= (0, 0, 0) along {g(x, y, z) = 0}, then

{(x, y, z) ∈ C3 | g(x, y, z) = zd − f(x, y) = 0} is smooth. ∂g
∂z = dzd−1 equals

0 iff z = 0, hence f(x, y) = 0. At these points, ( ∂g∂x ,
∂g
∂y ,

∂g
∂z ) = (0, 0, 0) iff

(∂f∂x ,
∂f
∂y ) = (0, 0). Since B = B∗ and the multiplicity of B is one, we have

that (∂f∂x ,
∂f
∂y ) �= (0, 0) along {f(x, y) = 0}, which proves the lemma.

Examples of d-fold branched covers for various d can be found by exam-
ining complex curves in the projective plane CP2. Take Fd ⊂ CP2 defined by
{xd0+xd1+xd2 = 0}. (Recall that the genus of Fd is 1

2(d−1)(d−2).) The pro-

jection of Fd from [0 : 0 : 1] ∈ CP2 to H = {x2 = 0} gives a d-fold branched
cover Fd → H ≈ CP1 branched at the points [1 : ζ : 0] where ζd = −1. (Note
that for complex 1-dimensional manifolds the branch locus B is a finite set
of points.) This phenomenon can be seen from another point of view as
well: If B = {b1, . . . , bd} ⊂ CP1 is the branch locus, then the above d-fold
branched cover of CP1 branched along B can be thought of (by the descrip-
tion of Construction 7.1.1) as a subset of the total space of the line bundle
LA, where A = {b1}. We have already seen that LA ≈ CP2−{[0 : 0 : 1]}, so
the d-fold branched cover branched along B is a curve (of degree d) in CP2.

Exercise 7.1.6. Extend the above idea to surfaces and determine the d-fold
branched cover of CP2 provided by Construction 7.1.1 when B is a smooth
curve of degree d in CP2. (Hint : TakeB = {xd0+xd1+xd2 = 0} ⊂ CP2, identify
LA with CP3 − {[0 : 0 : 0 : 1]} and describe the d-fold branched cover by an
equation. Cf. also Exercise 6.3.16(b) and the text after Exercise 6.3.18.)

In the following we will mainly concentrate on double branched cov-
ers of (closed) complex surfaces. We would like to determine the topology
(characteristic numbers, intersection form, fundamental group) of the dou-
ble branched cover X in terms of Y and the branch locus (or branch curve)
B. Some of these questions are hard to answer; for example, we will not
give a general formula for π1(X), only a sufficient condition for the simple
connectivity of X. (See Lemma 7.4.15 and [Pe].) A double branched cover
φ : X → Y provides an obvious Z2-action on X (mapping the points with
equal φ-image into each other), and conversely, a Z2-action without isolated
fixed points gives a double branched cover. The image of the fixed point
set of this action corresponds to the branch curve. Note that every double
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cover is cyclic. We begin the description of the characteristic numbers of
X with the case of a smooth branch curve B — the singular case will be
handled in the next section. By Lemma 7.1.5, the smoothness of B implies
that X is a smooth manifold. (The smoothness of Y is always assumed.)
The characteristic numbers of X are given in terms of Y and the branch
curve B in the following way:

Lemma 7.1.7. Suppose that the double branched cover φ : X → Y is de-
termined by the (smooth) complex curve B ⊂ Y and the homology class
[A] ∈ H2(Y ;Z), using Construction 7.1.1. Then we have

c2(X) = 2(c2(Y )− χ(B)) + χ(B) = 2c2(Y )− χ(B) and

σ(X) = 2σ(Y )− 1

2
[B]2 = 2σ(Y )− 2[A]2.

Consequently c21(X) = 2(c1(Y )− 1
2 [B])2 = 2(c1(Y )− [A])2.

Proof. Since c2(X) = χ(X), the expression for c2(X) can easily be derived
using well-known properties of the Euler characteristic. For the formula
giving σ(X), see [Hi2]. Since c21(X) = 3σ(X) + 2χ(X) and c1(Y )[B] =
χ(B) + [B]2 (by the adjunction formula, Theorem 1.4.17), the expression
for c21(X) follows. Note that 2(c1(Y ) − 1

2 [B])2 = 2(c21(Y ) − χ(B)) − 3
2 [B]2.

(Throughout the above formulae we have identified the homology classes [A]
and [B] with their Poincaré duals.)

Remarks 7.1.8. (a) In fact, the first Chern class c1(X) of X is equal to
φ∗(c1(Y ) − [A]). It is easy to prove that for any a ∈ H2(Y ;Z) the square
of φ∗(a) ∈ H2(X;Z) equals 〈φ∗(a)2, [X]〉 = 2〈a2, [Y ]〉. (This can be seen
geometrically in homology by taking Σ1,Σ2 two transversally intersecting
representatives of PD(a) in such a way that Σ1 ∩ Σ2 ∩ B = ∅. Then
〈φ∗(a)2, [X]〉 = #(φ−1(Σ1) ∩ φ−1(Σ2)), which is 2#(Σ1 ∩ Σ2).) This rea-
soning recomputes c21(X) for the double branched cover X from a slightly
different point of view. Note that since B is a smooth complex submani-
fold, its Euler characteristic χ(B) is determined by the homology class [B]
(through the adjunction formula). If, in addition, B is connected, then χ(B)
can be replaced by 2− 2g(B), where g(B) is the genus of B.

(b) If φ : X → Y is a d-fold branched cover defined by the complex surface
Y and the smooth curve B ⊂ Y using Construction 7.1.1, then the formulae
given by Lemma 7.1.7 generalize as c2(X) = dc2(Y )− (d− 1)χ(B), c21(X) =
d(c1(Y ) − d−1

d [B])2 = d(c1(Y ) − (d − 1)[A])2. Moreover, it can be shown
that c1(X) = φ∗(c1(Y )− (d− 1)[A]).

Next we give a few examples of double branched covers. Again, we
start with complex 1-dimensional examples. For every (oriented, real) 2-
dimensional surface Σg there is a map φ : Σg → CP1 which is a double
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branched cover. To see this, we only need a suitable Z2-action on Σg — take
the hyperelliptic Z2-action σg defined in Section 3.2 (180◦ rotation around
the y-axis in Figure 3.2). It is easy to see that Σg/σg ≈ CP1, and since σg has
2g+2 fixed points, the branch locus B is {b1, . . . , b2g+2} ⊂ CP1. Note that,
in particular, there is a double branched cover ϕ2 : CP

1 → CP1 branched at
two points, say [1 : 0] and [0 : 1] ∈ CP1; this map, in fact, can be given as
z �→ z2. (We have already met this double branched cover as F2 → H ≈ CP1,
cf. the text after Lemma 7.1.5.) One can also think of the above map as
the quotient by the involution z �→ −z (z ∈ C ∪ {∞} = CP1). In the
same fashion, the map z �→ zd gives a d-fold cyclic cover ϕd : CP

1 → CP1

— we will make use of this d-fold cyclic cover in our later discussions, cf.
Theorem 7.3.12.

Let L→ Σ be a complex line bundle over the (real) 2-dimensional surface
Σ. The fiberwise map z �→ −z defines a Z2-action on L, hence a double
branched cover L → L ⊗ L (given fiberwise by the map z �→ z2, cf. ϕ2

above) with the zero section of L ⊗ L as branch locus. Recall that the
Hirzebruch surface Fn is defined as the projectivization of the C2-bundle
Ln⊕C→ CP1, where Ln → CP1 is the complex line bundle with c1(Ln) = n
(cf. Example 3.4.7); it is a geometrically ruled surface over CP1. It admits
a zero section Sn with square [Sn]

2 = n and a section S∞ at infinity formed
by the “ideal” points∞ of the fibers CP1. Since S∞ is disjoint from the zero
section Sn and intersects every fiber of Fn in a unique point, the homology
class of S∞ is [Sn]− n[Fn] (where Fn is the fiber of the ruling of Fn), hence
[S∞]2 = −n. Extending the Z2-action defined on Ln → CP1 to Fn (mapping
z ∈ CP1 to −z fiberwise), we get a Z2-action τ on Fn with Sn ∪ S∞ as the
fixed point set. It is easy to see that Fn/τ is a geometrically ruled surface.
By computing the self-intersection of the zero set one gets that Fn/τ ≈ F2n;
hence we have found a double branched cover π : Fn → F2n branched along
S2n ∪ S∞ — the compact analogue of Ln → Ln ⊗ Ln. The same argument
shows that the geometrically ruled surface Gn,g over the base curve Σg of
genus g can be expressed as the double branched cover of G2n,g branched
along the zero and infinity sections.

Definition 7.1.9. In the following, a section of Fn → CP1 originating from
a holomorphic section of the line bundle Ln → CP1 will be called an affine
section, to distinguish it, for example, from the infinity section S∞ of Fn.
Note that the zero section of the line bundle Ln gives rise to an affine
section Sn; in fact, each affine section represents the same homology class
[Sn]. In the literature the zero section is frequently denoted by S0; since the
following discussions involve various Hirzebruch surfaces appearing in the
same argument, we prefer to record the self-intersection n in the index of
the zero section.
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Exercises 7.1.10. (a) For the above double branched cover π : Fn → F2n,
prove that π∗(a[S2n]+ b[F2n]) = 2a[Sn]+ b[Fn] ∈ H2(Fn;Z). (Here Fn (F2n)
denotes the fiber and Sn (S2n resp.) an affine section of the correspond-
ing Hirzebruch surfaces. We have identified the second homology with the
second cohomology via Poincaré duality.)

(b)∗ Show that a smooth complex curve C with [C] = [Sn] + β[Fn] in
H2(Fn;Z) (β ∈ Z) is a section of the ruled surface Fn → CP1. (Hint : Follow
the proof of Exercise 3.1.12(a), cf. Exercise 7.4.1(a) for c1(Fn).) Hence a
curve C is an affine section iff [C] = [Sn].

(c)∗ Show that Fn is minimal iff n �= 1. (Recall that F1 is the blow-up of
the complex projective plane CP2.)

Before the next example of a double branched cover, we discuss a defi-
nition — for future generalization, it is formulated in the smooth setting.

Definition 7.1.11. Assume that Fi ⊂ Xi are (real) 2-dimensional surfaces
in the smooth 4-manifolds Xi, the surfaces Fi have equal genus and [Fi]

2 = 0
(i = 1, 2). We identify tubular neighborhoods νFi of Fi with Fi ×D2, and
fix a diffeomorphism f : F1 → F2. The generalized fiber sum X1#FX2 of
(X1, F1) and (X2, F2) is defined as (X1 − νF1) ∪ϕ (X2 − νF2), where ϕ is
f × (complex conjugation) on the boundary ∂(Xi − νFi) = Fi × S1.

The above operation generalizes the fiber sum operation we defined for ellip-
tic surfaces in Section 3.1. Note that in Definition 7.1.11 we did not assume
that X admits any fibration — in that sense the name of the operation is
slightly misleading. The diffeomorphism type of X1#FX2 might depend on
the identifications chosen in the definition— for the sake of brevity we do not
record those dependencies. Further generalization of the above construction
will be given in Section 10.2.

Assume that the 4-manifold X contains a surface F with [F ]2 = 0,
and take B = F × {1} ∪ F × {−1} ⊂ F × D2 ⊂ X. The Z2-action on
X#FX (given by interchanging the two copies of X − νF together with
ϕ = idF × (complex conjugation) on ∂νF = F × S1) shows that X#FX
is the double branched cover of X along B — the image of the fixed point
set of the above Z2-action. In particular, the elliptic surface E(2n) can be
given as the double branched cover of E(n) branched along a pair of generic
fibers. In the same way, we get a double branched cover F2n → Fn branched
along a pair of fibers, cf. also Exercise 6.3.5(a).

Exercise 7.1.12. Determine the double branched cover of the ruled surface
Gn,g (over base curve Σg with genus g) branched along a pair of fibers.
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7.2. Resolution of singularities

In our applications we often meet examples of branched covers involving
branch loci with singular points — in these cases the corresponding (cyclic)
cover X might admit singular points (cf. Lemma 7.1.5). In the following we
will describe an algorithm which produces a smooth manifold X ′ out of X.
In this section we will mainly follow [HKK] and give a detailed description
only in the case of double covers; for the general case, see [La1] or [Nm].
Various different approaches to resolving singularities are avaliable in the
literature — in the following we will emphasize the topological aspects of
the theory.

Definition 7.2.1. The complex surface X ′ is a resolution (or desingular-
ization) of the singular complex surface X, if X ′ is a smooth complex
surface with a holomorphic map π : X ′ → X such that π is a biholo-
morphism away from the singular points Sing(X), that is, the restriction
π : X ′ − π−1(Sing(X))→ X − Sing(X) is a biholomorphism.

By a famous theorem of Hironaka [Hrn] such a resolution X ′ always
exists. X ′ is obviously not unique — for example, a blow-up of X ′ is a
resolution as well. (There is, however, a unique minimal resolution of X
[BPV].) In the following, we would like to describe a construction for X ′

when X is defined as a double branched cover of a smooth complex surface
Y along a (singular) complex curve B. In our examples, singularities are
always isolated, hence we can resolve them independently. Assume that X
is singular at P ∈ X; by the description of X ′ we mean the description
of the configuration of curves in π−1(P ) ⊂ X ′. Since P is an isolated
singularity, we can use the local description of the double branched cover X
as {(x, y, z) ∈ C3 |z2 = f(x, y)}, where the singular point is at the origin
(0, 0, 0).

Remark 7.2.2. We have always assumed (and will assume) that each com-
ponent of the branch curve B has multiplicity one. If this assumption does
not hold, the surfaceX (given by Construction 7.1.1) might be singular along
a codimension 1 subspace, and in this latter case X is not even normal . (A
singular complex manifold is normal if its singularities have codimension
≥ 2 and all holomorphic maps defined on the smooth part can be extended.
There is a standard way, called normalization, for turning a singular com-
plex manifold into a normal one; later we will briefly return to this point.)
Normal surfaces admit only isolated singularities; any isolated singularity
of a complex surface locally can be thought of as a branched cover of C2

branched along a singular curve [La1]. Hence, by finding a way for deal-
ing with (isolated) singularities originating from branched covers, one can
desingularize any normal surface.
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The resolution of an isolated singularity of the above type involves two
steps; we begin by discussing the first. We will resolve the branch curve
B = {f(x, y) = 0} by repeated blow-ups of the C2-chart of Y containing the
singular point of B. As we have already seen (Theorem 2.3.2), after finitely
many blow-ups we end up with a curve (the total transform B′) having only
normal crossing singularities. (A normal crossing singularity is one which
can be modeled on {(x, y) ∈ C2 | xlym = 0}. Note that even if B had mul-
tiplicity one, the total transform might contain components of various mul-
tiplicities.) Hence there is an integer n ∈ N and a map ρ : C2#nCP2 → C2

such that ρ−1(B) is a curve which has only normal crossings as singularities.

We would like to record ρ−1(0) in a diagram and also denote where B̃ (the
proper transform of the branch locus B) intersects it — examples will be
shown for that procedure shortly. Thus, as the result of the first step we
expect a configuration of exceptional curves and the proper transform B̃;
note that the exceptional curves are all rational (≈ CP1). The only impor-
tant topological data of these rational curves are their self-intersections; this
number is −1 when the rational curve first appears in the process, and it
drops by 1 every time we blow up a point of the curve at hand. At the end
of this procedure we get a configuration of n rational curves — with a neg-
ative integer attached to each — and the proper transform B̃ in C2#nCP2;
these data completely describe ρ−1(B) as a subspace of C2#nCP2. Since
the total transform B′ = ρ−1(B) is defined as the zero set of the composi-
tion ϕ = f ◦ ρ, the mutiplicities of the components of B′ are defined. Note
that ϕ−1(0) = ρ−1(B), so the order of vanishing of ϕ along a component
of ρ−1(0) ⊂ ρ−1(B) is a positive integer; this integer will not change under
further blow-ups. Thus, as a result of the first step we get a configuration
of n rational curves and the proper transform B̃ such that

1. all curves are smooth and intersect each other in normal crossings,
with no triple intersections;

2. the ith rational curve is decorated by a negative integer ei (its self-
intersection) and by a positive integer mi (its multiplicity).

From the topological point of view the multiplicitymi can be interpreted
as the coefficient of the homology class [Ei] of the ith exceptional curve in

the difference [B′] − [B̃] ∈ H2(D
4#nCP2, ∂D4;Z). (Recall that B′ is the

total transform, while B̃ is the proper transform of the curve B, which
is now viewed as a subset of D4 ⊂ C2). The above interpretation of the
multiplicities can be verified by assuming first that we performed a unique
blow-up; by Lemma 7.1.4 we get [B′] = [B̃] +m[E]. The general expression

now follows by induction and shows that [B′] = [B̃] +
∑

j mj [Ej ].

The above configuration will be visualized by a diagram in which straight
intervals symbolize the rational curves corresponding to the exceptional
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spheres (decorated by the two integers ei and mi), and the intervals inter-
sect each other iff the corresponding curves do so. Fine curves indicate the
proper transform B̃ intersecting the configuration. Note that there are no
integers attached to these curves — their multiplicities are (by assumption)
equal to 1.

Next we present a way to carry out this program in practice. Recall
that the blow-up of (0, 0) ∈ C2 is τ = {([u : v], x, y) ∈ CP1 × C2 | xv =
yu} ⊂ CP1 × C2. The manifold CP1 × C2 is covered by the charts V1 =
{([u : 1], x, y)} and V2 = {([1 : v], x, y)}, so τ is covered by the charts U1 =
{([u : 1], x, y) | x = yu} = {u, yu, y} ≈ C2 and U2 = {([1 : v], x, y) |xv =
y} = {v, x, xv} ≈ C2. If (u, y) are the coordinates on U1 and (v, x) on U2,
then the gluing map between the two charts can be seen from the above
description: x = yu and v = 1

u (where u �= 0) or y = xv and u = 1
v (where

v �= 0). The projection ρ : τ → C2 is simply the map (u, y) → (yu, y)
on U1(u, y) and (v, x) → (x, xv) on U2(v, x). The exceptional sphere E is
ρ−1(0), which means {yu = 0, y = 0} on U1 and {x = 0, xv = 0} on U2. This
shows that E is {([u : 1], 0, 0)} in U1 and {([1 : v], 0, 0)} in U2, hence can
be given by {y = 0} and {x = 0} respectively. Consequently, the blow-up
of B = {f(x, y) = 0} ⊂ C2 can be described in the following way (where we
change letters for convenience): Take coordinate charts (s, t), (s′, t′) with
the identification s′ = 1

s , t′ = st (s �= 0) and maps (s, t)→ (st, t), (s′, t′)→
(t′, s′t′) determining the projection ρ. By replacing x with st and y with
t in the equation f(x, y) = 0 we get an equation giving ρ−1(B) in U1;
similarly the replacement of x with t′ and y with s′t′ gives ρ−1(B) in U2. If
we factor out t, the rest of the expression determines the proper transform
B̃ in U1, and the power of t is the multiplicity of the exceptional sphere.
Similarly, factoring out t′, we get B̃ in U2, and (as the power of t′) the same
multiplicity of the exceptional curve. Now the Implicit Function Theorem
helps us determine whether B̃ is smooth or not; if not, then we have to
repeat the above process. Even if all curves are smooth, we might need
additional blow-ups to avoid nontransversal and triple intersections. By
Theorem 2.3.2, after finitely many steps this process terminates and gives
us the desired decorated configuration of curves. We illustrate the above
process with some examples.

Examples 7.2.3. (a) f(x, y) = x2 + y3

By blowing up C2 at (0, 0), we get the equations (st)2 + t3 = t2(s2 + t) = 0
on U1 and (t′)2+(s′t′)3 = (t′)2(1+ (s′)3t′) = 0 on U2. Since the multiplicity
of t (and t′) is 2, the exceptional sphere E1 has m1 = 2 (and, of course
e1 = −1). The Implicit Function Theorem shows that the proper transform
(s2 + t = 0 on U1 and 1 + (s′)3t′ = 0 on U2) is smooth. The exceptional

sphere does not intersect B̃ on U2, and it is tangent to B̃ on U1, so we have
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Figure 7.1. Blow-up of a cusp.

to apply additional blow-ups to get normal crossings — see Figure 7.1(a).
Blow up (0, 0) ∈ U1; call the new coordinates (u, v), (u′, v′) with the usual
transformation rules (u′ = 1

u , v′ = uv). Now the inverse image of the curve

{t2(s2 + t) = 0} ⊂ U1 in U1#CP2 is (with (s, t) replaced by (uv, v) on U1,1

and by (v′, u′v′) on U1,2):

v2((uv)2 + v) = v3(u2v + 1) = 0 and

(u′v′)2((v′)2 + u′v′) = (u′)2(v′)3(v′ + u′) = 0.

The proper transform Ẽ1 of the first exceptional sphere has self-intersection
e1 = −2 (m1 = 2); the new exceptional sphere has e2 = −1 and m2 = 3
(by definition, the exponent of v or v′). On U1,1 the proper transform

B̃ does not intersect E2 (or Ẽ1); on U1,2, however, all three curves pass
through the origin (Figure 7.1(b)). To have normal crossing, we have to
perform one more blow-up of U1,2. The new coordinates will be denoted
by (a, b), (a′, b′) (with u′ replaced by ab, v′ by b on U1,2,1 and u′ replaced
by b′, v′ by a′b′ on U1,2,2); these substitutions give the total transform on

the new coordinate charts U1,2,1 and U1,2,2 (U1,2,1 ∪ U1,2,2 = U1,2#CP2).
The curves are given as (ab)2b3(ab + b) = a2b6(a + 1) = 0 on U1,2,1 and
(b′)2(a′b′)3(a′b′ + b′) = (b′)6(a′)3(a′ + 1) = 0 on U1,2,2. Now we have three

exceptional spheres: Ẽ1, Ẽ2 and E3 with e1 = −3, m1 = 2; e2 = −2, m2 =
3; and e3 = −1, m3 = 6. It is easy to see that these three spheres and B̃
form the required configuration. (See Figure 7.1(c).)

(b) f(x, y) = x3 + y6

We will follow the same recipe (and describe the steps only briefly): the new
coordinates (s, t) and (s′, t′) transform B into (st)3 + t6 = t3(s3 + t3) = 0
and (t′)3 + (s′t′)6 = (t′)3(1 + (s′)6(t′)3) = 0, hence e1 = −1 and m1 = 3.
Blowing up U1 again (now (u, v), (u′, v′) are the new coordinates on the

charts covering U1#CP2) we have: v3((uv)3 + v3) = v6(u3 + 1) = 0 and
(u′v′)3((v′)3+(u′v′)3) = (u′)3(v′)6(1+(u′)3) = 0. This gives E2 with e2 = −1
andm2 = 6; we have smooth curves with normal crossings, hence the process
has terminated (with e1 = −2 and m1 = 3); see Figure 7.2.
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Figure 7.2. Blow-up of an infinitely close triple point.

Exercises 7.2.4. Go through the same computation for

(a) f(x, y) = x4 + y8,

(b)∗ and more generally, for f(x, y) = xn + y2n;

(c)∗ f(x, y) = (x2 + y3)(x3 + y2);

(d) f(x, y) = x3+y3(n+1). (See [HKK] and [La1] for additional examples.)

Note that in some cases both charts U1 and U2 contain singularities of the
total transform (cf. Exercise 7.2.4(c)). One can also describe the configura-
tion of curves in ρ−1(0) by its dual graph. In that graph each vertex stands
for a rational curve, and an edge means that the corresponding curves in-
tersect each other. The vertices are decorated by the above described two
integers ei and mi; an arrow points out from a vertex if a component of B̃
intersects the corresponding rational curve. (Compare with plumbing dia-
grams, Example 4.6.2.) Note that the dual graph is always a tree. In our
description we will mainly use the diagrams introduced in the text before
Example 7.2.3, where rational curves are symbolized by intervals.

Exercises 7.2.5. Determine the diagram and the dual graph of the curves
in ρ−1(0) corresponding to f(x, y) =

(a)∗ x2 + yk (k ≥ 2);

(b) x2y + yk+1 (k ≥ 3);

(c)∗ x3 + y4;

(d) x3 + xy3;

(e) x3 + y5.

The singularities of curves listed in Exercise 7.2.5 are the so-called simple (or
Du Val) singularities. The corresponding singularity in a double branched
cover is usually called a rational double point , or a simple (canonical, Du Val,
inessential) singularity. Later on it will be clear why are these singularities
so simple (cf. Remark 7.2.13 and Theorem 7.4.4).

The following formula will be crucial in the subsequent text. Suppose
that {Ei | i = 1, . . . , n} is the set of exceptional spheres in ρ−1(0), with
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squares {ei | i = 1, . . . , n} and multiplicities {mi | i = 1, . . . , n}. The

multiplicities of the components of B̃ are 1. Let |Ei∩ B̃| denote the number

of points where B̃ intersects Ei.

Lemma 7.2.6. For all i (1 ≤ i ≤ n) we have

miei + |Ei ∩ B̃|+
∑

j 
=i, Ei∩Ej 
=∅
mj = 0.

Proof. By Lemma 7.1.4 we have [B] = [B′] = [B̃] +
∑

j mj [Ej ] = 0 in

H2(D
4#mCP2, ∂D4;Z), and all curves (the exceptional spheres Ei and the

proper transform B̃) intersect transversally. Multiplying both sides by [Ei],

we get [B̃] · [Ei] +
∑

j mj [Ej ] · [Ei] = 0; since by definition [Ei] · [Ei] = ei,
[Ej ] · [Ei] is 1 or 0 depending on whether Ej intersects Ei or not, and

[B̃] · [Ei] = |Ei ∩ B̃|, we get miei + |Ei ∩ B̃|+∑
j 
=i, Ei∩Ej 
=∅mj = 0.

To continue our discussion of resolving singularities of complex surfaces,
consider the singular manifold X = {z2 = f(x, y)} ⊂ C3. Suppose that the
desingularization of the curve {f(x, y) = 0} ⊂ C2 has already been deter-

mined, so we have the decorated diagram describing ρ−1(0) ⊂ C2#nCP2. A
recipe for determining the desingularization π−1(0) ⊂ X ′ is given in [HKK].
We will describe this algorithm and indicate why the process does what we
expect. Before beginning the desingularization ofX, first separate the curves
with odd multiplicities in the diagram obtained by resolving the singular-
ity of the curve {f(x, y) = 0}: If Ei and Ej in ρ−1(0) intersect each other
and mi ≡ mj ≡ 1 (mod 2), then blow up Ei ∩ Ej . The new exceptional

curve has even multiplicity (in fact, it is mi + mj) and Ẽi will be disjoint

from Ẽj , so after finitely many steps the new configuration will have the
additional property that curves with odd multiplicities do not intersect each
other. Obviously, Lemma 7.2.6 will hold for the configuration we have after
performing the above additional blow-ups. (Recall that by our assumption

the multiplicity of B̃ is 1. In particular, in our final configuration any Ei

with odd multiplicitymi will be disjoint from B̃.) The following two lemmas
will be used in the algorithm for describing π−1(0) ⊂ X ′.

Lemma 7.2.7. If the multiplicity mi of Ei is odd, then ei is even.

Proof. By Lemma 7.2.6, the product miei has the same parity as the sum
|Ei ∩ B̃|+

∑
mj , where the summation runs over all j �= i with Ei ∩Ej �= ∅.

Since we separated odd multiplicities, all of thesemj ’s are even (in particular

Ei ∩ B̃ = ∅), hence the sum is even, as is miei. This, however, implies that
ei is even (since mi is odd).

Lemma 7.2.8. If the multiplicity mi of Ei is even, then the cardinality of
the set Pi = {P ∈ Ei | P ∈ Ei ∩ Ej with mj odd, or P ∈ Ei ∩ B̃} is even.
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Proof. Again, by applying the formula of Lemma 7.2.6 we see that the sum
|Ei ∩ B̃|+∑

mj is even (since miei is even by assumption), so the number

of odd mj ’s plus |Ei ∩ B̃| is even. This proves the lemma.

Now we are ready to describe the algorithm for determining the config-
uration of curves in π−1(0), where π : X ′ → X is the desingularization of
the (singular) double branched cover X. Again, we use the local description
of X and X ′ around the singular point P (which is assumed to be mapped
to the origin). Every rational curve Ei ⊂ ρ−1(0) defines one or two curves
(Fi or {Fi, F

′
i}) in π−1(0) — according to the parity of the multiplicity mi

and the size of Pi: If mi is odd, then we take a rational curve Fi with self-
intersection 1

2ei. If mi is even, then we take a curve Fi which is the double
branched cover of Ei branched along Pi (cf. Lemma 7.2.8). If Pi = ∅, we
take two copies of Ei for Fi and F ′

i (the trivial double branched cover of
Ei branched along Pi = ∅). The self-intersection of Fi in the even mi case
is 2ei. (If Pi = ∅, so we have two disjoint copies Fi and F ′

i , then each
component has self-intersection ei.) We have now described the curves (Fi

or {Fi, F
′
i}) in π−1(0) and also determined their self-intersections. We still

have to describe how these curves intersect each other. If Ei ∩ Ej = ∅, the
corresponding F ’s will be disjoint as well. If Ei intersects Ej , and mj is odd
(hence mi is even), then Fi has one component (since Pi �= ∅), and it will
intersect Fj in a single point. If both Ei and Ej have even multiplicities,
then the correponding F ’s will meet each other in two points. There are
various ways for this to happen:

• if Pi �= ∅ and Pj = ∅, then Fi will intersect Fj and F ′
j each in one

point;

• if Pi �= ∅ and Pj �= ∅, then Fi and Fj will intersect each other trans-
versely in two points;

• finally, if Pi = ∅ and Pj = ∅, then Fi will intersect Fj and F ′
i will

intersect F ′
j each in a point, otherwise these curves will be disjoint.

Hence we have determined the configuration of curves {Fi} in π−1(0) ⊂ X ′

(where for some i we have two curves Fi and F ′
i ). Note, however, that Fi

might be a curve different from CP1 — if mi is even and |Pi| > 2, then
Fi will have genus at least 1. Note also that two curves may intersect
each other transversely twice (cf. Exercise 7.2.12(e)). We will visualize
the configuration of curves in π−1(0) using a convention similar to the one
we used in the description of ρ−1(0). Every curve will be symbolized by
an interval and these intervals will intersect each other according to the
intersection pattern of the curves Fi. The intervals are decorated by two
integers; the negative integer is the self-intersection of the curve Fi, while
the positive one gives the genus of it. This latter number will not be written
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if Fi ≈ CP1 (hence g(Fi) = 0). Note that we no longer need to keep track

of multiplicities or the proper transform B̃. We can also describe π−1(0)
by the dual graph (cf. the text after Exercises 7.2.4); the graph will be
a plumbing diagram decorated by the self-intersections and the genera of
the curves Fi (as in Example 4.6.2). If the configuration of curves in π−1(0)
contains a rational curve with self-intersection −1, then that component can
be contracted to a point (cf. Proposition 2.2.10). Note that the contraction
will change the intersection pattern (and the self-intersections) of the curves
meeting that rational curve.

Warning 7.2.9. Although the above algorithm produces a configuration
of curves in π−1(0) with the properties that every curve is smooth, there
are only transverse intersections, and we have no triple intersections, these
properties will be lost after contracting the rational −1-curves — when pass-
ing from the canonical desingularization to the minimal desingularization.
Hence the minimal desingularization cannot be described as easily as the
canonical one; because of the presence of possibly singular curves we might
need a more detailed description of the diagram. Examples involving singu-
lar curves and nontransversal intersections in π−1(0) for the minimal reso-
lutions are presented at the end of the section. (See Exercises 7.2.15.)

An easy argument shows that the above algorithm for constructing
π−1(0) does exactly what we expect. We turn back to our global picture of
the double branched cover φ : X → Y with branch locus B. (As always, we
assume that X is given by Construction 7.1.1 using Y and B as inputs.) If
P1, . . . , Pk are the singular points of B ⊂ Y , then after repeated blow-ups
we get a collection of curves B′ = B̃

⋃k
i=1 ∪ni

j=1Eij ⊂ Y#mCP2 — the total

transform of B. (Recall that these curves are all smooth and have only
transverse intersections, there are no triple intersections, and curves with
odd multiplicities are disjoint.) A careful analysis of the algorithm shows
that all we did was remove each Eij with even multiplicity from the branch
locus B′, change all odd multiplicities to one, and then take the double
branched cover (using Construction 7.1.1) along this new — and smooth —
branch curve B′′. Note that B′′ is smooth because in B′ components with
odd multiplicities are disjoint. The homology class [B] was divisible by 2,
hence so is [B′]. By the above description of B′′ one can see that 2 divides

[B′] − [B′′] in H2(Y#mCP2;Z), consequently [B′′] is also divisible by 2. It

is now easy to see that the double branched cover X ′ of Y#mCP2 along B′

is a complex surface satisfying Definition 7.2.1; consequently the algorithm
described above gives a desingularization of the (singular) double branched
cover X.

Remark 7.2.10. One can take the branched cover along B′ as well, but
then (as we already mentioned in Remark 7.2.2) the resulting surface X̃ will
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not even be normal — it will have codimension-1 singularities corresponding
to the curves in B′ with multiplicities greater than 1. A general method of
algebraic geometry (called normalization) produces a normal surface out of

X̃. Deleting curves with even multiplicity from B′ (and reducing odd multi-
plicities to 1) does exactly what normalization would do with the (singular)

branched cover X̃ branched along B′. (This can be checked by applying
Construction 7.1.1 to a local model Y = C2, B = {x2n = 0} or Y = C2,
B = {x2n+1 = 0}. Details of the complete argument are left to the reader.)

In the following, we demonstrate this algorithm in practice. We do this
by desingularizing {z2 = x2 + y3} and {z2 = x3 + y6} (since the first step
of the desingularization process has already been performed on the curves
corresponding to these double branched covers, cf. Examples 7.2.3).

Examples 7.2.11. (a) {z2 = x2 + y3}
The starting configuration involves 4 curves, B̃, Ẽ1, Ẽ2 and E3, see Fig-
ure 7.1(c). It is clear that there are no curves with odd multiplicities in-

tersecting each other, hence we do not need additional blow-ups. Ẽ2 gives
the sphere F2 with square −1, while E3 gives the double branched cover
F3 branched along two points (which is also a sphere) with square −2. Ẽ1

has even multiplicity and does not intersect any curve with odd multiplicity
(or B̃), so P1 = ∅, hence it gives two rational curves, F1 and F ′

1, each with
square −3, and both intersect F3 in a point; F2 intersects F3 in a point as
well. Hence π−1(0) consists of four spheres plumbed according to the dia-
gram given by Figure 7.3(a). Blowing down F2 (which is a sphere of square
−1) we are left with three spheres. One of them (the curve defined by F3)
has square −1, so we can contract it. The resulting configuration consists
of two intersecting rational curves, each of square −2. This is the final pic-
ture of the minimal resolution we were looking for; for the dual graph see
Figure 7.3(b). (Cf. also Exercise 7.2.12(a) with k = 3.)

(a) (b)

1

2
2 2

3 3

F3

F2

F1 F1'

Figure 7.3. Canonical and minimal resolution of the cusp singularity.

(b) {z2 = x3 + y6}
In this case we have two exceptional curves Ẽ1 and E2 intersecting each
other; moreover B̃ intersects E2 in three points (see Figure 7.2). Now F2 is
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the branched cover of E2 branched along 4 points — hence it is a torus; the
self-intersection of F2 equals −2. Ẽ1 gives the rational curve F1 with square
−1. After contracting F1, we find that π−1(0) consists of a single torus with
square −1. Note, however, that since this is not a rational curve, it cannot
be contracted. Comparison with Exercises 7.2.5(c) and (e) shows that the
above singularity is the “simplest” nonsimple one. We will make use of the
resolution given here in Section 7.4.

Exercises 7.2.12. (a)∗ Use the solutions of Exercises 7.2.5(a) and (c) to
resolve z2 = x2 + yk and z2 = x3 + y4.

(b) Using the result of Exercise 7.2.5(e), resolve the singularity z2 = x3+y5.

(c)∗ More generally, resolve the singularity z2 = x2n−1 + y4n−3. (Note that
Exercise 7.2.12(b) is the special case of this for which n = 2.)

(d) Resolve the singularity z2 = xn + y2n. (Hint : Use the solution of
Exercise 7.2.4(b).)

(e) Resolve the singularity z2 = (x2+y3)(x2+y2). (This singularity provides
an example with curves intersecting transversally twice.)

Remark 7.2.13. There are two obvious methods for removing an isolated
singularity V = {(x, y, z) ∈ C3 | g(x, y, z) = 0}: We can resolve it (using
the generalization of the above algorithm) or we can deform it as Vdef =
{(x, y, z) ∈ C3 | g(x, y, z) = ε} for some ε ∈ C (with |ε| � 1). The two ways
usually give different smooth manifolds. It turns out that the resolution
coincides with the deformation iff V can be defined by a polynomial of
the form g(x, y, z) = f(x, y) + z2, where f is one of the polynomials listed
in Exercise 7.2.5 — so V has a rational double point . This can be seen
from the fact that the intersection form of Vdef is negative definite iff V is
a rational double point [Du], while the resolution always gives a smooth
manifold with negative definite intersection form [La1]. This rules out all
other singularities; on the other hand, if V is a rational double point then
the resolution and the deformation coincide [HKK]. (For the case of z2 =
x3 + y5, also see Exercises 7.2.12(b) and 8.3.4(c).) For more about rational
double points see [Du].

Exercise 7.2.14. Prove that the minimal resolution Vres and the deforma-
tion Vdef are diffeomorphic if V = {(x, y, z) ∈ C3 | z2 = x2 + yk}. (Hint :
Compare the solution of Exercise 7.2.12(a) with that of Exercise 6.3.11 for
the Milnor fiber Mc(2, 2, k). See also Proposition 7.3.13 for the case k = 2.)

An easy example of different Vres and Vdef is provided by the singularity z2 =
x3 + y6. By Example 7.2.11(b) Vres is the disk bundle of Chern number −1
over the torus (hence QVres is odd), while the Milnor fiber Vdef = M(2, 3, 6)
is an even (and simply connected) manifold.
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An algorithm similar to the one described above works if one wants
to desingularize triple branched covers. The crucial point is that by addi-
tional blow-ups we can always separate exceptional spheres in ρ−1(0) with
multiplicity not divisible by three. (See [HKK], for example.) In general,
however, the algorithm described for double covers will not work for larger d
— for example, when d = 5 one can find cases where exceptional curves with
multiplicities not divisible by 5 cannot be separated by additional blow-ups.
Consequently, the general case needs more work (for example, the detailed
analysis of the normalization procedure, cf. Remark 7.2.10), but since we
will not use desingularizations of manifolds other than double branched cov-
ers, we will omit the discussion of the general case here. (For a detailed de-
scription see [La1] or [Nm].) We close this section by giving some examples
of resolutions where the minimal resolution contains singular curves, triple
and nontransversal intersections.

Exercises 7.2.15. Using the algorithm described above, resolve the follow-
ing singularities:

(a)∗ z2 = x3 + y7;

(b)∗ z2 = x3 + xy5;

(c)∗ z2 = x3 + y8.

7.3. Elliptic surfaces revisited

In the next two sections we will make use of the branched cover construc-
tion and the desingularization algorithm described in Sections 7.1 and 7.2.
This section is devoted to showing that the different constructions of elliptic
surfaces described in Sections 3.1 and 3.2 give diffeomorphic 4-manifolds, cf.
Theorem 3.2.9. We will return to the discussion of elliptic surfaces again in
Chapter 8. (For the topology of elliptic surfaces, see also [FM1], [HKK].)
Recall that we defined

• E(1) as the 9-fold blow-up of CP2,

• E(n) as the n-fold fiber sum #fnE(1),

• X(n) as the resolution of the quotient Σn−1× T 2/(σn−1× σ1) (for σi
as defined in Section 3.3), and

• V (n) ⊂ CP1 ×CP2 as the zero set of a bihomogeneous polynomial of
bidegree (n, 3).

We add one more construction to the list, and then begin to prove that the
corresponding manifolds are diffeomorphic (Theorem 7.3.3). The complex
curve B2,n ⊂ CP1 × CP1 is defined as the union of 4 horizontal and 2n
vertical spheres in the direct product CP1×CP1; more precisely, fix distinct
points p1, . . . , p4, q1, . . . , q2n in CP1 and consider the complex curve B2,n =
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∪4i=1(CP
1 × {pi})

⋃∪2nj=1({qj} ×CP1) ⊂ CP1 ×CP1. Clearly B2,n is of class

(4, 2n) in H2(CP
1 × CP1;Z) (that is, [B2,n] = 4α+ 2nβ with respect to the

obvious generators α = [CP1×{p}] and β = [{q}×CP1]), and B2,n has only
normal crossings as singularities.

Definition 7.3.1. We define the complex surface D′(n) as the desingular-
ization of the double branched cover D(2, n) of CP1 × CP1 along B2,n.

Note that the (singular) complex surface D(2, n) admits an elliptic fibration
with 2n singular fibers (corresponding to the fiber components {qj} × CP1

of the branch curve B2,n): Compose the branched covering map D(2, n)→
CP1 × CP1 with the projection CP1 × CP1 → CP1 to the first factor. This
implies that D′(n) also admits an elliptic fibration.

Exercise 7.3.2. Determine the topology of a singular fiber of the elliptic
fibration D′(n) → CP1 defined above. (Hint : Compare with the proof of
Proposition 7.3.7.)

The next few lemmas and propositions will give a proof of the following
theorem:

Theorem 7.3.3. For fixed n ≥ 1, the smooth 4-manifolds E(n), V (n), D′(n)
and X(n) are all diffeomorphic.

Lemma 7.3.4. The 4-manifold X(n) is diffeomorphic to D′(n).

Proof. By taking the hyperelliptic actions σn−1 and σ1 on Σn−1 and Σ1 = T 2

respectively, we obtain an action of Z2⊕Z2 on Σn−1×Σ1. It is easy to see that
the quotient of Σn−1×T 2 by this action is diffeomorphic to CP1×CP1 (since
Σn−1/σn−1 ≈ CP1). Hence Σn−1×T 2/(σn−1×σ1) inherits a Z2-action, and
the quotient of Σn−1×T 2/(σn−1×σ1) by this further Z2-action is CP1×CP1.
Consequently, Σn−1 × T 2/(σn−1 × σ1) → CP1 × CP1 is a double branched
cover with branch curve equal to B2,n (for appropriate choices of p1, . . . , p4
and q1, . . . , q2n). This implies that D(2, n) = Σn−1×T 2/(σn−1×σ1). Since
X(n) is the desingularization of Σn−1 × T 2/(σn−1 × σ1) and D′(n) is the
desingularization of D(2, n), the lemma follows.

Remark 7.3.5. Following the same pattern, one can easily prove that the
manifold X(n,m) (cf. Section 3.2) can also be given as the resolution of
a branched cover of CP1 × CP1. The corresponding branch curve in this
case turns out to be Bn,m = ∪2ni=1(CP

1 × {pi})
⋃∪2mj=1({qj} × CP1) (where

p1, . . . , p2n, q1, . . . , q2m are distinct points of CP1). Recall that X(n) is by
definition the same as X(n, 2) ≈ X(2, n), cf. Remark 3.2.6(b).

It is easy to prove that the fiber sum of the (singular) elliptic surfaces
D(2, n) and D(2,m) (cf. Definition 7.3.1) is D(2, n + m); take a disk D
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in CP1 containing q1, . . . , q2n, with the remaining points q2n+1, . . . , q2n+2m

contained in the complementary diskD′. If π : D(2, n+m)→ CP1 is the map
giving the elliptic fibration onD(2, n+m) (cf. the text after Definition 7.3.1),
then π−1(D) is simply D(2, n)−νF and π−1(D′) = D(2,m)−νF ′ (where F
and F ′ are regular fibers of the corresponding fibrations). This description
shows that D(2, n)#fD(2,m) = D(2, n+m), and implies that the fiber sum
of D′(n) and D′(m) is D′(n+m). In particular, D′(n) is the fiber sum of n
copies of D′(1).

Remark 7.3.6. The above observation can be extended to the manifolds
X(n,m) of Section 3.2; one only needs to replace the fiber sum oper-
ation by the generalized fiber sum given by Definition 7.1.11 (since the
fibers of the fibrations on X(n,m) are not necessarily tori). Consequently,
the generalized fiber sum X(n1,m)#FX(n2,m) is X(n1 + n2,m), and
X(n,m1)#FX(n,m2) ≈ X(n,m1 + m2). (In the first case we summed
along a curve of genus m−1, while in the second case along a curve of genus
n−1.) Note that X(n) (as it is by definition the same as X(n, 2) ≈ X(2, n))
admits a fibration with complex curves of genus n − 1. We also see that
X(2, n) is the generalized fiber sum of two copies of X(1, n).

Proposition 7.3.7. The manifold D′(1) is diffeomorphic to the complex

surface CP2#9CP2, and hence to E(1).

Proof. Note that the singular surface D(2, 1) (of Definition 7.3.1) admits a
fibration over CP1 as

D(2, 1)→ CP1 × CP1 pr2−→ CP1,

where pr2 : CP
1 × CP1 → CP1 is the projection to the second factor. The

generic fiber of this map φ : D(2, 1) → CP1 is CP1 (since the generic fiber
of pr2 meets the branch locus B2,1 in two points). There are 4 singular
fibers originating from the fibers CP1 × {pi} (i = 1, . . . , 4) of pr2; each
of these fibers contains two of the eight singular points of D(2, 1). When
desingularizing D(2, 1), we blow up the eight singular points of B2,1 and

take the double branched cover along the smooth proper transform B̃2,1.
(Compare this with the algorithm given in Section 7.2.) Hence it is easy
to see that the desingularized manifold D′(1) fibers over CP1 with generic
fiber a rational curve (≈ CP1), and each of the four singular fibers consists
of three spheres (by the desingularization algorithm). Two of these spheres
are disjoint and have square −2, the third has square −1, and the latter
intersects each of the first two curves transversally once (see Figure 7.4).
Blowing down the four −1-curves of the singular fibers, we get a complex
surface still admitting a fibration over CP1. Now the four singular fibers
each consist of two transversally intersecting −1-spheres. Note that 4 of
these curves intersect the inverse image of the subset {q1} × CP1 ⊂ B2,1 of
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Figure 7.4. Singular fibers in the fibration φ′ : D′(1) → CP1.

the branch locus (which will be denoted by S1), and the remaining 4 intersect
the inverse image of {q2} × CP1 ⊂ B2,1 (denoted by S∞). The square of
{q1}×CP1 in CP1×CP1 is 0; after the 4 blow-ups and the double branched
cover, the self-intersection of the resulting curve S1 (and similarly of S∞)
becomes −2. Now blowing down 3 of the −1-curves intersecting S1 and one
intersecting S∞, we get a CP1-fibration with a section (originating from S1)
of square 1. (Note that S∞ gives rise to another section, with square −1.)
Consequently, blowing down D′(1) eight times gives the Hirzebruch surface

F1, implying that D′(1) ≈ CP2#9CP2 ≈ E(1).

Exercises 7.3.8. (a)∗ Prove that a generic fiber of the elliptic fibration on
D′(1) corresponds to the 9-fold blow-up of a cubic curve in CP2, hence to a
generic fiber of E(1).

(b)∗ Prove that for n ≥ 1 the 4-manifold X(n, 1) is diffeomorphic to the

blown-up projective plane CP2#(4n+ 1)CP2.

Now Proposition 7.3.7 and the solution of Exercise 7.3.8(a) prove that
E(n) ≈ #fnE(1) ≈ #fnD

′(1) ≈ D′(n). Consequently, in order to prove
Theorem 7.3.3, we only need to show that E(n) ≈ V (n).

Remarks 7.3.9. (a) Note that although E(1) and E(1)p are diffeomor-
phic for any p (cf. Theorem 8.3.11), the fiber sums E(1)#fE(1) = E(2)
and E(1)p#fE(1)p = E(2)p,p are obviously different for p > 1; for exam-
ple, the fundamental groups are nonisomorphic. For this reason, showing
that D′(n) ≈ E(n) requires the diffeomorphism between D′(1) and E(1)
to map the generic fibers into each other (Exercise 7.3.8(a)). (The diffeo-
morphism E(1) ≈ E(1)p does not map generic fiber to generic fiber.) In
contrast, the fiber sum is independent of the choice of the gluing map on
∂νF (Theorem 8.3.11).

(b) Note that by Remark 7.3.6, the manifold X(n) = X(2, n) is the gen-
eralized fiber sum of two copies of X(1, n). Since X(n) ≈ D′(n) ≈ E(n),
the solution of Exercise 7.3.8(b) implies that E(n) is, in fact, the general-

ized fiber sum of two copies of CP2#(4n + 1)CP2 along a surface of genus
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n − 1. Note, in particular, that we get a decomposition of E(1) ≈ X(2, 1)

as X(1, 1)#fX(1, 1) = (CP2#5CP2)#f (CP
2#5CP2), where the fiber sum

is taken along a sphere. This is, however, not very surprising: E(1) ≈
CP2#9CP2, as a blow-up of a Hirzebruch surface, admits a CP1-fibration
with 8 singular fibers, and the above fiber sum decomposes this fibration
(cf. also the proof of Proposition 7.3.7).

Lemma 7.3.10. The elliptic surface V (1) ⊂ CP1×CP2 is diffeomorphic to
E(1). We can choose this diffeomorphism in such a way that fibers of the
elliptic fibration V (1)→ CP1 map to fibers of E(1)→ CP1.

Proof. Recall that V (1) has been defined as the zero set of a generic
bihomogeneous polynomial P of bidegree (1,3) in CP1 × CP2. This im-
plies that P has the form P (x, y; z0, z1, z2) = xp0(z0, z1, z2) + yp1(z0, z1, z2)
for generic homogeneous cubic polynomials p0 and p1. Keeping this in
mind, we can easily describe the projection of V (1) to the second fac-
tor of the ambient space CP1 × CP2: Fix a point [z0 : z1 : z2] ∈ CP2;
if p0(z0, z1, z2) �= 0 or p1(z0, z1, z2) �= 0, there is a unique solution of
xp0(z0, z1, z2) + yp1(z0, z1, z2) = 0. If p0(z0, z1, z2) = p1(z0, z1, z2) = 0,
all pairs [x : y] ∈ CP1 solve the above equation. Hence the projection
pr2 : V (1) → CP2 is 1-1 except at the points of CP2 where p0 = p1 = 0; by

blowing up these 9 points we get a diffeomorphism p̃r2 : V (1)→ CP2#9CP2,
and this proves the lemma (cf. also Remark 7.3.26).

In order to prove that E(n) ≈ V (n) for n > 1 we need one more obser-
vation. The fiber sum of n copies of E(1) can be described in the following
way. Define the map ϕn : CP

1 → CP1 by the formula z �→ zn, and take the
pullback of the elliptic fibration E(1)→ CP1 via this map ϕn. Assume that
over 0 and ∞ ∈ CP1 the elliptic surface E(1) has regular fibers, and denote
the pullback by Yϕn .

Claim 7.3.11. The manifold Yϕn defined above is the n-fold fiber sum of
E(1), hence it is E(n).

Proof. Assume that all the singular fibers of π : E(1) → CP1 are mapped
into a disk D ⊂ CP1 not containing 0 or ∞. Then E(1) decomposes as
π−1(D)∪π−1(CP1−D). Note that by our assumption π−1(CP1−D) is dif-
feomorphic toD2×T 2 ≈ νF and π−1(D) ≈ E(1)−νF (where F is the generic
fiber of the elliptic fibration on E(1)). The inverse image ϕ−1

n (D) ⊂ CP1

consists of n disjoint copies of the diskD, so the pullback of π−1(CP1−D) via
ϕn is diffeomorphic to (CP1−{n disjoint copies of D})× T 2. The pullback
of π−1(D) via ϕn consists of n disjoint copies of itself, each diffeomorphic to
E(1)− νF . By gluing the pieces together we complete the proof. Note that
this claim, in fact, shows that E(n) is the cyclic n-fold branched cover of E(1)
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branched along π−1({0,∞}). (The fundamental group of E(1)−π−1({0,∞})
is Z, hence the cyclic cover is determined by the branch locus and n.)

Theorem 7.3.12. The complex surface V (n) is diffeomorphic to E(n).

Proof. Use the bihomogeneous polynomial Pn = xnp0+ynp1 to define V (n)
in CP1 × CP2. The result is the same as one gets by pulling back V (1) ⊂
CP1×CP2 via ϕn : CP

1 → CP1 (defined above), that is, by taking the inverse
image of V (1) (given by P = xp0+ yp1) via ϕ̃n = ϕn× idCP2 : CP1×CP2 →
CP1 × CP2. As in the proof of Claim 7.3.11, this description shows that, in
fact, V (n) is the n-fold cyclic branched cover of V (1) along two fibers. We
conclude that V (n) and E(n) are diffeomorphic.

The proof of Theorem 7.3.12 now completes the proof of Theorem 7.3.3.

As a consequence of Theorem 7.3.3, we have found a description of the
elliptic surface E(n) as the resolution of a double branched cover of the
Hirzebruch surface F0 = CP1 ×CP1 (as D′(n)). Note that the branch locus
B2,n is a curve with singular points; hence we have to desingularize the dou-
ble branched cover. The singularities of B2,n are the “mildest possible”, since
these are all normal crossings modeled on {(x, y) ∈ C2 | xy = 0}. Besides
resolving, however, there is a different way to remove a singularity; we can
smooth out the branch curve as we described in Section 2.1 and then take the
branched cover along the new (and smooth) curve B̃2,n — this alternative
way corresponds to deformation as mentioned in Remark 7.2.13. Note that
in this example we can do a complex deformation globally, by writing B2,n

in the form {p1(x)p2(y) = 0} and setting B̃2,n = {p1(x)p2(y) = ε}. Since the
singularities of B2,n are transverse intersections of curves, deformation and
resolution give diffeomorphic results (cf. Remark 7.2.13). Consequently, the
resolutions of the singular double branched covers appearing in this section
can be given as double branched covers along the smooth curves obtained
by desingularizing in the manner discussed in Section 2.1. To make our pre-
sentation complete, we prove the statement of Remark 7.2.13 in the case we
used in the above argument, namely when f(x, y) = xy (which is the same
as g(u, v) = u2 + v2); cf. also Exercise 7.2.14.

Proposition 7.3.13. The desingularization of the double branched cover of
the 4-ball branched along a normal crossing is diffeomorphic rel boundary to
the double branched cover of the same 4-ball branched along the resolution
of the normal crossing as discussed in Section 2.1.

Proof. The latter branched cover is the disk bundle X over S2 with Eu-
ler number −2 (Exercise 6.3.9(b)). The desingularization of the former is
obtained by first blowing up to obtain a negative Hopf disk bundle, with
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branch locus becoming a pair of fibers, and then taking the branched cover
to obtain the same disk bundle X as before (cf. Exercise 6.3.5(a)). In each
case, either component of the branch locus in ∂D4 lifts to a fiber of the circle
bundle ∂X (cf. Exercise 6.3.9(a)); standard 3-manifold techniques now show
that we can assume the diffeomorphism between the two 4-manifolds is rel ∂.
(Actually, it is known that any orientation-preserving self-diffeomorphism
of ∂X = RP3 is isotopic to the identity.)

Consequently, we have found a presentation of the elliptic surface E(n)

as the double branched cover of F0 along a smooth complex curve B̃2,n

(which is a slight deformation of B2,n). We have already seen (cf. Exam-
ple 5.1.3(a)) that F2k is diffeomorphic to F0; hence E(n) can be thought of
(up to diffeomorphism) as a double branched cover of F2k.

Remark 7.3.14. The same reasoning shows that the manifolds X(n,m)
are double branched covers of the Hirzebruch surface F0 along smooth com-
plex curves. Furthermore, since F0 ≈ F2k, we can think of X(n,m) as the
double branched cover of F2k. Since the diffeomorphism F0 ≈ F2k does
not respect the complex structure, the branch locus of the double branched
cover X(n,m) → F2k is not necessarily a complex curve — it is a smooth
submanifold of F2k.

Exercise 7.3.15. Determine the homology class of the submanifold corre-
sponding to B2,n ⊂ F0 under the diffeomorphism F2n ≈ F0 provided by
Example 5.1.3(a), in terms of the fiber F2n and the affine section S2n of F2n.
(Answer : [F0] maps to [F2n] and [S0]+n[F0] maps to [S2n], so [B2,n] (which
is equal to 4[S0] + 2n[F0]) maps to 4[S2n]− 2n[F2n].)

One further construction of elliptic surfaces illuminates the topology of
E(n) and generalizes to produce interesting surfaces of general type. Recall
that F2n admits an infinity section S∞ with square −2n; as we have seen,
[S∞] = [S2n] − 2n[F2n]. Consequently [B2,n] = 3[S2n] + [S∞]; hence by
taking three affine sections S, S′, S′′ and the infinity section S∞ we get a
complex curve Cn in F2n homologous to B2,n (and to B̃2,n). Note that

B̃2,n is connected, while the curve Cn = S ∪ S′ ∪ S′′ ∪ S∞ ⊂ F2n has two
connected components (since any affine section of F2n is disjoint from the
infinity section S∞). We can take the double branched cover along Cn; the
desingularization of that branched cover will be denoted by T (n). Note
that S, S′ and S′′ can be chosen in such a way that Cn has only normal
crossing singularities. Now using Proposition 7.3.13 we may suppose that
the above branched cover T (n)→ F2n is branched along a smooth curve —
since Cn has only normal crossing singularities, a small perturbation turns
it into a smooth curve C̃n (with two connected components) but leaves the
diffeomorphism type of the double branched cover unchanged. A priori it is

                

                                                                                                               



7.3. Elliptic surfaces revisited 263

not clear whether T (n) is diffeomorphic to E(n); the two complex surfaces

have the same characteristic numbers, since [C̃n] = [Cn] = [B2,n] = [B̃2,n]
(and the characteristic numbers of a double branched cover branched along
a smooth curve depend only on the homology class of the branch locus, cf.
Lemma 7.1.7), but they might be nondiffeomorphic. Observe that the above
argument can be repeated for any curve Bm,(m−1)n ⊂ F0: The homology
class [Bm,(m−1)n] = 2m[S0] + 2(m − 1)n[F0] maps to 2m[S2n] − 2n[F2n] in
F2n, which is equal to (2m−1)[S2n]+[S∞]. Consequently, a complex surface
U(m,n) can be obtained as the desingularization of the double branched
cover of F2n branched along (2m−1) affine sections and the infinity section.
By adapting the argument above it can be shown that U(m,n) has the
same characteristic numbers as X(m, (m − 1)n), and in many cases one
can prove that U(m,n) is homeomorphic to X(m, (m− 1)n). On the other
hand, for example if m = 3 and n = 1, the corresponding 4-manifolds
X(3, 2) ≈ X(2, 3) ≈ E(3) and U(3, 1) are obviously nondiffeomorphic: As
we have seen, E(3) does not contain any smooth sphere with square −1;
on the other hand, U(3, 1) (which is defined as the desingularization of a
double branched cover of F2) has a −1-sphere originating from the infinity
section of F2.

Exercises 7.3.16. (a)∗ Show that X(n,m) is simply connected.

(b) Using Seiberg-Witten theory, show that E(3) does not contain any
smoothly embedded sphere with square −1. (Hint : Recall that BasE(3) =

{±PD(f)} with f2 = 0; now apply the blow-up formula 2.4.9.)

(c) Show that X(2, 3) and U(3, 1) are homeomorphic 4-manifolds. (Hint :
Using Remark 7.3.20(b) show that U(3, 1) is simply connected. Since the
characteristic numbers coincide and the signature of X(2, 3) is equal to −24,
both manifolds are nonspin, hence Theorem 1.2.27 completes the solution.)

(d) In general, prove that if n or m is odd, then X(n,m) is nonspin. (Hint :
Show that the two fibrations of X(n,m) described earlier admit sections of
square −n and −m, respectively.) Prove that if n,m are both even, then
X(n,m) is spin. (Hint : Suppose that n = 2k, and apply induction on k;
note that k = 1 produced spin elliptic surfaces.)

(e) Prove that T (n) = U(2, n) admits an elliptic fibration and is the fiber
sum of T (n − 1) and T (1). (Hint : Show first that the composition of the
double branched covering T (n) → F2n with the ruling F2n → CP1 is an
elliptic fibration on T (n). Then use the fact that F2n is the generalized fiber

sum of F2n−2 and F2, and prove that one can choose C̃n−1 ⊂ F2n−2 and

C̃1 ⊂ F2 in such a way that these will be glued together to give C̃n in F2n.)

(f) Using the same idea as above, show that U(m,n) admits a fibration over
CP1 with fibers of genus m−1. Decompose U(m,n) as the generalized fiber
sum of U(m,n− 1) and U(m, 1).
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As we have now seen, double branched covers along homologous surfaces
in a fixed smooth 4-manifold may result in homeomorphic but nondiffeo-
morphic 4-manifolds. As we will prove, however, the 4-manifolds E(n) and
T (n) = U(2, n) are diffeomorphic, giving additional insight into the geome-
try of elliptic surfaces. Before proving that E(n) ≈ T (n), we will examine

the 4-manifolds T (n) more thoroughly. The infinity section S∞ ⊂ C̃n ⊂ F2n

gives a section of square −n of T (n). Deleting a neighborhood of S∞, we find
that T (n)−ν(section) is the double branched cover of the total space of the
line bundle L2n → CP1 (with c1(L2n) = 2n) branched along the smoothing
of the union of three sections. Suppose that F is a fiber of L2n → CP1 with
the property that the fiber defined by F in T (n) is a generic one (i.e., F

intersects the branch locus C̃n − S∞ transversely in three points). Deleting
a neighborhood of F and then taking the double branched cover, we see that
T (n)− ν(section ∪ generic fiber) is the double branched cover of L2n − νF ,
branched along (the smoothing of) the union of three sections. It is easy
to see that L2n − νF ≈ C2, and a section can be described by the equation
y + z2n = 0. Hence the part of the smooth curve C̃n in L2n − νF can be
described by y3 + z6n = ε. As we will verify, the double branched cover of
C2 along the curve y3+z6n = ε is the Milnor fiber M(2, 3, 6n); consequently
we see that T (n) is the union of the compactified Milnor fiber Mc(2, 3, 6n)
and the neighborhood of a section and a regular fiber.

Exercise 7.3.17. ∗ Draw a Kirby diagram for a neighborhood of the union
of a section and a regular fiber.

Recall that the Milnor fiber M(p, q, r) is by definition the 4-manifold
{(x, y, z) ∈ C3 | xp+yq+zr = ε}. Since for y, z fixed, the equation xp = ε′ =
ε−yq−zr has p different solutions for ε′ �= 0, the projection (x, y, z) �→ (y, z)
presents M(p, q, r) as the p-fold branched cover of C2 branched along the
complex curve {(y, z) ∈ C2 | yq + zr = ε}. By projecting M(p, q, r) to the
line {x = 0, y = 0} via the map (x, y, z) �→ (0, 0, z), we get a fibration
fz : M(p, q, r)→ C. If zr �= ε, the fiber over z is the smooth complex curve
xp + yq = ε′′ (= ε − zr); if zr = ε, we get singular fibers given by the

equation xp + yq = 0. The Zr-action on M(p, q, r) determined by z �→ e
2πi
r z

fixes the fiber F over z = 0 pointwise and cyclically permutes the singular
fibers, showing that each singular fiber is attached to νF by the same gluing
map (cf. the discussion of monodromies in Chapter 8). The Milnor fiber
M(p, q, r) admits a compactification Mc(p, q, r) = M(p, q, r) ∩ D6, where
D6 ⊂ C3 is a round ball (with sufficiently large radius). The presentation
of M(p, q, r) as a p-fold branched cover of C2 provides a p-fold branched
covering map Mc(p, q, r)→ D4, where D4 ⊂ C4 is a ball of sufficiently large
radius. Likewise, the above fibration of M(p, q, r) obviously determines a
fibrationMc(p, q, r)→ D2 ⊂ C— choose |ε| � 1 so that all singular fibers of
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M(p, q, r)→ C are in the unit diskD2 ⊂ C. Suppose that L1 = L∩D2 ⊂ D2

is a segment of the (real) line L ⊂ C separating D2 as D1 ∪D2. Suppose,
futhermore, thatDi contains ri of the points solving z

r = ε. (Such a segment
L1 can easily be found for any triple (r, r1, r2) with r1 + r2 = r and ri ≥ 0.)
Since the inverse image of Di via fz : Mc(p, q, r) → D2 is diffeomorphic to
Mc(p, q, ri), we deduce that for r′ ≤ r the manifold Mc(p, q, r

′) embeds in
Mc(p, q, r) (see also Exercises 6.3.11 and 6.3.13(b)). Note that the above
reasoning proves, in particular, that Mc(p, q, r) is the “boundary fiber sum”
of Mc(p, q, r1) and Mc(p, q, r2) for r = r1 + r2.

Exercise 7.3.18. Making use of the fibrations given by the two other pro-
jections fx and fy, prove that if p ≤ p′, q ≤ q′ and r ≤ r′, then Mc(p, q, r)
embeds in Mc(p

′, q′, r′) (cf. Exercise 6.3.13(b)).

If p = 2 and q = 3 (the relevant case for examining T (n)), we have a
fibration of M(2, 3, r) over C such that the generic fiber is a punctured torus
and there are r punctured cusp fibers as singular fibers.

Corollary 7.3.19. The 4-manifold T (n) decomposes as the union of the
nucleus N(n) and Mc(2, 3, 6n− 1).

Proof. Recall that the nucleus N(n) has been defined as the tubular neigh-
borhood of a section and a cusp fiber. Since Mc(2, 3, 6n) can be decom-
posed as the boundary fiber sum of Mc(2, 3, 6n − 1) and Mc(2, 3, 1), and
since Mc(2, 3, 1) is the neighborhood of a cusp fiber minus a section, the
decomposition T (n) = Mc(2, 3, 6n) ∪ ν(section ∪ generic fiber) implies the
corollary.

Remarks 7.3.20. (a) As Exercise 7.3.21(a) shows (cf. also Example 8.2.8),
the nucleus N(n) admits a handle decomposition with one 0-handle and two
2-handles. Hence Corollary 6.3.19 implies, in particular, that T (n) admits
a handle decomposition without 1- or 3-handles.

(b) Observe that the above argument decomposes the manifold U(m,n)
(defined as the double branched cover of F2n branched along a certain dis-
connected branch curve) as the Milnor fiber Mc(2, 2m−1, 2n(2m−1)) union
the tubular neighborhood of a section and a regular fiber. Moreover, in the
same vein as Corollary 7.3.19 shows for T (n), the 4-manifold U(m,n) de-
composes as the union of Mc(2, 2m−1, 2n(2m−1)−1), a neighborhood of a
section and Mc(2, 2m−1, 1). The union of the latter two is frequently called
a generalized nucleus and is denoted by N(m,n) [Fu3]. (For m = 2 we
get back the original description of the nucleus N(n) in the elliptic surface
E(n).) Note that Mc(2, 2m− 1, 2n(2m− 1)− 1) is a simply connected spin
4-manifold with a homology sphere boundary.
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n

0

m 1

Figure 7.5. Kirby diagram for the generalized nucleus N(m,n).

Exercises 7.3.21. (a)∗ Show that the generalized nucleus N(m,n) is dif-
feomorphic to the manifold given by the Kirby diagram of Figure 7.5. De-
duce from this picture that N(m,n) is simply connected for all m,n, and it
is spin iff n is even. (Note that since the Milnor fiber is simply connected and
spin, the solution of this exercise implies that U(m,n) is simply connected,
and it is spin iff n is even.)

(b) Let F = {x3 + y2z = 0} ⊂ CP2 and L = {z = 0} ⊂ CP2. The
complex curve F is a sphere with a cusp singularity at [0 : 0 : 1] (cf. C2

in Section 2.3), and F ∩ L = {[0 : 1 : 0]} with F · L = 3. Blow up to
resolve the singularity of F ∪ L at [0 : 1 : 0], then continue blowing up

F̃ until [F̃ ]2 = 0. You should get the plumbing in Figure 7.6, where we

have included the sphere L̃. This example (of Friedman and Morgan) shows
that E(1) ≈ N(1) ∪∂ (−E8)-plumbing: Verify that the complement of a
tubular neighborhood νL ⊂ CP2 is a 4-ball intersecting F in a cone on
a right trefoil knot, so the union of F̃ and the −1-sphere in Figure 7.6 is
diffeomorphic to N(1). Check that removing N(1) leaves behind a (−E8)-
plumbing. (What happens to the ninth −2-sphere?) We have actually

constructed an elliptic fibration on CP2#9CP2 by blowing up the pencil
of cubic curves t0(x

3 + y2z) + t1z
3 = 0. By perturbing the construction, we

get a generic elliptic fibration on E(1) as in Section 3.1. Thus, E(1)−N(1)
is a (−E8)-plumbing. Since the latter is diffeomorphic to the Milnor fiber
Mc(2, 3, 5) (Exercise 8.3.4(c)) and every self-diffeomorphism of its boundary
is isotopic to the identity (cf. Exercise 5.5.9(b)), we conclude that E(1) ≈
T (1) (cf. also the beginning of Section 8.3), and the diffeomorphism sends
a generic fiber to a generic fiber, preserving its canonical normal framing.
(We have also exhibited an Ẽ8-fiber of an elliptic fibration, given by the
nine −2-framed spheres in Figure 7.6, and shown that E(1) has an elliptic

fibration with two singular fibers: a cusp and an Ẽ8-fiber.)

(c) Use the decomposition E(1) ≈ T (1) ≈ N(1)∪∂ (−E8-plumbing) to ver-

ify by Kirby calculus that these manifolds are diffeomorphic to CP2#9CP2.
(Hint : Exercise 5.5.9(b).) Compare the construction in (b) above with
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L F

2

2

2 2 2 2 2 2 2 1

Figure 7.6. A decomposition of E(1).

the solution of Exercise 5.5.9(b) using the (alternate) solution of Exer-
cise 5.1.12(a), and convince yourself that the procedures correspond. (Hint :
Blow down the plumbing in Figure 7.6, keeping track of a 0-framed meridian
μ of the −1-framed circle. You should get S3 with μ a 0-framed left trefoil
knot. This verifies that we can add a 4-handle to the plumbing; the result is
E(1). Locate neighborhoods of F̃ and N(1) in the diagram. (Their 0-handle
is the 4-handle of E(1).) What are their complements? Compare each step
of the blow-down with the corresponding diagram of the resolution.)

Now the solutions of Exercises 7.3.21(b) and 7.3.16(e) imply the following
result.

Theorem 7.3.22. The 4-manifold T (n) constructed above is diffeomorphic
to E(n).

Thus we have given two different presentations of E(n) as the double
branched cover of F2n ≈ F0, branched first along a connected, then along a
disconnected branch locus. The decomposition of T (n) as the union of the
Milnor fiber Mc(2, 3, 6n) and the tubular neighborhood of a section and a
regular fiber now decomposes E(n) as well, providing interesting corollaries
concerning the elliptic surface E(n).

Corollary 7.3.23. The elliptic surface E(n) admits an elliptic fibration
with 6n singular fibers, each being a cusp fiber. Moreover, E(n) can be de-
composed as the union of the nucleus N(2, n) = N(n) and Mc(2, 3, 6n− 1);
and if k ≤ 6n, the Milnor fiber Mc(2, 3, k) embeds in the elliptic surface
E(n). Furthermore, E(n) admits a handle decomposition without 1- or 3-
handles (cf. also the text preceding Exercise 8.3.1 and Corollary 8.3.17).

Proof. All these statements obviously follow from Theorem 7.3.22 together
with Corollary 7.3.19, Exercise 7.3.18 and Remark 7.3.20(a).

We point out that Theorem 7.3.3 gives several different presentations of
the K3-surface — as E(2), V (2), X(2) and as D′(2). There is one other
standard way to define the K3-surface: as the double branched cover of CP2

along a smooth curve of degree six. Using Proposition 7.3.13, we now show
that this last construction yields a manifold diffeomorphic to E(2). Take
smooth cubic curves p0, p1 ⊂ CP2 in general position. Since [p0] + [p1] =
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6h ∈ H2(CP
2;Z) is divisible by 2, we can take the double branched cover X

of CP2 branched along p0 ∪ p1 as given by Construction 7.1.1.

Lemma 7.3.24. The desingularization of the singular surface X is diffeo-
morphic to the K3-surface E(2).

Proof. By the algorithm described in Section 7.2, we must blow up the
9 intersection points of the curves defined by p0 and p1, and then take
the double branched cover along the proper transform. Consequently, the
desingularization of X is simply the double branched cover of E(1) along
two fibers, which is (by Claim 7.3.11) diffeomorphic to E(2).

Now using Proposition 7.3.13 we conclude

Corollary 7.3.25. The double cover of CP2 branched along a smooth sextic
curve is diffeomorphic to E(2), hence it is a K3-surface.

Remark 7.3.26. If we define V (2) ⊂ CP1 × CP2 as in Section 3.2 using
the equation x2p0(z0, z1, z2) + y2p1(z0, z1, z2) = 0, then the projection to
the second factor gives a map pr2 : V (2) → CP2, which is 2:1 away from
B = {p0 = 0} ∪ {p1 = 0} and 1:1 in B − {p0 = 0} ∩ {p1 = 0}; the inverse
image of each point P ∈ {p0 = 0} ∩ {p1 = 0} is a sphere. A more detailed
analysis shows that the above projection pr2 is, in fact, the desingularization
of the double branched cover of CP2 along B. (Since V (2) is diffeomorphic to
E(2), the above observation yields another proof of Corollary 7.3.25.) The
same argument shows that V (n) = {xnp0(z0, z1, z2) + ynp1(z0, z1, z2) = 0}
(which is diffeomorphic to E(n)) is the resolution of the n-fold branched
cover of CP2 branched along the above B.

Exercises 7.3.27. (a) Using Proposition 7.3.13 prove that the complete
intersection surface S2 of Section 1.3 is diffeomorphic to F2. (Hint : Describe
S2 as the double branched cover of CP2 along a smooth quadric curve, then
prove that F2 is the resolution of the double branched cover of CP2 branched
along a pair of distinct lines. Make use of the branched cover F2 → F1

branched along a pair of fibers; cf. also Exercise 6.3.16(b).)

(b)∗ More generally, prove that the double branched cover W (d) of CP2

along a (smooth) curve of degree 2d can be decomposed as the generalized

fiber sum of two copies of CP2#d2CP2 along a complex curve of genus equal
to 1

2(d− 1)(d− 2).

(c) Using the result of the above exercise, compute c21(W (d)), χh(W (d)) and
show that W (d) is simply connected. (Answer : c21(W (d)) = 2(d − 3)2 and
χh(W (d)) = 1

2d(d− 3) + 2; moreover, c2(W (d)) = 4d2 − 6d+ 6.) Determine
the parity of QW (d) using Remark 7.1.8(a).

For the double branched cover X = X(n,m) of F0 branched along B̃n,m

we have c21(X) = 4(n−2)(m−2) and χh(X) = (n−1)(m−1)+1. (This follows
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from the fact that c1(CP
1×CP1) = 2[CP1×{pt.}] + 2[{pt.}×CP1]; cf. Ex-

ercise 7.4.25.) From these formulae it is easy to see that the surfaces X(3, n)
satisfy c21(X(3, n)) = 4(n−2) and χh(X(3, n)) = 2n−1, hence c21(X(3, n)) =
2χh(X(3, n))− 6. This shows that the Noether inequality (Theorem 3.4.19)
is, in fact, sharp. Surfaces satisfying c21 = 2χh − 6 are frequently called Ho-
rikawa surfaces. The examples X(3, n) are simply connected and all admit
genus 2 fibrations. In the following, these will also be denoted by H(n).
Recall that X(3, n) = H(n) can be decomposed as the generalized fiber sum

of three copies of X(1, n) ≈ CP2#(4n + 1)CP2, cf. Exercise 7.3.8(b). By
sewing the sections — the exceptional curves — of X(1, n) together we can
see that the surface X(3, n) contains spheres of square −3; consequently
its intersection form is odd, cf. also Exercise 7.3.16(d). (A −3-sphere in
H(n) can be seen directly from the desingularization algorithm if we con-
sider X(3, n) as the desingularization of the double branched cover of F0

along the complex curve B3,n.) Above, we constructed a complex surface
U(3, n) (as a branched cover of F2n along a disconnected curve) and ob-
served that the characteristic numbers of H(2n) = X(3, 2n) and U(3, n)
are identical, hence the surface H ′(n) = U(3, n) is a Horikawa surface as
well. By Remark 7.3.20(b) we see that H ′(n) is spin iff n is even. Since
U(m,n) and X(n,m) are simply connected complex surfaces for any m and
n (cf. Remark 7.3.20(b) and Exercise 7.3.16(a)), applying Theorem 1.2.27
and Exercise 7.3.21(a) shows

Corollary 7.3.28. The Horikawa surfaces H(2n) and H ′(n) are homeo-
morphic iff n is odd.

It was shown by Horikawa [Hr1] that the complex surfaces H(2n) and
H ′(n) are not deformation equivalent (cf. Theorem 7.4.20), which is obvious
if n is even — in that case H(2n) and H ′(n) are not even homotopy equiv-
alent. On the other hand, it is still an open (and very interesting) question,
whether for n odd (and n > 1) the homeomorphic, deformation inequiva-
lent surfaces H(2n) and H ′(n) are diffeomorphic or not, cf. Theorem 3.4.13
and Conjecture 3.4.211. Note that since (for n > 1) the manifolds H(2n)
and H ′(n) are both minimal surfaces of general type, their Seiberg-Witten
basic classes are equal to ± the first Chern class (with SW (±c1) = ±1),
hence we cannot distinguish the smooth structures of H(2n) and H ′(n)
by their Seiberg-Witten invariants. Using the complex surfaces U(m,n)
and X(m, (m − 1)n) described above for appropriate m and n, many sim-
ilar examples can be found. The Horikawa surfaces H(6) = X(3, 6) and
H ′(3) = U(3, 3) have the smallest characteristic numbers in this family.
(An easy computation shows that the simply connected surface X(3, 6) has
Euler characteristic χ(X(3, 6)) = 116, signature σ(X(3, 6)) = −72, hence

1See also footnote on Page 91
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b+2 (X(3, 6)) = 21.) We will see Horikawa surfaces again in Sections 8.4 and
8.5. (For Kirby diagrams of U(m,n) and X(n,m), see Figures 8.31 through
8.34.)

7.4. Surfaces of general type

In this section a very fruitful method of constructing complex surfaces with
various characteristic numbers will be described. The idea we outline here
is due to Persson (see [Pe]); he used this construction to prove results
concerning the geography problem for complex surfaces (cf. Section 3.4).
Persson observed that by taking double branched covers of geometrically
ruled surfaces along curves with various singularities, one can get (after re-
solving) minimal surfaces with almost all possible (χh, c

2
1)-invariants. After

discussing this method in detail, we close the section by sketching a con-
struction of complex surfaces with positive signature.

In order to have control of the change of topology of the double branched
cover while resolving a singularity, we need a definition concerning singular-
ities. Recall that if B ⊂ Y is a smooth curve, then for a double branched
cover X we have c21(X) = 2(c1(Y )− 1

2 [B])2 = 2(c21(Y )− χ(B))− 3
2 [B]2 and

c2(X) = 2c2(Y ) − χ(B); hence an easy computation shows that χh(X) =
c21(X)+c2(X)

12 = 2χh(Y )− χ(B)
4 − 1

8 [B]2.

Exercises 7.4.1. Compute c21(X) and χh(X) for the double branched cover
X when

(a)∗ Y is the Hirzebruch surface Fn and B is a smooth, connected curve
representing the homology class 2a[Sn] + 2b[Fn] — again, Sn denotes an
affine section and Fn a fiber of Fn. In particular, prove that if Z(m) is the
double branched cover of F1 along 6[S1] + 2m[F1], then c21(Z(m)) = 4m− 2
and χh(Z(m)) = 2m+ 2; consequently Z(m) is a Horikawa surface.

(b) Y is a geometrically ruled surface Gn,g → Σg over the (real) 2-
dimensional surface Σg of genus g, an affine section Sn of Gn,g → Σg has
square [Sn]

2 = n and B is a smooth curve with [B] = 2a[Sn] + 2b[Fn].
(Answer : c21(X) = 2a(a − 2)n + 4(a − 2)(b + 2g − 2) and χh(X) =
1
2a(a − 1)n + (a − 1)(b + g − 1) + 1 − g.) Recall that the complex sur-
face Gn,g is constructed by projectivizing the bundle Ln ⊕ C → Σg, where
c1(Ln)[Σg] = n (cf. Section 3.4).

Note that the expressions for c21(X) and χh(X) depend only on the homology
class of B, so they make sense even when B is singular — of course, in that
case X is singular as well, so c21(X) and χh(X) have no real meaning. We
formally define c21(X) and χh(X) of the singular surface X by the above
formulae (where we set χ(B) = c1(Y )[B]− [B]2 as given by the adjunction
formula). If B is singular, the formulae have to be modified to give c21 and
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χh of the (minimal) resolution X ′; the correction terms depend only on the
types of singularities B admits. Suppose that the unique singular point of
B is given by the equation {f(x, y) = 0}, φ : X → Y is the double branched
cover branched along B, and X ′ is the minimal resolution.

Definition 7.4.2. Suppose that c21(X
′) = 2(c1(Y )− 1

2 [B])2−a = c21(X)−a

and χh(X
′) = 2χh(Y )− χ(B)

4 − 1
8 [B]2 − b = χh(X)− b. Then (a, b) is called

the specialization vector of the singularity {f(x, y) = 0} of B.

(Note that X ′ denotes the minimal resolution of X, so in certain cases one
has to blow down rational −1-curves in the canonical resolution provided by
the algorithm given in Section 7.2.)

The vector (a, b) can easily be computed for a singularity {f(x, y) = 0}.
Here we give an outline of this computation; the specialization vectors of
some interesting singularities will be computed later. Suppose that B ⊂ Y
has a singularity at P ∈ B described by f . When we blow up Y at P ,
the total transform B′ of B is equal to B̃ + d1E1, where (as always) B̃
stands for the proper transform and E1 for the exceptional curve. The
branched cover along B′ might not be smooth, and in fact it might be even
more singular than X — if d1 > 1, then it will not even be normal. To
fix this (according to the algorithm described in Section 7.2) we change

B′ to B1 = B̃ + (d1 − 2[d12 ])E1 = B′ − 2n1E1, where n1 = [d12 ] is the

greatest integer ≤ d1
2 . The double branched cover along B1 will be normal,

and by repeating the above process we will construct the same canonical
resolution as we found in Section 7.2. (Note that all we did above was to
drop Ei from the branch locus if di was even and to reduce its multiplicity
to 1 if di was odd. By Remark 7.2.10 this is the same as the algorithm
described in Section 7.2.) The multiplicities di are obviously different from
the mi’s we found in our algorithm. For mi, all those previous multiplicities
contribute for which the corresponding exceptional curve passes through
the point blown up. With di, however, one only records the parities of
the multiplicities of the previous exceptional curves; consequently di will be
different from mi. (Obviously d1 = m1, but di and mi might be different for
i > 1.) Since we are interested in the minimal resolution, we must also know
the number of blow-downs required to reach the minimal resolution from
the canonical one; in the following this number will be denoted by r. The
specialization vector (a, b) can be computed from the above multiplicities ni

and r by the following formulae:

Lemma 7.4.3. ([Ch1]) The specialization vector (a, b) of {f(x, y) = 0} is
given by a = 2

∑
(ni − 1)2 − r and b = 1

2

∑
ni(ni − 1).

The following theorem motivates the definition of simple (or inessential)
singularities.
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Theorem 7.4.4. ([Pe]) The singularity {f(x, y) = 0} is simple iff the cor-
responding specialization vector is (0, 0).

(One direction of the above equivalence can be shown easily based on the
solution of Exercises 7.2.5; the other direction needs more work.) Hence the
introduction of simple singularities on B does not change the characteristic
numbers of the desingularization of the double branched cover. Singularities
other than simple ones are usually called essential singularities.

Example 7.4.5. The specialization vector of the infinitely close triple point
f(x, y) = x3 + y6 can be computed in the following way (cf. Exam-
ples 7.2.3(b) and 7.2.11(b)): by our previous computation d1 = 3, so

n1 = [d12 ] = 1. Now B1 can be descibed by the equation t(s3 + t3) = 0

(as opposed to B′ = t3(s3 + t3)) on U1, so d2 = 4 and n2 = 2 (recall that
m2 = 6). After the second blow-up we got a smooth curve; the branched
cover surface was, however, nonminimal: one rational −1-curve could have
been blown down, so the specialization vector of the above singularity turns
out to be (1, 1).

Exercise 7.4.6. Determine the specialization vector of an infinitely close
triple point of order n defined by the equation f(x, y) = x3 + y3n+3. (For
other examples of computations of specialization vectors see [Ch1].)

Suppose that for given n, k, a (with 0 ≤ k ≤ 2n+ 2[2a3 ]) the curve B =
Bn,k,a ⊂ Fn represents the homology class 6[Sn] + 2a[Fn] and B has exactly
k infinitely close triple points and no other essential singularities. (Recall
that Sn denotes an affine section and Fn a fiber of the Hirzebruch surface
Fn → CP1. We will prove the existence of such B below.) The following
result is straightforward from Exercise 7.4.1(a) and the specialization vector
of an infinitely close triple point.

Lemma 7.4.7. If Xn,k,a is the minimal resolution of the double branched
cover of Fn branched along B = Bn,k,a, then χh(Xn,k,a) = 3n + 2a − 1 − k
and c21(Xn,k,a) = 6n+ 4a− 8− k.

One can, in fact, prove that for n ≥ 2 all these surfaces are minimal — for
the proof of this statement see [Pe]. Now some elementary number theory
shows that a certain region of the geography picture can be populated by
minimal surfaces of general type, more precisely:

Theorem 7.4.8. If (x, y) ∈ N× N satisfies 0 ≤ 2x− 6 ≤ y ≤ 4x− 6, then
there exists a triple (n, k, a) with a = 0, 1 or 2 such that χh(Xn,k,a) = x and
c21(Xn,k,a) = y. Moreover, for x ≥ 7 the surface Xn,k,a is minimal.

Proof. We must solve the equations

x = 3n+ 2a− 1− k, y = 6n+ 4a− 8− k
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for every given pair (x, y) with 2x−6 ≤ y ≤ 4x−6 in such a way that n, a, k
are nonnegative integers subject to the constraint k ≤ 2n + 2[2a3 ]. One can

easily see that k = y − 2x + 6 and n = y−x+7−2a
3 gives a solution; this

latter expression gives an integer for the appropriate choice of a (solving the
congruence 2a ≡ y − x + 1 (mod 3)). An easy computation shows that the
conditions 0 ≤ 2x − 6 ≤ y and a ∈ {0, 1, 2} imply that n ≥ 2 when x ≥ 7;
hence minimality follows from the remark after Lemma 7.4.7.

Exercise 7.4.9. ∗ Prove that the condition y ≤ 4x − 6 ensures that k
satisfies k ≤ 2n+ 2[2a3 ].

The validity of Theorem 7.4.8 rests on the fact that the curve Bn,k,a ⊂
Fn with the prescribed properties exists; this is, however, nontrivial. In
proving the existence of Bn,k,a we can make use of the double branched cover

construction: Take the zero and infinity sections S2n, S∞ of F2n, let b = [2a3 ]
and fix 2n+2b distinct points q1, . . . , q2n+b ∈ S2n, q2n+b+1, . . . , q2n+2b ∈ S∞
(no two qi on the same fiber). Fix k of the above 2n+2b points and call them
q′1, . . . , q

′
k. Take distinct smooth (connnected) complex curves C1, C2, C3 in

F2n homologous to [S2n] + b[F2n] such that their common intersections on
S2n ∪ S∞ are q′1, . . . , q

′
k and all the other intersections are generic. (The

existence of such curves is provided by [Pe], cf. also Exercise 7.4.10. Note
that [Ci] · [Cj ] = [Ci]

2 = 2n + 2b.) Recall that there is a map π : Fn → F2n

which is the double branched cover branched along S2n ∪ S∞.

Exercise 7.4.10. Show that for b = 0 the curves C1, C2, C3 with the above
properties exist. (Hint : For b = 0 the curves are affine sections of the
Hirzebruch surface F2n, hence each Ci can be given by a polynomial of
degree 2n with k preassigned (common) zeros.) Note that for most cases
needed in Theorem 7.4.8 the argument with b = 0 suffices (a = 0, 1 implies
b = 0); we described the above construction for general b in order to assure
simple connectivity of the resulting complex surfaces, cf. Remark 7.4.12.

