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Preface

This short book grew out of lectures the author gave at the University of Michigan
in the Fall of 1997. The purpose of the course was to introduce second year grad-
uate students to the theory of 3-dimensional manifolds and its role in the modern
4-dimensional topology and gauge theory. The course assumed only familiarity with
the basic concepts of topology including: the fundamental group, the (co)homology
theory of manifolds, and the Poincaré duality.

Progress in low-dimensional topology has been very fast over the last two decades,
leading to the solution of many difficult problems. One of the consequences of this
“acceleration of history” is that many results have only appeared in professional jour-
nals and monographs. Among these are Casson’s results on the Rohlin invariant of
homotopy 3-spheres, as well as his A-invariant. The monograph “Casson’s invari-
ant for oriented homology 3-spheres: an exposition” by S. Akbulut and J. McCarthy,
though beautifully written, is hardly accessible to students who have completed only
a basic course in algebraic topology. The purpose of this book is to provide a much-
needed bridge to these topics.

Casson’s construction of his A-invariant is rather elementary compared to further
developments related to gauge theory. This book is in no way intended to explore this
subject, as it requires an extensive knowledge of Riemannian geometry and partial
differential equations.

The book begins with topics that may be considered standard for a book in 3-
manifolds: existence of Heegaard splittings, Singer’s theorem about the uniqueness
of a Heegaard splitting up to stable equivalence, and the mapping class group of a
closed surface. Then we introduce Dehn surgery on framed links, give a detailed de-
scription of the Kirby calculus of framed links in 3, and use this calculus to prove
that any oriented closed 3-manifold bounds a smooth simply-connected parallelizable
4-manifold.

The second part of the book is devoted to Rohlin’s invariant and its properties.
We first review some facts about 4-manifolds and their intersection forms, then we
do some knot theory. The latter includes Seifert surfaces and matrices, the Alexan-
der polynomial and Conway’s formula, and the Arf-invariant and its relation to the
Alexander polynomial. Our approach differs from the common one in that we work
in a homology sphere rather than in 3, though the difference here is more technical
than conceptual. This part concludes with a geometric proof of the Rohlin Theo-
rem (after M. Freedman and R. Kirby), and with the surgery formula for the Rohlin
invariant.
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The last part of the book deals with Casson’s invariant and its applications, mostly
along the lines of Akbulut and McCarthy’s book. We employ a more intuitive ap-
proach here to emphasize the ideas behind the construction, and refer the reader to the
aforementioned book for technical details.

The book is full of examples. Seifert fibered manifolds appear consistently among
these examples. We discuss their Heegaard splittings, Dehn surgery description, clas-
sification, Rohlin invariant, SU(2)-representation spaces, twisted cohomology, Cas-
son invariant, etc.

Throughout the book, we mention the latest developments whenever it seems ap-
propriate. For example, in the section on 4-manifold topology, we give a review
of recent results relating 4-manifolds and unimodular forms, including the “10/8-
conjecture” and Donaldson polynomials. The Rohlin invariant gives restrictions on
the genus of surfaces embedded in a smooth 4-manifold. When describing this old
result, we also survey the results that follow from the Thom conjecture, proved a few
years ago by Kronheimer and Mrowka with the help of Seiberg—Witten theory.

The topology of 3-manifolds includes a variety of topics not discussed in this book,
among which are hyperbolic manifolds, Thurston’s geometrization conjecture, incom-
pressible surfaces, prime decompositions of 3-manifolds, and many others.

The book has brief notes on further developments, and a list of exercises at the end
of each lecture.

The book is closely related, in several instances, both in content and method, to the
books Akbulut-McCarthy [2] and Fomenko—Matveev [49], from which | have bor-
rowed quite shamelessly. However, it is hoped that the present treatment will serve its
purpose of providing an accessible introduction to certain topics in the topology of 3-
manifolds. Other major sources I relied upon while writing this book include Browder
[24], Fintushel-Stern [45], Freedman—Kirby [52], Guillou—Marin [64], Kirby [84],
Livingston [105], Matsumoto [107], McCullough [110], Neumann-Raymond [122],
Rolfsen [137] and Taubes [152].

Figures 1.3, 1.6, 1.10, 3.4, 3.9, 4.3 were reproduced, with kind permission, from
“Algorithmic and Computer Methods for Three-Manifolds” by A.T. Fomenko and
S. V. Matveev, ©1997 Kluwer Academic Publishers.

I am indebted to Boris Apanasov, Olivier Collin, John Dean, Max Forester, Sla-
womir Kwasik, Walter Neumann, Liviu Nicolaescu, Frank Raymond, Thang T. Q. Le,
and Vladimir Turaev for sharing their expertise and advice, and for their help and
support during my work on this book. | would also like to thank the graduate students
who took my course at the University of Michigan. | wish to express my gratitude
to John Dean who read the manuscript to polish the English usage. | was partially
supported by NSF Grant DMS-97-04204 and by Max-Planck-Institut fiir Mathematik
in Bonn, Germany, during my work on this book.



Preface vii

Comments on this edition

In the twelve years since the publication of this book, the face of low-dimensional
topology has been profoundly changed by the proof of the three-dimensional Poincaré
conjecture. The effect this had on the Casson invariant was that its original application
to proving that the Rohlin invariant of a homotopy 3-sphere must vanish was rendered
moot. Despite this, Casson’s contribution remains as relevant as ever: in fact, a lot
of the modern day low-dimensional topology, including a number of Floer homol-
ogy theories, can be traced back to his A-invariant. These Floer homology theories
have been also linked to contact topology and Khovanov homology, and together they
constitute a very active area of research.

I did not attempt to cover any of these new topics in the second edition. How-
ever, | added a couple of brief sections, where it seemed appropriate, to indicate how
the material in this book is relevant to Heegaard Floer homology and open book de-
compositions. Other than that, | added a few updates and exercises, and corrected a
number of typos.

I am thankful to everyone who has commented on the book, and especially to Ken
Baker, lvan Dynnikov, Jochen Kroll, and Marina Prokhorova.

Miami, August 2011 Nikolai Saveliev
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Introduction

A topological space M is called a (topological) n-dimensional manifold, or n-mani-
fold, if each point of M has an open neighborhood homeomorphic to R”. In other
words, a manifold is a locally Euclidean space. To avoid pathological examples, it
is standard to assume that all manifolds are Hausdorff and have a countable base of
topology, and we will follow this convention. Most manifolds we consider will also
be compact and connected.

Let U and V be two open sets in an n-manifold M each homeomorphic to R” via
homeomorphisms ¢: U — R”™ and y: V' — R”. Then

Vop lig(UNV)—y(UNV) (1)

is a homeomorphism of open sets in Euclidean space R”. A manifold M is smooth
if there is an open covering U of M such that for any open sets U, V € U the map
(1) is a diffeomorphism. A manifold M is called piecewise linear or simply PL if
there is an open covering U of M such that for any open sets U, V' € U the map (1)
is a piecewise linear homeomorphism. Another way to describe PL manifolds is as
follows.

A triangulation of a polyhedron is called combinatorial if the link of each its ver-
tex is PL-homeomorphic to a PL-sphere. Every PL-manifold admits a combinatorial
triangulation. Any polyhedron which admits a combinatorial triangulation is a PL-
manifold.

A Hausdorff topological space M whose topology has a countable base is called
an n-manifold with boundary if each point of M has an open neighborhood homeo-
morphic to either Euclidean space R" or closed upper half-space R” . The union of
points of the second type is either empty or an (n — 1)-dimensional manifold, which
is denoted by dM and called the boundary of M. Note that the boundary of dM is
empty. A manifold M is called closed if it is compact and its boundary is empty.
Analogous definitions hold for smooth and PL manifolds.

The following fact is very important for us: if n < 3 then the concepts of topo-
logical, smooth, and PL manifolds coincide, see Bing [15] and Moise [116]. More
precisely, any topological manifold M of dimension less than or equal to 3 admits a
smooth and a PL-structure. These are unique in that there is a diffeomorphism or a
PL-homeomorphism between any two smooth or PL-manifolds that are homeomor-
phic to M. Moreover, if a PL-manifold of dimension n < 3 is homeomorphic to a
smooth manifold then there is a homeomorphism between them whose restriction to
each simplex of a certain triangulation is a smooth embedding.
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In dimension 4, every PL-manifold has a unique smooth structure, and vice versa,
see Cairns [27] and Hirsch [75]. However, there exist topological manifolds in di-
mension 4 that admit no smooth structure, and there are topological 4-manifolds with
more than one smooth structure. These questions will be discussed in more detail
in Lecture 5. Furthermore, there exists a closed 4-dimensional topological manifold
which is not homeomorphic to any simplicial complex, much less a combinatorial
one. A key ingredient in the construction of such a manifold is the Casson invariant,
which is defined later in these lectures.