Lemma 7.4.11. The union of π−1(Ci) (i = 1, 2, 3) with (2a − 3b) generic
fibers gives a curve Bn,k,a ⊂ Fn with [Bn,k,a] = 6[Sn] + 2a[Fn]; moreover
Bn,k,a has k infinitely close triple points and no other essential singularities.

Proof. By Exercise 7.1.10(a) the homology class [Bn,k,a] = [
⋃3

i=1 π
−1(Ci)]+

(2a − 3b)[Fn] ∈ H2(Fn;Z) is equal to 6[Sn] + 2a[Fn]. Hence the only thing
remaining to be proved is that an ordinary triple point located on the branch
curve (provided by C1 ∩ C2 ∩ C3 on S2n ∪ S∞) becomes an infinitely close
triple point in the double branched cover. This can be checked in a local
model: In an appropriate chart U(x, y) the branch curve is given by the
equation {x = 0} and the three lines meeting each other transversally can
be chosen as x−y, x−ζ1y and x−ζ2y (where 1, ζ1 and ζ2 are three different
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third roots of unity). Now the double branched cover locally is described
by {(x, y, z) ∈ C3 | z2 = x}, and so the inverse images of the three lines
become z2− y, z2− ζ1y and z2− ζ2y, giving the infinitely close triple point
0 = (z2 − y)(z2 − ζ1y)(z

2 − ζ2y) = z6 − y3.

Remark 7.4.12. Each of the examples in Theorem 7.4.8 admits a fibration
over CP1 with fibers of genus 2: The surface Xn,k,a admits a map φ to Fn,
and the composition of φ with the ruling Fn → CP1 yields a (singular)
fibration Xn,k,a → CP1. The fiber originates from the fiber F ⊂ Fn (a
sphere) intersecting the branch locus Bn,k,a generically in six points, so the
double branched cover of it is a curve of genus 2. The fibration will contain
singular fibers — these are the fibers corresponding to fibers of Fn passing
through singular points of Bn,k,a, tangent to or contained in Bn,k,a. It is easy
to see that c21(Xn,k,a+3) = c21(Xn+2,k,a) and χh(Xn,k,a+3) = χh(Xn+2,k,a),
hence in most cases we can arrange a ≥ 3. This observation turns out to
be important in computing the fundamental groups of the complex surfaces
constructed.

The general construction of surfaces with characteristic numbers in the
region {(x, y) ∈ N×N | 2x− 6 ≤ y ≤ 8x} follows a similar pattern; one just
has to replace Fn with the geometrically ruled surface Gn,g (cf. Section 3.4).
Here we restrict ourselves only to a short outline of the construction. Con-
sider the complex surface Xn

g,c which is the double branched cover of Gn,g

along a smooth curve Ec with [Ec] = 6[Sn] + 2c[Fn]. Applying the solution
of Exercise 7.4.1(b), one can easily compute the characteristic numbers of
Xn

g,c:

Lemma 7.4.13. ([Pe]) The characteristic numbers of Xn
g,c are given by

c21(X
n
g,c) = 8g − 8 + 2(2c + 3n) and χh(X

n
g,c) = g − 1 + 2c + 3n. The

subset of the region R = {(x, y) | 2x − 6 ≤ y ≤ 8x} whose points have the
form x = χh(X

n
g,c), y = c21(X

n
g,c) for some n, g, c forms a sublattice of R

with coarea 6.

In order to fill up the gaps one has to introduce essential singularities (e.g.,
infinitely close triple points) on the curves Ec. Strategy similar to that of
the proof of Lemma 7.4.11 will provide the required curve, so the following
theorem can be proved.

Theorem 7.4.14. If (x, y) ∈ N×N satisfies 2x− 6 ≤ y ≤ 8x, then there is
a minimal surface S of general type with χh(S) = x and c21(S) = y.

(For details of the proof see [Pe]. Persson proved the above theorem for
pairs satisfying 2x− 6 ≤ y ≤ 8x− 20, then Xiao removed the constant −20
and proved Theorem 7.4.14 in the form it is stated above, see [Xi].) Note
that the construction of S provides a fibration on it — in this case, however,
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the complex surface fibers over a complex curve Σ with possibly nonzero
genus g.

The above theorem does not provide simply connected examples — al-
though we are mainly interested in the simply connected case. As we have
already mentioned, the fundamental group of a branched cover is sometimes
hard to compute. The following lemma (essentially from [Pe]) gives a suf-
ficient condition for a fibration to be simply connected. For the proof, see
Exercise 8.1.10(b).

Lemma 7.4.15. Let X be a closed 4-manifold with π : X → CP1 holomor-
phic (or more generally, locally modeled at each point of X by a holomorphic
map). If some fiber π−1(p) is simply connected and each fiber contains a
point where dπ is surjective, then X is simply connected.

Exercise 7.4.16. ∗ Using Lemma 7.4.15, show that the surfaces X(n,m)
are simply connected (cf. also Exercise 7.3.16(a)).

Applying this result to the geography of simply connected surfaces, Persson
proved the following.

Theorem 7.4.17. If 2x − 6 ≤ y ≤ 8(x − 5x2/3) and y > 0, then there
exists a minimal, simply connected complex surface (of general type) such
that χh(S) = x and c21(S) = y.

These surfaces are rather large by the standards of topologists: It is easy to
see that the inequalities imply x ≥ 294, so b+2 (S) ≥ 587 and b−2 (S) is consid-
erably larger (since the signature σ(S) is negative). The geography of simply
connected surfaces with small b2 is still somewhat mysterious. Lemma 7.4.15
can be applied directly to the examples Xn,k,a of Theorem 7.4.8 — by Re-
mark 7.4.12 all these examples admit the required fibration over CP1, and
if the branch curve contains at least one fiber of Fn, then the fibration on
Xn,k,a will have a fiber satisfying the required hypotheses (cf. the solution of
Exercise 7.4.16). It can be arranged that Bn,k,a contains fiber components,
for example, if a is not divisible by 3, or if we choose a ≥ 3. On the other
hand, Theorem 7.4.14 gives complex surfaces fibered over complex curves
with nonzero genus, and these will never be simply connected. For more
about the construction of simply connected surfaces, see [Pe].

One would also like to determine the parity of the intersection form of
a double branched cover — recall that for a simply connected surface S
the invariants χh(S), c

2
1(S) and the parity of QS are enough information

to determine the homeomorphism type of S. For a sufficient condition for
a double cover S to be spin (i.e., QS even) see [PPX]. Recall that the
invariants (χh(S), c

2
1(S)) of a simply connected spin complex surface satisfy

the relations c21(S) ≡ 0 (mod 8) and
c21(S)
8 ≡ χh(S) (mod 2). (Cf. the text
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after Theorem 3.4.19.) Consequently, if (x, y) ∈ N× N does not satisfy the
above constraints, the homeomorphism type of the corresponding simply
connected complex surface is unique (and nonspin). For the geography of
spin surfaces the following result has been obtained.

Theorem 7.4.18. ([PPX]) Suppose that the pair (x, y) ∈ N × N satisfies
y ≡ 0 (mod 8) and y

8 ≡ x (mod 2).

1. If 16
5 (x − 4) ≤ y < 8x − 271x

3
4 , then there exists a simply connected

spin surface S with χh(S) = x and c21(S) = y.

2. Suppose that 3(x − 5) ≤ y < 16
5 (x − 4) and y

8 + x ≡ 2 (mod 4).
Then there exists a simply connected spin surface S with χh(S) = x
and c21(S) = y. Hence in that region roughly half of the possible
points correspond to simply connected spin surfaces (and nothing is
said about the points satisfying y

8 + x ≡ 0 (mod 4)).

3. If S is a simply connected spin surface with 2χh(S) − 6 ≤ c21(S) <
3(χh(S) − 5), then either c21(S) = 2(χh(S) − 3) ≡ 8 (mod 16) or
c21(S) =

8
3(χh(S)− 4) with χh(S) ≡ 1 (mod 3). The points allowed by

these constraints can be realized by simply connected spin surfaces.

Remark 7.4.19. After seeing Theorem 7.4.14 (and Theorem 7.4.23), one
has the impression that most points in the region defined by the Noether
and the Bogomolov-Miyaoka-Yau inequalities correspond to complex sur-
faces (see Figure 7.7). As Theorem 7.4.18(3) shows, once one poses the
same question for simply connected spin surfaces, there are “gaps” in the
geography.

BMY line

Noether line
Horikawa surfaces

elliptic line

6

0 1 2 3 4 5 6
0

5

10

15

20

25

30

c1
2

c1
2
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2 8 h

c1
2 2 h

c1
2 0

h

Figure 7.7. Geography of minimal complex surfaces of general type.

Recall that besides the geography, one would also like to get information
about the botany of surfaces of general type: one would like to describe
all minimal surfaces with a given pair of invariants (χh, c

2
1). Not much is
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known about the solution of this problem. By Theorem 3.4.17 the number
of nondiffeomorphic (or even deformation inequivalent) minimal surfaces of
general type within a given homeomorphism type is finite; due to a theorem
of Salvetti [Sv], however, this number can be arbitrarily large (even in the
simply connected case). Results of Horikawa describing all surfaces with
c21 = 2χh − 6 + k for k = 0, 1, 2, 3 give examples of the few botanical results
[Hr1]. We only give one example of these results, when k = 0.

Theorem 7.4.20. (Horikawa, [Hr1]) Suppose that y = 2x − 6 > 0. If y
is not divisible by 8, then there is a unique deformation equivalence class
of minimal complex surfaces of general type with the prescribed invariants
(χh, c

2
1) = (x, y), given by the surface H(n) = X(3, n) of Section 7.3 if

y ≡ 0 (mod 4) (with n = 1
4y + 2) and Z(n) of Exercise 7.4.1(a) for y ≡

2 (mod 4) (with n = 1
4(y+2)). If y is divisible by 8, then there are exactly 2

deformation equivalence classes of surfaces representing the pair (x, y); the
surfaces H(2n) and H ′(n) = U(3, n) (corresponding to n = 1

8y+1) discussed
in Section 7.3. All these surfaces are simply connected and admit genus-2
fibrations.

Remark 7.4.21. Note that W (4) and W (5) (of Exercise 7.3.27) also satisfy
c21 = 2χh−6, hence by the above theorem W (4) is deformation equivalent to
Z(1) of Exercise 7.4.1(a), andW (5) (which is spin) is deformation equivalent
to H ′(2).

We close this chapter by listing theorems and examples concerning sur-
faces with characteristic numbers 8χh < c21 ≤ 9χh — or equivalently 2c2 <
c21 ≤ 3c2. Note that since the signature σ(S) of a complex surface S is given
by the formula

σ(S) =
1

3
(c21(S)− 2c2(S)),

the surfaces in the “arctic region” 8χh < c21 ≤ 9χh are the ones with positive
signature. We begin by listing a few theorems concerning the geography
problem for surfaces with positive signature.

Theorem 7.4.22. (Chen, [Ch2]) If 8x ≤ y ≤ 9x − 347, then there is a
minimal surface S of general type with x = χh(S) and y = c21(S).

Later in this section we will outline the strategy of the proof of Theo-
rem 7.4.22. From the construction it will be obvious that the surfaces
provided by Theorem 7.4.22 have large fundamental groups; most of these
examples are out of reach for a topologist favoring, e.g., Kirby calculus.
Putting Theorem 7.4.22 together with Theorem 7.4.14 we get the following:

Theorem 7.4.23. If (x, y) ∈ N × N satisfies 2x − 6 ≤ y ≤ 9x − 347, then
there exists a minimal surface of general type corresponding to the given
point (x, y).

                

                                                                                                               



278 7. Branched covers and resolutions

The upper borderline of the region {(x, y) ∈ Z×Z | 8x ≤ y ≤ 9x} — where
y = 9x — is frequently called the Bogomolov-Miyaoka-Yau (BMY) line.
Complex surfaces of general type satisfying c21(S) = 9χh(S) are handled by
the following theorem.

Theorem 7.4.24. ([Hi1], [Y], [My]) If S is a complex surface of general
type with c21(S) = 9χh(S), then the universal cover of S is biholomorphic to
the unit disk D4 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1}, hence in particular
|π1(S)| =∞. Conversely, if the universal cover of a compact complex surface
is biholomorphic to the unit disk, then c21(S) = 9χh(S).

Note that Theorem 7.4.22 does not guarantee the existence of simply
connected surfaces in the arctic region. Constructions of Moishezon-Teicher
[MT], Chen [Ch1] and Peters-Persson-Xiao [PPX] provide simply con-
nected surfaces with positive signature; we will not discuss these construc-
tions here. (For other results concerning the arctic region see [BPV].) In
the following, we describe a few constructions for manifolds in the arctic
region.

Exercise 7.4.25. ∗ Consider the complex surface X = C1 × C2 where the
complex curves Ci have genus g(Ci). Find a basis for H2(X;Z) and deter-
mine c1(X), c21(X), c2(X), χh(X) and the signature σ(X).

Next we provide a surface on the Bogomolov-Miyaoka-Yau line c21 = 9χh.
First we find a map ϕ : G → CP1 from the (real 2-dimensional) surface G
of genus 2 to CP1 with the property that ϕ is 5 : 1 except over three points
Q1, Q2, Q3 ∈ CP1, each of which has only one inverse image. Take the
(singular) curve G1 = {[x0 : x1 : x2] ∈ CP2 | x50 − x31x2(x1 + x2) = 0} in
CP2 and blow up CP2 at [0 : 0 : 1] (the singular point of the curve G1). The

proper transform G̃1 still has one singular point, but the proper transform
G of an additional blow-up will be smooth. Hence we have found a smooth
curve G in CP2#2CP2; restricting the blow-down map CP2#2CP2 → CP2 to
G and composing it with the projection CP2 − [1 : 0 : 0]→ {x0 = 0} ≈ CP1

(mapping [x0 : x1 : x2] to [0 : x1 : x2]), we get ϕ : G → CP1 with the
properties described above. Note that we have simply given an explicit
description of a 5-fold cyclic branched cover G→ CP1 branched at the three
points Q1, Q2, Q3 ∈ CP1. The corresponding Z5-action on G is generated by
γ([x0 : x1 : x2]) = [e2πi/5x0 : x1 : x2]. The fixed points of γ are the inverse
images of Qk (k = 1, 2, 3) in G (also denoted by Qk ∈ G (k = 1, 2, 3)).
Obviously we have G/〈γ〉 ≈ CP1.

Exercise 7.4.26. ∗ Show that the complex curve G constructed above has
genus 2.

Let Δ denote the diagonal of CP1 × CP1. Take the inverse image of Δ in
G×G via ϕ× ϕ : G×G→ CP1 × CP1 and denote it by F ⊂ G×G. Note
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that since [Δ] = [CP1×{pt.}] + [{pt.}×CP1] ∈ H2(CP
1×CP1;Z), we have

that [F ] = 5([G× {pt.}] + [{pt.} ×G]) ∈ H2(G×G;Z).

Lemma 7.4.27. F consists of the union of 5 curves F1, . . . , F5, each iso-
morphic to G. Each Fi goes through the points (Q1, Q1), (Q2, Q2) and
(Q3, Q3); Fi intersects Fj transversally in (Qk, Qk) (k = 1, 2, 3), and other-
wise these curves are disjoint. Moreover, [Fi]

2 = −2 for 1 ≤ i ≤ 5.

Proof. The curve Fi can be given as the graph of the map γi : G → G.
(Recall that γ generates the Z5-action on G given by the cyclic branched
cover ϕ : G→ CP1.) This implies that [Fi]

2 = [Fj]
2. Since F5 is the diagonal

of G × G, we have [F5]
2 = 〈e(νF5), [F5]〉 = 〈e(TF5), [F5]〉 = −2. Since

(
∑
[Fi])

2 = (5([G × {pt.}] + [{pt.} × G]))2 = 50 and the Fi are distinct
complex curves, the lemma follows.

If we blow up G×G at the points (Qk, Qk) (k = 1, 2, 3), the proper transform

of F consists of 5 disjoint curves F̃1, . . . , F̃5 ⊂ G × G#3CP2. Since in
the second homology group of G × G#3CP2 we have [F̃1] + . . . + [F̃5] =
5([G × {pt.}] + [{pt.} × G]) − 5e1 − 5e2 − 5e3 (where ei is the exceptional
sphere of the ith blow-up), we can use Construction 7.1.1 with d = 5 to take

the 5-fold cyclic branched cover of G × G#3CP2 along F̃1 ∪ . . . ∪ F̃5. We
denote the resulting smooth surface by H. By generalizing Lemma 7.1.7 to
5-fold covers (cf. Remark 7.1.8(b)) we can easily compute the characteristic
numbers of H:

Lemma 7.4.28. The Euler characteristic χ(H) of H is equal to 75 and
c21(H) = 225, hence χh(H) = 1

12(c2(H) + c21(H)) = 25. Consequently

c21(H) = 9χh(H), so H is on the Bogomolov-Miyaoka-Yau line.

From this basic example other arctic surfaces can be produced, leading
to a proof of Theorem 7.4.22. First note that the composition of the maps

H → G×G#3CP2 → G×G pr−→ G gives a fibration of H over G, the regular
fiber being a curve which is a 5-fold cover of G branched at 5 points (hence a
curve of genus 16). For a given number n, take an n-fold (unbranched) cover
τ : C ′ → G, and let Xn denote the pullback of H → G via τ . Next take a
double branched cover C → C ′ branched at generic points p1, . . . , p2d ∈ C ′.
(Here generic means that the fiber of H → G over τ(pi) is smooth.) Pulling
the fibration H → G back via C → G, we get a surface Xn,d → C with
characteristic numbers

c21(Xn,d) = 450n+ 120d and χh(Xn,d) = 50n+ 15d,

obviously satisfying 8χh(Xn,d) ≤ c21(Xn,d) ≤ 9χh(Xn,d). If d = 0, i.e., we
have an unbranched 2n-fold cover Xn,0 of H, then c21(Xn,0) = 3c2(Xn,0) =
6nc2(H). (Note that for d = 0 the map C → G is a 2n-fold cover, since
the double cover C → C ′ is not branched in this case.) The pullback of
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Xn → C ′ to the double branched cover C → C ′ is just a double branched
cover Xn,d → Xn branched along the fibers over the points p1, . . . , p2d; in
particular, for d = 1 the manifold Xn,1 is just the generalized fiber sum
Xn#fXn.

Exercise 7.4.29. Verify the expressions for c21(Xn,d) and χh(Xn,d) given
above.

Since H is a cyclic 5-fold branched cover, it admits a Z5-action mapping
each fiber of H → G into itself. By construction, this Z5-action can be
pulled back, defining a Z5-action α (with α5 = idXn,d

) on Xn,d. Note that
this action has 5 fixed points in every fiber — the points corresponding to
the intersections of the fiber with the inverse image of the branch locus of
the branched cover H → G × G#3CP2. By pulling back Xn,d → C to a

cyclic 5-fold branched cover ϕ : C̃ → C, we obtain another Z5-action β (with
β5 = idXn,d(ϕ)) on the resulting complex surface Xn,d(ϕ):

Xn,d(ϕ) −→ Xn,d

↓ ↓
C̃

ϕ−→ C

(For this, regard Xn,d(ϕ) as the pullback of C̃ → C by the map Xn,d → C
and pull back the Z5-action provided by the 5-fold cyclic branched covering
C̃ → C.) We still have the fibration of Xn,d(ϕ) with curves of genus 16 as
fibers, and a Z5-action (still denoted by α) mapping each fiber into itself
— this can be seen by regarding Xn,d(ϕ) as the pullback of the fibration

Xn,d → C by the map ϕ : C̃ → C. Note that β has fixed points only over

the branch points of ϕ : C̃ → C. Since the two actions (α and β) commute,
the product αβ defines a Z5-action on Xn,d(ϕ) with isolated fixed points
(the intersections of the two fixed point sets). Resolving the singularities of
the quotient of Xn,d(ϕ) by the Z5-action generated by αβ defines a complex
surface Z(n, d, ϕ). For appropriately chosen parameters n, d and ϕ, the com-
putation of χh(Z(n, d, ϕ)) and c21(Z(n, d, ϕ)) proves Theorem 7.4.22. (For
further details see [Ch2].)

Remark 7.4.30. Each singularity of the quotientXn,d(ϕ)/Z5 is a cone over
the quotient of S3 by a Z5-action, which is a lens space L(5, q). The value
q depends on the type of the Z5-action at the point at hand; this is deter-
mined by the cyclic branched covering ϕ. Since L(5, 2) ≈ L(5, 3), we have 3
possibilities at each singular point.

Exercise 7.4.31. Using a continued fraction expansion of −5
q , find a

smooth, negative definite 4-manifold with boundary L(5, q) (cf. Exer-
cise 5.3.9(b)). Using these plumbing manifolds, describe the topology of
the resolutions in Z(n, d, ϕ).
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While these examples are generally not simply connected, Chen also de-
scribed constructions of simply connected surfaces in the arctic region [Ch1].
The strategy he used is very similar to the one invented by Persson (and
described earlier in this section) — Chen introduced various essential singu-
larities on the branch curve and then resolved the corresponding branched
covers; for details see [Ch1]. The comment made after Theorem 7.4.17
also applies to these surfaces: by topological standards these manifolds are
enormously large (for example, χh > 108).

Exercise 7.4.32. Show that the set R = { c21(Xn,d)
χh(Xn,d)

| n ≥ 1, d ≥ 0} is

dense in the interval [8, 9]. (Hint : Recall that c21(Xn,d) = 450n + 120d,
χh(Xn,d) = 50n + 15d and show that for n = 3(q − p), d = 10p (0 < p < q

integers) the ratio
c21(Xn,d)
χh(Xn,d)

is equal to 9− p
q . See also [So].)

                

                                                                                                               



                

                                                                                                               



Chapter 8

Elliptic and Lefschetz
fibrations

In Chapters 3 and 7, we encountered elliptic surfaces in several different con-
texts. We saw that they were a sufficiently large class of complex surfaces
to exhibit behavior such as infinitely many diffeomorphism types within a
homeomorphism type. On the other hand, the fact that they admit elliptic
fibrations gives us a way to understand their topology in detail. In this
chapter, we will analyze the topological structure provided by an elliptic
fibration. This will shed light on the classification of elliptic surfaces, and
allow us to draw Kirby diagrams of these manifolds. Elliptic fibrations nat-
urally generalize to structures called Lefschetz fibrations and Lefschetz pen-
cils. As we will see, any projective surface admits a Lefschetz pencil. More
generally (Theorem 10.2.28), any closed symplectic 4-manifold admits a Lef-
schetz pencil and conversely, so Lefschetz pencils topologically characterize
an important geometric property, namely whether the manifold supports a
symplectic structure. On the other hand, a sufficiently detailed understand-
ing of a Lefschetz pencil on a 4-manifold allows one to draw a Kirby diagram
of it. Our technique for drawing Kirby diagrams of Lefschetz and elliptic
fibrations is generalized from [HKK]; for more on (holomorphic) Lefschetz
pencils (in arbitrary dimensions) and their use in understanding the topol-
ogy of projective varieties, see [Lm]. The theory of Lefschetz fibrations has
been developing rapidly in recent months, perhaps in response to recent
connections with symplectic geometry. We have attempted to include some
of the most recent references, but the list will undoubtedly be outdated by
the time this text reaches the bookshelves.
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8.1. Lefschetz pencils and fibrations

We begin by constructing a fibration-like structure on an arbitrary (smooth)
projective surface S ⊂ CPN ; this will be our prototype of a Lefschetz pencil.
Let A ⊂ CPN be a generic linear subspace of (complex) codimension 2.
Then A is transverse to S, so it intersects S in a finite number n of points.
Since each intersection is positive, n equals A · S and is independent of A
(and we have [S] = n[CP2] ∈ H4(CP

N ;Z) ∼= Z). Since A can easily be
chosen to intersect S, we have n > 0. We call n the degree of S, A the
axis of the pencil we will construct, and B = A ∩ S �= ∅ the base locus of
the pencil. Now consider the set of all hyperplanes (complex codimension-
1 linear subspaces) Ht of CPN containing A. These are parametrized by
CP1 — in fact, A is determined by a pair of homogeneous linear equations
p0(z) = p1(z) = 0, and for t = [t0 : t1] ∈ CP1, we can take Ht to be the
zero set of the linear polynomial t0p0+ t1p1. Setting Ft = Ht ∩S, we obtain
a family of (possibly singular) complex curves in S parametrized by CP1.
The union of these curves is S, and any two intersect precisely in B (since
the analogous statements hold for the hyperplanes Ht ⊂ CPN ). The family
{Ft | t ∈ CP1} is a Lefschetz pencil on S; see Figure 8.1. Note that it is
not a singular fibration, since the projection to CP1 cannot be defined on B.
However, the transversality of A implies that in a neighborhood of B each
Ft is smoothly embedded, so we can blow up B to obtain a complex surface
S′ ≈ S#nCP2 in which the proper transforms F ′

t are disjointly embedded.
The resulting holomorphic map π : S′ → CP1 defined by π(F ′

t) = {t} is
our prototype for a Lefschetz fibration (Figure 8.1). Clearly, each of the n
exceptional curves Ei is a section.

blow up
B

E1

E2

I C P1

Figure 8.1. Lefschetz pencil and corresponding Lefschetz fibration.

Exercises 8.1.1. (a)∗ Apply this construction to the hypersurface Sd of

degree d in CP3 to obtain a Lefschetz fibration Sd#dCP2 → CP1. What is
the genus of a generic fiber? Identify the fibration when d = 1, 3. (Hint :
Lemma 3.1.17.)
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(b) Let q0, . . . , qN denote all homogeneous monomials of degree d in the
variables z0, z1, z2. Show that the formula q(z) = [q0(z) : . . . : qN (z)] gives
a well-defined embedding CP2 ↪→ CPN . (This is called the Veronese em-
bedding .) Show that preimages of hyperplanes in CPN are precisely the
same as (possibly singular) degree-d curves in CP2. Now show that the
above construction of a Lefschetz pencil on q(CP2) is equivalent to pick-
ing a generic pair of degree-d polynomials p0, p1 and considering the family
of curves Ft = {z ∈ CP2 | t0p0(z) + t1p1(z) = 0}, t = [t0 : t1] ∈ CP1,
as in Lemma 3.1.4. What is the degree of q(CP2)? Prove that the hy-
persurface Sd in CP3 (or more generally, any smooth hypersurface in CPk

(k ≥ 3), as in Definition 1.3.7) is simply connected by constructing a suitable
Veronese embedding CPk ↪→ CPN and applying the Lefschetz Hyperplane
Theorem 1.4.22.

As the last exercise shows, we have seen Lefschetz pencils and fibrations
before — when we considered pencils of curves in CP2 in and preceding
Lemma 3.1.4. In particular, these fibrations for d = 1, 3 are the usual fibra-
tion of the Hirzebruch surface CP2#CP2 and an elliptic fibration E(1) →
CP1, respectively.

We wish to understand the critical points of the Lefschetz fibration
π : S′ → CP1 constructed above. For any nonconstant holomorphic map
f : S → Σ from a compact complex surface to a connected complex curve,
generic points of Σ will be regular values, by Sard’s Theorem [GP]. Since
the critical values form a projective subvariety of Σ with nonzero codimen-
sion, they must be a finite set. Away from this set, f will be a fiber bundle
projection with connected base space, so all but finitely many fibers of f
will be complex submanifolds of S with a fixed diffeomorphism type. The
set of critical points of f in S, however, may have components with complex
dimension 1 — that is, df may vanish everywhere along a curve C in a fiber
of f . At any smooth point of C, there will be local coordinates in which
f is given by f(z1, z2) = zm1 for some m ≥ 2. (Consider a multiple fiber
in an elliptic fibration or the singular fibers of X(m,n) from Section 3.2.)
Such a curve C cannot occur in the Lefschetz fibration π constructed above,
however, since C would intersect some section Ei in a smooth point, and
we would then have the contradiction that Ei · F ≥ m ≥ 2 for a generic
fiber F . (Note that any curve in a fiber Ft ⊂ S must intersect B, since it
has nonzero degree in Ht

∼= CPN−1.) Thus, π has only finitely many criti-
cal points in S′. Since the axis A of the pencil was chosen generically, the
critical points of π will be generic. Recall that a generic real-valued smooth
function has Morse critical points that are quadratic in local coordinates.
Similarly, a generic holomorphic isolated critical point has holomorphic lo-
cal coordinates in which the function is given by π(z1, z2) = z21 + z22 , or
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(after a linear change of coordinates) π(z1, z2) = z1z2. (In contrast with the
real-valued case, there is no index, since we can reverse signs by multiplying
coordinates by i.)

Exercises 8.1.2. (a)∗ Define π near 0 in C2 by π(z1, z2) = zm1
1 +zm2

2 . Find
a perturbation of π with only quadratic critical points. How many critical
points does it have?

(b) Prove Proposition 3.1.5. (Hint : In the local coordinates given above,
the zero locus of the map π at a generic critical point is the union of the
lines z2 = ±iz1. Use the obvious action of the connected group GL(3,C)
on CP2 to reduce to the case of a cubic curve in CP2 with a unique generic
singularity at [0 : 0 : 1], tangent to the lines y = ±x in the local coordinates
(x, y) �→ [x : y : 1]. Show that the corresponding cubic equation is given by
zy2 = zx2 + p(x, y) for some homogeneous cubic polynomial p. Reduce to
the case p(x, y) = x3 as in Claim 1.3.11.)

Remarks 8.1.3. (a) We have already studied smooth multiple fibers in el-
liptic fibrations (Section 3.3). A similar phenomenon occurs in higher-genus
singular fibrations, although the multiple fiber Fm will have a different genus
from the generic fiber F (since χ(F ) = mχ(Fm)). The key idea is that the
3-manifold S1 × Fm can be realized as the associated S1-bundle of a non-
trivial Zm-bundle over Fm, and this exhibits a fibering of it by surfaces F
m-fold covering Fm. There is no higher-genus analog of logarithmic trans-
formations, however. In fact, it is impossible to change the diffeomorphism
type of a 4-manifold by removing a closed, orientable genus-g surface with
trivial normal bundle (g ≥ 2) and gluing in D2 × F by a diffeomorphism
of the boundaries: The two surfaces would have the same genus (as de-
termined by b1(S

1 × F )), and standard 3-manifold theory shows that any
self-diffeomorphism of S1×F must preserve the framed circle S1×{pt.} up
to isotopy and orientation reversal. (The fact that the circle is preserved
up to homotopy and orientation reversal follows easily from the triviality of
the center of π1(F ).) Since gluing D2 × F to a 4-manifold along its boun-
dary is the same as attaching a 2-handle and 3- and 4-handles, the resulting
diffeomorphism type is unique.

(b) Fibers of arbitrary holomorphic maps from surfaces to curves can be
quite complicated. However, they have been classified up to fiber-preserving
homeomorphisms of a regular neighborhood [MtM].

We are now ready to define Lefschetz pencils and fibrations on smooth
4-manifolds.

Definition 8.1.4. Let X be a compact, connected, oriented, smooth 4-
manifold.
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(a) For ∂X = ∅, a Lefschetz pencil on X is a nonempty finite subset B of
X, called the base locus, together with a smooth map π : X − B → CP1

such that each point b ∈ B has an orientation-preserving coordinate chart
in which π is given by projectivization C2 − {0} → CP1, and each critical
point of π has an orientation-preserving chart on which π(z1, z2) = z21 + z22
relative to a suitable smooth chart on CP1. For t ∈ CP1, the fiber Ft is
π−1(t) ∪B ⊂ X.

(b) A Lefschetz fibration on X is a map π : X → Σ, where Σ is a compact,
connected, oriented surface and π−1(∂Σ) = ∂X, such that each critical point
of π lies in int X and has a local coordinate chart as in (a).

We can assume without loss of generality that the given charts on Σ (or
CP1) preserve orientation, since complex conjugation leaves π invariant and
reverses orientation on C but not on C2. Clearly, each fiber Ft of a Lefschetz
pencil or fibration is compact and canonically oriented, and in the former
case Ft intersects some neighborhood of B in a smooth surface. Blowing up
the base locus turns a Lefschetz pencil into a Lefschetz fibration over S2,
with each exceptional sphere a section. In either case, π has only finitely
many critical points, and removing the corresponding singular fibers turns a
Lefschetz fibration into a fiber bundle with a connected base space. Thus, all
but finitely many fibers of a Lefschetz pencil or fibration are smooth, closed
surfaces, all of which have the same diffeomorphism type. If a generic fiber is
connected (as we will show is always true when Σ = S2, Proposition 8.1.9),
its genus will be called the genus of the Lefschetz pencil or fibration. By
perturbing π if necessary, we can arrange it to be injective on its set of
critical points, so that each singular fiber has a unique singularity. (Some
authors include this in the definition.)

Examples 8.1.5. It is immediate that the pencil and singular fibration we
constructed from an arbitrary projective surface S satisfy Definition 8.1.4.
In particular, a generic pencil of degree-d curves on CP2 will be a Lefschetz

pencil of genus (d−1)(d−2)
2 , inducing a Lefschetz fibration of the same genus

on CP2#d2CP2. A generic elliptic fibration on E(n) will have only fishtails
as singular fibers (Proposition 3.1.5), so it will also be a Lefschetz fibration.
In contrast, elliptic fibrations E(n)p1,... ,pk with multiple fibers are not Lef-
schetz, and neither are the obvious fibrations on the manifolds X(m,n) of
Section 3.2 (since each singular fiber will have a component with multiplic-
ity 2). Of course, these manifolds admit higher-genus Lefschetz pencils since
they are projective. We can obtain an elliptic Lefschetz fibration over a sur-
face Σ of any genus g by forming the fiber sum E(n, g) = E(n)#fΣ × T 2.
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In fact, the fiber sum operation generalizes immediately to Lefschetz fibra-
tions of any fixed genus (cf. Definition 7.1.11), although we will see (The-
orem 8.4.3) that a fiber sum of two holomorphic Lefschetz fibrations need
not admit a complex structure.

Exercise 8.1.6. ∗ Prove that a Lefschetz pencil or fibration on X deter-
mines an almost-complex structure, i.e., a complex vector bundle structure
on TX. In particular, for a closed X with a Lefschetz pencil or fibration,
b+2 (X) − b1(X) must be odd (Theorem 1.4.13 and subsequent text). For
more on these almost-complex structures, see the end of Section 8.4.

To understand the singular fibers, we analyze the critical points in
more detail. Each critical point has a local coordinate chart in which
π(z1, z2) = z1z2. On this chart, the unique critical value is 0, and π−1(0) =
{(z1, z2) | z1 = 0 or z2 = 0} is a pair of intersecting planes (a nodal singu-
larity). Thus, each singular fiber is a smoothly immersed surface, and each
critical point corresponds to a positive transverse self-intersection. Nearby
fibers π−1(t), t �= 0, are nonsingular, and are obtained from π−1(0) by re-
moving the intersection as in Section 2.1. That is, we perform surgery on a
0-sphere in the fiber (the pair of identified points) by removing the intersect-
ing disks and replacing them with the annulus z1z2 = t. Equivalently, each
critical point corresponds to an embedded surgery circle called a vanishing
cycle in a nearby regular fiber, and the singular fiber is obtained by collaps-
ing the vanishing cycle to a point to create a transverse self-intersection.
(Different critical points on the same singular fiber correspond to disjoint
vanishing cycles.) If a vanishing cycle (or union of cycles with a given criti-
cal value) separates the generic fiber, the singular fiber will be the image of
an immersion of a disconnected surface.

Since each fiber Ft of a Lefschetz fibration is a self-transverse immersed
surface, its regular neighborhood νFt is a plumbing, and all signs of intersec-
tion are positive. Thus, once we know the vanishing cycles that determine
Ft, the diffeomorphism type of νFt will be determined by the normal Euler
numbers of the components of the surface whose image is Ft. To determine
these Euler numbers, we first observe that away from the critical points of π,
Ft has a canonical normal framing (obtained by pulling back a basis of TtΣ).
In the given coordinates around a critical point, this framing is determined
on the surface z2 = 0 by the vector field (0, z−1

1 ) (as we see by differentiating
π or considering a nearby regular fiber π−1(t)). Since the vector field has
a singularity of degree −1 at z1 = 0, it follows that for a self-transverse
immersion i : F ′ → X with image contained in a fiber and F ′ connected, the
normal Euler number e(νF ′) is minus the number of points of F ′ mapping
into the critical set of π, and [i(F ′)]2 is minus the number of critical points
on i(F ′) at which i is injective (cf. Exercise 6.1.1(a)). (Note that if we write
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the homology class [Ft] of any fiber as the sum of such classes [i(F ′)], we ob-
tain [Ft]

2 = 0 as required.) In the most important case, a genus-g Lefschetz
fibration with a single critical point on Ft, Ft will be either an immersed
surface of genus g − 1 and square 0 (a fishtail if g = 1) or a transversely
intersecting pair of embedded surfaces with square −1 and genera adding to
g, depending on whether the vanishing cycle separates a generic fiber. In a
Lefschetz pencil, the corresponding numbers e(νF ′) and [i(F ′)]2 for any F ′

as above are obtained from the above formulas by subtracting the number
of points in i(F ′) ∩B.

For a simple example of a separating vanishing cycle, consider the effect
of blowing up a regular point P in a Lefschetz fibration π : X → Σ. Com-
posing π with the blow-down map X ′ → X, we obtain a map π′ : X ′ → Σ
which is a Lefschetz fibration. (See the first exercise below.) The fibers of π′

are the same as those of π, except that the fiber of π′ over π(P ) is the total
transform of the corresponding fiber of π — in particular, it contains the
exceptional sphere EP . Conversely, if any Lefschetz fibration π′ : X ′ → Σ
has a fiber containing an exceptional sphere E, then we can blow down
E to obtain a Lefschetz fibration π : X → Σ. To see this, observe that
by the previous paragraph, E contains a unique critical point of π′ (since
[E]2 = −1). Using the given local coordinates at the critical point, it is
routine to construct a fiber-preserving diffeomorphism from a neighborhood
of E to a neighborhood of our previous model EP ; the map π is now eas-
ily constructed. We call a Lefschetz fibration relatively minimal if no fiber
contains an exceptional sphere. (Some authors include this in the definition
of Lefschetz fibrations.) Clearly, any Lefschetz fibration can be blown down
to obtain a relatively minimal one. In a relatively minimal Lefschetz fibra-
tion, no vanishing cycle bounds a disk in a generic fiber F , so any vanishing
cycle in F is nontrivial in π1(F ). In particular, there can be no separating
vanishing cycle if the genus is ≤ 1. We obtain:

Proposition 8.1.7. A relatively minimal Lefschetz fibration of genus 0 is
an S2-bundle.

In the genus-1 case, after we perturb π to be injective on the critical points,
all singular fibers must be fishtails. We will see (Theorem 8.3.12) that the
only such fibrations without boundary are torus bundles and the generic
elliptic fibrations E(n, g) of Examples 8.1.5. The classification problem
rapidly becomes more difficult as the genus of the fiber increases.

Exercises 8.1.8. (a) Consider the projection π : C2 → C by π(z1, z2) = z1.
Using local coordinates, blow up 0 ∈ C2 and show that π pulls back to a
map π′ with a unique critical point, which satisfies the Lefschetz condition.
Conclude that any blow-up (at regular points) of a Lefschetz fibration is
Lefschetz.
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(b)∗ Consider a generic pencil of quadric curves on CP2, Exercise 3.1.3.
This is a Lefschetz pencil (Examples 8.1.5). Show that the corresponding
Lefschetz fibration is obtained by blowing up either of the two S2-bundles
over S2.

(c) Consider the elliptic Lefschetz fibration on E(1) obtained by blowing
up a generic pencil of cubic curves (Section 3.1). Show that this Lefschetz
fibration is relatively minimal, although E(1) is not a minimal complex

surface. Compare with the degree-1 case, CP2#CP2 ≈ S2 ×̃S2.

(d)∗ How many singular curves are there in a generic degree-d pencil on
CP2? (Hint : Blow up to get a Lefschetz fibration, then compute the Euler
characteristic.)

(e)∗ Let π : X → S2 be the Lefschetz fibration obtained as an n-fold fiber

sum of copies of the Lefschetz fibration of degree-d curves on CP2#d2CP2.
Check thatX is simply connected, and compute χ(X) and σ(X). (Signature
adds under fiber sum by Remark 9.1.7.) What isX for d = 1, 2, 3? (Compare
with Exercises 7.3.27.)

Now we return to the issue of connectedness of the fiber of a Lefschetz
pencil or fibration. We have the following analog of the long exact homotopy
sequence of a (homotopy-theoretic) fibration.

Proposition 8.1.9. For any fiber F of a Lefschetz fibration π : X → Σ, the
maps F ↪→ X → Σ induce an exact sequence π1(F ) → π1(X) → π1(Σ) →
π0(F )→ 0 .

(The first exercise below gives a proof.) It follows that if Σ is simply con-
nected then each fiber of π is connected and carries π1(X). In particular,
each fiber of a Lefschetz pencil is connected and carries π1(X), since we
can blow up to obtain a Lefschetz fibration over S2. (This generalizes the
Lefschetz Hyperplane Theorem 1.4.22 from the projective case induced by a
pencil of hyperplanes.) If a fiber of a Lefschetz fibration is connected, then
π induces a surjection on π1 and H1. In this case, the condition b1(X) = 0
implies that Σ is S2 or D2 (depending on whether ∂X = ∅). If a fiber is not
connected, then π1(X) maps to a finite-index subgroup of π1(Σ). Passing to

the corresponding finite cover Σ̃ of Σ, we obtain a new Lefschetz fibration
π̃ : X → Σ̃ that is surjective in π1, so π̃ has connected fibers. This construc-
tion allows us to restrict our attention to Lefschetz fibrations whose fibers
are connected, without losing generality.

Exercises 8.1.10. (a)∗ Define the last map in the above sequence, and
prove that the sequence is exact. (Hint : First show that a neighborhood
of any critical value t ∈ Σ admits a section intersecting any preassigned
component of Ft. Now define the map by lifting a path of regular values
and verify that it is well-defined.)
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(b)∗ Let π : X4 → Σ2 be a smooth map between closed, connected, oriented
manifolds. Suppose that π has only finitely many critical values, and that
the fiber over each critical value t is homeomorphic to a union of closed
connected surfaces Σ1, . . . ,Σn (depending on t), with finitely many finite
subsets identified to points. Suppose also that away from finitely many
points of X, π is locally modeled by π(z, w) = zm (m ∈ N). The integer
m is constant over each Σi, and is called the multiplicity mi of Σi (cf. Sec-
tion 7.1). Assume that each critical value t is the endpoint of some smoothly
embedded arc A ⊂ Σ for which π−1(A) is the mapping cylinder of a map
f : Ft0 → Ft sending each component of the regular fiber Ft0 onto a con-
nected component of Ft. Note that f∗[Ft0 ] =

∑
imi[Σi] ∈ H2(Ft;Z). Define

the multiplicity of Ft to be gcd(m1, . . . ,mn), and define the multiplicity
of each connected component of Ft similarly (letting i range over surfaces
Σi in the given component). If each connected component of each singular
fiber has multiplicity 1, prove that Proposition 8.1.9 still applies. Deduce
Lemma 7.4.15 as a corollary.

Lefschetz fibrations can be described combinatorially by means of their
monodromy . For a smooth fiber bundle π : E → B with fibers diffeo-
morphic to a manifold F , we let M(F ) denote the set of isotopy classes
of self-diffeomorphisms of F , and define the monodromy representation
Ψ: π1(B)→M(F ) of π relative to a fixed identification ϕ of F with the fiber
over the base point of B: For each loop γ : I → B the bundle πγ : γ

∗(E)→ I
is canonically trivial, inducing a diffeomorphism π−1

γ (0) → π−1
γ (1) (up to

isotopy). Using ϕ to identify π−1
γ (0) and π−1

γ (1) with F , we obtain the el-
ement Ψ(γ) ∈ M(F ). It is routine to verify that Ψ is well-defined, and is
an antihomomorphism relative to composition of functions onM(F ) (since
loops concatenate from left to right, whereas diffeomorphisms act on the
left). We can make Ψ into a homomorphism by defining a new group struc-
ture onM(F ), ψ1 ∗ ψ2 = ψ2 ◦ ψ1, so that diffeomorphisms act on the right.
The new group structure is isomorphic to the old one via the inversion map
ψ �→ ψ−1, and it can be considered an attempt to rectify the centuries of con-
fusion caused by the first mathematician to write “f(x)” instead of “(x)f”.
Changing the identification ϕ changes Ψ by an inner automorphism, i.e., con-
jugation by an element ofM(F ). For a relatively minimal, genus-g Lefschetz
fibration π : X → Σ, we define the monodromy to be that of π|Σ∗, where
Σ∗ ⊂ Σ is the set of regular values. (The definition clearly extends to arbi-
trary singular fibrations.) We restrict to the subgroup Mg ⊂ M(F ) com-
ing from orientation-preserving diffeomorphisms. This subgroup is called
the mapping class group of the genus-g surface F . The group is finitely
presented; for an explicit (complicated) presentation (with diffeomorphisms
acting on the right) see [Wj]. For π : X → Σ as above with π injective on
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its critical points, the monodromy representation Ψ: π1(Σ
∗) → Mg deter-

mines π up to isomorphism, except in the cases of sphere and torus bundles
(Σ∗ = Σ) over closed surfaces. (An isomorphism of Lefschetz fibrations
π : X → Σ and π′ : X ′ → Σ′ is a pair of diffeomorphisms X → X ′ and
Σ → Σ′ commuting with π and π′.) In fact, two such Lefschetz fibrations
are isomorphic if and only if their monodromy representations agree (up to
inner automorphisms of Mg and isomorphisms π1(Σ

∗) → π1(Σ
′∗) induced

by smooth maps Σ → Σ′) [Mt4]. (The corresponding statement for arbi-
trary relatively minimal locally holomorphic fibrations follows from [MtM],
provided that we exclude multiple fibers when g = 1.) As we will see in the
next section, one can also characterize which monodromy representations
can be realized by Lefschetz fibrations. Thus, the classification of Lefschetz
fibrations reduces to a problem in finitely presented group theory.

8.2. The topology of Lefschetz fibrations

We have seen that Lefschetz critical points can be thought of as complex
analogs of Morse critical points. We now carry the analogy further, using
Lefschetz fibrations and pencils to obtain handle decompositions of 4-mani-
folds. For any Lefschetz fibration π : X → D2, the function ||π||2 : X → [0, 1]
will be a Morse function away from 0, with the same critical points as π,
allowing us to build X as a handlebody from a neighborhood of the fiber F0.
We will analyze the handle structure carefully, construct the corresponding
Kirby diagrams, and finally consider more general base spaces and Lefschetz
pencils. As we have seen, we lose no generality by assuming that each fiber
of a Lefschetz fibration is connected and has at most one singularity.

First, we show that a Lefschetz critical point corresponds to a 2-handle,
and determine its attaching map. Near the critical point, we can write
π(z1, z2) = z21 + z22 , so a regular fiber is given by z21 + z22 = t, and after
multiplying π by a unit complex number we can assume t > 0. If we
intersect the fiber with R2 ⊂ C2, we obtain the circle x21 + x22 = t in R2

(where zj = xj + iyj). This circle bounds a disk Dt ⊂ R2, which was called
a thimble by Lefschetz. As t approaches 0, the thimble Dt shrinks to a point
in R2. Thus, ∂Dt = Ft ∩ R2 is the vanishing cycle of the critical point,
and we explicitly see the singular fiber F0 being created from Ft by the
collapse of Dt. A regular neighborhood νF0 of the singular fiber is obtained
from the neighborhood νFt by adding a regular neighborhood of Dt. This
latter neighborhood is clearly a 2-handle h attached to νFt. (In fact, a
corresponding Morse function can be given locally by f = −Re π, or f(z) =
y21+y22−x21−x22.) If ∂νFt is chosen to contain a fiber Fs, 0 < s < t, then the
core of h is Ds and the attaching circle is the vanishing cycle ∂Ds ⊂ Fs. We
describe the framing of h by comparing it with the framing on ∂Ds ⊂ ∂νFt
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determined by Fs. At a point (
√
s cos θ,

√
s sin θ) ∈ ∂Ds ⊂ R2, the vector

(− sin θ, cos θ) is tangent to ∂Ds. Since ∂Ds lies in Fs, which is holomorphic
in the given local coordinates, the vector field v(θ) = (−i sin θ, i cos θ) on
∂Ds is also tangent to Fs. Since v : ∂Ds → iR2 − {0} has degree 1, it
has one right twist relative to the normal framing of D in ∂h ⊂ R2 × iR2.
Equivalently, the product framing on h has one left twist relative to v. Now
∂h agrees with ∂νFt near ∂Ds, but the orientations require care. The above
computation was performed on ∂h, with h oriented by R2 × iR2. This is
oriented oppositely from the usual orientation of C2 (since the standard
bases of these vector spaces differ by a transposition). However, we must
reverse orientation again to get from ∂h to ∂νF , so the above answer applies
to ∂νF with its usual orientation. That is, the 2-handle h is attached to
∂Ds ⊂ ∂νF with framing −1 relative to the framing induced by the surface
Fs containing ∂Ds. (Such orientation computations are notoriously tricky.
A check of the sign is included in Exercise 8.2.2 below.)

Exercises 8.2.1. (a) Using the above description, draw Fs ∩ ∂h in ∂h ≈
S3, with orientation induced by the usual one on h ⊂ X. You should get
Figure 2.1. Note that the boundary is a positive Hopf link, as required.

(b) For smooth 2n-manifolds, a Lefschetz critical point is locally modeled
by π(z1, . . . , zn) =

∑n
i=1 z

2
i . Prove that a singular fiber is locally (up to

orientation) the cone on the unit tangent bundle of Sn−1, or equivalently,
TSn−1 modulo the 0-section. (Hint : Write out the real and imaginary parts
of π.) Verify that the critical point corresponds to an n-handle attached to
∂νFt along an (n−1)-sphere S in Fs whose normal bundle in Fs is isomorphic
(up to orientation) to TSn−1. Why is the normal bundle of S in ∂νFt trivial
as required?

0

Figure 8.2. D2 × F , F a genus-3 surface.

To draw Kirby diagrams of Lefschetz fibrations, we begin with a neigh-
borhood of a single fiber F , which we assume is connected. If π : X → D2

is a Lefschetz fibration without critical points, then it is the trivial bun-
dle X = D2 × F → D2. It is convenient to draw X as in Figure 8.2 (the
genus 3 case), which is obtained by connected summing the circles in copies
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1

0

Figure 8.3. Two vanishing cycles in D2 × F .

of Figure 4.36. The advantage of this type of diagram is that it is easy to
see the structure of ∂X as S1 × F : The obvious spanning disk of the closed
curve drawn in ∂D4 extends over the 1- and 2-handles to form {pt.} × F ,
and the obvious fibration of the complement of the closed curve by span-
ning disks gives the entire S1-family of copies of F (cf. Exercise 4.6.6(a)).
The spanning disk inherits an orientation from R2 in the diagram, which
orients the fibers F . The corresponding orientation of S1 is then given by
a right-handed meridian. To draw a neighborhood of a fiber with a unique
critical point, it now suffices to locate the vanishing cycle in {pt.} × F in
the previous diagram. This will be some circle drawn without overcrossings
(but running over the 1-handles). Two such circles are shown in Figure 8.3.
The required manifold is obtained by attaching a 2-handle to this vanishing
cycle with framing −1 relative to the blackboard framing (the latter being
induced by {pt.} × F ). Note that one framed attaching circle in Figure 8.3
cannot be assigned a framing coefficient unless we draw the relevant refer-
ence arcs for the 1-handles, cf. Section 5.4. In particular, the crossing of the
reference arcs is crucial.

Exercise 8.2.2. Use Kirby moves to show that a neighborhood of a sin-
gular fiber with a unique critical point is a plumbing of the form described
in Section 8.1. (Hint : Up to diffeomorphism of F , there is only one non-
separating curve, and a separating curve is determined by the genera of the
surfaces it splits off.) Check that the sign of intersection is positive, which
verifies the sign we computed for the framing of the 2-handle.

We can now determine the monodromy around a critical value. For any
bundle with fiber F over an oriented circle, the monodromy π1(S

1)→M(F )
(for a fixed identification of F with the fiber over 1 ∈ S1) is determined by a
single diffeomorphism ψ representing the image of the canonical generator of
π1(S

1) inM(F ). The bundle is then canonically isomorphic to the fibration
I×F/((1, x) ∼ (0, ψ(x))→ I/∂I ≈ S1. Given a Lefschetz fibration π : X →
Σ and a disk D ⊂ Σ (inheriting the orientation of Σ), we can consider
the monodromy of the bundle π|∂D provided that the oriented circle ∂D
avoids the critical values of π. If D contains no critical values then π|D
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is trivial, as is the monodromy (ψ is isotopic to idF ). If D contains a
unique critical value, however, the monodromy is nontrivial (provided π|D is
relatively minimal). To compute this monodromy, we return to our pictures
of regular neighborhoods of a regular and singular fiber. The fibrations on
the boundaries of these two neighborhoods correspond in the obvious way
(as drawn) away from the vanishing cycle. (For example, the required fiber-
preserving diffeomorphism can be constructed explicitly via a flow obtained
by pulling back a suitable vector field on Σ.) There is essentially a unique
way to extend the fibration across the surgery at the vanishing cycle, and it
is not hard to verify that the resulting monodromy ψ is a right-handed Dehn
twist on the vanishing cycle C. (See the following definition and exercise.)

Definition 8.2.3. A right-handed Dehn twist ψ : F → F on a circle C in
an oriented surface F is a diffeomorphism obtained by cutting F along C,
twisting 360◦ to the right and regluing (Figure 8.4, where F is oriented as
the boundary of the solid cylinder). More formally, we identify νC ⊂ F
with S1× I, set ψ(θ, t) = (θ+2πt, t) on νC and smoothly glue into idF−νC .

C C

Figure 8.4. Right-handed Dehn twist.

Exercise 8.2.4. ∗ Prove that Figure 8.5 represents the torus bundle over
S1 with monodromy ψn, where ψ is a right-handed Dehn twist. (Hint : The
− 1

n -surgery is equivalent to cutting S1 × T 2 along a fiber and regluing by
ψn. Don’t forget to check the orientation.) Now verify that the monodromy
around any critical value of a Lefschetz fibration is a right-handed Dehn
twist on the vanishing cycle (or cycles in the case of several critical points).

Remark 8.2.5. Note that the right-handed Dehn twist ψ along C is de-
termined up to isotopy by C and is independent of the orientation on
C. The effect of ψ on H1(F ) is given by the Picard-Lefschetz formula
ψ∗(α) = α − (α · C)[C] = α + (C · α)[C]. The given sign may explain
why some mathematicians refer to ψ as a “negative” Dehn twist. Since the
authors prefer to consider right-handed Dehn twists to be “positive”, we will
avoid the issue by retaining the terminology “right-handed”. The notation
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_
n

0

1

Figure 8.5. T 2-bundle over S1.

D(C) for the isotopy class of the Dehn twist ψ on C seems to be becoming
standard.

We are now ready to analyze arbitrary Lefschetz fibrations over a disk.
Given such a map π : X → D with n critical points lying on distinct fibers
Fi = π−1(ti), i = 1, . . . , n, choose a regular fiber F0 = π−1(t0) and let
A1, . . . , An ⊂ D be embedded arcs, beginning at t0 and otherwise disjoint,
connecting t0 to the respective critical values t1, . . . , tn. The arcs Ai are
cyclically ordered by traveling counterclockwise around t0; we choose the
indexing to be compatible with this ordering. Each subset π−1(Ai) ⊂ X
determines a map gluing νFi to νF0 along a pair of regular fibers, and
the resulting union fills all of X except for a collar of ∂X. Thus, we can
describe X as D2×F0 with n 2-handles h1, . . . , hn attached. The attaching
circles lie in consecutive fibers in ∂D2×F0, and hi is attached with framing
−1 to the vanishing cycle for Fi (where we have used π−1(Ai) to identify
F0 with the regular fiber carrying the vanishing cycle). The corresponding
Kirby diagram is obtained from the picture of D2 × F0 (cf. Figure 8.2)
by adding n 2-handles with attaching circles in parallel levels (with index
increasing toward the reader) and each framed attaching circle obtained from
a vanishing cycle as in the case of a single critical point. (See Figure 8.6
for a genus-1 example with n = 4.) Working backwards, we see that any
such diagram determines a Lefschetz fibration π : X → D2 and a collection
of arcs {Ai} as above. We can express this in terms of the monodromy
representation Ψ: π1(D−{t1, . . . , tn})→Mg for a fixed identification ϕ of
F0 with the standard genus-g surface F : We obtain an ordered basis for the
domain of Ψ by connecting a counterclockwise circle around each ti to the
base point t0 using Ai. Since a Dehn twist determines its generating circle
up to isotopy (as can be seen via hyperbolic geometry, for example) the
data π : X → D2 and {Ai} (for fixed ϕ) are now equivalent to an ordered
collection (ψ1, . . . , ψn) of right-handed Dehn twists of F (up to isotopy),
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0

Figure 8.6. Genus-1 Lefschetz fibration over D2.

where ψi is the monodromy around ti. The monodromy around ∂D2 is the
product ψ1 ∗ · · · ∗ψn = ψn ◦ · · · ◦ψ1 (in the notation introduced at the end of
the previous section). Note that a cyclic permutation of the indices 1, . . . , n
has the same effect on the monodromy around ∂D2 as a certain change of ϕ,
since it corresponds to changing how the circle ∂D is attached to the base
point t0.

Exercise 8.2.6. ∗ Check the above formula for the monodromy around ∂D2

by visualizing the bundle over ∂D2 in, e.g., Figure 8.6. What does a cyclic
permutation look like in such a diagram?

ti
t0

ti 1

ti 1
ti

ti 1

ti 1

'

'

'

Figure 8.7. Elementary transformation.

A Lefschetz fibration π : X → D2 does not completely determine the
ordered collection (ψ1, . . . , ψn). Aside from cyclic permutations and being
able to conjugate all elements ψi by a fixed (arbitrary) element of Mg (by
changing ϕ), different choices of {Ai} will give different monodromies. Given
two choices of {Ai}, it is possible to get between them (up to changes of
ϕ) by a sequence of moves as in Figure 8.7 and their inverses. (See Exer-
cise 8.2.7(c).) These moves, which are called elementary transformations,
can be thought of as the Lefschetz analog of handle slides in Morse theory.
Each move interchanges the two corresponding vanishing cycles, and also
acts on one of the two cycles by the monodromy of the other. Equivalently,
the pair of Dehn twists (ψi, ψi+1) is replaced by (ψi+1, ψ

−1
i+1 ∗ ψi ∗ ψi+1).
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(Note that the product ψ1 ∗ · · · ∗ψn is preserved.) Thus, two relatively mini-
mal Lefschetz fibrations over D2 (with π injective on critical points) will
be isomorphic if and only if it is possible to get between the corresponding
ordered collections of monodromies by a sequence of elementary transfor-
mations (and their inverses), together with an inner automorphism of Mg

(conjugating all ψi by a fixed element). In particular, we have reduced the
classification of Lefschetz fibrations over D2 to a group-theoretic problem;
cf. the last paragraph of Section 8.1.

Exercises 8.2.7. (a)∗ Describe elementary transformations as handle slides
in a Kirby diagram.

(b)∗ Show that any cyclic permutation of (ψ1, . . . , ψn) can be realized up
to an inner automorphism of Mg by elementary transformations. If the
monodromy around ∂D is trivial, show that cyclic permutations can be
realized exactly (without an inner automorphism).

(c)∗ Let π : X → D be a Lefschetz fibration over a disk, and let {Ai}, {A′
i}

be two collections of arcs in D as above. Show that {A′
i} can be transformed

into {Ai} by a sequence of elementary transformations. (Hint : Draw D so
that the arcs Ai are radial. Now the arcs A′

i are complicated but have the
same endpoints ti as Ai (up to permutation). There is an isotopy of this
picture that sends {A′

i} to a family of radial arcs. Use the isotopy to guide
your choice of moves.)

Example 8.2.8. The mapping class group M1 of a torus is given by
SL(2,Z) acting linearly on R2/Z2. (We take SL(2,Z) to act as usual on
the left on column vectors, although a case could be made for transposing
everything to obtain a right action on row vectors so that ∗ corresponds
to matrix multiplication.) A relatively minimal genus-1 Lefschetz fibration
over D2 with a unique critical point is a neighborhood of a fishtail fiber.
This is shown in Figure 8.8, where we have drawn D2 × T 2 so that the
vanishing cycle appears as simple as possible. The monodromy is given
by A = [ 1 1

0 1 ] ∈ SL(2,Z) with respect to the obvious basis of R2. Ro-
tating the figure 90◦ gives a different picture with monodromy given by
B =

[
1 0
−1 1

]
. A cusp fiber in an elliptic fibration has a unique singularity

with π(z1, z2) = z21 + z32 locally. (See the curve C2 of Section 2.3.) By
Exercise 8.1.2, this splits into a pair of quadratic critical points, so a neigh-
borhood of a cusp fiber is (after perturbing π) a Lefschetz fibration over
D2 with two fishtail fibers. Since the cusp fiber is simply connected, the
vanishing cycles must form a basis of π1(T

2), so we obtain Figure 8.9. The
monodromy around the cusp fiber is given by C = A ∗ B = BA =

[
1 1
−1 0

]
.

Since the singular curve z21+z32 = 0 is topologically a cone on a right-handed
trefoil knot, a neighborhood of a cusp fiber must be obtained from D4 by
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0

0

1

Figure 8.8. Fishtail fiber.

1

1

0 0

Figure 8.9. Cusp fiber.

adding a 2-handle to a right trefoil, as Figure 8.9 shows explicitly. Any singu-
lar fiber of a relatively minimal elliptic fibration can be split into a collection
of fishtail and smooth multiple fibers [Msh]. (For higher-genus holomorphic
maps, the corresponding “Morsification problem” of splitting complicated
fibers into simpler ones is still poorly understood. See e.g. [AA], [Hr2],
[Rd].) Note that since A and B generate SL(2,Z), we can now draw a
Kirby diagram for any T 2-bundle over S1. For a different method, see the
appendix of [KMe2].

Exercise 8.2.9. Check the diffeomorphisms of Figures 8.8 and 8.9 by Kirby
calculus.

We now progress to Lefschetz fibrations over a sphere. Such a fibration
canonically determines a Lefschetz fibration over a disk, by the removal of a
neighborhood of a generic fiber. Conversely, a Lefschetz fibration π : X → D
over a disk extends to one over a sphere if and only if the monodromy
around ∂D is trivial. For genus g ≥ 2, any extension over S2 is unique,
so the classification of such fibrations again reduces to group theory. (To
prove uniqueness, note that as we did for disk bundles in Section 4.1, we
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can assume any other extension differs from the given one by an element of
π1(Diff(F )), where Diff(F ) denotes the group of self-diffeomorphisms of F .
But each component of Diff(F ) is contractible for g ≥ 2 [EE].) A Kirby
diagram of the resulting closed 4-manifold can in principle be drawn by first
drawing X, then simplifying the resulting picture of ∂X so that it is clearly
visible as S1 × F , and finally pulling back the framed circle S1 × {pt.} to
the original diagram. (This framed circle is unique; cf. Remark 8.1.3(a). In
practice, it may be more practical to construct the framed circle by following
the product structure through the monodromy, as in Example 8.2.11 and
Exercise 8.2.12 below.) The closed 4-manifold is then obtained from the dia-
gram of X by adding a 2-handle, 2g 3-handles and a 4-handle. If g = 1, then
the extension is no longer unique. The resulting Lefschetz fibrations over S2

will be related to each other by multiplicity-1 logarithmic transformations
on the last fiber. We will see in Lemma 8.3.6 that if X has a cusp fiber (or
more precisely, a consecutive pair of orthogonal fishtails as in Figure 8.9)
then these Lefschetz fibrations will still be isomorphic.

Exercise 8.2.10. ∗ Express the condition that π : X → S2 splits as a fiber
sum X1#fX2 of nontrivial Lefschetz fibrations in terms of monodromy rep-
resentations.

Example 8.2.11. The matrix C of Example 8.2.8 has order 6 in SL(2,Z).
(In fact, C3 = −I.) Thus, the Lefschetz fibration over D2 with 12n criti-
cal points (n ≥ 1) and alternating monodromies given by (A,B, . . . , A,B)
(Figure 8.10) extends over S2, and the resulting fibration πn : Xn → S2 is
unique up to isomorphism. Moishezon [Msh] showed that any ordered col-
lection of conjugates of A in SL(2,Z) whose product is the identity can be
changed to (A,B, . . . , A,B) by elementary transformations. Thus, any rela-
tively minimal, genus-1 Lefschetz fibration over S2 with at least one critical
point is isomorphic to some πn. In particular, a generic elliptic fibration
π : E(n)→ S2 is isomorphic to πn : Xn → S2. That is, we have constructed
the elliptic surface E(n) with a generic elliptic fibration (or with 6n cusp
fibers, cf. Corollary 7.3.23), without essential use of algebraic geometry.

To draw a Kirby diagram of E(n), we merely need to locate the last
framed attaching circle in Figure 8.10. An easy way to do this is to recall
that E(n) has a section with square −n. This section (after isotopy) must
restrict toD2×{0} ⊂ D2×T 2, so in the initial diagram of D2×T 2 it appears
as a cocore of the 2-handle. Each vanishing cycle in T 2 can be isotoped into
its standard position without crossing 0 ∈ T 2. (Start with any ambient
isotopy of T 2 moving the cycle as desired, then modify it by translations
of R2/Z2 to keep 0 fixed.) Thus, the vanishing cycles in Figure 8.10 can
be assumed not to tangle with the section, so the latter is obtained by
attaching a 2-handle along a −n-framed meridian as in Figure 8.11 (and the
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all 1

n  1

0

all 1

6n

6n

0

Figure 8.10. Elliptic surface E(n) with a regular fiber deleted.

n
all 1

6n

6n

0

U  2  3-handles
4-handle

Figure 8.11. Elliptic surface E(n).

obvious sphere is the section). Since the section intersects the last D2 × T 2

in D2×{0}, it forms the core of the last 2-handle of E(n), and we obtain the
latter by attaching 3- and 4-handles as in Figure 8.11. (For simpler pictures
of E(n), see the next section.) For an alternate way to construct this picture
of the Lefschetz fibrationXn ≈ E(n) that avoids our discussion of E(n) (and
shows directly that πn has a section), we observe that the pictured meridian
is clearly a section of the given T 2-bundle over S1, and that any section can
be written as S1 ×{0} ⊂ S1 × T 2 for a suitable trivialization of the bundle.
Thus, we can complete Xn by adding D2 × T 2 as a 2-handle, two 3-handles
and a 4-handle, where the 2-handle is attached along this meridian. (For an
example with a more complicated attaching circle, see Figure 8.33 and the
text before Exercises 8.4.2.) It only remains to compute the framing, which
corresponds to the product framing in S1 × T 2:

Exercise 8.2.12. Let A′, B′ be Dehn twists of T 2 = R2/Z2 (supported near
their generating circles) that fix a neighborhood of 0 and are isotopic to the
linear transformations A,B ∈ SL(2,Z) of Example 8.2.8. Let C ′ = B′ ◦ A′

(isotopic to C). Show that the isotopies of A′◦B′◦A′ and B′◦A′◦B′ to linear
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transformations each fix 0 but twist its tangent space 90◦ clockwise. Thus,
(C ′)6n twists the tangent space through n full left turns when it isotopes
to the identity. Conclude that the product framing of S1 × {0} ⊂ S1 × T 2

corresponds to the−n-framing on the given meridian. This also shows that if
we consider diffeomorphisms rel boundary of a punctured torus, then (C ′)6

is not isotopic rel boundary to the identity, but rather to a right-handed
Dehn twist parallel to the boundary; cf. [Wj].

C1 C3 C5

C4C2

Figure 8.12. A family of vanishing cycles.

Since we now see that any relatively minimal, genus-1 Lefschetz fibra-
tion over S2 with a critical point is a fiber sum of copies of E(1) (via the
identity map on a regular fiber), it is natural to ask the corresponding ques-
tion about higher genus Lefschetz fibrations. In the genus-2 case, there are
partial results. Chakiris [Cha] classifies relatively minimal genus-2 holo-
morphic Lefschetz fibrations for which at most 1

19 of the vanishing cycles
separate. In the case with no separating vanishing cycles, he shows that
every such fibration is obtained as a fiber sum (via the identity on a fiber)
of three basic building blocks. If ψ1, . . . , ψ5 denote the Dehn twists on the
curves C1, . . . , C5, respectively, shown in Figure 8.12, then the monodromy
representations of these building blocks are given by

α = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ5, ψ4, ψ3, ψ2, ψ1)
2 ,

β = (ψ1, ψ2, ψ3, ψ4, ψ5)
6,

γ = (ψ1, ψ2, ψ3, ψ4)
10 ,

where the exponents denote concatenation of the n-tuples. In fact, Chakiris
shows the above hypotheses guarantee that the monodromy can be reduced
to αmβn or γn by elementary transformations (and change of the identifi-
cation ϕ : F → Ft0 in the latter case). (See also [Smi] for a simpler proof.)
All these manifolds lie on the Noether line c21 = 2χh − 6, as can be seen
from the fact that each nonseparating vanishing cycle contributes −3

5 to
the signature [Mt4] (whereas each separating vanishing cycle contributes
−1

5 ; see also [En] for a higher-genus generalization). In particular, Theo-
rem 7.4.20 lists the possible diffeomorphism types of these complex surfaces
(except in a few nonminimal cases.) For example, the diffeomorphism types
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corresponding to β, αn and γn, respectively, are E(2)#2CP2 [Mt4] and the
Horikawa surfaces H(n) and H ′(n) defined before Corollary 7.3.28 [Fu2].
(See also Exercise 8.4.2(e) and [Smi] for identifying these manifolds as dou-
ble branched covers of rational surfaces.) In particular, Fuller observes that
α2 and γ represent homeomorphic but nondiffeomorphic manifolds (cf. the
text before Exercises 7.3.16). In the genus-1 case, the number of critical
points of a relatively minimal Lefschetz fibration over S2 is divisible by 12.
In the genus-2 case, the number is divisible by 10, provided that we count
separating vanishing cycles with multiplicity 2. These statements follow
from the fact that the abelianization of the mapping class group is Z12 and
Z10, respectively, in these cases, generated by a Dehn twist on a nonseparat-
ing curve (e.g., [Wj]). (Note that any two such Dehn twists are conjugate,
and in the genus-2 case a separating Dehn twist is a product of 12 non-
separating ones by the previous exercise.) In the higher genus cases, the
corresponding abelianizations are trivial, providing no corresponding infor-
mation. Not much is known about Lefschetz fibrations of genus ≥ 3. See
Section 8.4 and [Smi] for a few examples, and [Oz] for an algorithm for
computing signatures.

To complete our discussion, we consider how to draw Lefschetz pencils
as well as Lefschetz fibrations over arbitrary bases Σ. For the former, we
simply observe that one can construct the corresponding Lefschetz fibration
over S2 and then blow down the resulting sections. In practice, it may
be difficult to locate these sections, however — consider the 9 sections of
E(1) and Figure 8.11. For Lefschetz fibrations over general surfaces Σ, the
extra complication arises from the 1-handles of Σ. We must determine the
monodromy around these 1-handles; then we add a 1-handle, 2g 2-handles
and a 3-handle for each (where g is the genus of the fiber); cf. Example 4.6.8.
The classification of such Lefschetz fibrations can still be expressed in terms
of the monodromy representation as in Section 8.1. In the genus-1 case, a
complete list of relatively minimal Lefschetz fibrations over a closed surface
Σ of genus g is given by E(n, g) = E(n)#fΣ × T 2 (n ∈ N) together with
torus bundles over Σ [Mt3], cf. Theorem 8.3.12.

8.3. The topology of elliptic surfaces

In the last section, we saw that the manifolds E(n) and E(n) − int νF (F
a regular fiber) are given by Figures 8.11 and 8.10, respectively. In this
section, we simplify the pictures and use them to study the topology of the
elliptic surfaces E(n). We also return to logarithmic transformations and
the classification of elliptic surfaces. Much of the theory in this section is
taken from [HKK], [G9] and other sources; some (notably Theorem 8.3.2)
appears in this volume for the first time.
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6n
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6n 1
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1

1

all 1

Figure 8.13. Milnor fiber Mc(2, 3, 6n) inside E(n).

We begin by examining the relationship between elliptic surfaces and
Milnor fibers. We first encountered this relationship in Section 7.3, but
now we gain additional insight by an independent approach using Kirby
diagrams. Recall that the sphere S in Figure 8.11 given by the −n-framed
meridian is a section of E(n). Clearly, its intersection with E(n)−int νF is a
cocore of the 0-framed 2-handle in Figure 8.10. Thus, E(n)− int (νF ∪ νS)
is obtained by removing the 0-framed 2-handle in Figure 8.10 to ob-
tain Figure 8.13. Cancelling the 1-handles as indicated, we see that
E(n) − int (νF ∪ νS) is diffeomorphic to the Milnor fiber Mc(2, 3, 6n) (cf.
Figure 6.45 and Corollary 7.3.23). Similar reasoning shows that for r ∈ N,
Mc(2, 3, r) is obtained by removing a section from the genus-1 Lefschetz
fibration over D2 with 2r singular fibers and monodromies (A,B, . . . , A,B)
as in Examples 8.2.8 and 8.2.11. (Recall that each pair (A,B) can be
interpreted as a cusp fiber; also cf. the text following Exercise 7.3.17.)
By suitably cutting the base S2 into two disks, we can now decompose
E(n)−int νS as Mc(2, 3, r)∪Mc(2, 3, 6n−r) for any r ∈ {1, 2, 3, . . . , 6n−1}.
Similarly, E(n) ≈ Mc(2, 3, 6n − 1) ∪∂ N(n), where the nucleus N(n) is νS
union a regular neighborhood of a cusp fiber (Figure 8.14), so we have recov-
ered Corollary 7.3.23 (at least, ignoring complex structures). In particular,
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Figure 8.14. Nucleus N(n).
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Figure 8.15. Elliptic surface E(n).

E(n) admits a handle decomposition without 1- or 3-handles (since both
Mc(2, 3, 6n−1) and N(n) do). For an explicit such picture, remove a regular
neighborhood of a cusp fiber from E(n) to obtain a Lefschetz fibration over
D2 with monodromy (A,B)6n−1 (Figure 8.10 with 6n replaced by 6n − 1).
Filling the cusp fiber back in attaches a 2-handle and 4-handle, and the
core of the 2-handle (a cocore of either 0-framed 2-handle in Figure 8.9)
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completes the section of E(n), resulting in Figure 8.15 (where (c) is adapted
from [Fu3]). In short, two −1-framed 2-handles cancel the 3-handles in
Figure 8.11, and two others cancel the 1-handles.

Exercise 8.3.1. Prove directly that E(1) ≈ CP2#9CP2. (Hint : First blow
down the −1-framed unknot in Figure 8.15(b), then slide the resulting +1-
framed trefoil over one −2-framed circle so that it becomes a −1-framed
unknot. Now blow this down to remove the two −1-twists.)

The following theorem gives a different Kirby diagram of E(n) that will
be useful in Section 9.3; its proof illustrates how induction can be applied
in Kirby calculus computations for families of manifolds.

Theorem 8.3.2. For any r, n ≥ 1, the manifolds Mc(2, 3, r) and E(n) are
given by Figure 8.16.

Note the embeddings Mc(2, 3, 2m) ⊂ Mc(2, 3, 2m + 1) ⊂ Mc(2, 3, 2m + 2)
of the Milnor fibers (the latter embedding visible after sliding a 2-handle
over a −1-framed meridian to reduce a linking number from 3 to 2), and
the embedding Mc(2, 3, 6n − 1) ⊂ E(n). There is also an obvious nucleus
N(n) ⊂ E(n), consisting of D4 ∪ 1-handle together with the two leftmost
2-handles and a −1-framed handle cancelling the 1-handle.

Proof. The cases r = 1, 2 are easy (check!), so we assume r ≥ 3. Fig-
ure 8.17(a) with r = 6n−1 and a 4-handle added represents E(n). (Change
the 1-handles in Figure 8.15(a) to dotted circle notation.) If we remove
the pair of circles with framings 0 and −n, the same diagram represents
Mc(2, 3, r) (cf. Figure 8.13). We will deal with both manifolds simultane-
ously by manipulating the diagram without sliding any handles over the pair
with framings 0 and −n. We first set up for the induction by sliding handles
as follows to obtain Figure 8.17(b). Note that the innermost circle in each
ring in (a) is actually a meridian of a dotted circle; we move the meridian
on the right out of the way. In the absence of the dotted circles, we could
simplify further by blowing down. The dotted circles prevent this, but we
can still perform the corresponding 2-handle slides, leaving the −1-framed
unknots as meridians of the dotted circles. In this manner, we “blow down”
the innermost remaining circle on the right. The outermost circle in the
left ring now links the right dotted circle, and its framing has changed to 0.
We slide the next outermost circle over this, obtaining a third −1-framed
meridian to the right dotted circle. Again “blow down” the innermost circle
on the right, obtaining (b) as required.

Now we come to the induction step. This is typically the hardest part
of the argument to construct, but in our case a bit of experimenting yields
Figure 8.18 and the lemma below. Let Y (n, r, k), n ≥ 1, r ≥ 3, k ≥ 0, denote
the manifold shown in Figure 8.18, and let Y0(r, k) be the corresponding
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Figure 8.16. Milnor fiber Mc(2, 3, r) and elliptic surface E(n).

(a)

(b)

all 1

0

n
r r

all 1

1

1

r 2 r 3

0

n

2 1
1
1

Figure 8.17. E(n) and Mc(2, 3, r).
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Figure 8.18. Y (n, r, k) and Y0(r, k).
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Figure 8.19

manifold without the pair of handles with framings 0 and −n. Note that
by the above calculation, we have E(n) ≈ Y (n, 6n − 1, 0) ∪ 4-handle and
Mc(2, 3, r) ≈ Y0(r, 0).

Lemma 8.3.3. For n ≥ 1, r ≥ 5 and k ≥ 0 we have the diffeomorphisms
Y (n, r, k) ≈ Y (n, r − 2, k + 1) and Y0(r, k) ≈ Y0(r − 2, k + 1).

Proof. Draw Figure 8.18 on a blackboard. Slide the long 1-framed circle
over the outermost −1-framed circle in the left ring. It becomes the 0-framed
circle in (a) of Figure 8.19, where the −1-framed circles are the outermost
circle of the left ring (of r−2 2-handles) and the innermost circle of the right
ring in the previous picture. “Blow down” the latter circle (the small −1 of
Figure 8.19(a)) to change the remaining −1 to 0, then slide the outermost
−1 in the left ring over this new 0-framed curve to obtain Figure 8.19(b).
“Blow down” this −1-framed circle and the new innermost circle of the right
ring; the result is Y (n, r − 2, k + 1) exhibited as Figure 8.18.

To complete the proof of Theorem 8.3.2, use the lemma to infer that

Mc(2, 3, 2m+ 1) ≈ Y0(2m+ 1, 0) ≈ Y0(3,m− 1) and

E(n) ≈ Y (n, 3, 3n− 2) ∪ 4-handle,

Figure 8.20 with m = 3n − 1 in the latter case and two 2-handles deleted
in the former. Cancel the left 1-handle with its −1-framed meridian, and
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Figure 8.20. Y (n, 3,m− 1) and Y0(3,m− 1).

8
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1
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Figure 8.21. E8-plumbing (negative).

isotope to obtain Figure 8.16 as required. The remaining case, Mc(2, 3, 2m),
is handled by the next exercise.

Exercises 8.3.4. (a)∗ Prove that Mc(2, 3, 2m), m ≥ 2, is given by Fig-
ure 8.16.

(b)∗ Prove that the negative E8-plumbing is given by Figure 8.21. (Hint :
Exercise 5.1.12(a).)

(c)∗ Prove that Mc(2, 3, 5) is diffeomorphic to the (negative) E8-plumbing.
(Hint : Figures 8.16 (r = 5) and 8.21 differ by a single handle slide.) A
different Kirby calculus proof will appear in [KMe3].

(d) Prove that E(n)#CP2 is diffeomorphic to 2nCP2#(10n−1)CP2. (Hint :
Starting with Figure 8.16, blow up a +1-framed meridian to one of the −1-
framed meridians, then cancel the resulting 0 against the 1-handle; the net
result is that the dotted circle becomes a +1-framed 2-handle and one −1-
framed meridian is gone. Blow down the remaining −1’s and eliminate
the −n-framed curve and the 0 it links (Proposition 5.1.4), obtaining Fig-
ure 8.22. Use the 0-framed circle to eliminate the adjacent 1, then blow
down the next 1 and obtain Figure 8.22 again with n reduced by 1. Now
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U  4-handle9n 2
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32 3 3 3
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n

Figure 8.22. Blowing down E(n)#CP2.

by induction assume n = 1 and finish the computation. One can also start
from Figure 8.15(b) by blowing up to reverse the crossing of the bands of the
punctured torus Seifert surface and inductively blowing down the resulting
−1’s — cf. the proof that E(n)0 ≈ (2n− 1)CP2#(10n− 1)CP2 in [G9].)

Next we examine logarithmic transformations in more detail (cf. also
Sections 3.3 and 8.5). In the fullest generality, a logarithmic transformation
consists of locating a torus T embedded in a 4-manifold X with trivial nor-
mal bundle νT ≈ T ×D2, removing int νT from X and gluing in T 2 ×D2

by some diffeomorphism ϕ : T 2×S1 → ∂νT . (Compare with Dehn surgeries
on 3-manifolds, Section 5.3.) Since the last gluing is the same as attach-
ing a 2-handle, two 3-handles and a 4-handle, the resulting diffeomorphism
type is determined by the framed attaching circle ϕ({pt.} × S1) of the 2-
handle. The self-diffeomorphisms of T 2×S1 = R3/Z3 are given up to isotopy
by GL(3;Z). Since any element of GL(3,Z) that preserves {0} × S1 also
preserves its normal framing as determined by the product structure, it fol-
lows that the circle ϕ({pt.} × S1) is canonically framed, and so this circle
determines the diffeomorphism type resulting from the logarithmic trans-
formation. The circle ϕ({pt.} × S1) is in turn determined by its homology
class α ∈ H1(∂νT ;Z) ∼= Z⊕Z⊕Z, which can be any primitive element. To
specify α, we first fix a projection π : νT → D2 onto D2 with its standard
orientation. (If T is a generic fiber in an elliptic fibration, we take π to be the
given projection.) We now have a fixed diffeomorphism νT ≈ T ×D2, and
hence, an identification H1(∂νT ;Z) ∼= H1(T ;Z)⊕Z, with the last summand
generated by a (positively oriented) meridian of T . Now α is specified by an
element α′ of H1(T ;Z) and an integer p (depending on π in general) called
the multiplicity of the logarithmic transformation. We arrange p ≥ 0 by re-
versing the sign of α if necessary. The element α′ can be written as qα0 with
α0 primitive in H1(T ;Z) and q ≥ 0 relatively prime to p; α0 and q are called
the direction and auxiliary multiplicity of the logarithmic transformation.
To summarize, for fixed T and π, a logarithmic transformation is specified by
a direction α0 ∈ H1(T ;Z) and a pair of relatively prime nonnegative integers
p, q. In general, all of these data affect the resulting diffeomorphism type,
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but we will now show that for an elliptic fibration with a cusp fiber, only the
multiplicity p is significant (proving Theorem 3.3.3). More generally, if X
is any 4-manifold and T ⊂ X is a torus lying in a cusp neighborhood, then
the manifold Xp1,... ,pk obtained from X by logarithmic transformations on
parallel copies of T (determined by π) only depends on (X,T ), π and the
given multiplicities p1, . . . , pk. (We say that T lies in a cusp neighborhood if
there is a cusp neighborhood N (Figure 8.9) embedded in X such that T is
a regular fiber of N and π : νT → D2 is determined by the elliptic fibration
on N . We use similar terminology for fishtail neighborhoods (Figure 8.8)
and nuclei.) Recall that by Example 8.2.8, a cusp fiber can be perturbed
into a pair of fishtail fibers with monodromies (A,B) in a suitable basis, so
it suffices to prove the following:

Theorem 8.3.5. ([G9], cf. also [Msh]) Let π : X → D2 be a genus-1
Lefschetz fibration with two singular fibers, and monodromies (A,B) as in
Example 8.2.8. Let X1 and X2 each be obtained from X by logarithmic
transformations on k regular fibers, with the same k multiplicities p1, . . . , pk
in each case. Then X1 and X2 are diffeomorphic rel ∂.

The proof depends on the following lemma of Moishezon [Msh], who
attributes the idea of the proof below to D. Mumford. (An explicit formula
for the required diffeomorphism appears in [HKK], proof of Theorem 1.27.)

Lemma 8.3.6. ([Msh]) Let T be a regular fiber of the above map π : X →
D2. Then any orientation- and fiber-preserving self-diffeomorphism ϕ of
∂νT extends to a fiber-preserving self-diffeomorphism of X − int νT rel ∂X.

Proof. The manifold X ′ = (X − int νT ) ∪ϕ νT is obtained from X by
a multiplicity-1 logarithmic transformation on T , and the Lefschetz fibra-
tion on X extends over X ′ with no new singular fibers. Clearly, it suf-
fices to find a fiber-preserving diffeomorphism X → X ′ rel ∂ sending νT
to itself by the identity map. First note that there is a fiber-preserving
self-diffeomorphism of X rel ∂ that realizes any preassigned orientation-
preserving self-diffeomorphism ψ on T : Since the monodromies A,B gener-
ate SL(2,Z), we can write ψ as a word in A±1, B±1, then lift an isotopy
of D2 obtained by moving the point π(T ) around the corresponding loop in
int D2−{critical values of π}. (The monodromy representation of X is un-
changed since the monodromy around T is trivial.) Now let α, β ∈ H1(T ;Z)
be a basis such that α + β is the direction of the given logarithmic trans-
formation, and let q ≥ 0 be the auxiliary multiplicity. We can think of
X ′ as being constructed in two steps: First, we construct a manifold X ′′

by a multiplicity-1 logarithmic transformation on T ⊂ X with direction α
and auxiliary multiplicity q, then we perform a second logarithmic trans-
formation on the same fiber T in X ′′ with the same multiplicities 1 and
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q, but direction β. Since the first of these transformations has multiplic-
ity 1, X ′′ inherits a Lefschetz fibration with T a regular fiber. Thus, by
isotoping T in X ′′ before the second transformation, we can modify T by
a self-diffeomorphism, changing the direction of the second transformation
from β to −α. Now the second transformation is the inverse of the first, so
we have exhibited the required diffeomorphism between X and X ′.

Proof of Theorem 8.3.5. By lifting suitable diffeomorphisms of D2, we can
arrange the logarithmic transformations producing X1 and X2 from X to be
on the same k fibers T1, . . . , Tk, and for these to lie in a collar C ≈ [0, 1)×∂X
of ∂X. We can assume that for both X1 and X2, the multiplicity of the
transformation on each Ti is pi. By the lemma, any self-diffeomorphism of⋃
∂νTi preserving components, orientations and fibers extends to a fiber-

preserving self-diffeomorphism of X − ⋃
int νTi rel ∂X — simply push one

Ti at a time into X − C and apply the lemma there rel ∂(X − C). Now for
each Ti, let μi be the meridian and let αi, βi ∈ H1(Ti;Z) be a basis with αi

the direction of the logarithmic transformation used to produce X1. Thus,
the attaching circle of the new 2-handle is qiαi + piμi ∈ H1(∂νTi;Z). Since
gcd(pi, qi) = 1, there are integers �i and mi with �ipi+miqi = 1. Now apply
any fiber-preserving map sending αi �→ αi+miβi, μi �→ μi+�iβi. This sends
the attaching circle to qiαi+βi+piμi. The corresponding projection qiαi+βi
in H1(Ti;Z) is primitive, so we have changed the auxiliary multiplicities
of the logarithmic transformations producing X1 to 1. After applying the
same argument to X2, we can use the lemma again to make the directions
determining X1 and X2 correspond, and the proof is complete.

Corollary 8.3.7. The elliptic surface E(n)p1,... ,pk is determined up to
diffeomorphism by n and p1, . . . , pk. The same holds for the nucleus
N(n)p1,... ,pk and for the elliptic surface E(n, g)p1,... ,pk (with base a surface
of fixed genus g) obtained by logarithmic transformations on the genus-1
Lefschetz fibration E(n, g) of Examples 8.1.5.

Corollary 8.3.8. For a regular fiber F of E(n)p1,... ,pk , any orientation- and
fiber-preserving self-diffeomorphism of ∂νF extends over the complement
E(n)p1,... ,pk − int νF (and similarly for N(n)p1,... ,pk and E(n, g)p1,... ,pk).

Exercise 8.3.9. For i = 1, 2, let πi : E(ni) → S2 be an elliptic fibration
with a regular fiber Fi with meridian μi and tubular neighborhood νFi =
π−1
i (Di). Let ϕ : ∂νF2 → ∂νF1 be an orientation-reversing diffeomorphism,

and define p, q ≥ 0 by the isomorphisms H1(∂D1;Z)/π∗ϕ∗H1(F2;Z) ∼= Zp

and H1(∂D1;Z)/π∗ϕ∗〈μ2〉 ∼= Zq. Let Z(n1, n2; p, q) denote the simply con-
nected 4-manifold (E(n1)− int νF1)∪ϕ (E(n2)− int νF2). Prove that such a
manifold is uniquely determined up to diffeomorphism by n1, n2 ∈ N and rel-
atively prime integers p, q ≥ 0, that Z(n1, n2; p, q) ≈ Z(n1, n2; p, q

′) provided
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that q′ ≡ ±qmod p (so we can assume 0 ≤ q ≤ 1
2p or p = 0, q = 1), and that

Z(n2, n1; p, q
′) ≈ Z(n1, n2; p, q) when qq′ ≡ ±1mod p. (Hint : Choose bases

for H1(∂νFi;Z) so that ϕ is conveniently given by a matrix in SL(3;Z).
Simplify using Lemma 8.3.6 and an involution of E(n2) (Figure 8.15) re-
versing the orientation of F2.) What is Z(n1, n2; 0, 1)? By Theorem 8.3.11
below, Z(n1, 1; p, q) ≈ E(n1 + 1).

Lemma 8.3.10. (cf. [G9]) Any self-diffeomorphism of ∂Mc(2, 3, 6n − 1)
extends over Mc(2, 3, 6n− 1).

Proof (sketch). The manifolds Σ(p, q, r) = ∂Mc(p, q, r) have been ex-
tensively studied. It is known that the group of self-diffeomorphisms of
Σ(2, 3, 6n − 1) up to isotopy is trivial for n = 1 and Z2 for n > 1 [BO].
The nontrivial self-diffeomorphism is the obvious involution of Figure 8.14
(essentially a 180◦ rotation) that preserves the 0- and −n-framed circles but
reverses their orientations. This involution clearly extends to E(n) (Fig-
ure 8.15), hence, to Mc(2, 3, 6n − 1). (In fact, the involution can be iden-
tified with complex conjugation if we use real equations to define E(n) or
Mc(2, 3, 6n− 1).) See [G9] for further details.

Theorem 8.3.11. (cf. [Mat], [G9], [GuM] page 46) Let F ⊂ N(n) ⊂
E(n) be a regular fiber in a nucleus. For n = 1, any orientation-preserving
self-diffeomorphism of ∂νF extends over N(n)− int νF and E(n)− int νF .
Hence, there are diffeomorphisms N(1)p ≈ N(1) and E(1)p ≈ E(1) for any
p ≥ 0. For n ≥ 2, a self-diffeomorphism of ∂νF extends over N(n)− int νF
or E(n)− int νF if and only if it preserves fibers and orientation.

N(1) N(1) int F1

1 1

0

1

1 1

<      >0 <      >0

<      >0

(a) (b)

Figure 8.23

Proof. Changing Figure 8.14 of N(1) to dotted circle notation, we obtain
(a) of Figure 8.23. Removing int νF produces (b) (in the notation of Sec-
tion 5.5). In that figure, there is an obvious Z3-action of N(1) − int νF
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(120◦ rotation) that cyclically permutes the factors of ∂νF ≈ F × S1 ≈
S1 × S1 × S1. Now recall that the orientation-preserving diffeomorphisms
of ∂νF up to isotopy are given by SL(3;Z). It is easy to verify that this
is generated by the fiber-preserving diffeomorphisms of Lemma 8.3.6 and
their conjugates under the above cyclic permutation; these generators ex-
tend over N(1) − int νF as required and fix ∂N(1), so they extend over
E(1) − int νF . The diffeomorphisms N(1)p ≈ N(1) and E(1)p ≈ E(1) are
immediate. If any self-diffeomorphism of N(n) − int νF or E(n) − int νF
(n ≥ 2) failed to preserve fibers on ∂νF (up to isotopy), then we could
reduce to the latter case by Lemma 8.3.10, so some circle in a fiber of
E(n) − int νF would be sent to a circle with nontrivial projection to ∂D2.

We would then have E(n)p ≈ E(n)0 ≈ #(2n − 1)CP2#(10n − 1)CP2 for
some p �= 0 (cf. Exercise 8.3.15), violating (1) of Theorems 2.4.6 and 2.4.7.
No orientation-reversing diffeomorphism extends, since σ(E(n)) �= 0 and
∂Nn = Σ(2, 3, 6n− 1) admits no orientation-reversing diffeomorphism.

We are now ready for the classification of elliptic surfaces. We reduce to
the case of relatively minimal elliptic surfaces by blowing down any sphere
of square −1 contained in a fiber, just as we did for Lefschetz fibrations.
There are now two cases: If every fiber of an elliptic surface X is a torus,
then χ(X) = 0 and X is obtained from a torus bundle over an orientable
surface by logarithmic transformations on fibers. If X has other singular
fibers then χ(X) > 0; this is the case we consider in detail.

Theorem 8.3.12. (Classification of minimal elliptic surfaces with χ �= 0).
Let X be a relatively minimal elliptic surface with χ(X) �= 0. Then X is
diffeomorphic to E(n, g)p1,... ,pk for exactly one choice of n, g, k, p1, . . . , pk
with n ≥ 1, g, k ≥ 0, 2 ≤ p1 ≤ · · · ≤ pk and k �= 1 if (n, g) = (1, 0). No two
of these manifolds E(n, g)p1,... ,pk become diffeomorphic after blow-ups.

Proof (sketch). Recall that E(n, g)p1,... ,pk is well-defined by Corollary 8.3.7.
To prove that any relatively minimal elliptic surface with χ �= 0 is diffeo-
morphic to some E(n, g)p1,... ,pk , perturb the projection so that all singular
fibers are fishtails and smooth multiple fibers ([Msh] Theorems 8, 8a), then
eliminate the latter by inverse logarithmic transformations. Matsumoto
[Mt3] proved that the resulting elliptic surface is diffeomorphic to some
E(n, g) by manipulating the monodromies as in Section 8.2. Clearly, we
can write the multiplicities in increasing order and cancel any that equal 1,
and replace any E(1, 0)p by E(1, 0) = E(1) (Theorem 8.3.11). To distin-
guish the remaining manifolds, note that the relations χ(E(n, g)p1,... ,pn) =
12n and σ(E(n, g)p1,... ,pk) = −8n determine n (even after blow-ups) and
b1(E(n, g)p1,... ,pk) = 2g determines g. According to Ue [U], the manifolds
E(n, g)p1,... ,pk with n fixed (n, g, k, pi as above) are distinguished by their
fundamental groups, except for those with cyclic π1. The latter case consists
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of the elliptic surfaces E(n, 0)p,q (1 ≤ p ≤ q), for which π1 ∼= Zgcd(p,q), and
these are distinguished by gauge theory, which is not significantly affected
by blowing up. (See Corollary 3.3.7, Theorem 3.3.8 and Remark 3.3.9(a).)

Remark 8.3.13. Suppose we consider all relatively minimal elliptic sur-
faces except for those with cyclic fundamental groups and those with χ = 0
for which Σ is spherical when considered as an orbifold (i.e., Σ = S2, k ≤ 3
and (when k = 3) 1

p1
+ 1

p2
+ 1

p3
> 1). Ue shows the remaining manifolds are

distinguished by χ and π1. In particular, this set of elliptic surfaces does
not realize any exotic smooth structures, in contrast to the case χ > 0, π1
cyclic.

Corollary 8.3.14. No two of the nuclei N(n)p,q, n ≥ 1, 0 ≤ p ≤ q, are
diffeomorphic (or become diffeomorphic after blowing up), except for the
cases N(1)1,q ≈ N(1)1,1 ≈ N(1)0,1 for all q.

Proof. The boundaries ∂N(n)p,q = Σ(2, 3, 6n− 1) are distinct for different
values of n, so we may assume n is fixed. If N(n)p,q ≈ N(n)p′,q′ , then by
Lemma 8.3.10 there is a diffeomorphism E(n)p,q ≈ E(n)p′,q′ , so p = p′, q = q′

unless n = p = p′ = 1 or pp′ = 0. The nuclei N(n)0,q are distinguished from
each other by their fundamental groups Zq, and from the other nuclei by the

fact that each N(n)0,q has a CP2 connected summand (Exercise 8.3.16(d)
below), whereas for p ≥ 1 (or p ≥ 2 if n = 1) N(n)p,q lies in E(n)p,q and
the latter is irreducible. A similar argument applies after blowing up, since
E(n)p,q#kCP2 does not split off #(k + 1)CP2.

Finally, we discuss the effect of logarithmic transformations on Kirby
diagrams. We give two approaches [HKK] to drawing a logarithmic trans-
formation ofX on an embedded torus T . First, we can drawX as X−int νT
with a 2-handle, two 3-handles and a 4-handle attached. If we can visualize
the T 3-structure of ∂νT in the picture, then we can apply the gluing dif-
feomorphism ϕ of the logarithmic transformation to the framed attaching
circle of the 2-handle to obtain the required manifold. For example, for F a
regular fiber of E(n), E(n)− int νF is given by Figure 8.10, and Figure 8.11
shows how to add the extra handles to obtain E(n) (Example 8.2.11). The
T 3-structure of the 3-manifold ∂νF shown in Figure 8.10 is clearly visible:
the obvious torus is a fiber, and the −n-framed circle in Figure 8.11 is a
section with the product framing (Exercise 8.2.12). To construct E(n)p, we
reglue νF so that the attaching circle of the 2-handle runs once along a fiber
and p times along the section, using the product framing of νF . The result
is Figure 8.24(a), where the spiral has p strands. To compute the framing
on the last 2-handle, first draw the picture in ∂(T 2 × D2), Figure 8.24(b),
to eliminate the effect of the −n-twist. The p = 0 case has framing 0 (the
product framing in ∂νF ). The diffeomorphism wrapping the circle p times
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(a)

np2 p

p

n

all 1

6n

6n

0

(b)

p

p

0
U  2  3-handles

4-handle

Figure 8.24. (a) Elliptic surface E(n)p and (b) framing computation.

around F adds a twist to the framing for each turn around F . (Visualize
this.) When we transport the curve back to (a), the additional −n-twist
lowers the framing by np2. Note that the 1-handles of E(n)p can be can-
celled. It is less obvious that the 3-handles can be cancelled — we return to
this question below.

Exercise 8.3.15. Prove that E(n)0 has the form X#6nCP2 for some man-
ifold X. Thus, E(n)0 is not diffeomorphic to the elliptic surface E(n)p,q
for p, q ≥ 1 unless p or q equals n = 1. For a harder exercise, prove that
E(n)0 ≈ (2n− 1)CP2#(10n− 1)CP2. (See [G9] for an answer.)

0
0

0

0

0

0

0

0

(a)

0
0

0

0

(b)

(c)

Figure 8.25. A multiplicity-0 logarithmic transformation of T 2 ×D2.

The second approach to drawing logarithmic transformations is to draw
X as νT ∪ handles and apply the gluing diffeomorphism to the handles. We
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can construct a general solution for this problem as in Remark 5.5.10(a).
First we draw νT = T 2×D2 as in Figure 8.25(a), with a 1-handlebody H of
the obvious genus-3 Heegaard splitting of ∂νT represented by three framed
arcs attached to a sphere at infinity that we hold fixed during the computa-
tion. (Verify that removing the arcs and ball at ∞ leaves behind �3S1×D2,
by expanding H to include the solid tori glued in during the surgery (cf.
slam-dunks) and unknotting the resulting handlebody in S3.) We perform a
multiplicity-0 logarithmic transformation on νT , fixing the diagram of ∂νT ,
by interchanging a dot and 0-framing as in (b). An easy isotopy of the dia-
gram returns us to the original picture of νT (c), showing how the gluing
diffeomorphism moves H in ∂νT . Next, we exhibit a multiplicity-p loga-
rithmic transformation of νT , which completes the solution provided that T
lies in a cusp neighborhood (so that the resulting diffeomorphism type does
not depend on the auxiliary multiplicity or direction we have chosen). First,
we visualize a torus fiber of ∂νT in Figure 8.25(a) as the obvious spanning
disk of the 0-framed circle, surgered to avoid two punctures by the lower
dotted circle (cf. Exercise 5.3.3(d)). Clearly, the intersection number of
any circle with this fiber is given by its linking number with the 0-framed
circle in (a), or equivalently, with the lower dotted circle in (c). Thus,
we change the multiplicity from 0 to p by applying any diffeomorphism to
T 2×D2 that wraps the meridian of the 0-framed circle in (c) p times around
the lower dotted circle. To visualize such a diffeomorphism, locate a torus
T ′ = T 2 × {pt.} ⊂ T 2 × D2 in (c) (spanning the 0-framed circle). We cut
∂νT along T ′ and reglue so that any arc passing through T ′ is wrapped p
times around the lower dotted circle. (Compare with a Dehn twist, Def-
inition 8.2.3, in the 2-dimensional case.) Applying such a diffeomorphism
(or more precisely, its inverse) to the boundary curves in Figure 8.25(c), we
obtain Figure 8.26.

0 0

0p

p

Figure 8.26. A multiplicity-p logarithmic transformation of T 2 ×D2.

Figure 8.26 allows us to draw a logarithmic transform Xp of any han-
dlebody X built on νT . For example, suppose Q is a fishtail neighborhood
of T with vanishing cycle a −1-framed meridian of the lower dotted circle
in Figure 8.25(a). For convenience, we slide the lower 1-handle of H over
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this meridian as in Figure 8.27(a); now (b) is Qp, obtained by substitut-
ing (a) into Figure 8.26. (Note that H still represents a Heegaard splitting
in ∂Qp.) For a cusp neighborhood N , we apply the above construction to
both 1-handles, obtaining Figure 8.28 after cancelling a handle pair. For a
nucleus N(n) we also add a −n-framed meridian along the remaining (mid-
dle) 1-handle of H, obtaining Figure 8.29 (where we have erased H since
any self-diffeomorphism of ∂N(n)p extends over N(n)p). The same method
can be applied to Figure 8.24(a) to construct a diagram of E(n)p,q. See
[HKK] for a detailed discussion of E(1)2,3, and [G9] for drawing logarith-
mic transformations on more than two parallel tori (or more than one torus
and ∂X �= ∅, e.g., N(n)p,q).

Exercises 8.3.16. (a)∗ Show that the logarithmic transformation in Fig-
ure 8.27 has auxiliary multiplicity 1 and direction given by the vanishing
cycle of Q (oriented as in the figure when p ≥ 0 and the meridian of T is
oriented counterclockwise as shown).

(b)∗ Verify that Q has a fiber-preserving self-diffeomorphism (preserving
fiber orientations) that reverses the orientation of the vanishing cycle. Since
reversing the direction of a logarithmic transformation is equivalent to re-
versing the sign of its multiplicity, it follows that Q−p and Qp are diffeomor-
phic. Check this directly by Kirby calculus. (Note that the diffeomorphism
does not fix ∂Qp; it is not clear whether this direction reversal can change
the diffeomorphism type of a logarithmic transform of a manifold contain-
ing Q but no cusp neighborhood. However, Remark 8.5.10(b) shows that
Q−2 ≈ Q2 rel ∂, eliminating the ambiguity when p = 2.)

(c) Draw E(n)p,q. (The picture depends on your choice of directions for the
logarithmic transformations, although the diffeomorphism type does not.)

(d)∗ Prove that the manifolds E(n)0,p1,... ,pk andN(n)0,p1,... ,pk can be written

in the forms X#6nCP2 and Y#CP2, respectively, for suitable manifolds
X,Y .

Finally, we consider Figure 8.29(b) of N(n)p in more detail. Since we
have now shown that E(n)p = N(n)p ∪∂ Mc(2, 3, 6n − 1) is a union of two
2-handlebodies (Corollary 6.3.19), we have:

Corollary 8.3.17. The elliptic surface E(n)p has a handle decomposition
without 1- or 3-handles.

An earlier (different) proof is sketched in [Ma2]. For an explicit picture
of E(n)p as 2-handlebody ∪ 4-handle, see [G9]. For any fixed n ≥ 1 and
relatively prime p, q ≥ 2, it is not known whether E(n)p,q admits a handle
decomposition without 1-handles (cf. [HKK]).

Theorem 8.3.18. ([G9]). Fix n ≥ 2 and let p vary over the nonnegative
integers; for n even fix the mod2 residue of p. Then the 2-handlebodies

                

                                                                                                               



8.3. The topology of elliptic surfaces 319

p 1
1

1

1

0
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0

(a) (b)

0
0

0p

Figure 8.27. Logarithmic transformation from a fishtail neighborhood
Q to Qp.

p 1
1

10

0p

Figure 8.28. Logarithmic transform Np of a cusp neighborhood.

n

np2 

(b)

p 1

0

p
0

(a)

p 1

p n

Figure 8.29. Nucleus N(n)p.

N(n)p shown in Figure 8.29(b) are all homeomorphic to each other, but no
two are diffeomorphic. In fact, no two become diffeomorphic under connected
sum with copies of CP2.

Proof. The manifolds in question all have the same intersection form[
0 1
1 −np2+p−1

]
(check the parity) and the same homology sphere boundary

∂N(n) = Σ(2, 3, 6n− 1). Freedman’s Classification Theorem 1.2.27 extends
without change to compact manifolds with boundary a fixed oriented homo-
logy sphere [FQ], so the manifolds are all homeomorphic. However, no two
are diffeomorphic (or become so after blowing up) by Corollary 8.3.14.

                

                                                                                                               



320 8. Elliptic and Lefschetz fibrations

1

1

n

0 N(n)0N(n)

n

0

Figure 8.30. Homeomorphic but nondiffeomorphic manifolds N(n),
N(n)0 (fixed odd n ≥ 3).

A particularly simple example is the pair N(n), N(n)0 shown in Figure 8.30
(n ≥ 3 odd). It is easy to see directly that their boundaries are diffeomorphic
by slam-dunking the meridians and Rolfsen twisting to remove the given
twists, obtaining a Whitehead link with framings 1

n and 1 in each case. For
an even simpler pair of homeomorphic but nondiffeomorphic 2-handlebodies
see Theorem 11.4.8.

Exercise 8.3.19. Prove directly that the manifolds N(n)p as given by The-
orem 8.3.18 all have diffeomorphic boundaries, and that the manifolds in
the corresponding family N(n)p#S2 × S2 are all diffeomorphic. Conclude
(by Lemma 8.3.10) that E(n)p#S2 × S2 ≈ E(n)q#S2 × S2 provided that
p ≡ q (mod 2) if n is even, and so (by Exercise 8.3.15) E(n)p#S2 × S2 ≈
#2nCP2#10nCP2 if n is odd or p is even, cf. Theorem 9.1.15 and the sub-
sequent text. (Hint : Back up to Figure 8.29(a), surger the dotted circle into
a 0-framed 2-handle, then surger the other 0-framed 2-handle to a dotted
circle and cancel it (cf. Figure 12.65). The boundary will be 1

n -surgery on
the right trefoil.)

8.4. Higher genus and generalized fibrations

We briefly discuss some examples of simply connected Lefschetz fibrations of
higher genus. Then we consider the effect of allowing the coordinate charts
at singularities of a Lefschetz pencil (Definition 8.1.4) to reverse orientation.

First, we generalize elliptic surfaces E(n) to obtain higher genus Lef-
schetz fibrations on surfaces of general type, following Fuller [Fu2], [Fu3].
Recall that (preceding Exercises 7.3.16) we defined U(m,n) to be the (desin-
gularized) double branched cover of the Hirzebruch surface F2n, branched
along the union of 2m − 1 (affine) sections of self-intersection 2n and one
(the infinity section) of self-intersection −2n. The genus-0 bundle structure
on F2n lifts to a genus-(m − 1) singular fibration that becomes Lefschetz
after smooth perturbation. Thus U(2, n) ≈ E(n) is elliptic. For m ≥ 3,
U(m,n) has general type, with U(3, n) = H ′(n) a Horikawa surface (cf.
Corollary 7.3.28 and preceding). Fuller [Fu3] used the branched-cover de-
scription of U(m,n) (in the manner of Examples 6.2.7 and 6.3.10) and Kirby
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U  2(m 1)  3-handles, 4-handle

2(m 1)  1-handles

0

n

2(2m 1)n
all 1

2(2m 1)n 2(2m 1)n

Figure 8.31. Lefschetz fibration U(m,n) → S2.

moves to obtain the diagram of U(m,n) given in Figure 8.31. Note that we
recover Figure 8.11 when m = 2.

Exercises 8.4.1. (a) Verify that the 1-handles and 0-framed 2-handle in
Figure 8.31 represent F × D2, for F a surface of genus m − 1 (cf. Exam-
ple 4.6.5). Check that removing the −n-framed 2-handle and the 3- and
4-handles from the diagram yields a genus-(m− 1) Lefschetz fibration over
D2 with monodromy representation (ψ1, . . . , ψ2(m−1))

2(2m−1)n, where the
Dehn twists ψi on F are generated by circles Ci generalizing Figure 8.12 in
the obvious way; cf. γn at the end of Section 8.2 when m = 3. Fuller shows
that these removed handles form a copy of F ×D2, so the above monodromy
around ∂D2 gives a trivial word inMm−1 and the entire diagram represents
a Lefschetz fibration U(m,n)→ S2.

(b) Verify that the Lefschetz fibration over D2 given by (ψ1, . . . , ψ2(m−1)) is

a generalized cusp neighborhood, obtained by adding a 2-handle to D4 along
the 0-framed torus knot T2,2m−1 (but beware that Lemma 8.3.6 does not
generalize). Thus, U(m,n) admits a singular fibration whose singular fibers
are 2(2m− 1)n generalized cusps. Verify by Kirby calculus that U(m,n) ≈
Mc(2, 2m− 1, 2(2m− 1)n − 1) ∪∂ N(m,n), where N(m,n) is a generalized
nucleus (Remark 7.3.20(b)), and that U(m,n) is given by Figure 8.32. (Hint :
Imitate the beginning of Section 8.3.)

A similar approach [Fu2] (see also [Fu1]) yields a diagram of X(m,n),
the double cover of S2 × S2 branched along a smoothing of the curve
Bm,n = (S2 × {2m points}) ∪ ({2n points} × S2), cf. Remark 7.3.5. Re-
call that X(m,n) ≈ X(n,m) has a genus-(m− 1) singular fibration over S2,
X(2, n) ≈ E(n), and X(3, n) is the Horikawa surface H(n) on the Noether
line (cf. Corollary 7.3.28 and preceding). For m,n ≥ 3, X(m,n) is a com-
plex surface of general type. Recall (Corollary 7.3.28 and subsequent text)
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Figure 8.32. Complex surface U(m,n) — general type for m ≥ 3.
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n
n

4n4n 4n

U  2m 1  3-handles, 4-handle

2m 1  1-handles

0

all 1

Figure 8.33. Lefschetz fibration X(m,n) → S2.

that it is a major unsolved problem to determine whether (for example)
H(2n) = X(3, 2n) and H ′(n) = U(3, n) are diffeomorphic for odd n > 1.
As before, the branched-cover description of X(m,n) leads to a Kirby dia-
gram, although the different pattern of intersections in the branch locus
leads to a different configuration of 1-handles in the smoothed branch set
(cf. Figures 6.32 and 6.33), and hence a different configuration of 2-handles
in X(m,n), Figure 8.33. As before, the −n-framed handles (with linking
number n), together with the 3- and 4-handles, form a copy of F ×D2 for F
a surface of genus m−1, with cores of the 2-handles representing {pt.}×D2.
Thus, we can cancel (either) one of the −n-framed 2-handles against a 3-
handle, and the other will give a section of the Lefschetz fibration.
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Figure 8.34. Complex surface X(m,n) — general type for m,n ≥ 3.

Exercises 8.4.2. (a) Verify that the 1-handles and two 0-framed 2-handles
give a copy of F × D2 (and correspond to a handle decomposition of F
with two 2-handles). Note that each 0-framed circle goes homologically
zero times over m − 1 of the 1-handles, so the 0-framing is the black-
board framing. Check that removing the two −n-framed handles and
3- and 4-handles yields a Lefschetz fibration over D2 with monodromy
(ψ1, . . . , ψ2m−1, ψ2m−1, . . . , ψ1)

2n with ψi as before, so the whole diagram
represents a Lefschetz fibration X(m,n) → S2 with the same monodromy;
cf. αn at the end of Section 8.2 when m = 3.

(b) Verify that the monodromy (ψ1, . . . , ψ2m−1) gives a Lefschetz fibration
X → D2 with X a 2-handlebody on the torus link T2,2m with framings
−m. Thus, X(m,n) has a singular fibration with 4n singular fibers whose
neighborhoods are diffeomorphic to X (and glued nontrivially along the
fibers). Conclude that X(m,n) is given by Figure 8.34. (Hint : The cocores
of the 2-handles of X come from {pt.}×D2 ⊂ F ×D2, so attaching the last
copy of X is the same as attaching the −n-framed 2-handles with linking
number n and the 4-handle in Figure 8.34.)

(c)∗ Show that the monodromy (ψ1, . . . , ψ2m−1, ψ2m−1, . . . , ψ1) gives the
plumbing P of spheres shown in Figure 8.35, with the homology class of F
given by twice the sphere S of square −m plus the sum of the other spheres
(oriented so that all intersection numbers are ≥ 0). Thus, X(m,n) has a
singular fibration with 2n singular fibers given by P (with multiplicity two
on S), and these are glued by the identity on the fiber over the base point.
Now deduce this directly from the branched cover description of X(m,n).
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multiplicity 2
m m

22 2 2 2

2m2m

2 22

Figure 8.35. Singular fiber of X(m,n) → CP1 × CP1 → CP1.

(d) By breaking each −1-twist of Figure 8.34 into two −1
2 -twists (cf. the

solution of Exercise 6.3.13(a)), exhibit an involution of X(m,n). (See Re-
mark 6.3.15.) Show that the quotient is S2 × S2 and draw the branch locus
B ⊂ S2 × S2 (cf. Exercise 6.3.9(a)). With more work, one can show that B
is isotopic to the smoothing of the complex curve Bm,n, so we have exhibited
the defining branched covering X(m,n)→ S2 × S2.

(e) Show that the complex surface Z(n) of Exercise 7.4.1(a) and Theo-
rem 7.4.20 admits a genus-2 Lefschetz fibration with monodromy αnβ (in
the notation given at the end of Section 8.2). (Hint : Show that when n = 0

you get a genus-2 Lefschetz fibration on K3#2CP2, where K3 arises as the
double cover of CP2 branched along a sextic curve, cf. Corollary 7.3.25. By
comparing Euler characteristics, verify that the monodromy must be β. For
n > 0, compare with (c) above.)

Since Lefschetz fibrations π : X → Σ originated in algebraic geometry, it
is natural to ask whether they are always projective (for ∂Σ = ∅), or at least
whether there is always a complex (or Kähler) structure on X making them
holomorphic. We have seen that genus-0 Lefschetz fibrations are all blow-
ups of ruled surfaces (Proposition 8.1.7 and Section 3.4), so they are Kähler
with holomorphic projection maps. Genus-1 Lefschetz fibrations have also
been classified (Theorem 8.3.12). For Σ = S2 these are all holomorphic,
and the additional hypothesis of at least one singular fiber (X relatively
minimal) guarantees a Kähler structure. For higher genus, the situation is
different.

Theorem 8.4.3. For any g ≥ 2, there is a genus-g Lefschetz fibration Xg →
S2 for which Xg admits no complex structure, although the fibration is a fiber
sum of two Lefschetz fibrations, each obtained by deforming a holomorphic
map. For g ≥ 3, we can assume Xg is simply connected.

The genus-2 case of this theorem is a recent observation of Ozbagci and
the second author [OzS] and (independently) I. Smith [Smi]. One begins

with a Lefschetz fibration S2×T 2#4CP2 → S2 of Matsumoto [Mt4], which
has monodromy (ζ1, . . . , ζ4)

2 for Dehn twists ζi given by the (symmetrical)
circles Ci in Figure 8.36. By fiber summing two copies of this using a
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C1
C2 C3

C4

Figure 8.36. Vanishing cycles of Matsumoto’s fibration.

suitable identification of the fibers, one can arrange the resulting manifold
X2 to have (for example) π1(X2) ∼= Z. Since b1(X2) is odd, X2 cannot be
Kähler. Computing the characteristic numbers χ(X2) = 12, b+(X2) = 2 and
c21(X2) = 0, we find that X2 is not even homotopy equivalent to a complex
surface, by the Enriques-Kodaira classification (cf. Theorem 3.4.32). Note
that the fibration on X2 has separating vanishing cycles — it is currently
an open question whether a genus-2 fibration without separating vanishing
cycles must be holomorphic.

The Matsumoto fibration (ζ1, . . . , ζ4)
2 can be generalized to a genus-

g fibration with monodromy (ζ1, . . . , ζg+2)
2 for any even g, by generalizing

Figure 8.36 in the obvious way. Note that the fibration has only 2g+4 critical
points. For odd g, a similar construction gives a fibration with 2g+10 critical
points. See Cadavid [Ca] for details of these constructions. It can be shown

[S7] that the total space of these fibrations is diffeomorphic to S2×Σh#4CP2

(g = 2h) when g is even and to S2 × Σh#8CP2 (g = 2h + 1) when g is
odd. Fiber summing two copies of these genus-g Lefschetz fibrations using
a gluing map similar to the one used in the genus-2 case above, we find a
genus-g Lefschetz fibration Xg → S2 with b1(Xg) = 1. Generalizing the
above argument shows that Xg is a noncomplex genus-g Lefschetz fibration.
For simply connected genus-g Lefschetz fibrations not admitting complex
structures, see Remark 8.5.7.

Now we generalize Lefschetz pencils to allow singularities with the op-
posite orientation.

Definition 8.4.4. Let X be a compact, connected, oriented, smooth 4-
manifold. An achiral Lefschetz pencil or fibration on X is defined as in Def-
inition 8.1.4, except that the given coordinate charts around critical points
of π and points of the base locus are allowed to reverse orientation. (We
still require the surface Σ to be oriented.)

Clearly, every Lefschetz pencil (fibration) is automatically an achiral
Lefschetz pencil (fibration). In fact, the set of 4-manifolds admitting achi-
ral Lefschetz pencils is much larger than the set admitting ordinary (chiral)
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Lefschetz pencils. We will see (Corollary 10.2.23) that a Lefschetz pencil on
X (or fibration if ∂X = ∅ and b1(X) = 0; Remark 10.2.22(a)) determines
a symplectic structure. Thus, b+2 (X) > 0, X admits an almost-complex
structure so b+2 (X) − b1(X) is odd (Exercise 8.1.6), and X has nontriv-
ial Seiberg-Witten invariants (Theorem 2.4.7) so it cannot split as X1#X2

with b+2 (Xi) > 0, i = 1, 2 (Theorem 2.4.6). For achiral Lefschetz pencils
and fibrations, we will provide counterexamples to all of the corresponding
statements. We will see that if X admits an achiral Lefschetz fibration (or
pencil) for which π has at least one critical point, then so does X#S2×S2.
Furthermore, S4 admits both a genus-1 achiral Lefschetz fibration and a
genus-0 achiral Lefschetz pencil (without critical points but with nonempty
base locus). These examples raise the question of whether there are any
obstructions to the existence of such structures. We will see that while such
an X need not be almost-complex, X#qCP2 does admit an almost-complex
structure, where q is the number of base locus and critical points whose
charts reverse orientation. A consequence is that #mS3 × S1 admits no
achiral Lefschetz pencil or fibration if m ≥ 2 (Corollary 8.4.14). There are
no known obstructions for simply-connected 4-manifolds.

Remark 8.4.5. Achiral Lefschetz fibrations were first studied by Harer
[H2], who also allowed fibers to have boundary. He showed that such a
singular fibration X → D2 existed if and only if X had a handle decomposi-
tion without handles of index ≥ 3, and produced a “cobordism” classification
for ∂X = ∅.
Example 8.4.6. – Connected sums. Recall that if X admits a Lefschetz
fibration, then so does X#CP2 — simply blow up a point and compose the
blow-down map with the fibration. In the achiral case, the same argument
in an orientation-reversing chart shows that X#CP2 admits an achiral Lef-
schetz fibration when X does. This already provides counterexamples to
achiral generalizations of most of the above statements about Lefschetz fi-
brations. To deal with X#S2 × S2, we observe that achiral Lefschetz fibra-
tions have monodromy representations just as ordinary Lefschetz fibrations
do, the only difference being that critical points with the new orientation
(negative self-intersections of fibers) will correspond to left-handed Dehn
twists (so the corresponding framings in Kirby diagrams are +1 relative to
the fibers). If two critical points with the same vanishing cycle C ⊂ F are
adjacent and have opposite orientations, then their monodromies will can-
cel. Thus, we can insert such a pair of critical points anywhere in an achiral
Lefschetz fibration on a closed X to obtain a new closed manifold X ′ with
an achiral Lefschetz fibration. The new manifold X ′ is obtained from X by
surgery on C ⊂ X with framing opposite the one induced by F ⊂ X and
π : X → Σ (Figure 8.37). Thus, for C nullhomotopic in X, the manifold X ′

will be diffeomorphic to either X#S2 × S2 or X#CP2#CP2. If an achiral
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Figure 8.37

Lefschetz fibration π : X → Σ has at least one critical point, then we can
choose C to be this vanishing cycle and conclude that X ′ = X#S2 × S2

has an achiral Lefschetz fibration. Similar reasoning shows that X#S2×S2

admits an achiral Lefschetz pencil with a critical point whenever X does.
Since any simply connected, closed X satisfies X#kS2 × S2 ≈ S#�S2 × S2

(up to orientation) for some k, � ∈ N and projective surface S (e.g., by let-
ting S range over S2×S2, E(2n) and blow-ups of CP2; see Theorem 9.1.12),
we conclude that any simply-connected, closed 4-manifold admits an achiral
Lefschetz pencil after summing with enough copies of S2 × S2.

Example 8.4.7. Matsumoto [Mt1] constructed a genus-1 achiral Lefschetz
fibration on S4 with two critical points of opposite orientation — that is,
two fishtail fibers with one oriented incorrectly (a “fishhead” fiber?). We
can easily construct such a fibration using the previous example. We begin
with the projection π : S2 × T 2 → S2. A multiplicity-1 logarithmic trans-
formation with auxiliary multiplicity 1 yields π : S3 × S1 → S2, projection
to S3 followed by the Hopf fibration. We add a pair of oppositely oriented
critical points as above, with vanishing cycle C = {pt.} × S1 ⊂ S3 × S1.
The resulting surgery produces S4 with the required achiral fibration.

Exercise 8.4.8. Verify that this construction is depicted by Figure 8.38,
and show by Kirby calculus that the pictured manifold is S4. Compare with
Exercise 6.2.6(b).

Example 8.4.9. To construct a genus-0 achiral Lefschetz pencil without
critical points on S4, one-point compactify C2 with its pencil of complex
lines through 0. Equivalently, restrict that pencil in C2 to D4 and then
double. The base locus is B = {0,∞}, and the fibration is oppositely
oriented at the two points. If we blow up to eliminate the base locus, we
obtain CP2#CP2 with its usual fibration by spheres.

For one more example to illustrate the effect of allowing achirality in
Lefschetz fibrations, we state a theorem of Matsumoto [Mt2] (sharpened
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1

1
1

0

U  2  3-handles
4-handle

Figure 8.38. Achiral Lefschetz fibration on S4.

by [Iw], [G10]) which was proved by analyzing monodromy as in Exam-
ple 8.2.11.

Theorem 8.4.10. Let π : X → S2 be a genus-1 achiral Lefschetz fibration.
Suppose that X is simply connected and π has critical points of both ori-
entations. Then X is diffeomorphic (possibly reversing orientation) to a

connected sum of copies of either CP2 and CP2 or E(2) and S2 × S2. The
same holds if we also allow smooth multiple fibers, provided that σ(X) �= 0.

Remark 8.4.11. It seems likely that the signature restriction is unneces-
sary. For work in this direction, see [Mt2] (Theorem 3.7, ν = 2�), [Iw],
[G10] (Theorem 16, n = k).

To find an obstruction to the existence of achiral Lefschetz pencils and fi-
brations, we consider characteristic classes. For X closed, let π : X−B → Σ
be an achiral Lefschetz pencil or fibration (so either Σ = S2 or B = ∅). Let
Q ⊂ X be the set of points in B and the critical set of π for which the coor-
dinate charts specified by Definition 8.4.4 reverse orientation, and let q be
the number of points in Q. As in Exercise 8.1.6, X −Q inherits an almost-
complex structure J from π. Although J does not extend over X, its Chern
class c1(X, J) ∈ H2(X − Q;Z) ∼= H2(X;Z) does extend uniquely. (Beware
that the square c21[X, J ] of this class need not equal c21[X], which we defined
to be 3σ(X) + 2χ(X) in Section 1.4.) Let X ′ = X#qCP2 be the result
of reversed orientation blow-ups of the points of Q; let ei ∈ H2(X ′;Z),
i = 1, . . . , q, be the corresponding exceptional classes [CP1] ∈ CP2, so
e2i = 1. (Note that while X ′ is essentially independent of the choices of
orientation-reversing charts, the identification of a summand with CP2 can
be conjugated by changing the chart by conjugation. We fix the choice by
requiring proper transforms of fibers of π to intersect each ei positively.)
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Lemma 8.4.12. The almost-complex structure J on X −Q extends (after
a homotopy) to a structure J ′ on X ′ with c1(X

′, J ′) = c1(X, J) + 3
∑

ei.
Thus, c21[X, J ] = 3σ(X) + 2χ(X)− 4q = c21[X]− 4q.

Proof. Near any point in Q∩B, the pencil agrees with that of Example 8.4.9
near ∞ ∈ S4, and J agrees with the standard structure on C2 = S4 − {∞}.
If we blow up at ∞ ∈ S4 to obtain CP2, J extends to the standard complex
structure J ′′ on CP2, and c1(CP

2, J ′′) = 3[CP1]. This local model shows us
how to extend J when we blow up points in Q ∩B. For any other point in
Q, a neighborhood can be identified with that of the self-intersection p of
the fishhead fiber of Example 8.4.7. Now J agrees with the almost-complex
structure on S4 − {p} constructed from that achiral Lefschetz fibration.
Since S4 − {p} is contractible, it admits only one almost-complex structure
up to homotopy, so when we blow up p to obtain CP2, J agrees up to
homotopy with the standard structure on CP2. Thus, J on X −Q extends
to X ′ after a homotopy near the critical points of π in Q, and c1(X

′, J ′) =
c1(X, J)+3

∑
ei (since J

′ restricts to J on X−Q and the standard structure
on each CP2−{pt.}). Now c21[X

′, J ′] = c21[X, J ]+9q, but by Theorem 1.4.15
c21[X

′, J ′] = 3σ(X ′) + 2χ(X ′) = 3σ(X) + 2χ(X) + 5q, so the last formula of
the lemma follows.

The above lemma provides an obstruction to the existence of achiral
Lefschetz pencils. Consider a closed, oriented 4-manifoldX withQX positive
definite. Recall that by Donaldson’s Theorem 1.2.30 (which is true regardless
of π1(X), cf. Remark 2.4.30), we must have QX

∼= b2(X)〈1〉.

Theorem 8.4.13. Suppose that X is a closed 4-manifold with an achiral
Lefschetz pencil or fibration, and that QX

∼= b2(X)〈1〉. Then we must have
1− b1(X) + b2(X) ≥ q ≥ 0 (for q as defined above).

Proof. Since c1(X, J)|2 = w2(X), c1(X, J) projects (into H2(X;Z)/torsion)
to a characteristic element of the pairing QX (Proposition 1.4.18 or the
text preceding Corollary 5.7.6). In particular, its components in the above
splitting of QX are all odd. Thus, c21[X, J ] ≥ σ(X). The lemma now implies
that σ(X) + χ(X) ≥ 2q, or 1− b1(X) + b2(X) ≥ q.

Corollary 8.4.14. For m ≥ 1, the manifold #mS3 × S1 admits no achiral
Lefschetz pencil or fibration, except for the standard torus bundle when m =
1 (that is, projection to S3 followed by the Hopf fibration).

Proof. The case m > 1 follows immediately from the above theorem.
For m = 1 we conclude that any such structure satisfies q = 0, and after
reversing orientation the same argument shows that B = ∅ and π has no
critical points. Since χ(S3 × S1) = 0 and b1(S

3 × S1) < 2, we must have a
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torus bundle over S2. Since the bundle is trivial over each hemisphere, it is
obtained from S2 × T 2 by a multiplicity-1 logarithmic transformation, and
the auxiliary multiplicity is 1 (since π1(S

3 × S1) ∼= Z). It is now easy to see
that the bundle is the standard one.

Exercises 8.4.15. (a)∗ Classify achiral Lefschetz pencils and fibrations on
S4. What can you say about such structures on a homology 4-sphere X?

(b)∗ For π : X − B → Σ an achiral Lefschetz pencil or fibration as above,
let P = B ∪ {critical points of π}. There is an induced complex line bundle
L = ker dπ on X − P (tangent to the fibers), and this extends uniquely
over X (since H2(X −P ;Z) ∼= H2(X;Z) classifies line bundles). Prove that
c1(X, J) = c1(L)+χ(Σ)π∗[Σ] inH2(X;Z). For an achiral Lefschetz fibration
with connected, rationally nullhomologous fibers, prove that the genus is 1.

8.5. Rationally blowing down

We now discuss the rational blow-down process discovered by Fintushel and
Stern [FS2]. Among other applications, this describes the logarithmic trans-
formations studied in Sections 3.3 and 8.3 from a different point of view. At
the same time, the gauge theoretic invariants (cf. Section 2.4) of mani-
folds constructed by the rational blow-down process are easy to determine
from the knowledge of those invariants of the original manifold (cf. The-
orem 8.5.12). In conclusion, for example, the Seiberg-Witten invariants of
the elliptic surfaces E(n)p,q (n ≥ 2) can be determined; this latter result can
be applied to prove Theorem 3.3.7 and more generally Theorem 8.3.12.

We begin our discussion by defining the 4-manifold Cp (p ≥ 2) as the
plumbing manifold according to the tree given by Figure 8.39.

p 2 2 2 2 2

p 2

Figure 8.39. Plumbing manifold Cp (p ≥ 2).

Exercises 8.5.1. (a)∗ Draw a Kirby diagram for Cp. Using Kirby calculus,
prove that Cp is given by Figure 8.40. (Hint : Use the −1-framed meridians
in the latter figure to eliminate p− 1 twists.)

(b)∗ Show that the 4-manifold Cp embeds in #(p− 1)CP2. (Try this both
with and without Kirby calculus.)

Lemma 8.5.2. The boundary ∂Cp is the lens space L(p2, p − 1); hence
π1(∂Cp) ∼= Zp2 .
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Figure 8.40. Kirby diagram for Cp.

p 1

p

Figure 8.41. Rational 4-ball Bp.

U  3-handle
4-handle

00
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0p 1

1

1
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p

Figure 8.42. Double DCp.

Proof. This follows from Exercise 5.3.9(b), the plumbing diagram of Fig-

ure 8.39 and the fact that the continued fraction expansion of p2

p−1 is given

by [p+ 2, 2, . . . , 2] with p− 2 many 2’s.

Let Bp be the 4-manifold given by Figure 8.41. We will show that
Bp ∪∂ Cp = #(p − 1)CP2; so, in particular, ∂Cp is diffeomorphic to ∂Bp.
As we saw in Exercise 8.5.1(a), Cp is given by the Kirby diagram drawn
in Figure 8.40; hence the double DCp = Cp ∪∂ Cp is given by Figure 8.42.
Surger inside Cp ⊂ DCp twice (interchanging the dot and the 0-framing of
the two circles linking each other p times) and blow down the −1-framed
circles (still in Cp) to obtain Figure 8.43(a) — a Kirby diagram of Bp∪∂ Cp.
(Bp is given by the two circles linking each other p times, while we did
not do anything in the upper part giving Cp as a relative handlebody on
∂Cp.) Sliding the (p − 1)-framed circle over its meridians, we end up with
p − 1 unknots with framing 1 (see Figure 8.43(b)), and using the 0-framed
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(a) (b)

p

U  3-handle
4-handle

U  3-handle
4-handle

0

0

p 1

p 1

p 1

1

1

1

p

0

1 1

Figure 8.43. Bp ∪∂ Cp = #(p− 1)CP2.

meridian of the dotted circle to unlink the two circles defining Bp, we get
cancelling 1-handle/2-handle and 2-handle/3-handle pairs. Consequently,
Figure 8.43(b) is #(p− 1)CP2, which proves that the manifold Bp given by
Figure 8.41 can be given as the complement of Cp in #(p− 1)CP2. It is not
very hard to see that the above embedding of Cp in #(p − 1)CP2 — after
reversing orientation — coincides up to diffeomorphism with the embed-
dings provided by the solutions of Exercise 8.5.1(b) (cf. Theorem 8.5.3 and
Exercise 8.5.8(a) below). From the link description it is obvious that Bp has
trivial rational homology and π1(Bp) ∼= Zp. The symmetry of the diagram in
Figure 8.41 (180◦ rotation around the y-axis) shows that ∂Bp admits a self-
diffeomorphism not homotopic to the identity. (In fact, the diffeomorphism
inverts a meridian to the dotted circle, which corresponds to a meridian of
the sphere of square −p − 2 in Cp and hence generates H1(∂Bp) ∼= Zp2 .)
Moreover, the above description of this self-diffeomorphism also shows that
it extends to Bp. Combining this observation with a theorem of Bonahon
[Bon] (stating that π0(Diff(L(p2, p− 1))) ∼= Z2) we get

Theorem 8.5.3. Any self-diffeomorphism of ∂Bp extends to Bp.

Now we are ready to define the rational blow-down of a 4-manifold X.

Definition 8.5.4. Assume that the plumbing Cp embeds in X, that is,
X = Cp∪L(p2,p−1)X

o. The 4-manifoldX(p) = Bp∪L(p2,p−1)X
o is by definition

the rational blow-down of X along the given copy of Cp.

By Theorem 8.5.3 the 4-manifold X(p) is well-defined up to diffeomorphism
for a fixed pair (X,Cp). Thus, in a Kirby diagram of X built on Cp as
in Figure 8.40, we can perform the rational blow-down by our previous
procedure of interchanging the dot and 0-framing and blowing down the −1-
framed meridians. Note that the net effect is to remove a negative definite
submanifold from X and replace it by a rational ball, so the operation
preserves b+2 and b1 while decreasing b

−
2 , just as with ordinary blowing down.

(The operation may create torsion in H1, however.)
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The power of the rational blow-down process rests on two facts. On one
hand, interesting constructions — like logarithmic transformation and blow-
down of a −4-sphere (cf. Theorem 10.2.14) — can be formulated in terms of
rational blow-down. On the other hand, in many cases the Seiberg-Witten
function SWX(p)

can easily be computed in terms of SWX ; hence a detailed
analysis of the smooth topology of the resulting 4-manifold X(p) is possible.
Next we describe some examples of manifolds containing copies of Cp for
some p.

Examples 8.5.5. (a) Suppose that the homology class f ∈ H2(X;Z) with
f2 = 0 can be represented by an immersed sphere Σ with a unique, positive
double point. (Thus, Σ determines a fishtail neighborhood, Figure 8.8.)

Then X#(p − 1)CP2 contains a copy of Cp in the following way: Blow up

the double point of Σ to obtain a sphere Σ̃ of square −4 in X#CP2 (with

[Σ̃] = f − 2e1); a tubular neighborhood of Σ̃ is a copy of C2 in X#CP2.

Blowing up one of the two intersection points of Σ̃ with the exceptional
sphere, we get C3 ⊂ X#2CP2. If we keep blowing up the intersection point
of the proper transform of Σ with the last exceptional sphere (as in the proof

of Exercise 8.5.1(b)), we get Cp in X#(p−1)CP2. (The homology classes of
the spheres in Cp are f−2e1−e2−. . .−ep−1, e1−e2, e2−e3, . . . , ep−2−ep−1.)
This construction can be applied, e.g., when Σ is a fishtail fiber in an elliptic
fibration E(n).

(b) The nine sections of E(4) give nine disjoint copies of C2 in E(4), hence
we can blow down these C2-configurations one by one. More generally,
for n ≥ 4 the decomposition of E(n) as the generalized fiber sum of two

copies of X(1, n) ≈ CP2#(4n + 1)CP2 (cf. Remark 7.3.9(b)) shows that
E(n) contains 2 disjoint copies of Cn−2, each −n-sphere being a section
of E(n) (cf. Exercise 3.1.12(a)), while the −2-spheres in Cn−2 are disjoint
from a generic fiber [FS2]. These copies of Cn−2 can be seen by observing
that the resolution of the singularity z2 = x2n−1 + y4n−3 contains Cn−2 (cf.
Exercise 7.2.12(c)), and it can be shown that this resolution is contained

in CP2#(4n + 1)CP2 disjoint from the fiber along which the generalized
fiber sum X(1, n)#fX(1, n) = E(n) is taken. Let F (n) and G(n) denote
the results of rationally blowing down one or both of these configurations,
respectively.

Exercise 8.5.6. Prove that F (n) and G(n) are simply connected 4-mani-
folds with χh(F (n)) = χh(G(n)) = χh(E(n)) = n, c21(F (n)) = n − 3 and
c21(G(n)) = 2n− 6.

We have already seen the 4-manifold G(n), since by a theorem of Fintushel
and Stern [FS2], it is diffeomorphic to the corresponding Horikawa sur-
face defined as the double branched cover of CP1 × CP1 branched along
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a connected curve. (In particular, in the notation of Corollary 7.3.28 and
Exercise 7.4.1(a), G(n) is either H(n+1

2 ) or Z(n−2
2 ), depending on the par-

ity of n.) By determining the basic classes of F (n), one can show that it
is an irreducible 4-manifold. (For the definition of irreducibility see Defi-
nition 10.1.17.) Since 0 < c21(F (n)) < 2χh(F (n)) − 6, the manifold F (n)
violates the Noether inequality, hence it is a (symplectic) 4-manifold not
homotopy equivalent to a minimal complex surface.

Remark 8.5.7. Making use of the double branched cover construction of
Horikawa surfaces, Fintushel and Stern showed that G(n) admits a genus-
(n − 1) Lefschetz fibration, and this fibration decomposes as a fiber sum
Q(n)#fQ(n) with Q(n) a rational surface [FS4]. Recall that E(n) admits
a genus-(n− 1) Lefschetz fibration which decomposes as X(1, n)#fX(1, n),

moreover X(1, n) ≈ CP2#(4n + 1)CP2 (Exercise 7.3.8(b)). Applying the
rational blow-down process, Fintushel and Stern showed that for n ≥ 4
the manifold F (n) is diffeomorphic to the fiber sum X(1, n)#fQ(n) [FS4].
Since F (n) is an irreducible, simply connected (symplectic) 4-manifold not
admitting a complex structure, the above description provides examples of
simply connected, noncomplex Lefschetz fibrations (with genus ≥ 3), and
fiber sums of holomorphic Lefschetz fibrations which are noncomplex. This
example completes the proof of Theorem 8.4.3.

The next theorem shows that, under suitable assumptions, logarithmic
transformation can be performed by doing ordinary blow-ups followed by a
rational blow-down. As we will see, this description enables us to determine
the Seiberg-Witten invariants of simply connected elliptic surfaces. For the
proof of Theorem 8.5.9 we need a little preparation.

0

0

(a) (b)

p 1
1

1 1 1

0

0

0

0

p

p 2

2 2 2 2

p 2

1

1

Figure 8.44. Blown-up fishtail neighborhood Q#(p− 1)CP2.

Exercises 8.5.8. (a)∗ Prove that blowing up a fishtail neighborhood as in
Example 8.5.5(a) results in the manifold given by Figure 8.44(a), where the

                

                                                                                                               



8.5. Rationally blowing down 335

fine curves are carried along from Figure 8.27(a). Locate the resulting copy
of Cp explicitly.

(b)∗ Show that there is a diffeomorphism between (a) and (b) of Figure 8.44,
sending the given Cp to the subhandlebody of (b) equivalent to Figure 8.40.
(Hint : Imitate the solution of Exercise 8.5.1(a), but slide over one −1-framed
meridian a second time to eliminate the pth twist.)

Assume now that the 4-manifold X contains a fishtail neighborhood Q,
so that Example 8.5.5(a) provides a copy of Cp embedded in X#(p− 1)CP2

for all p ≥ 2.

Theorem 8.5.9. ([FS2]) The 4-manifold obtained by rationally blowing

down the above Cp ⊂ X#(p − 1)CP2 is diffeomorphic to the result of a
logarithmic transformation of multiplicity p (and auxiliary data described by
Exercise 8.3.16(a) and Remark 8.5.10(b)) along the torus lying in the fishtail
neighborhood Q.

Proof. By Exercises 8.5.8, the given embedding Cp ⊂ Q#(p − 1)CP2 is
exhibited by Figure 8.44(b) and its subhandlebody that is obviously equiva-
lent to Figure 8.40. To rationally blow down, we replace Cp by Bp as before,
interchanging the 0-framed and dotted circles of Cp and blowing down the
−1-framed meridians. The result is Figure 8.27(b), the multiplicity-p loga-
rithmic transform Qp of Q (with auxiliary multiplicity 1 and direction given
by the vanishing cycle, oriented as in Figure 8.27(a), cf. Exercise 8.3.16(a)).
Now recall that the fine curves represent a handlebody H ⊂ ∂Q inducing a
Heegaard splitting. Thus, any remaining 1- and 2-handles of X#(p−1)CP2

can be assumed to lie in H. Since the rational blow-down and logarith-
mic transformation have the same effect on H, we obtain a diffeomorphism
between the resulting 4-manifolds (cf. Remark 5.5.10).

Remarks 8.5.10. (a) Recall that when Q lies in a cusp neighborhood,
the auxiliary data do not affect the resulting diffeomorphism type (Theo-
rem 8.3.5), so the above construction yields the unique multiplicity-p loga-
rithmic transform of X along the given torus. For simple examples, consider
the cusp N itself and the nucleus N(n); performing the above construction
on these yields the manifolds Np and N(n)p, respectively (Figures 8.28 and
8.29). Since any regular fiber in an elliptic surface lies in a cusp neighbor-
hood (up to diffeomorphism), the theorem presents E(n)p (and more gener-
ally E(n)p1,... ,pk) as the (appropriate) rational blow-down of the blown-up

elliptic surface E(n)#(p− 1)CP2.

(b) Recall from Exercise 8.3.16(b) that for Q ⊂ X not lying in a cusp
neighborhood there is a possible Z2-ambiguity in the diffeomorphism type
of Xp requiring a choice of orientation of both the meridian and vanishing
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cycle of Q (Figure 8.27(a)). In the above rational blow-down construction,
the corresponding choice is that of which sheet of Σ at the double point
should be repeatedly blown up. (Note that in Figure 8.44(a), orienting μ
determines an orientation of the sphere of square −p − 2, and with the
orientations of Figure 8.27(a) we have blown up repeatedly at the sheet of
Σ linking the vanishing cycle negatively.) Since no such choice is necessary
when p = 2, it follows that Q−2 ≈ Q2 rel ∂.

Next we will state some theorems for computing the Seiberg-Witten in-
variants of X(p) in terms of SWX — for the proofs see [FS2]. The first
proposition gives a correspondence between characteristic cohomology ele-
ments of X and X(p).

Proposition 8.5.11. Assume that Cp ⊂ X, and X(p) is the rational blow-

down of X along Cp. Then for every characteristic element K ∈ CX(p)
there

is an element K ∈ CX such that K|Xo = K|Xo and K2 −K
2
= −(p − 1).

The class K is called a lift of K.

By computing the dimensions of the corresponding Seiberg-Witten moduli
spacesMK(X(p)) andMK(X), it becomes obvious that the above relation

K2−K
2
= −(p−1) simply means that these dimensions are equal. Assume

that X and X(p) are both simply connected. The next theorem relates
Seiberg-Witten invariants of X and X(p).

Theorem 8.5.12. ([FS2]) Suppose that X and X(p) are simply connected

4-manifolds as above. Choose K ∈ CX(p)
, and fix a lift K ∈ CX for it. If

K2 ≥ 3σ(X) + 2χ(X) (so dimMK ≥ 0), then SWX(p)
(K) = SWX(K).

Consequently, SWX determines the Seiberg-Witten invariants of X(p). In
particular, if X has Seiberg-Witten simple type, then so does X(p).

Remark 8.5.13. Recall that when X and X(p) are simply connected, spinc

structures are determined by their determinant line bundles — a correspon-
dence used in the proof of Theorem 8.5.12. In fact, the same argument
provides an identical result if H1(X;Z) and H1(X(p);Z) have no 2-torsion.
In general, however, we only get the corresponding equality for the sum
of Seiberg-Witten values on spinc structures with a fixed determinant line
bundle on Xo.

Since logarithmic transformation in a fishtail neighborhood can be for-
mulated in terms of rationally blowing down, the basic classes of the mani-
folds E(n)p (and more generally E(n)p,q with gcd(p, q) = 1) can be computed
using Theorem 8.5.12. In the following, we will carry out this computation
in the more general setting described in Example 8.5.5(a) — with the as-
sumptions that X is simply connected and has Seiberg-Witten simple type,
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and that all basic classes of X evaluate trivially on the homology class [Σ].
(These assumptions are obviously satisfied for the elliptic surface E(n) with
[Σ] = f a fishtail fiber.) By the blow-up formula (Theorem 2.4.9) we know

the basic classes of X#(p− 1)CP2: these are of the form L± e1± . . .± ep−1

(L ∈ BasX). For J ∈ {±1}p−1 we denote the corresponding characteristic
element L+

∑
J(i)ei by LJ ; the sum

∑
J(i) will be denoted by |J |. An easy

argument shows the following.

Lemma 8.5.14. If Xo denotes the complement of int Cp in X#(p−1)CP2,

then the unique extension of LJ |Xo to X(p) equals L+|J | [Σ]
p ∈ H2(X(p);Z).

(We have identified the homology element [Σ]
p with its Poincaré dual. Note

that although [Σ] might be a primitive element in H2(X;Z), it will be
divisible by p in X(p), since in algebraic terms, performing the rational
blow-down mods out the relations ei − ei+1 ≡ 0 (i = 1, . . . , p − 2) and
[Σ] − 2e1 − e2 − . . . ep−1 ≡ [Σ] − pe1 ≡ 0.) Now applying Theorem 8.5.12
yields the following.

Theorem 8.5.15. If the simply connected 4-manifolds X and X(p) are as

above, and SWX(p)
(K) �= 0 (i.e. K ∈ BasX(p)

), then K is the extension of

LJ |Xo for some J ∈ {±1}p−1. Consequently, the basic classes of X(p) are

of the form L+ |J | [Σ]
p (where L is a basic class of X).

Since we know the basic classes of E(n) (cf. Section 3.1), this theorem allows
us to determine the basic classes of E(n)p,q (n ≥ 2 and gcd(p, q) = 1). For
the description of basic classes of E(n)p,q see Theorem 3.3.6.

There is another special case of the rational blow-down process when
the properties of the embedding of Cp make the computation of the basic
classes of X(p) particularly simple.

Definition 8.5.16. Denote the spheres in Cp by si (i = 1, . . . , p− 1), with
[s1]

2 = −p− 2. We call a configuration Cp ⊂ X tautly embedded if for each
basic class K we have K(si) = 0 (i = 2, . . . , p− 1) and |K(s1)| ≤ p.

Exercises 8.5.17. (a) Check that a section of E(4) gives a tautly em-
bedded copy of C2 ⊂ E(4). More generally, show that the two copies of
Cn−2 ⊂ E(n) found above are tautly embedded. (Hint : Recall the compu-
tation of basic classes of E(n) (cf. Section 3.1) and apply the adjunction
equality of Theorem 1.4.17.)

(b) Show the embedding Cp ⊂ X#(p−1)CP2 that we used in Theorem 8.5.9
is not a taut embedding. (Hint : Using the blow-up formula, find basic classes

of X#(p− 1)CP2 which evaluate nontrivially on si for i ≥ 2.)
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Theorem 8.5.18. ([FS2]) Suppose that X is a simply connected 4-mani-
fold. If Cp ⊂ X is tautly embedded, and K is a Seiberg-Witten basic class
of X(p), then the corresponding lift K ∈ CX satisfies |K(s1)| = p.

The above theorem enables us to determine the basic classes of many 4-
manifolds given as rational blow-downs of other (well-known) manifolds.

Exercises 8.5.19. (a) Determine the basic classes of the 4-manifold ob-
tained by rationally blowing down one section of E(4). Conclude that the
resulting manifold is irreducible and not homotopy equivalent to a minimal
complex surface, therefore not diffeomorphic to any complex surface.

(b)∗ More generally, determine the basic classes of the 4-manifold Pj ob-
tained by blowing down j sections of E(4) (1 ≤ j ≤ 9). Show that Pj is
irreducible.

(c) Determine the basic classes of the manifold F (n). (Recall that F (n)
was defined as the rational blow-down of the elliptic surface E(n) along one
copy of Cn−2.)

(d)∗ Draw a Kirby diagram for the 4-manifold P1 = F (4) described in (b).
This 4-manifold is simply connected, irreducible, symplectic, and does not
admit a complex structure; cf. Section 10.2.

                

                                                                                                               



Chapter 9

Cobordisms,
h-cobordisms
and exotic R4’s

This chapter begins with the study of cobordisms of manifolds. As we
will see, we have a complete classification of 3- and 4-dimensional (orien-
ted, closed, smooth) manifolds — up to cobordism. One consequence is
that homeomorphic 4-manifolds become diffeomorphic when summed with
enough S2 × S2’s, which leads us to consider nonuniqueness of connected
sums in general. We will also describe some relevant results for higher dimen-
sional manifolds and study embeddings in Euclidean spaces. In Section 9.2
we will focus on h-cobordisms, with special attention to the 4-dimensional
case — in which dimension the celebrated h-Cobordism Theorem fails to
hold for smooth manifolds. We will study this failure in detail and examine
some partial results. For example, simply connected h-cobordant 4-man-
ifolds are homeomorphic, and while they need not be diffeomorphic, they
become so when a certain compact contractible submanifold is removed from
each. A similar construction yields exotic R4’s — manifolds homeomorphic
to R4 but not diffeomorphic to it. We will study these constructions in Sec-
tion 9.3 and prove that the manifold of Figure 6.16 is an exotic R4. In the
final section, we give a more general survey of exotic R4’s, including vari-
ous constructions of uncountably many smooth structures on R4 and other
manifolds. For an additional reference on much of this material see [K2].
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9.1. Cobordism groups

Definition 9.1.1. Two n-dimensional, closed, oriented manifolds X−, X+

are (oriented) cobordant (in notation X− ∼c X+) if there exists an (n+ 1)-
dimensional compact, oriented manifold W with boundary such that ∂W =
X− �X+. The manifold W is called a cobordism between X− and X+.

It is easy to see that ∼c is an equivalence relation. The equivalence classes of
n-dimensional manifolds form an abelian group Ωn with disjoint union � as
addition. The equivalence class of the n-dimensional empty manifold ∅ plays
the role of 0, and X (the manifold X with the opposite orientation) is an
inverse for X. The class represented by X will be denoted by [X] ∈ Ωn. The
manifolds cobordant to ∅ are called nullcobordant . By the above description,
the manifold Xn is nullcobordant iff there exists Wn+1 such that ∂W = X.

Examples 9.1.2. (a) The product I ×X gives a (trivial) cobordism of X
to itself.

(b) A less trivial example can be given by surgery on a manifoldXn. Attach
a (k+ 1)-handle to I ×Xn along ϕ̂ : Sk ×Dn−k → {1} ×X ⊂ ∂(I ×X) (cf.
Definition 5.2.1). As a result we get a cobordism between X = {0}×X and
the surgered manifold Xϕ̂. (See also the text after Definition 5.2.1.)

(c) For X,Y disjoint manifolds, start with I × (X � Y ) and then construct
I ×X ∪ϕ I × Y as in Definition 1.3.2 with U ⊂ X, V ⊂ Y and ϕ : U → V
(thinking of X�Y as {1}× (X�Y ) ⊂ I× (X�Y )). As one can see, X�Y
and (X − int U) ∪ϕ|∂U (Y − int V ) are cobordant. As special cases, this
observation implies that the connected sum X#Y and the generalized fiber
sum X#FY of the 4-manifolds X and Y along the surface F (as described
in Definition 7.1.11) are cobordant to X � Y .

(d) By the fact that S1 = ∂D2 is the unique connected, closed 1-manifold
(up to diffeomorphism), we have that Ω1 = 0.

Exercises 9.1.3. (a) Prove that Ω0
∼= Z, and define the isomorphism.

(b) Prove that Ω2 = 0. (Hint : Use the classification of 2-dimensional sur-
faces described in Section 1.1; cf. also Exercise 4.2.14.)

It is somewhat harder to compute Ω3 and Ω4.

Theorem 9.1.4. The cobordism group Ω3 is trivial, while Ω4
∼= Z. The

class of CP2 generates Ω4.

The statement about Ω3 is essentially Theorem 5.3.4. For a proof that
Ω4
∼= Z see, e.g., [K2]; in the following, we merely outline a proof. The

most common way to exhibit the isomorphism Ω4
∼= Z is to associate the

signature σ(X4) to the 4-manifold X.
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Lemma 9.1.5. If X is the boundary of a 5-dimensional compact, oriented
manifold W , then σ(X) = 0.

Note that Lemma 9.1.5 implies that the signature of a 4-manifoldX depends
only on the cobordism class of X. For the disjoint union X− � X+ we
have σ(X− � X+) = σ(X−) + σ(X+), so the map σ : Ω4 → Z is a group-
homomorphism. It is clearly surjective: observe that σ(#nCP2) = n and

σ(#mCP2) = −m (n,m ≥ 0). Hence, to prove that Ω4 is in fact isomorphic
to Z, one only needs the following converse of Lemma 9.1.5. We will not
present a proof for this here, see [K2].

Theorem 9.1.6. If σ(X4) = 0, then there exists a compact, oriented 5-
manifold W such that ∂W = X.

Remark 9.1.7. Note that Lemma 9.1.5 implies, in particular, that for a
connected sum we have σ(X#Y ) = σ(X) + σ(Y ) (which also follows from
Exercise 1.3.5(a)); moreover it implies that the signature σ(X#FY ) of the
generalized fiber sum ofX and Y along the surface F is equal to σ(X)+σ(Y )
(cf. Example 9.1.2(c)). It is true in general that if we decompose a closed,
oriented 4-manifold X along a 3-manifold N as X = X1 ∪N X2, then we
have σ(X) = σ(X1) + σ(X2). This latter equation is usually referred to as
Novikov additivity . (For the proof see [K2].)

The next proposition can easily be proved using the material discussed in
Part 2 of this volume.

Proposition 9.1.8. A closed, oriented 4-manifold X is cobordant to a han-
dlebody Y = 0-handle∪2-handles∪4-handle. In particular, there is a simply
connected 4-manifold cobordant to X.

Proof. Take a handle decomposition of X. Surgery on the 1-handles (chang-
ing the dotted circles in the corresponding Kirby diagram to 0-framed un-
knots) gives a manifold Y1, which is (by Example 9.1.2(b)) cobordant to X.
The manifold Y1 has no 1-handles, hence it is simply connected. Turning the
handle decomposition upside down and repeating the argument concludes
the proof.

The following result (due to Thom) gives information about the higher
dimensional cobordism groups. Take the infinite direct sum Ω∗ =

⊕
nΩn.

A ring structure on Ω∗ is defined in the following way: For Xi representing
[Xi] ∈ Ωni (i = 1, 2) take the Cartesian product X1 × X2. The element
represented by this (n1 + n2)-manifold in Ωn1+n2 will not depend on our
choice of the representatives of the classes [Xi], hence this operation gives
a multiplication Ωn1 × Ωn2 → Ωn1+n2 . The group Ω∗ equipped with this
multiplication is easily seen to be a graded ring. The following theorem
describes Ω∗ up to torsion (see, e.g., [MS]).
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Theorem 9.1.9. The graded ring Ω∗⊗Q is isomorphic to the polynomial al-
gebra over Q generated by independent generators x4, x8, . . . , x4n, . . . , where
x4n = [CP2n] ∈ Ω4n. Consequently, Ωn⊗Q is 0 if n is not divisible by 4 and

Ω4n ⊗Q ∼= Qp(n), where p(n) is the number of partitions of n.

Next we list some generalizations of the definition of the cobordism
groups Ωn. Since a spin structure on X induces a spin structure on its
boundary ∂X (cf. Section 5.6), the spin cobordism group Ωspin

n can be de-
fined in the obvious way: the closed spin manifolds (X−, s−), (X+, s+) (with
spin structures s− and s+) are spin cobordant if there is a compact spin man-
ifold (Wn+1, s) such that its boundary ∂W with its induced spin structure

s|∂W is (X−, s−) � (X+, s+). We have Ωspin
0
∼= Z and Ωspin

1
∼= Ωspin

2
∼= Z2

[K2]. By Theorem 5.7.14, a spin 3-manifold is the spin boundary of a

spin 4-manifold, hence Ωspin
3 = 0. In the 4-dimensional case, however, we

have already seen spin 4-manifolds representing nonzero classes of Ω4 — for
example, the elliptic surfaces E(2n). (These are not nullcobordant, since

σ(E(2n)) = −16n.) This observation already shows that Ωspin
4 �= 0; for the

proof of the following theorem, see [K2].

Theorem 9.1.10. The fourth spin cobordism group Ωspin
4 is isomorphic to

Z. The map [X] �→ σ(X)
16 gives the isomorphism Ωspin

4
∼= Z, so the class of

the K3-surface generates Ωspin
4 .

Remark 9.1.11. For comparison, we just mention two related results: The
cobordism group of topological 4-manifolds, Ωtop

4 , is isomorphic to Z ⊕ Z2.
The isomorphism can be given by associating the pair (σ(X), ks(X)) to X,
where the latter invariant ks(X) is called the Kirby-Siebenmann invariant
of X, and it is a characteristic class that vanishes exactly when the “top-
ological tangent bundle” of X reduces to a vector bundle — in particular,
it vanishes if X admits a smooth structure. (We have seen the Kirby-
Siebenmann invariant before as the invariant distinguishing the two closed,
simply connected, topological 4-manifolds with a given odd intersection form
(Theorem 1.2.27), and as σ

8 modulo 2 in the even case.) The analogue of the

spin cobordism group Ωspin
4 can also be defined for topological manifolds,

and it turns out that Ωtopspin
4 is isomorphic to Z. The isomorphism can be

given by X �→ σ(X)
8 . For details and definitions of the above, see [FQ], [KS].

Before proceeding further, let us study cobordisms between 4-manifolds
more thoroughly.

Theorem 9.1.12. ([W2]) If two closed, smooth, simply connected 4-man-
ifolds X and Y are homeomorphic, then X#kS2 × S2 is diffeomorphic to
Y#kS2 × S2 for some k ≥ 0.
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Proof. Homeomorphic 4-manifolds have isomorphic intersection forms,
hence σ(X) = σ(Y ); consequently we have a cobordism W between X and
Y . By surgering the 1- and 4-handles we may assume that W is built on
I × X by adding 2- and 3-handles only. We first attach the 2-handles to
X; as usual, the resulting relative handlebody will be denoted by W2. Since
X is simply connected (and 4-dimensional), Proposition 5.2.3 implies that
∂+W2 is diffeomorphic to X#kS2 × S2. (If X (and hence Y ) is spin, W
can be chosen to be spin (cf. Theorem 9.1.10), hence W2 and its other
boundary ∂+W2 are spin as well; if X is not spin, then we use the fact that
X#S2×̃S2 ≈ X#S2×S2 (Proposition 5.2.4).) Now turn the handlebody up-
side down and repeat the same argument with Y . The resulting handlebody
W ∗

2 will have ∂−W ∗
2 ≈ Y and ∂+W

∗
2 = Y#lS2×S2. Note that the 2-handles

of the handlebody W ∗
2 are the 3-handles of W , hence W = W2 ∪W

∗
2, giving

that X#kS2×S2 ≈ ∂+W2 = ∂−W
∗
2 = ∂+W

∗
2 ≈ Y#lS2×S2. Since X and Y

are homeomorphic (in particular rk(H2(X;Z)) = rk(H2(Y ;Z))), it follows
that k = l, and this concludes the proof.

Remark 9.1.13. Theorem 9.1.12 holds for arbitrary compact orientable 4-
manifolds X and Y with possibly nonempty boundary. It can be extended
to nonorientable manifolds by allowing connected sums with S2×̃S2 as well.
(See [G3].) Note, however, that summands of the form S2×̃S2 are needed
in the nonorientable case; for example, there is an exotic smooth structure
on RP4 that never becomes standard under sum with S2 × S2 [CS].

Theorem 9.1.12 can be applied to show how nonunique the decomposition
of a 4-manifold can be.

Corollary 9.1.14. For any two simply connected, smooth, closed 4-mani-
folds X and Y there are integers k1, l1, k2, l2 such that X#k1CP

2#l1CP2 is
diffeomorphic to Y#k2CP

2#l2CP2.

Proof. Choose n1,m1, n2,m2 ≥ 1 such that X#n1CP
2#m1CP2 is homeo-

morphic to Y#n2CP
2#m2CP2. (Recall the classification of odd indefinite

forms and apply Theorem 1.2.27.) Now apply Theorem 9.1.12 and the fact

that S2 × S2#CP2 ≈ CP2#2CP2.

There are no general theorems concerning the minimum value of k for
which a given pair X,Y satisfies Theorem 9.1.12. There are many examples
for which k = 1 suffices, and it is possible that k = 1 is always sufficient.
Pairs requiring k > 1 would be difficult to detect, due to the lack of suit-
able invariants. We proceed to list some families for which k = 1 suffices,
as well as related results on nonuniqueness of connected sum decomposi-
tions. Following [G10], we say that a simply connected 4-manifold X dis-

solves if it is diffeomorphic either to the connected sum #nCP2#mCP2 or
to ±(#nK3#mS2 × S2) for some n,m ≥ 0.
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Theorem 9.1.15. ([Ma1], [Msh]) If S is a complex surface which is either
a complete intersection (e.g., Sd of Section 1.3) or a simply connected elliptic
surface, then S#CP2 dissolves.

Note that Exercise 8.3.4(d) impliesE(n)#CP2 dissolves. Recall that ifX has

odd intersection form, then the connected sum X#CP2#CP2 is diffeomor-
phic to X#S2 × S2 (cf. Proposition 5.2.4); hence, the above theorem gives

examples of homeomorphic, nondiffeomorphic pairs (X,#nCP2#mCP2) for
which the required k of Theorem 9.1.12 is equal to 1.

Proposition 9.1.16. Assume that Y admits a handle decomposition with
no 1- or 3-handles. Then the connected sum Y#Y dissolves.

Proof. Take the union Y2 of the 0- and 2-handles of Y in the handle
decomposition with no 1- or 3-handles. The double of Y2 is obviously Y#Y
(cf. Example 4.6.3), hence Corollary 5.1.6 implies the proposition.

Since the elliptic surfaces E(n)p and the complete intersections Sd (cf. Sec-
tion 1.3) admit handle decompositions without 1- or 3-handles (cf. Corol-
laries 6.3.19 and 8.3.17), the above proposition implies that the connected

sums E(n)p#E(n)p and Sd#Sd dissolve. If a simply connected Y has a han-
dle decomposition with no 3-handles and l 1-handles, then Y#Y#lS2 × S2

dissolves by Exercise 5.1.10(b).

Remark 9.1.17. One might hope that any closed, simply connected 4-man-
ifold has a handle decomposition with no 1- or 3-handles, or at least without
1-handles. This problem is still open (for E(n)p,q, p, q ≥ 2, for example); for
manifolds with boundary there are compact, contractible counterexamples
(cf. the problem list [K4], Problem 4.18).

Additional results about dissolving connected sums can be found in [Ma1],
[G5], [G10] (cf. also Theorem 8.4.10). For example, if S and S′ are simply
connected elliptic surfaces, then the manifolds S#S2 × S2 and S#S′ dis-
solve (cf. Exercise 8.3.19). The same holds if S, S′ or both are complete
intersections, provided that QS is odd. Nothing is known about dissolving
manifolds of the form S#S′ when the summands are compatibly oriented
complex surfaces different from blow-ups of S2 × S2 or CP2.

Since cobordism theory can be applied to the study of low codimensional
embeddings, we close this section by stating some classical facts about em-
beddings of manifolds in Euclidean spaces. First of all, by a theorem of
Whitney an n-dimensional manifold (as defined in Definition 1.1.1) can al-
ways be assumed to be a submanifold of the Euclidean vector space R2n.
For infinitely many values of n, the exponent 2n cannot be improved. (For
n-manifolds which cannot be embedded in R2n−1 see [MS].) Here we state
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the relevant results for manifolds of dimension ≤ 4. First, it can be easily
seen that if dimX = n ≤ 2, then an orientable X embeds in Rn+1.

Theorem 9.1.18. Any closed, orientable 3-manifold M admits an embed-
ding in R5.

Proof. As we have seen (Remark 1.4.27(b) and Theorem 5.7.14), an ori-
entable 3-manifold M bounds a spin 4-manifold X, which can be chosen
to be a 2-handlebody (i.e., D4 ∪ 2-handles). The double DX (in which
M embeds) is diffeomorphic to #nS2 × S2 (cf. Corollary 5.1.6). Since
#nS2 × S2 = ∂(�nS2 × D3) embeds in R5, the theorem follows. (Cf. also
Exercise 5.7.15(b).)

Remark 9.1.19. We have already seen that not every oriented 3-manifold
embeds in R4. For example, the Poincaré homology sphere (or any homo-
logy sphere with nontrivial Rohlin invariant) does not embed smoothly in
R4, although for any homology sphere M , I×M embeds topologically in R4

(Exercise 5.7.17(b)). For 3-manifolds with torsion in H1(M ;Z), the linking
form provides an obstruction (Exercises 4.5.12(c,d), 5.3.3(c) and 5.3.13(g));
the same reasoning applies in the topological category to obstruct homeo-
morphic embeddings I ×M ↪→ R4.

Exercise 9.1.20. ∗ LetX be any compact 4-manifold withQX unimodular,
negative definite and not isomorphic to n〈−1〉 (e.g., any such form is realized
by a 2-handlebody). Prove that ∂X does not embed smoothly in S4. (For
related examples, see [CG].)

Note that the questions of embedding Xn in Rk or in the sphere Sk =
Rk ∪ {∞} are equivalent. By generalizing the method of finding a Seifert
surface for a knot S1 ↪→ S3 (cf. Section 4.5) to an embedding Xn ↪→ Sn+2,
and observing that a codimension-1 oriented submanifold of a spin manifold
inherits a spin structure, one can prove the following.

Theorem 9.1.21. If a smooth, closed, oriented manifold Xn can be embed-
ded in Rn+2, then X is nullcobordant and admits a spin structure that is
trivial in Ωspin

n . Consequently, if such a 4-manifold X embeds in R6, then
X is spin and σ(X) = 0.

Remark 9.1.22. In fact, the converse of the above theorem also holds for
4-manifolds: X4 embeds in R6 iff X4 is spin and σ(X4) = 0. (See, for
example, [Rb1].)

Theorem 9.1.23. Any orientable, smooth, closed 4-manifold X admits an
embedding in R7.

Remark 9.1.24. By a theorem of Boéchat and Haefliger, X4 embeds in R7

iff there exists a characteristic element α ∈ H2(X;Z) such that QX(α, α) =
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σ(X) ([BH]). Such an α can be found if QX is indefinite (cf. Exer-
cise 1.2.23(a)), and by Donaldson’s Theorem 1.2.30 (and Remark 2.4.30) it
is easy to find for definite intersection forms of smooth 4-manifolds. In fact,
the property that the shortest characteristic vector has length rk (which is
equal to σ for a positive definite intersection form) characterizes n〈1〉 among
positive definite intersection forms. (See Theorem 2.4.28.) Note that the
exponent 7 in Theorem 9.1.23 cannot be improved in general, since there
are 4-manifolds which are not nullcobordant (cf. Theorem 9.1.21). Theo-
rem 9.1.23 was the last case in proving that any orientable n-dimensional
manifold (n ≥ 2) embeds in R2n−1. For nonorientable 4-manifolds, one can
show that RP4 does not embed in R7 [MS].

9.2. h-cobordisms

One of the most important ingredients of the smooth classification program
for manifolds with dimension n ≥ 5 is the h-Cobordism Theorem of Smale.
In the following we will give an outline of the proof of this theorem, and
then list some relevant results in dimension 4.

Definition 9.2.1. Two simply connected, closed, oriented n-dimensional
manifolds X−, X+ are h-cobordant if there is a cobordism W between them
such that the inclusions i± : X± ↪→ W are homotopy equivalences between
X± and W .

For the proof of the following theorem see, e.g., [M4], [RS] or [Sm]; here
we restrict ourselves to outlining the main ideas involved in the proof.

Theorem 9.2.2. (The h-Cobordism Theorem) If W is an h-cobordism be-
tween the simply connected n-dimensional manifolds X− and X+, and n ≥ 5,
then W is diffeomorphic to the product I ×X−. In particular, X− is diffeo-
morphic to X+.

Fix the convention that ∂−W = X− and ∂+W = X+. Starting with
a relative handle decomposition of (W,X−), one wants to prove that all
handles of this decomposition can be cancelled, so W is in fact diffeomorphic
to I × X−. This program involves two major steps. As the first step, the
following proposition can be proved.

Proposition 9.2.3. Consider a relative (n + 1)-dimensional handlebody
(Wn+1, Xn

−) with n ≥ 4 and Xn
± nonempty and connected; assume further-

more that π1(W ) = 1. Then we can modify the handle decomposition of W
so that it involves no 0-,1-,n- or (n+1)-handles.

Proof. By the trick of turning the handlebody upside down, it is clear that
we have to prove the statement only for the 0- and 1-handles. By Proposition
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4.2.13, all 0-handles can be cancelled (against some 1-handles). For every
remaining 1-handle, we will introduce a cancelling 2-3 handle pair such that
the 2-handle cancels with the 1-handle. (Thus we “trade” a 1-handle for a
3-handle. Note that since n ≥ 4, this procedure introduces no handles of
index ≥ n.) Take an arc α in ∂+W2 parallel to the core of the 1-handle
h. (As usual, W2 is the handlebody obtained from I × X− by adding the
1- and 2-handles of W .) By attaching an arc to α in {1} × X−, we get a
circle K in ∂+W2. If a 2-handle is attached to W2 along K (with arbitrary
framing), it will cancel h. On the other hand, for the unknot K0 lying
in X−, a 2-handle attached to I × X− along K0 with the trivial framing
can be cancelled by a 3-handle. (For cancelling pairs, see the explanation
after Exercise 4.2.8.) Hence we only have to prove that K can be isotoped in
∂+W2 to K0. (Note that to cancel h the framing of K can be arbitrary, so we
can choose it to correspond to the trivial framing on K0 under the isotopy.)
Since dim ∂+W2 ≥ 4, homotopy implies isotopy (cf. Example 4.1.3), hence it
is enough to find a homotopy in ∂+W2 between K and K0. The assumption
that π1(W ) = 1 implies that W2 is simply connected (since the 2-handles
must kill the fundamental group generated by X− and the 1-handles), hence
there is a homotopy between K and K0 in W2. This homotopy can be easily
pushed into the boundary ∂+W2: In fact, for dimensional reasons, we may
assume that the homotopy in W2 (which is a map of an annulus) is disjoint
from the cores of the 1- and 2-handles (extended down to ∂−W ), so we can
push off of [0, 1) × X− and then radially away from the cores into ∂+W2.
This concludes the proof of the proposition.

Remark 9.2.4. Note that the proposition holds for n = 4 as well. (In fact,
we will use Proposition 9.2.3 for analyzing h-cobordisms between simply
connected 4-manifolds.) A modification of the proposition works in the
case n + 1 = 4 as well, giving a (weaker) result about the possible handle
cancellations in a 4-dimensional handlebody (cf. also Remark 9.1.17). This
version will be given later; see Lemma 9.2.17.

Definition 9.2.5. Assume that Y n
1 , Y m

2 are transversally intersecting, ori-
ented, smooth submanifolds of complementary dimensions in the oriented
manifold Xn+m. The geometric intersection number of Y1 and Y2 is simply
the cardinality of the set Y1∩Y2. The algebraic intersection number of Y1 and
Y2 is by definition the sum of the signs of the intersection points (cf. the text
before Proposition 1.2.5). We will denote the algebraic intersection number
by Y1 ·Y2. The number Y1 ·Y2 is not necessarily equal to Y2 ·Y1 — the abso-
lute values of the two, however, will be the same. Assume that h1 and h2 are
two handles in a handle decomposition and index(h1) =index(h2)−1. If the
attaching sphere A of h2 intersects the belt sphere B of h1 transversally in
a single point, then the pair h1, h2 can be cancelled (cf. Proposition 4.2.9).
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If we have only A · B = ±1, we say that h2 algebraically cancels h1. More
generally, we define the algebraic intersection h1 · h2 of the two handles as
B ·A.

We now turn back to the h-cobordism (W,X±), which (by Proposi-
tion 9.2.3) has no 0-, 1-, n- or (n+1)-handles. Since H∗(W,X−;Z) = 0, the
chain groups Ci(W,X−) admit bases {ki1, . . . kini

} with the following prop-

erty: The elements of the set {kij |2 ≤ i ≤ n− 1, 1 ≤ j ≤ ni} can be paired

up as {(kil1 , k
i−1
l2

)} such that ∂∗kil1 = ki−1
l2

. According to the description
at the end of Section 4.2, a handle decomposition always defines bases of
the chain groups Ci(W,X−); moreover, any basis change can be achieved
by appropriate handle slides. Consequently, we may assume that the han-
dle decomposition defines bases of the groups Ci(W,X−) with the property
described above. More precisely:

Proposition 9.2.6. The relative handlebody (W,X−) admits a handle de-
composition (with no 0-, 1-, n- or (n+1)-handles) such that for each handle
hi1 there is a unique handle hi2 (with |index(hi1)−index(hi2)| = 1) such that
hi1 · hi2 = 1 and the algebraic intersection of hi1 and hi2 with each further
handle is 0.

Now we would like to cancel these pairs (hi1 , hi2), which would finish the
proof of Theorem 9.2.2. Note, however, that to cancel a pair we need the
intersection number of the corresponding attaching and belt sphere to be
geometrically 1. In showing that A and B can be isotoped to achieve that
their algebraic intersection number equals their geometric intersection num-
ber, one uses the Whitney trick .

Theorem 9.2.7. (Whitney trick) Let Y n
1 , Y m

2 be transversally intersecting,
connected, smooth submanifolds of complementary dimensions in the simply
connected (n + m)-manifold Xn+m. Assume furthermore that m ≥ 3 and
n ≥ 2 (and when n = 2, π1(X − Y2) = 1). If p, q ∈ Y1 ∩ Y2 are intersection
points with opposite signs, then there exists an isotopy ϕt (t ∈ [0, 1]) of idX
such that ϕ1(Y1) ∩ Y2 = Y1 ∩ Y2 − {p, q}.

Proof (sketch). The proof of Theorem 9.2.7 goes roughly in the following
way. Connecting p and q by arcs in Y1 and Y2 respectively, one defines a
circle C in X. Since X is simply connected, there is a map f : D2 → X with
f(∂D2) = C. By the dimension assumptions, f can be assumed to be an
embedding (since dimX ≥ 5) with f(int D2) disjoint from Y1 and Y2. (The
circle C is usually referred to as the Whitney circle corresponding to p and
q, while f(D) is their Whitney disk.) To define the isotopy ϕt, one merely
needs to identify a neighborhood of the Whitney diskD with the local model
suggested by Figure 9.1. This is easy, provided that the normal bundles of
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C in Y1 and Y2 match up with the corresponding bundles in the model.
Essentially, one needs to identify D as the core of a 2-handle attached to a
neighborhood of Y1 ∪ Y2 with a suitable framing. Such an identification can
be constructed using the hypotheses on dimension and the assumption that
the intersection points p and q have opposite signs.

p
q

)

C
D

1

Y2

Y1

Y2

(Y1

Figure 9.1. Whitney trick.

Exercise 9.2.8. Show that Theorem 9.2.7 can be applied whenX = ∂+Wk,
Y1 is the belt sphere and Y2 is the attaching sphere of a k- and (k+1)-handle,
respectively; i.e., check that π1(X) = 1, π1(X − Y2) = 1 if k = n − 2 and
π1(X − Y1) = 1 for k = 2. (Hint : Show that for k = 2, the complement of
the belt spheres in X is diffeomorphic to X− minus the attaching circles of
the 2-handles, using the fact that the decomposition of W does not contain
1-handles. Since π1(X−) = 1, this completes the k = 2 case; the k = n − 2
case proceeds similarly.)