The relationships between topological, smooth, and PL-manifolds are more com-
plicated in dimensions 5 and higher. They will be briefly discussed in Lecture 18.
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We explain some standard geometric and topological background material used in
the book. Shown in italic are terms whose meaning is explained somewhere in the
glossary text.

CW-complexes. A topological space X is called a CW-complex if X can be repre-

sented as a union
[o,¢]
X = U x @
q=0

where the 0-skeleton X is a countable (possibly finite) discrete set of points, and
each (¢ + 1)-skeleton X@+1 is obtained from the g-skeleton X @ by attaching
(g + 1)-cells. More explicitly, for each g there is a collection {e; | j € J;+1} where

(1) eache; is asubsetof X @) such that if ¢/ = ¢; N X @), then ¢; \ ¢/ is disjoint
fromey \ e; if j. k € Jgq With j # k,

(2) for each j € J,41, there is a characteristic map g; : (D9t!,9D9T1) —
(X@+D x @) such that g; is a quotient map from D?*+! to e;, which maps
DA*1\ 3D+ homeomorphically onto e; \ ¢/,

(3) asubset of X is closed if and only if its intersection with each skeleton X@ is
closed.

Each e; \ e} is called a (¢ + 1)-cell. When all characteristic maps are embeddings,
the CW-complex is called regular.

Cellular homology. Let X be a CW-complex, and R a commutative ring with an
identity element. For each g, let C;(X, R) be the free R-module with basis the g-
cells. We will define the boundary homomorphism d441: Cg4+1(X, R) — C4(X. R).
To define d4+1(c), where c is a fixed (¢ + 1)-cell, fix an orientation for D4+, thus
determining an orientation for the g-sphere dD9 71, and look at how the characteristic
map g of ¢ carries 9D4 7! to X @. For each ey in X @, fix a point zj in cx = e \ e}
One can show that g is homotopic to a map such that for each k, the preimage of z;
is a finite set of points py i,..., pk,. Moreover g takes a neighborhood of each
Pk,; homeomorphically to a neighborhood of z; (by compactness, the preimage of
zx is empty for all but finitely many k). For each j with 1 < j < ny, lete; ; = *1
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according to whether g restricted to the neighborhood of py ; preserves or reverses
orientation. Let

n 0o
g = Z ek,j and  dgy1(c) = Z EkCk
k=1

j=1

where all but finitely many & are equal to zero.

The numbers ¢, can also be described as follows. The quotient space X () /x @—1)
is homeomorphic to a one-point union of g-dimensional spheres, one for each g-cell
ck = ex \ e Givena (g + 1)-cell ¢, its characteristic map g : (D9, 9D9*!) —
(X @t x@) induces the map

Ok ap4tl . x@ _, X(q)/X(q—l) 89,

where the last arrow maps the sphere S? corresponding to the cell ¢ identically to
itself, while contracting all other spheres to a point. The degree of ¢y is g;. This
description of &4 ensures that d, 41 (c) is well-defined.

This defines the homomorphism d, 41 on the generators, and the definition extends
by linearity to the entire free R-module Cy4 41 (X, R). One can prove that d,94+1 = 0.
The reason is that algebraically, the g-sphere D4+ acts as though it were a regular
CW-complex with one g-cell corresponding to each preimage point of a z;. Since
dD4*+1 is a manifold, the boundaries of these g-cells form a collection of (g —1)-cells,
each appearing as part of the boundary of two g-cells, but with opposite orientations.
Consequently, the algebraic sum of the boundaries of these g-cells is 0. Applying d, to
dg+1(c) simply adds up the images of the boundaries of those g-cells in C;—1 (X, R),
and the pairs with opposite signs cancel out, giving 0.

An element of C, (X, R) is a formal finite sum ) rx ¢, where each ¢ is a g-cell;
such a sum is called a g-chain. Now form a sequence of R-modules and homomor-
phisms

dg+1 g
co > Cy41(X,R) —> C4(X,R) — C4—1(X,R) —» --- > Co(X,R) — 0. (2)
This is called a chain complex, since d;d4+1 = 0 for all g. This implies that the
image of 9,41 is contained in the kernel of 9, for each g. If the image of 9,41
equals the kernel of 9, for each g, the sequence is called exact. If not, we measure its
deviation from exactness by defining cellular homology groups

Hq(X; R) = ker(aq)/ im(aq+1).