Proof of Theorem 9.2.2. Now the proof of the h-Cobordism Theorem can
be finished without any further difficulty. Note first that since W has no
0-, 1-, n or (n + 1)-handles, the paired attaching and belt spheres have
dimensions ≥ 2. Isotope the spheres of the algebraically cancelling pairs
of Proposition 9.2.6 using the Whitney trick and cancel each pair. At the
end of this process we are left with a decomposition of W with no handles,
proving that W is, in fact, diffeomorphic to I ×X−.

The h-Cobordism Theorem has resulted in many important theorems in
manifold topology, among which we mention only one.

Theorem 9.2.9. (Smale, [Sm]) If Xn is a closed, simply connected, smooth
manifold of dimension n ≥ 5 and H∗(Xn;Z) ∼= H∗(Sn;Z), then Xn is
homeomorphic to Sn.

Remark 9.2.10. The above result is often called the Generalized (Topo-
logical) Poincaré Conjecture. Note that for n = 4 the theorem of Freedman
(Theorem 1.2.27) gives the same result; the n = 3 case is still open, cf. Con-
jecture 1.1.7. One can ask the corresponding question for diffeomorphism as
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well: Is a smooth manifold Xn that is homeomorphic to Sn actually diffeo-
morphic to it? The answer to this question is yes in a few dimensions, e.g.
3,5,6, but no in general. The question is still open in dimension 4. In high
dimensions, exotic spheres (manifolds homeomorphic but not diffeomorphic
to Sn) have been extensively studied (cf. [KeM1]). For n ≥ 6, Theo-
rem 9.2.9 can be proved by removing the interiors of two disks from Xn to
obtain an h-cobordism between two copies of Sn−1. It follows immediately
that X can be decomposed as a union of a 0-handle and an n-handle, cf.
Example 4.1.4(c). For n = 5, the same decomposition occurs since X5 is
h-cobordant (hence diffeomorphic) to S5. For n ≤ 4, however, such a simple
handlebody is necessarily diffeomorphic to Sn, so an exotic 4-sphere would
be qualitatively different: a 4-handle attached to an exotic 4-ball (which
would be a smooth 4-manifold homeomorphic but not diffeomorphic to D4).

Ai

Bj Bj

Ai

Figure 9.2. Finger move.

The proof of the Whitney trick cannot be carried out for 4-dimensional
manifolds, so we cannot simplify the corresponding h-cobordisms in this
way. As we will see, not only does the proof of Theorem 9.2.7 fail, but the
statement itself is false in dimension 4. In the following, we will outline
what one can do in the 4-dimensional case; cf. also [K2]. Recall that
if (W,X±) is a given h-cobordism between the 4-manifolds X±, then (by
Proposition 9.2.3) we can assume that the handle decomposition of W has
only 2- and 3-handles; moreover (by Proposition 9.2.6) the attaching 2-
spheres of the 3-handles (denoted by Ai) and the belt 2-spheres of the 2-
handles (denoted by Bj) intersect algebraically according to the Kronecker
symbol δij . The manifolds (X,Y1, Y2) for which we would like to apply the
Whitney trick are ∂+W2 (the 4-dimensional boundary of the 5-dimensional
relative 2-handlebody in W ) and the spheres Ai and Bj described above.
The main problem arises from the fact that the Whitney disk D cannot be
embedded, only immersed in dimension 4. In fact, it requires some additional
work just to prove that int D can be chosen to be disjoint from the 2-spheres
Ai and Bj — it involves applying finger moves to the spheres (see [C] and
Figure 9.2) to arrange for the complement of the union of all attaching and
belt spheres to be simply connected. By applying finger moves (which can be
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regarded as “inverse Whitney tricks”) we increase the geometric intersection
of the spheres Ai and Bj while leaving Ai ·Bj unchanged. This seems to run
contrary to our original goal (of making algebraic and geometric intersections
equal), but in this way we can at least achieve that ∂+W2 − (∪Ai ∪ Bj) is
simply connected, hence the above program for proving the h-Cobordism
Theorem can be begun. That is, the usual Whitney circles and (immersed)
Whitney disks can be specified for the pairs of intersection points p, q in
Ai ∩ Bj with opposite signs. If the Whitney disk D appearing in the proof
of Theorem 9.2.7 can be embedded (with suitable normal framing), we may
think of it as the core of a (suitably framed) 2-handle, and then by the
method of proof of Theorem 9.2.7 the points p and q can be removed from
Ai ∩ Bj . In dimension four, however, D is only immersed, hence it only
defines a kinky handle (cf. Example 6.1.3).

Given an h-cobordism between simply connected 4-manifolds, we can do
several things. First, we can attempt to turn the Whitney disks into suitably
embedded disks. By a delicate argument [C], one can at least arrange for
them to be disjointly immersed, such that the corresponding kinky handles
are attached to a neighborhood of the spheres with the correct framings.
One can now attempt to transform the kinky handles into 2-handles by
ambiently attaching 2-handles to the 0-framed meridians of their dotted
circles as in Example 6.1.3. Again this fails, but a similar delicate argument
allows one to attach disjoint kinky handles to the dotted circles to obtain
2-stage Casson towers. Continuing in this manner, one can construct n-
stage Casson towers for each n, and taking the union (after removing part
of the boundary) will give a Casson handle attached to each Whitney circle
C (cf. also Example 6.1.3). Applying Freedman’s fundamental result that a
Casson handle is homeomorphic toD2×intD2, we obtain homeomorphically
embedded Whitney disks and conclude:

Theorem 9.2.11. An h-cobordism between simply connected 4-manifolds is
topologically trivial.

As we will see, this implies that smooth 4-manifolds with isomorphic inter-
section forms are homeomorphic (cf. Theorem 9.2.13), which is a major step
in Freedman’s Classification Theorem 1.2.27. On the other hand, we know
that many h-cobordisms are smoothly nontrivial. We will exploit this fact
and a closer analysis of the above argument to prove the existence of exotic
R4’s, and exhibit an explicit family of nontrivial h-cobordisms which show
that the manifold R (given in Figure 6.16) is an exotic R4 (see Section 9.3).
Proceeding in a different direction, if we stop after specifying the first (im-
mersed) Whitney disks for the Whitney circles (hence we have only 1-stage
Casson towers), then an appropriate version of Proposition 9.2.3 will show
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that any h-cobordism is trivial away from a compact, contractible subman-
ifold called Akbulut’s cork (Theorem 9.2.18). Our discussion of these topics,
commencing with Lemma 9.2.17, will begin with the proof of this latter
statement, and we will return to the existence of exotic R4’s in the next
section.

First we would like to find conditions guaranteeing that smooth 4-man-
ifolds are h-cobordant. An h-cobordism W between the simply connected
4-manifolds X− and X+ naturally induces an isomorphism ϕW between the
intersection forms (H2(X+;Z), QX+) and (H2(X−;Z), QX−), by the formula

ϕW = (i−)−1
∗ ◦ (i+)∗ : H2(X+;Z) → H2(X−;Z) (where i± : X± ↪→ W ). In

fact, the converse of this statement also holds:

Theorem 9.2.12. If ϕ is an isomorphism between the intersection forms
QX− and QX+, then there is an h-cobordism W between X− and X+ such
that ϕW = ϕ.

We will indicate the proof of a slightly weaker result, namely

Theorem 9.2.13. (Wall, [W3]) If two simply connected, smooth 4-man-
ifolds have isomorphic intersection forms, then these manifolds are h-
cobordant.

Coupling this with our previous statement that such an h-cobordism is
homeomorphic to the trivial h-cobordism, we recover Freedman’s result that
smooth, closed, simply connected 4-manifolds with isomorphic intersection
forms are homeomorphic. Inverting this reasoning for our present purposes,
we obtain that simply connected, smooth 4-manifolds are h-cobordant iff
they are homeomorphic. In particular, the existence of homeomorphic but
nondiffeomorphic 4-manifolds proves the failure of the smooth h-Cobordism
Theorem in dimension 4.

Proof of Theorem 9.2.13 (sketch). Consider the relative handlebodies W2

and W ∗
2 found in the proof of Theorem 9.1.12. We only need to find a

diffeomorphism f to glue ∂+W2 to ∂+W
∗
2 in such a way that the resulting

handlebody W ′ = W2 ∪f W
∗
2 is homotopy equivalent to X− (or X+), and

so gives the desired h-cobordism. To achieve this, however, we only have
to match up the 2- and 3-handles to cancel each other algebraically . Thus,
it suffices to find a diffeomorphism f : ∂+W2 → ∂+W

∗
2 such that (after we

identify ∂+W2 and ∂+W
∗
2 with X−#kS2 × S2) the induced map f∗ is a

suitably prescribed automorphism of (H2(X−#kS2 × S2;Z), QX−#kS2×S2).
The existence of this diffeomorphism is guaranteed by the following theorem.

Theorem 9.2.14. (Wall [W2]; see also [K2]) Assume that the smooth, sim-
ply connected 4-manifold Y has an indefinite intersection form. Then any
automorphism of (H2(Y#S2 × S2), QY#S2×S2) is induced by a diffeomor-

phism of Y#S2 × S2.
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Adding a further cancelling 2-3 handle pair to W if necessary (to ensure
that X−#(k− 1)S2 × S2 is indefinite), we can apply Theorem 9.2.14 in our
case, and this concludes the proof of Theorem 9.2.13.

Example 9.2.15. Using Theorem 9.2.12, a nontrivial h-cobordism W
can be constructed as follows. Take the K3-surface E(2) and define
ϕ : H2(E(2);Z) → H2(E(2);Z) as multiplication by −1. This is obviously
an automorphism of QE(2) — hence it gives rise to an h-cobordism W of
E(2) with itself. The triviality of W would imply that ϕ = ϕW is in-
duced by a self-diffeomorphism f : E(2) → E(2). We use Theorem 2.4.3
and Remark 2.4.4(c) to show that such an f cannot exist. Since f∗

is the map −1 on H2(E(2);Z), it reverses the orientation of the rank-3
subspace H+(E(2);Z). Hence (by Theorem 2.4.3 and Remark 2.4.4(c)),
SWE(2)(K) = −SWE(2)(f

∗K) for a basic class K. The facts that f∗(0) = 0
and SWE(2)(0) �= 0 contradict the existence of f . (Note that this argument
can be extended without change to the 4-manifolds E(2n)p,q with p, q odd.)

Remark 9.2.16. In fact, there is only one nonproduct h-cobordism (up
to diffeomorphism) from E(2) to itself (see [Lw1]). More generally, if X
is a closed, smooth, simply connected 4-manifold and QX is not definite,
then there is a unique nonproduct h-cobordism Wnp from X to itself, and
Wnp can be built on I × X by attaching a single 2- and 3-handle pair.
Lawson [Lw1] also found similar results for Dolgachev surfaces E(1)p,q (with
p, q ≥ 2, gcd(p, q) = 1): There is a unique h-cobordism Wp,q between E(1)
and E(1)p,q (which is trivial iff p = 1 or q = 1). If it is nontrivial, Wp,q can
be built with one 2- and one 3-handle on I×E(1). On the other hand, there
are infinitely many nondiffeomorphic h-cobordisms between any fixed pair
of nondiffeomorphic Dolgachev surfaces. Using similar techniques, one can
prove the “converse” of Theorem 9.1.12: If X−#kS2 × S2 is diffeomorphic
to X+#kS2×S2, then there exists an h-cobordism W between X− and X+

which is built on I ×X− with k 2-handles and k 3-handles.

Next we will give the counterpart of Proposition 9.2.3 in the case n = 3.
(Throughout the following arguments the distinction between algebraic and
geometric intersections will be crucial. For a better understanding of the
difference, the link shown in Figure 4.29 might be helpful; it shows two
unknots linked algebraically once but geometrically three times.)

Lemma 9.2.17. Suppose that (Z4, ∂−Z4) is a 4-dimensional relative han-
dlebody with ∂−Z4 connected and π1(Z) = 1. For every 1-handle h of this
decomposition, one can introduce a cancelling 2-3 handle pair such that the
2-handle cancels h algebraically (but not necessarily geometrically). In fact,
one can arrange the attaching circles of the new 2-handles to represent the
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canonical basis for the free factor of π1(Z1) determined by the 1-handles
(suitably attached to the base point).

Proof. We adopt the notation of Proposition 9.2.3 with the change that
the cobordism is now denoted by Z. Fix an unknot K0 ⊂ ∂+Z2 (so that K0

bounds an embedded disk D2 in the 3-manifold ∂+Z2); since Z4 is simply
connected, we can find a homotopy F between K and K0 in Z (as in the
proof of Proposition 9.2.3, cf. also the solution of Exercise 5.1.10(b)). In
the 4-dimensional case we consider now, however, the homotopy F cannot
be pushed into the boundary (as we did in the higher dimensional case).
The annulus F can be assumed to miss the cores of the 1-handles, but it
might intersect cores of 2-handles. For such an intersection point P , form
the band-sum of the boundary circle of a small disk around P in F with the
circle K using a band contained in F ; the resulting circle will be denoted by
K ′, cf. Figure 9.3.

K

F P

K0 K'

'F

K0

Figure 9.3. Removing the intersection of an annulus and the core of a
2-handle.

By deleting the band and the normal disk of P from F we get a homotopy
F ′ between K ′ and K0 which now intersects the cores of the 2-handles in
one less point than F did. Repeating this process, we end up with a circle
K ′

1 in Z2 which is homotopic to K0 by a homotopy missing the cores of the
1- and 2-handles. Pushing this homotopy into ∂+Z2, we get a circle K1 (the
image of K ′

1) together with a homotopy between K1 and K0 in ∂+Z2. It is
clear that K1 goes over the 1-handle h algebraically once: If D denotes the
cocore of the 1-handle h, then obviously K1 ·D = K ·D = ±1 (so a 2-handle
attached along K1 cancels h algebraically); the geometric intersection of K1

and D, however, might differ from 1 (since the bands might run over 1-
handles). The dimension of ∂+Z2 is 3, so homotopy does not imply isotopy.
In fact, the homotopy fails to be an isotopy at finitely many times when the
knot crosses through itself (cf. the solution of Exercise 5.1.7(b)). Let Kε

be the knot obtained from K0 by the first such crossing change. Clearly,
we can recover K0 from Kε by band-summing the latter with a meridian
of Kε along a suitable band. Now continue the homotopy of Kε, dragging
along the band and meridian (isotoping them so that they never intersect the
knot). Continuing this procedure for the other crossing changes, we obtain
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the knot K1 connected to meridians of itself by a finite collection of bands

(possibly running over 1-handles) in ∂+Z1 ∩ ∂+Z2. Let K̃ be the result of

performing all of the given band-sums on K1. Then K̃ is homotopic to K1

in ∂+Z1, so it goes over h algebraically once, and in fact represents the basis
element of π1(Z1) given by h. In particular, a 2-handle h2 attached to Z2

along K̃ will algebraically cancel h. However, K̃ is also isotopic to K0 in
∂+Z2, so h2 can be cancelled by a 3-handle. The same argument produces
a cancelling 2-3 handle pair for any circle representing an element of the
fundamental group π1(Z1) given by the core of a 1-handle; that element of
the fundamental group will evidently be killed by the 2-handle.

We close this section by discussing one further result about h-cobordisms
of 4-manifolds. We have seen that if W 5 is an h-cobordism between the
simply connected 4-manifolds X− and X+, then W 5 is not necessarily the
trivial cobordism I ×X−. It turns out, however, that W is “not far” from
being trivial. The main statement of the following theorem is due to Curtis
and Hsiang; variations and addenda of it were proved by Freedman and
Stong, Kirby and Bižaca, and by Matveyev. (See also [K3].) We extend the
notion of cobordism in the obvious way to manifolds with boundary.

Theorem 9.2.18. ([CFHS]) Suppose that W 5 is an h-cobordism between
X− and X+. Then there is a subcobordism V ⊂ W between the compact
4-manifolds Y± ⊂ X± such that W − int V is the product cobordism (i.e.
(W − int V,X+ − int Y+, X− − int Y−) is diffeomorphic as a triple to the
product I × (X− − int Y−)) and V , Y± are contractible.

Proof. According to Proposition 9.2.3, the h-cobordism W has a handle
decomposition with only 2- and 3-handles. As usual, the union of I × X−
with the 2-handles is denoted by W2, the belt spheres of the 2-handles
are denoted by Bj ⊂ ∂+W2, and Ai ⊂ ∂+W2 are the attaching spheres
of the 3-handles. We can assume that the algebraic intersection number
of Ai with Bj is δij by Proposition 9.2.6. Since this intersection number
is not necessarily the geometric intersection of Ai and Bj , there are extra
pairs of intersections {p1, q1, . . . , pk, qk} ⊂ Ai ∩ Bj , with a corresponding
(immersed) Whitney disk Dl for each pair (pl, ql). The interiors of these
disks can be assumed to be disjoint from the spheres Ai, Bj (cf. the text
before Theorem 9.2.11), but are generally only disjointly immersed and not
embedded. Note that surgery of ∂+W2 on the spheres Ai turns it into X+

while surgery on the spheres Bj turns ∂+W2 into X−. Take a (closed)
regular neighborhood C ⊂ ∂+W2 of the union of the spheres Ai, Bj (for all
i, j) and the Whitney disks. The neighborhood of the union of the spheres
Ai, Bj is obviously a plumbing manifold, hence we get C by adding kinky
handles to a plumbing manifold. Using this observation we can easily find
a Kirby diagram representing C. This description shows, in particular,
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that π1(C) is a free group, whose generators correspond to circles given
by arcs connecting pn, qm ∈ Ai ∩Bj (n �= m, hence without a Whitney disk
corresponding to the pair of intersections) and to the self-intersections of
the Whitney disks. Take a relative (4-dimensional) handle decomposition
of (∂+W2 − int C, ∂C), and consider C1 = C ∪ 1-handles of that relative
handlebody. By adding 1-handles to C we simply add more generators and
no relators to the fundamental group π1(C). Consequently, π1(C1) is a free
group of some rank n; note that H2(C1;Z) ∼= H2(C;Z) is generated by
the attaching and belt spheres {Ai} and {Bj}. Let �1, . . . , �n be circles in
∂C1 representing a basis of π1(C1). By adding all the remaining 2-handles of
∂+W2 to C1, we get a simply connected 4-manifold C ′. Now by applying the
method of the proof of Lemma 9.2.17 to each �i, we can introduce cancelling
2-3 handle pairs (hi, h

′
i) (i = 1, . . . , n) in C ′ in such a way that the 2-handles

hi kill the circles �i in π1(C
′). Define Y ⊂ ∂+W2 as the union of C1 with

the n 2-handles hi found above (i = 1, . . . , n). By construction Y is simply
connected, and the second homology of Y is generated by the spheres Ai

and Bj . Define Y+ ⊂ X+ as the surgery of Y on the attaching spheres Ai;
similarly we get Y− ⊂ X− by performing surgery on the belt spheres Bj .
The subcobordism V from Y− to Y+ is given by reversing the surgery on
the belt spheres Bj and then performing the surgery on Ai — recall that
surgery corresponds to cobordism (Example 9.1.2(b)). Since it contains no
handles at all, the cobordism W − int V is trivial.

The only thing remaining to prove is that Y− and Y+ are contractible.
(This implies that V is contractible: The condition π1(V ) = 1 follows from
the fact that we get V by adding 2- and 3-handles to Y−, and since these
handles cancel each other algebraically, we also obtain H∗(V ;Z) = 0.) Since
the second homology of Y is generated by the spheres Ai and Bj , doing
surgery on one set of these spheres (which turns Y into Y− or Y+) gives an
acyclic 4-manifold. Hence we only need to prove that Y− and Y+ are simply
connected. For proving that π1(Y+) = 1, it is enough to show that for each
Ai there is an immersed sphere Si in Y which intersects Ai geometrically
once and is disjoint from all other spheres Aj — the corresponding result
for Bj will show that π1(Y−) = 1. (This immersed sphere will show that
the meridian of Ai can be contracted after the surgery is performed.) The
immersed sphere Si will be constructed using Bi as follows. Consider a pair
pl, ql ∈ Bi ∩ Aj of extra intersection points with a fixed immersed Whitney
disk in Y . Dragging Bi along this disk, we end up with an immersed sphere
not intersecting Aj in the chosen points pl, ql. Repeating this process for all
pairs of extra intersections, we end up with the desired immersed sphere Si,
which proves that π1(Y±) = 1, concluding the proof of the theorem.
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Remark 9.2.19. By a slight modification of the above arguments one can
achieve that V and I × Y± are in fact diffeomorphic to D5, and that Y−
is diffeomorphic to Y+ by a diffeomorphism inducing an involution on the
homology sphere ∂Y− = ∂Y+. One can also arrange the choice of Y± in
X± in such a way that the complements X±− int Y± are simply connected.
(For these addenda see [CFHS], [K3] and [Mtv].) Consequently, if X− is
homeomorphic to X+ (and X± are smooth, closed and simply connected),
then by cutting a contractible piece Y− out of X− and regluing it by an
involution of its boundary, we get a smooth 4-manifold diffeomorphic to
X+. This contractible piece Y− ⊂ X− also depends on the manifold X+;
the compact submanifold Y− is called an Akbulut cork corresponding to the
pair X±. Explicit examples of this construction will be given in the next
section.

9.3. Akbulut corks and exotic R4’s

At the end of the previous section, we saw that given a homeomorphic pair
X± of smooth, closed, simply connected 4-manifolds, we could transform
X− to X+ by removing an Akbulut cork, a certain contractible, smooth,
compact 4-manifold Y− ⊂ X−, and regluing it by an involution of ∂Y−.
We will now see that the argument can be modified to yield a contractible
open subset R− ⊂ X− with similar properties, such that R− will be an
exotic R4 if X+ is not diffeomorphic to X−. This latter argument predates
the previous one — in fact, much of it is due to Casson [C] in the 1970’s,
with the rest filled in by Freedman in the 1980’s. We begin by sketching
the construction in general (cf. also [K2]), and then restrict to an explicit
family of manifold pairs where the Akbulut cork is visible by Kirby calculus.
The explicit construction, which is a simplification of [BG], will also show
that the manifold R drawn in Figure 6.16 is an exotic R4.

Theorem 9.3.1. Let W be a smooth h-cobordism between closed, simply
connected 4-manifolds X− and X+. Then there is an open subset U ⊂ W
homeomorphic to I × R4 with a compact subset K ⊂ U such that the pair
(W −K,U −K) is diffeomorphic to a product I × (X− −K,U ∩X− −K).
The subsets R± = U ∩X± (homeomorphic to R4) are diffeomorphic to open
subsets of R4. If X− and X+ are not diffeomorphic, then there is no smooth
4-ball in R± containing the compact set K∩R±, so both R± are exotic R4’s.

Remark 9.3.2. Actually, the last statement holds whenever the h-cobor-
dism W is nontrivial. We can also arrange for the manifolds R± to be
diffeomorphic to each other in such a way that the product structure on
U − K determines an involution of R− minus a compact subset (cf. Re-
mark 9.2.19). We can easily change K to make it homeomorphic to I ×D4

(as a triple) with X±−K homeomorphic to X±−{pt.}. (Take a sufficiently
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large topological S3 in R− and extend it to I × S3 ⊂ W using the product
structure outside of the original K, then fill in to get the new K.) For more
on these and other exotic 4-manifolds, see the next section (and also [K2]).

Proof of Theorem 9.3.1. As before, we find a handle decomposition of
(W,X−) with only 2- and 3-handles, whose belt and attaching spheres inter-
sect as Ai · Bj = δij in ∂+W2 (Proposition 9.2.6). Recall (preceding Theo-
rem 9.2.11) that after modifying the spheres Bj if necessary, we can find Cas-
son handles in ∂+W2 determining topological Whitney disks, then perform
the Whitney trick to trivialize W up to homeomorphism. Let N ⊂ ∂+W2

denote the union of these Casson handles with an open regular neighbor-
hood (which we assume is connected) of the attaching and belt spheres.
Now π1(N) is free, with generators given by the extra pairs of intersections
of attaching and belt spheres. Using the Whitney trick, one can easily verify
that N is homeomorphic to #kS2 × S2 − {pt.} with an additional 1-handle
attached for each generator of π1 (and with boundary removed). To elimi-
nate these 1-handles, one returns to the construction of the Casson handles
and verifies that the algorithm also allows us to simultaneously construct
additional Casson handles determining accessory disks. These are charac-
terized by the condition that the new Casson handles should topologically
cancel the 1-handles. Thus, if N ′ denotes the union of N with the new
Casson handles, then N ′ is homeomorphic to #kS2 × S2 − {pt.}. We see
immediately that surgery on either set of spheres {Ai} or {Bj} turns N ′

into a manifold R+ or R− homeomorphic to R4, and that the corresponding
open subset U ⊂ W is a topologically trivial h-cobordism from R− to R+

(cf. Theorem 9.2.18). If we take K ⊂ U to be the union of all cores and
cocores of handles of W , together with points of W below each attaching
sphere and above each belt sphere, then W −K is essentially the result of
removing all handles and their attaching regions (and points below) from
W , so it is a trivial (noncompact) cobordism.

Exercise 9.3.3. Describe K ∩X±. This will be a 2-complex in X± deter-
mined by the attaching spheres of the (5-dimensional) handles of W , so it
can be thought of as a relative Kirby diagram of (W,X±) one dimension
higher than usual.

To understand R± as smooth manifolds, first observe that U is diffeo-
morphic to an open subset of I × S4, such that the given smooth product
structure on U −K extends over I×S4−K. To construct such a structure,
simply mimic the construction of N ′ in W by adding cancelling 2-handle/3-
handle pairs to I×S4 and making finger moves in the resulting belt spheres
to match the original geometric intersection pattern of the spheres Ai and
Bj in ∂+W2. By trivially adding double points to the resulting embed-
ded Whitney and accessory disks in I × S4, one begins to build Casson
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U  4-handle
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(a)
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(c) (d)

Figure 9.4. A submanifold of E(n).

handles in the middle level to match those of N ′. Continuing in this man-
ner produces the required open subset of I × S4. We immediately obtain
R± exhibited as open subsets of R4. Now suppose that there is a smooth,
closed 4-ball D− ⊂ R− with K ∩ R− ⊂ int D−. (Such a ball obviously
exists if R− is diffeomorphic to R4.) The product structure on U −K sends
∂D− to a smooth 3-sphere in R+ bounding a compact manifold D+ with
K ∩R+ ⊂ D+ ⊂ R+, with X− − int D− diffeomorphic to X+ − int D+ and
similarly S4 − int D− ≈ S4 − int D+. Since any two smooth, orientation-
preserving embeddings D4 → X4 are isotopic (as one can show by approxi-
mating them by their derivatives at 0), the closure of the complement of any
ball in S4 is diffeomorphic to D4. Thus, D4 ≈ S4 − int D− ≈ S4 − int D+

and D+ ≈ D4. Hence, X+ and X− are both obtained by adding 4-handles
D± to the manifold X−− int D− ≈ X+− int D+, so X+ and X− are diffeo-
morphic.

To construct explicit examples of Akbulut corks and exotic R4’s deter-
mined by h-cobordisms, begin with an elliptic surface E(n), n ≥ 2. In
Theorem 8.3.2 we constructed the Kirby diagram of E(n) shown in (a) of
Figure 9.4 (which is the same as Figure 8.16). Now we cut down to a subhan-
dlebody (b), make the indicated handle slide and remove two more handles
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U

1 1 1 1

9n 2

0 0Y

(a) (b)

Figure 9.5. Akbulut cork Y in E(n)#CP2.

to obtain (c), which is isotopic to (d). We reduce the framing 1 to 0 by blow-
ing up a −1-framed meridian and then removing the new 2-handle to get
(a) of Figure 9.5. The subhandlebody Y shown in (b) is our example of an

Akbulut cork in E(n)#CP2. To see that Y has the required properties, first
note that Y is contractible. (For example, up to homotopy we may undo
the clasp and then cancel the handles. Such a contractible manifold made
from an algebraically cancelling 1-2 pair is often called a Mazur manifold .)
Next, observe that ∂Y is given by 0-surgery on the given link, and this link
is symmetric — i.e., there is an isotopy interchanging the two link compo-
nents. Let ϕ : ∂Y → ∂Y denote the resulting diffeomorphism (which we will
see can be taken to be an involution). We wish to show that the manifold

Xn obtained from E(n)#CP2 by cutting out Y and regluing it using ϕ is

not diffeomorphic to the complex surface E(n)#CP2 (although the two are
necessarily homeomorphic by Freedman’s Theorem 1.2.27). Our construc-

tion of Y essentially exhibited E(n)#CP2 as Y ∪handles, and regluing by ϕ
can be realized by interchanging the roles of the two circles in Figure 9.5(b)
(cf. Example 5.5.8). Thus, the dotted circle becomes a 0-framed 2-handle.
Tracing back to Figure 9.4(b), we see that the rightmost +1-framed unknot
is no longer linked with the dotted circle, so we can blow it down. Thus, Xn

splits off a CP2-summand, so by Theorems 2.4.6(1) and 2.4.7(1) it cannot be

a complex surface. We conclude that the diffeomorphism type of E(n)#CP2

is changed by cutting out the contractible submanifold Y and regluing it by
the involution ϕ on ∂Y , so Y is indeed an Akbulut cork. (Furthermore,

E(n)#CP2 − int Y is simply connected, since we could turn its handle de-
composition upside down to obtain a 2-handlebody.) Note that while the
proof of Theorem 9.2.18 allows no control of the complexity of the resulting
Akbulut corks, we have obtained an infinite family of pairs E(n)#CP2, Xn

(n ≥ 2) for which the Akbulut cork is a fixed Mazur manifold, and is the
simplest nontrivial contractible manifold. (This construction is a simplifica-
tion of [BG], and Akbulut’s original example [A3] is essentially the special
case n = 2.)

                

                                                                                                               



9.3. Akbulut corks and exotic R4’s 361

Exercise 9.3.4. Prove that Xn ≈ #(2n − 1)CP2#10nCP2. (Hint : Con-
struct a Kirby diagram for Xn. Its dotted circle has a −1-framed meridian
coming from the blow-up of E(n). Simplify the diagram as in Figure 8.22.
This liberates a CP2-summand, so the dotted circle can be eliminated by
blowing up its −1-framed meridian as in Exercise 8.3.4(d). Now a handle
slide yields Figure 8.22.)

0

0 0

1

Figure 9.6. h-cobordism from Y to itself.

To relate our cork Y to the h-cobordism description of Theorem 9.2.18,
consider Figure 9.6. Ignoring the two fine curves, we see a plumbing of two
spheres A,B with trivial normal bundles, A · B = 1 and one extra pair of
intersections (cf. Section 6.1). We can take this extra pair to correspond to
the middle and bottom clasp. (Note that these clasps have opposite sign as
required.) Now it is not hard to see that the meridian γ is a Whitney circle
(i.e., it is obtained from a circle in A∪B consisting of two arcs connecting the
given pair of intersections, by pushing into the boundary of the plumbing).
If we attach a 2-handle to γ with framing 0 instead of −1, then we obtain
a correctly framed Whitney disk, as we see by cancelling the 1-handle and
obtaining (S2 × S2 − int D4) ∪ 1-handle. The same cancellation shows that
the remaining fine framed circle gives an accessory disk (since it cancels the
remaining 1-handle).

Exercise 9.3.5. ∗ Show that if we surger out either A or B in Figure 9.6
(including fine curves), the resulting 4-manifold will be given by Figure 9.7,
where δ denotes the image of a 0-framed meridian parallel to γ. Verify
that this is diffeomorphic to Y and show that the above diffeomorphism
ϕ : ∂Y → ∂Y is the involution obtained by 180◦ rotation about a vertical
axis.

We immediately see that Figure 9.6 can be interpreted as the middle level
of an h-cobordism V from Y to itself, relative to a product structure I×∂Y
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1

0

Figure 9.7. The Akbulut cork Y .

on the lateral boundary of V that induces the map ϕ : ∂Y → ∂Y between
the boundaries of the two copies of Y . The induced handle structure on V
has a unique (5-dimensional) 2-handle/3-handle pair, and this algebraically
cancels but has a single extra pair of intersections between the attaching
sphere A and belt sphere B, and there is an embedded accessory disk. If we
glue together V and I × (E(n)#CP2− int Y ) along their lateral boundaries
I×∂Y , we obtain a nontrivial h-cobordismWn between the closed manifolds
E(n)#CP2 and Xn ≈ #(2n−1)CP2#10nCP2, with a handle decomposition
again satisfying the above description. The pair (Wn, V ) satisfies the con-
clusion of Theorem 9.2.18 with Y± = Y .

Exercise 9.3.6. Verify that this example satisfies Remark 9.2.19. (Use the
fact that a compact contractible 5-manifold is diffeomorphic to D5 if its
boundary is diffeomorphic to S4.)

We now wish to exhibit an exotic R4 by applying the method of The-
orem 9.3.1 to each of our examples Wn. Since there is a unique extra pair
of intersections in each middle level, and the pair has a smoothly embed-
ded accessory disk, it suffices to find a Casson handle attached to the cor-
rectly framed Whitney circle. That is, it suffices to find a Casson handle
in E(n)#CP2 − int Y whose framed attaching circle in ∂Y is given by δ in
Figure 9.7. Although such a Casson handle can be found directly by Cas-
son’s original work, we wish our Casson handles to be as simple as possible.
Thus, we invoke the following lemma of Bižaca [BG], which we prove below.

Lemma 9.3.7. The manifold E(n)#CP2− int Y contains a (9n− 3)-stage
Casson tower T9n−3 attached to the framed circle δ in ∂Y , such that each
stage of T9n−3 is a kinky handle with a single self-plumbing, whose sign is
positive.

Work of Freedman [F] (or Casson if we suitably deal with π1) now implies
that after we modify the top two stages of T9n−3 we can extend to an entire

Casson handle CH in E(n)#CP2−int Y whose first 9n−5 stages T9n−5 agree
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0

0 CH

Figure 9.8. Exotic R4.

with those of T9n−3. Thus, we obtain an exotic R4 as in Theorem 9.3.1. This
is obtained from a neighborhood of A∪B ∪ (accessory disk) by adding CH
and surgering out B, so it is given by Figure 9.6 with the −1-framed 2-handle
deleted, CH attached to γ with framing 0, and a dot added to one circle.
Simplifying as in Exercise 9.3.5, we obtain Figure 9.8, where the fine circle
denotes the Casson handle CH, and this Casson handle has a single self-
intersection at each of its first 9n− 5 stages. Unfortunately, this picture of
an exotic R4 is still not completely explicit, since the number of intersections
at each higher stage of CH will increase superexponentially. Fortunately,
however, we can now easily conclude that Figure 9.8 is an exotic R4 when
CH is the Casson handle CH+ with a single (positive) self-intersection at
each stage: For each n, the compact subset K ⊂Wn defined in the proof of
Theorem 9.3.1 intersects ∂−Wn only inside the compact submanifold K0 of
Figure 9.8 obtained by removing CH and a collar of the boundary (since K
descends from A ∪B in Figure 9.6). If Figure 9.8 were diffeomorphic to R4

for CH = CH+, then in that case we could find a smooth ball in the figure
containing K0. By compactness, the ball would still lie in the figure if we
replaced CH by the subtower T9n−5 for n sufficiently large. We would then

obtain the contradiction E(n)#CP2 ≈ Xn for this n as in Theorem 9.3.1.
We conclude:

Theorem 9.3.8. ([BG]) The interior R of the manifold shown in Fig-
ure 6.16, which is the same as Figure 9.8 with CH = CH+, is an exotic
R4.

Remarks 9.3.9. (a) To construct an h-cobordism U fromR to itself that is
topologically trivial but smoothly nontrivial relative to the induced product
structure near infinity (cf. Theorem 9.3.1), add a (5-dimensional) 2-handle
to I×R through the big 1-handle of Figure 9.8, turning the dotted circle into
a 0-framed 2-handle, then add a (5-dimensional) 3-handle to the opposite
sphere A, turning the rightmost 2-handle into a dotted circle. The resulting
manifold is diffeomorphic to R by 180◦ rotation about a vertical axis. The
same rotation gives an involution of R − int K0 (explicitly seen by putting
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1 1 1 1

9n 2

<      >0

<      >0

Figure 9.9. Casson tower factory.

the coefficient 〈0〉 on the three heavy circles as in Section 5.5); the involution
cannot be smoothly extended over R. Compare with Remark 9.3.2 and the
involution ϕ : ∂Y → ∂Y of the Akbulut cork, Exercise 9.3.5.

(b) For an explicit identification of R with an open subset of R4, see Ex-
ercise 6.2.5(a) and use the fact that any Casson handle arises as an open
subset of a 2-handle. To be explicit, define the Whitehead continuum in
∂D2 × D2 to be the intersection of the infinite nested family of solid tori
obtained by iterated positive (untwisted) Whitehead doubling of the circle
∂D2 × {0} (Remark 6.1.2). If C ⊂ D2 ×D2 is the cone on this Whitehead
continuum, and we embed (D2 × D2, ∂D2 × D2) ↪→ (D4, S3) as a tubular
neighborhood of the obvious ribbon disk of the (−3,−3, 3) pretzel knot (Fig-
ure 6.24), then int D4 minus the image of C will be diffeomorphic to R (cf.
[K2], the Appendix to Lecture 2 in [C], and the introduction of [BG]).

(c) We will see (Theorem 11.2.7) that the manifold R admits a Stein struc-
ture, that is, it is diffeomorphic to a closed, holomorphic submanifold of CN

for some N .

(d) Note that while we have proved that R is exotic, we did not actually
construct it inside an h-cobordism. The exotic R4’s we actually constructed
in E(n)#CP2 had more complicated Casson handles. (We will see in the next
section that uncountably many diffeomorphism types of exotic R4’s can be
obtained from Figure 9.8 by choosing CH to be sufficiently complicated.) In
practice, Casson handles constructed in 4-manifolds where smooth 2-handles
cannot be found tend to have many self-intersections in each kinky handle
(which makes Lemma 9.3.7 seem more remarkable). It is an open question
whether the Casson handle CH+ can ever occur in such a situation.

Proof of Lemma 9.3.7. Recall that Figure 9.7 is isotopic to Figure 9.5(b),

which lies in the submanifold Z of E(n)#CP2 pictured in Figure 9.5(a). We
isotope the 0-framed 2-handle and remove int Y as in Section 5.5 to obtain
Figure 9.9 of Z− int Y , which Bižaca refers to as a “tower factory.” We will

                

                                                                                                               



9.3. Akbulut corks and exotic R4’s 365

build T9n−3 in Z − int Y , attached to a 0-framed meridian η in ∂Y . Since
δ bounds a disk in Figure 9.7 that is punctured twice by the dotted circle
(whose meridian is η), we can then change our embedding of T9n−3 into the
desired one by boundary-summing its first-stage core disk with the core of
one of the 9n − 2 2-handles attached to −1-framed meridians. This leaves
9n− 3 available −1-framed 2-handles for the tower construction.

To construct T9n−3, first consider the punctured torus visible in Fig-
ure 9.9, whose boundary is η. A basis of its homology is given by the circles
λ and μ. Note that both of these are isotopic to the meridian η in ∂Y (check
this for λ!) and the normal framing of the torus induces the 0-framings on
λ, μ and η. Let τ1, . . . , τ9n−3 be disjoint parallel copies of this punctured
torus, so the circles ∂τi are (unlinked) meridians parallel to η. We can as-
sume that the corresponding parallel copies of μ are the attaching circles of
the 9n − 3 available −1-framed 2-handles. Use each 2-handle to ambiently
surger the corresponding punctured torus τi. That is, replace an annulus of
τi with a pair of oppositely oriented core disks of the 2-handle. Since the
framing is −1 rather than 0, the two disks will be forced to intersect once,
and since they are oppositely oriented, the intersection number will be +1.
Thus, each τi is transformed to an immersed disk Di with a single (posi-
tive) self-intersection. Figure 9.10 shows explicitly how a neighborhood of
τi transforms into a kinky handle when the −1-framed 2-handle is attached.
Since λ becomes a 0-framed meridian of the dotted circle of the kinky han-
dle, we will obtain a (9n− 3)-stage tower if we can glue each 0-framed ∂Di

onto λ on Di−1. But since λ and η are isotopic framed circles in ∂Y , it is
routine to fit the disks together as required; see the following exercise.

1

0
0

0 0

0

Figure 9.10. Transforming a punctured torus into a kinky handle.

Exercise 9.3.10. A common source of error in proofs involving embed-
dings of 2-complexes is that hidden intersections are frequently overlooked.
To be sure that this proof is correct, visualize T9n−3 in a level picture of
Z − int Y as in Section 6.2, and verify that it can be constructed without
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additional intersections. Why does the 2-handle core used at the end of
the first paragraph of the proof connect to ∂Y without intersecting T9n−3?
(What behavior must the disks in T9n−3 avoid for this to work?) Convince
yourself that the kinky handles in T9n−3 are really attached with the correct
framings. (Note that if we were allowed to attach at a given stage with
framing −1, then no self-intersections would be required.)

9.4. More exotica

We conclude this chapter by surveying the current state of the theory of
exotic smooth structures on R4 and other noncompact 4-manifolds. For
more details of some proofs and a more careful discussion of the early history
of the subject, see [K2].

The known smooth structures on R4 fall into two types, with rather
different properties. Both arise through the interplay between Freedman’s
theory of topological 4-manifolds and gauge-theoretic results on smooth 4-
manifolds, and the genesis of both types can be traced back further, to
Casson’s work [C] in the early 1970’s. In the previous section, we encoun-
tered one type of exotic R4, which arises from the topological success and
smooth failure of the h-Cobordism Theorem in dimension 4. These exotic
R4’s are diffeomorphic to open subsets of R4, and they have (infinite) han-
dle decompositions without handles of index ≥ 3. As we have seen, it is
possible to draw these handle structures, although there are complications
regarding how many self-intersections etc. are required. This type of exotic
R4 was predated by the other type, arising from the topological success and
smooth failure of high-dimensional surgery theory applied to dimension 4.
Such exotic R4’s have 4-dimensional compact submanifolds that cannot be
smoothly embedded in R4. We will call an exotic R4 large if it contains such
a submanifold and small otherwise. (Clearly, the exotic R4’s in the previous
section were small.) The known large exotic R4’s require infinitely many
3-handles in any handle decomposition, and there is presently no clue as to
how one might draw explicit handle diagrams of them (even after removing
their 3-handles). Certainly, their construction seems much too complicated
for a direct approach.

Exercises 9.4.1. (a)∗ Suppose there were an exotic R4 arising as the inte-
rior of a finite handlebody. Conclude that the smooth Poincaré Conjecture
would fail in either dimension 3 or 4 — i.e., there would be a simply con-
nected homology 3- or 4-sphere not diffeomorphic to S3 or S4. (Hint : See
Exercise 6.1.4(c).)

(b)∗ Suppose that X =
⋃∞

i=1Di, where each Di is diffeomorphic to D4 and
Di ⊂ int Di+1. Prove that X is diffeomorphic to R4. Thus, every exotic R4

contains a compact subset not lying in a smoothly embedded 4-ball.
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(c) Prove that the interior of any Casson handle is diffeomorphic to R4.
(Hint : Apply (b) and the fact that any n-stage tower is diffeomorphic to
#mS1 ×D3 for some m.)

We next sketch the construction of some large exotic R4’s. (See also
[K2] or [G1], [G4].) The following key lemma is proved below.

Lemma 9.4.2. There exist pairs (X,Y ) and (L,K) of smooth, oriented 4-
manifolds with Y,K compact and X,L open (i.e., noncompact and boundary-
less), L homeomorphic to R4 and QX a negative definite form not isomor-
phic to n〈−1〉, such that X− int Y and L− int K are orientation-preserving
diffeomorphic.

Theorem 9.4.3. Any L as above is a large exotic R4. In fact, there is a
compact 4-manifold K ′ ⊂ L that cannot be smoothly embedded in any closed,
negative definite 4-manifold.

W

ZL

X

Y Y

D

K

K'

D

K'

K

Figure 9.11. Proving L is a large exotic R4.

Proof. Fix a homeomorphism of L with R4, and let D ⊂ L correspond
to a round ball in R4 of sufficiently large radius that the given K lies in
int D (top left of Figure 9.11). Then L − D is homeomorphic to S3 × R.
The projection to R can be perturbed to a smooth, proper map f , and
we can set K ′ = D ∪ f−1(−∞, a] for any regular value a. If K ′ embeds
in a closed, negative definite Z, then we can remove the image of L − K ′

from X and replace it by Z −K to obtain a closed, smooth 4-manifold W
(Figure 9.11). Topologically, we are just forming a connected sum along
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∂D, so QW = QX ⊕QZ �= n〈−1〉 (as we can see by counting elements with
square −1), contradicting Donaldson’s Theorem (Remark 2.4.30).

Addendum 9.4.4. For X,L as Lemma 9.4.2, we can assume that X is
simply connected and either

(a) L ⊂ CP2, or

(b) L ⊂ #3S2 × S2 and QX
∼= −2E8.

Proof of Lemma 9.4.2 and Addendum 9.4.4. For (a), note that the element
x = 3h −∑8

i=1 ei ∈ 〈1〉 ⊕ 8〈−1〉 is a characteristic element with square 1,
so 〈x〉⊥ ∼= −E8 (cf. Proof of Proposition 2.1.4 in Section 2.2), and in 〈1〉 ⊕
9〈−1〉 we have 〈x〉⊥ ∼= −E8 ⊕ 〈−1〉 �∼= 9〈−1〉. Thus x ∈ H2(CP

2#9CP2;Z)
cannot be represented by a smoothly embedded sphere (since blowing down
would contradict Donaldson’s Theorem, cf. Exercises 2.3.6(c,d)). However
Casson’s work [C], [K2] allows us to represent x by a Casson handle attached
to D4 along a 1-framed unknot. By Freedman, the interior U of this subset
is homeomorphic to CP2 − {pt.}, and the corresponding topological sphere
S ⊂ U represents x. Since any Casson handle can be realized as a subset of
a 2-handle, we also have S ⊂ U ⊂ CP2. Now set X = CP2#9CP2 − S (so
QX
∼= −E8⊕〈−1〉), Y = X− int C for C any smooth, compact submanifold

of U containing S in its interior, L = CP2−S and K = CP2−int C. Clearly,
L is contractible and simply connected at infinity (cf. Exercise 6.1.4(c)), so
Freedman’s work implies that L is homeomorphic to R4. The proof of (b)

is similar, using the K3-surface in place of CP2#9CP2, six Casson handles,
and #3S2 × S2 in place of CP2.

Remark 9.4.5. With just a bit more care in (b), one can obtain a large
exotic R4 in S2×S2 and a smoothing of the thrice-punctured −2E8-manifold
such that near each of the three punctures the smooth structure agrees with
that on L− int K. (That is, X − int Y ≈ ∐

3(L− int K).) Theorem 9.4.3
applies as before.

Although it is not clear whether the manifolds L given by (a) and (b) of
the addendum can be diffeomorphic to each other, we can easily show that
there are many large exotic R4’s. We use the following operation [G1].

Definition 9.4.6. Let X1, X2 be noncompact, oriented 4-manifolds that
are simply connected at infinity (e.g., any exotic R4’s). Choose proper em-
beddings γi : [0,∞)→ Xi, remove a tubular neighborhood of γi(0,∞) from
each Xi and glue the resulting R3 boundaries together (respecting the ori-
entations on Xi) to obtain an oriented manifold that we will call the end
sum X1�X2.
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The hypothesis that Xi be simply connected at infinity guarantees that the
ray γi is unique up to ambient isotopy (Example 4.1.3 in the setting of
proper maps), so X1�X2 is well-defined. End summing is the noncompact
analog of boundary summing. An equivalent way to think of end summing
is to attach X1 to X2 with a piece of tape: Glue I × R3 to X1 and X2 by
identifying [0, 12)×R3 with a tubular neighborhood of γ1 and (12 , 1]×R3 with a
neighborhood of γ2. It is not hard to generalize to countable end sums �∞i=1Xi

by summing with R4 along a countable collection of rays [G4], and to verify
that these are independent of the order of the summands. (The end sum
of k ∈ {0, 1, 2, . . . ,∞} copies of X will be denoted �kX, with �0X = R4.)
Since X�R4 ≈ X in both the smooth and topological settings, the set R
of orientation-preserving diffeomorphism types of smooth structures on R4

inherits a commutative monoid structure (with identity R4), and this acts on
the set of orientation-preserving diffeomorphism types of smoothings of any
fixedX as above. The monoid (R, �) is far from being a group, however, since
infinite sums are defined: Any homomorphism h : R → G into a group is
trivial, since for any R ∈ R, h(�∞R) = h(R�∞R) = h(R)h(�∞R), implying
h(R) is the identity. Similarly, no exotic R4 has an inverse under �, since R
invertible implies R = R�(R−1�R)�(R−1�R)� · · · = (R�R−1)�(R�R−1)� · · · =
R4.

Corollary 9.4.7. For L as in (a) of Addendum 9.4.4, no two of the mani-
folds R4, L, L and L�L are orientation-preserving diffeomorphic. For L as
in (b) and k, � ∈ {0, 1, 2, . . . ,∞}, �kL and ��L are not diffeomorphic unless
k = �; furthermore, �kL is an open subset of #3kS2×S2 but has a compact
submanifold that cannot embed in #2kS2×S2 (k �= 0,∞). (Thus �∞L does
not embed in any #nS2 × S2, n finite.)

Proof. In case (a), L embeds in CP2 but not CP2 (since the latter is nega-

tive definite); L is the opposite. Thus L�L embeds in neither CP2 nor CP2.
In (b), the manifolds �kL and �kX (k ∈ N) become diffeomorphic when we
remove suitable compact subsets. If every compact submanifold of �kL em-
bedded in #2kS2×S2, then the method of proof of Theorem 9.4.3 would pro-
duce a closed, smooth, simply connected 4-manifold with intersection form
kQX ⊕ 2kQS2×S2 = −2kE8 ⊕ 2kH, contradicting Furuta’s Theorem 1.2.31.
However, �kL can be embedded in #3kS2×S2 by Exercise 9.4.8(a) below. If
�kL and ��L were orientation-preserving diffeomorphic for some k < � <∞
then {�nL | n = 0, 1, 2, . . . } would contain at most � diffeomorphism types
(because of the monoid structure), all of which would embed in #3kS2×S2,
contradicting our previous assertion for sufficiently large n. A similar ar-
gument rules out orientation-reversing diffeomorphisms for k �= l (although
L can be constructed with an orientation-reversing self-diffeomorphism so
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that �kL ≈ �kL). The infinite end sum �∞L is different from the rest, since
it embeds in no #kS2 × S2.

Exercises 9.4.8. (a)∗ For i = 1, 2, let Ri be an exotic R4 contained in a
connected 4-manifold Xi. Prove that R1�R2 embeds in X1#X2. (Hint : You
may need to modify the inclusions Ri ↪→ Xi.) Now suppose that each Xi

is as in Definition 9.4.6 and Ri = int Di, where Di is a flat topologically
embedded 4-ball in Xi with ∂Di smooth near some point pi ∈ ∂Di. (Flat
means that there is a topological embedding [−1, 1] × S3 ↪→ Xi with ∂Di

the image of {0} × S3.) Prove that R1�R2 embeds in X1�X2.

(b)∗ For R ⊂ R4 as in Theorem 9.3.8, prove that no two of R4, R, R
and R�R are orientation-preserving diffeomorphic. (Hint : What happens
if you form the connected sum with infinitely many copies of CP2 along a
properly embedded infinite disjoint union of balls? See Exercise 9.4.1(b) and
Theorem 2.4.9.)

(c)∗ Prove that for L as in (b) of Addendum 9.4.4, the submanifold K ′

constructed in the proof of Theorem 9.4.3 admits no orientation-preserving
embedding in L −K ′. Conclude (after L. Taylor) that L cannot be a non-
trivial covering space. (Note that it suffices to show L cannot be an infinite
cover, since a contractible manifold cannot cover anything with torsion in
π1: Any Zp-subgroup of covering transformations would have K(Zp, 1) as
quotient, contradicting the fact that the latter has homology in infinitely
many dimensions.)

One of the surprising peculiarities of 4-manifolds is that, unlike in other
dimensions, open 4-manifolds with finitely generated (or trivial) homology
can admit uncountably many smooth structures. To distinguish uncount-
ably many diffeomorphism types of exotic R4’s, we begin with the following
construction. For any smooth manifold R homeomorphic to R4, fix a homeo-
morphism h : R4 → R. Let Rt ⊂ R be the image of the open ball of radius
t centered at 0 in R4, and let R∞ = R. Each Rt inherits a smooth struc-
ture as an open subset of R. By work of Freedman and Quinn (e.g., [FQ])
any homeomorphism between smooth 4-manifolds is isotopic to one which
is a local diffeomorphism near a preassigned 1-complex; it is convenient to
assume h has been smoothed in this way near the nonnegative x1-axis (cf.
Exercise 9.4.8(a)).

Definition 9.4.9. A family {Rt | 0 < t ≤ ∞} as above will be called a
radial family of R4’s in R.

Theorem 9.4.10. Let (X,Y ) and (L,K) be as in Lemma 9.4.2 with X
simply connected. Let Lt ⊂ L be a corresponding radial family, with K ⊂ Lr.
Then {Lt | r ≤ t ≤ ∞} is an uncountable family of nondiffeomorphic large
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Figure 9.12. Distinguishing uncountably many exotic R4’s.

exotic R4’s. In fact, for r ≤ s < t ≤ ∞, there is a compact 4-manifold
K ′ ⊂ Lt that cannot be embedded in Ls.

Proof. Fix t′ ∈ (s, t) and let U = Lt′ − c�(Ls). Suppose that there is a
diffeomorphism ϕ : U → V ⊂ Ls, with the outward ends of U and V cor-
responding. Let W ⊂ L be the ring consisting of U, V and the region in
between (Figure 9.12). Trim the end of X by removing the image of L−Lt′

from X to expose the copy of U ⊂ X, then add an infinite stack of copies
of W to the end, using ϕ to glue each V to the previous U . The resulting
smooth manifold X̂ is homeomorphic to X but has a periodic end , that
is, X̂ minus a compact set is diffeomorphic to half of the universal cover
of some smoothing of S1 × S3 (namely W with its ends glued together by
ϕ). In [T1], Taubes showed that much of gauge theory can be extended
from closed 4-manifolds to open 4-manifolds with periodic ends. (The ba-
sic idea is that by requiring all functions to suitably converge to periodic
functions near infinity, one gains sufficient control there to adapt analyti-
cal techniques from a compact setting, much as boundary conditions make
Laplace’s equation tractable on compact bounded domains.) In particular,
Taubes extended Donaldson’s Theorem 1.2.30 to the case of end-periodic 4-
manifolds, showing that the above manifold X̂ cannot exist. We conclude
that the diffeomorphism ϕ does not exist. As in the proof of Theorem 9.4.3,
we construct a compact K ′ with U ⊂ Lt′ ⊂ K ′ ⊂ Lt, and the proof is
complete.
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Exercises 9.4.11. (a)∗ Show that for r ≤ s < t ≤ ∞, Ls and Lt cannot
have diffeomorphic ends, i.e., it is impossible to find compact 4-manifolds
Ks ⊂ Ls and Kt ⊂ Lt with Ls − int Ks diffeomorphic to Lt − int Kt.
Prove that there are uncountably many diffeomorphism types of manifolds
homeomorphic to CP2−{pt.}. (Hint : Consider the manifold U in the proof
of Addendum 9.4.4(a).)

(b)∗ Prove that if L is as in Addendum 9.4.4(b), then for any orientation-
preserving diffeomorphism ψ : U → V ′ ⊂ L (U as above) we must have
U ∩V ′ �= ∅. In particular, for any q > r there is no way to smoothly isotope
the topological sphere ∂Lq off of itself.

Theorem 9.4.12. For R as in Theorem 9.3.8, a radial family Rt ⊂ R
contains uncountably many diffeomorphism types of small exotic R4’s. These
can be chosen to have Kirby diagrams given by Figure 9.8 for suitably chosen
Casson handles CH.

Proof (sketch). The basic idea is the same as before; see [DF] for the full
proof. Fix r with K0 ⊂ Rr, for K0 ⊂ R as given before Theorem 9.3.8.
An argument based on Freedman theory shows that we can assume that
for a Cantor set C ⊂ [r,∞], all Rt with t ∈ C can be assumed to have
the required form (differing from R only in the complexity of the Casson
handle). Now suppose that for some s, t with r ≤ s < t < ∞ we can find a
diffeomorphism ϕ : Rt → Rs fixingK0. Since Rt has compact closure in R, it
is associated to our h-cobordismWn from E(n)#CP2 toXn for some fixed n.
Then iterates ϕi of ϕ produce a periodic end structure on the open manifold
E∞ = E(n)#CP2 − ⋂∞

i=1 ϕ
i(Rt), and the product structure of Wn over

E(n)#CP2−K0 sends this to an open submanifold X∞ ⊂ Xn diffeomorphic
to E∞. End-periodic gauge theory produces invariants for E∞ and X∞
that must agree since E∞ ≈ X∞, but disagree since they are inherited from
E(n)#CP2 and Xn, respectively. This contradiction implies that no two of
the pairs (Rt,K0) are diffeomorphic rel idK0 . But there are only countably
many isotopy classes of embeddings of K0 in Rt (as can be seen, for example,
by passing to the PL-category and counting subcomplexes), so each Rt is
diffeomorphic to only countably many others. Since the Cantor set C is
uncountable, we are done.

Exercises 9.4.13. (a) Prove that the above family represents uncountably
many diffeomorphism types of ends. (Hint : Show that only countably many
exotic R4’s can realize a given end.)

(b)∗ Prove that there are uncountably many diffeomorphism types of Casson
handles.

To find yet larger families of exotic R4’s, we introduce more structure on
the setR of smoothings of R4 (up to orientation-preserving diffeomorphism).

                

                                                                                                               



9.4. More exotica 373

Definition 9.4.14. ([G4]) For R1, R2 ∈ R we write R1 ≤ R2 if every
compact 4-manifold in R1 smoothly embeds (preserving orientation) in R2.
If R1 ≤ R2 ≤ R1 we say R1 and R2 are compactly equivalent . The set of
compact equivalence classes in R is denoted R∼.

Thus, R1 and R2 are compactly equivalent iff they share all compact sub-
manifolds. R1 �≈ R4 is compactly equivalent to R4 iff it is a small exotic
R4, so the family {Rt} of Theorem 9.4.12 maps to a point in R∼, namely
the equivalence class of R4. It is easy to see that the relation ≤ descends to
a partial ordering on R∼, with a unique minimal element (the equivalence
class consisting of R4 and all small exotic R4’s); there is also a unique maxi-
mal element which we discuss below. Clearly, the family {Lt | r ≤ t ≤ ∞} of
Theorem 9.4.10 has the order type of an interval (Ls ≤ Lt iff s ≤ t), so R∼ is
uncountable. We can now construct several subsets of R that are naturally
indexed by I × I. Presumably, one should be able to construct families of
distinct diffeomorphism types with higher-dimensional index sets, but this
seems to exceed our current capacity for distinguishing exotic R4’s. (It is
also possible to give R∼ a metrizable topology with countable basis [G7],
although the usefulness of this topology is not presently clear. The topology
has the peculiar property that every increasing sequence converges — for
the limit, see the first exercise below.)

Exercises 9.4.15. (a) Let R1 ≤ R2 ≤ R3 ≤ · · · be an increasing sequence
of exotic R4’s. Construct R∞, an exotic R4 such that each Rn ≤ R∞
but any compact submanifold of R∞ embeds in some Rn. This property
characterizes R∞ up to compact equivalence. (Note that for R1 ⊂ R2 ⊂ · · ·
we can set R∞ =

⋃∞
n=1Rn. What do we get for sequences in the set {Lt} of

Theorem 9.4.10?) See [G7] for a solution.

(b)∗ If R1 ≤ R2 and R3 ≤ R4, prove that R1�R3 ≤ R2�R4. Thus, the
monoid structure on R descends to R∼.

Theorem 9.4.16. Let (L,K) be as in Addendum 9.4.4(a) with a radial
family Lt ⊂ L, K ⊂ Lr. Let Rt ⊂ R ⊂ R4, K0 ⊂ Rr, be as in Theo-
rem 9.4.12.

(a) ([G4]) The family of exotic R4’s Ls,t = Ls�Lt, r ≤ s, t ≤ ∞, satisfies
Ls,t ⊂ Ls′,t′ iff Ls,t ≤ Ls′,t′ iff s ≤ s′ and t ≤ t′. Thus, the map (s, t) �→ Ls,t

defines an order-preserving injection [r,∞]× [r,∞]→R∼.

(b) ([G11]) For fixed t ∈ [r,∞], the large exotic R4’s Rs�Lt represent un-
countably many diffeomorphism types. Thus, the family {Lt | r ≤ t ≤ ∞}
determines an uncountable family of compact equivalence classes (with the
order type of [r,∞] in R∼), each of which contains uncountably many dif-
feomorphism types.
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Proof. We combine our radial family arguments with our previous use of ori-
entations. (The required inclusions Ls,t ⊂ Ls′,t′ follow by Exercise 9.4.8(a).)
Suppose that s > s′ ≥ r and any compact submanifold of Ls,t embeds
(preserving orientation) in Ls′,t′ . Then after shrinking s slightly, we may as-
sume that Ls embeds in Ls′,t′ . Thus, we obtain embeddings Ls ↪→ Ls′,t′ ↪→
Ls#CP2 (since Ls′ ⊂ Ls and Lt′ ⊂ L ⊂ CP2, see Exercise 9.4.8(a)), and the
composite embedding i has image with compact closure. Now we proceed as
in the proof of Theorem 9.4.10, setting W = Ls#CP2− i(K ′) for a suitably
large compact subset K ′ ⊂ Ls, and gluing copies of W to create a manifold
X̂ with periodic end modeled on half the universal cover of some smoothing
of S1×S3#CP2. Since the work of Taubes is unaffected by negative definite
homology in the end, and the intersection form Q

X̂
= QX⊕∞〈−1〉 is not di-

agonalizable (because there is no basis of elements with square −1), we have
the required contradiction. To prove (b), first suppose that s > s′ ≥ r and
that there is a diffeomorphism Rs�Lt → Rs′�Lt restricting to the identity on
K0 in the first summand. As before, we obtain an embedding Rs ↪→ Rs#CP2

restricting to idK0 and having image with compact closure. Applying the
method of proof of Theorem 9.4.12, blowing up whenever necessary, we ob-
tain a contradiction via end-periodic manifolds E∞ and X∞ homeomorphic
to (E(n)−{pt.})#∞CP2, and again conclude uncountability. See [G11] for
further discussion.

Exercises 9.4.17. (a) Prove that no two of the above manifolds Ls,t can
have diffeomorphic ends, cf. Exercise 9.4.11(a). Prove that two of the
above manifolds Rs�Lt cannot have diffeomorphic ends unless they have
the same value of t, and for each t there are uncountably many ends, cf.
Exercise 9.4.13(a).

(b) Prove the following theorem, cf. Exercise 9.4.8(b). (See [BG] Proposi-
tion 5.6 for a solution.)

Theorem 9.4.18. ([BG]) For Rt as above with K0 ⊂ Rr, let Rs,t = Rs�Rt.
Then any given diffeomorphism type is realized by at most countably many
pairs (s, t), r ≤ s, t ≤ ∞. In fact, there are at most countably many such

pairs for which Rs,t is both CP2- and CP2-stably diffeomorphic to a given
Rs0,t0.

Next, we define a simple invariant on R∼.

Definition 9.4.19. ([Ta]) For R ∈ R, define γ(R) ∈ {0, 1, 2, . . . ,∞} to be
supK{minX{12b2(X)}}, where K ranges over compact 4-manifolds embed-
ding in R and X ranges over closed, spin 4-manifolds with signature 0 in
which K smoothly embeds.
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Note that any K ⊂ R embeds in the spin manifold X = DK. Clearly,
for R1 ≤ R2 we must have γ(R1) ≤ γ(R2), so γ is well-defined on com-
pact equivalence classes and gives an order-preserving function γ : R∼ →
{0, 1, 2, . . . ,∞}. Taylor [Ta] actually defines γ for all smooth 4-manifolds,
but the definition and properties are more complicated in general. By The-
orem 9.4.3, any L as in Lemma 9.4.2 must have γ(L) > 0. It is unknown
whether any large exotic R4 can have γ = 0 (although every small R4 obvi-
ously does). A striking application by Taylor (see the first exercise below) is
that for L any exotic R4 with γ(L) > 0, any handle decomposition of L must
have infinitely many 3-handles, in contrast with our examples of small ex-
otic R4’s, which were built without 3-handles. In particular, consider Stein
surfaces, which are properly embedded complex surfaces in CN . (We will
discuss these in more detail in Chapter 11.) Since any Stein surface has a
handle decomposition without 3-handles, it follows that no known large ex-
otic R4 admits a Stein structure. In contrast, we will show (Theorem 11.2.7)
that uncountably many small exotic R4’s do admit Stein structures, namely
R from Theorem 9.3.8 and the elements of a (suitably constructed) radial
family Rt ⊂ R indexed by a Cantor set (as in the proof of Theorem 9.4.12).

Exercises 9.4.20. (a)∗ If R ∈ R has a handle decomposition with only
finitely many 3-handles, show that γ(R) = 0. (Hint : Exhibit R as a nested
union of compact submanifolds Kn with b2(Kn) = 0.)

(b)∗ Show that if R1 and R2 have diffeomorphic ends then γ(R1) = γ(R2).

(c)∗ Show that any end sum satisfies supn{γ(Rn)} ≤ γ(�nRn) ≤
∑

n γ(Rn).

(d)∗ Show that γ : R∼ → {0, 1, 2, . . . ,∞} is onto. (Hint : Use Remark 9.4.5
and the fact that Furuta’s Theorem 1.2.31 holds for spin manifolds with
arbitrary π1.)

(e) Show that R∞ as in Exercise 9.4.15(a) satisfies γ(R∞) = supn{γ(Rn)}.
(f)∗ Prove that for any n ∈ N the preimage γ−1(n) ⊂ R∼ is uncountable.
Taylor also shows that for infinitely many n including n = ∞ there are
exotic R4’s Ln ⊂ CP2 with γ(Ln) = n. Conclude from this that γ−1(∞) is
uncountable.

(g)∗ Suppose γ(R) =∞. Show that R does not embed in any compact spin
4-manifold (possibly with boundary). (Compare with (f) above.) Prove
that there is no embedding of R in any 4-manifold such that c�(R) is a flat
topological 4-ball D as defined in Exercise 9.4.8(a).

Now we return to the maximal element of R∼. In [FT2], Freedman and
Taylor proved:

Theorem 9.4.21. There is a unique diffeomorphism type U of exotic R4

such that for any R ∈ R, the end sum U�R is diffeomorphic to U .
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Uniqueness is easy, since for any other U ′ satisfying this property we would
have U ′ ≈ U�U ′ ≈ U . U is called the universal R4, since it contains all
other exotic R4’s. Clearly U is large — in fact, its compact equivalence class
is the unique maximal element of R∼ under ≤. (Nothing is known about the
cardinality of this equivalence class.) In particular, γ(U) =∞, so U cannot
embed in any closed spin 4-manifold (or definite manifold by Theorem 9.4.3),
or with c�(U) a flat topological ball in any 4-manifold, and any handle
decomposition of U requires infinitely many 3-handles. Clearly, U admits
many discrete group actions. For example, if X is any noncompact, smooth
4-manifold covered by R4 (e.g., R ×M3 for M3 flat or hyperbolic), then
X�U is covered by R4�∞U ≈ U , so π1(X) acts on U by covering translations.
(Compare with Exercise 9.4.8(c). In fact, translating compact subsets shows
that if R ∈ R is a nontrivial cover then �∞R is compactly equivalent to R,
so γ(�∞R) = γ(R), cf. [Ta].) The basic idea for constructing U is to
build it with as much complexity as possible, using Exercise 9.4.23 below.
Specifically, if (W 5, X4

+, X
4
−) is a noncompact (proper) h-cobordism that is

both simply connected and simply connected at infinity, then we can find
(infinitely many) spheres and Casson handles in ∂+W2 as in the proof of
Theorem 9.2.11; we require U to contain enough complexity so that all
Casson handles can be replaced by 2-handles in ∂+W2�U . Thus, summing
W with I×U along I produces a trivial h-cobordism that shows that X+�U
and X−�U are diffeomorphic. Since any R ∈ R is properly h-cobordant
to R4 (by shaving all but a single coordinate chart off of one boundary
component of I ×R), we conclude that R�U ≈ R4�U ≈ U .

One more amusing construction involves 2-fold branched covers. Begin
with the simplest example, R4 = C2 branched-covering itself by f(z, w) =
(z2, w), with branch locus {0}×C. What examples can we obtain by chang-
ing the smooth structures on the domain and range but requiring the given
f : R1 → R2 to be smooth? As in the previous paragraph, we can end
sum with any R ∈ R to obtain a branched covering f : R�R → R (e.g.,
f : U → U) that is topologically standard. This example might lead us to
conjecture that R1 ≥ R2 in general. One might also expect that requir-
ing R2 to be standard would force R1 to be standard. Surprisingly, both of
these guesses are false. First, one can construct examples with R1 exotic and
R2 ≈ R4, and R1 can be chosen to be either large or small. That is, there
are smooth, proper embeddings R2 ↪→ R4 that are topologically ambiently
isotopic to the standard embedding, but for which the corresponding double
branched covers are exotic (and there are uncountably many such diffeo-
morphism types of large or small branched covers). Second, it is possible to
have R1 a small exotic R4 but R2 large. (This R1 seems to be a good candi-
date for a small exotic R4 requiring infinitely many 3-handles.) Again, there
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are uncountably many examples. It follows that R1 and R2 can be indepen-
dently chosen to be large or small. It is an interesting open question whether
we can have R1 standard and R2 exotic (large or small). That is, does R4

admit a smooth, topologically standard involution whose quotient is exotic?
One might also ask about p-fold branched coverings; nothing nontrivial is
known for p > 2. The proofs of the above assertions appear in [G11]. The
basic idea is to embed the manifold X of Figure 9.6, with the fine circles
removed and a Casson handle attached to a 0-framed meridian of each dot-
ted circle, into S2 × S2 so that it is equivariant under the Z2 ⊕ Z2-action
of Exercise 6.3.18, and take suitable quotients. We have X = S2 × S2#R−
for some R− as in Theorem 9.3.1, and a branched covering R− → R4 can
be located. The remaining branched coverings R∗ → L → R4 come from a
neighborhood of S2 × S2 −X: R∗ is a small exotic R4 “complementary” to
R− in the sense that R∗∪R− = S4 and R∗∩R− is homeomorphic to R×S3

but contains no smoothly embedded 3-sphere generating its homology. R∗

inherits a Z2 ⊕ Z2-action with quotient R4, and by Kirby calculus one can
identify one Z2-quotient L with a large R4 as in Addendum 9.4.4(a), so we
have the required maps.

Finally, we consider smooth structures on other noncompact, connected
topological 4-manifolds. It seems likely that all such 4-manifolds admit un-
countably many smooth structures. Some caution is required, however —
it still seems plausible that there could be an open 4-manifold with con-
nected end, whose topology is so complicated that any smoothing is forced
to be universal, X ≈ X�U . Such a manifold might have only one smooth
structure. We now sketch the broad (but still incomplete) results showing
that large families of noncompact manifolds admit many smooth structures.
Recall that the boundary of a 4-manifold X (being a 3-manifold) is uniquely
smoothable up to isotopy. It is useful to consider stable isotopy classes of
smoothings on X (or more precisely, on the pair (X, ∂X)), that is, isotopy
classes of smoothings on R × X that are standard on R × ∂X. By high-
dimensional smoothing theory [KS], these are classified by H3(X, ∂X;Z2)
(except for compact X with ks(X) �= 0 ∈ H4(X, ∂X;Z2), for which no such
stable smoothings exist). The first theorem comes from Freedman theory,
with the last major piece filled in by Quinn.

Theorem 9.4.22. (e.g., [FQ]). Any connected, noncompact 4-manifold X
admits a smooth structure. In fact, each stable isotopy class of smoothings
is realized by a smoothing of X.

Exercise 9.4.23. ∗ Let K ⊂ S3 be a topologically slice knot (Defini-
tion 6.2.3) that is not smoothly slice. (For example, the positive Whitehead
double of the right trefoil (Figure 6.13) works, cf. Exercise 11.4.11(e).) Let
XK be D4 with a 2-handle attached along K with framing 0. Prove that
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XK embeds smoothly in some R ∈ R, and this latter is necessarily a large
exotic R4.

In [G11] it was proved that for any connected topological 4-manifold X
(not necessarily compact or orientable), X−{pt.} admits uncountably many
diffeomorphism types of smooth structures. This is equivalent to saying that
if Y is a 4-manifold with one boundary component M homeomorphic to S3,
then Y −M has uncountably many smooth structures. The proof involved
a radial family of smoothings defined using a topological collar V ≈ R×M
of M in Y −M . (That is, c�(V ) ⊂ Y was homeomorphic to [−∞,∞] ×M
with {∞} ×M corresponding to M ⊂ Y .) Various results have since been
proved for more general M [Di], [Fa]. The following theorem, which we
prove below, unifies and extends what is known about 4-manifolds with
uncountably many smoothings. Recall that a map is proper if the preimage
of any compact set is compact. Given proper maps f, g : X → Y agreeing
on Z ⊂ X outside a compact subset of X, we will call f, g homotopic at
infinity rel Z if there is a compact K ⊂ X such that f, g : X − int K → Y
are properly homotopic rel Z − int K (i.e., they are related by a homotopy
I × (X − int K)→ Y that is a proper map and fixes Z − int K).

Theorem 9.4.24. Let X be a noncompact, connected topological 4-man-
ifold, and let V ⊂ X be an open subset with c�(V ) noncompact but the
point-set boundary Bd(V ) ⊂ X compact. If X − V is compact, assume V is
orientable. Suppose that V admits a smooth structure such that some finite
cover Ṽ of V embeds smoothly in #nCP2 for some n ∈ N. Then there is an
uncountable family of nonisotopic smoothings Σt on X which agree on X−V
and ∂X. No two of these are related by a diffeomorphism (or even a proper
diffeomorphic embedding (c�(V −K),Σt) ↪→ (X,Σs), K ⊂ X compact) fix-
ing ∂V = ∂X ∩ V outside a compact subset of X, such that the restriction
to c�(V ) is homotopic at infinity rel ∂V to the inclusion c�(V ) ↪→ X. All
stable isotopy classes on X extending a particular one on V (induced by the
given smoothing on V unless ks(X,V ) �= 0) are realized by such families,
and for V orientable with H3(V, ∂V ;Z2) finite, any stable isotopy class of
X is so realized.

Corollary 9.4.25. Let Y be a connected topological 4-manifold with M ⊂
∂Y a (nonempty) compact 3-manifold whose boundary is flat in ∂Y (and
possibly empty). If M has a flat topological embedding in #nCP2 that is
smooth near ∂M , then Y −M has uncountably many diffeomorphism types
of smooth structures in each stable isotopy class. For example, this holds for
any orientable M with b1(M) = 0 and linking form avoiding a certain small
class of nondiagonalizable forms. The same holds if M has an orientable

finite cover M̃ that smoothly embeds in #nCP2, e.g., if M is a Seifert fibered
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space, provided that for nonorientable M we assume Y is noncompact and
range over stable isotopy classes of Y −M induced by Y .

Proof. We may assume M is connected, by removing all but one component
of M from Y . Let V ≈ R ×M ⊂ X = Y −M be a topological collar of
M . The flat embedding M ↪→ #nCP2 extends to a topological embedding
of V ≈ R×M (which is therefore orientable). Set Ṽ = V with the smooth
structure inherited from #nCP2. The theorem provides an uncountable fam-
ily of smooth structures Σt on X in each stable isotopy class. Since there
are only countably many homotopy classes of maps (M,∂M) → (M,∂M),
only countably many of these smoothings Σt can be related to any given
one by a proper embedding c�(V − K) → c�(V ). But the end of X has at
most countably many components collared by R ×M . (Take the endpoint
compactification of X [Fre], adding a compact, totally disconnected set E
to X to obtain a compact metric space in which X is dense, such that any
connected open subset of X ∪ E has connected intersection with X. Each
R×M collar as above determines an isolated point in E (with neighborhood
(−∞,∞]×M/{∞}×M in X ∪E), and there can only be countably many
such points.) The smoothings Σt agree on X−V , resulting in at most count-
ably many diffeomorphism types of R×M collars in X−V , so after throwing
away countably many smoothings Σt, we can assume that no (c�(V −K),Σt)
embeds properly in X−V . Clearly, the remaining smoothings represent un-
countably many diffeomorphism types, as required. Edmonds [Ed] proved
that rational homology spheres admit such flat embeddings in #nCP2, ex-

cept in the cases of a few linking forms. For the case with cover M̃ as above,

put the product smooth structure on V ≈ R ×M and set Ṽ = R × M̃ . It
is not hard to show that every Seifert fibered space is finitely covered by
an orientable S1-bundle over an orientable surface, so the following exercise
completes the proof.

Exercise 9.4.26. Show that every orientable D2-bundle over a compact
orientable surface embeds (possibly reversing orientation) in #nCP2 for suf-
ficiently large n.

Remark 9.4.27. Fang [Fa] (who introduced finite covers and nonorientable
ends into the theory) also found a large class of oriented 3-manifolds (with
b1(M) ≥ 30) that admit no flat embedding in any definite manifold. The
obstruction involves the cup product H1⊗H1⊗H1 → Z. As of this writing,
it is unknown whether all rational homology spheres embed flatly in #nCP2,
although for certain linking forms such an embedding could not have simply
connected complements [Ed].

Proof of Theorem 9.4.24. The first part of the proof follows [G11]; we
refer there for additional details. For consistency of exposition, we reverse
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Figure 9.13. A periodic end construction for distinguishing smooth
structures on a large class of 4-manifolds.

orientation so that Ṽ ⊂ #nCP2. The first step is (after shrinking V ) to
extend the given smoothing of V over all of X − {p} so that near p the
smoothing agrees with the end of some smooth, negative definite manifold
Z with QZ nondiagonalizable (cf. Lemma 9.4.2). To do this, we shrink V by
deleting a compact subset of c�(V ) and restricting to a single component of
the result, so that Bd(V ) becomes a smooth, connected submanifold (with
boundary in ∂X), and let Y = X − V (so Bd(V ) ⊂ ∂Y ). If the topological
manifold Y is noncompact, we smooth it by Theorem 9.4.22 to obtain a
smoothing on X extending the given one on V . Then we take the connected
sum with some L as in Addendum 9.4.4(a) to get the required smoothing
of X − {p}. If Y is compact and the Kirby-Siebenmann obstruction ks(Y )
vanishes, then for some m we can smooth Y#mS2 × S2 ([FQ] §8.6). Using
the fact that any two Casson handles have a common refinement contained in
both of them, we can find a smoothing U of #mS2×S2−{pt.} that embeds
smoothly in both Y#mS2×S2 and K3#(m−3)S2×S2. (We used a similar
construction with #mS2 × S2 and K3#(m − 3)S2 × S2 both replaced by
CP2 in the proof of Addendum 9.4.4.) Removing a suitable compact subset
from both copies of U , we obtain smoothings of Y − {p} (hence X − {p})
and Z with the same end, where Z is simply connected with QZ

∼= −2E8.
Finally, if ks(Y ) �= 0, a trick involving the Poincaré homology sphere Σ
produces a similar smoothing withQZ

∼= −3E8: The contractible topological
manifold Δ with ∂Δ = Σ embeds in R4 ⊂ Y (Exercise 5.7.17(b)). Then
ks(Y −int Δ) = 0, so the previous argument applies to it. Smooth Δ−{pt.},
obtaining the same end as a smoothing of the (−E8-manifold)−{pt.} (=
(−E8-plumbing)∪ΣΔ−{pt.}) and fuse together the two components of the
end of Y − {2 points} by deleting a line connecting them.
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Now that we have the smoothing of X − {p} agreeing with c�(V ) and
Z at their ends, we can define the required smoothings Σt on X. Observe
that a neighborhood of p in X is homeomorphic to D4 (with p mapping to
0), and we can assume the homeomorphism is smooth on an open radial
arc (cf. the text preceding Definition 9.4.9). By identifying X − {p} with
X − D for all sufficiently small round balls D about p, we obtain a radial
family of smooth structures on X − {p}. Extending the smooth radial arc
to a properly embedded line � ⊂ X − {p} whose other end lies in V , and
identifying X with X − (� ∪ {p}), we get a family of smooth structures Σt

on X with the end of each Σt diffeomorphic at V to the end of c�(V )�Zt for
a radial family Zt ⊂ Z. (The end sum may depend on the choice of defining
ray in V , but we can assume the orientations match as given.) Note that if
V ≈ R×S3, the proof of Theorem 9.4.10 shows that no two of these smooth
structures are isotopic. Our main task is now to suitably generalize this
argument.

Suppose that ϕ : (c�(V ),Σt) ↪→ (X,Σs) is a proper diffeomorphic em-
bedding as specified in the theorem (with V shrunk to replace V − K).
Inverting ϕ outside of a compact subset if necessary, we can assume t > s.
We wish to construct an end-periodic manifold contradicting Taubes’ The-
orem. The end of (c�(V ),Σt), or equivalently of c�(V )�Zt, is finitely covered

by the corresponding end of V ∗�mZt, where V ∗ = Ṽ or Ṽ �mZt minus a
compact set, the latter case only occurring when V is nonorientable (so Y
is noncompact by hypothesis and end(Zt) ≈ end(Lt) with L ⊂ CP2). Thus

V ∗ smoothly embeds in #�CP2, where � = n or n+m. Form the connected
sum of #lCP2 with m copies of Z, choosing the balls in Zt − c�(Zs) and

#lCP2 so as to obtain an embedding �mZs�V
∗ ↪→ #mZ#lCP2 as in Exer-

cise 9.4.8(a) (for our given choice of the end sum rays). To modify the latter
negative definite manifold to make its end periodic, we first perform m surg-
eries on 0-spheres connecting it to a second copy of #lCP2, using balls in
each Z− c�(Zt) to create an embedding �mZt�V

∗#lCP2#(m−1)S1×S3 ↪→
#mZ#2lCP2#(m− 1)S1 × S3 (Figure 9.13). Using the topological R× S3

structure of the end of Z, we can roll up the region between the ends of each
Zs and Zt, and identify the two copies of #lCP2 with each other, to obtain a
topological manifold Q0 homeomorphic to #lCP2#mS1× S3. This inherits
a smooth structure everywhere except near the end of each Zs, where the
gluing map fails to be smooth. We can assume this nonsmooth region lies
in the image U of �mZs�V

∗ minus a compact set, where the two disagreeing
smooth structures are the lifts of Σs and Σt from c�(V ). To transform Q0

into a smooth manifold Q1, we use the cover ϕ̃ of ϕ to change the gluing on
U . Choose a proper continuous map f : U → R so that f approaches ∞ at
the lift of the end of c�(V ), and −∞ at boundary points of U corresponding
to Bd(V ). Fix q, r ∈ R so that ϕ̃(f−1[q,∞)) ⊂ U and q < r, remove the
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sets f−1[r,∞) and U − ϕ̃(f−1(q,∞)) from their respective copies of #lCP2

(upper and lower in Figure 9.13) and let Q1 be the smooth manifold ob-
tained from Q0 by gluing by ϕ̃ instead of id on f−1(q, r). (For ∂V �= ∅ this
is well-defined since ϕ̃ = id on ∂U .) For r sufficiently large, ϕ̃ is homo-
topic to the identity in ϕ̃(q,∞) on a neighborhood of f−1(r) by hypothesis,
allowing us to construct a continuous degree-1 map ψ : Q0 → Q1. Sim-
ilarly, moving farther toward ∞ we can construct maps χ : Q1 → Q0 and
ψ′ � ψ : Q0 → Q1 that are homotopy inverses, so Q1 is homotopy equivalent
to Q0. (In fact, by surgering out m topological 3-spheres parallel to Bd(Zs),
invoking Freedman’s Theorem 1.2.27 and using the fact that a topological
4-ball has a unique orientation-preserving flat topological embedding in any
connected 4-manifold [FQ], we can now easily verify that Q1 is homeomor-

phic to #lCP2#mS1 × S3.) Now surger out m − 1 circles (representing
differences of generators of the obvious S1 × S3-summands) from Q1 to ob-

tain a smooth manifold Q2 homeomorphic to #lCP2#S1 × S3. Attaching
half of the universal cover of Q2 to #mZ#lCP2 by the above gluing and
surgery procedure, we obtain the required simply connected end-periodic
manifold and contradiction.

Note that the construction allows us to create families as above whose
stable isotopy classes differ from a given one by any element ofH3(Y, ∂Y ;Z2)
(since Theorem 9.4.22 and the smoothing of Y#mS2 × S2 allow such free-
dom). Thus, we can realize any stable isotopy class on X extending the
one we used on V , which is inherited from the original smoothing of V
except in the case ks(Y ) �= 0 (when the trick with the Poincaré homo-
logy sphere changed the stable isotopy class on V ). Now if H3(V, ∂V ;Z2)
is finite, we can shrink V so that the end of c�(V ) becomes connected
and the image of H3(X, ∂X;Z2) → H3(V, ∂V ;Z2) is 0 for Y compact
and Z2 otherwise. (When the end of c�(V ) is connected, the finite group
H3(V, ∂V ;Z2) will be carried by a compact K ⊂ c�(V ) containing Bd(V ),
with Bd(K) in c�(V ) a connected 3-manifold. Any class α ∈ H3(X, ∂X;Z2)
that vanishes on Bd(V ) must also vanish on Bd(K), so after we add a
suitable class in H3(K, ∂K;Z2), it will vanish on H3(V, ∂V ;Z2). Thus any
such α restricts to 0 ∈ H3(V − K, ∂(V − K);Z2).) Then for Y compact,
H3(Y, ∂Y ;Z2) ∼= H3(X,V ∪∂X;Z2) maps onto H3(X, ∂X;Z2), so all stable
isotopy classes on X are realized in this manner. If Y is noncompact, the
image is an index-2 subgroup of H3(X, ∂X;Z2), but when V is orientable
we can reach the remaining stable isotopy classes using the trick with the
Poincaré homology sphere.
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Remark 9.4.28. If an open 4-manifold X embeds topologically in #nCP2,
then one can find uncountably many diffeomorphism types of smooth struc-
tures on X that all embed in #nCP2. This follows as in Fang [Fa] by end
summing X with Rt and proceeding as in Theorem 9.4.16(b).

Some open 4-manifolds not covered by Theorem 9.4.24 are still known
to admit (at least countably) infinite families of distinct smooth structures:

Theorem 9.4.29. Let X be an open, connected, orientable 4-manifold; X is
necessarily homeomorphic to the interior of a (possibly infinite) handlebody.

(a) If there is such a handlebody with only finitely many 3-handles (or more
generally, if X has a smooth structure exhausted by smooth, compact 4-
manifolds Wi with H3(Wi+1,Wi;Z) = 0) and if H2(X) has finite dimension
with both Z2- and Q-coefficients, then each stable isotopy class on X contains
infinitely many diffeomorphism types of smooth structures.

(b) If there is such a handlebody without 3-handles (hence, without 4-
handles) and H2(X;Z) �= 0, then X admits infinitely many isotopy classes
of smooth structures (realizing the unique stable isotopy class).

For example, (b) applies to R4#∞S2 × S2, whereas Theorem 9.4.24 does
not. For an example about which nothing appears to be known, consider an
infinite end sum of R2-bundles over RP2 (e.g. with orientable total spaces
and odd Euler numbers). Part (a) is a special case of a theorem of Taylor
[Ta] extending work of Bižaca and Etnyre [BE]. Part (b) is proved in
Exercise 11.4.11(d). (In this case H3(X;Z2) = 0, so there is only one stable
isotopy class of smoothings.)

Exercise 9.4.30. Let X be a noncompact, connected topological 4-mani-
fold with an embedding into #nS2 × S2 (n finite) whose restriction to ∂X
is smooth. Prove that X admits infinitely many diffeomorphism types of
smooth structures. (Hint : The embedding provides one smooth structure.
Now sum with copies of L as in Addendum 9.4.4(b); cf. Corollary 9.4.7.)

                

                                                                                                               



                

                                                                                                               



Chapter 10

Symplectic 4-manifolds

In studying the differential topology of 4-manifolds, it turns out to be very
useful to assume the existence of some extra structure on the manifolds
under examination — cf. results about complex surfaces in Section 3.4.
This chapter is devoted to the discussion of symplectic manifolds.