Elements of ker(d,) are called cycles, and elements of im(d, 1) are called bound-
aries. Explicitly, an element of H,(X; R) is a coset ay + d4+1(Cyq+1(X, R)), where
dgaq = 0, but it is usually written as [a4]. Note that [a;] = [ay] if and only if
ag = ay + dg+1(bg+1) for some (g + 1)-chain by 1.
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To complete the definition of H, as a homology theory, we need to define fi for
all continuous maps f: X — Y. We first define Cy4(f): Cy(X, R) — C4(Y, R). By
the Cellular Approximation Theorem, f may be changed within its homotopy class
so that f(X @) c Y@ for all . Then, define C,(f)(c) similarly to the way that
dg4(c) was defined above. Then fi([c]) = [Cq(f)(c)].

It is not easy to prove that this is well-defined and satisfies the Eilenberg—Steenrod
axioms, but it can be done. In particular, H.(X; R) does not depend on the CW-
complex structure chosen for X since the identity map induces an isomorphism on the
homologies defined using two different CW-complex structures on X, and f, depends
only on the homotopy class of f.

When A4 is a subcomplex of X define the relative homology groups H, (X, 4; R)
by setting C4(X, A4, R) = C4(X,R)/Cy(A, R) and noting that d, induces 9, :
Cy(X,A,R) - Cy—1(X, A, R). Then, Hy(X, A; R) is defined as the homology of
the chain complex C«(X, A, R). The long exact sequence of the second Eilenberg—
Steenrod axiom is then a purely algebraic consequence of the existence of short exact
sequences

0— C4(A,R) - C4(X,R) - C4(X,A,R) — 0.

Note that every element of H,(X, A; R) can be represented by a g-chain whose
boundary lies in A.

Cohomology of spaces. Once cellular, simplicial, or singular homology is defined,
cohomology can be defined algebraically. This is based on the following fact. If A and
B are R-modules, and ¢: A — B is an R-module homomorphism, then there is an R-
module homomorphism ¢*: Hom(B, R) — Hom(4, R) defined by ¢*(a) = « o ¢.
Clearly (¢ o ¥)* = ¢¥* o ¢*, so if we define the coboundary homomorphism by
8q = 0y, then 8g4184 = 95,05 = (9494+1)* = 0™ = 0. Therefore, abbreviating
Hom(Cy(X), R) to C4(X, R), we have a cochain complex

8 8
0= COX, R) = -+ > CI71(X, R) => CU(X, R) = CIT (X, R) — -

®)

whose deviation from exactness is measured by the cohomology groups
HY(X,R) = kerdy41/imé,.

A continuous map f: X — Y induces homomorphisms f*: H4(Y,R) - H?(X, R)
with (f o g)* = g* o f*, and there are corresponding versions of the Eilenberg—
Steenrod axioms and Mayer-Vietoris exact sequence for cohomology.

An important case iswhen R = F isafield. Then it can be proved that H4(X; F) =~
Hom(H,(X; F), F), the dual vector space of H,(X, F). Hence Hi(X; F) and
H,(X; F) are vector spaces of the same rank, although there is no natural isomor-
phism between them.
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Connected sums. Let My and M, be closed oriented manifolds of dimension #,
and D" C My, k = 1,2, a pair of n-discs embedded in M; and M,. A connected
sum of My and M, is defined as the manifold M #M, = (M; \ intD"*) U (M> \
int D) obtained by gluing the manifolds M, \ int(D™) along their common boundary
S"=1 via an orientation reversing homeomorphism r: $”~! — S$?~1. The manifold
M #M> inherits an orientation from those on M; and M,. The manifolds M #M,
and M#(—M;), where — M, stands for the manifold M, with reversed orientation,
need not be homeomorphic. Note also that if the manifolds M and M, are smooth,
a choice of smoothly embedded discs in M; and M, and a smooth identification map
provides us with a smooth manifold M{#M,.

If the manifolds M; and M, have non-empty boundaries, one can still form their
connected sum by choosing the n-discs in their interiors. One can also form their
boundary connected sum, My M», by identifying (n — 1)-discs D*~! C M,
k = 1,2, via an orientation reversing homeomorphism. The boundary of M; f M5 is
(OM1)#(0M>).

Cutting open. This is an operation which is “inverse” to the gluing of spaces. Let Y
be a closed subspace of a connected space X such that the closure of X \ Y coincides
with X. Suppose that X \ Y consists of a finite number of connected components,
X1....,Xy. Consider the space

X' =JXix{i}c X xR,

that is, move the components apart from each other. The closure of X’ in the product
topology on X x R is the result of cutting X open along Y.

Degree of amap. Let f:(M,0M) — (N, dN) be a continuous map between ori-
ented connected compact manifolds of identical dimension n. The degree of f is an
integer deg f satisfying f«[M,dM] = deg f - [N, ON], where [M,dM] and [N, dN]
are the fundamental classes of the manifolds M and N, and fi: H,(M,0M) —
H, (N, 0N) the induced map. If f: M — N is a smooth map between smooth closed
oriented manifolds, choose any point y € N such that f is transversal to y. Then the
degree of f coincides with the integer

deg f = > sign(detd, f).
xef~1(y)
where dy f: TxM — T, N isthe derivative of f atapoint x € M, and is independent

of the choice of y.

Eilenberg—MacLane spaces. The Eilenberg—MacLane spaces K (i, n) are the fun-
damental building blocks of homotopy theory. They are CW-complexes characterized
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uniquely up to homotopy equivalence as having a single non-trivial homotopy group:

w, ifi =n,
0, ifi#n.

Of course, the group = is required to be Abelian if » > 2. Standard examples of
Eilenberg-MacLane spaces include K(Z,1) = S! and K(Z,2) = CP®, where
C P is defined as the limiting space of the tower of complex projective spaces
CP! ¢ CP? c CP3 C --- with respect to the natural inclusions. Eilenberg-
MacLane spaces are classifying spaces for conomology in that

H"(X:7) = [X, K(,n)] (4)

for any space X and Abelian group 7z, where the brackets denote the set of all homo-
topy classes of continuous maps. The isomorphism (4) is obtained as follows. From
the Hurewicz theorem and the Universal Coefficient theorem, it is easy to see that
H"(K(m,n);7) =~ Hom(m, ). Let:m — = be the identity map. Associate to
any f: X — K(m,n) the cohomology class f*i € H" (X x); this is the correspon-
dence (4).

i (K(w,n)) = {

Gluing construction. Let X and Y be topological spaces, and f: Z — Y a contin-
uous map where Z C X is a subspace of X. Consider the disjoint union X U Y and
introduce the equivalence relation generated by z ~ f(z) whenever z € Z. The space
X UrsY = (X UY)/ ~ with the quotient topology is said to be obtained by gluing
X and Y along f. In most cases we consider, the map f* will be a homeomorphism
of Z ontoits image f(Z) C Y.

Handles. Let X be a smooth n-manifold with boundary, and 0 < k < n. An n-
dimensional k-handle is a copy of D¥ x D"~k attached to the boundary of X along
(0D*) x D"~k using an embedding f : (dD¥) x D"~% — 3X. The corners that
arise can be smoothed out, see for instance Chapter 1 of Conner-Floyd [31], hence
X Uy (D* x D"k is again a smooth manifold. For example, a 1-handle is a product
D' x D"~ ! attached along a pair of (n — 1)-balls, S° x D*~!. A 2-handle is a product
D? x D"~2 attached along S! x D2, For more details see Gompf-Stipsicz [61] or
Rourke—Sanderson [138].

Homology theory. Let R be a commutative ring with an identity element. Some-
times R will be required to be a principal ideal domain. By a homology theory we
mean a functor from the category of pairs of spaces and continuous maps to the cate-
gory of graded R-modules and graded homomorphisms. That is, for each pair (X, A),
where A is a subspace of X, there is an R-module

oo
Hu(X. A;R) = €D Hg(X. A: R).
q=0
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and for each continuous map of pairs f: (X, A) — (Y, B) there are homomorphisms
f«iHg(X, A;R) — Hy(Y,B;R) for every g, so that (f o g)« = f« 0 g«. We
abbreviate H, (X, A; R) to Hy (X, A) and Hy (X, 9) to H,(X). It will be clear from
the context what the ring R is. The following Eilenberg—Steenrod axioms must hold:

(1) (homotopy invariance) If f, g: (X, A) — (Y, B) are homotopic then fi = g«.