First we will describe the connection between almost-complex and sym-
plectic geometry. We will also quote the most important results concerning
Seiberg-Witten invariants of symplectic 4-manifolds (cf. Section 2.4 as well
as Section 10.4); for the proofs of these statements see [T4] or [KKM]. In
Section 10.2 several constructions of symplectic manifolds will be presented;
Section 10.3 is devoted to constructing certain manifolds not admitting sym-
plectic structures. We will also review the geography problem for symplectic
and for irreducible 4-manifolds. Finally, in Section 10.4 the Seiberg-Witten
equations will be briefly studied on symplectic 4-manifolds.

10.1. Symplectic and almost-complex manifolds

A 2-form η on Rn is nondegenerate if for every nonzero vector v ∈ Rn there
exists w ∈ Rn such that η(v, w) �= 0. The existence of a nondegenerate 2-
form implies that n is even. A 2-form η ∈ Ω2(X) on the smooth manifold X
is nondegenerate if it is nondegenerate on each tangent space TpX (p ∈ X).
It is easy to show that on the 2n-manifold X the 2-form η is nondegenerate
iff the nth wedge power ηn = η ∧ . . . ∧ η ∈ Ω2n(X) is nowhere zero.

Definition 10.1.1. A 2-form ω on a smooth 2n-dimensional manifold X
is called a symplectic structure if it is nondegenerate and closed; the pair
(X,ω) is called a symplectic manifold . A diffeomorphism f : X1 → X2
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between symplectic manifolds (X1, ω1) and (X2, ω2) is a symplectomorphism
if ω1 = f∗(ω2).

The nondegeneracy assumption assures that ω gives an isomorphism
between TX and T ∗X — exactly like a Riemannian metric does. A sym-
plectic structure ω induces an orientation on X by the condition ωn > 0.
The 2n-dimensional Euclidean vector space R2n admits a canonical sym-
plectic structure: If (x1, y1, . . . , xn, yn) gives the standard coordinates on
R2n then ω0 =

∑n
i=1 dxi ∧ dyi is a symplectic form. This example, in fact,

can be regarded as the “typical symplectic manifold” locally, since — by
the Darboux Theorem — every symplectic 2n-manifold is locally symplec-
tomorphic to (R2n, ω0). We will omit the discussion of this type of result
here (see, e.g., [McS1]), since our primary interest is the effect of the ex-
istence of a symplectic structure on the topology and differential topology
of a 4-manifold X. We will mainly investigate the existence question for
symplectic structures on 4-manifolds. By a theorem of Gromov, every open
almost-complex 2n-manifold admits a symplectic structure [McS1]; conse-
quently we will concentrate on closed manifolds. Note that if n = 1 (so we
are working with a 2-dimensional manifold), then a volume form of a closed
surface Σ is a symplectic form; consequently an oriented, closed 2-manifold
Σ always admits a symplectic structure. Moreover, if (Xi, ωi) (i = 1, 2) are
symplectic manifolds, then the sum π∗

1ω1+π∗
2ω2 gives a symplectic structure

on X1 × X2. In this way we get our first examples of symplectic 4-mani-
folds, namely the products Σn×Σm of 2-dimensional manifolds Σn and Σm.
Generalizations of this observation will be given in Section 10.2; we will see
that most Lefschetz fibrations also admit symplectic structures.

Before turning to the discussion of the topology of symplectic 4-man-
ifolds, we describe the relation between symplectic and almost-complex
structures on a 4-manifold X. The structure group of the tangent bundle
TX → X of an oriented, smooth 4-manifoldX is isomorphic to GL+(4;R) =
{A | A is a 4 × 4 real matrix with det(A) > 0}. The introduction of an
almost-complex structure J (see Definition 1.4.14) reduces the structure
group GL+(4;R) to GL(2;C). A Riemannian metric g reduces GL+(4;R)
to SO(4); finally, the introduction of a nondegenerate 2-form ω (represent-
ing the orientation) reduces the structure group GL+(4;R) to the Lie group
Sp(4) = {A ∈ GL(4;R) | ω0(x, y) = ω0(Ax,Ay) for all x, y ∈ R4}. (Recall
that ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 is the standard symplectic form on R4.) It
turns out that any two of the above three structures J , g and ω determine
the third if the given two are compatible.

Definition 10.1.2. An almost-complex structure J is compatible with the
Riemannian metric g if J is an orthogonal map fiberwise. A 2-form ω is
compatible with g if ω is a self-dual 2-form with respect to g (as defined in
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Section 2.4) and ||ω|| =
√
2. A 2-form ω and an almost-complex structure J

are compatible if ω(Jv1, Jv2) = ω(v1, v2) and ω(v, Jv) > 0 for all nonzero v
in TX. (In this case we also say that J calibrates ω. If we only assume the
latter condition (that ω(v, Jv) > 0 for all v �= 0), we say that ω tames J .)

A 2-form ω that is compatible with some g or J is automatically non-
degenerate and respects the given orientation. It is not hard to see that in
GL(4;R) we have

SO(4) ∩ Sp(4) = SO(4) ∩GL(2;C) = Sp(4) ∩GL(2;C) = U(2),

and this implies that once we fix two compatible structures from among
g, J and ω, the third one is automatically defined. For a given J and
g, the corresponding 2-form ω is given by the formula ω(x, y) = g(Jx, y).
If compatible structures ω and J are fixed, then g is determined by the
formula g(x, y) = ω(x, Jy). Finally, for fixed (compatible) g and ω we get
J by the definition Jx̃ = − ∗ (ω ∧ x̃). (The symbol ∗ denotes the Hodge
star-operator induced by g (cf. Section 2.4) and x̃ denotes the cotangent
vector corresponding to x ∈ TX via the identification TX ∼= T ∗X given
by g.) All the above statements are pointwise, so can be checked in R4;
we did not assume anything about the global behavior of J , g or ω on
X. In particular, the 2-form ω determined by the compatible structures g
and J is nondegenerate, but not necessarily closed. Recall from Section 1.4
that the existence of an almost-complex structure on X depends only on
homological properties of X. Here is another way to see it: Fix a metric
g; by the above considerations, g-compatible structures J and ω determine
each other. Hence J exists iff the bundle Λ+ → X of self-dual 2-forms has a
section with constant length

√
2. Obviously such a section exists iff a trivial

real line bundle R can be split off of Λ+.

Exercises 10.1.3. (a) The (real) 3-dimensional bundle Λ+ splits as the
sum Λ+ = R ⊕ K for some complex line bundle K iff there exists h in
H2(X;Z) such that h ≡ w2(X) (mod 2) and h2 = 3σ(X) + 2χ(X). (Hint :
Prove that w2(Λ

+) = w2(X) and 〈p1(Λ+), [X]〉 = 3σ(X) + 2χ(X). Taking
c1(K) = h and applying Theorem 1.4.20(c) yields the solution. Compare
with Theorem 1.4.15 and Exercise 1.4.21(c).)

(b) Prove that for any finitely presented group G there exists an almost-
complex closed 4-manifold (X, J) such that π1(X) ∼= G. (Hint : Take a
smooth (closed) 4-manifold Y with π1(Y ) ∼= G (cf. Exercises 4.6.4(b) and
5.2.2(c)). Taking the connected sum of Y with CP2 if necessary, we can
assume that χ(Y )+σ(Y ) ≡ 0 (mod 4). Now using (a) show that Y#4CP2 or

Y#4CP2 admits an almost-complex structure — use the fact that a positive
integer congruent to 4 mod 8 can be written as the sum of four odd squares.
For the complete argument see [Ko1].)
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A complex structure on X4 naturally induces an almost-complex struc-
ture J : TX → TX by the formula Jz = iz. An almost-complex structure
is called integrable if it arises in this manner from a complex structure. If
ω, J and g are compatible structures on X, J is integrable and dω = 0,
then (X,ω, J, g) is a Kähler surface. If one only assumes the latter con-
dition dω = 0, then (X,ω, J, g) is called almost-Kähler . A complex surface
S (with the induced almost-complex structure J) is called Kähler if it ad-
mits a metric g such that (S, ω, J, g) is a Kähler surface. Since a complex
submanifold of a Kähler manifold is Kähler, and the projective space CPn

admits a Kähler metric (e.g., the Fubini-Study metric [GH]), all projective
manifolds are Kähler. Consequently, our examples Sd in Section 1.3 (or more
generally, the complete intersection surfaces defined in the same section) are
all Kähler. We have already mentioned that a complex surface with even
first Betti number b1 is deformation equivalent to a projective surface (The-
orem 3.4.32); hence if b1(S) is even, then S is at least diffeomorphic to a
Kähler surface. More is true, however:

Theorem 10.1.4. ([BPV]) A (closed) complex surface S is Kähler iff the
first Betti number b1(S) is even.

Remark 10.1.5. It is a standard fact that the odd-degree Betti numbers
(so in particular b1) of a Kähler manifold are even. The surprising fact in
Theorem 10.1.4 is that for surfaces the converse also holds. For more about
the topology of Kähler manifolds see [ABCKT].

By Theorem 10.1.4, a simply connected complex surface is Kähler, hence
can be equipped with a symplectic structure (provided by the complex struc-
ture and the Kähler metric). We will see later that the converse of this
statement does not hold; examples of symplectic non-Kähler manifolds will
be given in Section 10.2. On the other hand, every symplectic manifold
admits almost-Kähler structures:

Proposition 10.1.6. Any symplectic manifold (X,ω) admits a compatible
almost-complex structure J and (hence) a Riemannian metric g such that
(X,ω, J, g) is almost-Kähler. The space of compatible almost-complex struc-
tures is contractible.

Proof. The proof rests on the fact that the space of almost-complex struc-
tures on R4 compatible with the fixed form ω0 is nonempty and contractible
(see e.g. [McS1]). It follows that the compatible almost-complex structures
on (X,ω) are sections of a bundle with contractible fibers, so they form a
nonempty, contractible space.

Remark 10.1.7. The existence of an almost-Kähler structure on a sym-
plectic manifold (X,ω) also follows from the fact that the obvious embedding
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U(n) ⊂ Sp(2n) is a homotopy equivalence, hence the structure group of TX
(which is Sp(2n) for a symplectic manifold) can be reduced to U(n). Note
that the space of all almost-complex structures on X is not connected —
for example, varying c1(X, J) ∈ H2(X;Z) results in almost-complex struc-
tures realizing different components. On the other hand, the space of ω-
compatible almost-complex structures (where ω is a fixed symplectic form
on X) is contractible.

Since there is a compatible almost-complex structure J on (X,ω), we
may define the Chern classes ci(X,ω, J) ∈ H2i(X;Z). Because the space of
compatible J ’s is connected (in fact contractible), these cohomology classes
do not depend on J , hence ci(X,ω) ∈ H2i(X;Z) is well-defined. In the same
way, one can define the canonical bundleK of the symplectic manifold (X,ω)
— choose a compatible almost-complex structure J and take K = Λ2

JT
∗X;

obviously c1(K) = −c1(X,ω).

Let J be a fixed almost-complex structure on the 4-manifold X. A (real
2-dimensional) submanifold Σ ⊂ X is a pseudo-holomorphic submanifold (or
pseudo-holomorphic curve) if J maps TΣ ⊂ TX into itself. Since the adjunc-
tion formula (Theorem 1.4.17) holds for almost-complex manifolds as well,
the Euler characteristic of a (closed) pseudo-holomorphic submanifold Σ is
determined by its homology class: −χ(Σ) = [Σ]2−c1(X,ω)[Σ]. This formula
determines the genus of Σ provided that Σ is connected. A 2-dimensional
submanifold Σ ⊂ X is a symplectic submanifold if (Σ, ω|Σ) is a symplectic
manifold. Note that if Σ is a (closed) symplectic submanifold, then (since
ω|Σ is a volume form, so 〈[ω], [Σ]〉 > 0) the homology class [Σ] is not zero in
H2(X;Z), or even in H2(X;R). If (X,ω, J, g) is an almost-Kähler manifold,
then a pseudo-holomorphic submanifold Σ is always a symplectic submani-
fold; moreover an embedded surface Σ ⊂ X is a symplectic submanifold iff
there is a compatible almost-complex structure J such that Σ ⊂ (X, J) is
pseudo-holomorphic. A 2-dimensional submanifold Σ ⊂ X is Lagrangian if
ω|Σ = 0. The normal bundle of a Lagrangian submanifold is always iso-
morphic to its cotangent bundle, so if Σ is closed and oriented it satisfies
−χ(Σ) = [Σ]2.

Exercise 10.1.8. Prove that a transverse intersection of pseudo-holomor-
phic curves in (X, J) is always positive (cf. Section 1.2). Find a pair of
symplectic 2-planes in (R4, ω0) that intersect negatively. (Note, however,
that if a transverse intersection of two symplectic submanifolds is orthogonal
(with respect to ω), then it is positive.)

Remark 10.1.9. Applying more delicate arguments, one can show that
(as in the complex case) any intersection of pseudo-holomorphic curves is
positive, i.e., the above transversality hypothesis is unnecessary [Mc2]. As
the second statement of Exercise 10.1.8 asserts, symplectic submanifolds
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Σ1,Σ2 ⊂ X might intersect negatively. Hence — although there exists a
compatible almost-complex structure Ji for which Σi ⊂ X is a pseudo-
holomorphic curve (i = 1, 2) — there might be no almost-complex structure
on X for which both Σ1 and Σ2 are pseudo-holomorphic submanifolds.

Now we turn to studying the topology of a closed symplectic 4-manifold.
As a consequence of Proposition 10.1.6, we find our first restriction (cf.
Theorem 1.4.13):

Corollary 10.1.10. Suppose that (X,ω) is a (closed) symplectic 4-mani-
fold. Then 1 − b1(X) + b+2 (X) is even. In particular, a simply connected
symplectic 4-manifold has odd b+2 (X).

Note that if (X,ω) is symplectic, then ω is a nondegenerate 2-form, so
[ω] ∈ H2(X;R) is nonzero ([ω] ∧ [ω] = [ω ∧ ω] �= 0), and in particular,
b2(X) �= 0. Moreover, since ω ∧ω is a volume form (so 〈ω ∧ω, [X]〉 > 0), we
see that b+2 (X) > 0 without assuming π1(X) = 1. (In the above argument
the condition dω = 0 is used in the implicit statement that [ω] ∈ H2(X;R)
is defined.) The existence of a nondegenerate 2-form by itself does not imply
b2(X) > 0; for example S1 × S3 can be equipped with a complex structure
(cf. Section 3.4), but the choice of a compatible Riemannian metric on
S1 × S3 defines only a nondegenerate 2-form ω which cannot satisfy the
condition dω = 0.

The main breakthrough in the study of the topology of symplectic 4-
manifolds came with the theorems of Taubes regarding Seiberg-Witten in-
variants of symplectic 4-manifolds.

Theorem 10.1.11. (Taubes, [T2]) If (X,ω, J, g) is an almost-Kähler man-
ifold with b+2 (X) > 1, then the classes ±c1(X,ω) are Seiberg-Witten basic
classes; moreover, SWX(±c1(X,ω)) = ±1. In addition, for every Seiberg-
Witten basic class K we have |K · [ω]| ≤ |c1(X,ω) · [ω]|, and equality holds
iff K = ±c1(X,ω).

Remark 10.1.12. Theorem 10.1.11 is proved by taking an appropriate
perturbation of the Seiberg-Witten equations (see Sections 2.4 and 10.4).
Taubes proved that the moduli space Mμ

c1(X)(g) consists of one (smooth)

point if the perturbation form μ is equal to rω for r ∈ R large enough;
this implies that SWX(c1(X,ω)) = ±1. The proof of the second part of
Theorem 10.1.11 is based on a similar perturbation argument. Analogous
statements hold in the b+2 (X) = 1 case as well [T2].

Theorem 10.1.11 is frequently used to prove that certain manifolds do not
admit symplectic structures.

Proposition 10.1.13. The 4-manifold #3CP2 admits no symplectic struc-
ture.

                

                                                                                                               



10.1. Symplectic and almost-complex manifolds 391

Proof. By the vanishing theorem (Theorem 2.4.6) the 4-manifold #3CP2 has
vanishing Seiberg-Witten invariants, so there is no class K ∈ H2(#3CP2;Z)
which could play the role of c1(X,ω) for a symplectic structure ω.

Note that on the other hand, #3CP2 does admit almost-complex structures
(cf. Exercise 2.4.12); by Proposition 10.1.13 the corresponding forms ω fail
to be closed. Of course, the argument in the proof of Proposition 10.1.13
can be adapted to prove the following more general statement:

Theorem 10.1.14. If the symplectic 4-manifold (X,ω) decomposes as a
connected sum X = X1#X2 with b+2 (X1) > 0, then X2 has a negative
definite intersection form.

Our aim is to describe the topology of symplectic 4-manifolds; hence
we would like to understand the above connected sum decompositions with
b+2 (X2) = 0 as well. It turns out that symplectic manifolds can always
be symplectically blown up: If (X,ω) is a symplectic manifold, then X ′ =
X#CP2 carries a symplectic structure ω′, so the blow-up process can be gen-
eralized to the symplectic setting [Mc1]. Following the algebraic geometric
analogy, one can define minimal symplectic manifolds: We will say that a
symplectic 4-manifold (X,ω) is minimal if there is no embedded symplectic
sphere in X with square −1. As we will see in the next section (Theo-
rem 10.2.3), a symplectic −1-sphere can be symplectically blown down, so
any symplectic 4-manifold has a (possibly nonunique) minimal model — just
as in the complex geometric case. To describe the possible connected sum
decompositions of minimal symplectic manifolds, we will use the remarkable
results of Taubes [T3], [T4] relating Seiberg-Witten invariants and pseudo-
holomorphic submanifolds of an almost-Kähler 4-manifold (X,ω, J, g).

Theorem 10.1.15. (Taubes, [T3], [T4]; see also [Ko2]) Suppose that
(X,ω) is a symplectic manifold with b+2 (X) > 1 and SWX(K) �= 0 for a
given K ∈ CX . Assume furthermore that the class c = 1

2(K − c1(X,ω)) is

nonzero in H2(X;Z). Then for a generic compatible almost-complex struc-
ture J on X, the class PD(c) ∈ H2(X;Z) can be represented by a pseudo-
holomorphic submanifold.

Remarks 10.1.16. (a) In fact, Taubes proved much more. By defining a
rather delicate way of counting pseudo-holomorphic submanifolds represent-
ing a fixed homology class PD(c) ∈ H2(X;Z), he proved that this number
and SWX(c1(X,ω)+2c) are equal. In our applications, however, we will only
use the direction that a nonvanishing Seiberg-Witten invariant implies the
existence of pseudo-holomorphic curves. Note that the curve Σ representing
PD(c) is not given to be connected. This observation becomes important if
one wants to apply the adjunction formula to compute the genus of Σ.
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(b) Since Theorem 10.1.11 shows that −c1(X,ω) ∈ BasX , Theorem 10.1.15
implies, in particular, that the Poincaré dual of−c1(X,ω) can be represented
by a pseudo-holomorphic submanifold (assuming it is nonzero). Since a
pseudo-holomorphic submanifold is always symplectic, the above reasoning
shows that −c1(X,ω) · [ω] > 0 for manifolds with b+2 (X) > 1 and c1(X,ω)
nonzero. Furthermore, it can be shown that if b+2 (X) > 1, then a class e
with e2 = −1, c1(X,ω) · PD(e) = 1 and SWX(c1(X,ω) + 2PD(e)) �= 0
can be represented by a symplectic sphere; consequently X is nonminimal.
(The fact that c1(X,ω) + 2PD(e) ∈ BasX guarantees the existence of a
pseudo-holomorphic representative for e. The two other assumptions —
together with the adjunction formula — ensure that this representative is
a sphere.) As a further application of Theorem 10.1.15, one can show that
a symplectic 4-manifold with b+2 > 1 has Seiberg-Witten simple type, cf.
[Ko2] and Exercise 10.1.20(d).

(c) Theorem 10.1.15 also proves the inequality in Theorem 10.1.11: If K
is a basic class, then c = 1

2(K − c1(K,ω)) can be represented by a pseudo-
holomorphic (in particular symplectic) submanifold (unless c = 0), hence
c · [ω] ≥ 0. Reversing the sign of K if necessary, we can assume K · [ω] ≤ 0,
so that c1(X,ω) · [ω] ≤ K · [ω] ≤ 0, which proves the inequality. Note that
equality implies c · [ω] = 0, hence c = 0, and consequently, K = c1(X,ω) (or
K = −c1(X,ω)).

(d) Above we only dealt with the case of b+2 (X) > 1; recall that for man-
ifolds with b+2 (X) = 1 the Seiberg-Witten invariants depend on the chosen
metric and perturbation. After the appropriate modifications, the theorems
and properties discussed above extend to the case of b+2 (X) = 1. For the
sake of brevity, however, we will omit the discussion of these extensions and
advise the reader to turn to [Sa], [McS2] or [Liu].

Before listing further consequences of Theorem 10.1.15, we give the def-
inition of irreducibility ; this notion will be examined more thoroughly in
Section 10.3.

Definition 10.1.17. A smooth 4-manifold X is irreducible if for every
smooth connected sum decomposition X = X1#X2, either X1 or X2 is
homeomorphic to S4.

Combining Theorem 10.1.15 with Theorems 1.2.30 and 1.2.27, one can
deduce the following theorem (see also [Ko2], [Ko3] and Exercises 10.1.20(d)
and (e)):

Theorem 10.1.18. Suppose that (X,ω) is a minimal symplectic 4-manifold
with b+2 (X) > 1. If X decomposes as X = X1#N with b+2 (N) = 0, then N is
an integral homology 4-sphere. In particular, if X is simply connected, then
so is N ; hence it is homeomorphic to S4. Consequently, a simply connected,
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minimal, symplectic 4-manifold with b+2 > 1 is irreducible. Furthermore, a
minimal symplectic 4-manifold X with b+2 (X) > 1 satisfies c21(X,ω) ≥ 0.

Moreover, by combining Taubes’ result 10.1.15 and a theorem of McDuff
[Mc3] (asserting that a minimal symplectic 4-manifold containing a sym-
plectic sphere of nonnegative square is either CP2 or a CP1-bundle over a
Riemann surface), Liu and Li proved the following:

Theorem 10.1.19. ([Liu], [LiL]) If X is a minimal symplectic 4-manifold
with c21(X) < 0, then X is a CP1-bundle over a Riemann surface (of genus
> 1), i.e., X is diffeomorphic to an irrational ruled surface. In particular, if
the minimal symplectic 4-manifold (X,ω) has c21(X,ω) < 0, then b+2 (X) = 1.
Moreover, the symplectic structure on such a ruled surface is unique up to
diffeomorphism and symplectic deformation.

Exercises 10.1.20. (a)∗ Show that if Σ is an embedded sphere with [Σ]2 =
−1 in the symplectic 4-manifold (X,ω) (with b+2 (X) > 1), then for e = [Σ] or
−[Σ] we have c1(X,ω) ·PD(e) = 1 and SWX(c1(X,ω)+2PD(e)) �= 0. Note
that these facts (together with the argument outlined in Remark 10.1.16(b)
above) show that the homology class of a smooth −1-sphere in a 4-manifold
X with b+2 (X) > 1 can always be represented by a pseudo-holomorphic
sphere.

(b)∗ Show that a symplectic 4-manifold (X,ω) with b+2 (X) > 1 is minimal
iff there is no basic class K ∈ BasX with (c1(X,ω)−K)2 = −4.
(c)∗ Prove that if b+2 (X) > 1 and (X,ω) is a minimal symplectic manifold,
then c21(X,ω) ≥ 0.

(d) Show that a symplectic 4-manifold (X,ω) with b+2 (X) > 1 has Seiberg-
Witten simple type.

(e)∗ Suppose that a simply connected, minimal symplectic 4-manifold (X,ω)
with b+2 (X) > 1 decomposes as X = X1#N . Show that if b+2 (X1) > 0, then
N is homeomorphic to S4.

10.2. Constructions of symplectic manifolds

The previous section presented obstructions to putting a symplectic struc-
ture on a 4-manifold (cf. Corollary 10.1.10 and Theorems 10.1.11, 10.1.14).
In the following, we would like to describe ways to construct examples of
symplectic 4-manifolds. We will also address the geography question for
symplectic manifolds (cf. the same question for complex surfaces in Sec-
tions 3.4 and 7.4). We will start by describing the normal connected sum
operation — a generalization of the fiber sum operation given in Section 7.1.
As we will see (Theorem 10.2.1), the normal connected sum operation is well
suited for symplectic manifolds. After discussing the geography question,
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we will turn to examining the relation between symplectic structures and
Lefschetz fibrations.

Suppose that X1, X2 are symplectic 4-manifolds and Fi ⊂ Xi are 2-
dimensional, smooth, closed, connected symplectic submanifolds in them.
Suppose furthermore that [F1]

2+[F2]
2 = 0 and that the genera of F1 and F2

are equal. Take an orientation-preserving diffeomorphism ψ : F1 → F2 and
lift it to an orientation-reversing diffeomorphism Ψ: ∂νF1 → ∂νF2 between
the boundaries of the tubular neighborhoods νFi. Using Ψ we can apply
Definition 1.3.2 and construct XΨ = (X1−νF1)∪Ψ (X2−νF2). The manifold
XΨ is called the (symplectic) normal connected sum of X1 and X2 along F1

and F2, and is also denoted by X1#ΨX2 or X1#FX2.

Theorem 10.2.1. ([G12]) Under the above circumstances, the 4-manifold
XΨ = X1#ΨX2 admits a symplectic structure. Moreover, this structure can
be chosen in such a way that the symplectic (Lagrangian) submanifolds of
Xi − νFi are symplectic (Lagrangian) in XΨ.

Note that the diffeomorphism type of XΨ might depend on the particular
choice of the diffeomorphism Ψ — in fact, there are examples of such de-
pendence. If F ⊂ X is a Lagrangian submanifold in a symplectic manifold
(X,ω) and [F ] �= 0 ∈ H2(X;R), then F can be made into a symplectic sub-
manifold by a small global perturbation of ω, see [G12]. Hence, the above
theorem can be extended to the case when the submanifolds Fi ⊂ Xi are
Lagrangian (with the caveat that Lagrangian submanifolds of Xi− νFi may
become symplectic in XΨ). Note that the same operation can be performed
in the smooth category without assuming that the manifolds Fi or even Xi

are symplectic. Needless to say, in this latter case the normal connected
sum XΨ is not necessarily symplectic.

Example 10.2.2. The fiber sum operation (introduced in Chapter 3) is a
special case of the normal connected sum — the case when g(Fi) = 1 and
[Fi]

2 = 0. More generally, the generalized fiber sum described in Defini-
tion 7.1.11 is also a special case of the normal connected sum operation —
when we only assume that [Fi]

2 = 0 (i = 1, 2) and have no restriction on
the genus g(Fi) of Fi.

Next we will give applications of the above construction. First we show
that a symplectic −1-sphere can always be symplectically blown down.

Theorem 10.2.3. If (X,ω) contains a symplectic sphere Σ with square −1,
then X is symplectomorphic to the blow-up of a symplectic manifold Y .

Proof. Recall that as a smooth 4-manifold, X decomposes as Y#CP2 and Σ
becomes the exceptional sphere CP1 ⊂ CP2 (see Proposition 2.2.11). By as-
sumption Σ is symplectic; hence, if we take the symplectic normal connected
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sum of (X,Σ) with (CP2, H) (where H = {[z0 : z1 : z2] ∈ CP2 | z2 = 0}), i.e.,
replace νΣ with CP2 − int νH ≈ D4, Theorem 10.2.1 provides the desired
symplectic structure on Y .

Remarks 10.2.4. (a) Assuming b+2 (X) > 1, Remark 10.1.16(a) and the
solution of Exercise 10.1.20(a) show that the homology class of a smoothly
embedded sphere Σ ⊂ X with [Σ]2 = −1 can be represented by a pseudo-
holomorphic, hence symplectic, −1-sphere. Consequently, a symplectic 4-
manifold X (with b+2 (X) > 1) is minimal iff it does not contain any smoothly
embedded sphere with self-intersection −1. Recall that every symplectic
4-manifold admits a (possibly nonunique) minimal model. As a further
consequence of Taubes’ Theorem 10.1.15, Li [Li1] showed that the minimal
model is unique unless X is the blow-up of CP2 or a ruled surface — in
analogy with complex geometry.

(b) Following the analogous notion in complex geometry, the Kodaira di-
mension κ(X) of a minimal symplectic 4-manifold X can be defined in
the following way [McS2]. We say that κ(X) = −∞ if c1(X,ω)[ω] > 0,
κ(X) = 0 if c1(X,ω)[ω] = 0, κ(X) = 1 if c1(X,ω)[ω] < 0 and c21(X,ω) = 0,
and finally κ(X) = 2 if c1(X,ω)[ω] < 0 and c21(X,ω) > 0. (Note that
according to Theorem 10.1.19 [Liu] the condition c1(X,ω)[ω] < 0 implies
c21(X,ω) ≥ 0 for a minimal symplectic 4-manifold X.) For a general (non-
minimal) symplectic 4-manifold (X,ω) we define κ(X) to be the Kodaira
dimension of its minimal model. It can be shown that a minimal sym-
plectic 4-manifold X with κ(X) = −∞ is diffeomorphic to a Kähler surface
[Liu]. For a discussion about symplectic 4-manifolds with κ = 0 see [McS2].
Note that the manifolds Kp,q of Corollary 10.2.8 and the examples in The-
orem 10.2.14 are symplectic manifolds with Kodaira dimensions 1 and 2
admitting no complex structure.

Exercises 10.2.5. (a)∗ Show that if X is a minimal symplectic 4-manifold
with κ(X) = 0 and b+2 (X) > 1, then BasX = {0}. Conclude that if X
is minimal with κ(X) = 0 and b+2 (X) > 1, then X is spin. (Note that if
we drop the assumption on b+2 , the above statements become false, as the
Enriques surface E(1)2,2 shows.)

(b) Show that if X is a minimal symplectic 4-manifold with κ(X) = 0
and b+2 (X) = 1, then c1(X,ω) is a torsion class. (Hint : Note that κ(X) = 0
implies c21(X,ω) ≥ 0 (cf. Theorem 10.1.19); now represent c1(X,ω) and ω by
harmonic 2-forms, and from the conditions b+2 (X) = 1 and c1(X,ω)[ω] = 0
deduce that c1(X,ω) is 0 inH2(X;R).) In fact, it can be shown [McS2] that
2c1(X,ω) = 0. (Recall that the Enriques surface has Kodaira dimension 0
and nonzero first Chern class.)
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(c) Find a way to symplectically “blow down” a symplectic −4-sphere.
(Hint : Consider a quadric curve in CP2.) There is no holomorphic ana-
log of this construction. Recall that a neighborhood of a −4-sphere is a
copy of C2 of Section 8.5.

As we showed in Theorem 8.5.9, a logarithmic transformation of multiplicity
2 (and appropriate gluing data, cf. Exercise 8.3.16(a)) near a fishtail fiber
Σ can be reformulated as an ordinary blow-up and the rational blow-down
of the resulting −4-sphere Σ̃ = Σ − 2e. The solution of Exercise 10.2.5(c)
shows that such a logarithmic transformation of multiplicity 2 is, in fact, a
symplectic operation when the −4-sphere is a symplectic submanifold. This
observation can be generalized to arbitrary p ≥ 2, using the following:

Theorem 10.2.6. ([Sy]) Assume that (X,ω) is a symplectic 4-manifold.
Suppose that for i = 1, . . . , p− 1 there are embedded spheres Σi in X inter-
secting each other according to the plumbing diagram given by Figure 8.39.
If these spheres are symplectic and intersect positively, then the rational
blow-down X(p) of X along the spheres Σi admits a symplectic structure.

Combining this with Theorem 8.5.9, we obtain:

Corollary 10.2.7. Consider a multiplicity p (≥ 2) logarithmic transforma-
tion performed along a torus lying in a symplectic fishtail neighborhood (with
the auxiliary gluing data described in Exercise 8.3.16(a)). Then the resulting
4-manifold admits a symplectic structure.

Examples of closed symplectic manifolds originally emerged from com-
plex geometry; as we saw, Kähler surfaces are all symplectic 4-manifolds.
The first examples of simply connected, symplectic but non-Kähler (hence
noncomplex) 4-manifolds were constructed in [G12], by using the symplectic
normal connected sum operation of Theorem 10.2.1. One of these families,
which we now describe, can be regarded as a reformulation of the original
construction of irreducible, noncomplex manifolds [GM]. Take the simply
connected elliptic surfaces E(1)p and E(1)q with p, q > 1 (cf. Section 3.3).
Specify generic fibers F1 ⊂ E(1)p and F2 ⊂ E(1)q; taking the fiber sum
along these tori gives the elliptic surface E(2)p,q. On the other hand, if we
choose the gluing map Ψ: ∂(E(1)p − νF1) → ∂(E(1)q − νF2) carefully, we
get a symplectic non-Kähler manifold: Start with the identifications of the
boundaries ∂(E(1)p − νF1) and ∂(E(1)q − νF2) with S1 × S1 ×±∂D2 pro-
vided by the elliptic fibrations. The fiber sum operation corresponds to an
identification Φ: ∂(E(1)p − νF1)→ ∂(E(1)q − νF2) generating the identity
matrix on H1(S

1 × S1 × S1;Z). If Ψ: ∂(E(1)p − νF1) → ∂(E(1)q − νF2)

generates
[
1 0 0
0 1 0
0 1 1

]
on H1(T

3;Z) (corresponding to a different lift of the given

diffeomorphism F1 → F2 to the normal circle bundles), then the resulting 4-
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manifoldKp,q is still symplectic (by Theorem 10.2.1), and by the Seifert-Van
Kampen theorem it is simply connected. The Seiberg-Witten basic classes
of Kp,q are computed in [FS2], and we have that BasKp,q is equal to the set{

k1
[F1]

p
+ k2

[F2]

q

}
,

where k1 ≡ p − 1 (mod 2), k2 ≡ q − 1 (mod 2), |k1| ≤ p − 1 and |k2| ≤
q − 1. (Note that [F1] �= [F2] in H2(Kp,q;Z).) It can be proved that Kp,q

is homeomorphic to E(2) if pq is odd and to #3CP2#19CP2 if pq is even.
Comparing the set BasKp,q to the set of basic classes of complex surfaces
(described in Section 3.3), one can easily deduce:

Corollary 10.2.8. For p, q > 1 the manifold Kp,q is a minimal symplectic
4-manifold which is not diffeomorphic to a complex surface.

Exercise 10.2.9. Prove that Kp,q is minimal. (Hint : Since b+2 (Kp,q) = 3,
Exercise 10.1.20(b) applies. Since [F1]

2 = [F2]
2 = [F1] · [F2] = 0, the above

description of BasKp,q yields the solution.)

The above construction can be generalized to other elliptic surfaces and
more logarithmic transformations. Many similar examples have been found
for the same phenomenon (see [FS2], [Sz1], [S2]); in most of these cases
the proof (that the manifold is noncomplex) involves the computation of
gauge-theoretic invariants. (To avoid gauge theory, one can construct spin
examples with c21 �= 0 violating the Noether inequality [G12]; these will not
even be homotopy equivalent to complex surfaces.) One has to be careful
in saying that a 4-manifold does not carry a complex structure. By re-
versing orientations it is easy to find 4-manifolds which are not orientation-
preserving diffeomorphic to any complex surface (with its induced orien-
tation as a complex manifold). For example, take a simply connected 4-
manifold X with even b−2 ; then X (the same smooth 4-manifold with the
opposite orientation) will have even b+2 , so it will not admit any (almost)
complex structure. The above examples Kp,q have the property that they
are not complex with either orientation. In the following, when we say “X
does not admit a complex (or symplectic) structure”, we will mean that
the statement holds for both orientations of X. Most of the examples dis-
cussed in this section have the property that SWX ≡ 0 (mainly because

X contains a sphere with square −2, hence X has a sphere of square 2, cf.
Theorem 2.4.6). For these examples, X with the opposite orientation clearly
has no complex (or symplectic) structure, cf. Theorem 2.4.7.

Next we address the question of determining the homeomorphism types
of symplectic (minimal) 4-manifolds. First we show that the symplectic
structure imposes no restriction on the fundamental group. There are vari-
ous properties that the fundamental group of a Kähler surface must satisfy
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(see, e.g., [ABCKT]); for example, the rank of the abelianization must be
even (cf. Remark 10.1.5). Thus, Theorem 10.2.10 illustrates the difference
between Kähler and almost-Kähler manifolds. (Recall that every finitely
presented group can be thought of as the fundamental group of an almost-
complex 4-manifold, cf. Exercise 10.1.3(b).)

Theorem 10.2.10. ([G12]) For any finitely presented group G there is a
closed symplectic 4-manifold (X,ω) with π1(X) ∼= G.

Proof. Take a finite presentation G = 〈g1, . . . , gk | r1, . . . , rl〉 with genera-
tors gi and relators rj . Let F be a surface with genus k and fix a collection of
circles αi, βi ⊂ F representing a basis ofH1(F ;Z) (with αi·βj = δij , αi∩αj =
βi ∩ βj = ∅). Take immersed curves γj (j = 1, . . . , l) in F representing the
relators rj in the free group π1(F )/〈β1, . . . , βk〉, with gi replaced by αi. The
choices γl+i = βi (i = 1, . . . , k) complete the set {γi | i = 1, . . . , k + l}
of curves on F . Take a torus T 2 with generating circles α, β, and con-
sider the collection of tori Ti = γi × α ⊂ F × T 2 (i = 1, . . . , k + l) and
T0 = {pt.} × T 2 in F × T 2. It can be shown [G12] that (if the presen-
tation for G was chosen carefully) these tori and the product symplectic
form ω on F × T 2 can be perturbed in such a way that the resulting col-
lection {T ′

i}k+l
0 of tori are disjoint symplectic submanifolds of (F × T 2, ω′).

Now take the symplectic normal connected sum of F × T 2 and (k + l + 1)
copies of the rational elliptic surface E(1) along the tori T ′

i ⊂ F × T 2 and
a generic fiber F ⊂ E(1). Since E(1)− νF is simply connected, the Seifert-
Van Kampen Theorem shows that the resulting symplectic 4-manifold X
has π1(X) = 〈α1, β1, . . . ., αk, βk〉/〈γ1, . . . , γk+l〉 ∼= G.

Remark 10.2.11. Using simple geometric ideas, one can prove that every
finitely presented group can be given as the fundamental group of a Lefschetz
fibration [ABKP]. In light of Theorem 10.2.18, this result provides a dif-
ferent proof for Theorem 10.2.10. Note that by coupling Theorems 10.2.10
and 10.2.25, it is straightforward to find a Lefschetz fibration X → CP1

for each finitely presented group G, with π1(X) ∼= G. The proof of Theo-
rem 10.2.25, however, is highly nonconstructive — in contrast to the proof
given in [ABKP].

Restricting ourselves to the simply connected case, we would now like
to determine the intersection forms corresponding to minimal symplectic 4-
manifolds. Recall that the intersection form of a simply connected, smooth,
closed 4-manifold is determined by its parity, rank and signature. Associate
c21(X) = 3σ(X)+2χ(X) and χh(X) = 1

12(c
2
1[X] + c2[X]) = 1

4(σ(X)+χ(X))
to the simply connected 4-manifold X as in Section 3.4. (Recall that χ(X)
stands for the Euler characteristic ofX, while χh generalizes the holomorphic
Euler characteristic of a complex surface.) As we have already seen, if X is
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a smooth (simply connected) 4-manifold, then the intersection form QX is
determined up to parity by χh(X) and c21(X).

Definition 10.2.12. By the geography of simply connected, minimal, closed
symplectic 4-manifolds we mean determining the set of pairs (a, b) ∈ Z× Z

such that there is a minimal, simply connected, symplectic 4-manifold X
with a = χh(X) and b = c21(X).

Remark 10.2.13. Compare the question of geography of symplectic man-
ifolds to that of geography of simply connected complex surfaces (described
in Sections 3.4 and 7.4). The latter geography is included in the former, since
Kähler implies symplectic. Note that χh(X) is not necessarily an integer for
a 4-manifold X. If X admits a symplectic (in particular almost-complex)
structure, then Theorem 1.4.13 implies that χh(X) ∈ Z.

The invariants χh and c21 do not determine the homeomorphism type of a
simply connected 4-manifold completely (cf. the text after Theorem 3.4.19).

In the case that c21 is divisible by 8 and
c21
8 ≡ χh (mod 2) (and only in this

case), there is an even intersection form with the prescribed invariants in
addition to the odd one. Hence, to fully answer the geography question for
such pairs (χh, c

2
1), one should give two examples, a spin and a nonspin one.

In the following, however, we will omit this subtlety. In the simply connected
case (on which we are focusing now) χh(X) ≥ 1 and (as a consequence of
Taubes’ work quoted in Theorem 10.1.18) c21(X) ≥ 0 for a simply connected
minimal symplectic manifold. As a consequence of Theorem 10.1.19 we have
that if X has κ(X) = −∞ then X is diffeomorphic to CP2 or Fn. Mini-
mal simply connected symplectic 4-manifolds with κ(X) = 0 are known
to be homeomorphic to the K3-surface [MSz]. An easy argument shows
that (simply connected) symplectic 4-manifolds with κ = 1 are homeomor-
phic to elliptic surfaces. As the examples of Corollary 10.2.8 (and the knot
construction given in Section 10.3, cf. Remark 10.3.5) indicate, there are
noncomplex manifolds with κ(X) = 1. Recall that a simply connected,
minimal complex surface with κ(X) = 2 has invariants satisfying c21(X) > 0
and 2χh(X) − 6 ≤ c21(X) ≤ 9χh(X) (cf. Theorem 3.4.19). The situation is
different for symplectic manifolds:

Theorem 10.2.14. If 0 < b < 2a − 6, then there is a minimal, simply
connected, symplectic 4-manifold (with κ(X) = 2) with χh(X) = a and
c21(X) = b.

Proof. There are many ways to use the normal summing operation to fill this
region with simply connected symplectic manifolds [G12], [S3] — in fact, in
the same vein one can fill the larger region 0 ≤ b ≤ 8a−11. The hard part of
the proof of Theorem 10.2.14 is to prove irreducibility for the examples found
(since one must compute gauge-theoretic invariants). The following family
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was shown to be irreducible by Fintushel and Stern. (See also Section 8.5.)
Recall that the elliptic surface E(4) contains 9 disjoint sections, which are
spheres of square −4; moreover, these spheres are symplectic submanifolds.
The complex surface E(4) also contains two Lagrangian tori T+ and T− of
square 0 disjoint from the 9 sections (see Exercise 3.1.9). Now write a in
the form a = 4k + l (0 ≤ l ≤ 3) and take k copies of E(4) and l copies
of E(1). Apply the normal connected sum construction for (E(4)i, T+) and
(E(4)i+1, T−) (i = 1, . . . , k − 1) and finish the construction by taking the
normal connected sum of the l copies of (E(1), F ) with the kth E(4) along l
parallel copies of T+. (Here F ⊂ E(1) stands for the generic fiber of E(1).)
The resulting simply connected symplectic manifold Y has χh(Y ) = a and
c21(Y ) = 0. Moreover, Y has 9k embedded symplectic spheres with square
−4. Since b < 2a− 6 = 2(4k + l)− 6 = 8k + 2l − 6 ≤ 8k, we can construct
X by summing Y along b symplectic −4-spheres with b copies of (CP2, 2H),
where 2H = {[z0 : z1 : z2] ∈ CP2 | ∑ z2i = 0}. Since b < 8k, we can assume
that we sum along at most 8 spheres in each E(4). It is easy to prove that X
is simply connected (see below) and has the desired characteristic numbers.
Adapting, e.g., the method developed in [S2] and using Theorem 8.5.12,
one can determine the Seiberg-Witten basic classes of X. The proof of the
minimality of X is now easy arithmetic based on the knowledge of BasX
and Exercise 10.1.20(b).

Exercise 10.2.15. Prove that π1(X) = 1. (Hint : What is the complement
of 8 sections in E(1)− νF?)

Remarks 10.2.16. (a) This construction always produces manifolds with
odd intersection forms (since RP2 ⊂ CP2 has nonzero mod 2 square and
is disjoint from 2H). By similar methods, it is also possible to realize all
allowable even intersection forms in the above region (or in the larger region
0 ≤ b ≤ 8a− 32) by simply connected, closed, spin, symplectic 4-manifolds
[G12]. In the spin case minimality is obvious without computing the gauge-
theoretic invariants.

(b) To complete the geography picture for simply connected symplectic
manifolds, one also has to find a symplectic analogue of the Bogomolov-
Miyaoka-Yau inequality c21(X) ≤ 9χh(X) (known for complex surfaces of
general type). Note that by definition c21(X) + c2(X) = 12χh(X), hence if
c2(X) ≥ 0 then c21(X) ≤ 12χh(X). In fact, by assuming simple connectivity
we can prove that c21(X) < 5c2(X), or equivalently c21(X) < 10χ(X): We
have c21(X)− 2c2(X) = 3σ(X) = 3(c2(X)+ 2b1(X)− 2b−2 (X)− 2) < 3c2(X)
(since b1(X) = 0). These arguments only use the assumption that c2(X)
is nonnegative (or that b1(X) = 0), and make no use of the presence of a
symplectic structure onX. For this reason, one might expect sharper bounds
for c21(X) in terms of χh(X) or c2(X) for a simply connected symplectic 4-
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manifold (X,ω), but nothing further is currently known. For examples of
simply connected symplectic 4-manifolds with c21 > (9− ε)χh (for arbitrary
ε > 0) see [S4].

(c) Based on the analogy with complex geometry, it seems plausible to
expect that symplectic 4-manifolds with Kodaira dimension κ(X) ≥ 0 have
nonnegative Euler characteristic. (Note that this would imply χh(X) ≥ 0
as well.) It is expected that the invariants of symplectic 4-manifolds with
κ(X) = 2 satisfy an inequality analogous to the Bogomolov-Miyaoka-Yau
inequality c21 ≤ 9χh.

The first example of a symplectic manifold admitting no Kähler structure
was given by Thurston [Th1] and was also known to Kodaira — this example
has nontrivial fundamental group. The construction is the following: Take
R4 with its standard symplectic form ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 and take
the quotient of it by the group G generated by the unit translations parallel
to the first three coordinate axes, together with the map (x1, y1, x2, y2) �→
(x1 + y1, y1, x2, y2 + 1). The resulting quotient Z inherits the symplectic
structure of R4 but has b1(Z) = 3; hence, it is not diffeomorphic to a Kähler
surface (cf. Remark 10.1.5). Note that Z is a T 2-bundle over T 2. In fact, in
most cases a surface bundle over a surface can be equipped with a symplectic
structure.

Theorem 10.2.17. ([Th1], see also [McS1]) Assume that Σg, Σh are
closed, oriented, 2-dimensional surfaces. If X → Σh is a bundle with fiber
Σg and the homology class of the fiber is nonzero in H2(X;R), then X admits
a symplectic structure.

This theorem can be generalized as follows to manifolds admitting Lef-
schetz fibrations. (For more about Lefschetz fibrations see Chapter 8.)

Theorem 10.2.18. ([G16]) Assume that the closed 4-manifold X admits
a Lefschetz fibration π : X → Σ, and let [F ] denote the homology class of
the fiber. Then X admits a symplectic structure with symplectic fibers iff
[F ] �= 0 in H2(X;R). If e1, . . . , en is a finite set of sections of the Lefschetz
fibration, the symplectic form ω can be chosen in such a way that all these
sections are symplectic.

Proof. One direction of the above equivalence is easy to prove. IfX carries a
symplectic structure ω such that a fiber F is symplectic, then 〈[ω], [F ]〉 > 0,
hence [F ] �= 0 in H2(X;R). The other direction of the theorem is more
complicated. To construct a symplectic structure on X, we can assume
without loss of generality that the fibers are connected (cf. Proposition 8.1.9
and the subsequent paragraph), and perturb π so that it becomes injective
on the set C of critical points. We now show how to construct a symplectic
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form on X that is symplectic on the resulting fibers. (More care is required
to guarantee that ω is symplectic on the fibers when π|C is not injective;
see [G16] for details.)

Exercise 10.2.19. ∗ For X as above, show that there exists a closed 2-
form ζ on X such that if F0 is a closed surface contained in a fiber (with
the induced orientation) then

∫
F0

ζ > 0.

Let Fy denote the fiber π−1(y) (y ∈ Σ); we will next construct a 2-form
ωy on Fy. Choose disjoint open balls Uj in X around the elements of C,
such that on each Uj the projection π is given as π(z1, z2) = z21 + z22 . (Such
neighborhoods exist by the definition of a Lefschetz fibration.) Now take
ωUj = dx1 ∧ dy1 + dx2 ∧ dy2 on Uj . Since Fy ∩ Uj is a holomorphic curve
for y ∈ π(Uj), the form ωUj |Uj ∩ Fy is a symplectic form. Extend it to the
fiber Fy as a symplectic form; in this way we get symplectic forms for all
y ∈ π(

⋃
j Uj). Define ωy for the remaining points y ∈ Σ in such a way that

ωy is symplectic along Fy. By rescaling away from
⋃
Uj , we can assume that

the condition [ωy] = [ζ|Fy] holds in H2
dR(Fy) for each y.

In the next step we will extend the above forms ωy (y ∈ Σ) to closed
2-forms ηy defined on some neighborhood of each Fy, then glue the 2-forms
ηy together to get a closed 2-form η on X. Take a neighborhood Wy ⊂ Σ of y

in Σ containing no critical values except (possibly) y. Take W̃y = π−1(Wy),

and fix a retraction ry of W̃y to Fy or Fy ∪ c�(Uj), depending on whether
Fy∩C = ∅ or it consists of one point. (We assume that in the case Fy∩C �= ∅,
W̃y contains c�(Uj); this can be achieved by shrinking each Uj .) Now define
ηy as the pull-back r∗(ωy) if Fy ∩ C = ∅, and r∗(ωy or ωUj ) otherwise. To
glue the forms ηy together, choose a finite subcover of the cover {Wy} of Σ.
Rather than indexing this subcover by the corresponding points of Σ, we will
index it by i = 1, . . . , n for some n; we reindex the corresponding Fy, ωy and
ηy by i accordingly. Fix a partition of unity {ρi} subordinate to the cover

{Wi}. Since the forms ηi and ζ|W̃i represent the same cohomology class

on Fi, and H2
dR(W̃i) ∼= H2

dR(Fi), we have that [ηi − ζ|W̃i] = 0 ∈ H2
dR(W̃i).

Consequently ηi− ζ|W̃i is exact, i.e., there exists a 1-form θi ∈ Ω1(W̃i) such

that dθi = ηi − ζ|W̃i. Now take η = ζ + d(
∑

i(ρi ◦ π)θi) on X. (Recall
that {ρi} is a partition of unity on Σ, hence we need π to pull it back

to X for summing the forms θi ∈ Ω1(W̃i).) Since dη = dζ = 0, the 2-
form η ∈ Ω2(X) is closed. Moreover, by its construction, we have η|Fy =
ζ|Fy +

∑
i ρi(y)dθi|Fy = ζ|Fy +

∑
i ρi(y)(ηi|Fy − ζ|Fy) =

∑
i ρi(y)ηi|Fy for

every y ∈ Σ. The last sum is a convex combination of compatibly oriented
area forms on Fy, hence it is symplectic. Consequently η is a closed 2-form
on X which is symplectic along the fibers.
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Let ωΣ be a symplectic form on the 2-dimensional surface Σ, and for
t > 0 define ωt = tη + π∗ωΣ.

Proposition 10.2.20. For sufficiently small t, the 2-form ωt is a symplec-
tic form on X.

Proof. The form ωt is obviously closed for any t, since dη = 0 and dωΣ = 0
(implying dπ∗ωΣ = 0). Hence we only need to show that ωt is nondegenerate.
In the fiber direction, nondegeneracy holds for every t, since ωt|Fy = tη|Fy is
symplectic on Fy for all y ∈ Σ. Away from C, nondegeneracy can be proved
in the following way: Fix y ∈ Σ and x ∈ Fy such that x is not in C. The
orthogonal complement of the tangent plane TxFy in TxX is the same with
respect to ωt as with respect to η; it is also complementary to TxFy since

η|TxFy is nondegenerate. Thus, π∗ωΣ is nondegenerate on (TxFy)
⊥η , hence

for t small enough the form ωt will also be nondegenerate at x. (Recall
that nondegeneracy is an open property, and for small t the term π∗ωΣ

dominates in ωt on (TxFy)
⊥η .) Now by the compactness of X − ⋃

j Uj , we
can choose an overall t0 such that if 0 < t < t0, the form ωt is nondegenerate
on X − ⋃

j Uj . In a neighborhood Uj , however, ωt has the standard form
ωt|Uj = tωUj + π∗ωΣ. (Recall that on the charts Uj the projection π has a
standard form.) For a nonzero tangent vector v ∈ TUj we have ωt(v, iv) > 0
by the following exercise, proving that ωt is nondegenerate everywhere.

Exercise 10.2.21. Prove that under the above circumstances ωt(v, iv) =
t||v||2 + ωΣ(π∗v, iπ∗v) > 0. (Hint : Use the definition of ωUi and the fact
that πUi : Ui → Σ is given explicitly as π(z1, z2) = z21 + z22 , hence it is
holomorphic.)

Taking t even smaller, we can assume that a finite collection of sections will
be symplectic, since the pull-back π∗ωΣ is symplectic along sections, and for
t small enough it dominates in ωt. This observation completes the proof of
Theorem 10.2.18.

Remarks 10.2.22. (a) Note that the assumption on the homology class
of the fiber ([F ] �= 0 ∈ H2(X;R)) cannot be eliminated. For example,
S1 × S3 is obviously a T 2-bundle over the sphere S2 (by taking the Hopf
fibration of S3 with circle fibers, and then multiplying it by S1), but since
H2(S

1 × S3;R) = 0, the 4-manifold S1 × S3 admits no symplectic structure
(cf. the text after Corollary 10.1.10). However, this situation only occurs for
genus-1 Lefschetz fibrations, by Exercise 8.4.15(b). (Recall that Lefschetz
fibrations are a special case of achiral Lefschetz fibrations, Definition 8.4.4.)
The classification of elliptic surfaces without multiple fibers now shows that
the hypothesis [F ] �= 0 on a Lefschetz fibration is automatic unless X is a
torus bundle (so χ(X) = 0 and b1(X) �= 0) or a blow-up of such.

                

                                                                                                               



404 10. Symplectic 4-manifolds

(b) Suppose that Σ is a Riemann surface. A map f : X → Σ is called
locally holomorphic if for each x ∈ X there exist a neighborhood Ux and
an orientation-preserving diffeomorphism ϕx : Ux → Vx ⊂ C2 such that
f ◦ϕ−1

x is a holomorphic map. Theorem 10.2.18 now can be extended in the
following way: If the (closed) 4-manifold X admits a locally holomorphic
map onto a Riemann surface Σ and for generic p ∈ Σ the homology class
[f−1(p)] ∈ H2(X;R) is nonzero, then X can be equipped with a symplectic
form (with the fibers of f symplectic wherever they are smooth) [G16]. The
latter homological assumption can be replaced by the equivalent assumption
that f∗([Σ]) ∈ H2(X;R) is nonzero.

(c) The geography question can be raised for (relatively minimal) Lefschetz
fibrations as well. Suppose that f : X → Σ is a relatively minimal genus-
g Lefschetz fibration with g ≥ 2 and g(Σ) = h > 0. Equipping X with
a symplectic structure provided by Theorem 10.2.18 and applying Taubes’
work [T4], one can show that relative minimality implies minimality once
g(Σ) > 0 [S5]. This implies, in particular, that 2(g − 1)(h− 1) ≤ c21(X) ≤
5c2(X) for those Lefschetz fibrations [Li2], [S5]. (Note that since g(Σ) ≥
1, we have b1(X) ≥ 2, hence the argument given in Remark 10.2.16(b)
does not apply.) As for genus-g Lefschetz fibrations over S2, we know that
4− 4g ≤ c21(X) ≤ 5c2(X) + 12(g − 1) unless X → S2 is the trivial fibration
S2×Σg → S2 (in which case c21(X) = c21(S

2×Σg) = 8−8g) [S6]. All known
examples of Lefschetz fibrations satisfy c21(X) ≤ 3c2(X).

By the addendum of Theorem 10.2.18 about sections e1, . . . , en, the
statement of Theorem 10.2.18 can be extended to Lefschetz pencils as well:

Corollary 10.2.23. If a 4-manifold X admits a Lefschetz pencil, then it
has a symplectic structure.

Proof. By blowing up X in the n points of the base locus B we get a
Lefschetz fibration X#nCP2 → CP1. Since B �= ∅ (cf. Definition 8.1.4(a)),
there are sections (the exceptional spheres) intersecting each fiber nontriv-
ially. Hence the homology class of the fiber is nontrivial, so by Theo-
rem 10.2.18 the blown-up manifold X#nCP2 admits a symplectic structure
for which the exceptional spheres (a finite set of sections) are symplectic.
Now symplectically blowing down the exceptional spheres results in a sym-
plectic structure on the manifold X.

Coupling Corollary 10.2.23 with a recent result of Donaldson, we obtain
a topological description of symplectic 4-manifolds. Before stating Donald-
son’s Theorem 10.2.25, we first quote the theorem on which its proof rests.

Theorem 10.2.24. ([D2]) Suppose that [ω] ∈ H2(X;R) lifts to an integral
cohomology class h ∈ H2(X;Z). Then for k ∈ N sufficiently large, the
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Poincaré dual of kh ∈ H2(X;Z) can be represented by a symplectic surface
in X.

Theorem 10.2.25. (Donaldson, [D3]) Any symplectic 4-manifold X ad-
mits a Lefschetz pencil.

Exercise 10.2.26. ∗ Prove that every symplectic manifold (X,ω) admits a
symplectic form ω′ such that [ω′] ∈ H2(X;R) lifts to an integral cohomology
class, i.e., it is in the image of the map H2(X;Z) → H2(X;R) induced by
the inclusion Z ↪→ R.

Remark 10.2.27. Let L → X be the complex line bundle with c1(L) =
h ∈ H2(X;Z). To prove Theorem 10.2.24, Donaldson showed that if k is
large enough, then L⊗k → X admits a section s such that s−1(0) ⊂ X is a
symplectic submanifold. Using the same basic idea, he also showed that for
k large enough there are linearly independent sections s0, s1 ∈ Γ(L⊗k) such
that the submanifolds {(t0s0 + t1s1)

−1(0) ⊂ X | [t0 : t1] ∈ CP1} are sym-
plectic and form a Lefschetz pencil on X. The proof is based on a technique
of Kodaira for embedding Kähler manifolds in CPN (cf. Remark 3.4.3(a)),
although the analytical details are much more subtle in the symplectic case.
Specifically, it was proved that the map x �→ [s0(x) : s1(x)] ∈ CP1 (defined
on X−{s−1

0 (0)∩s−1
1 (0)}) provides a Lefschetz fibration on some blow-up of

X. Developing these ideas further, Auroux [Au] showed that for sufficiently
large k the symplectic submanifolds s−1

k (0) ⊂ X (with sk ∈ Γ(L⊗k)) are
unique up to isotopy. The corresponding uniqueness of Lefschetz fibrations
gives an interesting, yet unexplored invariant of symplectic 4-manifolds.

Combining Corollary 10.2.23 and Theorem 10.2.25 gives the following
topological characterization of symplectic 4-manifolds:

Theorem 10.2.28. A 4-manifold X admits a symplectic structure iff it ad-
mits a Lefschetz pencil.

Remark 10.2.29. Recall that a Lefschetz fibration π : X → CP1 can be
described by the genus of the generic fiber and the monodromies of the
singular fibers. Since Theorem 10.2.28 implies that for every symplectic 4-
manifold X, the blow-up X#nCP2 admits a Lefschetz fibration for some
n ∈ N, in principle X#nCP2 can be described by the combinatorial data
consisting of the genus of the fibration X#nCP2 → CP1 and the mon-
odromies of the singular fibers — a word in the mapping class group of the
generic fiber. In practice, however, these data are very hard to determine for
a given X. Moreover, there is no effective way to determine when two sets
of data describe diffeomorphic 4-manifolds. Furthermore, to recover X we
must face the difficult task of locating the exceptional spheres of the n blow-
ups. Both Corollary 10.2.23 and Theorem 10.2.25 admit generalizations to
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2n-dimensional manifolds with arbitrary n; this leads to a topological char-
acterization of symplectic 2n-manifolds similar to the description given in
Theorem 10.2.28. The details are much more complicated, however.

10.3. 4-manifolds with no symplectic structure

As we saw in Theorem 10.1.18, a simply connected, minimal symplectic
4-manifold is irreducible. (For irreducibility see Definition 10.1.17.) It is
easy to see that every closed 4-manifold X admits a decomposition X =
X1# . . .#Xn into irreducible summands. (Recall that by Grushko’s Theo-
rem, a group generated by m elements cannot split as a free product of more
than m factors.) Note, however, that (as we saw in Section 9.2) this decom-

position is not necessarily unique, for example X = CP2#2CP2 has another
decomposition as (CP1 × CP1)#CP2 — there are many other examples for
this nonuniqueness (cf. Corollary 9.1.14). Since simply connected, minimal
symplectic manifolds are irreducible, it seemed possible until recently that
every irreducible, simply connected 4-manifold ( �= S4) admitted a symplec-
tic structure (for at least one choice of orientation). At the same time, the
remarkable results discussed in the previous section gave hope for describ-
ing minimal symplectic 4-manifolds from the differential topological point
of view. 4-manifolds, however, turned out to be more complicated than the
above scheme would suggest; this section is devoted to the description of
certain irreducible manifolds not admitting symplectic structures.

Exercise 10.3.1. Prove that CP2, CP2 and CP1 × CP1 are irreducible.
(Note that according to Theorem 10.1.18 a simply connected symplectic
4-manifold with b2(X) > 1 (in particular, a simply connected complex sur-
face S with b+2 (S) > 1) is irreducible.)

Our first example of an irreducible 4-manifold with no symplectic struc-
ture is constructed in the following way: Consider the hypersurface S2d =
{[z0 : z1 : z2 : z3] ∈ CP3 | ∑ z2di = 0} in CP3. The group Z2 acts freely on
S2d by complex conjugation; consider the quotient manifold X = S2d/Z2.

Theorem 10.3.2. ([Wa]) If d > 2, then X is an irreducible 4-manifold
with no symplectic structure.

Proof. In [Wa] a simple computation for the Seiberg-Witten function of
X is given. It is proved that SWX ≡ 0, implying that X admits no sym-
plectic structure. Irreducibility can be proved using the following covering
trick : If X decomposes as X = X1#X2, then (since π1(X) ∼= Z2) we can
assume π1(X1) = 1 and π1(X2) = Z2. Taking the double cover, we get

S2d = X1#X̃2#X1, which contradicts the fact that S2d is a simply con-
nected minimal complex surface (of general type), hence irreducible.
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Note that the above examples of Wang are not simply connected. The
first examples of simply connected irreducible 4-manifolds with no sym-
plectic structure were found by Szabó [Sz2], [Sz3]; here we give a more
general construction — called the knot construction — due to Fintushel
and Stern [FS3]. For any knot K ⊂ S3, 0-surgery on K produces a 3-
manifold NK ; consider the 4-manifold MK = S1 ×NK . A meridian μ of K
gives a circle in NK , hence a torus T = S1 × μ in MK with [T ]2 = 0 (and
complement ≈ S1×(S3−ν(K))). Assume that the simply connected 4-man-
ifold X contains a torus F with [F ]2 = 0, and that the complement of F is
simply connected. Now, using a suitable identification Ψ of the boundaries
∂(X − νF ) and ∂(MK − νT ), apply the normal connected sum operation
to (X,F ) and (MK , T ); the resulting manifold X#FMK is denoted by XK .
(The diffeomorphism type of XK might depend on the chosen identification
Ψ. The statements about the homeomorphism type or Seiberg-Witten ba-
sic classes of XK hence should be understood to apply for any choice of
identification lifting a diffeomorphism T ≈ F .) Note that in the above con-
struction we did not assume that any of the manifolds (or submanifolds) are
symplectic.

Exercise 10.3.3. Prove that XK is homeomorphic to X. (Hint : The
Seifert-Van Kampen Theorem shows that π(XK) = 1. Compute σ(XK),
χ(XK) and the parity of XK ; Freedman’s Theorem 1.2.27 concludes the
solution.)

Theorem 10.3.4. ([FS3]) Assume that F lies in a cusp neighborhood in
X, and that the leading coefficient of the Alexander polynomial ΔK(t) of K
is not ±1. Then XK admits no symplectic structure.

Fintushel and Stern proved the above theorem by computing the Seiberg-
Witten invariants of XK in terms of SWX and ΔK(t). They proved that
(under the circumstances described in Theorem 10.3.4) there is no basic class
of XK which has the properties required by Theorem 10.1.11 for c1(X,ω) of
a symplectic structure ω. We also want to prove that XK is not symplec-
tic. This can be achieved by assuming that X contains a sphere of negative
square disjoint from the torus F , implying that XK has vanishing Seiberg-
Witten invariants. The knowledge of SWXK

allows one to prove that XK is
irreducible in many cases, for example, if X is a minimal complex surface
with b+2 (X) ≥ 3 or if X is symplectic and spin. As an example of a manifold
XK for which Theorem 10.3.4 applies, we can choose X to be the K3-surface
E(2) with a regular fiber as F , and the twist knot K given by Figure 10.1; if
|n| ≥ 2, the corresponding 4-manifoldXK will admit no symplectic structure
by Theorem 10.3.4. A Kirby diagram of this manifold is given in Figure 10.2.
(The dotted ribbon knot represents I × (S3 − νK) as in Exercise 6.2.4(b),
and the additional 1-handle, 0-framed 2-handles and 3-handle extend this
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to S1 × (S3 − νK). X − νF has then been added by the method of Ex-
ample 5.5.8, as can be seen by removing int S1 × (S3 − νK), performing
a −n-fold Rolfsen twist in the resulting 3-manifold to remove the n twists,
sliding the resulting − 1

n -framed unknot over the 0-framed 2-handles to the
bottom of the picture, and using it to cancel the −n-twist.) The above

n

Figure 10.1. Twist knot.

all 1

00

11 11

n

n
2

2

U  3-handle
4-handle

Figure 10.2. Irreducible, nonsymplectic manifold XK (|n| ≥ 2).

construction can be generalized from knots K to links with m components;
in this case one should choose 4-manifolds X1, . . . , Xm and mimic the same
construction. For more details see [FS3]. In constructing the first simply
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connected nonsymplectic 4-manifolds, Szabó performed a logarithmic trans-
formation along a symplectic torus lying in a fishtail neighborhood. The
auxiliary gluing data of this logarithmic transformation, however, were not
the same as the data described in Exercise 8.3.16(a) (cf. Corollary 10.2.7).

Remark 10.3.5. If K ⊂ S3 is a fibered knot (that is, the complement
S3−K admits a fibration S3−K → S1 with a punctured genus-g surface as a
fiber), then NK fibers over S1 by construction, hence MK = S1×NK admits
a genus-g fibration over T 2. Now Theorem 10.2.17 provides a symplectic
structure on MK , which can be chosen in such a way that the torus T ⊂MK

(described in the text following Theorem 10.3.2) is a symplectic submanifold.
Assuming that X is symplectic and F ⊂ X is a symplectic submanifold of it,
Theorem 10.2.1 provides a symplectic structure on XK . (It is known that
the Alexander polynomial of a fibered knot is monic, that is, its leading
coefficient is ±1; consequently Theorem 10.3.4 does not apply to fibered
knots.) On the other hand, the computation of the Seiberg-Witten invariants
given by Fintushel and Stern [FS3] is valid for any knot, hence the knot
construction performed with fibered knots along a fiber of theK3-surface, for
example, results in infinitely many nondiffeomorphic symplectic 4-manifolds,
each homeomorphic to the K3-surface.

A different type of example — found by Morgan, Kotschick and Taubes
[MKT] — shows that even the existence of a class K with SWX(K) = ±1
does not imply the existence of a symplectic structure on X. Assume that Y
is a simply connected symplectic 4-manifold andM3 is a 3-dimensional ratio-
nal homology sphere (for example, the Poincaré homology sphere Σ(2, 3, 5)).
A surgery on S1 ×M killing π1(S

1) produces a rational homology 4-sphere
N with π1(N) ∼= π1(M); let us consider X = Y#N . Assume that the 4-

manifold X admits an n-fold connected cover π : X̃ → X (n > 1). (For
example, if M is the Poincaré homology sphere, then the universal cover
will do.) It is clear that if ω is a symplectic form on X, then the pull-

back π∗ω will be a symplectic form on X̃. But since Y is simply connected
and b+2 (Y ) > 0, X̃ = #nY#Ñ has vanishing Seiberg-Witten invariants,
so it cannot have a symplectic structure. Consequently X cannot admit a
symplectic structure either. On the other hand, standard pull-apart argu-
ments show that SWX(K) = SWY (K) for all K ∈ H2(Y ;Z) ⊂ H2(X;Z);
in particular, SWX(c1(Y, ω)) = ±1 (where we regard c1(Y, ω) as an ele-
ment of H2(X;Z)). If, in addition, N is an integral homology 4-sphere
(as when M is the Poincaré homology sphere), then SWX(K) = SWY (K)
for all K ∈ H2(Y ;Z) ∼= H2(X;Z). Hence, in this case X has the same
Seiberg-Witten invariants as a symplectic 4-manifold (namely Y ), but X
itself admits no symplectic structure.
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0

p 1

p U  3-handle
4-handle

Figure 10.3. Kirby diagram for Hp.

Remark 10.3.6. Applying the rational blow-down process to Y#(p−1)CP2

(with the copy of Cp ⊂ #(p − 1)CP2 provided by the solution of Exer-
cise 8.5.1(b)), we get the 4-manifold Y#Hp, where Hp is just the double of
Bp. (Figure 10.3 gives a Kirby picture forHp.) Note that π1(Hp) ∼= Zp, Hp is
a rational homology 4-sphere and (by the argument described above) Y#Hp

does not admit any symplectic structure — although SWY#Hp = SWY on

H2(Y ;Z) ⊂ H2(Y#Hp;Z). If Y is symplectic, then so is Y#(p − 1)CP2,
but we conclude that the embedding of Cp cannot be symplectic as in The-
orem 10.2.6. Note that in these last examples the nontriviality of the fun-
damental group plays a crucial role.

Having asked the geography question for complex, then for symplectic
manifolds, we can ask the same question for irreducible 4-manifolds: Which
pairs (a, b) ∈ Z×Z correspond to simply connected, irreducible 4-manifolds?
Again, X corresponds to (a, b) if a = χh(X) = 1

4(σ(X) + χ(X)) and b =

c21[X] = 3σ(X)+2χ(X). Assume for a moment that σ(X)+χ(X) is divisible
by 4. (Observe that the sum σ(X)+χ(X) is divisible by 4 iff b1(X)−b+2 (X)
is odd.) Very little is known about the answer to this question, beyond the
examples provided by complex geometry and the symplectic constructions
described earlier. The answers to the following questions would be very
interesting:

q1: Does the inequality c21(X) ≥ 0 hold for every irreducible (simply
connected) 4-manifold?

q2: Is there a bound on c21(X) in terms of χh(X) for an irreducible
4-manifold X, similar to the Bogomolov-Miyaoka-Yau inequality for com-
plex surfaces? (Cf. also Remark 10.2.16(b).) Note that on reversing
the orientation, the inequality c21(X) ≥ 0 becomes c21(X) ≤ 4c2(X), i.e.,
c21(X) ≤ (93

5)χh(X).

Exercises 10.3.7. (a)∗ Show that if c21(X) ≥ 0 for every irreducible (sim-
ply connected) 4-manifold, then the 11

8 -Conjecture is true. (The conjecture

that c21(X) ≥ 0 for every irreducible 4-manifold X is frequently called the
3
2 -Conjecture.)
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(b)∗ Show that c21(X) = 4c2(X)− c21(X). Note that for the elliptic surfaces
E(n)p,q we have c21(E(n)p,q) = 0; hence by reversing the orientation we find

irreducible 4-manifolds E(n)p,q satisfying c21(E(n)p,q) = 4c2(E(n)p,q). All
of the known examples of simply connected, irreducible 4-manifolds satisfy
0 ≤ c21(X) ≤ 4c2(X), or equivalently 0 ≤ c21(X) ≤ (93

5)χh(X). (A simply

connected 4-manifold satisfies c21(X) ≤ 10χh; cf. Remark 10.2.16(b).)

The geography of irreducible manifolds is completely uncharted when
b1 − b+2 is even. All of our above results concerned only the case when
b1 − b+2 is odd, due to the lack of a sufficiently sensitive diffeomorphism in-
variant when b1− b+2 is even. Of course, since irreducibility does not depend
on the orientation, one can easily construct an irreducible 4-manifold with
even b+2 (and b1 = 0): Take a simply connected, irreducible manifold X
with even b−2 and reverse the orientation. When we extend the geography
question to manifolds with even b1 − b+2 , we are looking for less trivial ex-
amples — for example, manifolds with even b1− b+2 and b1− b−2 . A possible
candidate for a simply connected, irreducible 4-manifold with even b+2 and
b−2 can be constructed in the following way. Take two copies of the K3-
surface E(2), delete a neighborhood of a sphere of square −2 from each and
glue the resulting manifolds together via the (unique) orientation-reversing
diffeomorphism of the boundaries. We will denote the resulting manifold by
K3#2K3. A Kirby diagram of this manifold is given by Figure 10.4.

all 2 1

U  4-handle

1 1

1010

_1
2

_1
2

_1
2

all 2
1

1 1

1010

_1
2

_1
2

_1
2

Figure 10.4. K3#2K3 — Is this irreducible?

Exercises 10.3.8. (a)∗ Prove that the boundary 3-manifold of a tubular
neighborhood of a sphere with square −2 admits an orientation-reversing
diffeomorphism. What is this 3-manifold? Prove also that K3#2K3 is
simply connected, has even b+2 and b−2 , and c21(K3#2K3) < 0.
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(b)∗ Let X and Y be handlebodies whose diagrams each contain a −2-
framed unknot. Describe a diagram for the corresponding manifold X#2Y .
Derive Figure 10.4 as a special case.

Even the full answer for the geography question would not describe ir-
reducible 4-manifolds completely. One also must determine the different
manifolds corresponding to a given pair (χh, c

2
1); research in this direction is

called botany . Many results are known about the number of different irre-
ducible manifolds corresponding to a fixed pair (χh, c

2
1) ∈ N×N (e.g., Theo-

rem 10.3.9); the description of all manifolds with preassigned characteristic
numbers is, however, still a mystery. It can be proved that a compact, topo-
logical manifold can carry only countably many different smooth structures.
(In dimensions ≤ 6, for example, the question is equivalent to counting PL-
structures, but there are only countably many finite simplicial complexes.
Note the contrast with R4 having continuously many smooth structures.)
The following result indicates that most (simply connected, closed) smooth-
able topological manifolds carry infinitely many smooth structures.

Theorem 10.3.9. ([Pa]) All but finitely many points (χh, c
2
1) ∈ N×N with

0 ≤ c21 ≤ 8χh can be realized as characteristic numbers of infinitely many
distinct, smooth, irreducible, simply connected 4-manifolds.

10.4. Gauge theory on symplectic 4-manifolds

The strong relation between almost-complex and spinc structures on a
4-manifold simplifies the Seiberg-Witten equations in the presence of an
almost-complex structure J . If, in addition, the manifold is almost-Kähler
(that is, dω = 0), the solutions of the Seiberg-Witten equations can be com-
pared to almost-complex geometric objects in the manifold, leading us to
the celebrated results of Taubes (Theorems 10.1.11 and 10.1.15). In this
appendix we outline the simplifications in the gauge theory allowed by the
presence of an almost-complex structure, and briefly indicate the effect of
the condition dω = 0 on the Seiberg-Witten equations. We then outline
the proofs of some of the key theorems on the Seiberg-Witten invariants of
Kähler and almost-Kähler manifolds. The interested reader is advised to
turn to [A5], [Ko2], [KKM], [Mr1], [Sa] or [T2] for more details.

We begin by discussing the relation between almost-complex and spinc

structures. Recall that a spinc structure is (by Definition 2.4.15) a lift of
the cocycle structure of the tangent bundle TX into Spinc(4). If (X, J)
is an almost-complex manifold, then the structure group of TX reduces to
U(2) ⊂ SO(4), and since there is a canonical lift U(2)→ Spinc(4) given by

A �→ (
[
detA 0
0 1

]
, A) ∈ Spinc(4) ⊂ U(2)× U(2)
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for an element A ∈ U(2), an almost-complex structure canonically defines
a spinc structure on X. Using the presentation of Spinc(4) given by Exer-
cise 2.4.14, we can describe the above map as follows. If [eiθ, q] is an element
of S1 × SU(2)/Z2 = U(2), then take

[eiθ, q] �→ [eiθ,
[
eiθ 0
0 e−iθ

]
, q] ∈ S1 × SU(2)× SU(2)/Z2.

From the first description it is clear that for the U(2)-bundles W± (asso-
ciated to the principal Spinc(4)-bundle PSpinc(4) via μ±, cf. Section 2.4)

we have complex bundle isomorphisms W+ ∼= detTX ⊕ C = K−1
X,J ⊕ C and

W− ∼= TX. The complex line bundleKX,J above is the canonical line bundle
of the almost-complex manifold (X, J); recall that c1(KX,J) = −c1(X, J).
Note that the determinant line bundle detW+ of the spinc structure in-
duced by the almost-complex structure J is isomorphic to the inverse of the
canonical line bundle of J .

Claim 10.4.1. A given spinc structure is induced by an almost-complex
structure iff c2(W

+) = 0 for the correponding positive spinor bundle.

Proof. Since c2(K
−1
X,J⊕C) = 0, one direction is obvious. Now if c2(W

+) = 0

for a spinc structure, then (by the classification of U(2)-bundles over 4-
manifolds, Theorem 1.4.20(a)) W+ = L⊕C for some complex line bundle L.
Applying σ : Γ(W+)→ Γ(Λ+) (defined in the text preceding Remark 2.4.22)
to a constant section of C we get ω ∈ Γ(Λ+) with constant length; this ω
induces the desired almost-complex structure J .

Remarks 10.4.2. (a) For X closed, it is not hard to see that c2(W
+) =

1
4(c

2
1(W

+)−3σ(X)−2χ(X)), hence (by Theorem 2.4.24) c2(W
+) is equal to

the dimension of the moduli space given by the Seiberg-Witten equations.
Using this observation and Claim 10.4.1, we can reformulate the simple
type condition in the following way: The simply connected 4-manifold X
is of simple type if every basic class of X is the first Chern class of some
almost-complex structure.

(b) The above correspondence shows that an almost-complex structure de-
termines a spinc structure together with a section ψ ∈ W+ of unit length
(trivializing the C-factor); conversely, such a pair (W+, ψ) determines an
almost-complex structure. For the complete discussion of this correspon-
dence (and its 3-dimensional analog) see [KM2].

There is an alternative way to define W± in terms of J ; this other
definition turns out to be more suitable for our present purposes. Recall
[GH] that J splits Λ1

C = T ∗X ⊗ C into the sum Λ0,1 ⊕ Λ1,0, where Λ1,0 =

{v ∈ T ∗X⊗C | Jv = iv} and Λ0,1 = {v ∈ T ∗X⊗C | Jv = −iv}; the bundle
Λp,q is defined as

∧p Λ1,0 ∧q Λ0,1. The space of sections of Λp,q is frequently
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denoted by Ωp,q; note that Γ(ΛiX⊗C) = Ωi
C =

∑
p+q=iΩ

p,q. Two operators

are naturally associated to the splitting of Ω1
C as Γ(T ∗X ⊗C) = Ω1,0⊕Ω0,1:

Define ∂ : Ω0,0 → Ω0,1 as the composition of d : Ω0
C → Ω1

C with the projection

Ω1
C → Ω0,1; similarly, ∂ : Ω0,0 → Ω1,0 is given as the composition of d

with the projection Ω1
C → Ω1,0 to the first factor. In the same fashion the

operators ∂ : Ωp,q → Ωp,q+1 and ∂ : Ωp,q → Ωp+1,q can be defined. Once p
or q is not zero, however, the equation d = ∂ + ∂ fails to hold for a generic
almost-complex structure J : we have d = ∂ + ∂ + N + N , where the map
N : Ωp,q → Ωp+2,q−1 is a tensor — called the Nijenhuis tensor of the almost-
complex structure J . (In fact, the integrability of J is equivalent to the
condition that N = 0, i.e., d = ∂ + ∂. This last identity is equivalent to

either of the conditions ∂2 = 0 or ∂
2
= 0.)

Take the U(2)-bundles W+ ∼= Λ0,0 ⊕ Λ0,2 and W− ∼= Λ0,1 with the map
ρ : TX ⊗ C → HomC(W

+,W−) defined in the following way: if α ∈ Ω0,0

and β ∈ Ω0,2, and x is a tangent vector, then

ρ(x)(α, β) =
√
2((x̃+ iJx̃)α− ∗((x̃+ iJx̃) ∧ ∗β)) ∈ Ω0,1.

(As before, x̃ stands for the cotangent vector corresponding to x via the
metric g and ∗ denotes the Hodge star operator.) In this way we get a triple
(W±, ρ), which turns out to be a spinc structure.

Exercise 10.4.3. Prove that the above two definitions of spinc structures
induced by the almost-complex structure J give isomorphic structures.

If (W±, ρ) is the spinc structure induced by the almost-complex structure
J , and La → X is the line bundle with c1(La) = a, then (W±⊗La, ρ⊗ idLa)
gives a spinc structure with c1(W

+ ⊗ La) = c1(W
+) + 2a ∈ H2(X;Z). It

can be shown that the map a �→ (W± ⊗ La, ρ⊗ idLa) gives an isomorphism
between the elements of H2(X;Z) and Sc(X) — even in the presence of
2-torsion in H2(X;Z). (Recall that in Section 2.4 we saw that the map
Sc(X) → CX ⊂ H2(X;Z) associating the first Chern class of the determi-
nant bundle to (W±, ρ) was not a monomorphism unless H2(X;Z) had no
2-torsion. Note that associating the first Chern class to a spinc structure
does not require additional choices, while the identification of Sc(X) with
H2(X;Z) described above needs the choice of a “base spinc structure”. This
identification is very similar to the correspondence between S(X) — the set
of spin structures on X — and H1(X;Z2).)

Let ω ∈ Ω+ denote the nondegenerate 2-form induced by J . The pres-
ence of a compatible pair consisting of an almost-complex structure J and a
metric g defines two decompositions of Λ2

C = Λ2T ∗X ⊗ C: J decomposes it

as Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2, while g (via the Hodge star-operator ∗g) provides the
decomposition Λ+

C
⊕ Λ−

C
. A local computation gives the following relation

between the two splittings of Λ2
C = Λ2 ⊗ C.
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Lemma 10.4.4. The 2-form ω induced by J and g is in Ω1,1. Moreover,
Λ+
C
= Λ+ ⊗ C = Λ0,2 ⊕ Λ2,0 ⊕ C · ω and Λ−

C
= 〈ω〉⊥ ⊂ Λ1,1.

Now we turn to the discussion of the Seiberg-Witten equations on closed,
almost-complex manifolds. Recall that these equations read as follows. If
(W±, ρ) is a given spinc structure, L = detW+ and (A,ψ) ∈ AL × Γ(W+),
then we have

/∂Aψ = 0 and F+
A = iσ(ψ).

Suppose that (X, J) is an almost-complex 4-manifold with a compatible met-
ric g. (Recall that J and g determine a nondegenerate 2-form ω.) First we
restrict ourselves to the spinc structure induced by J . Using the decomposi-
tion ofW+ as Λ0,0⊕Λ0,2, we decompose the spinor ψ ∈ Γ(W+) as ψ = (α, β),
where α ∈ Ω0,0 and β ∈ Ω0,2. The components of σ(ψ) = σ(α, β) ∈ Ω2

C in

Ω0,2, Ω2,0 and Ω1,1 can be determined explicitly, cf. [Mr1].

Lemma 10.4.5. The component of σ(ψ) in the ω-direction is equal to
1
4(|α|2 − |β|2)ω. The (0, 2) part of σ(ψ) is 1

2αβ, while the (2, 0) part is

equal to 1
2αβ.

If we decompose F+
A according to Lemma 10.4.4, the second Seiberg-Witten

equation becomes

(F+
A )ω =

i

4
(|α|2 − |β|2)ω and (F+

A )0,2 =
1

2
αβ (and (F+

A )2,0 =
1

2
αβ resp.),

where (F+
A )ω and (F+

A )0,2 ((F+
A )2,0 resp.) are the components of F+

A in the
ω-direction and in Λ0,2 (Λ2,0 resp.).

The determinant line bundle L = detW+ —which in this case is isomor-
phic to the inverse of the canonical line bundle KX,J = Λ2

CT
∗X — admits a

preferred connection A0 (the one induced on K−1
X,J by the Levi-Civita con-

nection of (X, g)). Coupling a connection on the trivial bundle C with A0

gives a connection on L. In this way we get an identification of the spaces
AL and AC; the connection in AC corresponding to A ∈ AL will be de-

noted by Â ∈ C. Recall that the almost-complex structure J induces the
operators ∂ and ∂; coupling these with the connection Â, the operator ∂Â

and its adjoint ∂
∗
Â can be defined. Note that until now we have not used

any special properties of the almost-complex structure J or the associated
2-form ω. The following lemma demonstrates the advantage of having an
almost-Kähler (that is, symplectic) structure on X as opposed to having
only an almost-complex structure. For the proof of Lemma 10.4.6 see [Sa]
or [Mr1].

Lemma 10.4.6. If dω = 0 (i.e., we are working with an almost-Kähler

manifold), then the Dirac operator /∂Â associated to the connection Â satis-

fies the equation /∂Â =
√
2(∂Â + ∂

∗
Â) : Ω

0,0 ⊕ Ω0,2 → Ω0,1.
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Suppose now that (X,ω, J, g) is Kähler, that is, in addition to the con-

dition dω = 0, J is integrable. This assumption implies that ∂
2
Â = (F+

Â
)0,2;

moreover it can be shown that F 0,2

Â
= 1

2F
0,2
A (cf. [Mr1]), hence ∂

2
Â =

(F+
Â
)0,2 = 1

4αβ. Applying the ∂Â-operator to the first Seiberg-Witten equa-

tion and using this latter identity, we get

∂Â(∂Âα) + ∂Â(∂
∗
Âβ) =

1

4
αβα+ ∂Â(∂

∗
Âβ) = 0.

Pairing this equation with β, we find that 1
4 |α|2|β|2 + |∂

∗
Âβ|2 = 0, implying

that either α = 0 or β = 0; moreover ∂
∗
Âβ = 0. This observation takes

us into the holomorphic category, since the equation (F+

Â
)0,2 = 1

4αβ = 0

means that Â defines a holomorphic structure on C. Note that above we
only dealt with the spinc structure induced by J . In fact, these arguments
extend to arbitrary spinc structures, and show that for a solution (Â, (α, β))
in the product ALa×Ω0,0(La)×Ω0,2(La) (where the spin

c structure (W±, ρ)
under examination satisfies detW+ = K−1

X,J ⊗ L⊗2
a ) we have ∂

∗
Âβ = 0 and

αβ = 0, hence Â equips La with a holomorphic structure.

Based on the first equation, ∂
∗
Âβ = 0 implies that ∂Âα = 0, hence α is

a holomorphic section of La. Because ω is a (1, 1)-form, we have

〈c1(detW+) ∪ [ω], [X]〉 = i

2π

∫
X
FA ∧ ω =

i

2π

∫
X
(F+

A )1,1 ∧ ω.

By the Seiberg-Witten equations, however, this quantity is equal to the
integral − 1

8π

∫
X(|α|2−|β|2)vol(M); hence the sign of 〈c1(detW+)∪ [ω], [X]〉

determines whether α = 0 or β = 0. The quantity 〈c1(detW+)∪ [ω], [X]〉 is
frequently called the degree deg(detW+) of the line bundle detW+.

Assume now that for the given spinc structure (W±, γ) we have
deg(detW+) < 0. Applying results of Kazdan and Warner [KW], it can
be shown that if α is a holomorphic section of the line bundle La satis-
fying detW+ = K−1

X,J ⊗ L⊗2
a , then the connection Â solving the Seiberg-

Witten equations with α is unique (up to gauge equivalence). Associating

α−1(0) ⊂ X to the solution (Â, (α, 0)), we reach the following conclusion.

Theorem 10.4.7. Under the above circumstances, the moduli space of so-
lutions of the Seiberg-Witten equations corresponding to the spinc structure
(W±, γ) can be identified with the moduli space of holomorphic divisors cor-
responding to the line bundle La (with detW+ = K−1

X,J ⊗ L⊗2
a ).

A similar argument shows that if deg(detW+) > 0 (i.e., for a solution
we have α = 0), then the moduli space can be identified with the moduli
space of holomorphic divisors corresponding to the line bundle KX,J ⊗L−1

a .
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Now fairly standard arguments of algebraic geometry compute the Seiberg-
Witten invariants of Kähler surfaces with b+2 > 1 [FM2]. These compu-
tations show that the basic classes of minimal elliptic surfaces are (well-
described) multiples of the Poincaré dual of the fiber, while a minimal sur-
face of general type admits only ±c1 as basic classes. The blow-up formula
completes the description of basic classes of Kähler surfaces with b+2 > 1.

In the almost-Kähler case (i.e., when J is not integrable, consequently

∂
2
Â = (F+

Â
)0,2 fails to hold), Taubes introduced a suitable perturbation to

study the Seiberg-Witten equations. For the perturbation δ = F+
A0
− ir

4 ω,
the perturbed equations

/∂Aψ = 0 and F+
A = F+

A0
− ir

4
ω + iσ(ψ)

for the canonical spinc structure admit a unique solution once r is large
enough. Since the signed number of solutions is independent of the pertur-
bation (at least for manifolds with b+2 > 1), we conclude Theorem 2.4.7.
Using similar perturbations, Taubes also studied the equations for other
spinc structures. Considering the zero set of a suitable component of the
spinor of a solution (exactly as in the Kähler case), he showed that these
submanifolds “converge” to a pseudo-holomorphic curve when r →∞. This
argument led him to the proof of Theorem 10.1.15. A more refined analysis
— together with a construction of solutions to the Seiberg-Witten equations
starting from a pseudo-holomorphic curve — allowed Taubes to construct a
correspondence between Seiberg-Witten solutions associated to a particular
spinc structure and pseudo-holomorphic curves representing a related ho-
mology class, cf. Remark 10.1.16(a). (For more details, see [T5] and [Sa].)
Based on these theorems, remarkable results in the topology of symplectic
4-manifolds have emerged in the past few years.

                

                                                                                                               



                

                                                                                                               



Chapter 11

Stein surfaces

A Stein manifold is a complex manifold that admits a (proper) biholomor-
phic embedding in some CN . Since a holomorphic function never maximizes
its norm on an open set, it is easy to see that Stein manifolds can never
be compact. However, the Stein condition constrains the behavior of the
manifold near infinity, so that Stein manifolds share many properties with
closed Kähler manifolds such as the projective surfaces we have discussed in
previous chapters. For example, we will see that in complex dimension 2,
Seiberg-Witten theory can be applied, yielding strong constraints on the
genus function of a Stein surface. A much more surprising development,
however, is that the question of which smooth manifolds admit Stein struc-
tures can be completely reduced to a problem in handlebody theory. This
is remarkable, since a corresponding reduction for closed Kähler manifolds
seems unlikely to exist. For 4-manifolds, one can express the Stein condi-
tion in terms of Kirby diagrams. As a direct consequence, one obtains genus
bounds and diffeomorphism invariants for Kirby diagrams. Since Stein struc-
tures are intimately related to geometric structures called contact structures,
we also obtain a powerful tool for constructing contact 3-manifolds. Much
of this chapter is based on [G13]; a more expository version of that paper,
along with a list of open problems, appears as [G14].

11.1. Contact structures

We begin by considering smooth, oriented 2-plane fields ξ on an orientable
3-manifold M . It is easy to verify that such a plane field can be described
as the kernel of a nowhere-zero 1-form α on M , and that ξ determines
α uniquely up to multiplication by nowhere-zero functions M → R. The
condition that α∧dα be identically zero is equivalent to specifying that ξ be

419

                                    

                

                                                                                                               



420 11. Stein surfaces

integrable, or locally equivalent to the horizontal plane field ker dz in R3. (It
follows that ξ determines a foliation, or decomposition of M as a union of
disjoint surfaces that can be described in local coordinates as the planes z =
constant in R3.) Contact structures are specified by the opposite condition:

Definition 11.1.1. A contact structure on M3 is a 2-plane field ξ = kerα
for which α ∧ dα is nowhere zero. The pair (M, ξ) is a contact manifold . A
contactomorphism between contact manifolds (Mi, ξi) is a diffeomorphism
f : M1 →M2 such that f∗ξ1 = ξ2. Two contact structures on M are isotopic
if there is a contactomorphism between them that is smoothly isotopic to
the identity on M .

Remark 11.1.2. Foliations have long been an important tool in 3-manifold
topology. Contact structures have related, but less well explored, connec-
tions to the topology of the ambient 3-manifolds. A recent generalization
[ET] includes both these notions: A plane field ξ is called a confoliation if
α∧dα ≥ 0 (relative to a fixed orientation of M). This theory is still virtually
uncharted territory.

A contact structure ξ determines an orientation of M via the volume
form α ∧ dα. It is easy to see that this orientation is independent of the
choice of α, and of the orientation of ξ. Any contact structure is locally
contactomorphic to the standard structure given by α = dz + x dy on R3,
and two contact structures ξ0 and ξ1 on a closed manifold M are isotopic if
they are connected by a path ξt (0 ≤ t ≤ 1) of contact structures.

Remark 11.1.3. The definition of contact structures can be extended to
arbitrary odd dimensions by the condition that α∧dα∧· · ·∧dα never vanish.
In dimensions congruent to 3mod 4, we can also allow ξ to be nonorientable
by only requiring α to exist locally. In this case, ξ still defines an orientation
on M (since the volume form is independent of the sign of α). Since we
will not need these generalizations, we refer the reader to [ABKLR] for
further details. The numerous relations between contact and symplectic
structures, including the above local triviality and formal similarity of the
contact condition with the symplectic condition ω∧· · ·∧ω �= 0, suggest that
contact structures should be thought of as the odd-dimensional analogs of
symplectic structures.

For any m ≥ 0, the manifold #mS1 × S2 admits a canonical contact
structure ξc. The precise sense in which ξc is canonical will be discussed at
the end of this section. For m = 0, we construct ξc by identifying S3 as the
boundary of the unit disk D4 in C2. Each tangent space to S3 contains a
unique complex line of C2, namely TpS

3 ∩ iTpS
3. Thus, we obtain a field of

oriented real 2-planes on S3; this is the required contact structure ξc. (Note
that ξc is also the normal 2-plane field to the Hopf fibration obtained by
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intersecting the complex lines through 0 in C2 with S3.) It can be shown
that (S3 − ∞, ξc) is contactomorphic to R3 with the standard structure
ker(dz + x dy). For m ≥ 1, it is possible to construct (#mS1 × S2, ξc) in
a similar manner, by putting a suitable complex (in fact, Stein) structure
on D4 ∪m 1-handles and taking the induced 2-plane field on the boundary
[E2]. Note that any 3-manifold M embedded in a complex surface inherits
an oriented 2-plane field TM ∩ iTM . (In fact, an almost-complex structure
is sufficient here.) We will return to the question of when this 2-plane field
is a contact structure in the next section.

Exercise 11.1.4. Write down a 1-form α on C2 = R4 whose restriction to
S3 generates ξc. Show directly that ξc is a contact structure determining the
boundary orientation on S3 = ∂D4. (Hint : Obtain α by composing d(r2)
with multiplication by i on TpC

2. Then show that d(r2)∧α∧dα is a positive
volume form on C2 − {0}.)

Next, we consider links that are suitably compatible with a given contact
structure.

Definition 11.1.5. Let (M, ξ) be a contact 3-manifold. A Legendrian link
L in (M, ξ) is a link in M whose tangent vectors all lie in ξ. A Legendrian
isotopy of L is an isotopy through Legendrian links. The canonical fram-
ing on L is the framing (up to isotopy) induced by any vector field on L
transverse to ξ.

It can be shown that any Legendrian isotopy extends to an ambient isotopy
through contactomorphisms of (M, ξ), so for practical purposes, Legendrian
isotopic links are essentially the same. In particular, Legendrian isotopies
obviously preserve the canonical framing. (Recall that strictly speaking,
the framing of the normal bundle determined by a vector field is a basis
for each normal plane, so it also depends on a choice of orientation of L
— we continue to ignore this ambiguity since it has no effect on framing
coefficients or attached handles.)

It is not hard to draw Legendrian links in (S3, ξc). First, we remove a
point to obtain (R3, ker(dz+x dy)). Then, we orthogonally project into the
y-z plane. A Legendrian curve γ(t) = (x(t), y(t), z(t)) is characterized by
the equation x = −dz

dy , that is, its x-coordinate is determined by the slope

of its projection, so that at each crossing the curve of greater slope passes
behind the other. The projection can never have vertical tangencies, since
x = − dz

dy is always finite. Instead, a generic Legendrian link projection has

cusp singularities (isotopic to z2 = y3 or z2 = −y3) as in Figure 11.1(a),
where the tangent line to L is parallel to the x-axis. As for ordinary links,
we can assume that the only self-crossings of a Legendrian link projection
are double points, and these must be transverse (since the coordinates x =
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y

z

(a) (b)

Figure 11.1. Legendrian knot.

−dz
dy must be different). Thus, Figure 11.1 shows a typical Legendrian knot

projection. Since the curve of more positive slope always crosses behind at
a double point, the projection completely determines the Legendrian knot
(as in (b) of the figure), and we continue to draw the undercrossings only for
the sake of clarity. It is easy to see that any immersed collection of circles
in R2 with only transverse double point singularities generates a Legendrian
link — we simply replace its vertical tangencies by cusps and reconstruct
the x-coordinate by the formula x = −dz

dy .

Exercise 11.1.6. ∗ Prove that any link in (S3, ξc) is isotopic to a Legen-
drian link. (This is actually true in any contact 3-manifold.)

Legendrian
     link
 projection

Figure 11.2. Legendrian link diagram in standard form.

As the next theorem shows, the above description of Legendrian links in
(S3, ξc) generalizes to (#mS1×S2, ξc) for any m. We begin by representing
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#mS1 × S2 as ∂(D4 ∪ m 1-handles), where the attaching balls of each 1-
handle are aligned horizontally as in Figure 11.2. We think of the contact
manifold (#mS1 × S2, ξc) as being obtained from (S3, ξc) by removing the
interiors of the attaching balls and gluing along the resulting boundaries by
a contactomorphism. (Beware that while such a contactomorphism exists, it
is somewhat complicated — the balls cannot quite be round, and the gluing
map will have a twist in it. One of the main implications of the following
theorem is that these complications can be ignored.) Now suppose we draw
a link projection as before, with cusps instead of vertical tangencies, and
only transverse double point singularities. We allow the curves to run over
the 1-handles (using the usual identification by reflection) but require the
projection to lie in the region between the attaching balls (as indicated by
the box in Figure 11.2).

Definition 11.1.7. A diagram as described above (Figure 11.2) is called a
Legendrian link diagram in standard form.

4)

5)

6)

1)

2)

3)

Figure 11.3. Legendrian Reidemeister moves in #mS1 × S2.

Theorem 11.1.8. ([G13]) A Legendrian link diagram determines a Legen-
drian link in (#mS1×S2, ξc) (via the above identification of (#mS1×S2, ξc)
with (S3, ξc) surgered on the balls). Any Legendrian link in (#mS1×S2, ξc)
is Legendrian isotopic to one given by such a diagram. Two Legendrian links
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in standard form are Legendrian isotopic in #mS1 × S2 if and only if they
are related by a sequence of the 6 moves shown in Figure 11.3 (and their im-
ages under 180◦ rotation about each coordinate axis), together with isotopies
within the box of Figure 11.2 that introduce no vertical tangencies.

Informally, the theorem says that the complications of the gluing maps on
the 2-spheres can be ignored, and that (after a bit of trickery) strands
of a link that wrap around attaching balls can be pulled into the box.
The theorem also gives a complete reduction of Legendrian link theory in
(#mS1 × S2, ξc) to the theory of diagrams in standard form, by supplying
a complete set of moves of the diagrams corresponding to Legendrian iso-
topies. The first 3 of these moves are precise analogs of the Reidemeister
moves of ordinary link diagrams (Figure 4.26), and are well-known to be
a complete set of moves in (S3, ξc). The remaining moves are required for
sliding cusps and crossings over 1-handles, and for swinging a strand of the
link around an attaching ball.

We also wish to understand the canonical framing of a Legendrian knot
K in standard form. It suffices to compute its framing coefficient, which is
called the Thurston-Bennequin invariant tb(K) ∈ Z. Recall from Section 5.4
(Figure 5.37) that framing coefficients are well-defined in the presence of
1-handles, provided that we connect each pair of balls by an arc, and re-
compute the framing coefficient of any knot that isotopes through such an
arc. We choose the obvious family of dashed arcs avoiding the box in Fig-
ure 11.2; without ambiguity we can suppress these from the notation. The
framing coefficient tb(K) will then be invariant under the first five moves in
Figure 11.3, but under Move 6 it will change by twice the algebraic number
of times K crosses the relevant 1-handle. To compute tb(K) explicitly for a
Legendrian knot K in R3, first observe that the vector field ∂

∂z is transverse
to the contact structure ker(dz + x dy) everywhere, so tb(K) = �k(K,K ′),
where K ′ is obtained from K by a small vertical displacement. The proof
of Theorem 11.1.8 shows that for Legendrian knots in standard form in
(#mS1 × S2, ξc), the canonical framing is still determined by a vertical dis-
placement of K. It is now easy to see that the canonical framing differs from
the blackboard framing by a left half-twist for each cusp (Figure 11.4). If
λ(K) and ρ(K) denote the numbers of left and right cusps of K, and w(K)
is its writhe (Proposition 4.5.8), we obtain

tb(K) = w(K)− 1

2
(λ(K) + ρ(K)) = w(K)− λ(K)

for any Legendrian knot K in standard form. (The last equality follows
because λ(K) = ρ(K), since left and right cusps alternate as we travel
around K.) For example, the right trefoil knot in Figure 11.1 has tb(K) = 1.

                

                                                                                                               



11.1. Contact structures 425

blackboard

canonical

λ ρ

Figure 11.4. Computing the coefficient tb(K) of the canonical framing.

There is one more basic invariant for an oriented Legendrian knot K in
standard form. Note that the vector field ∂

∂x on R3 lies in ker(dz + x dy)

everywhere. The proof of Theorem 11.1.8 shows that if we restrict ∂
∂x to

the box in Figure 11.2, it fits together in the obvious way on the 1-handles.
(In fact, it uniquely determines a nowhere-zero vector field in ξc over all of
#mS1 × S2, since nowhere-zero vector fields in trivial complex line bundles
are classified by H1( · ,Z), cf. Exercise 5.6.4(d).) Since the tangent vector
field τ to K lies in ξc, it has a well-defined winding number with respect to
∂
∂x as we travel once around K in the direction specified by its orientation.
(Positive winding corresponds to right-handed twisting about the z-axis.)
This winding number is called the rotation number r(K) ∈ Z. It is related
to tb by the formula that tb(K)+r(K)+1 is congruent mod 2 to the number
of times K goes over 1-handles (Exercise 11.3.11). To compute r(K), we
count (with sign) how many times τ passes ∂

∂x as we traverse K. Note
that such passing only occurs at cusps. Let λ+(K) (resp. λ−(K)) be the
number of left cusps at which K is oriented upward (downward), and define
ρ± similarly (Figure 11.5). Let t± = λ±+ρ± be the total number of upward
(downward) cusps. Since each downward left cusp represents a positive
crossing of τ past ∂

∂x and each upward right cusp gives a negative crossing,
we have

r(K) = λ− − ρ+ = ρ− − λ+ =
1

2
(t− − t+),

where the second equality is obtained by replacing ∂
∂x by − ∂

∂x , and the third
is obtained by averaging the first two.

Exercises 11.1.9. (a) Use Figure 11.3 and the formula for r(K) to prove
directly that the latter is invariant under Legendrian isotopy. Similarly,
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λ

ρ

ρ

t

t

λ

−

− −

+ +

+

Figure 11.5. Convention for computing r(K).

prove that tb(K) is invariant under the first five moves and changes as re-
quired under Move 6. Show that reversing the orientation of K reverses the
sign of r(K). Explain this in terms of the definition of r(K). Show that for
any integer n ≤ tb(K) there is a Legendrian knot K ′ smoothly isotopic to
K with tb(K ′) = n. Show that K is smoothly isotopic to a Legendrian K ′

realizing any preassigned value of r(K ′).

(b) Suppose that K is nullhomologous in #mS1 × S2 and let F be any
Seifert surface, oriented so that ∂F = K. Prove that r(K) is the Chern
number 〈c1(ξc, τ), F 〉 of ξc relative to the trivialization over K induced by τ .
(Note that c1(ξc, τ) lies in H2(#mS1×S2,K;Z), cf. Exercise 5.6.2(c).) This
characterization of r(K) generalizes to a definition of r(K,F ) for all null-
homologous K in arbitrary contact 3-manifolds. If c1(ξ) �= 0, then r(K,F )
depends on the choice of [F ] ∈ H2(M,K;Z).

We now return to the discussion of arbitrary contact 3-manifolds (M, ξ).
Since framing coefficients can be defined for any nullhomologous knot in
an oriented 3-manifold (cf. Section 4.5), the Thurston-Bennequin invariant
tb(K) ∈ Z is well-defined for any nullhomologous Legendrian knot K. As
we saw for (S3, ξc), any knot K ⊂ M is isotopic to a Legendrian knot K ′

(in fact, by a C0-small isotopy). In the nullhomologous case, we can ar-
range for tb(K ′) to be any sufficiently small integer. It is less clear, however,
when we can increase tb(K ′). Any (M, ξ) obviously contains a Legendrian
unknot with tb(K) = −1. (Draw this in R3 and use the fact that ξ is locally
ker(dz + x dy).) If it contains a Legendrian unknot with tb(K) = 0, then ξ
is called overtwisted ; otherwise it is called tight . In an overtwisted contact
manifold, any nullhomologous knot K can be made Legendrian with tb(K)
realizing any preassigned integer, whereas in a tight contact manifold, the
Legendrian knots smoothly isotopic to a fixed nullhomologous knotK realize
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only those integers less than or equal to some maximal value TB(K) ∈ Z.
The overtwisted contact structures on a fixed closed, oriented 3-manifold M
are sufficiently “flexible” that they can be completely classified: There is
exactly one (up to isotopy) for each homotopy class of oriented plane fields
on M [E1]. (These latter homotopy classes have been classified; see Sec-
tion 11.3. For any closed M there are infinitely many such classes.) Tight
contact structures, however, are much more subtle, and are the subject of
much current research. It is not known if every closed, oriented 3-manifold
admits a tight contact structure, although at present this seems unlikely. If
we impose the stronger condition of “holomorphic fillability” (see the text
preceding Proposition 11.2.8), the corresponding statement is false: A re-
cent result of Lisca [Ls2] shows that the Poincaré homology sphere Σ with
reversed orientation has no holomorphically fillable contact structure (see
the text following Exercises 11.2.11). This same manifold may admit no
tight structure, in which case Σ#Σ would admit no tight structure with ei-
ther orientation. It is known that a fixed closed 3-manifold admits at most
finitely many homotopy classes of plane fields containing holomorphically
fillable contact structures (Theorem 11.4.3, [KM2]), but the 3-torus admits
infinitely many isotopy classes of such contact structures within a single
homotopy class of plane fields [EP]. Each of the manifolds #mS1 × S2,
m ≥ 0, admits a unique tight contact structure respecting the given orienta-
tion [Be], [E4]; this is the (holomorphically fillable) canonical structure ξc
discussed above. See, e.g., the problem list of [G14] for further discussion.

11.2. Kirby diagrams of Stein surfaces

Recall that a Stein manifold is a complex manifold with a proper biholomor-
phic embedding in CN — that is, a smooth, affine analytic variety. There is
a corresponding class of compact, complex manifolds with boundary, called
Stein domains, which will be characterized by the theorem below. In com-
plex dimension 2, we will abuse terminology slightly by referring to both
classes of objects as Stein surfaces (open and compact, respectively).

Theorem 11.2.1. ([Gr], see also [E6].) A complex surface S (compact with
boundary or open) is a Stein surface if and only if it admits a proper Morse
function f : S → [0,∞) (with ∂S = f−1(1) and f(S) ⊂ [0, 1] in the compact
case) such that away from the critical points each subset f−1(t), with the
plane field induced by the complex structure, is a contact 3-manifold whose
contact orientation agrees with its orientation as ∂f−1[0, t].

The corresponding theorem holds in higher dimensions if we replace the
contact condition by the stronger condition “strictly pseudoconvex”; these
conditions are equivalent in the dimension of interest. For a Stein manifold
properly embedded in CN , the distance to a generic point of CN will provide
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the required Morse function. The theorem shows that for any Stein manifold
S and f as above with regular value t, f−1[0, t] will be a Stein domain, and
that the interior of any Stein domain will be a Stein manifold. Thus, we
can think of Stein domains as compact analogs of Stein manifolds. Clearly,
the boundary of any Stein domain has an inherited contact structure. In
complex dimension 2, this structure is tight [E3], providing an important
source of tight contact manifolds. (For example, consider the unit ball in C2

with Morse function ‖z‖2; this is a Stein domain with boundary (S3, ξc).)
Conversely, any compact complex surface with nonempty (correctly orien-
ted) contact boundary can be deformed into a blow-up of a Stein surface
[Bog]. (Note that Stein surfaces are always minimal, since their interiors
embed holomorphically in CN and thus contain no closed complex curves.)

A theorem of Eliashberg [E2] characterizes those smooth manifolds that
admit Stein structures. It has long been known that the Morse functions
given in the previous theorem have no critical points of index larger than
the complex dimension of S (cf. Chapter 7 of [M2]). Eliashberg proved the
converse: For n > 2, a smooth, almost-complex manifoldX of real dimension
2n (compact with boundary or open) admits a Stein structure if it has a
proper Morse function f : X → [0,∞) (with ∂X = f−1(1) and f(X) ⊂
[0, 1] in the compact case) without critical points of index > n. The same
technique applies in the case n = 2 (cf. [E5]), but a delicate condition arises
on the framings of the 2-handles. (The corresponding condition in higher
dimensions is satisfied automatically.) In the compact case, the condition
can be stated easily using Theorem 11.1.8:

Theorem 11.2.2. ([G13]) A smooth, compact, connected, oriented 4-man-
ifold X admits a Stein structure (inducing the given orientation) if and only
if it can be presented as a handlebody by attaching 2-handles to a framed
link in ∂(D4∪1-handles) = #mS1×S2, where the link is drawn in standard
form (Definition 11.1.7) and the framing coefficient on each link component
K is given by tb(K)− 1.

Similarly, an open Stein surface is characterized as being the interior of a
(possibly infinite) handlebody without 3- or 4-handles, where the 2-handles
are attached to Legendrian knots with framings twisted −1 relative to the
canonical framings. These are more awkward to draw in general, but any
finite subhandlebody can be described as in the theorem.

Exercise 11.2.3. (a) Prove that any even-dimensional oriented handle-
body without handles of index > 2 admits an almost-complex structure.
(Hint : The set of complex vector space structures on the tangent space
TpX

2n is given by SO(2n)/U(n), which is simply connected. Use obstruc-
tion theory (Section 5.6) to find a section of the corresponding bundle.)
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(b)∗ Using the above discussion of Stein manifolds, prove the Lefschetz
Hyperplane Theorem 1.4.22, assuming H is transverse to X.

Eliashberg proves his theorem by using the given Morse function to
build X as a handlebody, guided by the given almost-complex structure
(which automatically exists when n = 2 by Exercise 11.2.3(a)) to make
the gluing maps holomorphic, and trimming back the boundary after each
handle is attached to recover the contact (or pseudoconvexity) condition.
This explains the framing coefficient tb(K)− 1: When n = 2, each 2-handle
is defined to be a neighborhood of D2 × 0 ⊂ iR2 ×R2 = C2. (Note that the
equality reverses the natural orientations.) The attaching circle S1 × 0 is
glued to the given Legendrian knot K in #mS1 × S2, so its tangent vector
field maps into ξc. Since ξc is a complex line field, it follows that iτ also
maps into ξc, and it gives the canonical framing on K. But iτ differs from
the product framing on S1 × 0 ⊂ S1 × R2 by one twist, since τ : S1 → S1

has degree 1. Thus, the framing coefficient on K, corresponding to the
product framing on S1 × 0, is given by tb(K) − 1. (The sign is related
to the orientation-reversal mentioned above.) Note that the same −1-twist
appeared when we analyzed 2-handles corresponding to critical points of
Lefschetz fibrations; see Section 8.2.

 e(X)  e(X)

Figure 11.6. Putting a diagram into standard form.

Example 11.2.4. We analyze which disk bundles X over the torus T 2 ad-
mit Stein structures. First, we move the usual picture of X into standard
form by lowering the uppermost attaching ball as in Figure 11.6, and re-
placing vertical tangencies by cusps. Note that the crossings in the result-
ing diagram have the correct form for a Legendrian projection; otherwise
we would have to modify the picture (as in Exercise 11.1.6, for example).
Our Legendrian knot has tb = 0, and this can be reduced by any integer
(by adding zig-zags to lower λ, cf. Exercise 11.1.9(a)), so Theorem 11.2.2
realizes X as a Stein surface whenever e(X) < 0. As is often the case, we
can improve on our initial answer slightly by more cleverly constructing our

                

                                                                                                               



430 11. Stein surfaces

e(X)

Figure 11.7. Stein structure on D2-bundle X over T 2 with e(X) ≤ 0.

diagram. By wrapping one strand around the lower left attaching ball, we
obtain a smoothly isotopic picture of X, Figure 11.7. Now we have tb = 1,
but the framing coefficient is still e(X), so we conclude that X admits a
Stein structure whenever e(X) ≤ 0. We will see in Section 11.4 that this
result is optimal; when e(X) > 0, X admits no Stein structure.

Exercises 11.2.5. (a)∗ Prove that a disk bundle X4 → F (withX oriented
and F a closed, connected surface) admits a Stein structure provided that
e(X)+χ(F ) ≤ 0 (cf. the text preceding Exercises 4.6.7 for F nonorientable).
We will see in Exercise 11.4.11(c) that this is optimal.

(b)∗ Figure 11.6 shows a Stein structure on the disk bundle over T 2 with
e(X) = −1. Show that the same Stein surface (up to “Stein homotopy” [E6])
can be obtained by adding a zig-zag to Figure 11.7. (Hint : It suffices to show
[E6] that the attaching circles are Legendrian isotopic. Use Figure 11.3 —
specifically, arrange to make Move 6 at the lower left attaching ball.)

(c)∗ Let h be a 2-handle of a Stein surface X presented in standard form.
For both values of the sign ±, let X± denote the manifold obtained from X
by putting a (±)-self-plumbing in h. (This adds ±2 to its framing coefficient
if we use the convention of Example 6.1.3). Prove that X± admits a Stein
structure. (Hint : Figures 6.7 and 6.10.)

This last exercise can be used to show that the high-dimensional version
of Eliashberg’s characterization of Stein manifolds works up to homeomor-
phism in dimension 4.

Theorem 11.2.6. ([G13]) An open, oriented topological 4-manifold X is
(orientation-preserving) homeomorphic to a Stein surface if and only if it is
homeomorphic to the interior of a (possibly infinite) handlebody H without
3- or 4-handles.

Proof. By subtracting sufficiently large even numbers from the framings of
the 2-handles of H, we obtain a handlebody H ′ whose interior is Stein. By
Exercise 11.2.5(c), we can return to the original framings by putting positive
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self-plumbings in the 2-handles of H ′. The resulting manifold H ′′ has Stein
interior, and it is obtained from the gluing data for H by attaching kinky
handles instead of 2-handles. It is now easy to extend the kinky handles of
H ′′ to Casson handles (cf. Example 6.1.3), preserving the Stein structure:
At each stage, we can attach kinky handles to the required framed circles
by repeating the previous argument. (In fact, a close look at the required
framed circles in Figure 12.78 shows that they can be drawn with tb = 0, so
after the first stage we can use any kinky handles with more positive than
negative self-plumbings.) We now have a Stein surface S obtained from H
by replacing all 2-handles by Casson handles and removing any remaining
boundary. Since Casson handles are homeomorphic to open 2-handles, S is
homeomorphic to X.

Note that even when H is a finite handlebody, the corresponding Stein
surface S will usually have infinitely many handles. We should expect a
typical S not to be diffeomorphic to the interior of any compact manifold,
and that a typical X generates uncountably many diffeomorphism types of
such Stein surfaces (since we can use arbitrarily complicated Casson handles
in the construction; cf. Exercise 9.4.13(b)). For example, consider R2-
bundles X → S2, corresponding to 2-handlebodies H on the unknot. By
the theorem, these are all orientation-preserving homeomorphic to Stein
surfaces, but we will see (Theorem 11.4.7) that such an X (with its usual
smoothing) admits a Stein structure if and only if e(X) ≤ −2. For example,
if e(X) = k = 0 (resp. −1), the open manifold shown in Figure 6.14 admits
a Stein structure, so it is homeomorphic but not diffeomorphic to S2 × R2

(resp. CP2 −{pt.}), and it contains no sphere generating its homology. For
any fixed e(X), X will generate infinitely many diffeomorphism types of such
Stein surfaces S, and we can arrange for the minimal genus of a generator of
H2(S) ∼= Z to be arbitrarily large (Exercise 11.4.11(d)). For e(X) = ±1 (and
one would expect in general) there are uncountably many diffeomorphism
types of such S which are not interiors of closed manifolds (cf. the solution
of Exercise 9.4.13(b) and the method of proof of Theorem 11.2.7). A related
example of “exotic” Stein surfaces is the following:

Theorem 11.2.7. ([G13]) There is a Stein structure on R, the exotic R4

of Figure 6.16 and Theorem 9.3.8. There are uncountably many diffeomor-
phism types of Stein surfaces homeomorphic to R4.

Proof. It is routine to transform Figure 6.16 of R into Figure 11.8, where
the fine curve is the attaching circle of the Casson handle CH. (To see this
easily, change Figure 11.8 to dotted circle notation in the obvious way, then
isotope to get Figure 6.16.) The fine curve has tb = 0, so we can attach the
required 0-framed Casson handle (with one positive self-plumbing at each
stage), obtaining a Stein surface. However, the other knot has tb = −2, so
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0

0

CH

Figure 11.8

0CH

2

Figure 11.9. Stein exotic R4.

we must increase its canonical framing by 3 units by a smooth isotopy before
we can attach the required 2-handle. This is easily accomplished by passing
2 strands around 1-handles to obtain Figure 11.9. The new Legendrian knot
has tb = −1 and the required framing coefficient is −2, so we can attach
the required 2-handle and obtain R as a Stein surface. By Theorem 9.4.12
we can obtain uncountably many diffeomorphism types of exotic R4’s by
varying the choice of Casson handle in Figure 11.9. Freedman’s argument
for constructing the required nested family of Casson handles allows us the
freedom to add extra positive self-plumbings whenever necessary, so we can
arrange for the resulting exotic R4’s to be Stein.

We next address the question of which oriented 3-manifolds admit tight
contact structures. Recall that the boundary of a compact Stein surface
inherits a tight contact structure — such contact structures are called holo-
morphically fillable. (There exist tight structures on T 3 that are not holo-
morphically fillable; i.e., they are not given by Stein surfaces [E7].) We
sharpen the above question by asking which 3-manifolds bound Stein sur-
faces. Since it is often convenient to describe 3-manifolds by rational, rather
than integral, surgery, the following proposition is useful. (We use −∞ in
place of the surgery coefficient∞, for compatibility with the ordering of Q.)
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Proposition 11.2.8. Suppose that an oriented 3-manifold M is given by
surgery on a Legendrian link L in standard form in #mS1×S2, with surgery
coefficients in {−∞} ∪ Q. Suppose that the coefficient of each component
K of L is less than tb(K). Then M is the oriented boundary of a Stein
surface.

Exercise 11.2.9. ∗ Prove the above proposition. (Hint : Exercise 5.3.9(b).)

Now let L be an n-component link in S3. (The case of an arbitrary M3 is
similar.) The 3-manifolds obtained by rational surgery on L are indexed by
the corresponding ordered n-tuples of surgery coefficients in ({−∞} ∪Q)n.
It is natural to ask which of these oriented 3-manifolds bound Stein surfaces
(allowing for the fact that such Stein surfaces may have no obvious relation
to the link L). A variant of the proof of the previous proposition shows:

Proposition 11.2.10. For any link L ⊂ S3, the subset of ({−∞} ∪ Q)n

corresponding to oriented 3-manifolds bounding Stein surfaces is open, pro-
vided that we use the lower limit topology on each {−∞}∪Q factor. That is,
whenever rational surgery on L bounds any Stein surface, we can increase
the surgery coefficients by any sufficiently small nonnegative rational num-
bers (and change any −∞ to any sufficiently negative rational number) and
still have a Stein boundary.

Proof (sketch). The basic idea is that a small rational increase of one surgery
coefficient corresponds to surgery on a suitable circle with a very negative
coefficient. (In the integral case the circle is a meridian and we slam-dunk
to see the correspondence; the general case follows by expanding as in Ex-
ercise 5.3.9(b) and surgering a meridian of the last unknot.) If the original
manifold bounds a Stein surface S, the new manifold is now obtained by
rational surgeries in ∂S with suitably negative coefficients. By the method
of proof of the previous proposition, we can replace this surgery by attaching
handles to S preserving the Stein condition. (See [G13] for details.)

Exercises 11.2.11. (a)∗ Prove that all lens spaces bound Stein surfaces
(with the boundary orientation).

(b)∗ Prove the same for all rational surgeries on the left trefoil knot. (Hint :
Start with the case of −1-surgery, the Poincaré homology sphere, Exer-
cise 5.1.12(a).)

As the exercises show for the unknot and left trefoil, it is sometimes
possible to realize all rational surgeries on a given knot as Stein boundaries,
although for large values of the coefficient the resulting diagrams may bear
no resemblance to the original knot. The examples in the above exercises
are special cases of rational surgeries on the Borromean rings, which were
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analyzed in [G13]. It was shown that except for a “small” region in Q3 these
could be realized as Stein boundaries. (Of course, the meaning of “small”
in a countably infinite set is rather vague.) There is an infinite family of
knots and links obtained from the Borromean rings by putting a coefficient
with integral reciprocal on up to 2 components and then removing these by
Rolfsen twists — e.g., the left trefoil is obtained by setting 2 coefficients
equal to −1. All of these knots and links have the property that if a finite
set of coefficients is excluded for each component, all remaining integral
surgeries will be Stein boundaries. (It is an open question how common
this property is among arbitrary links.) An infinite family of these knots
shares with the left trefoil the property that all rational surgeries are Stein
boundaries. A similar analysis of oriented Seifert fibered spaces (such as
circle bundles over surfaces and the homology spheres Σ(p, q, r)) showed that
all such 3-manifolds are Stein boundaries after possibly reversing orientation,
and “most” bound with both orientations. These examples suggest that
there may be a sense in which “most” closed, oriented 3-manifolds are Stein
boundaries. (Perhaps “most” surgeries on “most” links, for example?) Not
all oriented 3-manifolds are Stein boundaries, however — Lisca [Ls2] has
recently shown that the Poincaré homology sphere Σ with its orientation
reversed, i.e., +1 surgery on the right trefoil, is not a Stein boundary. Since
M1#M2 is a Stein boundary iff M1 and M2 are [E3], it follows that Σ#Σ
does not bound a Stein surface with either orientation. It is still unknown
whether these manifolds admit any tight contact structures.

While holomorphically fillable contact structures are always tight, their
finite covers may be overtwisted, as the next proposition shows. We can use
tightness of finite covers to distinguish fillable contact structures, even if they
are homotopic as 2-plane fields, as the subsequent example demonstrates.
(We will discuss other ways of distinguishing contact structures in the rest
of this chapter.)

γ

n strands   

Figure 11.10. Stein boundary with overtwisted cover.
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Proposition 11.2.12. Let (M, ξ) be a contact 3-manifold exhibited as the
boundary of a Stein surface in standard form. Suppose that the diagram
intersects some disk in R2 in a collection of n ≥ 1 parallel strands in the
configuration shown in Figure 11.10, and let γ be a loop surrounding the

strands as shown. Let (M̃, ξ̃)→ (M, ξ) be any locally contactomorphic cov-
ering map such that some conjugate of γ in π1(M) is not in the image of

π1(M̃). Then ξ̃ is an overtwisted contact structure.

For example, if L is any Legendrian link in #mS1 × S2, and we modify L
by adding zig-zags to some component K to decrease tb(K) by 2 without
changing r(K), then the proposition applies to the manifold (M, ξ) obtained
by contact surgery on the modified link, with γ a meridian of K. Applying
this to the unknot in S3, we see that any lens space of the form L(p, 1),
p ≥ 4, admits fillable structures all of whose covers are overtwisted. These
same lens spaces bound holomorphic disk bundles over S2 with negative
Euler numbers, and all covers of the resulting contact structures are tight
(since they are fillable by negative holomorphic disk bundles by branched
covering).

γ

 (a)

 C

γ
 C  =    D (b)

 D

6

Figure 11.11. Immersed overtwisted disk D.

Proof of Proposition 11.2.12. Let C be the Legendrian curve shown in
Figure 11.11(a), with tb(C) = −2. As a smooth knot in the complement of
the given link, C is isotopic to the negative Whitehead double of γ, so it
bounds an immersed disk D disjoint from the link, as is clearly visible in
Figure 11.11(b). The framing induced by D on C = ∂D is the blackboard
framing in Figure 11.11(b), corresponding to the writhe w(C) = −2 =
tb(C). Thus, D induces the canonical framing on C. The π1-condition on γ

guarantees that some lift D̃ of D is an embedded disk in M̃ . Since D̃ still
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 (a)  (b)

 0

 0

6

Figure 11.12. Construction of contactomorphic but nonisotopic con-
tact structures.

induces the canonical framing on its boundary, it is an overtwisted disk in

M̃ , i.e., its boundary is an unknot with tb(∂D̃) = 0.

Example 11.2.13. Let (M, ξ) be the boundary of the Stein surface S shown
in Figure 11.12(a). The 2-handle is attached along a knot K with tb(K) = 1,
so its framing coefficient is 0. By changing to dotted circle notation and sur-
gering out the 1-handle, we realize M as 0-surgery on the 2-component link
of Figure 11.12(b). It is routine to check that this link is symmetric, i.e.,
there is an isotopy interchanging its 2 components. This gives an orientation-
preserving self-diffeomorphism ϕ : M → M interchanging the 2 meridians.
We obtain a contact structure ϕ∗ξ on M that is obviously contactomorphic
to ξ (via ϕ). We will see later (Exercise 11.3.13) that ξ and ϕ∗ξ are also
homotopic as 2-plane fields, but we will now show that they are not isotopic
contact structures. (That is, ξ and ϕ∗ξ are connected by a continuous family
ξt of 2-plane fields, but we cannot arrange for all ξt to be contact structures.
The first such example of a pair of tight contact structures is due to Giroux
[Gi].) Since π1(S) ∼= Z, S has a unique double cover S̃. The corresponding

double cover (M̃, ξ̃) of (M, ξ) bounds S̃, so it is tight. However, the lift of

ϕ∗ξ to M̃ is contactomorphic to a double cover of (M, ξ) with index 2 along
K, so it is overtwisted by Proposition 11.2.12.

Exercise 11.2.14. Prove that a finite cover of a Stein surface is Stein.
Draw an explicit diagram for the above Stein surface S̃.

11.3. Invariants of Stein and contact structures

Stein and contact structures are special cases of almost-complex structures
and plane fields, respectively. These latter structures can be classified up to
homotopy using obstruction theory. In this section, we will discuss invariants
arising from the homotopy classification of such structures.

We begin with Stein surfaces. For an almost-complex 4-manifold (X, J)
with H3(X) = H4(X) = 0, the one obvious invariant is its Chern class
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c1(X, J) ∈ H2(X;Z). This completely determines the homotopy type of the
almost-complex structure, provided that there is no 2-torsion in H2(X;Z),
e.g. for X simply connected. (For arbitrary H2(X;Z) and H3 = H4 = 0,
almost-complex structures on X correspond bijectively to spinc structures,
and the bijection preserves c1. Thus, twice the difference obstruction be-
tween two almost-complex structures is the difference between their Chern
classes, and c1 classifies such structures in the absence of 2-torsion. See the
beginning of Section 10.4.) Now suppose that S is a Stein surface exhibited
as a handlebody on a Legendrian link L in #mS1×S2 in standard form. To
specify c1(S), we compute cohomology using the handles of S as bases for
the chain groups as at the end of Section 4.2. To fix the signs, we orient L
and use the induced orientation (as preceding Proposition 4.5.11) on each 2-
handle h attached along a component K of L. (Thus, ∂∗h = −[K] ∈ C1(S),
since for nullhomologousK, the orientation of the homology class of h should
come from a Seifert surface of K.)

Theorem 11.3.1. For S and L as above, the class c1(S) ∈ H2(S;Z) is
represented by a cocycle whose value on each oriented 2-handle h attached
along a component K of L is given by r(K).

For a proof, see Proposition 2.3 of [G13]. The basic idea is to define a com-
plex trivialization of the tangent bundle of S1 = D4∪1-handles starting with
∂
∂x and a normal vector field to the 3-manifold in the box of Figure 11.2, then
compute that the obstruction to extending over each h is the correspond-
ing r(K). Recall that we already observed a connection between rotation
numbers and Chern classes in Exercise 11.1.9(b).

Exercises 11.3.2. (a)∗ Let X be an oriented disk bundle over a closed,
orientable surface F . Prove that X can be realized as a Stein surface
with any Chern class satisfying the conditions |〈c1(X), F 〉| ≤ −χ(F ) −
e(X) and 〈c1(X), F 〉 ≡ e(X) (mod 2). (See Exercise 11.2.5(a).) By Ex-
ercise 11.4.11(c), this result is optimal for F �= S2. Why must the second
condition be satisfied by all Stein structures on X? What happens when F
is nonorientable?

(b) For X = int H as in Theorem 11.2.6, prove that any integral lift of
w2(X) can be realized as ϕ∗c1(S) for some (orientation-preserving) homeo-
morphism ϕ : X → S onto a Stein surface. (See [G13] for the answer.)

Now we consider oriented 2-plane fields ξ on closed, oriented 3-manifolds
M , up to homotopy (i.e., we allow ξ to vary in continuous families ξt of 2-
plane fields). The most obvious invariant is again the Chern or Euler class
c1(ξ) = e(ξ) ∈ H2(M ;Z), where we consider ξ to be an abstract complex
line bundle or oriented real 2-plane bundle over M . If ξ is the induced
contact structure on the boundary M of a Stein surface S, then c1(ξ) is
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easy to compute: Since ξ is a complex line bundle in TS|M , the latter splits
as ξ ⊕ C, where C is the trivial summand spanned by the outward normal
to S in TS|M . Thus, c1(ξ) = c1(ξ ⊕ C) = c1(TS|M) = c1(S)|M , and we
can compute the latter using the previous theorem. The Chern class c1(ξ)
determines ξ as an abstract complex line bundle. In fact, it determines ξ up
to isomorphisms of TM , since the latter is isomorphic to ξ⊕R. However, if
we consider ξ up to homotopy inside TM , the classification problem becomes
more subtle; the ensuing discussion constitutes the remainder of this section.

The simplest approach to classifying oriented 2-plane fields ξ up to ho-
motopy on a closed, oriented 3-manifold M is as follows. Recall that the
tangent bundle TM is trivial (Remark 1.4.27(b)), and fix a trivialization
τ . Since an oriented plane in R3 has a unique positive unit normal vector,
plane fields ξ now correspond to maps M → S2, and the desired classi-
fication reduces to understanding the set [M,S2] of homotopy classes of
maps into S2. This set was first computed by Pontrjagin around 1940 [Po],
using obstruction theory (cf. Section 5.6). (For a simpler approach using
the Thom-Pontrjagin construction, see [G13].) Since S2 is simply con-
nected with π2(S

2) ∼= Z, the obstruction Γ to uniqueness over the 2-skeleton
M2 = M − int D3 lies in the group H2(M ;Z) ∼= H1(M ;Z). While it is
tempting to try to identify Γ with the Chern class c1(ξ), the latter does
not determine the former when H1(M ;Z) has 2-torsion, e.g. for lens spaces
L(2p, q) — in fact, c1(ξ) = 2Γ. (One way to explain this is to observe that ξ
determines a complex structure on TM ⊕R, and hence, a spinc structure on
M . In fact, 2-plane fields over M2 correspond bijectively to spinc structures
on M , so as in the previous situation, twice the difference class of two plane
fields is the difference of their Chern classes.) For a fixed Γ ∈ H2(M ;Z), the
corresponding map M2 → S2 always extends over M , but since π3(S

2) ∼= Z,
there is a secondary uniqueness obstruction. Difference classes for these ex-
tensions lie in H3(M ;Z) ∼= Z, making the set of all extensions a Z-space
isomorphic to Z, but different extensions may actually represent the same
plane field on M , related by a nontrivial self-equivalence over M2. In fact,
the actual obstruction group is the cyclic group Z2d(Γ) whose order 2d(Γ)

is twice the divisibility of Γ in H2(M ;Z)/torsion (with d(Γ) = 0 if Γ is a
torsion class). Hence, we have a surjection [M,S2] → H2(M ;Z) such that
each Γ ∈ H2(M ;Z) has preimage isomorphic to Z2d(Γ) as a Z-space, and

[M,S2] has been computed.

For our purposes, however, this approach has a serious drawback. To
reduce the classification of 2-plane fields to understanding [M,S2], we had
to choose a trivialization of TM . The resulting invariants depend in a
crucial way on this trivialization. (If we allow the trivialization to vary,
then we are only classifying plane fields up to isomorphisms of TM , and
we lose everything but the Chern class.) Since it is hard to keep track of a
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trivialization (particularly over the last 3-handle) when we do Kirby calculus,
we devote the remainder of the section to a discussion of the invariants
of [G13], which provide the same information without dependence on a
trivialization.

The simplest of the invariants of [G13] determines the 3-dimensional
uniqueness obstruction when c1(ξ) (hence Γ) is a torsion class. The definition
is analogous to that of the Rohlin invariant (Definition 5.7.16), using the
fact that for any closed, almost-complex 4-manifold (X, J) the quantity
c21[X, J ]−2χ(X)−3σ(X) vanishes (Theorem 1.4.15). It is not hard to show
(using obstruction theory) that any (M, ξ) as above can be realized as the
boundary of a compact, almost-complex 4-manifold (X, J). We would like
to define the above quantity for this latter manifold and show that it is an
invariant of (M, ξ). The difficulty arises in defining the first term, since
H2(X;Z) ∼= H2(X,M ;Z) does not have a well-defined intersection pairing
on it in general. When c1(ξ) is a torsion class, we can solve the problem
by using rational coefficients, for then c1(ξ) vanishes. Since the image of
H2(M ;Q) → H2(X;Q) is annihilated by the intersection pairing, the long
exact sequence of (X,M) shows that ker(∂∗ : H2(X,M ;Q) → H1(M ;Q))
inherits a pairing. Since ∂∗PDc1(X, J) = PDc1(ξ) vanishes over Q, the
above expression is well-defined for (X, J).

Definition 11.3.3. For (M, ξ) and (X, J) as above with c1(ξ) a torsion
class, define θ(ξ) to be (PDc1(X, J))2 − 2χ(X)− 3σ(X) ∈ Q.

Theorem 11.3.4. For (M, ξ) as above with c1(ξ) a torsion class, θ(ξ) ∈
Q depends only on (M, ξ), and it reverses sign if the orientation of M is
reversed.

Proof. Let (M, ξ) and (M, ξ) bound almost-complex manifolds (X0, J0) and
(X1, J1), respectively, and let θ0 and θ1 denote the resulting values of the
above invariant. Clearly, the manifold Y = X0 ∪M X1 inherits an almost-
complex structure J , and c21[Y, J ]− 2χ(Y )− 3σ(Y ) = 0. It is easy to verify
that all 3 terms add under this gluing (cf. Remark 9.1.7), so we obtain
θ0 + θ1 = 0. Since X0 and X1 were defined independently, it follows that
θ(ξ) = θ0 is independent of the choice of (X0, J0), and θ1 = −θ0 is the
invariant for (M, ξ).

Example 11.3.5. Let S be a Stein surface obtained by adding a 2-handle
to D4 along a Legendrian knot K with tb(K) = 0, and let (M, ξ) be the
resulting holomorphically fillable contact manifold. Since the framing coef-
ficient is tb(K) − 1 = −1, M is a homology sphere, so c1(ξ) = 0 and θ(ξ)
is defined. Orienting K determines a canonical generator α ∈ H2(S;Z),
and by Theorem 11.3.1 we have 〈c1(S), α〉 = r(K), so PDc1(S) = −r(K)α.
Since α2 = −1, Definition 11.3.3 gives θ(ξ) = −(r(K))2 − 1. Now consider
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a Legendrian knot K ′ with tb(K ′) ≥ 2. By adding zig-zags to K ′, we can
create Legendrian knots K with tb(K) = 0, and by using the freedom to
zig-zag upward or downward, we can obtain distinct values of |r(K)|. Thus,
we obtain noncontactomorphic holomorphically fillable contact structures
on the same smooth 3-manifold M . Since M is a homology sphere, however,
the 2-dimensional invariant must vanish, so these structures will be homo-
topic over M2 but not over M . We can construct 3-manifolds admitting
arbitrarily large finite families of such structures, by starting with knots K ′

with tb(K ′) arbitrarily large, for example torus knots Tp,q with p � q > 1
(Example 6.2.7) or connected sums of right trefoils.

Exercises 11.3.6. (a) Show by example that the intersection pairing need
not be well-defined on H2(X, ∂X;Z).

(b)∗ Compute θ(ξ) (when defined) for any (M, ξ) bounding a Stein surface
made with a single 2-handle attached to D4 along a Legendrian knot K.
Note that θ(ξ) need not be an integer if tb(K) �= 0, 2.

(c)∗ For i = 0, 1, let (Mi, ξi) be obtained from Ki as in (b). Suppose there
is a contactomorphism ϕ : M0 → M1 (or more generally, an orientation-
preserving diffeomorphism with ϕ∗ξ0 homotopic to ξ1). Prove that tb(K0) =
tb(K1) and |r(K0)| = |r(K1)|. In particular, the framing coefficients ni =
tb(Ki) − 1 have the same sign (cf. Exercise 5.3.7(a)). (Hint : If μi is the
meridian of Ki, then ϕ∗[μ0] = k[μ1] ∈ H1(M1;Z) for some integer k. What
do the linking forms of M0 and M1 say about k (Exercise 5.3.13(g))? For
the endgame, consider mod 3 reductions.)

Next we examine the obstruction Γ to uniqueness of 2-plane fields over
the 2-skeleton M2 of M . This depends on a choice of trivialization of TM ,
but only through its restriction to M2. That is, Γ is determined by a spin
structure s ∈ S(M) (cf. Sections 5.6, 5.7), so we denote it by Γ(ξ, s). (This
invariant can be interpreted in terms of spinc structures: Note that both ξ
and s determine spinc structures on M , the former as above and the latter
through the inclusion Spin(3) ↪→ Spinc(3). It can be shown [G13] that
Γ(ξ, s) ∈ H2(M ;Z) is the difference class of these spinc structures.) We now
give a different definition of Γ(ξ, s) which will be useful in our discussion of

the general 3-dimensional invariant Θ̃ (when we allow c1(ξ) to have infinite
order). The subsequent proposition asserts that Γ(ξ, s) is well-defined and
depends in a simple way on s. This is followed by an explicit formula for
Γ(ξ, s) when (M, ξ) is a Stein boundary.

Definition 11.3.7. Let ξ be an oriented plane field on a closed, oriented 3-
manifold M . Let v be a vector field in ξ whose zero locus is an oriented link
γ in M with multiplicity 2 (so 2[γ] = PDc1(ξ)). Then v in ξ ⊂ T (M − γ)
determines a trivialization of T (M −γ), and this extends uniquely to a spin
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structure s on M because v vanishes with even multiplicity on γ. Define
Γ(ξ, s) to be [γ] ∈ H1(M ;Z).

Proposition 11.3.8. For (M, ξ) as above, the previous definition deter-
mines a map Γ(ξ, ·) : S(M) → H1(M ;Z) that depends only on (M, ξ), and
is H1(M ;Z2)-equivariant. Its image is {x ∈ H1(M ;Z) | 2x = PDc1(ξ)}.
For fixed s, reversing the orientation of either ξ or M reverses the sign of
Γ(ξ, s).

For a proof (by obstruction theory) see [G13]. To understand the equivari-
ance, recall that H1(M ;Z2) ∼= H2(M ;Z2) acts on S(M) through difference
classes (Proposition 5.6.3), and on H1(M ;Z) via the Bockstein homomor-
phism β : H2(M ;Z2)→ H1(M ;Z) of the long exact sequence induced by the
coefficient sequence 0 → Z → Z → Z2 → 0. This equivariance shows that
Γ(ξ, · ) is determined by its value on any one spin structure, hence, by any
vector field as in Definition 11.3.7.

To compute Γ(ξ, s) for a Stein boundary (M, ξ) = ∂S, it is convenient
to express spin structures as characteristic sublinks via Proposition 5.7.11.
Thus, given S in standard form, we switch to dotted circle notation using the
dashed arcs in Figure 11.2, then surger the 1-handles to 0-framed 2-handles,
obtaining a 2-handlebody X on a framed link L = K1∪· · ·∪Kn. Let L0 ⊂ L
denote the unlink coming from the 1-handles. Orient L to obtain a canonical
basis {α1, . . . , αn} for H2(X;Z) corresponding to {K1, . . . ,Kn}.
Theorem 11.3.9. ([G13]) For (M, ξ) = ∂S and X as above, let s ∈ S(M)
be a spin structure with corresponding characteristic sublink L′ ⊂ L. Then
PD(Γ(ξ, s)) is the restriction to M of the class ρ ∈ H2(X;Z) whose value
on each αi is the integer

〈ρ, αi〉 =
1

2
(r(Ki) + �k(Ki, L0 + L′)),

where r(Ki) equals 0 for Ki in L0, and otherwise equals the rotation number
of the oriented Legendrian knot corresponding to Ki.

Remark 11.3.10. We could replace L0+L′ in the above expression by any
fixed formal linear combination of components of L with the same mod 2
reduction as L0 + L′, since the resulting change in ρ would have trivial
restriction to M . A similar argument shows that 2ρ|M = c1(ξ), as required.

Exercise 11.3.11. Let K ⊂ #mS1× S2 be a Legendrian knot in standard
form. Prove that tb(K) + r(K) + 1 is congruent mod 2 to the number of
times K runs over 1-handles. (Hint : The formula in Theorem 11.3.9 gives
an integer.)

Example 11.3.12. Consider the Stein surface Sp (p ≥ 1) shown in Fig-
ure 11.13(a). This is obtained by adding a 2-handle to S1×D3 along a Leg-
endrian knot K that runs 2p times over the 1-handle. Thus, w(K) = 2p−1.
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Figure 11.13. Nonisotopic contact structures distinguished by Γ.

There are 2p − 2 left cusps, half oriented upward and the other half down-
ward, so λ+ = λ− = ρ+ = ρ− = p− 1. Thus, the framing of the 2-handle is
tb(K) − 1 = 0, and r(K) = 0. The corresponding 2-handlebody Xp of Fig-
ure 11.13(b) (obtained by surgery as above) admits a unique spin structure,
whose restriction s to Mp = ∂Xp = ∂Sp is given by the empty characteristic
sublink. Using Theorem 11.3.9, it is easy to calculate that Γ(ξ, s) = pμ,
where μ is the meridian of K in H1(Mp;Z) ∼= Z2p⊕Z2p (which is generated
by the two meridians in ∂Xp). Now observe that Xp admits an involution
ϕ that interchanges the two 2-handles but preserves the orientation and
s. Since ϕ∗Γ(ξ, s) �= Γ(ξ, s), we conclude that the holomorphically fillable
contact structures ξ and ϕ∗ξ on Mp are not homotopic as 2-plane fields.
In particular, they are not isotopic (although they are contactomorphic via
ϕ). However, they are not distinguished by the other homotopy invariants,
since c1(ξ) = c1(ϕ∗ξ) = 0 and θ(ξ) = θ(ϕ∗ξ) = −2. Thus, this example
and Example 11.3.5 show that Γ and θ are independent invariants, even for
holomorphically fillable contact structures with c1 = 0.

Exercise 11.3.13. Prove that the contact structures ξ and ϕ∗ξ defined in
Example 11.2.13 are homotopic as 2-plane fields. (It suffices to show that
their values of Γ and θ agree.)

Finally, we consider the 3-dimensional obstruction in full generality. Re-
turning to our previous strategy for defining θ, we wish to interpret the term
c21[X, J ] for an almost-complex manifold (X, J) whose boundary (M, ξ) has
Chern class c1(ξ) with possibly infinite order. Let z be a relative integral
cycle in (X,M) with ∂z carried by a link L in M , and let f be a framing on
L. We can define the self-intersection number of z relative to f by adding
2-handles to X along (L, f), extending z in the obvious way to a cycle ẑ in
the resulting 4-manifold, and setting Qf (z) = ẑ2 ∈ Z. This self-intersection
number depends on the choices of z and f , although its residue in Z2d([∂z])

(where d([∂z]) is the divisibility of [∂z] ∈ H1(M ;Z)/torsion) depends only
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on [z] ∈ H2(X,M ;Z) and f . To make sense of this last statement, we inter-
pret f as a framing on the homology class [∂z] = ∂∗[z] ∈ H1(M ;Z), which is
well-defined up to adding any multiple of 2d([∂z]) twists. (See the following
exercises.)

Exercises 11.3.14. (a)∗ Prove that for fixed L, Qf [z] is defined up to (and
only up to) multiples of 2d([∂z]). (Hint : What happens if you replace ẑ by
ẑ + z′ with z′ a cycle in M?)

(b) Define the notion of a framing modulo 2d(x) on a homology class x in
H1(M ;Z). (Hint : If γ0 and γ1 are nonempty oriented links representing x,
then there is a connected, oriented surface F ⊂ I ×M with ∂F = 1× γ1 −
0 × γ0. Use the normal bundle of F to transport a framing from γ0 to γ1.
For the 2d(x) ambiguity, see (a).) How does a framing on a representative
of x change under ribbon moves (cf. Section 6.2)? How is a framing affected
by a relative maximum or minimum of F?

(c) If x =
∑

ki[Ki] ∈ H1(M ;Z) is given by an integral linear combination of
components of an oriented link L, then a framing f on L determines one on
x — simply push off |ki| framed parallel copies of each Ki using the framing
f . Show that this correspondence preserves Qf (z), and that adding a twist
to f along Ki adds k

2
i twists to the induced framing on x (increasing Qf (z)

by k2i ).

(d) Prove that Qf [z] ∈ Z2d([∂z]) depends only on [z] ∈ H2(X,M ;Z) and the
framing f on [∂z]. (Hint : By (c), it suffices to consider relative cycles z with
∂z a link (with all coefficients = 1). Now add a collar I×M to X along ∂X
and use (b) to reduce to (a).)

Definition 11.3.15. Let M, ξ, v, γ and s be as in Definition 11.3.7 with
(M, ξ) = ∂(X, J) and a framing f specified on γ. Then v and the outward
normal of X define a complex trivialization of TX|(M − γ). Let z be a
relative 2-cycle in (X,M) that is Poincaré dual to the relative Chern class

c1(X, v) ∈ H2(X,M − γ;Z) (so that ∂z = 2γ). Define Θ̃(ξ, s, f) to be
Qf (z)− 2χ(X)− 3σ(X) ∈ Z4d(ξ) (where d(ξ) = d(c1(ξ))), and let Θf (ξ) be
the corresponding residue in Z2d(ξ).

Note that since [∂z] = PDc1(ξ), the first term of Θf (ξ) depends (mod 2d(ξ))
only on [z] = PDc1(X) ∈ H2(X,M ;Z) and f (as a framing on PDc1(ξ)),
so Θf (ξ) is independent of s and its definition extends to all framings on

PDc1(ξ). However, for d(ξ) �= 0 we must lift to Θ̃ to obtain a complete

invariant for 2-plane fields, and Θ̃ does depend on the choice of s. The spin
structure also affects Θf (ξ) indirectly through f : If we add a twist to f on
[γ] = Γ(ξ, s) then the corresponding framing on PDc1(ξ) = 2Γ(ξ, s) changes
by 4 twists (Exercise 11.3.14(c)). Now Θf (ξ) varies over all elements of
Z2d(ξ) as we vary f on PDc1(ξ), but a choice of s determines Γ(ξ, s), and
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hence a preferred mod 4 coset of induced framings on PDc1(ξ), resulting in
a preferred mod 4 residue of Θf (ξ).

Theorem 11.3.16. ([G13]) Let M , ξ, s and f on Γ(ξ, s) be as in Defi-

nition 11.3.15. Then Θ̃(ξ, s, f) ∈ Z4d(ξ) depends only on M , s, f and the

homotopy class of ξ. The invariant Θ̃ varies with s and f by the formula
Θ̃(ξ, s1, f1) = Θ̃(ξ, s0, f0) + Qf0,f1(zM ), where zM is any relative integral
2-cycle in (I×M, {0, 1}×M) such that ∂zM has the form 2(1×γ1−0×γ0)
with [γi] = Γ(ξ, si) and for which the mod2 reduction zM |2 is Poincaré dual

to the difference class Δ(s0, s1). For fixed s and f , Θ̃(ξ, s, f) is indepen-
dent of the orientation of ξ and reverses sign if the orientation of M is
reversed. If ξ0 and ξ1 are oriented 2-plane fields on a connected M , then
they are homotopic if and only if for some (hence, any) choice of s and f ,

Γ(ξ0, s) = Γ(ξ1, s) and Θ̃(ξ0, s, f) = Θ̃(ξ1, s, f). If c1(ξ0) is a torsion class,

then the same is true with θ(ξi) or Θf (ξi) in place of each Θ̃(ξi, s, f).

The proof is a more sophisticated version of that of Theorem 11.3.4. See
[G13] for details and for additional properties of the invariants and corollar-

ies. Note that the theorem asserts that Γ and Θ̃ (or Γ and θ if b1(M) = 0)
are a complete set of invariants for homotopy classes of oriented plane fields
on M . Thus, they contain all of the information given by the obstructions
described earlier, allowing us to avoid keeping track of a trivialization of
TM . Recall that the previous viewpoint gave the set of plane fields ex-
tending a fixed ξ over M2 as a Z-space isomorphic to Zd(ξ). From our new

viewpoint, the generator of the Z-action subtracts 4 from Θ̃, so the required
Z-space is a mod 4 coset of Z4d(ξ). This shows that for d(ξ) �= 0, Θf ∈ Z2d(ξ)

classifies plane fields only up to a 2 : 1 ambiguity.

We now give recipes from [G13] for computing the above quantities Θf ,

Θ̃ and Qf0,f1(zM ) for the boundary of a Stein surface S in standard form. If
Di denotes the cocore of the 2-handle attached to Ki (with μi = ∂Di a right-
handed meridian of Ki) then by Theorem 11.3.1 PDc1(S) is represented
by

∑
r(Ki)Di. Thus, Θf (ξ) is easily computed using the observation that

Qf (PDc1(S)) = 0 ∈ Z2d(ξ) when f is the 0-framing on
⋃
μi. Given two Stein

surfaces with a diffeomorphism preserving c1(ξ) between their boundaries,
we can now compare the corresponding values of Θ by comparing the two
framings on the class c1(ξ) as in Exercise 11.3.14(b). (If the diffeomorphism
does not preserve c1(ξ), then we cannot compare the invariants Θ since we
cannot compare framings, but then the plane fields are distinguished by
c1(ξ).) A recipe for Θ̃ can be obtained by the method of Theorem 11.3.9:
Pass to the 2-handlebody X as in that theorem, and let c be any integral 2-
chain in M such that ∂c = 2γ−∑

r(Ki)μi for some oriented link γ. Let s ∈
S(M) be the spin structure whose characteristic sublink is obtained from the
sublink representing [c] ∈ H2(X,D4;Z2) by adding the sublink L0 coming
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from the 1-handles of S. If we set z =
∑

r(Ki)Di + c, then Θ̃(ξ, s, f) =
Qf (z) − 2χ(X) − 3σ(X) ∈ Z4d(ξ) for any framing f on [γ] = Γ(ξ, s), where
the first term is computed as usual by adding 2-handles to X (or S) along
(γ, f). Given a diffeomorphism preserving Γ between two Stein boundaries,

we would like to compare the corresponding invariants Θ̃ for a fixed s and f .
Given the above recipe for Θ̃, it suffices to compute the change Qf0,f1(zM )
induced by a change of s and f (since we already know how to pull a given
s and f through a diffeomorphism realized by Kirby moves). Fortunately,
this is straightforward. We choose zM representing PD(Δ(s0, s1)) (which is
given by the difference of the corresponding characteristic sublinks, cf. the
proof of Proposition 5.7.11), with ∂zM as required and γ0 connected. By
adding the same number of twists to f0 and f1, we can arrange f0 to be the
0-framing on γ0 ⊂ ∂X (leaving Qf0,f1(zM ) unchanged). Then we eliminate
γ0 from ∂zM by adding 2 copies of a surface in D4 with boundary γ0 (in
lieu of a 0-framed 2-handle attached along 0 × γ0 in 0 ×M), and compute
ẑM by adding handles along (γ1, f1) as before.

We close the section with some relations between the invariants we have
defined for plane fields. For x ∈ H1(M ;Z) a torsion class with framing
f , let qf (x) ∈ Q denote the rational framing coefficient defined in Exer-
cise 4.5.12(c). Its mod 1 residue q(x) ∈ Q/Z is the square of x under the
linking form of M (same exercise). When θ(ξ) is defined (i.e., c1(ξ) is a tor-

sion class), then d(ξ) = 0, so the invariants Θ̃(ξ, s, f) and Θf (ξ) are integers
(and equal when the second framing is induced by the first). By [G13] we
then have

Θf (ξ) = θ(ξ) + qf (PDc1(ξ)).

In particular, the mod 1 residue of θ(ξ) is −q(PDc1(ξ)) ∈ Q/Z. Bilinearity
of the linking form now implies that θ(ξ) is an integer divided by the (finite)
order of c1(ξ). We can also compute the mod 4 residues of the invariants
θ and Θ, the latter depending on a choice of spin structure (through the
framing f) as described previously. We have mod 4 congruences (cf. the last
paragraph of [G14])

Θ̃(ξ, s, f) ≡ Θf (ξ) ≡ 2(b0(M) + b1(M))− μ(M, s)

and

θ(ξ) ≡ 2(b0(M) + b1(M))− μ(M, s)− 4q(Γ(ξ, s)),

where Θf (ξ) is given for a framing f induced by s as above, we assume
d(ξ) = 0 in the second formula, and μ denotes the Rohlin invariant (Def-
inition 5.7.16). Since θ(ξ) does not depend on s, the right-hand side of
the second equation must also be independent of s mod 4. These mod 4
congruences follow from the fact [G13] that (M, ξ, s) bounds an almost-
complex spin manifold (X, J, sX) with X a union of 0- and 2-handles. Since
c1(X, v)|2 = w2(X, s) = 0, we can apply Definition 11.3.15 with z = 2z0 for a
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suitable relative integral cycle z0, obtaining Θ̃(ξ, s, f) = 4Qf (z0)− 2χ(X)−
3σ(X) ≡ −2(χ(X) + σ(X))− σ(X) ≡ 2(b0(X) + n(X))− μ(M, s) (mod 4),
where n(X) is the nullity of QX and equals b1(M) by Corollary 5.3.12.

11.4. Stein surfaces and gauge theory

We end this chapter by outlining the relation of Seiberg-Witten theory to
manifolds having nonempty boundary; in particular, we obtain information
about the topology of Stein surfaces. (Recall that in Section 2.4 we defined
SWX only for closed 4-manifolds satisfying some additional constraints.)
Various approaches to this problem have been worked out. In one (developed
by Kronheimer and Mrowka [KM2]) a contact structure ξ on ∂X is fixed and
a diffeomorphism invariant is defined, namely the Seiberg-Witten invariant
SWX,ξ of the pair (X, ξ) mapping from the set ScX,ξ to Z. (Here ScX,ξ denotes
the set of spinc structures on X inducing the spinc structure on ∂X provided
by ξ. Note that a contact structure reduces the structure group of TM
to SO(2), hence — as in the case of an almost-complex structure on a 4-
manifold — specifies a spinc structure on a 3-manifold [KM2].) Surprisingly
enough, this approach not only gives information about the smooth topology
of X, but also provides contact geometric results about the 3-manifold M =
∂X. This theory is easy to handle when X admits a symplectic, or in
particular, a Stein structure. (In the following we will restrict ourselves to
listing the relevant theorems about SWX,ξ and will discuss its definition only
very briefly, cf. Remark 11.4.4.) Another approach (developed by Lisca and
Matić) provides an embedding of a Stein surface in a closed complex surface
of general type, and uses earlier gauge theoretic results about such complex
surfaces. We will return to this approach in Theorem 11.4.5.

Let ξ be a fixed contact structure on the 3-manifold M = ∂X. A sym-
plectic structure ω on the compact manifold (X, ∂X) is compatible with the
contact structure ξ on M = ∂X if ω is positive on the oriented 2-plane field
ξ. Suppose that γ0 is a spinc structure on (X, ξ) generated by a compatible
symplectic structure ω. The following theorem generalizes Theorem 2.4.7(2)
of Taubes and Theorem 3.4.22 about minimal surfaces of general type to the
case ∂X �= ∅.
Theorem 11.4.1. Fix a contact structure ξ on M = ∂X. If ω is a compat-
ible symplectic structure on (X, ∂X), then SWX,ξ(γ0) = ±1. If, in addition,
ω is an exact form, then γ0 is the only spinc structure on X (inducing ξ on
∂X) for which SWX,ξ is nonzero.

Examples of symplectic manifolds with exact sympletic forms are given by
Stein surfaces: If S is Stein and f is the proper Morse function provided
by Theorem 11.2.1, then ω = i∂∂f gives an exact Kähler form on S. One
corollary of Theorem 11.4.1 is the following:
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Theorem 11.4.2. ([LM1], [KM2]) Let Ji (i = 1, 2) be two Stein struc-
tures on a 4-manifold X with induced spinc structures γi and induced contact
structures ξi on ∂X. If ξ1 is isotopic to ξ2 (preserving the given orienta-
tions on the 2-plane fields), then γ1 is isomorphic to γ2. This isomorphism
implies that the almost-complex structures J1 and J2 are homotopic (cf. the
beginning of Section 11.3); in particular, c1(X, J1) = c1(X, J2).

Coupling Theorem 11.4.1 with gauge theoretic arguments (cf. [Frø] and
[MMR]), one can derive the following contact geometric information about
the boundary ∂X.

Theorem 11.4.3. For any 3-manifold M there are only finitely many ho-
motopy classes of 2-plane fields which correspond to holomorphically fillable
contact structures.

Remark 11.4.4. Recall from Section 10.4 that an almost-complex struc-
ture J determines a spinor ψ0 ∈ Γ(W+), where W+ corresponds to the
canonical spinc structure provided by J . It can be shown that there is a
unique connection A0 with /∂A0ψ0 = 0 [KM2]. Now considering solutions
(A,ψ) of the Seiberg-Witten equations on (X, ξ) such that A−A0 and ψ−ψ0

are in L2, a moduli space and corresponding invariant can be defined. Gen-
eralizing Taubes’ arguments to this setting, Kronheimer and Mrowka found
a proof of Theorem 11.4.1 for these invariants.

Theorem 11.4.2 was obtained earlier by Lisca and Matić; in the following
we will use their approach — see also [LM1].

Theorem 11.4.5. ([LM1]) Suppose that S is a Stein surface and f : S → R

is the proper Morse function provided by Theorem 11.2.1. Then for any
regular value r ∈ R there is a Kähler embedding of the submanifold Sr =
{x ∈ S | f(x) < r} ⊂ S into a minimal surface T of general type with
b+2 (T ) > 1.

The fact that a Stein surface Sr embeds in a projective surface was known for
some time; the above theorem asserts that the target space T can be chosen
to be a minimal surface of general type and the embedding is symplectic.

Exercise 11.4.6. Deduce the conclusion b+2 (T ) > 1 from the rest of the
theorem. (Hint : By adding 2-handles to S (keeping the Stein condition) we
can embed S in a Stein surface S′ with b+2 (S

′) > 1. Now embedding S′
r in

some T , we obviously have b+2 (T ) > 1.)

Recall that if T is a minimal surface of general type (with b+2 (T ) > 1)
then SWT (K) = 0 unless K = ±c1(T ), and SWT (±c1(T )) = ±1. Applying
the embedding provided by Theorem 11.4.5, we can prove the following
version of the adjunction inequality.
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Theorem 11.4.7. ([LM1]) If S is a Stein surface and Σ ⊂ S is a con-
nected, smooth, orientable surface with g(Σ) > 0, then

2g(Σ)− 2 ≥ [Σ]2 + |c1(S)([Σ])|.
Moreover, if Σ ⊂ S is an embedded sphere and [Σ] �= 0, then [Σ]2 ≤ −2.

Proof. Since Σ is compact, it lies in some Sr. Consider the given holomor-
phic embedding ϕ : Sr → T of Sr into the minimal surface of general type
with b+2 (T ) > 1. First we show that if [Σ] �= 0 in S, the same can be assumed
in T : Since Sr has no 3-handles, H2(Sr;Z) has no torsion, so [Σ] pairs non-
trivially with some element of H2(Sr;Z) ∼= H2(Sr, ∂Sr;Z). By adding a 2-
handle to Sr (keeping the Stein condition), we can assume that Σ pairs non-
trivially with a closed surface in Sr ∪2-handle, hence in the minimal surface
of general type corresponding to this new Stein surface (still called T ). Since
c1(T )|ϕ(Sr) = c1(Sr), the generalized adjunction formula 2.4.8 implies that
2g(Σ)− 2 = 2g(ϕ(Σ))− 2 ≥ [ϕ(Σ)]2 + |c1(T )([ϕ(Σ)])| = [Σ]2 + |c1(Sr)([Σ])|,
proving the first statement of the theorem. (Note that since T is a Kähler
surface, it is of simple type.) Now Theorem 2.4.6 (together with Theo-
rem 2.4.7) shows that a sphere cannot have nonnegative self-intersection.
Finally, a sphere Σ ⊂ S with [Σ]2 = −1 would give rise to a sphere of square
−1 in T . A minimal surface of general type, however, does not contain any
smoothly embedded −1-sphere. (T has basic classes ±c1(T ) with c21(T ) > 0,

so the blow-up formula shows that T cannot be decomposed as T ′#CP2.)

Using the above observation, we obtain a particularly simple example
of two nondiffeomorphic smooth structures on a compact manifold [AM1],
each obtained by attaching a single 2-handle to D4. (The example is origi-
nally due to Akbulut [A4], by different methods.)

Theorem 11.4.8. The compact 4-manifolds S and X given as the two left-
most diagrams of Figure 11.14 are homeomorphic but not diffeomorphic.
(Even their interiors cannot be diffeomorphic.)

Proof. Figure 11.14 shows that ∂S and ∂X are diffeomorphic homology
spheres. (Blow up S, interchange link components by an isotopy, blow up
again and surger a 0-framed unknot to a dotted circle, then isotope and can-
cel a handle pair.) Freedman’s Theorem 1.2.27 generalizes without change to
compact 4-manifolds with oriented boundary a fixed homology sphere [FQ].
Since S and X are smooth and simply connected with the same intersection
form 〈−1〉, it follows that they are homeomorphic. But S is exhibited as a
Stein surface, so H2(S;Z) cannot be generated by an embedded sphere. On
the other hand, X is obtained from D4 by attaching a 2-handle to a slice
knot, as the ribbon move in Figure 11.14 shows, and the slice disk union the
core of the 2-handle is a sphere generating H2(X;Z).
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Figure 11.14. Homeomorphic but nondiffeomorphic 4-manifolds S,X.

The adjunction inequality given above has an important application to
knot theory. Two classical invariants of a knot K ⊂ S3 are the genus g(K)
and the slice genus gs(K), which are, respectively, the minimal genus of a
Seifert surface for K in S3 and the minimal genus of an embedded orientable
surface F ⊂ D4 with ∂F = K. Clearly, g(K) ≥ gs(K), and upper bounds
for both can be obtained by explicitly constructing surfaces. For example,
gs(K) = 0 iff K is (smoothly) slice. Lower bounds are much more difficult to
obtain, particularly for gs. Even determining which knots have gs(K) > 0
(or equivalently, are not slice) is still a subject of current research. The
following corollary allows us to compute a lower bound on gs(K) simply by
drawing K as a Legendrian link. (The original proof of the last sentence of
the corollary is due to Rudolph [Ru2] via Theorem 2.4.6(1).)

Corollary 11.4.9. Suppose that K ⊂ S3 is a Legendrian knot and F ⊂ D4

is a smooth surface with ∂F = K. Then 2g(F ) − 1 ≥ tb(K) + |r(K)|; thus
g(K) ≥ gs(K) ≥ 1

2(tb(K) + 1 + |r(K)|). In particular, any knot K ⊂ S3

satisfies gs(K) ≥ 1
2(TB(K) + 1), where TB(K) is the maximal Thurston-

Bennequin invariant of (Legendrian representatives of) the knot K.

Proof. Summing K with a Legendrian trefoil (Figures 11.1 and 12.76)
increases tb(K) by 2 and g(F ) by 1, so we may assume g(F ) > 0. Attach
a 2-handle along K with framing tb(K)− 1 to get the Stein surface SK ; let
Σ denote the surface obtained by sewing F together with the core of the
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2-handle. Then by Theorem 11.4.7 we have 2g(Σ)−2 ≥ [Σ]2+ |c1(SK)([Σ])|.
Since tb(K) = [Σ]2 + 1 and r(K) = c1(SK)([Σ]), the corollary follows.

Remark 11.4.10. Using essentially the same idea, one can generalize the
above corollary [AM2]: Assume that F is a 2-dimensional submanifold of
a Stein surface S in standard form such that K = ∂F ⊂ ∂S is a Legendrian
knot in the contact 3-manifold ∂S. If the framing of K induced by F has
coefficient n and the rotation number with respect to F is r(K,F ), then
tb(K)− n+ |r(K,F )| ≤ −χ(F ).

Exercises 11.4.11. (a) Determine the possible Chern classes of Stein
structures on the nucleus N(n). (Hint : Repeat the argument given before
Corollary 3.1.15 and conclude that c1 = PD(kf) for some k ≡ n (mod 2),
|k| ≤ n−2; recall that f stands for the homology class of the fiber in N(n).)

(b)∗ Realize PD((2k−n)f) ∈ H2(N(n);Z) for 1 ≤ k ≤ n− 1 as first Chern
class of a Stein structure on N(n).

(c)∗ Prove that if the disk bundle X4 → F (as described in Exer-
cise 11.2.5(a)) admits a Stein structure then e(X) + χ(F ) ≤ 0. For F
oriented, show that when X admits a Stein structure, the correspond-
ing first Chern class satisfies |〈c1(X), F 〉| ≤ max(−χ(F ), 0) − e(X) and
〈c1(X), F 〉 ≡ e(X) (mod 2). Note that this proves optimality for F �= S2 in
Exercise 11.3.2(a).

(d)∗ Prove that any oriented R2-bundle over an orientable surface is homeo-
morphic to Stein surfaces S for which the minimum genus of a smooth
surface generating H2(S;Z) is arbitrarily large. (Hint : Exercise 11.3.2(b).)
Now let X be the interior of an oriented handlebody without 3- or 4-handles,
and suppose H2(X;Z) �= 0. Prove that X admits infinitely many distinct
smooth structures (up to isotopy), each of which is Stein. (This proves
Theorem 9.4.29(b).)

(e) Let K be a Legendrian knot in S3 with tb(K) ≥ 0. Prove that the pos-
itive, untwisted Whitehead double DK of K (Remark 6.1.2) can be drawn
as a Legendrian knot with tb(DK) = 1. Conclude that no iterated double
DnK = D(Dn−1K) is smoothly slice. (This was originally proved for knots
such as the right trefoil by Rudolph [Ru1] by a different method.) Recall
(Definition 6.2.3 and the subsequent text) that the double of any knot is
topologically slice.

(f) Prove that Theorem 11.4.7 and Corollary 11.4.9 remain true if the rel-
evant surfaces are allowed to be immersed but with only negative double
points. Conclude that a generically immersed disk in D4 with Legendrian
boundary K must have at least 1

2(tb(K)+1+ |r(K)|) positive double points.
(Hint : Blowing up negative double points of a surface preserves its homo-
logy class, by Proposition 2.3.5. When g(Σ) = 0, use the blow-up formula
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Theorem 2.4.9 (which applies even though T may not be simply connected,
cf. Remark 2.4.11) and the fact that c21(T ) > 0 for T a minimal surface of
general type. Positive double points can be eliminated by adding genus, cf.
the beginning of Section 2.1.)

We close this section by describing a result illustrating that Seiberg-
Witten theory on a Stein surface S provides information about the contact
geometry of ∂S; Corollary 11.4.13 can be regarded an application of Theo-
rem 11.4.2.

Theorem 11.4.12. ([LM1], see also Example 11.3.5) The 3-manifold
∂N(n) admits at least [n2 ] noncontactomorphic contact structures.

Proof. The Stein structures of N(n) constructed in Exercise 11.4.11(b)
have different Chern classes. Hence Theorem 11.4.2 implies that the corre-
sponding n − 1 contact structures on the boundary ∂N(n) are nonisotopic
(preserving the given orientations on the 2-plane fields). The unique non-
trivial self-diffeomorphism of ∂N(n) (cf. the proof of Lemma 8.3.10) is
given by 180◦ rotation about the z-axis in Figure 12.81(a), so it identifies
these contact structures in pairs with opposite c1(N(n), J). Any additional
contactomorphism (even reversing orientation on the 2-plane fields) would
provide a forbidden isotopy.

Since any Stein structure J on the nucleus N(n) has c21[N(n), J ] = 0 (Ex-
ercise 11.4.11(a)), any contact structure ξ on the homology sphere ∂N(n)
induced by a Stein structure J on N(n) has θ(ξ) = −6 (and Γ(ξ, s) = 0).
Consequently all contact structures provided by Theorem 11.4.12 above are
homotopic.

Corollary 11.4.13. ([LM1], cf. Example 11.3.5) For any n ∈ N there
exists a homology 3-sphere M which admits at least n noncontactomorphic,
homotopic, holomorphically fillable contact structures.
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Chapter 12

Solutions

12.1. Solutions of some exercises in Part 1

Solution of Exercise 1.2.10: Fix a basis {α1, . . . , αn} for H2(X;Z)/Tor; we
denote the dual basis in H2(X;Z)/Tor ∼= (H2(X;Z)/Tor)∗ by {b1, . . . , bn}
(i.e., bi(αj) = δij). Taking the Poincaré dual {β1, . . . , βn} of the above dual
basis, we find that QX(αi, βj) = δij . Consequently the matrix representing
QX in the basis {α1, . . . , αn} equals the matrix corresponding to the change
of basis {α1, . . . , αn} �→ {β1, . . . , βn}. This latter matrix is invertible over
Z, proving the unimodularity of QX .

Solution of Exercise 1.2.17(a): Take the basis {x, y − 1
2Q(y, y)x} for

span(x, y); the matrix of Q in this basis is exactly H.

Solution of Exercise 1.2.17(b): Suppose that Q(y, y) = 2k + 1. In the basis
{kx − y, (k + 1)x − y} the bilinear form Q is represented by the matrix
〈1〉 ⊕ 〈−1〉.

Solution of Exercise 1.2.17(c): If {x, y, z} is a basis in which Q is represented
by H ⊕ 〈−1〉, then take {x − z, y − z, x + y − z}; in this new basis, Q is
represented by 2〈−1〉 ⊕ 〈1〉.

Solution of Exercise 1.3.1(a): Observe that CPn can be given as the quotient
of the unit sphere S2n+1 ⊂ Cn+1 − {0} by the action of the circle S1. Now
the formula π1(CP

n) = 1 follows from the homotopy exact sequence of this
S1-fibration; this description also shows the compactness of CPn.
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Solution of Exercise 1.3.1(e): Take H ′ = {[x : y : z] ∈ CP2 | y = 0}. Clearly
H ∩ H ′ = {[0 : 0 : 1]}, and it is a transverse intersection, consequently
QCP2([H], [H ′]) = ±1. In fact, this number is +1, since it is a transverse
intersection of two complex submanifolds. Hence [H] cannot be a multiple
of any other class, so it generates H2(CP

2;Z) ∼= Z. Since H2(CP
2;Z) ∼= Z,

and two generic lines intersect each other in a point with positive sign, we
have that QCP2 = 〈1〉. (Recall that the complex structure gives a canoni-
cal orientation for CP2 in which transverse complex submanifolds intersect
positively.)

Solution of Exercise 1.3.5(a): Applying the Mayer-Vietoris sequence for the
triple (X1#X2, X1 − int D1, X2 − int D2), we see that H2(X1#X2;Z) ∼=
H2(X1;Z) ⊕H2(X2;Z). Since any class in the ith summand is represented
by a closed, oriented surface in Xi− int Di, it is easy to see that the pairings
add as required.

Solution of Exercise 1.3.5(b): The same argument as in Exercise 1.3.5(a)
works here, since if H1(N ;Z) = H2(N ;Z) = 0, then the Mayer-Vietoris
sequence givesH2(X;Z) ∼= H2(X1;Z)⊕H2(X2;Z). The rest of the argument
applies without change.

Solution of Exercise 1.3.12(a): TakeQ ∼= 2kE8⊕lH. By assumption l ≥ |3k|,
hence Q splits as (2kE8 ⊕ |3k|H) ⊕ (l − |3k|)H. If k ≤ 0, then take X =
#|k|S4#(l − |3k|)S2 × S2; if k > 0, then take X = #kS4#(l − 3k)S2 × S2.
(Recall that S4 is the K3-surface and S4 denotes the same 4-manifold with
the opposite orientation.) Now Exercise 1.3.5(a) proves that QX

∼= Q.

Solution of Exercise 1.3.12(b): Since b+2 (X) = 0, Theorem 1.2.30 implies
that QX

∼= n〈−1〉. Using the fact that QX is even, we conclude that n = 0,
hence Theorem 1.2.27 completes the proof.

Solution of Exercise 1.4.11(b): Let Σ′ be a section of the normal bundle νΣ
intersecting the 0-section transversely. The Tubular Neighborhood Theorem
identifies νΣ with a neighborhood of Σ in X, so by the definition of e(νΣ)
we have e(νΣ)[Σ] = QX([Σ], [Σ′]) = [Σ]2.

Solution of Exercise 1.4.16(b): If X is a simply connected, smooth, closed
4-manifold, then (by Theorems 1.2.21 and 1.2.30) QX is isomorphic either
to n〈1〉 ⊕ m〈−1〉 or to 2kE8 ⊕ lH (m,n, l ≥ 0, k ∈ Z). By the Noether
formula (Theorem 1.4.13) we know that if X is almost-complex, then b+2 (X)
(which is equal to n and l respectively) is odd. For the converse, assume first
that the intersection form QX is odd and n is equal to 2p + 1. Choose the
basis {α1, . . . , α2p+1, β1, . . . , βm} ⊂ H2(X;Z) giving QX as n〈1〉 ⊕m〈−1〉.
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The cohomology element h = 3α1 +
∑p

i=1(3α2i + α2i+1) +
∑m

j=1 βj satisfies

h2 = 9 + 9p + p − m = 10p + 9 − m = 5n − m + 4 = 3σ(X) + 2χ(X)
and it is congruent to w2(X) (mod 2); consequently (by Theorem 1.4.15) it
corresponds to an almost-complex structure. If QX = 2kE8 ⊕ lH and l is
odd, then c21(X) = 3σ(X)+2χ(X) = 48k+32|k|+4l+4 is divisible by 8. If
{a, b} is the basis of the first hyperbolic pair H in QX and c21(X) = 8q, then
for h = 2qa+2b we have h2 = 3σ(X)+2χ(X) and h ≡ 0 = w2(X) (mod 2),
i.e., h corresponds to an almost-complex structure on X (again through
Theorem 1.4.15).

Solution of Exercise 1.4.21(c): Suppose that E → X is a U(2)-bundle with
c1(E) = h and c2[E] = χ(X). Note that e[E] = c2[E] = χ(X) = e[TX] and
p1[E] = c21[E]−2c2[E] = h2−2χ(X) = 3σ(X) = p1[TX]; moreover w2(E) ≡
c1(E) = h ≡ w2(TX). Consequently the bundles TX → X and E → X
(regarded as an SO(4)-bundle) are isomorphic by Theorem 1.4.20(b). Since
E is a C2-bundle, this isomorphism yields an almost-complex structure J
on TX with c1(TX, J) = c1(E) = h.