(2) (long exact sequence) For every pair (X, A) and every ¢ there are homomor-
phisms 0: Hy (X, A) — Hy—1(A) fitting into a long exact sequence

i ¢ d
oo Hy(A) 2 Hy(X) 25 Hy(X, A) = Hy—1(A) — -+ — Ho(X, A) — 0,

wherei: A — X and j: (X, 9) — (X, A) are inclusion maps.

(3) (excision axiom) If U is an open subspace of X whose closure is contained in
the interior of A, then the inclusion map j: (X \ U, A\ U) — (X, A) induces
isomorphisms jx: Hy(X \ U, A\ U) — Hy(X, A) for all q.

(4) (coefficient module) If P is a one point space, then Ho(P) = Rand Hy(P) =
0forg > 1.

The module in axiom (4) is called the coefficient ring for the homology theory. We
often refer to H, (X, A) as homology groups. Strictly speaking, one should say ho-
mology modules, but for the common cases R = Z and R = Z/n, the homology
modules are Abelian groups.

There are many ways to define homology groups. For a fixed ring R, all the stan-
dard ways produce the same results when X is a simplicial or a CW-complex and A
is a subcomplex. The most widely used theories are simplicial, singular, and cellular
homology. We will be working with the latter most of the time.

The Eilenberg—Steenrod axioms imply the Mayer-Vietoris exact sequence, which
is very powerful for computation of homology. It applies in quite general situations,
but we will only state it for CW-complexes. Suppose that A and B are subcomplexes
of a CW-complex X, with X = 4 U B. Then there are homomorphisms 9: Hy (X) —
H,_1(A N B) fitting into a long exact sequence

-*,_.* L+ Jx a
oo Hy(AnB) =T o ye Hy B B H () S Hy—y(ANB) — -

wherei:ANB — A, j:ANB —- B,1: A — X,and J: B — X are inclusion maps.

Here are some consequences of the axioms and the Mayer—Vietoris sequence. As-
sume that K is a CW-complex and L is a subcomplex, possibly empty. Then, if K is
n-dimensional, or more generally if every cell of K \ L has dimension less than or
equal to n, then H,(K,L) = 0 for all ¢ > n. Moreover, Hy(K) = @R with one
summand for each path component of K.

A cohomology theory is defined similarly, together with cohnomological versions of
the Eilenberg-Steenrod axioms and the Mayer-Vietoris exact sequence.
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Homotopy lifting property. A map p: E — B has the homotopy lifting property
with respect to a space X if, for every twomaps f: X — Eand G: X x I — B for
which pf = Gi (where I = [0,1]andi: X — X x [ isthe map x — (x,0)), there
exists a continuous map G: X x I — E making the following diagram commute:

X ! E
G
X x1I B

A map p: E — B is called a fibration if it has the homotopy lifting property with
respect to every space X. If b € B, then p~1(b) = F is called a fiber. Different fibers
of a fibration need not be homeomaorphic, however, they all are homotopy equivalent.
A map p: E — B is called a Serre fibration if it has the homotopy lifting property
with respect to all CW-complexes X . Locally trivial bundles are Serre fibrations, and
in fact fibrations if the base B is paracompact.

Let p : E — B be a fibration, and Go, G two maps making the above diagram
commute. Then Gy and G, are fiberwise homotopic rel X x {0}, see for instance
Spanier [150], Corollary 2.8.11.

Homotopy theory. We refer the reader to Hatcher [71] or Spanier [150] for the ba-
sics of the homotopy theory, including homotopy, homotopy equivalences, the funda-
mental group 71 (X, xo), van Kampen’s theorem, covering spaces, higher homotopy
groups m, (X, xo) etc.

Hurewicz Theorem. Suppose o: (8", s9) — (X, xo) is a map representing an ele-
ment of (X, x0). Let y, be a fixed generator of H,(S™;7Z) = 7Z. The Hurewicz
homomorphism p: 7, (X, x¢o) — H,(X:Z) is defined by p([o]) = 0«(y»). One can
show that this homomorphism is natural, that is, if f: X — Y is a continuous map,

the diagram P
i, X —— HpX

|7 |7
Y —f H,Y

commutes. The basic relationship between homotopy groups and homology groups
is given by the Hurewicz theorem, which in its simplest form asserts the following.

Let X be a topological space such that 7o X = m; X = ... = m,—1 X = 0 for some
n>1.