Solution of Exercise 1.4.26(a): It is known that the nontrivial double cov-
ers of X are in 1-1 correspondence with subgroups of π1(X) of index 2.
Note that such a subgroup G is always normal, consequently it is deter-
mined by a (nontrivial) homomorphism ϕG : π1(X)→ Z2. Conversely, each
nontrivial homomorphism ϕ : π1(X) → Z2 determines a subgroup of in-
dex 2 (by taking G = ker ϕ), hence a nontrivial double cover of X. The
map ϕ : π1(X) → Z2 is obviously determined by the map ϕ : H1(X;Z) =
π1(X)/[π1(X), π1(X)] → Z2 defined on the first homology. Note, how-
ever, that nontrivial maps ϕ : H1(X;Z) → Z2 are in 1-1 correspondence
with nonzero elements of H1(X;Z2). Associating the trivial double cover
(X �X → X) to 0 ∈ H1(X;Z2) completes the required correspondence.

Solution of Exercise 2.2.4: The sections y = 1 and x = v̄ over the two re-
spective hemispheres agree at the equator (unit circle); splice these together
with a partition of unity.

Solution of Exercise 2.2.12(b): If d is even, thenQSd
is even (see Section 1.3),

hence there is no homology class of square −1 in H2(Sd;Z); in particular
there is no rational −1-curve in Sd.

Solution of Exercise 2.3.6(c): Repeat the proof of Proposition 2.1.4 to obtain
a manifold Y ′ with intersection form (−E8)⊕〈−1〉. Applying Exercise 1.2.24
and Donaldson’s Theorem 1.2.30 completes the solution.
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Solution of Exercise 2.3.6(d): Blow up the double points of the immersion f .
If there is no positive double point, then the proper transform will represent
the class 3h ∈ H2(CP

2#nCP2;Z) by an embedded sphere. Extending the
solution of Exercise 2.3.6(c) to n blow-ups now gives the required contradic-
tion.

Solution of Exercise 2.4.1: Since K ∈ CX , we have K2 ≡ σ(X) (mod 8).

Hence dimMδ
K(g) = K2−σ(X)

4 − σ(X)+χ(X)
2 ≡ 1 − b1(X) + b+2 (X) (mod 2);

now the solution easily follows.

Solution of Exercise 2.4.12(b): Represent a basis {α1, . . . , αn} by surfaces
Σi ⊂ X. Then the adjunction formula provides bounds for K(αi) in terms
of g(Σi) for a basic class K ∈ CX . If X is not of simple type, however, we
need α2

i ≥ 0 — this can be achieved by an appropriate basis change.

Solution of Exercise 2.4.13: Based on our computations in Section 1.3, it is
easy to see that Q

S4#CP2 = 2(−E8) ⊕ 3H ⊕ 〈−1〉 ∼= 3〈1〉 ⊕ 20〈−1〉. Since

Q
3CP2#20CP2 = 3〈1〉 ⊕ 20〈−1〉 and both 4-manifolds are smooth and simply

connected, Freedman’s Theorem 1.2.27 implies thatX and Y are homeomor-
phic. If we decompose Y as CP2#(#2CP2#20CP2), Theorem 2.4.6(1) shows
that SWY ≡ 0. Since X is the blow-up of the simply connected complex
surface S4, Theorem 2.4.7(1) shows that SWX(±c1(X)) �= 0. (In fact, in this
case SWX(K) = 0 unless K = ±c1(X); moreover, SWX(±c1(X)) = ±1.)
Now Theorem 2.4.3 shows that X and Y are nondiffeomorphic.

Solution of Exercise 2.4.14: For (A,B) ∈ Spinc(4) ⊂ U(2) × U(2), choose

λ such that λ2 = det(A) (= det(B)). Then (λ,A ·
[
λ−1 0
0 λ−1

]
, B ·

[
λ−1 0
0 λ−1

]
)

is a well-defined element of S1 × SU(2) × SU(2)/{±(1, I, I)} (independent
of the choice of λ), and the map (A,B) �→ (λ,A ·

[
λ−1 0
0 λ−1

]
, B ·

[
λ−1 0
0 λ−1

]
)

gives the desired isomorphism.

Solution of Exercise 2.4.17: The double cover G → SO(2) × SO(4) ex-

tends over SO(6) iff π1(G)
ϕ∗−→ π1(SO(2) × SO(4))

ϑ∗−→ π1(SO(6)) ∼= Z2

is exact. (This is because the above composition should be the same as
π1(G) → π1(Spin(6)) → π1(SO(6)), which is the 0 homomorphism; the
index of Im(ϕ∗) in π1(SO(2) × SO(4)) is 2 because it corresponds to a
double cover.) Now if π1(SO(2)) ∼= Z = 〈x〉, π1(SO(4)) ∼= Z2 = 〈a〉 and
π1(SO(6)) ∼= Z2 = 〈b〉, then ϑ∗(lx, ka) = (l+ k)b, and this proves the asser-
tion.
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Solution of Exercise 2.4.21: Recall that by Hodge theory, H2(X;R) can be
identified with the space of g-harmonic 2-formsH2(X) [We]. It is easy to see
that a self-dual (or ASD) closed 2-form is harmonic (recall that d∗ = −∗d∗),
henceH2(X) can be decomposed as the sumH+(X)⊕H−(X), whereH±(X)
is the space of self-dual (resp. ASD) 2-forms. Since for ω, η ∈ H2 we
have QX([ω], [η]) =

∫
X ω ∧ η, and the norm ||ω||2 =

∫
X ω ∧ ∗ω is positive

definite, it is easy to see that QX |H+(X) is positive definite and QX |H−(X)
is negative definite. This observation implies dimH+(X) = b+2 (X) (and
similarly dimH−(X) = b−2 (X)).

Solution of Exercise 2.4.26(b): If (A,ψ) is a solution, then (since /∂Aψ = 0
and FAψ = F+

A ψ = 1
2 |ψ|2ψ)

0 = /∂A(/∂Aψ) = ∇∗
A∇Aψ +

1

4
sψ +

1

4
|ψ|2ψ.

Taking the pointwise inner product with ψ, we get

0 = 〈∇∗
A∇Aψ, ψ〉+

1

4
s|ψ|2 + 1

4
|ψ|4.

Let x0 ∈ X be the global maximum for |ψ|, so 〈∇∗
A∇Aψ(x0), ψ(x0)〉 ≥ 0,

hence |ψ(x0)|4 ≤ −s(x0)|ψ(x0)|2. Now either ψ(x0) = 0 (in which case
ψ ≡ 0) or |ψ(x)|2 ≤ |ψ(x0)|2 ≤ −s(x0) ≤ s(X,g), concluding the solution.

Solution of Exercise 3.1.2: The trivial S2-bundle over S2 has total space
S2 × S2, which is a spin manifold (QS2×S2 = H). On the other hand,

CP2#CP2 has odd intersection form; hence the solution is complete. In
fact, S2 × S2 and CP2#CP2 are the only two S2-bundles over S2; for more
about Hirzebruch surfaces see Section 3.4.

Solution of Exercise 3.1.12(a): The adjunction formula gives c1(E(n))([C]) =
2−n �= 0, and since c1(E(n)) = PD((2−n)f), it implies [f ] · [C] = 1. Since
each fiber is a complex curve, and complex curves intersect each other only
in points of positive sign, C intersects every fiber in a unique point. Conse-
quently C is a section of the fibration. Note that the square of any rational
curve in E(n) is equal to (2 − n)k − 2 for some nonnegative integer k. In
particular, a rational curve in the K3-surface has square −2. Note that
in the above argument it is essential that C is a complex submanifold of
E(n); there are smoothly embedded spheres of square −4 in E(4), for ex-
ample, which are disjoint from the generic fiber. (Tube two disjoint spheres
of square −2 in the complement of the nucleus N(4) ⊂ E(4) together.)

Solution of Exercise 3.1.12(b): Fix a cusp fiber F and a section S in E(n).
We can find a sphere S′ of square −2 in E(n) disjoint from F and S. (Con-
sider, for example, F, S ⊂ N(n) and S′ ⊂ Φ(n).) By tubing S and S′
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together we get a sphere Σ with [Σ]2 = −n − 2. Now the tubular neigh-
borhood of F ∪ Σ provides a copy of N(n + 2) in E(n). When we blow

up S, the proper transform S̃ ⊂ E(n)#CP2 together with F gives rise to

N(n+ 1) ⊂ E(n)#CP2.

Solution of Exercise 3.1.16(a): Suppose that 2n − 1 disjoint copies of N(2)
are embedded in E(n). By the adjunction formula we know that a basic class
evaluates trivially on the homology classes represented by eachN(2) ⊂ E(n).
On the other hand, since b+2 (E(n)) = 2n− 1, the complement of the 2n− 1
copies of N(2) has a negative definite intersection form; hence the condition
K2 = 0 (which is satisfied by all basic classes of E(n)) implies K = 0. This
argument shows that each basic class is equal to 0, which is a contradiction
for n > 2. Since b+2 (E(2)) = 3 and b+2 (N(2)) = 1 (and ∂N(2) is a homology
sphere), E(2) does not contain 4 disjoint copies of N(2).

Solution of Exercise 3.1.16(b): By Corollary 3.1.15 we have that BasE(3) =
{±PD(f)}. If E(3) contains an embedded −1-sphere, i.e., it decomposes as

X#CP2, then — by the blow-up formula 2.4.9 — we get that {±PD(f)} =
{K ± E | K ∈ BasX}. This implies K = 0, hence PD(f) = ±E, leading to
a contradiction (since 0 = PD(f)2 �= E2 = −1).

Solution of Exercise 3.2.10(b): Assume that V (n) is a complete intersec-
tion S(d1, . . . , dn−2). Since V (n) ≈ E(n) and c21(E(n)) = 0, we get that∑n−2

i=1 di = n + 1 (cf. Exercise 1.3.13(b)). Since each di ≥ 2, the inequal-
ity 2(n − 2) ≤ ∑

di = n + 1 follows, hence n ≤ 5. Now the equation∑n−2
i=1 di = n+1 reads as d1 = 4, d1+d2 = 5 and d1+d2+d3 = 6 (for the cases

n = 3, 4, 5 resp.), resulting in complex surfaces with signature −16 (cf. Ex-
ercise 1.3.13(c)). This leads to a contradiction, since σ(V (n)) = −8n �= −16
unless n = 2. In fact, the complex surfaces S(4), S(2, 3) and S(2, 2, 2) (the
only complete intersection surfaces with c21 = 0) are all K3-surfaces.

12.2. Solutions of some exercises in Part 2

Solution of Exercise 4.3.1(a): See Figure 12.1. The attaching disks of the
1-handles are identified by horizontal and vertical reflections in the obvious
way, except for the pair at 0 and ∞, whose boundaries are identified by a
dilation. The disk at ∞ is not drawn.

Solution of Exercise 4.3.1(b): To identify the manifold, cancel a handle pair
to obtain RP3#S1 × S2.
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S1 x S2

I x T 2

I I

 T 3

 R P3

Figure 12.1. Heegaard diagrams.

Solution of Exercise 4.3.1(c): π1(L(5, q)) ∼= Z5; Hk(L(5, q)) ∼= Z5 (k = 1),
Z (k = 0, 3), 0 otherwise; Hk(L(5, q)) ∼= H3−k(L(5, q)) (Poincaré duality).
The diagram generalizes in the obvious way to give manifolds (lens spaces,
cf. Section 5.3) with π1(X) ∼= Zn.

Solution of Exercise 4.4.4: The isotopy is given in Figure 12.2. For a more
abstract description, think of the manifold as being the trivial S2-bundle
over S1, with K the section given by the north pole of each fiber. Let ϕ
be the self-diffeomorphism that rotates the fiber over each θ ∈ S1 by 2θ.
Then ϕ fixes K but puts two twists in any given framing on it. But ϕ can
be interpreted as twice the generator of π1(O(3)). Since (by Remark 4.1.5)
π1(O(3)) ∼= Z2, ϕ is (fiber-preserving) isotopic to the identity, and this iso-
topy removes the twists from the framing on K. As for Philippine dancing,
stand holding a glass of wine in the palm of one hand, and without changing
your grip or moving your feet, rotate the glass through 720◦ about a fixed
axis without spilling the wine.

Solution of Exercise 4.5.9: The coefficient in Figure 4.19 is 6. The 0-framing
is obtained by reversing the handedness of the 3 twists. By redistributing
these as a left half-twist at each over- or undercrossing, one can visualize
the 0-framing as the outward normal to the punctured-torus Seifert surface
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Figure 12.2

consisting of the central triangle and the region containing ∞. The Möbius
band induces the 6-framing.

Solution of Exercise 4.5.12(a): Replace each crossing by a pair of embedded
arcs in R2 as in Figure 12.3(a). Note that orientations are preserved. We
obtain an oriented collection of circles embedded in R2. Each circle is the
oriented boundary of an embedded (suitably oriented) disk in R2. Imagine
these disks disjointly stacked in R3 like pancakes, with the smallest disks
on top. Now recover the original oriented link by attaching half-twisted
bands to the disks (Figure 12.3(b)), and verify that the resulting surface is
oriented. (Note that there are four possibilities for where the disks may lie
in the figure; one of these is immediately ruled out by checking orientations.
Why don’t additional disks cut through the band?)

(a) (b)

Figure 12.3
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Solution of Exercise 4.5.12(b): First, consider H2(X;Z). Since every homo-
logy class is compactly supported, it suffices to work in a compact subman-
ifold of X in the noncompact case. Represent z by a disjoint collection of
suitably oriented core disks D2 × {pt.} of 2-handles. The condition ∂∗z = 0
means that the resulting oriented link in ∂X1 is homologically trivial, i.e.,
the strands running over each 1-handle can be grouped in pairs with oppo-
site orientation (Figure 12.4). If we form an oriented surface F by attaching
bands to the core disks as in the figure, the resulting boundary can clearly
be slid off each 1-handle into ∂D4. If F ′ denotes a Seifert surface for the
resulting oriented link in ∂D4, then F ∪ F ′ is the required surface. In the
case of H2(X;Z2), the same argument works with unoriented links. (Now
the condition ∂∗z = 0 implies that the number of strands in the figure is
even, but we may need to band together strands with parallel orientations
and get a nonorientable F .)

Figure 12.4

Solution of Exercise 4.5.12(c): By the long exact homology sequence, we
see that ker(i∗ : H1(M −K1;Q)→ H1(M ;Q)) is generated by the meridian
μ of K1. The meridian is nontrivial in H1(M −K1;Q), since a nullhomol-
ogy of μ could be combined with the disk D in M bounded by μ to obtain
a class α ∈ H2(M ;Q) satisfying K1 · α = 1, contradicting the hypothesis
that [K1] = 0 ∈ H1(M ;Q). Since [K2] ∈ ker i∗, it is a rational multiple
rμ of μ; set �kQ(K1,K2) = r. Alternatively, let c be a rational 2-chain
with ∂c = K1. (For example, if q[K1] = 0 ∈ H1(M ;Z), there is a surface
F ⊂ M − int νK1 with ∂F = qλ + pμ for some λ on ∂νK1; set c = 1

qF .)

Define �kQ(K1,K2) = c ·K2 = 1
qF ·K2. This is well-defined, since for any

other chain c′ with ∂c′ = K1 we have (c − c′) · K2 = 0 because the first
factor is a cycle and the second vanishes in H1(M ;Q). Since the latter def-
inition only depends on K2 through its class in H1(M − int νK1;Q), and
since it gives �kQ(K1, μ) = 1, it agrees with the former definition. For a
third definition, find rational chains ci in I ×M with ∂ci = {1} ×Ki. We
can assume that these are rational multiples of transverse surfaces, and set
�kQ(K1,K2) = c1 · c2. This is well-defined (even though there is no well-

defined intersection form on H2(X
4, ∂X4) in general) since each ∂ci is fixed:

For a different choice c′1, the cycle c1 − c′1 can be made disjoint from c2 by
pushing the former down to {0}×M . (The pairing on H2(X)×H2(X, ∂X)
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is well-defined.) This last definition is equivalent to the previous one by the
method of Proposition 4.5.11, and it shows that �kQ is symmetric. We can
extend �kQ to formal rational linear combinations of disjoint knots in the
obvious way. A framing on a knot K determines a parallel push-off K ′; for
[K] = 0 ∈ H2(M ;Q) define the framing coefficient to be �kQ(K,K ′) ∈ Q.
The coefficients of framings onK comprise a coset of Z in Q. Now for torsion
classes γ1, γ2 ∈ H1(M ;Z), define �kQ/Z(γ1, γ2) to be the mod 1 reduction of
�kQ(K1,K2) for disjoint oriented knots Ki with [Ki] = γi. If we choose a
different representative K ′

2 of γ2 then there is an integral chain c in M with
∂c = K2 −K ′

2, and �kQ(K1,K2) changes by the integer K1 · c (by the first
definition), so �kQ/Z is a well-defined, symmetric bilinear form. Since the
framing coefficients defined above reduce mod 1 to �kQ/Z([K], [K]), bilinear-

ity implies that they lie in 1
qZ, where q is the order of [K] ∈ H1(M ;Z).

To prove that �kQ/Z is nonsingular when M is closed, let K1 represent a
torsion class with order q > 1 in H1(M ;Z) and consider the exact sequence
(with integer coefficients)

H1(M)
j∗→ H1(M −K1)

δ∗→ H2(M,M −K1)→ H2(M).

NowH2(M,M−K1) ∼= Z, with a generator αmapping to PD[K1] ∈ H2(M).
By exactness, H1(M − K1) = Im j∗ ⊕ 〈β〉 for some class β with δ∗β =
qα. Since H1(M − K1)/torsion is the dual space of H1(M − K1) there
is an oriented knot K2 ⊂ M − K1 with 〈β,K2〉 = 1 and Im j∗ vanishing
on K2. The latter condition implies [K2] ∈ H1(M) is a torsion class, so
[K2] = rμ ∈ H1(M − K1;Q) for μ = [∂D] a meridian of K1, and r =
�kQ(K1,K2). But 1 = 〈β, rμ〉 = r〈δ∗β,D〉 = rq〈α,D〉 = rq, so r = 1

q /∈ Z,

and �kQ/Z([K1], [K2]) �= 0 ∈ Q/Z.

Solution of Exercise 4.5.12(d): Let X1, X2 be the closures of the components
of S4 −M3. The Mayer-Vietoris isomorphism H1(M ;Z) → H1(X1;Z) ⊕
H1(X2;Z) splits the torsion of H1(M ;Z) as G1 ⊕G2, where Gi injects into
H1(Xi;Z) and vanishes in the other Xj . Given γ1, γ2 ∈ G1, we represent γi
by a knot Ki in M . Then Ki bounds a rational chain ci in I ×M ⊂ X1

and an oriented surface Fi in X2. Let zi be the rational cycle ci − Fi in S4.
Since QS4 is trivial, we have 0 = z1 · z2 = c1 · c2 +F1 ·F2. Since F1 ·F2 ∈ Z,
so is c1 · c2, i.e., �kQ/Z(γ1, γ2) = 0. A direct calculation shows that the

nonzero element of H1(RP
3;Z) ∼= Z2 has self-linking 1

2 (= 1
2RP

2 · RP1), so

the required splitting does not exist for RP3.

Solution of Exercise 4.6.1 Cutting S1 and S3 into pairs of disks shows that
S3 × S1 has a handle decomposition with four handles, whose indices are
0,1,3 and 4. For S2×̃S2, see Example 4.6.3.
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Solution of Exercise 4.6.4(a): D(X�Y ) ≈ DX#DY , so D(�mSk ×Dn−k) ≈
#mSk × Sn−k.

Solution of Exercise 4.6.4(b): Given a finite presentation of G, it is easy to
construct an oriented handlebodyX (of any fixed dimension n ≥ 4) with a 1-
handle for each generator and a 2-handle for each relator, so that π1(X) ∼= G.
(What fails when n = 3?) Now DX is the required closed manifold, since
it is obtained from X by adding handles of index ≥ n− 2. For n ≥ 5, these
handles never affect the fundamental group, and when n = 4, the 2-handles
are attached along meridians, which are trivial in π1(X). To draw a Kirby
diagram of such a 4-manifold, start with a 1-handle for each generator, for
each relator draw any framed knot realizing the given word in π1(X1), then
add a 0-framed meridian to each knot, a 3-handle for each generator and a
4-handle.

Solution of Exercise 4.6.6(a): We begin with the boundary, T 2 × S1. A
single torus T 2 × {pt.} ⊂ T 2 × S1 is given by a spanning disk of the circle
in Figure 4.36, together with a pair of 1-handles and a 2-handle lying in the
boundaries of the corresponding 4-dimensional handles. Next visualize an
unknot complement fibered by disks. This picture describes the S1-family
of 0-handles of tori in Figure 4.36. These 0-handles intersect each sphere
in Figure 4.36 (bounding an attaching ball of a 1-handle) in an S1-family
of arcs, which give the attaching regions of an S1-family of 1-handles. We
obtain an S1-family of punctured tori, whose boundaries fiber the boundary
of the attaching region of the 2-handle. The remainder of the 3-manifold is a
solid torus D2×S1 in the boundary of the 2-handle, and the disks D2×{pt.}
are the 2-handles of the S1-family of tori. We can see all of T 2 ×D2 by the
same technique, first visualizing the 0-handle as D2 ×D2, where the disks
fibering the interior intersect the boundary of the 0-handle in a D2-family
of circles forming a tubular neighborhood of the circle in Figure 4.36(a).
The 4-dimensional 1-handles comprise two D2-families of 2-dimensional 1-
handles whose attaching regions are D2-families of arcs filling the attaching
balls, and the 4-dimensional 2-handle is a D2-family of 2-dimensional 2-
handles whose attaching regions fiber the attaching region S1 × D2 of the
4-dimensional 2-handle.

Solution of Exercise 4.6.6(b): A D2-bundle X → F with F a genus-3 surface
and a plumbing of two D2-bundles X1, X2 → T 2 are given in Figures 12.5
and 12.6, respectively; see Section 6.1 for further discussion. Since S2-
bundles over surfaces are doubles of D2-bundles, we draw them by adding
a 0-framed meridian to the attaching circle in a picture of the appropriate
D2-bundle (along with 3- and 4-handles).
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 e(X)  

Figure 12.5. D2-bundle X over a genus-3 surface.

 e(X1)  

 e(X2)  

Figure 12.6. Plumbing of two D2-bundles X1, X2 over T 2.

Solution of Exercise 4.6.9(d): RP3 − int D3 is a D1-bundle over RP2, so its
product with I is a D2-bundle over RP2. The Euler number is 0 since the
0-section can be pushed off itself in the I-direction.

Solution of Exercise 5.1.2(b): Figure 12.7 shows part of a Kirby diagram of
a handle slide followed by the reverse slide. The resulting diagram is clearly
isotopic to the original one. If we orient K1 and K2 so that the first slide is
a handle addition, the resulting framing will be n1 + n2 + 2�k(K1,K2) and
the new linking number will be �k(K1,K2) + n2. Plugging these values into
the handle subtraction formula, we recover n1 as the final coefficient of K1,
as required.

Solution of Exercise 5.1.2(c): The discussion of handle slides generalizes
to the setting of many strands isotoping across parallel disks D2 × {p} ⊂
∂(Y ∪h2). We band-sum each strand with a parallel copy of K2 determined
by the framing. (These parallel copies lie disjointly on the boundary of a
tubular neighborhood of K2.) For each Ki that moves during the isotopy,
the new framing coefficient will be given by (αi + kiα2)

2 = ni + k2i n2 +
2ki · �k(Ki,K2), where ki is the signed number of strands of Ki being slid.
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K2K1

Figure 12.7. Reversing a handle slide.

(The linking matrix transforms as in Example 5.1.3(a), but with k times the
corresponding row and column being added.) Note that the framing does
not change if ki = 0.

Solution of Exercise 5.1.7(b): A generic homotopy of a knot in a 3-manifold is
an isotopy except at finitely many times when the knot crosses through itself,
so the method of Proposition 5.1.4 still applies when K1 is nullhomotopic in
∂X1. For a counterexample with K1 nullhomologous, consider the double
D(T 2 ×D2) (cf. Figure 4.36, n = 0).

Solution of Exercise 5.1.10(a): The slide in Figure 12.8 followed by a 2-3

cancellation exhibits Figure 5.16 as CP2.

U  3-handle

4-handle

0

Figure 12.8

Solution of Exercise 5.1.10(b): For each 1-handle hi of X, i = 1, . . . , �, there
is a knot Ki in ∂X intersecting its belt sphere once (transversely), so that
a 2-handle attached along Ki with any framing would cancel hi. Since X
is simply connected, there is a homotopy Fi : I × S1 → X from Ki to a
small unknotted circle K0 in ∂X. By general position, Fi can be assumed
to miss the wedge of circles in X determined by the cores of the 0- and
1-handles of X, so after a homotopy rel 0, 1, we can assume Fi maps I × S1

into ∂X1 ∪ 2-handles. Similarly, Fi(I × S1) can be assumed to intersect
the cores of the 2-handles in finitely many points, so we can assume that
Fi(I × S1) lies in ∂X except for finitely many disks which are cocore disks
of 2-handles. Thus we can assume Fi appears in a Kirby diagram of X as a
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sequence of isotopies of Ki in ∂X (including slides over 2-handles), together
with moves where Ki crosses through itself (cf. solution of Exercise 5.1.7(b))
and through attaching circles of 2-handles (the latter moves corresponding
to cocore disks contained in Fi(I × S1)). Now add 0-framed meridians and
3- and 4-handles to the diagram to obtain DX, and add � 0-framed Hopf
links to realize DX#�S2 × S2. For each i, let K ′

i denote one component
of the ith Hopf link. Then each Fi determines a sequence of Kirby moves
sending the corresponding K ′

i to Ki, since we can realize crossings of Ki

through itself and other attaching circles as in Figure 5.11, using the 0-
framed meridian to K ′

i. Now we can cancel each 1-handle, leaving behind a
0-framed unknot (the meridian to Ki). Each of the m 2-handles of X still
has a 0-framed meridian, and with the 1-handles eliminated, these split off
as S2 × S2 or CP2#CP2-summands (Proposition 5.1.4). We are left with a
0-framed unlink of � components; this cancels the 3-handles. (For a different
perspective on this construction, see Exercise 5.2.2(c).)

Solution of Exercise 5.1.10(c): Given a finite group presentation with �
generators and m relators, Exercise 4.6.4(b) realizes the group as π1(DX)
for a suitable handlebody X with � 1-handles and m 2-handles. By Ex-
ercise 5.1.10(b) (above), π1(DX) is trivial if and only if DX#�S2 × S2 is

diffeomorphic to #mS2 × S2 or #mCP2#mCP2. Thus, the hypothesized
algorithm for 4-manifolds would give an algorithm for determining the triv-
iality of a group given by a finite presentation.

Solution of Exercise 5.1.10(d): Let X be a handlebody realizing the presen-
tation P , and suppose there is a sequence of Andrews-Curtis moves changing
P to the empty presentation. Since D(D4) = S4, it suffices to realize these
AC-moves by handle moves of DX, preserving its structure as the double of
a handlebody realizing the corresponding presentation. The first few moves
leave the handlebody unchanged — inversion and permutation correspond
to changing the orientation and indexing of handles, and conjugating a rela-
tor corresponds to making a different choice of arc connecting an attaching
circle to the base point. Multiplying a generator (relator) by another cor-
responds to a 1- (2-) handle slide in X. (In DX, the sliding 2-handle has
a 0-framed meridian that allows us to unlink it from the meridian of the
other 2-handle.) Adding a generator/relator pair corresponds to introduc-
ing a cancelling 1-handle/2-handle pair in X (and a corresponding 2-3 pair
in DX). It remains to consider the effect of deleting a generator from P ,
together with a relator equal to it. Since the relator equals the generator,
the corresponding attaching circle is homotopic in ∂X1 to a curve cancelling
the 1-handle. The 0-framed meridian allows us to follow the homotopy by
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Kirby moves, so that we can cancel the 1-2 pair as required. The 0-framed
meridian can then be separated from the other curves (since they have their
own 0-framed meridians), and it cancels a 3-handle, restoring the handle-
body to its form DX. Note that this last Andrews-Curtis move may change
X — in fact, ∂X need not be simply connected in general.

(c)

(a) (b)

22222211

2

221

1

5

5

2

2

2

2

1

6

2

(h)

(d)

(e)

(f)
(g)

6

2

7

7

0

2
0

2

Figure 12.9. Blowing down (−E8-plumbing)#CP2.

Solution of Exercise 5.1.12(a): Figure 12.9 gives one possible answer. After

blowing up CP2 (a), blow down 4 CP2’s (b), (c), and then another (d).
Redraw the twist so that one −1 does not run through it (e) and then
blow down the −1 (f). Redraw the twist (g). The −2-framed curve has a
0-framed meridian; to split off the S2 × S2 summand we first unlink the 7-
framed circle from this meridian by sliding both strands over the −2-framed
curve, obtaining a left trefoil (h). (For an alternate solution, separate out
the other −1 in (d) and blow it down instead.) The same computation works
when the long arm of the plumbing has n+ 4 components with framing −2
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1

1

Figure 12.10

(n ≥ −4); we obtain an (n−1)-framed left trefoil and n+7 summands CP2.

Solution of Exercise 5.1.12(b): For the special case, blow down the 1-
framed unknot in Figure 5.23, then blow it back up around all strands
(Figure 12.10); this is equivalent to the handle slide. Note that the framing
on the sliding curve gains a twist as required. Alternatively, the framing
coefficient increases by (k + 1)2 − k2 = 2k + 1 as required, where k is the
linking number of the two relevant handles in Figure 5.23 (oriented to cor-
respond to handle addition). Now to slide over an arbitrary knot K, first
unknot K by changing crossings as in Figure 5.19, then change its framing
to 1 by blowing up meridians. Now perform the slide using the special case,
then blow down the circles we just blew up. It is routine to verify that the
result is equivalent to the required handle slide over K.

Solution of Exercise 5.2.2(b): For surjectivity, note that any loop in M can
be smoothed and then homotoped off of N by transversality. To understand
ker i∗, let γ be a loop in M−N that is nullhomotopic in M . We may assume
that γ and the nullhomotopy are smooth. By transversality, we may assume
the nullhomotopy F : I×S1 →M has image in M −N if k ≤ n−3, proving
i∗ is injective. For k = n − 2, we may assume that ImF intersects N in
finitely many points, near which F appears as an embedding of normal disks
to N . By precomposing F with a suitable homotopy of id1×S1 (as indicated
by the downward arrows in Figure 12.11), we homotope γ to a product of
meridians.

Solution of Exercise 5.2.2(c): Given a presentation P of G with � gen-
erators and m relators, perform � surgeries on 0-spheres in Sn to obtain
#�S1 × Sn−1, whose fundamental group is free on a canonical set of � gen-
erators (determined by the surgery). Now perform m surgeries on circles,
one corresponding to each relator of P . By the previous exercise, removing
the circles does not change π1. When we glue in the m simply connected
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M
F 1(N) F

constant map

I x S 1

Figure 12.11

manifolds D2 × Sn−2, the resulting manifold M has π1(M) ∼= G as re-
quired. Now let X = Dn ∪ 1-handles ∪ 2-handles be given by P , so that
DX is the manifold with π1(DX) ∼= G constructed in Exercise 4.6.4(b).
Then I × X = Dn+1 ∪ 1-handles ∪ 2-handles is the corresponding handle-
body with one higher dimension. By the definition of surgery, we have
M = ∂(I × X) = DX, so our new construction is equivalent to the old
one. Our previous solutions to Exercises 5.1.10(b)–(d) become simpler (and
generalize to higher dimensions) when we think of DX as the boundary of
the handlebody I × X. For (b), note that summing DX with S2 × S2 is
the same as adding a trivial 2-handle to I ×X, which immediately cancels
a 1-handle (cf. Proposition 5.2.3). After we cancel the 1-handles, the re-
maining 2-handlebody immediately splits as required. The nontrivial moves
in Exercise 5.1.10(d) correspond to sliding and cancelling handles of I ×X,
and the cancellation is easy because the attaching circles cannot be knot-
ted or linked in high dimensions. We conclude that under these hypotheses
I ×Xn ≈ Dn+1.

Solution of Exercise 5.2.6(b): We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Let M̃
denote the universal cover of M . Then the universal covers of the manifolds
in (i) are obtained from M̃ by summing with a (possibly infinite) collection
of copies of S2 × Sn−2 and S2 ×̃Sn−2, respectively. Condition (i) implies
that these covers are diffeomorphic. Since S2×Sn−2 is spin and S2 ×̃Sn−2 is

not, it follows that M̃ cannot be spin, condition (ii). To see that (ii) implies

(iii), assume that M̃ is nonspin. Since M̃ is simply connected, the proof of

Proposition 5.2.4 shows that w2(M̃) is nonzero on some immersed 2-sphere

in M̃ , or equivalently, this sphere has a twisted normal bundle (with odd
Euler number if n = 4). Since the normal bundle is preserved when we push
down into M , we conclude (iii) as required. The proof of Proposition 5.2.4
shows that (iii) implies (i).
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Solution of Exercise 5.2.7(b): Surger out S, then slide an arc of the result-
ing circle over a sphere with odd normal Euler number as in the proof of
Proposition 5.2.4.

Solution of Exercise 5.3.3(c): It is easy to compute that H1(L(p, q);Z) ∼= Zp,
generated by a meridian μ. To compute the linking form, note that the class
α = pμ − qλ is homologous to pμ in the unknot complement and bounds a
disk in the complementary solid torus in L(p, q). These two integer 2-chains
fit together to give a chain c in L(p, q) with ∂(1pc) = μ over Q. By counting

intersections, we see that 1
pc ·μ = q

p (cf. Exercise 5.3.13(g)). Thus, any class

nμ ∈ H1(L(p, q);Z) has square n2q
p ∈ Q/Z under the linking form. If this

square vanishes, then n2 is divisible by p. In particular, n is a multiple of
any preassigned prime factor p0 of p. Since multiples of p0μ do not generate
H1(L(p, q);Z), there can be no splitting as required by Exercise 4.5.12(d) if
L(p, q) embeds in S4.

Solution of Exercise 5.3.3(d): The obvious sphere formed by one surgery is
punctured twice during the remaining surgeries, but the punctures can be
joined to form a torus, Figure 12.12(a). To see the S1-family of tori, first
imagine the S1-family of spheres in 0-surgery on the unknot. (Push the disk
out from the page, through∞ and around the back to its original position.)
Now consider the two additional surgeries and the tube. As the tube begins
to thicken, we can think of it as a tube (b) around the other component, on
the opposite side of the disk. (This reverses the roles of the meridian and
longitude of the tube.) We push this tube across the surgery (c). The disk
passes through ∞ (d), and then we again think of the tube as surrounding
the opposite link component (e) as we did in passing from (a) to (b). As
the disk approaches its original position, we push the tube across the other
surgery to return to (a).

The 3-fold symmetry of the Borromean rings (120◦ rotation) corresponds
to cyclic permutation of the coordinates of T 3 = S1 × S1 × S1. Thus, the
additional tori asked for in the exercise are the images of Figure 12.12(a)
under the symmetry. Visualize the resulting intersections yourself and verify
that they are as required.

Solution of Exercise 5.3.7(a): For k = 0, the two required knots can be
obtained by blowing down one or the other of the unknots in Figure 5.26.
(Of course, ±1-surgery on the unknot also works.) For general k, replace
Figure 5.26 by any link of two unknots with linking number k.

Solution of Exercise 5.3.7(b): First, we eliminate the 1- and 3-handles of X
by surgery as in the proof of Corollary 5.3.5. By Propositions 5.2.3 and 5.2.4,
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(e)

Figure 12.12. Fibering the 3-torus by 2-tori.

this changes X by connected summing with copies of CP2 and CP2 (after we
sum X with CP2 if necessary to make the intersection form odd). Now we
have a 4-manifold obtained by adding a 4-handle to a 2-handlebody Y , so Y
is given by a framed link L in S3 and ∂Y ≈ S3. By Theorem 5.3.6, we can
transform L into the empty link by blowing up and down. (Alternatively,
we can surger just the 1-handles, apply the theorem to ∂Y2 ≈ #kS1 × S2,
then cancel the 3-handles with the resulting 0-framed unlink.)

                

                                                                                                               



474 12. Solutions

Solution of Exercise 5.3.8(a): To blow down a ±1-framed unknot, perform
a Rolfsen twist on it with n = ∓1, so that its coefficient becomes ∞ and we
can erase it. Blowing up is the reverse procedure. Figure 5.29 gives special
cases of this.

Solution of Exercise 5.3.8(b): Perform a −n-fold Rolfsen twist on the unknot
in Figure 5.24 to obtain L(p, q + np).

Solution of Exercise 5.3.9(a): Slam-dunking a 0-framed meridian of an
integer-framed knot changes the knot’s surgery coefficient to ∞ so that we
may erase it. Applying this procedure to the diagram ofDX, we see that the
required 3-manifold is diffeomorphic to the boundary of X1. For the given
Hopf link, if we slam-dunk the n-framed component, we obtain − 1

n -surgery
on the unknot, which can be erased after an n-fold Rolfsen twist.

Solution of Exercise 5.3.9(b): Slam-dunking from left to right gives an un-
knot with coefficient

r = an −
1

an−1 − 1
an−2···− 1

a1

;

slam-dunking from the right reverses the order of the subscripts. Any ra-
tional number r has such continued fraction expansions. These can be con-
structed by repeatedly rounding (up or down) to an integer and taking the
negative reciprocal of the remainder. The procedure must terminate (when
the remainder is 0) since the numerator and denominator of the fraction
decrease in absolute value at each step. It follows that any lens space can be
expressed as the boundary of a plumbing on a linear graph. More generally,
we can replace any rational surgery by integral surgeries as in Figure 12.13.

a1 a2 a3

anr

. . . .

Figure 12.13. Changing rational surgery to integral surgery.

Solution of Exercise 5.3.9(c): In Figure 5.32, a (1 − n)-fold Rolfsen twist
about K1 changes the coefficient on K2 from n to 1. After we blow down
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n 

1  n 

r
1

r
1

1

K1

Figure 12.14

as in Exercise 5.3.8(a), K1 encircles the twist as in Figure 12.14, and a
+1-Rolfsen twist on it gives the same result as a slam-dunk in the original
picture. Check that the coefficient onK1 changes from r to n− 1

r as required.
For the general case, we unknot K2 by blowing up as in Figure 5.19, apply
the previous construction and blow the extra unknots back down to recover
K2.

Solution of Exercise 5.3.13(e): Let A be a matrix representingQ. It is easy to
construct a framed link with linking matrix A; the corresponding 4-manifold
X has intersection form Q (Proposition 4.5.11). By Corollary 5.3.12, ∂X
is a homology sphere, so Freedman’s result gives a contractible topological
manifold Δ with ∂Δ = ∂X, and X ∪∂X Δ is the required closed 4-manifold.
If ∂X bounds a smooth, contractible manifold, the same argument realizes Q
by a smooth, closed, simply connected 4-manifold. Thus, we can guarantee
that ∂X bounds no smooth, contractible manifold by choosing Q to be
unrealizable by a smooth, closed 4-manifold (Theorems 1.2.29-1.2.31). The
simplest example is the Poincaré homology sphere, Exercise 5.1.12(a).

Solution of Exercise 5.3.13(f): H2(X,M ;Z) ∼= H2(X;Z) has the same tor-
sion as H1(X;Z) (by the Universal Coefficient Theorem); this vanishes by
hypothesis. Similarly, H2(X;Z) ∼= H2(X,M ;Z) has the same (vanishing)
torsion as H1(X,M ;Z). Now the long exact homology sequence of (X,M)
gives

H2(X;Z)
ϕ−→ H2(X,M ;Z)

∂∗−→ H1(M ;Z) −→ 0,

where the first two terms are torsion-free, so ϕ presents H1(M,Z). As in
the solution of Exercise 1.2.10, let {α1, . . . , αm} be any basis for H2(X;Z)
and let {β1, . . . , βm} in H2(X,M ;Z) be the Poincaré dual of the corre-
sponding dual basis, so αi · βj = δij. Let A = [aij ] be the presentation
matrix given by ϕ in these bases, so ϕ(αi) =

∑
aijβj . Then αi · αk =

ϕ(αi) · αk =
∑

aijβj · αk = aik, so A is also the intersection matrix of X
with respect to {α1, . . . , αm}. When X is a 2-handlebody and {αi} is the
obvious basis, then {βi} is represented by the cocores of the 2-handles, so
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the corresponding generators of H1(M ;Z) are the meridians μi = ∂∗βi. The
relators ϕ(αi) will correspond precisely to those we constructed when prov-
ing Proposition 5.3.11. (See this geometrically by isotoping the canonical
surface representing αi into M except on some copies of cocore disks.) Thus,
we recover our previous proof in the case of integral surgery.

Solution of Exercise 5.3.13(g): For the given (X,M) with H1(X;Z) = 0,
use the notation of the previous solution and let {F1, . . . , Fm} be disjoint
oriented surfaces (with boundary) with Fi representing βi ∈ H2(X,M ;Z).
(Disjointness is easily obtained by pushing intersections into ∂X = M .)
Let F ′

i be parallel to Fi. Now the rational matrix B = [bij] given by
bij = �kQ(∂Fi, ∂F

′
j) reduces mod 1 to a matrix for the linking form of M

with respect to the spanning set {∂∗β1, . . . , ∂∗βm} of H1(M ;Z). By the
exact homology sequence of (X,M), each basis element αi ∈ H2(X;Z) is
represented by a cycle of the form

∑
aijFj + ci, with aij as in the previ-

ous solution and ci an integral chain in M with ∂ci = −∑
aij∂Fj . Now

δik = αi · βk = ci · F ′
k (since Fj ∩ F ′

k = ∅), and the latter equals ci · ∂F ′
k

in M . Thus δik = �kQ(∂ci, ∂F
′
k) = −

∑
aij�kQ(∂Fj, ∂F

′
k) = −

∑
aijbjk, and

so B = −A−1 as required. When X is a 2-handlebody, we can take the
surfaces Fi, F

′
i to be core disks, so the generating circles ∂Fi are meridians

μi, and the pushoffs μ′
i = ∂F ′

i are given by the 0-framing on μi. The chains
ci correspond to the relators of Proposition 5.3.11. (See the previous so-
lution.) In this form, the proof generalizes to Dehn surgeries: The chain
ci is obtained by puncturing a Seifert surface (with oriented boundary Ki)
and gluing it to 1

qi
D in M , where D is the disk {pt.} × D2 ⊂ S1 × D2 of

the solid torus attached to ∂νKi. Thus, ci · μ′
k = δik by construction, and

∂ci = −pi
qi
μi −

∑
j 
=i �k(Ki,Kj)μj = −

∑
aijμj . (Check the signs!) The pre-

vious final computation now applies without further change.

Solution of Exercise 5.4.1: In the first two pictures, we have an S1-family
of disks fibering the unknot complement. (The one through ∞ appears as a
plane minus a disk.) These disks connect with the S1-family of disks fibering
the solid torus attached during the surgery, to form an S1-family of spheres.
In the remaining picture, the complement of the balls is I×S2, fibered by an
I-family of spheres including the two boundary spheres and one through ∞
(appearing as a plane separating the balls). We get the S1-family of spheres
by identifying the boundary components of I × S2. The families of spheres
in the three pictures all look the same outside of a ball containing the circle
or attaching balls. To understand the correspondence inside the ball, see
the next solution.
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Figure 12.15

Figure 12.16. Heegaard torus in S1 × S2.

Solution of Exercise 5.4.2(a): The curve and surface transform as in Fig-
ure 12.15. This figure should clarify the correspondence between families of
spheres in the previous exercise. The spheres visible in ball notation appear
as disks in dotted circle notation; their remaining hemispheres have disap-
peared under the 1-handle into the surgery solid torus.

Solution of Exercise 5.4.2(b): See Figure 12.16. The Heegaard splitting in
the left picture is the same as the decomposition into solid tori induced
by the 0-surgery, or equivalently, by doubling the unknot complement. In
the right picture, the outer region becomes a solid torus when we glue the
two spheres together, and this is identified in the obvious way with the
unknot complement. The inner region also becomes a solid torus, and this
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disappears into D4 in the other picture, becoming the complementary solid
torus produced by the surgery.

Solution of Exercise 5.4.3(b): If we draw the slide as in Figure 5.36, then
it preserves the blackboard framing. The corresponding framing coefficient
is given by w(K), which changes by 2�k(K,K0) as required, since each
crossing in the figure changes sign and the signed number of such crossings is
�k(K,K0). The coefficient of any framing must change by the same number
as that of the blackboard framing.

Solution of Exercise 5.4.3(d): See Figure 12.17. The Gluck twist is per-
formed by first surgering S, then changing the framing on the resulting
framed circle and surgering it. The first step is realized by changing the
0-framed unknot to a dotted circle. The framing change corresponds to
adding a ±1-twist (as if we had blown down a ∓1-framed unknot parallel
to the dotted circle). The final surgery changes the dotted circle back to a
0-framed unknot. Note that we can actually use any odd number of twists
here, since we can change the diagram by any even number of twists by
sliding all strands over the 0-framed unknot (cf. Example 5.1.3 and Exer-
cise 4.4.4). We can also divide the twists as in Figure 5.42.

1

00

Figure 12.17. Gluck twist.

n n

Figure 12.18
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Solution of Exercise 5.4.4: For the bundle with Euler number e over F ,
H1(M) ∼= Z2g ⊕ Ze for F = #gT 2, and for F = #gRP2 (g > 0) we have
H1(M) ∼= Zg−1 ⊕ Z2 ⊕ Z2 (e even) or Zg−1 ⊕ Z4 (e odd).

Solution of Exercise 5.4.5(a): The manifold is S4. (Cancel the 1-handle with
the 2-framed circle by first sliding the other pair of strands off the 1-handle.
The remaining 0-framed unknot cancels the 3-handle.)

Solution of Exercise 5.4.5(b): One solution is given by Figure 12.18. The
slide of dotted circles corresponds to the 1-handle slide in the 2-dimensional
case, Figure 5.1.

Solution of Exercise 5.5.2: See Figure 12.19, and recall that there is a unique
way to glue in D4 along an S3 boundary component.

11 1
1<      >

1

1<      >

Figure 12.19

Solution of Exercise 5.5.6: Figure 12.20 shows (X, ∂+X ).

Solution of Exercise 5.5.7(a): See Figure 12.21. For RP2, there are two
solutions, differing by a reflection, corresponding to the cases e(X) = ±2.
The case e(X) = −2 is drawn. Note that the complement of the e(X) = ±2
bundle is the e(X) = ∓2 bundle; cf. Exercise 6.2.4(c). (These are the only
possible Euler numbers of embeddings RP2 ↪→ S4.)
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U  3-handle
4-handle

1

0<      >

Figure 12.20

U  3-handle

U

4-handle

X

0

00

0

0 0

U  3-handle
4-handle

U  3-handle
4-handle

<      >0

<      >0 <      >0

<      >0<      >0

00

0

S 4 T 2

S 4

S 4T 2

I I R P2

Figure 12.21
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0
0 <      >0

<      >n nn <      >n

Figure 12.22

00

h2h1

<      >

m'

n<      ><       > <          >n

m n n

h2h1

h2

m'm

0

h1

0 0

<      >n<          >m'

0

Figure 12.23. Dual handle slide.

Solution of Exercise 5.5.7(b): The main point is that a pair of consecutive
applications of the dualization algorithm transforms each 2-handle as in
Figure 12.22. After a handle slide and a slam-dunk, we recover the original
picture.

Solution of Exercise 5.5.7(c): The dual slide restores the dual 2-handles to
their original form as 0-framed meridians. Figure 12.23 shows that h∗2 slides
over h∗1 and that addition corresponds to subtraction. One can also see this
algebraically. If (for example) X is closed and without 1- or 3-handles, then
{hi} and {h∗i } determine bases for H2(X;Z) that are dual with respect to
the intersection form, hi · h∗j = δij . A simple computation now shows that
changing basis by adding h2 to h1 corresponds to subtracting h∗1 from h∗2.
(The choice of signs of the meridians in the figure does not matter, as long
as we are consistent. Here we have fixed the signs in ∂+X before dualizing,
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recalling that the orientation on an attaching circle is determined by a Seifert
surface, or minus the core disk.)

Solution of Exercise 5.5.9(a): The manifolds are S1 × S3, S1 × S3#S2 × S2

and S2 × S2, respectively; see Figure 12.24.

Solution of Exercise 5.5.9(b): Reversing the computation in Figure 12.9, we
see that a 0-framed meridian of the knot in (h) pulls back to a 0-framed
meridian of the 7-framed curve in (g), the 5-framed curve (b) and the +1-
framed curve (a). Blowing down the +1, we recover the E8-plumbing with
an extra −1-framed meridian, Figure 12.25, which realizes P ∪∂ Q. Blowing
down reduces this to CP2#8CP2.

Solution of Exercise 5.6.2(a): Repeat the previous construction using trivial-
izations τ of E|X1 whose restrictions to Y1 determine the given spin structure
s on E|Y . Then each cochain c(τ) vanishes on Y , so it can be interpreted
as a relative cochain in C2(X,Y ;Z2). Given two such trivializations τ and
τ ′, we can assume they are equal over X0 ∪ Y , and obtain a difference
cochain d(τ, τ ′) ∈ C1(X,Y ;Z2). As before, we obtain a well-defined class
w2(E, s) = [c(τ)] ∈ H2(X,Y ;Z2).

Solution of Exercise 5.6.4(a): H1(X,Y ;Z2) acts freely and transitively on
the set of spin structures on E extending s on E|Y , provided that the set
is nonempty (w2(E, s) = 0). This follows as in the absolute case Y = ∅,
using the relative difference cocycles d(τ, τ ′) ∈ C1(X,Y ;Z2) defined in the
previous solution. These are defined up to arbitrary relative coboundaries,
since τ and τ ′ determine the same spin structure on E|Y .

Solution of Exercise 5.6.4(b): Choose a handle decomposition of I × X
determined by some decomposition of X and the decomposition of I as
two 0-handles ∪ 1-handle. Let τ, τ ′ be trivializations of E|X1 determining
s, s′, respectively. Assume τ and τ ′ are equal over X0. Then there is an
induced trivialization τ∗ of E∗|(I × X)1 that is constant on each 1-handle
coming from a 0-handle of X and agrees with τ and τ ′ on {0} × X and
{1}×X, respectively. The cocycle c(τ∗) ∈ C2(I×X, ∂I×X;Z2) represents
w2(E

∗, s∗), and it is nonzero precisely on those 2-handles that come from
1-handles of X on which τ and τ ′ disagree, i.e., on which d(τ, τ ′) �= 0. That
is, w2(E

∗, s∗) = [c(τ∗)] = [I × d(τ, τ ′)] = [I]×Δ(s, s′). Intuitively, s and s′

differ by a twist along the Poincaré dual of Δ(s, s′), and w2(E
∗, s∗) measures

that same twist.

Solution of Exercise 5.6.4(d): H1(X;Z) acts freely and transitively on the
set C(E) of complex trivializations of E|X2, provided that it is nonempty

                

                                                                                                               



12.2. Solutions of some exercises in Part 2 483
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Figure 12.24
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U  4-handle

22222221

2

Figure 12.25

(c1(E) = 0). Such a trivialization clearly determines a spin structure,
and the group actions on C(E) and S(E) correspond under the coefficient
homomorphism H1(X;Z) → H1(X;Z2) (since π1(U(m)) ∼= Z maps onto
π1(O(2m)) ∼= Z2 (m ≥ 2) under the map induced by the inclusion U(m)→
O(2m)). Equivalently, choosing a base point τ ∈ C(E) identifies it with
H1(X;Z), so that the map C(E)→ S(E) corresponds to the coefficient ho-
momorphism (where we identify S(E) with H1(X;Z2) using the spin struc-
ture induced by τ). Analogous statements hold in the relative case, using
H1(X,Y ;Z) and H1(X,Y ;Z2).

Solution of Exercise 5.6.8(a): Map S1 ×Dn to itself by (θ, x) �→ (θ, rθ(x)),
where rθ is rotation through the angle θ in the first two coordinates of Dn. It
is easy to see that this diffeomorphism is trivial in homology (both absolute
and rel ∂), but it cannot be isotopic to the identity since it interchanges the
two spin structures of S1 ×Dn.

Solution of Exercise 5.6.8(b): The manifold S2×Sn admits a spin structure
since each factor does. (For example, Sn × R ⊂ Rn+1 has a trivial tangent
bundle.) However, the twisted bundle over S2 contains the twisted disk
bundle S2 ×̃Dn made from the gluing map of the previous solution. By
definition, w2(S

2 ×̃Dn) �= 0, so S2 ×̃Dn and S2 ×̃Sn do not admit spin
structures (and w2(S

2 ×̃Sn) has nonzero value on sections S2 × {p}, p a
fixed point of rθ).

Solution of Exercise 5.7.3: Represent x by a closed surface with tubular
neighborhood N ⊂ X. Then 〈w2(X), x〉 and x2 equal the corresponding
quantities in N . Describe N by a handlebody as in Example 4.6.5. Add 2-
handles to cancel the 1-handles; the above quantities are still preserved. We
are left with D4 ∪ 2-handle, and Corollary 5.7.2 shows that both quantities
equal the framing coefficient mod 2.

Solution of Exercise 5.7.7(a): H2(X;Z) ∼= Z2, soQX is trivial. (For example,
H1(X;Z2) ∼= Z2, and in the notation of the proof of Proposition 5.7.4 we
have T2

∼= T 3 ∼= T1
∼= Z2. However, the equations χ(X) = 2 and b1 = b3 = 0
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imply b2 = 0.) The nonzero element α ∈ H2(X;Z) is represented by the 0-
framed 2-handle (which generates ker ∂∗), which shows directly that α2 = 0.
Over Z2, the boundary operators vanish and the intersection form is given
by [ 0 1

1 n ] . By Corollary 5.7.2 or the Wu formula, w2(X) vanishes on α and has
value n (mod 2) on the Z2-homology class β of the n-framed 2-handle. Thus,
for n = 0 we have w2(X) = 0, and for n = 1, w2(X) is Poincaré dual to α
(reduced mod 2). In the latter case, the obvious sphere representing α is the
required closed surface. (Also note that this is the only nontrivial Z2-class
with an integer lift — in particular, β is not represented by an orientable
surface.) Although w2 lifts to the class α ∈ H2(X;Z) that is not divisible
by 2, this does not contradict the fact that QX is even, since α is a torsion
class and represents 0 ∈ H2(X;Z)/T2. The attaching sphere of the 3-handle
is obtained from the disk spanning the dotted circle by repairing the two
punctures using core disks of the 0-framed 2-handle as in Figure 12.26. This
shows explicitly that 2α = 0.

n

0

Figure 12.26. 3-handle attaching sphere in an S2-bundle over RP2.

Solution of Exercise 5.7.7(b): Blowing up a point on S (with either orienta-
tion) preserves σ(X)− [S]2, and the Wu formula (or Corollary 5.7.2) shows
that S remains dual to w2(X). Thus, we can assume [S]2 = 1. Blowing
down S gives a manifold Y with signature σ(Y ) = σ(X)− 1 = σ(X)− [S]2.
Since S is dual to w2(X), its complement admits a spin structure, and so
must Y . Thus, Rohlin’s Theorem implies that σ(Y ) is divisible by 16.

Solution of Exercise 5.7.9: By Exercise 5.7.7(a), only one of the two S2-
bundles X over RP2 admits spin structures, namely Figure 5.46 with n = 0.
Since H1(X;Z2) ∼= Z2, there are two spin structures. The cocycle c is
identically 0, and both cochains Δ in C1(X;Z2) ∼= Z2 satisfy δΔ = 0. Thus,
one spin structure is given by Figure 5.46 with the canonical framing on
X1, and the other is obtained by twisting the 1-handle. If we twist as in
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Figure 5.42 with a +1-twist on one strand and a −1-twist on the other,
the diagram will be unchanged, showing that there is a self-diffeomorphism
of X interchanging the spin structures. (Note that this diffeomorphism
acts trivially on homology.) Alternatively, we can exhibit the twist as in
Figure 4.38 (which becomes Figure 6.2 in dotted circle notation, displaying
the two spin structures via the canonical framing on X1) and realize the
diffeomorphism between these by sliding the 2-handle under the 1-handle as
in Section 4.6.

Solution of Exercise 5.7.12(a): The previous proof for 2-handlebodies still
shows that S(∂X) maps surjectively to the preimage of w2(X) in H2(X;Z2)
for arbitrary compact, oriented X, but the map need not be injective in
general. In fact, s and s′ have the same image in H2(X;Z2) if and only
if the dual of Δ(s, s′) lies in ker(i∗ : H2(∂X;Z2) → H2(X;Z2)). For disk
bundles over RP2, H2(∂X;Z2) is Z2⊕Z2 for e(X) even and Z2 for e(X) odd.
In either case, ker i∗ ∼= Z2, so the map s �→ w2(X, s) is 2 : 1. The nonzero
element of ker i∗ is represented by a Klein bottleK in ∂X (Figure 12.27), and
w2(X, s) = w2(X, s′) if and only if s and s′ agree on each circle intersecting
K an even number of times, or equivalently, if they agree up to a twist on
the 1-handle. For example, for e(X) even, X admits two spin structures,
whose restrictions to ∂X are distinct but both have w2(X, s) = 0. If we
surger out the 1-handle to obtain a 0-framed 2-handle, the above condition
guaranteeing w2(X, s) = w2(X, s′) is that s and s′ should have characteristic
sublinks that differ only at the new 2-handle.

n

Figure 12.27

Solution of Exercise 5.7.12(b): There are two spin structures, with character-
istic sublinks {K1,K2,K3} and {K1,K4}, respectively. (Note, for example,
that linking with K1 shows that K2 and K3 are either both in or both not
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2 1 21

6 6

Figure 12.28. RP3 ≈ RP3.

in the characteristic sublink.) The spin structures extend over 2-handles at-
tached to odd-framed meridians of K1,K2,K3 and of K1,K4, respectively,
and to even-framed meridians of the remaining components.

Solution of Exercise 5.7.13: To get the diffeomorphism, blow up and down
as in Figure 12.28. The empty characteristic sublink on one side corresponds
to the nonempty one on the other — that is, the spin structures extending
over the two disk bundles do not correspond. Alternatively, a meridian on
one side goes to a meridian on the other, but its framing changes by a twist.

Solution of Exercise 5.7.15(a): Represent L(p, 1) as −p-surgery on an unknot
K. For p even, this already realizes one spin structure. For any p, it remains
to deal with the spin structure for which K is characteristic. Following
Kaplan’s algorithm, we blow up p− 1 meridians to raise the framing on K
to −1, then blow down K. If we choose each blow-up to unlink the previous
meridian from K, the final result is a plumbing on a linear graph of p − 1
vertices with all framings 2 (cf. the solution of Exercise 5.1.12(a)).

Zero-surgery on the trefoil is given to us as a spin boundary. To realize
the other spin structure, recall that Exercise 5.1.12(a) realized 0-surgery on

the left trefoil as the boundary of the plumbing (sometimes called E9 or Ẽ8)
obtained from the (negative) E8-plumbing by adding a −2 vertex to the long
arm of the graph. We can see this by Kaplan’s algorithm as in Figure 12.29.
First, unknot the trefoil by blowing up (a–c). One blow-up as in Figure 5.21
unlinks the characteristic sublink (d–e). Blowing up meridians as before
and blowing down the characteristic sublink (whose two components have
framings 2 and 8 in (e)), we obtain diagram (f). The indicated slide exhibits
this 4-manifold as the required plumbing (g).

Solution of Exercise 5.7.15(b): Double the manifold X of Theorem 5.7.14
and apply Corollary 5.1.6.

Solution of Exercise 5.7.17(a): Exercise 5.7.15(a) shows that for p > 0,
μ(L(p, 1), s) = p− 1 when s is given by the nonempty characteristic sublink
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(a) (b)
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Figure 12.29

of −p-surgery on the unknot. (Check that the given intersection matrix
is positive definite by diagonalizing over Q.) For the other spin structure
when p is even, μ(L(p, 1), s) = −1. For negative p reverse the signs (to get
1 − |p| and 1), and for L(0, 1) = S1 × S2 note that both spin structures
spin bound S1 ×D3, so μ = 0. If an orientation-preserving diffeomorphism
of L(p, 1) interchanges the two spin structures (p even), then their Rohlin
invariants must be equal, so p ≡ 0 (mod 16). For |p| > 2, the lens space
L(p, 1) has no orientation-reversing self-diffeomorphisms. We can prove this
when |p| �≡ 1, 2, 9 (mod 16) by observing that such a diffeomorphism would
send a spin structure s to one with opposite Rohlin invariant, implying
|p| − 1 ≡ 1− |p| or 1 (mod 16). For |p| ≡ 2 (mod 16), we conclude that any
such diffeomorphism must interchange the two spin structures. When p = 2,
such a diffeomorphism is given by Exercise 5.7.13.

Solution of Exercise 5.7.17(b): Since Σ bounds the E8-plumbing, we have
μ(Σ) = 8. If Σ bounded an acyclic manifold X, then X would be spin
(H2(X;Z2) = 0) and we would have the contradiction μ(Σ) = 0. If Σ em-
bedded in R4, then the closure of one component of its complement would be
a compact, acyclic 4-manifold bounded by Σ (Mayer-Vietoris). If Δ denotes
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Freedman’s contractible topological 4-manifold with ∂Δ = Σ, then Δ ∪Σ Δ
is a closed, simply connected topological 4-manifold with the homology of
S4, so Freedman’s Classification Theorem 1.2.27 implies that it is homeo-
morphic to S4. Removing a point gives R4 with a topologically embedded
copy of I × Σ.

Solution of Exercise 5.7.17(c): Represent T 3 as 0-surgery on the Borromean
rings. Then every sublink is characteristic, and we obtain the 8 spin struc-
tures on T 3. The 7 spin structures corresponding to proper sublinks have
μ = 0. To see this, identify the diagram with T 2×D2 so that the given sub-
link consists of dotted circles, then pass to the empty sublink by twisting the
1-handles as in Figure 5.42. (This actually shows that the diffeomorphisms
of T 3 act transitively on the 7 structures.) The structure whose character-
istic sublink is the entire link has μ = 8. For a tricky proof, note that the
fiber of the elliptic surface E(1) is characteristic, so its complement is a spin
manifold with signature −8 and bounded by T 3, implying that some spin
structure on T 3 has μ = 8. For a direct proof by Kaplan’s algorithm, slide
twice as in Figure 12.30 to convert the characteristic sublink into a 0-framed
trefoil knot, then eliminate this as in the solution of Exercise 5.7.15(a). To

do this, we blow up 2 CP2’s and 8 CP2’s, then blow down 2 CP2’s, so the
resulting spin manifold with T 3 boundary has signature −8.

0

0 0

Figure 12.30

Solution of Exercise 5.7.17(d): We have σ(X) − [S]2 ≡ μ(∂X, s) (mod 16).
The proof is essentially the same as that of Exercise 5.7.7(b). To see that S
continues to represent w2(X, s) after we blow up points on it, note that we
have already shown this for ∂X = ∅, and the local picture of blowing up a
point is the same in the general case.

Solution of Exercise 5.7.21(b): Without loss of generality, we can assume
that p > |q| > 0. As in the solution of Exercise 5.3.9(b), we can expand −p

q

as a continued fraction — by rounding to even integers, we obtain ai even
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for i �= 1 and |ai| ≥ 2 for all i (= 1, . . . , n). For p even, the Rohlin invariants
of the two spin structures on L(p, q) are then given by the mod 16 residues
of

n∑
i=1

sign(ai) and
n∑

i=1

sign(ai)−
∑

i≡n(mod2)

ai,

where sign(ai) = ai
|ai| . For p odd, the Rohlin invariant of the unique spin

structure is given by the first formula if a1 is even and the second if a1 is
odd. To prove this, first suppose that a1 is even. Then the linear plumbing
with coefficients ai represents L(p, q) as a spin boundary, and diagonaliza-
tion shows that the signature is given by the first formula (since all |ai| ≥ 2).
For p even, there must be a second spin structure. The only nonempty char-
acteristic sublink of this plumbing is the union of the odd-indexed unknots.
(Check, for example, that the second component cannot be in a charac-
teristic sublink.) Thus, n must be odd in this case. Following Kaplan’s
algorithm, we slide one component of this sublink over the others, to obtain
an unknot K with framing

∑
i odd ai. By blowing up meridians and blowing

down K, we obtain a spin manifold with signature given by the second for-
mula. In the case when a1 is odd, the plumbing has a unique characteristic
sublink, whose components are indexed by all i ≡ n (mod 2), so p must be
odd, and the previous computation yields the second formula.

Solution of Exercise 6.1.1(a): Compute F · F by pushing F off of itself to
obtain a surface F ′ transverse to F . Then F ·F = F ·F ′. There are two kinds
of intersections of F and F ′. We obtain e(vF ) intersections (counted with
sign) coming from the twisting of the normal bundle as in the embedded
case. However, each self-intersection of F also contributes two intersections
of the same sign, as in Figure 12.31, resulting in the additional term 2 self(F )
in the formula.

F'

F

Figure 12.31

Solution of Exercise 6.1.4(a): If we add a 0-framed meridian to the top stage
dotted circle of Xn,k, the 1- and 2-handles will clearly cancel in pairs. If we
do the same cancellation without the 0-framed meridian, starting from the
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rightmost 2-handle, dragging along its dotted, doubled meridian and per-
forming 1-handle slides when necessary, we will be left with a k-framed un-
knot and one dotted circle. The resulting 2-component link will be obtained
from the Hopf link by doubling one component n times (taking untwisted,
positive Whitehead doubles). Negative self-plumbings result in negative
Whitehead doubles. A kinky handle with more than one self-plumbing re-
sults in a ramified Whitehead double — that is, we replace the relevant knot
by parallel copies of itself using the 0-framing, and then double each copy.
In short, an n-stage Casson tower is obtained from a 2-handle by removing a
pushed-in family of embedded disks bounded by a link that forms an n-fold
ramified Whitehead double of the belt circle, and the signs and ramification
are determined by the signs of self-intersection and branching of the Casson
tower.

Solution of Exercise 6.1.4(c): To prove that R is simply connected, note that
by compactness any loop γ in R is contained in some Yn. As in the previous
solution, we can cancel handles to draw Yn as a 3-component link: the two
left-most curves in Figure 6.16 together with a dotted circle forming the
n-fold Whitehead double of the pictured circular dotted curve. We can now
draw ∂Yn as 0-surgery on a knot K in S3, by cancelling the first two link
components. (In fact, one obtains the n-fold double of the pretzel knot in
Figure 6.24.) Since any loop in Yn is clearly homotopic to one in ∂Yn, we can
write γ as a product of meridians of K (Exercise 5.2.2(b)). But Yn+1 is built
from Yn by adding a kinky handle to a meridian of K, so γ is nullhomotopic
in Yn+1. (To see this nullhomotopy directly in the picture, note that the
attaching circle of the last 2-handle is nullhomotopic in Yn ∪ 1-handle, cf.
Figure 6.10.) Now we have H1(R;Z) = π1(R) = 0. Since each 2-handle of
R kills an element of infinite order in H1, we have H2(R;Z) = 0, and since
there are no handles of higher index, Hi(R;Z) = 0 for i �= 0. Thus, R is
contractible, by standard CW-complex theory. To prove that R is simply
connected at infinity, note that any compact C ⊂ R lies in some Yn, and set
D equal to this Yn (minus a collar of ∂Yn). Then R − D is obtained from
0-surgery on K (as above) by adding a Casson handle to a meridian. As
before, any loop γ in R − D lies in some Ym − D, so we can homotope it
into ∂Ym, where it is nullhomotopic in Ym+1 −D.

Solution of Exercise 6.2.2: Given an n-component link L ⊂ S3 with rational
coefficients, we obtain a Heegaard diagram of the corresponding surgered
manifold M as follows. Connect each component of L to a base point p
by an arc, and let X denote the complement of a regular neighborhood
of L union the arcs. Then M is obtained from X by attaching a copy of
�nS1×D2, which is n 2-handles and a 3-handle, and the 2-handles attach to
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(a)

(c) (d)

(b)

Figure 12.32. Trefoil knot complement.

∂X along the surgery curves given by the rational coefficients. To describe
X as a handlebody, delete a ball containing p from S3, realizing X as the
complement in D3 = I × D2 of a neighborhood of a proper embedding
of n arcs. See Figure 12.32(a) for the trefoil. By Proposition 6.2.1, the
corresponding handle diagram of X has one 0-handle, a 1-handle for each
local minimum of an arc, and a 2-handle for each local maximum. To draw
the union X1 of 0- and 1-handles, we remove each 2-handle by drilling out
a vertical arc as in (a) of the diagram, keeping track of the attaching circle
of the 2-handle (b). We simplify the picture of X1 by unwinding the arcs
(c). It is then easy to convert to a planar diagram (d). (The 1-handles
of (d) are produced by vertical identifications; the 2-handle is given by the
heavy curve.) To obtain a diagram of M , we must add in the attaching
curves of the remaining n 2-handles determined by the surgery coefficients.
To do this, it suffices to identify the meridian μ and longitude λ of each
component of L, as we have for the trefoil in (d). (Check that μ · λ = +1 in
the boundary orientation of the tubular neighborhood of the knot, and that
λ is nullhomologous in the knot complement, as required. These conditions
determine λ.)

Solution of Exercise 6.2.4(a): In Figure 6.19, the boundary of a regular
neighborhood of the two circles union the band is a genus-2 surface; the
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0

Figure 12.33

F

0 0

0 0
D 4 F

Figure 12.34. Unknotted punctured torus F and complement in D4.

torus is obtained from this by surgery along the core disk of the 2-handle,
Figure 12.33.

Solution of Exercise 6.2.4(b): See Figure 12.34. The complement is the
same as in Exercise 5.5.7(a) since the two embeddings T 2 ⊂ S4 are the
same. (Check this by explicitly drawing the torus in the top diagram of
Figure 12.21 and then cancelling the handles.)

Solution of Exercise 6.2.4(c): One way to draw both surfaces simultaneously
is to start with two orthogonal Möbius bands in S3 with the same core circle.
Push one into D4 and cap it with a 2-handle in the 4-handle of S4; cap the
other with a disk in D4.

Solution of Exercise 6.2.4(d): ∂(I × D3) = S3, and ∂(I × K0) = K#K.
(We have doubled the pair (D3,K0).) If we shrink D3 to a point, the local
maxima (of the radial function) on K0 fall off of D3, resulting in ribbon
moves on ∂(I×K0), and then the local minima of K0 generate local minima
of the ribbon disk. To see this in a diagram, imagine K0 reflected across
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(a) (b)

0

Figure 12.35. I × (trefoil knot complement).

a horizontal plane to obtain K#K (Figure 12.35(a) for the trefoil). The
ribbon moves are given by vertical bands connecting critical points, and the
resulting circles form an unlink by the symmetry of the picture. (Imagine
K being pushed into a mirror and disappearing.) For the resulting Kirby
diagram for the trefoil, see Figure 12.35(b), and compare with Figure 12.32.

Solution of Exercise 6.2.4(e): S2 ×D2 is built from S2 × S1 by attaching a
2-handle along {p}×S1 with the product framing, together with a 4-handle.
Thus, S4 is built from X by attaching a 0-framed meridian to a dotted circle,
after which the entire diagram cancels, and introducing a 4-handle. If we
take p ∈ S2 to be the north pole, then the Gluck twist fixes the attaching
circle but changes its framing by 1 (or any odd number). Thus, the manifold
resulting from the Gluck construction on S is obtained from X by adding a
±1-framed (or any odd-framed) meridian to a dotted circle, and introducing
a 4-handle. Cancelling the 1-2 pair is the same as turning the dotted circle
into a ∓1-framed 2-handle and blowing it down.

Solution of Exercise 6.2.5(b): For a knot complement M = S3− νK, I ×M
is given as the complement of the canonical ribbon disk for K#K (Exer-
cise 6.2.4(d)). For Dehn surgery on K, add a 2-handle and a 3-handle, where
the 2-handle attaches along a circle in ∂νK determined by the framing co-
efficient. (See Figure 12.36, which is from [A6], for the Poincaré homology
sphere, −1-surgery on the left trefoil.) The procedure generalizes to surgery
on a link L once we observe that the manifold I × X, with X as given in
the solution of Exercise 6.2.2, is obtained by summing corresponding com-
ponents of L and L and deleting the corresponding ribbon disks from D4. If
we convert to ordinary dotted circle notation, we recover the diagram given
by Example 4.6.8, since both are based on the handle decomposition of X
given by Proposition 6.2.1. A description of S1 ×M can also be obtained
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from our diagram of I ×M as in Example 4.6.8 (cf. [A6] and Figure 10.2).

1
U  3-handle

Figure 12.36. I × (Poincaré homology sphere).

Solution of Exercise 6.2.6(a): There is a genus-2 surface bounding a tubular
neighborhood of the dotted circle(s) union a 3-ball surrounding Figure 6.27.
The torus is obtained by surgering this along the core of the 2-handle (cf.
Exercise 6.2.4(a)). See Figure 12.37.

Solution of Exercise 6.2.11(b): The CW-complex corresponding to the given
handle decomposition of F is a contractible 1-complex; after ambiently slid-
ing 1-handles of F , we can assume it is homeomorphic to an interval. When
we double (D4, F ), each 1-handle of F will generate an additional 1-handle in
S (Figure 12.38(a)), and each 0-handle will generate a 2-handle in S. Thus,
the handle decomposition of S4 − νS will have a 1- and 3-handle for each
0-handle of F , two 2-handles for each 1-handle of F (Figure 12.38(b)) and
a 4-handle. We complete the Gluck construction by attaching a 1-framed
meridian to the dotted circle corresponding to one endpoint of the linear
graph, and a 4-handle (which cancels a 3-handle), as in Exercise 6.2.4(e).
When we cancel the 1-handle, the 2-handle h leading to the next 1-handle

0

0

Figure 12.37
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(a)

(b)

F S

h

U  3-handles
4-handle

0 0
0

0

(c)

h

U  3-handles
4-handle

0 0 0

1
1

Figure 12.38

all 0 1

Figure 12.39. Complement of a quartic curve in CP2.

will become wrapped around anything linking the first dotted circle. (See
Figure 12.38(c)). However, these additional strands occur in pairs with link-
ing 0-framed circles, so we may untangle h from them by handle slides, after
which it is attached to a 1-framed meridian of the second dotted circle.
Thus, we can apply induction to cancel all 1-handles. We are left with a
0-framed unlink whose 2-handles correspond to the dual 1-handles of F ; this
cancels the 3-handles.

Solution of Exercise 6.2.12(c): π1(Xd) ∼= Zd. For a picture with a unique
1-handle, use a column of bands in Figure 6.34 to cancel the extra 0-handles
of Fd. See Figure 12.39 for d = 4.

Solution of Exercise 6.3.3(a): See Figure 12.40. In the upper left corner,
the knot has writhe 1, so the framing is (blackboard) + e(Y ) + 1. In the
double cover, both of the lifted knots have writhe 0, hence framing e(Y )+1.
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 2 : 1

or

 e(Y)  2 

 e(Y)  2 

 e(Y)  1 

 2e(Y)

 e(Y)  1 

 e(Y)  1 

 e(Y)  1 

 2 : 1

Figure 12.40. 2-fold cover of a D2-bundle over RP2.

n n  2 

n  2 n  2 

n  2 

 2 : 1

Figure 12.41. 2-fold cover of a self-plumbed D2-bundle over S2.

Sliding one 2-handle over the other to remove it from the 1-handle allows us
to cancel the remaining handle pair, resulting in the required picture of X.

Solution of Exercise 6.3.3(b): See Figure 12.41. The Whitehead curve has
writhe 2, so the lifted curves (with writhe 0) have framing n − 2. The
double cover is made from two D2-bundles over S2 with Euler number n−2
by plumbing them together twice (positively). This is easy to see directly,
once we note that Y has Euler number n−2 by Exercise 6.1.1(a). Similarly,
the d-fold cover of Y must be made from d bundles with Euler number n−2
by plumbing according to a circular graph. (Draw the Kirby diagram.)

Solution of Exercise 6.3.5(a): Figure 12.42 shows the case d = 4; the general
case is similar.

Solution of Exercise 6.3.5(c): See Figure 12.43. The last blow-down produces
L(3,−1) = L(3, 2).
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B6

 4 : 1

 4e(Y)
 e(Y)

 e(Y)

 e(Y)

 e(Y) e(Y)

Figure 12.42. 4-fold cover of a D2-bundle over S2, branched along a
pair of fibers.

6

6
K

K
K

 2 : 1

1

1 3

11

Figure 12.43. Double cover of S3 branched along a trefoil knot K.

2
2

 2 : 1

B

0

6

6f 1(B) 

3

2

Figure 12.44. Double cover of D4 branched along a ribbon disk.
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Solution of Exercise 6.3.5(d): Take the double cover of Figure 6.20 (with
both 1-handles mapping to 1 ∈ Z2), then fill in f−1(B) by erasing one dotted
circle, obtaining Figure 12.44. After the indicated slide (which is easy to
visualize since all framings are given by the blackboard) we can cancel the
lower 1-handle to obtain the simpler picture shown. For the square knot,
note that Figure 12.35 differs from Figure 6.20 by a half-twist. Dragging
this through the previous computation, we obtain the same simple figure
with the coefficient changed from −2 to −3. By Example 4.6.8, this latter
figure is I × (L(3, 1) − int D3). To explain the last observation, note that
the branch locus in D4 has the form I×K0 ⊂ I×D3 as in Exercise 6.2.4(d).
The branched cover is I × X, where X is the branched cover of D3 along
K0. By (c) above, X is L(3, 1)− int D3 (and I ×X = I ×X = I ×X).

Solution of Exercise 6.3.9(b): By our algorithm, the double branched cover
is the disk bundle over S2 with e(X) = k. To describe the involution without
Kirby diagrams, note that it covers reflection on S2, and is a reflection on
each D2-fiber over the equator. There must be k

2 full twists in the fixed set
(as we travel once around the equator), since it must appear the same in
each of the two copies of D2 ×D2.

Solution of Exercise 6.3.9(c): The Seifert surface is visible in Figure 6.43,
so the double branched cover X is obtained by plumbing together two D2-
bundles over S2 with Euler number −2. A slam-dunk shows that ∂X ≈
L(3, 2) as required.

Solution of Exercise 6.3.9(d): See Figure 12.45. For the untwisted double,
the knotted band must be determined by the 0-framing on K, resulting in a
0-framing in the diagram of X. For the n-twisted double, this latter framing
changes from 0 to 2n.

Solution of Exercise 6.3.9(e): It suffices to draw the plumbing with a Z2-
symmetry reflecting each attaching circle. This can always be done; see
Figure 12.46, for example.

1 20

 2 : 1

KD K K

K

Figure 12.45. Double cover branched along a Seifert surface of a
Whitehead double.
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1
1

2 3

4

5

6

8

7
2 3 4 5

7

8
6

Figure 12.46. Z2-symmetry on a plumbing.

all 2

1 1 1

1 1 1

 r : 1

Fq,2

Figure 12.47. Mc(r, q, 2) : q − 1 rings of r − 1 circles (q = r = 4).

Solution of Exercise 6.3.13(a): See Figure 12.47. Note that we can pull a
−1

2 -twist out of each −1 and slide it clockwise to the bottom. The meshing
with the adjacent ring flips over, and we obtain Figure 6.45.

Solution of Exercise 6.3.16(a): The 2-fold branched covers are S2 × S2 and

CP2 (or CP2), respectively. (Recall that there are two different unknotted
embeddings RP2 ⊂ S4, related by a reflection — cf. Exercise 6.2.4(c).) For a
general (Y,B), modify B by taking a pairwise connected sum with (S4, T 2)
or (S4,RP2). Since the double branched cover of a trivial disk pair (D4, D2)
is again (D4, D2), the effect on the double branched cover of (Y,B) is to form

its connected sum with S2 × S2, CP2 or CP2. Since H1(S
4 − RP2;Z) ∼= Z2,

the above construction only generalizes to degree d > 2 in the case of T 2.
In this case, summing B with a trivial torus changes the d-fold cyclic cover
of Y by summing with #(d − 1)S2 × S2, as is evident from Figure 12.48
(drawn for d = 4) and Proposition 5.1.4.

Solution of Exercise 6.3.16(b): S2 × S2 — See Figure 12.49.
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all 0

 4 : 1

Figure 12.48. 4-fold cover of S4 branched along T 2.

B6

B6  2 : 1

1
1

0 0

Figure 12.49. Double cover of CP2 branched along a quadric curve.

Solution of Exercise 6.3.18: The action is given by 180◦ rotation about the
three coordinate axes in the right-hand diagram of Figure 12.49, with the
given generators corresponding to the x- and y-axes, respectively. (Note
that the former preserves either orientation of the positive Hopf link.) The
quotients (corresponding to x, y, z and Z2 ⊕ Z2, respectively) are CP2 and

S4 (cf. Exercises (b) and (a) above), CP2 and S4.

12.3. Solutions of some exercises in Part 3

Solution of Exercise 7.1.10(b): Since [C] · [Fn] = 1, the argument of the solu-
tion of Exercise 3.1.12(a) applies and proves that C is a section of Fn → CP1.
Note that since [C]2 = n+2β and 〈c1(Fn), [C]〉 = n+2β+2, the adjunction
formula 1.4.17 implies that g(C) = 0, hence C ≈ CP1. Consequently the
complex curve C is an affine section iff [C] = [Sn]+β[Fn] and [C] · [S∞] = 0,
i.e., iff [C] = [Sn].

Solution of Exercise 7.1.10(c): Suppose that Fn is nonminimal, so there is a
rational curve C ⊂ Fn with [C]2 = −1. If we set [C] = a[Sn]+b[Fn], the facts
that [C]2 = −1 and [C]·[Sn] ≥ 0 imply [C] = [Sn]− 1+n

2 [Fn]. Now taking the

product [C] · [S∞] = [C]([Sn]− n[Fn]) we see that [C] · [S∞] = −n+1
2 . Since

different complex curves intersect each other positively, the above equation
shows that C = S∞, implying that n = 1, which concludes the solution.
Note that for even n (i.e., when 1+n

2 is not an integer) the manifold Fn
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2n

n

n

1

2
B

E2

E1

Figure 12.50. Resolution of the curve f(x, y) = xn + y2n.

has an even intersection form, hence does not contain any submanifold with
self-intersection −1.

Solution of Exercise 7.2.4(b): When we blow up the origin, the exceptional
curve E1 comes with multiplicity n, while the proper transform consists of n
lines passing through the origin of one of the charts. Blowing up this point,
we will get the desired configuration of a smooth proper transform with two
exceptional curves Ẽ1 and E2 (m1 = n, m2 = 2n, e1 = −2, e2 = −1), see
Figure 12.50.

Solution of Exercise 7.2.4(c): If we blow up the origin, then on the chart
U1 the equation of the total transform is v4(u2 + v)(u3v + 1) = 0, while
on U2 it is (v′)4(1 + (u′)3v′)(v′ + (u′)2) = 0. This shows that the proper
transform is tangent to the exceptional curve at the origins of both U1 and
U2. Hence, to get a configuration with the desired properties we have to
blow up both U1 and U2. (Details are left to the reader.) Note that for
g(x, y) = (x2 + y5)(x5 + y2) there are singularities on both charts.

Solution of Exercise 7.2.5(a): First we solve the exercise for k = 2 and 3.
Blowing up the curve x2 + y2 = 0 we get v2(u2 + 1) = 0 (on one chart); the
corresponding diagram and dual graph are given by Figure 12.51(a). For
k = 3 the first blow-up gives v2(u2 + v) = 0. Blowing up this configuration
and considering the chart U1,2, we have Figure 12.51(b); one further blow-up
gives the final configuration, Figure 12.51(c). Now for arbitrary k, one blow-
up reduces k by 2 (since the total transform is given by v2(u2 + vk−2) = 0),
so induction gives the solution and we get Figure 12.52(a) and (b) for odd
and even k. (Note that in the last blow-up for k odd, we have to take the
second chart instead of the first one.)

Solution of Exercise 7.2.5(c): First we blow up the origin and take the curve
in U1, see Figure 12.53(a). (We have also indicated the u- and v-axes in
U1, although the latter does not lie in B′.) Now in the second blow-up
we must take the chart U1,2; on this chart the total transform is given by
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1 13

2

2 3

6

6 32

3 2

2
(a) (c)

3 1 2

1

1

2

2 (b)

Figure 12.51. Resolution (a) of f(x, y) = x2 + y2 and (b), (c) of
f(x, y) = x2 + y3.

(a)
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(b)

k 1
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k 1k 3k 52 4

2 2 2 2 1
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k 4

k 6

222222

2 4
6

Figure 12.52. Diagram and dual graph of the resolution of f(x, y) =

x2 + yk with (a) k odd, and (b) k even.
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1
4
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B

Figure 12.53. Resolution of f(x, y) = x3 + y4.

Figure 12.53(b). Blowing up the origin again, we get Figure 12.53(c), and a
final blow-up gives Figure 12.53(d). The corresponding dual graph is given
by Figure 12.54.

Solution of Exercise 7.2.12(a): Following the algorithm described in Sec-
tion 7.2 (and using the solutions of Exercises 7.2.5(a) and (c)), we get the
diagrams shown in Figures 12.55 and 12.56. Note that for odd k the re-
sulting desingularization of z2 = x2 + yk is not minimal: If we blow down
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1284 3

1 422

Figure 12.54. Dual graph of the resolution of f(x, y) = x3 + y4.

(a)

(b)

k 3

2 2 2 22 3 32
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1
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3 32222 2 2222

2
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2

k 3
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k 3
2

2 2 2 22 2 2

k 2
2

k 2
2

k 3
2

Figure 12.55. Resolution of the singularity z2 = x2+yk for (a) k odd,
and (b) k even.

2

2 2

2 2 2
2 2 2

2

2 2

Figure 12.56. Diagram and dual graph of the resolution of z2 = x3 + y4.

the rational −1-curve in the middle, the self-intersection of the −2-curve
intersecting it will change to −1; after blowing this down we get a chain of
k − 1 copies of a −2-sphere, just as in the case with k even. For the final
solution, see Figure 12.57.

2 2 2 2 2

k 1

Figure 12.57. Dual graph (plumbing diagram) of the minimal resolu-
tion of z2 = x2 + yk.
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1 2n(a)

6n 3

4n 3

22222

(b)

1

2

2n 1

2n 2

3 3

B

B

1

Figure 12.58. Resolution of the curve f(x, y) = x2n−1 + y4n−3.

n n

2 2 2 2

2

2

222 2

2
2

22 4n 4

4n 4

2

Figure 12.59. Diagram and dual graph of the resolution of the singu-
larity z2 = x2n−1 + y4n−3.

Solution of Exercise 7.2.12(c): Following the algorithm described in Sec-
tion 7.2, we must first desingularize the curve {x2n−1 + y4n−3 = 0}. In the
following we will only highlight this process; details are left to the reader. Af-
ter three blow-ups we get the configuration shown in Figure 12.58(a), and the
equation we have to work with admits the form u4n−3v6n−3(u+ v2n−3) = 0.
Each further blow-up will lower the exponent of v (in the parentheses) by 1;
consequently 2n − 3 further blow-ups will yield the required configuration.
The end-result of this process is given in Figure 12.58(b); all multiplicities
are odd, and all squares are equal to −2 except for a −1, a 1− 2n and a −3
(the last one in the long chain). After separating odd multiplicities — which
involves 2n further blow-ups — and taking the double branched cover, we
end up with the configuration given by Figure 12.59. All but one of the 4n
spheres in Figure 12.59 have self-intersection −2, and the remaining one has
square −n.

Solution of Exercises 7.2.15(a), (b) and (c): In Figure 12.60 we give the
diagrams describing the desingularized curves, and the diagrams of the ca-
nonical and minimal resolutions. (For more examples of this type see [La2].)

Solution of Exercise 7.3.8(a): Since a generic elliptic fiber F̃ lifts from a fiber
of pr1, it will be visible in Figure 7.4 as in Figure 12.61. Blowing down as
in the proof of Proposition 7.3.7, we obtain a smooth curve F in CP2 with
degree F · H = 3, where the hyperplane H is the image of S1. Similarly,
a pair of elliptic fibers blows down to a (nongeneric) pair of cubic curves.
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Figure 12.60. Examples of minimal resolutions involving singular
curves, tangential and triple intersections.
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Figure 12.61. Keeping track of a fiber of D′(1) → CP1 under blowing down.

After a perturbation, these curves generate an elliptic fibration on E(1) as
in Section 3.1. (Note that the normal framings induced on each fiber by the
two elliptic fibrations must correspond, since these are determined over the
1-skeleton of F by the pencil on CP2.)
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nn

n
0

0 0T 2 

S2 

Figure 12.62. Plumbing and Kirby diagram for the neighborhood of a
regular fiber and a section in T (n).

Solution of Exercise 7.3.8(b): Recall that X(n, 1) is the desingularization
of the double branched cover of CP1 × CP1 branched along Bn,1. Hence
X(n, 1) is the double branched cover of CP1 × CP1 blown up in 4n points.
Generalizing the proof of Proposition 7.3.7, we blow down the 2n rational
−1-curves originating from the blow-ups of CP1 × {pi} (i = 1, . . . , 2n), and
then further blow down 2n rational −1-curves to obtain F1, proving the
claim.

Solution of Exercise 7.3.16(a): Since X(1,m) ≈ CP2#(4m + 1)CP2, the
solution is obvious for n = 1. Now equip X(n,m) with the genus-(m − 1)
fibration over S2 found earlier and apply induction on n. Since X(n− 1,m)
and X(1,m) both admit a section (i.e., a 2-sphere intersecting the fiber in
a single point), we get that π1(X(1,m)− νF ) = π1(X(n− 1,m)− νF ) = 1.
Since X(n,m) = X(n− 1,m)#fX(1,m), the Seifert-Van Kampen Theorem
completes the solution. (Since X(n,m) → S2 also admits a section, we
conclude that X(n,m)− νF is simply connected.)

Solution of Exercise 7.3.17: Since it is a plumbing manifold (a torus of square
0 and a sphere of square −n plumbed together), we have Figure 12.62.

Solution of Exercise 7.3.21(a): The unique singular fiber in the fibration
M(2, 2m− 1, 1)→ C can be given as Cs = {(x, y) ∈ C2 | x2 + y2m−1 = 0}.
Hence a neighborhood of the singular fiber in the nucleus N(m,n) can be
given by the Kirby diagram consisting of the (2, 2m− 1)-torus knot. (This
is the knot in which the above singular curve intersects the boundary of a
4-ball neighborhood of its singular point in C2. We can regard the 4-ball as a
0-handle, and the rest of the singular fiber as the core of a 2-handle attached
along the above knot.) Since the fiber has self-intersection 0, the framing of
the knot is 0 as well. By plumbing a sphere of square −n (corresponding to
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the section in N(m,n)) to the fiber, we get the Kirby diagram for N(m,n)
as it is shown by Figure 7.5.

Solution of Exercise 7.3.27(b): Take two degree-d curves in general position,

blow up the d2 intersection points, and get the fibration CP2#d2CP2 → CP1

described in Lemma 3.1.4. The fiber sum of two copies of this manifold is
the desingularization of the double branched cover of CP2 along the two
degree-d curves. Proposition 7.3.13 now concludes the argument.

Solution of Exercise 7.4.1(a): Determine c1(Fn); the rest is an obvious com-
putation. (We identify second homology and cohomology using Poincaré
duality.) If c1(Fn) = x[Sn] + y[Fn], then the adjunction formula applied
to the spheres Sn and Fn gives that x = 2 and y = 2 − n. Consequently
c1(Fn) = 2[Sn]+(2−n)[Fn]; now we get c21(X) = 2a(a−2)n+4(a−2)(b−2)
and χh(X) = 1

2a(a− 1)n+(a− 1)(b− 1)+1. Substituting n = 1, a = 3 and
b = m completes the solution.

Solution of Exercise 7.4.9: Note that y ≤ 4x − 6 implies 3(y − 2x + 6) ≤
2y − 2x+ 12, so k = y − 2x+ 6 ≤ 2y−x+7−2a

3 + 22a−1
3 = 2n+ 22a−1

3 . Since

k is an integer, for a = 0, 1 or 2 this implies k ≤ 2n+ 2[2a3 ].

Solution of Exercise 7.4.16: By definition,X(n,m) is the desingularization of
the double branched cover of F0 along Bn,m; consequently, X(n,m) admits a
holomorphic map π : X(n,m)→ CP1. Each singular fiber comes from a fiber
of F0 lying in Bn,m. By the desingularization algorithm, a neighborhood of
such a fiber is a plumbing on a star-shaped graph, where each point of the
star is a sphere Si of self-intersection −2 lifting an exceptional curve Ei in
the resolution of Bn,m (cf. the proof of Proposition 7.3.7). Clearly, such a
fiber is simply connected. Since the map Si → Ei is a covering map away
from two points, it is easy to see that dπ is surjective at a generic point of
Si, so Lemma 7.4.15 yields the solution.

Solution of Exercise 7.4.25: It is easy to see that for the Euler char-
acteristic, c2(X) = χ(X) = χ(C1)χ(C2) = (2 − 2g1)(2 − 2g2). Since
π1(C1×C2) = π1(C1)× π1(C2), we also know that b1(C1×C2) = 2g1 +2g2,
hence b2(X) = 4g1g2 + 2. A basis for H2(X;Z) can be given as follows:
Suppose that {ai, bi | i = 1, . . . , g1} (and {αj , βj | i = 1, . . . , g2} respec-
tively) are the usual sets of circles in C1 (C2 resp.) representing a basis for
H1(C1;Z) (and H1(C2;Z) resp.) as in the proof of Theorem 10.2.10; then
the collection {[ai×αj ], [ai×βj ], [bi×αj ], [bi×βj ] | 1 ≤ i ≤ g1, 1 ≤ j ≤ g2},
together with {[C1×{pt.}], [{pt.}×C2]}, forms a basis ofH2(X;Z). The gen-
eralized adjunction formula now implies that we have 〈c1(X), [ai × αj ]〉 = 0
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(and similarly for ai×βj , bi×αj and bi×βj). The same argument shows that
c1(X) is, in fact, Poincaré dual to (2−2g2)[C1×{pt.}]+(2−2g1)[{pt.}×C2].
Consequently c21(X) = 2(2 − 2g1)(2 − 2g2), hence c21(X) = 2c2(X) im-
plying σ(X) = 0. Now the formula χh(X) = g1g2 − g1 − g2 + 1 is
straightforward. Note that the fact that σ(X) = 0 can also be deduced
by direct computation of the matrix representing QX in the basis de-
scribed above, or by the existence of an orientation-reversing diffeomor-
phism, or using Lemma 9.1.5. (C1 is the boundary of a 3-manifold M ,
hence C1 ×C2 = ∂(M × C2).) The class c1(X) can also be computed using
the identity c1(X) = c1(π

∗
1TC1 ⊕ π∗

2TC2) = π∗
1c1(C1) + π∗

2c1(C2).

Solution of Exercise 7.4.26: An easy computation (as discussed in Sec-

tion 7.2) shows that [G] = 5h − 3e1 − 2e2 ∈ H2(CP
2#2CP2;Z). Since

c1(CP
2#2CP2) = 3h − e1 − e2, the adjunction formula gives −χ(G) =

[G]2− c1(CP
2#2CP2)[G] = 12− 10 = 2. (Alternatively, the 5-fold branched

covering shows that χ(G) = 5(χ(CP1)−3)+3 = −2.) Since G is connected,
this implies that g(G) = 2.

Solution of Exercise 8.1.1(a): The fiber has genus 1
2(d− 1)(d− 2), since it is

a degree-d curve in the hyperplane Ht ≈ CP2 cutting it out. For d = 1, we
get the usual fibration of the Hirzebruch surface F1 ≈ CP2#CP2 → CP1 as
constructed at the beginning of Section 3.1. For d = 3, we obtain an elliptic
fibration on E(1). (For d = 2, the fibration is obtained from the projection
of either F0 or F1 into CP1 by blowing up twice; cf. Proposition 8.1.7.)

Solution of Exercise 8.1.2(a): Perturb π to π′(z1, z2) = p1(z1) + p2(z2) for
pi a generic polynomial of degree mi. Then pi has mi − 1 quadratic critical
points, so π′ has (m1 − 1)(m2 − 1) quadratic critical points.

Solution of Exercise 8.1.6: Near B and the critical points, the charts given in
Definition 8.1.4 define a complex structure. Elsewhere, we have a splitting
of TX as a sum of the oriented 2-plane bundles tangent and normal to the
fibers. Declare these real 2-plane bundles to be complex line bundles — we
can do this extending the given structure near B and the critical points,
since the fibers are already holomorphic there.

Solution of Exercise 8.1.8(b): By Exercise 3.1.3, we are looking at all quadric
curves through the four generic points P1, . . . , P4. There are three such
singular curves (one for each way of splitting {P1, . . . , P4} into two pairs),
each a union of two complex lines. Since each of the lines contains two points
Pi, blowing up the base locus gives a Lefschetz fibration whose three singular
fibers are each a union of two exceptional spheres. To obtain a relatively
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minimal Lefschetz fibration, we must blow down one exceptional sphere in
each of these three fibers. Looking at the combinatorics of the configuration
of six exceptional spheres and four sections, we see that there are two ways
to do this. We can blow down the three exceptional spheres intersecting one
section, leaving a sphere bundle with a section of square +2 (the Hirzebruch
surface F2 of Example 3.4.7), which is S2 × S2 since its intersection form
is even. Alternatively, we can blow down the three exceptional spheres
disjoint from one section, leaving a bundle with a section of square −1, the
Hirzebruch surface F1 ≈ S2×̃S2 ≈ CP2#CP2. In this case, the remaining
three sections have square 1 and any two intersect once; these must be
complex lines in CP2.

Solution of Exercise 8.1.8(d): 3(d− 1)2. Note that (after we blow up) each
singular fiber contributes 1 to the Euler characteristic.

Solution of Exercise 8.1.8(e): χ(X) = 3(d − 1)2n + 2d(3 − d), σ(X) =

(1−d2)n. X is simply connected because a section of CP2# d2CP2 provides
a nullhomotopy for a meridian of the fiber.

Solution of Exercise 8.1.10(a): The required local sections exist since each
regular point of π lies on a disk in X mapping diffeomorphically to its image
in Σ. Since π restricts to a fiber bundle on the complement of the singular
fibers, it satisfies the Homotopy Lifting Property there [Sp]. In particular,
given a path γ : I → X covering a loop π ◦ γ : I → Σ avoiding the critical
values, any homotopy rel {0, 1} of π ◦ γ avoiding critical values lifts to a
homotopy rel {0, 1} of γ. It is now easy to prove the Homotopy Lifting
Property for loops in Σ, that is, any (generic) homotopy rel {0, 1} of π ◦ γ
in Σ lifts to γ fixing the endpoints: To push past a critical value t ∈ Σ, first
homotope γ locally into a regular neighborhood νFt, then push across Ft

using a local section as above in the given component N of νFt. (Note that
each regular fiber near Ft intersects N in a connected surface.) To define
the map π1(Σ) → π0(F ), note that any loop representing α ∈ π1(Σ) with
interior avoiding critical values of π can be lifted to a path γ in X with
γ(0) ∈ F the base point of X (used in defining π1(X)). The endpoint γ(1)
lies in a component of F that is independent of the choices of loops and lifts.
(For a different path γ′, the loop π ◦ (γ−1 ∗ γ′) in Σ is nullhomotopic; the
corresponding homotopy in X changes γ−1 ∗ γ′ to a path in F from γ(1) to
γ′(1).) Exactness of the sequence at π1(X) follows immediately from lifting
homotopies of loops in Σ; exactness at π1(Σ) and π0(F ) is even easier.

Solution of Exercise 8.1.10(b): We prove a version of the Homotopy Lifting
Property for loops; the exact sequence then follows as in (a). As before,
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π is a fiber bundle projection away from the singular fibers, so we only
need to show how to push π ◦ γ past a critical value t. We homotope γ
locally into a neighborhood of Ft as before. We no longer have local sections
near t, but each Σi has a transverse disk Di with ∂Di mapping to Σ with
winding number mi around t. Componentwise surjectivity of f guarantees
that we can access all disks Di associated to one component of Ft by fiber-
preserving homotopies of γ near Ft. Since this component has multiplicity
gcd{mi} = 1, we can slide γ across a suitable linear combination of disks Di

to move π ◦ γ past t as required. Lemma 7.4.15 follows immediately from
the proposition once we observe that the given map π : X → CP1 satisfies
the required hypotheses. (The fact that all fibers are connected, hence all
connected components have multiplicity 1, follows from the existence of one
such fiber with some mi = 1, together with componentwise surjectivity of f .
To verify the latter, let F ′ be a component of Ft0 and write [F ′] =

∑
ki[Σi],

with each ki > 0 and i ranging over suitable values. For each Σj not in
the sum, we have 0 = F ′ · Σj =

∑
kiΣi · Σj . Nonnegativity of holomorphic

intersections implies Σi ·Σj = 0 for each Σi ⊂ f(F ′). Thus, any Σj on which
[F ′] has coefficient 0 is completely disjoint from f(F ′), as required.)

Solution of Exercise 8.2.4: Before the − 1
n -surgery we see the obvious T 2-

fibration of S1×T 2. The surgery circle C lies in a single fiber F . Let A ⊂ F
be an annulus neighborhood of C, and let T be a solid torus in S1 × T 2

with T ∩ F = A ⊂ ∂T and T lying behind A in the picture. To perform
the − 1

n -surgery, we cut out int T and glue T back in by a map that is the
identity on ∂T − A. This map must be an n-fold Dehn twist on A, so the
surgery is equivalent to changing the monodromy of the (trivial) T 2-bundle
from idT 2 to ψn. (Check the orientation.) The case of a general Lefschetz
singular fiber is similar (with n = 1).

Solution of Exercise 8.2.6: To visualize the monodromy around ∂D in a
Kirby diagram, start with a fiber F behind the vanishing cycles and pull it
forward through the surgeries, accumulating Dehn twists as in the previous
exercise. Pulling F through the point at infinity returns it to its original
position, but modified by the self-diffeomorphism ψ1 ∗ · · · ∗ ψn. To realize
a cyclic permutation, pull the fiber containing the front vanishing cycle C
through infinity so that C moves to the back of the stack. To return F to
its desired position behind all vanishing cycles, we must push F through C,
acting on it by ψ−1

n . (This is the required change in ϕ.)

Solution of Exercise 8.2.7(a): Figure 8.7 is equivalent to sliding hi over
hi+1 as in Figure 12.63. Note that the attaching circle is changed by the
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0

1
blackboard 1

1 1

0

Figure 12.63. Elementary transformation.

monodromy as required. To understand this in general, recall the relation
between the fibration and the surgeries, Exercise 8.2.4.

Solution of Exercise 8.2.7(b): Move ψn into the first slot by n−1 elementary
transformations (pushing it back one slot at a time), obtaining a cyclic
permutation composed with the inner automorphism ψ �→ ψ−1

n ∗ ψ ∗ ψn.
Alternatively, push ψ1 forward to the last slot, allowing it to conjugate at
each stage, obtaining (ψ2, . . . , ψn, (ψ2 ∗ · · · ∗ ψn)

−1 ∗ ψ1 ∗ (ψ2 ∗ · · · ∗ ψn)).
When ψ1 ∗ · · · ∗ ψn = idF , this is a cyclic permutation.

Solution of Exercise 8.2.7(c): First note that we can realize cyclic permu-
tations A1, . . . , An as in the previous solution. Thus, we can assume the
indices in Figure 8.7 are in Zn (allowing i = n). Now apply the isotopy that
turns the radial picture of {A′

i} back into the original picture of it. Each
time two endpoints ti cross (as measured by radially projecting to ∂D2),
apply a move to keep the arcs radial. At the end, the endpoints are in their
original positions (agreeing with those of {Ai}), but our chosen sequence of
moves has kept the arcs radial, so the final picture is precisely {Ai}.

Solution of Exercise 8.2.10: X splits as a nontrivial fiber sum if and only if
the corresponding ordered collection of monodromies can be written (after
elementary transformations) in the form (ψ1, . . . , ψn) with ψ1 ∗ · · · ∗ψm iso-
topic to the identity for some positive m < n. Then X = X1#fX2, where
X1 and X2 are determined by (ψ1, . . . , ψm) and (ψm+1, . . . , ψn), respec-
tively, and the given fiber sum is formed using the identity map on a regular
fiber.

Solution of Exercise 8.3.4(a): By Lemma 8.3.3, Mc(2, 3, 2m) ≈ Y0(2m, 0) ≈
Y0(4,m−2). Draw the latter, and as in the proof of that lemma (Figure 8.19)
slide the long 1 over the outer left −1 and “blow down” the remaining −1 of
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the right ring. After cancelling the left 1-handle, “blow down” the remaining
−1 to obtain Figure 8.16.

Solution of Exercise 8.3.4(b): Follow the (alternate) solution of Exer-
cise 5.1.12(a), replacing the +1-framed circle in Figure 12.9(a) by a dotted
circle with a −1-framed meridian, and replacing blowing down by handle
sliding as in the proof of Theorem 8.3.2.

Solution of Exercise 8.3.4(c): Comparison of the two figures suggests that
we try to slide the 0-framed 2-handle in Figure 8.16 so that it becomes
a −1-framed meridian of the dotted circle. We can either find the slide by
experimentation, using the linking matrix as a guide (Figure 12.64), or show
that the two attaching circles are isotopic in the boundary of the union of
the remaining handles. For the latter argument, it is routine to verify that
the 3-manifold is −2-surgery on a left trefoil, and the attaching circles in
question are −1-framed meridians.

7

1 1 1 1

1

311

0

Figure 12.64

Solution of Exercise 8.3.16(a): In Figure 8.25(a), let λ and μ denote the
homology classes in ∂νT given by the bottom and middle arcs of H, re-
spectively, oriented counterclockwise. The diffeomorphism ϕ−1 : ∂νT →
∂(T 2 × D2) given by Figure 8.26 sends μ �→ λ, λ �→ pλ − μ, so we have
ϕ∗(μ) = pμ − λ. This is the class α from the definition of auxiliary mul-
tiplicity, and μ is given to be a positively oriented meridian of T , so (for
p ≥ 0) the auxiliary multiplicity is 1 and direction is −λ, as required.

Solution of Exercise 8.3.16(b): The self-diffeomorphism of Q is given by 180◦

rotation in the plane of the paper on the left side of Figure 8.8 or about the
z-axis in Figure 8.27(a). (In the latter case, look closely at the clasps to
verify that the rotation preserves the link and orientation on T .) To see
a diffeomorphism Qp ≈ Q−p in Figure 8.27(b), slide the (p − 1)-framed 2-
handle across the dotted circle parallel to it, then rotate the figure about
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the z-axis. (An easy way to deal with the p twists during the handle slide
is to draw the parallel push-off of the dotted circle so that it runs through
the box denoting p twists, then remove the extra twists between the dotted
circle and its parallel by adding −p twists elsewhere (Figure 12.65). When
the 2-handle is band-summed into the push-off, it will immediately pull out
of the p twists, leaving −p twists between it and the dotted circle.)

p pp p

Figure 12.65. A trick for dealing with twists during handle slides.

Solution of Exercise 8.3.16(d): The 6n spheres with square −1 in E(n)0
(Exercise 8.3.15) are visible in Figure 8.24 (p = 0) when we slide the 6n
vertical −1-framed arcs over the 0-framed vertical arc. These spheres do
not intersect int νF ′, where νF ′ = D4 ∪ 1-handles∪ 2-handle is the obvious
neighborhood of a regular fiber of E(n)− int νF ⊂ E(n)0. If we perform the

remaining logarithmic transformations inside int νF ′, the CP2 summands
will remain. Similarly, N(n)0 (Figure 8.29, p = 0) has an obvious sphere
with square −1. This is disjoint from the fibers on which we perform the
remaining logarithmic transformations, since the latter are visible in (a) of
the figure as spanning disks of the dotted circle, surgered to avoid the 0-
framed 2-handle (cf. Figure 8.25).

Solution of Exercise 8.4.2(c): See Figure 12.66. Cancelling 1-handles gives
(b), which is isotopic to (c). (Grab the small writhes of the inner −m-framed
circle and lift them toward the top of the picture, unwinding the −1-twists
to obtain the top strand of (c).) Slide over each −2-framed handle as in
(d) to obtain (e). The indicated slide yields Figure 8.35. The homology
class of the fiber is given by the sum of the 0-framed 2-handles in (a), and
is straightforward to follow (cf. Section 5.1). To construct X(m,n) as a
branched cover, we first blow up 2n fibers of CP1×CP1 2m times each. The
total transforms of these fibers lift to the required singular fibers of X(m,n)
(cf. the solution of Exercise 7.4.16).

Solution of Exercise 8.4.15(a): Examples 8.4.7 and 8.4.9 are the unique
achiral Lefschetz fibration and pencil, respectively, on S4, and no other
homology 4-spheres X admit such structures: By Lemma 8.4.12, q = 1 for
both choices of orientation ofX. Thus, there are exactly two points ofX that
are not regular points of π, and their charts are oppositely oriented. If both
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Figure 12.66. Singular fiber of X(m,n).

points are in B, then blowing up gives an S2-bundle X#CP2#CP2 → S2

which must be the usual S2-bundle with X = S4. If only one point is in
B, we suitably orient X and blow up to obtain a Lefschetz fibration on
X#CP2 with exactly one critical point. Then 3 = χ(X#CP2) = 2χ(F )+ 1,
contradicting orientability of the fibers. If B = ∅ then we have an achiral
Lefschetz fibration on X with two oppositely oriented critical points. Since
2 = χ(X) = 2χ(F ) + 2, the genus must be 1. Since the monodromies
must cancel, the vanishing cycles must be parallel, so the fibration differs
from Example 8.4.7 by at most the choice of the multiplicity-1 logarithmic
transformation. Its direction and one vanishing cycle must form a basis
of H1(F ) (where F is the regular fiber over the base point in X), since
H1(X;Z) = 0. Identify F with S1 × S1 so that this basis is standard. The
result is Example 8.4.7. Note that there are achiral Lefschetz fibrations on
rational homology spheres with H1(X;Z) ∼= Zp for any p > 0.

Solution of Exercise 8.4.15(b): Since T (X − P ) ∼= L ⊕ π∗TΣ, we have
c1(X, J) = c1(L) + π∗c1(TΣ), and c1(TΣ) = χ(Σ)[Σ]. For a regular fiber
F of an achiral Lefschetz fibration we have L|F ∼= TF , so 〈c1(L), F 〉 =
〈c1(TF ), F 〉 = χ(F ). If F is nullhomologous, this must vanish.
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Figure 12.67. The plumbing Cp.
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Figure 12.68. Alternative Kirby diagrams for Cp.

Solution of Exercise 8.5.1(a): Based on the plumbing diagram of Figure 8.39,
the obvious Kirby diagram for Cp is given by Figure 12.67. To see that this
is the same as Figure 8.40, draw the latter as in Figure 12.68(a), slide the
0-framed 2-handle over the p − 1 meridians to get (b), then slide the −1-
framed curves over each other as indicated (from the top down) to get (c).
Cancelling the 1-handle yields Figure 12.67.

Solution of Exercise 8.5.1(b): This is clear from Figure 8.40 by adding han-
dles to cancel the 1-handle and 0-framed 2-handle. For a more algebraic
geometric argument, fix a smooth quadric s1 ⊂ CP2 (with [s1]

2 = −4) and
a line s2 ⊂ CP2 intersecting it transversally twice. (Note that both s1 and
s2 are spheres and [s2]

2 = −1.) Orient s1 and s2 in such a way that the
two intersections are positive. The tubular neighborhood of s1 provides a
copy of C2 in CP2. If we blow up one of the intersection points of s1 ∩ s2,
the proper transforms give rise to C3 ⊂ #2CP2. The exceptional sphere of
the blow-up can be oriented to give positive intersections with both proper
transforms. Blowing up the intersection of the exceptional sphere and the
proper transform of s1, we get C4 ⊂ #3CP2. Repeated blow-ups of the
intersection of the last exceptional sphere with the proper transform of s1
give the desired configuration of spheres in #(p− 1)CP2.
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(b)

0

0
0

(a)

1 1

0

0

1

4

Figure 12.69. Blowing up a fishtail neighborhood.

Solution of Exercise 8.5.8(a): To exhibit the immersed sphere Σ in Fig-
ure 8.27(a), we cancel the lower 1-handle, obtaining (a) of Figure 12.69,
where we have drawn the 2-handle with an extra half-twist to exhibit the
self-intersection as a right clasp. Now blowing up the intersection yields (b)

(note the sphere Σ̃ with square −4), and additional blow-ups at the clasp
on the left yield Figure 8.44(a). The construction exhibits the required em-
bedding of Cp as the obvious sublink realizing Figure 12.67.

2 2 2 2

(a)

(c)

p 2

p 2

1

(b)

0
0

0

1

1

0
0

0

p 1

p 2

p 2

p 1

1

1 1 1 1 1 1 1

0
0

0

1

Figure 12.70. Identification of Cp inside the blown-up fishtail neigh-

borhood Q#(p− 1)CP2.
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Solution of Exercise 8.5.8(b): Sliding over the −1-framed meridians as before
changes Figure 8.44(b) to (a) of Figure 12.70; one more slide yields (b).
Sliding −1-framed circles over each other as before results in (c). (If p = 2,
interpret the chain of 2-handles at the bottom of (c) as a single −1-framed
handle linking the (−p−2)-framed circle twice, and note that (b) and (c) are
isotopic.) We slide the fine −1-framed curve as shown (which is easier if we
pull the relevant 2-handle out of the upper dotted circle first, dragging the
(−p−2)-framed circle). Cancelling the lower 1-handle against the −1-framed
2-handle results in Figure 8.44(a). Note that we never slid a handle across
the upper 0-framed 2-handle or dotted circle. Thus, we can remove these
two handles (and the fine curves) and verify that the remaining handlebody
(which in Figure 8.44(b) is clearly equivalent to Figure 8.40) is sent to the
copy of Cp in Figure 8.44(a) identified in the previous solution.

Solution of Exercise 8.5.19(b): Recall that BasE(4) = {0,±PD(2f)} where
f denotes the homology class of the fiber of the elliptic fibration. Since C2 is
tautly embedded in E(4), Theorem 8.5.18 implies BasP1 = {±PD(2f+ σ1

2 )}.
(Here σ1 stands for the homology class of the given section, which is primitive
in H2(E(4);Z) but is divisible by 2 in H2(P1;Z).) Since further copies of
C2 given by the sections σ2, . . . , σ9 are also tautly embedded, induction
gives that BasPj = {±PD(2f + 1

2(σ1 + . . . + σj))}. Since SWPj is not

identically zero, Pj cannot be decomposed as Pj = X1#X2 with b+2 (Xi) > 0,
cf. Theorem 2.4.6. If Pj = X1#X2 with b+2 (X2) = 0, then by the blow-up
formula, b2(X2) = 1 and PD(2f + 1

2(σ1 + . . . + σj)) = E with E2 = −1.
Since PD(2f + 1

2(σ1 + . . . + σj))
2 = j, we get a contradiction, proving the

irreducibility of Pj .

Solution of Exercise 8.5.19(d): Apply the algorithm for rationally blowing
down (p = 2) as in Figure 12.71, interchanging the 0-framed and dotted
circles and blowing down the −1-framed meridian to replace C2 by B2.
Cancelling the dotted circle yields the final picture.

Solution of Exercise 9.1.20: If ∂X ⊂ S4, then S4 = A ∪∂X B, and since ∂X
is a homology sphere, QA = QB = QS4 is trivial. Hence Y = X ∪∂X B
is a closed 4-manifold with QY = QX , contradicting Donaldson’s Theo-
rem 1.2.30.

Solution of Exercise 9.3.5: Surgering out the sphere A corresponds to putting
a dot on one of the heavy 0-framed circles in Figure 9.6; surgering out B
puts a dot on the other circle instead. The resulting manifolds are obviously
diffeomorphic to each other via 180◦ rotation. If we then cancel the two
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Figure 12.71. Rationally blowing down a section of E(4) to obtain P1,
an irreducible, noncomplex, symplectic manifold.

1-handles in Figure 9.6 against the fine 2-handles, we obtain Figure 9.7.
(An easy way to do this is to begin by sliding the lower dotted circle under
the upper one so that it encircles the middle clasp. The fine 0-framed circle
then cancels the upper dotted circle, and cancelling the −1-framed circle
against the other dotted circle obviously gives Figure 9.7.) Now an isotopy
(ignoring the curve δ) yields Figure 9.5(b). Clearly, 180◦ rotation in either
Figure 9.6 or 9.7 is an involution of ∂Y that interchanges the roles of the
two circles in Figure 9.5, so it realizes the required diffeomorphism ϕ.

Solution of Exercise 9.4.1(a): The given compact handlebody X would be
contractible. Since R4 is simply connected at infinity (as we see by taking
D to be a topological ball in the definition, Exercise 6.1.4(c)), it is easy
to see that ∂X would be simply connected. Thus, either ∂X would be
a counterexample to the 3-dimensional Poincaré Conjecture or it would be
diffeomorphic to S3, in which case we could add a 4-handle to X, obtaining a
homotopy 4-sphere X∗ (which would be homeomorphic to S4 by Freedman’s
Theorem). This could not be diffeomorphic to S4, for if it were, then int X =
X∗ −D4 ≈ S4 −D4 would be diffeomorphic to R4.

Solution of Exercise 9.4.1(b): Since any two orientation-preserving embed-
dings D4 ↪→ int D4 are isotopic, each Di+1 − int Di is diffeomorphic to
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I × S3. The diffeomorphism X ≈ R4 is now easy to construct by sending
Di to the round ball of radius i in R4.

Solution of Exercise 9.4.8(a): First, consider X1�X2. Remove all of each Di

from X1�X2 except for the smooth neighborhoods of pi in ∂Di. The result-
ing complement Y is a smooth manifold with two boundary components,
and is easily seen to be connected. Find an arc γ in Y connecting p1 to p2
and disjoint from ∂Y except for transverse intersections at the endpoints,
and verify that R1 ∪ R2 ∪ νγ ⊂ X1�X2 is diffeomorphic to R1�R2. To see
the difficulty with general embeddings Ri ↪→ Xi, consider the 2-dimensional
case for X1 = R2 and R1 given by the open unit disk minus a spiral con-
verging toward the unit circle. To avoid such bad embeddings when proving
R1�R2 ↪→ X1#X2, remove a closed tubular neighborhood of a ray (properly
embedded in Ri) from each Ri. The diffeomorphism type of Ri is unaffected,
but now each Xi has a coordinate chart in which Ri appears as the open
upper half-space in R4. Form X1#X2 using a ball in the lower half-space of
each chart. Then it is easy to connect R1 and R2 by an arc in X1#X2.

Solution of Exercise 9.4.8(b): It is not hard to prove that for X noncompact
and connected at infinity (e.g., X homeomorphic to R4), X#∞CP2 is well-
defined. (There is a unique ambient isotopy class of proper embeddings
N ↪→ X, hence, of proper, orientation-preserving embeddings

∐∞D4 ↪→
X.) Thus, we obtain a map called CP2-stabilization from R onto a smaller

set, sending each X to X#∞CP2, and similarly a CP2-stabilization map.
Let Yk ⊂ R be the compact submanifold obtained from Figure 6.16 by
cutting off all of the Casson handle CH+ except its bottom k-stage tower
Tk, and with the handles thinned so that Yk ⊂ int Yk+1 and

⋃∞
k=0 Yk = R.

By blowing up CP2 in Yk+1 − Yk, we create an embedded disk D attached
to Tk that turns Tk into a 2-handle (cf. Figures 6.16 and 6.10). Thus, we
find a 4-ball Dk = Yk ∪ νD with Yk ⊂ Dk ⊂ Yk+1#CP2. The method of
Exercise 9.4.1(b) now shows that R#∞CP2 ≈ R4#∞CP2. On the other

hand, R#∞CP2 is not diffeomorphic to R4#∞CP2, as we can see by the
proof of Theorem 9.3.8 modified to allow blow-ups whenever necessary. (Use

the fact that E(n)#kCP2 has nontrivial Seiberg-Witten invariants for all

n ≥ 2.) Thus, CP2- and CP2-stabilization together distinguish R4, R, R
and R�R. See [BG] Proposition 5.4 for more details.

Solution of Exercise 9.4.8(c): Given such an embedding, remove both copies
of int K from L ⊂ #3S2 × S2 and glue in two copies of X, to obtain a
closed manifold with intersection form −4E8 ⊕ 3H, contradicting Furuta’s
Theorem. Then note that any infinite group of covering translations would
contain an element moving the compact subset K ′ off of itself.
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Solution of Exercise 9.4.11(a): Such a diffeomorphism of ends would allow us
to construct a periodic end as in the proof of Theorem 9.4.10, contradicting
Taubes. Since U ∪ L = CP2, we can define a radial family Ut ⊂ U by
Ut = CP2 − c�(Lt), and the same argument applies.

Solution of Exercise 9.4.11(b): There is no ψ turning U inside out; otherwise
we could glue the region inside ψ(U) to X (with end suitably trimmed) to
construct a closed, smooth, negative definite manifold contradicting Don-
aldson’s Theorem. We cannot have U and V ′ concentric by the proof of
Theorem 9.4.10. Finally, U and V ′ cannot be disjoint and nonconcentric by
the method of proof of Exercise 9.4.8(c). If there were a smooth isotopy of
∂Lq off of itself, then for suitable s, t′ with r ≤ s < q < t′ we could construct
such a map ψ.

Solution of Exercise 9.4.13(b): A diffeomorphism rel ∂ between the Cas-
son handles of Theorem 9.4.12 would result in a diffeomorphism between
the corresponding manifolds Rt. But there are only countably many self-
diffeomorphisms of ∂(CH) ≈ S1 × R2, since these are determined by their
restriction to S1×D2. Alternatively, use the manifolds Ut of the solution of
Exercise 9.4.11(a), which by Freedman theory can be assumed to have the
form int D4 ∪ CH for t in a Cantor set.

Solution of Exercise 9.4.15(b): Any compact submanifold of R1�R3 can be
enlarged to one of the form K1�K3 (boundary sum) with Ki ⊂ Ri and ∂Ki

connected. Embed Ki ↪→ Ri+1 ⊂ R2�R4 and connect these by an arc.

Solution of Exercise 9.4.20(a): Build R one handle at a time. After all 3-
handles have been added, we have no way to kill H2, so each subsequent
handlebody Kn must have b2(Kn) = 0 (since b2(R) = 0). Now standard
algebraic topology (e.g. the exact homology sequence of (I × Kn, ∂) and
Poincaré duality) shows that H2(DKn;Q) = 0, so we can set X = DKn in
the definition of γ for each n.

Solution of Exercise 9.4.20(b): Fix a diffeomorphism ϕ : R1 − int K1 →
R2 − int K2. To show that γ(R1) ≤ γ(R2), pick a compact K ′

1 ⊂ R1.
Let K ′

2 ⊂ R2 be a compact submanifold containing ϕ(K ′
1 − int K1) and a

topological 4-ball D containing K2. Now K ′
2 embeds in a spin 4-manifold

X2 with σ(X2) = 0 and 1
2b2(X2) ≤ γ(R2). Cutting D out of X2 and

replacing it by a suitable ball in R1 (glued in by ϕ), we obtain a spin
manifold X1 with K ′

1 ⊂ X1, σ(X1) = 0 and 1
2b2(X1) = 1

2b2(X2) ≤ γ(R2).
Thus γ(R1) ≤ γ(R2); interchanging the roles of R1 and R2 completes the
solution.
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Solution of Exercise 9.4.20(c): The first inequality is because each Rm ≤
�nRn. For the second, note that any compact submanifold of �nRn is con-
tained in one of the form �nKn,Kn ⊂ Rn (and ∂Kn connected). By compact-
ness, the boundary sum is finite. Embed Kn ⊂ Xn with 1

2b2(Xn) ≤ γ(Rn).

Then �nKn ⊂ #nXn and 1
2b2(#nXn) =

∑
n

1
2b2(Xn) ≤

∑
n γ(Rn).

Solution of Exercise 9.4.20(d): Let L be as in Remark 9.4.5. By connect-
ing the punctures of the associated −2E8-manifold by smooth curves and
deleting these, we obtain a smooth manifold with form −2E8 and a con-
nected end. Check that this end is diffeomorphic to that of �3L. The proof
of Corollary 9.4.7 shows that γ(�nL) increases without bound as n → ∞,
so γ(�∞L) = ∞. However, γ(L) = 1, so the previous exercise shows that
γ(�(n + 1)L) = γ(�nL) or γ(�nL) + 1. Thus, γ(�nL) must range over all
nonnegative integers as n ≥ 0 increases.

Solution of Exercise 9.4.20(f): By (d) above, for n ∈ N we get a large exotic
R4 with γ(L) = n. Let Lt ⊂ L be a radial family. By (e) we must have
γ(Lt) = n for all sufficiently large t, so γ−1(n) ⊂ R∼ is uncountable by The-
orem 9.4.10. (For n = 1, 2, construct a definite manifold whose end consists
of three periodic components, and merge these as in (d).) Given L′ ⊂ CP2

with γ(L′) = ∞, let Lt be any radial family as in Theorem 9.4.16; that
proof shows that the exotic R4’s L′�Lt realize uncountably many compact
equivalence classes. But γ(L′�Lt) ≥ γ(L′) =∞.

Solution of Exercise 9.4.20(g): If R ⊂ X with X closed and spin, then
there is a point p ∈ X − R. Since X − {p} ≈ X −D4 we can assume R is
disjoint from a 4-ball in X. After summing with copies of the K3-surface
we can assume σ(X) = 0; this contradicts the assumption γ(R) =∞. If X
is compact and spin with ∂X �= ∅, then R ⊂ DX = ∂(I × X) and DX is
closed and spin with σ(DX) = 0. If R embeds in any 4-manifold with c�(R)
a flat 4-ball, then a neighborhood U of c�(R) is homeomorphic to R4, and
as in the proof of Theorem 9.4.3 we can find a smooth, compact K ⊂ U
containing c�(R). This K will be spin since U is.

Solution of Exercise 9.4.23: For any K ⊂ S3, XK has a smooth (resp.
flat topological) embedding in R4 iff K is smoothly (resp. topologically)
slice. (Given an embedding ϕ : XK ↪→ S4, the core of the 2-handle is a slice
disk for K in S4 − int ϕ(D4) ≈ D4.) For K topologically slice, fix ϕ and
note that the topological manifold R4 − int ϕ(XK) can be smoothed by
Theorem 9.4.22. By uniqueness of smoothings on 3-manifolds, the homeo-
morphism ϕ|∂XK is isotopic to a diffeomorphism, so the smooth structures
on XK and R4 − int ϕ(XK) fit together to give a smoothing R of R4. If K
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is also not smoothly slice, then XK smoothly embeds in R but not in R4, so
R is a large exotic R4.

Solution of Exercise 10.1.20(a): Ambiently surgering Σ and applying the
generalized adjunction formula 2.4.8 to the resulting −1-torus, we get
c1(X,ω) · PD([Σ]) = ±1. Hence the appropriate orientation of Σ provides
the class e for which c1(X,ω) ·PD(e) = 1. Now the blow-up formula implies
that c1(X,ω) + 2PD(e) ∈ BasX , concluding the solution.

Solution of Exercise 10.1.20(b): Suppose that X is nonminimal, i.e., X is

diffeomorphic to Y#CP2 for some 4-manifold Y . By the blow-up formula
we know that there exists a basic class L ∈ BasY satisfying c1(X,ω) =
L − E. Appealing to the blow-up formula again, we have K = L + E
is in BasX ; now the relation (c1(X,ω) − K)2 = −4 follows from the fact
that E2 = −1. For the converse direction, assume that there is a class
K ∈ BasX with (c1(X,ω) − K)2 = −4. Taking E = 1

2(K − c1(X,ω)), we

have E2 = −1; moreover the fact that K2 = c21(X,ω) (since a symplectic 4-
manifold with b+2 > 1 has simple type) implies that c1(X,ω) · E = 1. Now
Remark 10.1.16(b) outlines the construction of a −1-sphere, implying that
X is nonminimal.

Solution of Exercise 10.1.20(c): Since −c1(X,ω) ∈ BasX , Theorem 10.1.15
shows that the Poincaré dual of −c1(X,ω) can be represented by a pseudo-
holomorphic curve C =

⋃
Ci. The adjunction formula now gives 2g(Ci)−2 =

2C2
i for each component, i.e., c21(X,ω) =

∑
C2
i =

∑
(g(Ci) − 1). Since the

assumption g(Ci) = 0 would imply C2
i = −1 (hence the existence of a −1-

sphere, contradicting the minimality of X), we conclude that c21(X,ω) is a
sum of nonnegative numbers, completing the solution.

Solution of Exercise 10.1.20(e): First note that b+2 (N) = 0, then apply
Donaldson’s Theorem 1.2.30 to diagonalize H2(N ;Z). Using the appro-
priate form of the blow-up formula (Theorem 2.4.10) and (b) above, we
conclude that X is nonminimal unless N is an integral homology sphere.
Since π1(X) = 1, the manifold N is simply connected; hence Freedman’s
Theorem 1.2.27 concludes the solution.

Solution of Exercise 10.2.5(a): Remark 10.1.16(b) shows that if −c1(X,ω)
is nonzero (and b+2 (X) > 1), then it can be represented by a pseudo-
holomorphic (in particular, symplectic) submanifold, hence −c1(X,ω)[ω] is
positive. Consequently, if c1(X,ω)[ω] = 0 and b+2 (X) > 1, then c1(X,ω) = 0.
Now Theorem 10.1.11 shows that if K ∈ BasX , then K · [ω] = 0 since
|K · [ω]| ≤ |c1(X,ω) · [ω]| = 0, and since the latter is an equality, the same
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theorem implies that K = ±c1(X,ω) = 0. Since w2(X) is the mod 2 reduc-
tion of c1(X,ω), it follows that X is spin.

Solution of Exercise 10.2.19: As we saw in Section 8.1, either a fiber F of the
Lefschetz fibration X → Σ admits a decomposition into nonempty closed
surfaces F0∪F1 (which happens if the vanishing cycle separates), or F cannot
be decomposed in this manner — this is the case for generic fibers and for
singular ones with a nonseparating vanishing cycle. (Recall that we assumed
π is injective on the set of critical points.) Now by assumption [F ] �= 0 in
H2(X;R), hence there is an element a ∈ H2

dR(X) with 〈a, [F ]〉 > 0. Suppose
that for a closed surface F0 contained in F we have 〈a, [F0]〉 = r ≤ 0.
Since 〈a, [F ]〉 = 〈a, [F0 ∪ F1]〉 = s > 0 and [F0] · [F1] = 1, the cohomology
class a + (−r + 1

2s)PD[F1] evaluates positively on both F0 and F1. This
modification does not affect the value of a on any other fiber, and there
are only finitely many singular fibers. Consequently, after finitely many
modifications we end up with a cohomology class which evaluates positively
on every closed surface contained by a fiber. Representing this cohomology
class by a closed 2-form completes the solution.

Solution of Exercise 10.2.26: Since nondegeneracy is an open condition and
sinceH2(X;Q) is dense inH2(X;R), we can find a closed and nondegenerate
2-form ω1 close to ω such that ω1 is in H2(X;Q). Now multiplying ω1 by
the appropriate denominator, we get a symplectic form ω′ on X such that
ω′ is an integral form.

Solution of Exercise 10.3.7(a): Suppose that X is a simply connected
spin 4-manifold with QX = 2kE8 ⊕ lH. Take the decomposition of
X = X1# . . .#Xn into irreducible pieces; assume that QXi = 2kiE8 ⊕ liH.
Obviously |k| ≤∑ |ki| since E8 ⊕ (−E8) ∼= 8H; for similar reasons

∑
li ≤ l.

Since c21(Xi) = 48ki+32|ki|+4li+4, the assumption c21(Xi) ≥ 0 implies that
12ki+8|ki|+li+1 ≥ 0. The irreducibility ofXi implies the same forX i, hence
(by reversing the orientation of Xi if necessary) we can assume that ki ≤ 0.
For ki ≤ 0, however, the above inequality gives li + 1 ≥ 4|ki|, which implies
li ≥ 3|ki|. Putting all these together, we get 3|k| ≤ 3

∑ |ki| ≤ ∑
li ≤ l,

which shows that the 11
8 -Conjecture is true for X.

Solution of Exercise 10.3.7(b): Since σ(X) = −σ(X) and χ(X) = χ(X), we
have c21(X) = 3σ(X) + 2χ(X) = −3σ(X) + 2χ(X) = −3σ(X) − 2χ(X) +
4χ(X) = 4c2(X)− c21(X).

Solution of Exercise 10.3.8(a): Let Σ ⊂ K3 be the chosen sphere with [Σ]2 =
−2. Since the tubular neighborhood νΣ is described by the diagram on the
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left of Figure 12.28, the 3-manifold ∂(K3−νΣ) is diffeomorphic to RP3. Now
Figure 12.28 shows the desired orientation-reversing diffeomorphism. Taking
(for example) the description of the K3-surface as X(2) (from Section 3.2),
one can easily see that there is a sphere Σ′ such that Σ ∩ Σ′ = {pt.}.
Consequently K3 − νΣ is simply connected, proving that π1(K3#2K3) =
1. Now χ(K3#2K3) = 2χ(K3 − νΣ) = 2χ(K3) − 2χ(νΣ) = 44; since
σ(K3 − νΣ) = −15, we have that σ(K3#2K3) = −30. This implies that
b+2 (K3#2K3) = 6, b−2 (K3#2K3) = 36 and c21(K3#2K3) = −2.

<          >2<          > 2<          >

X Y

2<          > 2

(a) (b)

(c) (d)

1

1

22

2
0 1

Figure 12.72. Construction of X#2Y and K3#2K3.

Solution of Exercise 10.3.8(b): Let N denote a tubular neighborhood of a
−2-framed sphere. One approach to drawing X#2Y is to glue X−int N and
Y −int N onto I×∂N , where the latter is drawn with ∂−(I×∂N) = ∅ and the
other manifolds have ∂+ = ∅. This is equivalent to gluing X#Y −int (N�N)
onto I× (∂N − int D3) as in Example 5.5.8. The first of these manifolds has
a diagram obtained by drawing X and Y in the same picture (to get X#Y )
and putting 〈−2〉-coefficients on both unknots (Figure 12.72(a)). The other
piece is I × (RP3 − int D3), the D2-bundle over RP2 with Euler number
0 (cf. Exercise 4.6.9(d)). To perform the gluing, change one coefficient
in Figure 12.72(a) to 〈+2〉 by blowing up and down as in Figure 12.28
(Figure 12.72(b)), perform the indicated slide and attach the manifold to
the D2-bundle over RP2 as drawn in Figure 6.2 (Figure 12.72(c)). In the
case of K3#2K3 (where we use the −n-framed meridian in Figure 8.15(c)
with n = 2), the two handle slides shown in Figure 12.72(d), followed by a
1-handle cancellation, yield Figure 10.4. To verify that our gluing map ϕ
was the correct one, it suffices to see that ϕ identifies the two 2-spheres S, S′
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arising in the construction of X#Y − int (N�N) (separating ∂N#∂N) and
I × (∂N − int D3) (namely, {pt.} × ∂D3). This can be checked explicitly in
the diagrams, or we can invoke standard 3-manifold theory. (If S′∩ϕ(S) = ∅,
then the region between these spheres in ∂N#∂N is diffeomorphic to I×S2

and we are done. Otherwise, some component of the complement in S′ of
the 1-manifold S′ ∩ ϕ(S) must be a disk, and this splits ϕ(S) into a pair
of embedded spheres in ∂N#∂N , one of which bounds a copy of D3. An
isotopy of ϕ now reduces the number of components of S′ ∩ ϕ(S).)

Solution of Exercise 11.1.6: Given a generic link projection, the only diffi-
culty is that some crossings may be opposite to the required configuration
for a Legendrian link. This can be remedied by the isotopy in Figure 12.73.

Figure 12.73. Making a knot in (S3, ξc) Legendrian.

Solution of Exercise 11.2.3(b): Since CPN −H is biholomorphic to CN , the
manifold Y = X −X ∩H is a Stein manifold. The basic idea is to turn the
handle structure of Y upside down. Since all handles now have index ≥ n,
they will not contribute to low-dimensional homology or homotopy. There
are two technical difficulties, however: We do not know that the handle
decomposition is finite, and we do not know how the handle structure fits
together with a tubular neighborhood of X ∩ H in X. (In fact, Y is an
affine algebraic manifold, so it is collared near infinity and has a finite handle
decomposition, but we will not assume this.) To resolve these difficulties, we
note that it suffices (via the long exact sequences) to prove Hi(X,X ∩H) =
0 = πi(X,X ∩ H) for i ≤ n − 1. Turning Y upside down shows that any
element of one of these groups is represented by a cycle (resp. map) in a
preassigned tubular neighborhood of X ∩ H in X, hence it vanishes. (In
fact, transversality of X and H is not really necessary, since even singular
projective subvarieties have neighborhoods which deformation retract onto
them.)

Solution of Exercise 11.2.5(a): The case F = S2 is easy. For F = #gT 2,
g > 1, stack copies of Figure 11.7 vertically and band-sum them as in Fig-
ure 12.74. For F = RP2, Figure 4.38(b) gives Figure 12.75. (Note that
Figure 4.38(a) is not optimal.) Band-sum these as in Figure 12.76 for the
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case F = #gRP2. (Recall that the framing coefficient will be e(X)− 2g (cf.
Section 6.1), so each new summand increases e(X) by 1 as required.)

Solution of Exercise 11.2.5(b): See Figure 12.77.

Figure 12.74

 e(X)   

Figure 12.75. Stein structure on a D2-bundle over RP2 with e(X) ≤ −1.

Figure 12.76. Band-summing Legendrian curves.

Figure 12.77. A Legendrian isotopy.

Solution of Exercise 11.2.5(c): Create the self-plumbing as in Figure 12.78
and verify that tb increases by ±2.

Solution of Exercise 11.2.9: Erase each component with coefficient −∞.
Expand each remaining coefficient r as a continued fraction as in the solution
of Exercise 5.3.9(b), always rounding down. The resulting integers satisfy
an ≤ r < tb(K) (so an ≤ tb(K) − 1) and ai ≤ −2 for i < n. The proof is
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X  

X 

h

h

hX  

Figure 12.78. Adding a self-plumbing to a 2-handle.

 r   

 a

 a

 a

 n

 2

 1

Figure 12.79. Realizing rational surgery diagrams as Stein boundaries.

completed by redrawing Figure 12.13 as in Figure 12.79, and adding zig-zags
as necessary.

Solution of Exercise 11.2.11(a): S3 and S1×S2 bound D4 and D4∪1-handle,
respectively. Any other lens space can be written as L(p, q) with p > q ≥ 1,
or surgery on the unknot with coefficient −p

q < −1 = tb(K), where K is the

obvious Legendrian unknot in R3.

Solution of Exercise 11.2.11(b): Figure 12.80 shows a Legendrian left trefoil
with tb = −6, solving the problem for surgery coefficients r < −6. For
r = −1, the manifold bounds the (negative) E8-plumbing, which is easily
described as a Stein surface in standard form. Thus, it seems reasonable to
try to generalize the solution of Exercise 5.1.12(a), Figure 12.9. If we change
the coefficient on the left trefoil in (h) of that figure to r, we can trace back

                

                                                                                                               



12.3. Solutions of some exercises in Part 3 529

Figure 12.80. Legendrian left trefoil knot.

to (b), where the +5 is replaced by r + 6. Slam-dunking this meridian, we
obtain a linear chain of unknots with coefficients −2 and −1 − 1

r+6 . This
clearly represents a Stein surface provided that r ≥ −6.

Solution of Exercise 11.3.2(a): In Exercise 11.2.5(a), we constructed a Stein
structure when e(X) = −χ(F ). It is easy to check that the knot K in these
diagrams has r(K) = 0. For a fixed orientation on K, adding a downward
zig-zag increases r(K) by 1, and an upward zig-zag decreases r(K) by 1.
Either operation decreases e(X) by 1; the two operations together generate
the general case. The second condition holds for all Stein structures since
〈c1(X), F 〉|2 = 〈w2(X), F 〉 = e(X)|2. When F is nonorientable, the map
H2(X;Z) → H2(X;Z2) is an isomorphism, so c1(X) is determined by the
requirement that c1(X)|2 = w2(X). Thus, Exercise 11.2.5(a) realizes the
unique possible Chern class in this case.

Solution of Exercise 11.3.6(b): Let n = tb(K)−1 be the framing coefficient.

For n �= 0, we have θ(ξ) = r(K)2

n − 4 − 3sign(n), for r(K) = n = 0 we have
θ(ξ) = −4, and θ(ξ) is undefined otherwise.

Solution of Exercise 11.3.6(c): Let ri denote r(Ki). Clearly, |n0| = |n1| is
the order of H1(Mi;Z). If ni = 0 the group is Z, |ri| is the divisibility of
c1(ξi), and we are done. Otherwise, θ(ξ0) = θ(ξ1), and these are given by
the previous exercise. It now suffices to show that n0 = n1. If not, then
n0 = −n1 and the formula θ(ξ0) = θ(ξ1) shows that r20 + r21 = 6|n0|. Now
under the linking pairing, [μi]

2 ≡ − 1
ni

(mod 1) (Exercise 5.3.13(g)), but

[μ0]
2 = (ϕ∗[μ0])

2 = k2[μ1]
2 (mod 1), so k2 ≡ −1 (modn0). Reducing the

equation r20+r21 = 6|n0| modulo 3, we see that each ri is divisible by 3 (since
−1 is not a square mod 3), and so n0 is divisible by 3. But the equation
k2 ≡ −1 (mod 3) has no solutions.

Solution of Exercise 11.3.14(a): Note that (ẑ + z′)2 = ẑ2 + 2ẑ · z′, and the
last term is 2[∂z] · [z′] in M , which can be arranged to be any multiple of
2d([∂z]) sinceH1(M ;Z)/torsion is the dual space ofH2(M ;Z). But [z+z′] =
[z] ∈ H2(X,M ;Z), and by the long exact homology sequence of (X,M), any
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relative cycle z′′ with ∂z′′ = ∂z and [z′′] = [z] is homologous in X to z + z′

for some z′.

n kk

f(a) (b)

n

0

Figure 12.81. Stein structures on the nucleus N(n).

Solution of Exercise 11.4.11(b): Take the Stein surface Sk corresponding to
the link diagram of Figure 12.81(a). It is easy to see that tb(f) = 1, r(f) =
0, tb(σ) = −n + 1 and r(σ) = 2k − n. The underlying smooth 4-manifold
is given by the Kirby diagram of Figure 12.81(b); consequently Sk ≈ N(n)
for all 1 ≤ k ≤ n− 1 (n ≥ 2). Now 〈c1(Sk), f〉 = r(f) = 0 and 〈c1(Sk), σ〉 =
r(σ) = 2k − n, hence c1(Sk) = PD((2k − n)f).

Solution of Exercise 11.4.11(c): Suppose thatX admits a Stein structure and
apply Theorem 11.4.7 to F . Suppose first that F is orientable. If g(F ) > 0,
then −χ(F ) ≥ [F ]2 + |c1(X)[F ]| and [F ]2 = e(X), so 0 ≤ |〈c1(X), [F ]〉| ≤
−e(X)−χ(F ). If F is a sphere, then [F ]2 = e(X) ≤ −2 by Theorem 11.4.7,
so e(X)+χ(F ) = e(X)+2 ≤ 0. Summing F with a trivial torus and applying
the theorem again, we obtain |〈c1(X), [F ]〉| ≤ −e(X). If F is nonorientable,
then pass to the double cover, which by Exercise 11.2.14 is also Stein. Since
both e and χ double under the double cover, the required inequality follows
from the previous case. For the congruence 〈c1(X), F 〉 ≡ e(X) (mod 2), see
the solution of Exercise 11.3.2(a).

Solution of Exercise 11.4.11(d): SinceH2(X) �= 0 and there are no 3-handles,
there are classes a ∈ H2(X;Z) and b ∈ H2(X;Z) with 〈a, b〉 �= 0 ∈ Z. Let
c ∈ H2(X;Z) be any integer lift of w2(X) (which exists since H3(X;Z) = 0,
or by Remark 5.7.5). The classes c + 2ka (k ∈ Z) are all integer lifts of
w2(X), so by Exercise 11.3.2(b) they all arise as Chern classes of Stein
structures Sk on possibly different smooth structures on X. Since we can
choose |〈c+2ka, b〉| to be arbitrarily large, Theorem 11.4.7 implies that the
minimum genus of a connected representative of b in Sk increases without
bound as k increases. In particular, the underlying smooth structures must
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realize infinitely many isotopy classes. In the case of R2-bundles, these are
clearly nondiffeomorphic.

                

                                                                                                               



                

                                                                                                               



Chapter 13

Notation, important
figures

13.1. List of commonly used notation

N the set of positive integers

Z the ring of integers

C, R, Q the fields of complex, real and rational
numbers

H the field of quaternions

Zn the ring of integers modulo n

Rn
+ the closed upper half space of Rn

gcd(p, q) greatest common divisor of p and q

[X] the fundamental class of the manifold X

int X the interior of X

c�(X) the closure of X

X the manifold X with the opposite orientation

∂X boundary of the manifold X

∂±X part of the boundary of X

∪∂ gluing along a boundary

χ(X) the (topological) Euler characteristic of the
manifold X

σ(X) signature of the 4-manifold X

QX intersection form of the 4-manifold X

CX the set of characteristic elements in
H2(X4;Z)

533
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b+2 (X) (b−2 (X) resp.) the dimension of the maximal positive
(negative) definite subspace of H2(X;Z)
with respect to the given intersection form
QX

PD Poincaré duality isomorphism

E8, H two important intersection forms

χh(S) holomorphic Euler characteristic of the
complex surface S

κ(S), κ(X) the Kodaira dimension of the complex
surface S (or symplectic 4-manifold X)

KS the canonical line bundle of the complex
surface S

Dn n-dimensional disk

Sn n-dimensional sphere

Tn n-dimensional torus

RPn n-dimensional (real) projective space

CPn n-dimensional (complex) projective space

[z0 : . . . : zn] homogeneous coordinates in CPn or RPn

E(n) the simply connected elliptic surface (with
section) with χh(E(n)) = n

E(n)p1,... ,pk the above elliptic surface after k logarithmic
transformations

M(p, q, r) Milnor fiber

Σg Riemann surface of genus g

g(Σ) genus of the Riemann surface Σ

(Mg, ∗) mapping class group of Σg, with
multiplication ϕ ∗ ψ = ψ ◦ ϕ

νΣ tubular neighborhood of the submanifold Σ

Fn Hirzebruch surface

Gn,g geometrically ruled surface over the
Riemann surface Σg

≈ orientation-preserving diffeomorphism of
manifolds

∼ orientation-preserving diffeomorphism of
Kirby diagrams

∂∼ orientation-preserving diffeomorphism of
boundary 3-manifolds in a Kirby diagram

∼= isomorphism of groups

# connected sum of manifolds

� boundary sum, end sum
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#f fiber sum

� disjoint union

∼c cobordant

〈n〉 surgery coefficient of ∂−X (in Kirby
diagrams); also used to denote the bilinear
form on Z with matrix [n]

PG → X principal G-bundle over X

PG ×ρ F the associated fiber bundle (with fiber F )
via the representation ρ : G→ Aut(F ).

Γ(X;E) the vector space of C∞ sections of the vector
bundle E → X

Λi the bundle of i-forms

Λ± the bundle of self-dual and anti-self-dual
forms over a Riemannian 4-manifold

FA the curvature of the connection A

F+
A the self-dual part of the curvature of the

connection A

O(n), SO(n) n-dimensional orthogonal and special
orthogonal group

U(n), SU(n) n-dimensional unitary and special unitary
group

GL(n;R), SL(n;R) n-dimensional general and special linear
group over the ring R

Spin(n) n-dimensional spin group

Spinc(n) n-dimensional spinc group

Lie(G) Lie algebra of the Lie group G

SX the set of spin structures on the manifold X

ScX the set of spinc structures on the manifold X

ScX,ξ the set of spinc structures on the manifold X
inducing the contact structure ξ on ∂X

S± spinor bundles

Met(X) the space of metrics on the manifold X

/∂ the Dirac operator on a spin Riemannian
manifold

/∂A the twisted Dirac operator on a spinc

Riemannian manifold

W± spinc spinor bundles

SWX Seiberg-Witten invariant of a closed 4-
manifold X
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SWX,ξ Seiberg-Witten invariant of a 4-manifold X
with contact boundary (∂X, ξ)

Pert(X) the space of perturbations on the 4-manifold
X

BasX the set of basic classes of a 4-manifold X

Cln (and Cln) the n-dimensional real (and complexified)
Clifford algebra

Cl(X) the complex Clifford bundle over the spin
manifold X

Ωn n-dimensional cobordism group

Ω∗ cobordism ring

(X,ω) symplectic manifold with symplectic form ω

(M, ξ) manifold with contact structure (or plane
field) ξ

�k(K1,K2) the linking number of the knots K1,K2

w(K) writhe of a knot

tb(K) the Thurston-Bennequin invariant of the
Legendrian knot K

r(K) the rotation number of the Legendrian knot
K

13.2. Index of important diagrams

Akbulut cork: Figures 9.5, 9.7

Branched covers: Section 6.3

Bundles

D2-bundle over S2: Figure 4.22

D2-bundle over T 2: Figures 4.36, 6.1

with Stein structure: Figure 11.7

D2-bundle over RP2: Figures 4.38, 6.2

with Stein structure: Figure 12.75

D2-bundle over Klein bottle: Figure 5.3

D2-bundle over genus-3 surface: Figure 12.5

D2-bundle over arbitrary closed surface: Figure 6.4

S2 × S2: Figure 4.30, Figure 4.34 with n even

S2×̃S2: Figure 4.34 with n odd

S2-bundle over RP2: Figure 5.46

T 4: Figure 4.42

Casson handles: Figures 6.14, 6.15
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Closed 4-manifolds (see also Bundles (S2-bundles and T 4), Elliptic
surfaces, Lefschetz fibrations, lens spaces (S1 × L(5, 1)))

Complex surface U(m,n): Figures 8.31, 8.32

Complex surface X(m,n): Figures 8.33, 8.34

Horikawa surfaces: H(n) = X(3, n) = X(n, 3), H ′(n) = U(3, n)

Irreducible, nonsymplectic manifold XK : Figure 10.2

Simply connected manifold K3#2 K3 with b±2 even: Figure 10.4

Symplectic, noncomplex manifold P1: Figure 12.71

Covers: Section 6.3

Elliptic surfaces

Cusp neighborhood: Figure 8.9

Logarithmic transform Np of cusp neighborhood: Figure 8.28

E(n): Figures 8.11, 8.15, 8.16, 8.31 and 8.32 (m = 2), 8.33 and
8.34 (X(2, n) or X(n, 2))

E(n)− int νF : Figure 8.10

E(n)p: Figure 8.24(a)

Fishtail neighborhood: Figure 8.8

Logarithmic transform Qp of fishtail neighborhood:
Figure 8.27(b)

Logarithmic transformation of arbitrary 4-manifolds:
Figures 8.25, 8.26

Nucleus N(n): Figure 8.14

with Stein structure: Figure 12.81

Generalized: Figure 7.5

Nucleus N(n)p: Figures 8.29, 8.30

Exotic R4: Figure 6.16

with Stein structure: Figure 11.9

Exotic smooth structures on compact manifolds (see also elliptic
surfaces) Figures 8.29, 8.30, 11.14

Heegaard diagrams

L(5, 1), L(5, 2): Figure 4.14

S1 × S2, RP3, I × T 2, T 3: Figure 12.1

Trefoil knot complement: Figure 12.32

Holomorphic curve in CP2: Figure 6.34

Complement: Figure 12.39

Lefschetz fibrations (see also Elliptic surfaces)

on E(n): Figure 8.11

on complex surface U(m,n): Figure 8.31

on complex surface X(m,n): Figure 8.33

Achiral Lefschetz fibration on S4: Figure 8.38
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Lens spaces

L(5, 1), L(5, 2) (Heegaard): Figure 4.14

L(p, q) (Surgery): Figure 5.24

I × L(5, 1): Figure 4.39

S1 × L(5, 1): Figure 4.41

Logarithmic transformation — see Elliptic surfaces

Mazur manifold: Figure 9.5(b)

Milnor fiber Mc(2, q, r): Figures 6.45, 8.16

Nucleus — see Elliptic surfaces

with Stein structure: Figure 12.81

Generalized: Figure 7.5

Plumbings (also see Bundles)

E8: Figures 4.33, 8.21

– on a tree: Figure 6.5

– on a sphere and torus: Figure 12.62

– on a pair of tori: Figure 12.6

– on a nonsimply connected graph: Figure 6.8

Self-plumbing: Figures 6.10, 6.11

Poincaré homology sphere Σ(2, 3, 5): Figures 4.33, 5.22, 8.21

Equivalence of first two descriptions: Figure 12.9

I × Σ(2, 3, 5): Figure 12.36

See also Milnor fiber Mc(2, 3, 5)

Ribbon disk/surface: Figure 6.19

Complements: Figures 6.20, 6.21, 6.24, 12.21, 12.34, 12.35

Immersed: Figure 6.28

S2 × S2: Figure 4.30, Figure 4.34 with n even

S2×̃S2: Figure 4.34 with n odd

Stein surface in standard form: Figure 11.2

3-Torus T 3

Heegaard diagram: Figure 12.1

Surgery diagram: Figure 5.25

Fibration by 2-tori: Figure 12.12

I × T 3: Figure 4.40

4-Torus T 4: Figure 4.42
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13.3. Index of Kirby moves and related
operations

Preserving 4-manifold:

Changing notation for 1-handles: Figure 5.35

1-handle/2-handle cancellation: Figures 5.12, 5.13, 5.38

2-handle/3-handle cancellation: Figure 5.15

1-handle slide: Figures 5.2, 5.39

2-handle slide: Figures 5.5, 5.8, 6.35

Sliding under a 1-handle: Figure 5.36

Ribbon disk slide: Figure 6.22

Twisting a 1-handle: Figure 5.42

Turning a handlebody upside down: Example 5.5.5

Trick for following twists through handle slides: Figure 12.65

For 3-manifolds:

Rolfsen twist: Figure 5.27

Slam-dunk: Figure 5.30

Changing rational surgery to integral surgery: Figure 12.13

Other:

Blowing up/down: Figures 5.17-5.21

Gluck twist: Figure 12.17

Logarithmic transformation: Figure 8.26

Rational blow-down: Figures 8.40, 8.41 and Definition 8.5.4

Sliding a surface off of a 2-handle: Figures 6.36, 6.37

Covers/branched covers: Section 6.3

Doubling: Examples 4.6.3, 5.5.4
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la théorème de la pseudo-isotopie, Publ. Math. I.H.E.S. 39 (1970).

[Cha] N. Chakiris, The monodromy of genus two pencils, dissertation, Columbia U.,
1978.

[Ch1] Z. Chen, On the geography of surfaces — simply connected minimal surfaces with
positive index, Math. Ann. 126 (1987), 141–164.

[Ch2] Z. Chen, The existence of algebraic surfaces with preassigned Chern numbers,
Math. Z. 206 (1991), 241–254.

                

                                                                                                               



Bibliography 543

[CG] T. Cochran and R. Gompf, Applications of Donaldson’s theorems to classical knot
concordance, homology 3-spheres and Property P, Topology 27 (1988), 495–512.

[CM] T. Cochran and P. Melvin, Finite type invariants of 3-manifolds, preprint.

[CFHS] C. Curtis, M. Freedman, W.-C. Hsiang and R. Stong, A decomposition theorem
for h-cobordant smooth simply connected compact 4-manifolds, Invent. Math. 123
(1996), 343–348.

[De] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135–206.

[DF] S. DeMichelis and M. Freedman, Uncountably many exotic R4’s in standard 4-
space, J. Diff. Geom. 35 (1992), 219–254.

[Di] F. Ding, Smooth structures on some open 4-manifolds, Topology 36 (1997), 203–
207.

[DW] A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-
complex, Annals of Math. 69 (1959), 667–677.

[D1] S. Donaldson, An application of gauge theory to four dimensional topology, J.
Diff. Geom. 18 (1983), 279–315.

[D2] S. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Diff.
Geom. 44 (1996), 666–705.

[D3] S. Donaldson, Lefschetz fibrations in symplectic geometry, Proc. Internat. Cong.
Math. (Berlin, 1998), Vol II, Doc. Math. Extra Volume ICMII (1998), 309–314.

[DK] S. Donaldson and P. Kronheimer, Geometry of four-manifolds, Oxford Univ.
Press, 1990.

[Du] A. Durfee, Fifteen characterizations of rational double points and simple critical
points, Enseign. Math. 25 (1979), 131–163.

[EE] C. Earle and J. Eells, A fiber bundle description of Teichmüller theory, J. Diff.
Geom. 3 (1969), 19–43.

[Eb] W. Ebeling, An example of two homeomorphic, nondiffeomorphic complete in-
tersection surfaces, Invent. Math. 99 (1990), 651–654.

[Ed] A. Edmonds, Linking pairings of 3-manifolds and intersection forms of 4-
manifolds, in preparation.

[E1] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds,
Invent. Math. 98 (1989), 623–637.

[E2] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2,
Internat. J. of Math. 1 (1990), 29–46.

[E3] Y. Eliashberg, Filling by holomorphic discs and its applications, Geometry of
Low-Dimensional Manifolds: 2, Proc. Durham Symp. 1989, London Math. Soc.
Lecture Notes, 151, Cambridge Univ. Press, 1990, 45–67.

[E4] Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet’s work, Ann.
Inst. Fourier 42 (1992), 165–192.

[E5] Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds,
Topological Methods in Modern Mathematics, Publish or Perish, Berkeley, 1993,
171–193.

[E6] Y. Eliashberg, Symplectic geometry of plurisubharmonic functions, Proceedings,
NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 488 (Montreal 1995), Kluwer
Acad. Publ., Dordrecht 1997, 49–67.

[E7] Y. Eliashberg, Unique holomorphically fillable contact structure on the 3-torus,
Internat. Math. Res. Notices N2 (1996), 77–82.

                

                                                                                                               



544 Bibliography

[EP] Y. Eliashberg and L. Polterovich, New applications of Luttinger’s surgery, Com-
ment. Math. Helvetici 69 (1994), 512–522.

[ET] Y. Eliashberg and W. Thurston, Confoliations, University Lecture Series 13,
Amer. Math. Soc., Providence, 1998.

[Elk] N. Elkies, A characterization of the Zn lattice, Math. Res. Lett. 2 (1995), 321–
326.

[En] H. Endo, Meyer’s signature cocycle and hyperelliptic fibrations, preprint 1999.

[Fa] F. Fang, Smooth structures on Σ× R, Top. and Appl., to appear.

[FR] R. Fenn and C. Rourke, On Kirby’s calculus of links, Topology 18 (1979), 1–15.

[FS1] R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed
Thom-conjecture, Turkish J. Math. 19 (1995), 27–40.

[FS2] R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, J. Diff.
Geom. 46 (1997), 181–235.

[FS3] R. Fintushel and R. Stern, Knots, links and 4-manifolds, Invent. Math. 134
(1998), 363–400.

[FS4] R. Fintushel and R. Stern, Constructions of smooth 4-manifolds, Proc. Internat.
Cong. Math. (Berlin, 1998), Vol II, Doc. Math. Extra Volume ICMII (1998),
443–452.

[FFG] A. Fomenko, D. Fuchs and V. Gutenmacher, Homotopic topology, Akadémiai
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33 (1931), 692–713.

[Fr] R. Friedman, Vector bundles and SO(3)-invariants for elliptic surfaces, J. Amer.
Math. Soc. 8 (1995), 29–139.

[FM1] R. Friedman and J. Morgan, Smooth 4-manifolds and complex surfaces, Ergeb.
Math. Grenzgeb. vol. 27, Springer-Verlag, 1994.

[FM2] R. Friedman and J. Morgan, Algebraic surfaces and Seiberg-Witten invariants,
J. Algebraic Geom. 6 (1997), 445–479.

[FM3] R. Friedman and J. Morgan, Obstruction bundles, semiregularity and Seiberg-
Witten invariants, Comm. Analysis and Geometry, to appear.

[Frø] K. Frøyshov, The Seiberg-Witten equations and four-manifolds with boundary,
Math. Res. Lett. 3 (1996), 373-390.

[Fs] L. Fuchs, Infinite abelian groups, Pure and Applied Math. 36-I, Academic Press,
1970.

[Fu1] T. Fuller, Distinguishing embedded curves in rational complex surfaces, Disserta-
tion, U. of Texas, Austin, 1996.

[Fu2] T. Fuller, Diffeomorphism types of genus 2 Lefschetz fibrations, Math. Ann. 311
(1998), 163–176.

                

                                                                                                               



Bibliography 545

[Fu3] T. Fuller, Generalized nuclei of complex surfaces, Pacific Journal of Math. 187
(1999), 281–295.

[Fur] M. Furuta, Monopole equation and the 11
8
-conjecture, preprint.

[Ge] S. Gersten, On Rapaport’s example in presentations of the trivial groups, preprint.

[Gi] E. Giroux, Une structure de contact, meme tendue est plus ou moins tordue,
Ann. Scient. Ecole Normale Sup. 27 (1994), 697–705.

[Gk] H. Gluck, The embeddings of 2-spheres in the 4-sphere, Trans. Amer. Math. Soc.
104 (1962), 308–333.

[G1] R. Gompf, Three exotic R4’s and other anomalies, J. Diff. Geom. 18 (1983),
317–328.

[G2] R. Gompf, Infinite families of Casson handles and topological disks, Topology 23
(1984), 395–400.

[G3] R. Gompf Stable diffeomorphism of compact 4-manifolds, Topology and its Appl.
18 (1984), 115–120.

[G4] R. Gompf, An infinite set of exotic R4’s, J. Diff. Geom. 21 (1985), 283–300.

[G5] R. Gompf, On sums of algebraic surfaces, Invent. Math. 94 (1988) 171–174.

[G6] R. Gompf, Periodic ends and knot concordance, Top. Appl. 32 (1989), 141–148.

[G7] R. Gompf, A moduli space of exotic R4’s, Proc. Edinburgh Math. Soc. 32 (1989),
285–289.

[G8] R. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-
Curtis and Schoenflies problems, Topology 30 (1991), 97–115.

[G9] R. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), 479–511.

[G10] R. Gompf, Sums of elliptic surfaces, J. Diff. Geom. 34 (1991), 93–114.

[G11] R. Gompf, An exotic menagerie, J. Diff. Geom. 37 (1993), 199–223.

[G12] R. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142
(1995), 527–595.

[G13] R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998),
619–693.

[G14] R. Gompf, Kirby calculus for Stein surfaces, in “Topics in Symplectic 4-
manifolds” International Press (1998) 9–46.

[G15] R. Gompf, Spinc structures and homotopy equivalences, Geometry and Topology
1 (1997), 41–50.

[G16] R. Gompf, A topological characterization of symplectic manifolds, in preparation.

[GM] R. Gompf and T. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of
Math. 138 (1993), 61–111.

[Go] C. Gordon, Knots in the 4-sphere, Comment. Math. Helvetici 51 (1976), 585–596.

[Gr] H. Grauert, On Levi’s problem, Ann. Math. 68 (1958), 460–472.

[GH] P. Griffiths and J. Harris, Priciples of algebraic geometry, Wiley, New York, 1978.

[GP] V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, 1974.

[GuM] L. Guillou and A. Marin, Commentaires sur les quatres articles précédents de V.
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11
8
-Conjecture, 16

3
2
-Conjecture, 410

adjunction formula, 30, 38, 44, 389, 447

affine section, 244

Alexander polynomial, 211

almost-complex structure, 29, 412
calibrating, 387

compatible, 386

existence of, 29

tame, 387
almost-Kähler structure, 388

ambient isotopy, 5

Andrew-Curtis

Conjecture, 149
move, 149

trivial, 149

arctic region, 277

atlas, 3

attaching
map, 99

region, 99

sphere (descending sphere), 99

axis, 284

band-sum, 141

base locus, 284, 287

belt sphere (ascending sphere), 99
Bing double, 197

n-twisted, 204

blackboard framing, 124, 170

blow-down, 45, 394

smooth, 46
blow-up, 43, 70, 87, 150, 247, 333, 391

formula, 54, 337

smooth, 43

Bogomolov-Miyaoka-Yau
inequality, 90

line, 278

Borromean rings, 158, 197

botany, 276

boundary, 4

sum, 19, 128

branch locus, 225

branched cover, 225, 239

Cr-map, 4

cancelling pair, 108

canonical

cyclic cover, 225

framing, 421

line bundle, 86, 389, 413

Casson

handle, 205, 351

tower, 351

2-stage, 205

cell, 99

characteristic element, 10, 13, 345

chart, 3

Chern class, 182, 389

first, 22, 25, 182, 243, 414

total, 21, 26

clasp, 201

classification

bundles, 31

definite intersection forms, 14

indefinite forms, 11, 14

topological manifolds, 6, 15

Clifford

algebra, 34

bundle, 34

multiplication, 34

cobordant, 159, 340

cobordism, 340

ring, 341

cocore, 99

compatible, 446

complete intersection, 23, 92, 344
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complex

projective manifold, 81
structure, 5

surface, 28, 239
torus, 93

component, 240

configuration space, 59
confoliation, 420

connected sum, 20, 128, 340

normal, 340
of knots 135, 198

contact structure, 419
contactomorphism, 420

continued fraction expansion, 164, 331

coordinates
affine, 18

homogeneous, 18

core, 99
cusp fiber, 70, 267

cyclic branched covers, 225

deformation equivalence, 86
degree, 284

Dehn

surgery, 157
coefficient, 157

slope, 157
twist, 159, 295

desingularization, 246

difference class, 182
Dirac operator, 35

direction, 310

disk, 4
dissolve, 343

Dolgachev surface, 85, 353
dotted circle notation, 167, 202

double, 130

relative, 130, 177
double-strand notation, 119, 141

elliptic

curve, 68, 77, 82
fibration, 77

properly, 92

surface, 67, 239, 344
E(1), 70

E(n), 74

embedding
into #mS2 × S2, 193

into Rn, 126, 158, 193, 344
taut, 337

Enriques surface, 31, 93

Euler
characteristic (χ), 28

class, 27, 181, 182

holomorphic (χh), 28
number, 103, 132, 155

exceptional

curve, 43, 247

sphere, 43, 70, 248, 333

exotic

R4, 7, 206, 214, 351

large/small, 366

universal, 376

sphere, 102, 149, 350

fiber, 287

cusp, 70

Ẽ8, 266

fishhead, 327

fishtail, 70

multiple, 82, 84

sum, 71, 257

generalized, 245

fibration, 325

elliptic, 67, 77, 344

Lefschetz, 69, 287, 401

finger move, 350

fishtail fiber, 70

flat disk, 210

foliation, 420

confoliation, 420

form

anti-self-dual (ASD), 58

intersection, 7

self-dual, 58

symplectic, 53

framing, 100, 116, 154, 167

coefficient, 123

Fubini-Study metric, 388

fundamental

class, 5, 7

group, 397

gauge

group, 59

theory, 51, 330, 397, 412

generalized

adjunction formula, 40, 53, 74

fiber sum, 245, 258

genus, 287

function, 37, 51, 55

geography, 270

botany, 412

complex surfaces, 90

irreducible manifolds, 410

Lefschetz fibrations, 404

spin surfaces, 276

symplectic manifolds, 399

geometrically ruled surface, 87, 94, 270, 274

base curve, 94

Gluck construction, 156, 171, 213, 223

Gram-Schmidt procedure, 101
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handle

n-dimensional, 99

addition, 141

attaching

map, 99

region, 99

sphere, 99
belt sphere, 99

cancellation, 139, 146, 222

cancelling pair, 108, 347

algebraically, 348, 352

cocore, 99

core, 99

creation, 139

decomposition, 104

2-handlebody, 124

double, 130

dual, 107

index, 99

kinky, 204, 351

moves, 139

slide, 109, 222
subtraction, 141

handlebody, 104

2-handlebody, 124

intersection form, 125

homology, 111

relative, 104

upside down, 108, 177

h-cobordant, 346

h-cobordism, 346

theorem, 346

Heegaard

diagram, 113, 210

splitting, 113

Hirzebruch surface, 68, 88, 103, 244, 270

Hodge ∗g-operator, 58
holomorphic Euler characteristic (χh), 87

holomorphically fillable, 432

homogeneous polynomial, 20, 22

bi-, 81, 260

multi-, 24

homology

orientation, 52

sphere, 11

Hopf

disk bundle, 106

fibration, 106, 403

link, 38, 128, 166, 216

m-component, 218

surface, 94

Horikawa surface, 235, 269, 270
Hurewicz Theorem, 8, 155

hyperelliptic

action, 80

surface, 93

hypersurface, 20

immersion, 50

index

branching, 225

infinitely close triple point, 272

of order n, 272

integrable, 420

intersection form, 7, 9, 119, 125

E8, 13, 16, 72

H, 10, 13, 19, 74

definite, 64

direct sum, 10

odd, 145

parity, 10

even, 10, 16

odd, 10

positive (negative) definite, 10

rank, 10

signature, 10

unimodular, 10, 166

intersection number

algebraic, 347

geometric, 347

irreducible, 334, 406

4-manifold, 392

geography, 410

isotopy, 4, 5, 99, 420

ambient, 5, 23, 99

Kähler surface, 388

K3-surface, 23, 74, 87, 93, 267, 353

kinky handle, 204

Kirby

calculus, 139

diagram, 115, 212

relative, 176, 177

spin structure, 184

Kirby-Siebenman invariant, 342

Klein bottle, 107

knot, 100

blackboard framing, 124

connected sum, 198, 213

construction, 407

genus, 449

slice, 449

longitude, 157

pretzel, 214

ribbon, 210

slice, 210

torus, 218

trefoil, 48, 152

writhe, 124

Kodaira

dimension, 86, 395

surface

primary, 93

secondary, 93
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Lagrangian submanifold, 389

Lefschetz
fibration, 69, 283, 287, 401

Hyperplane Theorem, 32, 290

pencil, 283, 287, 404, 405

achiral, 325
Legendrian

isotopy, 421

link diagram, 423
lens space, 114, 158, 162, 193

level picture, 211

Levi-Civita connection, 35, 58, 415

link
(smoothly) slice, 210

band-sum, 141

Bing double, 197

Borromean rings, 158
characteristic sublink, 189, 194

diagram, 120

Hopf link, 128
Legendrian, 421

linking

matrix, 124

number, 120, 121
m-component

Hopf link, 218

link, 120

meridian of, 122
Reidemeister move, 121

ribbon, 210

topologically slice, 210
torus link, 218

unlink, 167

Whitehead double, 202

linking form, 126
logarithmic transformation, 83, 310, 336

multiplicity, 83

smooth, 83

manifold

closed, 4
complex projective, 21, 81

Cr-manifold, 4

orientable, 4
oriented, 4

pair, 178

singular, 4

smooth, 4
spin, 33

topological, 3

mapping class group, 291

Markov’s theorem, 149
meridian, 122

Milnor fiber, 74, 84, 231, 264

minimal, 46
model, 46

surface, 87

Möbius band, 105, 200
moduli space, 60

monodromy, 291

monopole equation, 51, 60
reducible solution, 61

Morse
function, 104

index, 105
theory, 104

mu invariant, 193

multiple fiber, 82
multiplicity, 240, 310

auxiliary, 310

Nijenhuis tensor, 414
nodal singularity, 288

Noether
formula, 29

inequality, 90, 269

non-Kähler, 396
noncomplex, 396

nondegenerate, 385
Novikov additivity, 341

nucleus, 71, 74, 83, 304
generalized, 265

obstruction theory, 180

orientable
bundle, 32, 181

manifold, 4

orientation, 4, 29
homology, 52

of a bundle, 32
reversed, 4

overtwisted, 426

Picard-Lefschetz formula, 295
pillowcase, 78

PL-structure, 7

plumbing, 128, 133, 164, 197, 330
E8-plumbing, 129, 152, 166, 179

self-plumbing, 200
pluricanonical map, 86

Poincaré
Conjecture, 6

4-dimensional, 16

Generalized, 349
homology sphere, 153, 193, 409

Pontrjagin
class, 26, 28, 181

square, 31
pretzel knot, 214

primitive element, 10
projective

line (complex), 18

plane (complex), 18
space (complex), 18, 106
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proper transform, 43, 247, 333

properly elliptic, 92
pseudo-holomorphic

curve, 389
submanifold, 389

punctured, 302

ramified, 225

rational
blow-down, 84, 330, 332, 396

double point, 250, 255
surgery, 157

Reidemeister move, 121

relatively minimal, 289
resolution, 79, 246

canonical, 253

minimal, 246, 253
ribbon

disk, 210
knot, 210

link, 210

move, 211
surface, 210

Riemann surface, 6

Rohlin invariant, 193, 195
Rolfsen twist, 162

rotation number, 425

Schoenflies problem, 210
Seiberg-Witten

basic class, 17, 52, 390

of a symplectic manifold, 53
of E(n), 74

equation, 60, 412
function, 17, 52, 333, 406

invariant, 17, 51, 73, 91, 336, 390, 446

moduli space, 60
simple type, 52, 336, 392

Seifert

algorithm, 125
surface, 38, 123, 159, 218, 345

signature theorem, 28
simply connected at infinity, 207

singular fibration, 69

singularity
essential, 272

isolated, 246

nodal, 288
normal crossing, 247, 261

resolution, 246
simple (Du Val, inessential), 250

specialization vector, 271

slam-dunk, 163, 176
slice

disk, 210

knot, 210
Sobolev completion, 60

sphere, 4

spin, 399
boundary, 184

bundle, 33

cobordism group, 342

group, 32
manifold, 33

structure, 33, 35, 36, 180

canonical, 185, 195
spinc structure, 34, 55, 57, 187, 412

Clifford multiplication, 57

determinant line bundle, 55, 414

Dirac operator, 58, 415
positive (negative) spinors, 57

spinors, 57

spinnable, 32

spinor, 34
positive (negative), 34

standard form, 423

Stein
domain, 427

manifold, 419

surface, 427

Stiefel-Whitney class, 182
first, 25, 32, 182

second, 33, 181

surface of Class VII, 94

Hopf surface, 94
surface of general type, 89, 270, 447

surgery, 154, 340

Dehn, 157
integer, 159

rational, 157

reversing, 154

theory, 153
symplectic

form, 385

on Lefschetz fibration, 401
geography, 399

manifold, 385

minimal, 391

normal connected sum, 394
structure, 385

submanifold, 389

symplectomorphism, 386

tame, 53

taut embedding, 337
tautological bundle, 41

thimble, 292

Thom conjecture, 40

Thurston-Bennequin invariant, 424
tight, 426

torus

knot, 218
link, 218

total transform, 43, 247
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transformations
elementary, 297

transition function, 3
trefoil knot, 48, 152, 166, 204, 210

unimodular, 10

universal R4, 376

vanishing cycle, 288

Veronese embedding, 285

Whitehead double, 202

n-twisted (positive/negative), 204
Whitney, 344

circle, 348
disk, 348
product formula, 27
trick, 348

Wirtinger presentation, 166
writhe, 124
Wu formula, 30, 186
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Since the early 1980s, there has been an explosive growth in 4-manifold theory, partic-
ularly due to the infl ux of interest and ideas from gauge theory and algebraic geometry. 
This book offers an exposition of the subject from the topological point of view. It 
bridges the gap to other disciplines and presents classical but important topological 
techniques that have not previously appeared in the literature.

Part I of the text presents the basics of the theory at the second-year graduate level 
and offers an overview of current research. Part II is devoted to an exposition of Kirby 
calculus, or handlebody theory on 4-manifolds. It is both elementary and compre-
hensive. Part III offers in-depth treatments of a broad range of topics from current 
4-manifold research. Topics include branched coverings and the geography of complex 
surfaces, elliptic and Lefschetz fi brations, h-cobordisms, symplectic 4-manifolds, and 
Stein surfaces.

The authors present many important applications. The text is supplemented with over 
300 illustrations and numerous exercises, with solutions given in the book.

I greatly recommend this wonderful book to any researcher in 4-manifold topology for 
the novel ideas, techniques, constructions, and computations on the topic, presented in 
a very fascinating way. I think really that every student, mathematician, and researcher 
interested in 4-manifold topology, should own a copy of this beautiful book.

—Zentralblatt MATH

This book gives an excellent introduction into the theory of 4-manifolds and can be 
strongly recommended to beginners in this fi eld … carefully and clearly written; the 
authors have evidently paid great attention to the presentation of the material … 
contains many really pretty and interesting examples and a great number of exercises; 
the fi nal chapter is then devoted to solutions of some of these … this type of presen-
tation makes the subject more attractive and its study easier.
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