(1) Ifn = 1then p:m1 X — HyX is given by Abelianization and is surjective.

(2) Ifn >2then HoX = H1X = ... = H,_1 X =0and p:7, X — H,X isan

isomorphism.
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Immersions and embeddings. Let M and N be smooth manifolds of dimensions
m and n respectively, such that m < n. A smooth map f: M — N is called an
immersion if dy f:TxM — Ty)N is injective for all x € M. The map f is
called an embedding if it is an immersion which is injective and proper, meaning that
the preimage of every compact set in N is compact in M. In the case of manifolds
M C N, we say that M is immersed in N if the inclusion map i: M — N is an
immersion. We say that M is a (smoothly embedded) submanifold of N ifi: M — N
is an embedding. In the latter case, i: M — N is a diffeomorphism of M onto its
image.

All of the above definitions extend verbatim to manifolds with boundary. In addi-
tion, a submanifold M C N is called properly embedded if oM = M N ON.

In the case of manifolds without a smooth structure, we say that M is an (embed-
ded) submanifold of N if the inclusion map i: M — N is a homeomorphism of M
onto its image.

Isotopy. Two homeomorphisms fy, f1: X — X are called isotopic if there is a
homotopy f; : X — X,0 <r < 1, between fp and f; such that each f; is a homeo-
morphism. An isotopy is said to have compact support if the maps f; are all equal to
the identity map outside some fixed compact set K C X. Two (topological) embed-
dings fo, fi: X — Y are said to be isotopic if there is a level preserving embedding
F:X x[0,1] = Y x [0, 1] which agrees with f, on X x {0} and with f; on X x {1}.

Kinneth Formula. We will need a version of the Kiinneth formula which relates
the cohomology of the product X x Y of two finite CW-complexes to the cohomology
of the factors. It asserts that there is the following split short exact sequence for each
n>0,

0— Y H'(X)®H/(Y)—> H"(XxY)— Y Tor(H?(X).HY(Y)) — 0.
i+j=n prg=ntl

Locally trivial bundles. A locally trivial bundle with fiber F is a continuous map
p: E — B for which there exist an open cover V of B and homeomorphisms ¢y : V x
F — p~Y(V) forall V e V such that poy(b,x) = b forall (b,x) € V x F. In
a locally trivial bundle, all fibers p~!(b) are homeomorphic. Every locally trivial
bundle p: E — B is a Serre fibration (that is, it has the homotopy lifting property
with respect to every CW-complex), and a fibration if the base B is paracompact.

A vector bundle with fiber a vector space F is a locally trivial bundle p : E — B
all of whose fibers are vector spaces and all the restrictions ¢y : {b} x F — p~1(b)
are linear isomorphisms. The tangent bundle to a smooth manifold is an example of
a vector bundle; another example is the normal bundle to a submanifold of a smooth
manifold.
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Every (real) vector bundle p : E — B over a paracompact base B admits a positive
definite inner product. Associated with each such bundle are the locally trivial disc
bundle (whose fiber over b € B is the closed unit disc in p~!(h)) and the sphere
bundle (whose fiber over b € B is the unit sphere in p~1(b)).

Orientation. A closed n-manifold M is called orientable if H,,(M;Z) = Z. The
choice of a generator [M] in Z is called an orientation, and the generator is called
the fundamental class of M. A manifold together with a choice of orientation is
called oriented. A compact n-manifold M with boundary is called orientable if
H,(M,0M;Z) = Z. The choice of a generator [M, dM] in Z is called an orien-
tation, and [M, M is referred to as the fundamental class of M. A smooth manifold
M is orientable if and only if the restriction of its tangent bundle to every smooth
curve is trivial. The boundary of an orientable manifold is orientable. If, in place
of Z, we use a commutative ring R with an identity element, we will get manifolds
orientable over R, etc.

PL-homeomorphisms. For two simplicial complexes K, K», we say that a map
f:1K1] — |K>| is piecewise-linear, or PL for short, if f* defines a simplicial map
K1 — K/ under suitable simplicial subdivisions K and K} of K; and K. If the
map f is a homeomorphism, it is referred to as a PL-homeomorphism.

Poincaré duality. Let R be a commutative ring with an identity element, and X
a space. There exist several natural pairings between the homology and cohomol-
ogy of X, among which we will mention the obvious pairing between homology and
cohomology groups,

(,)HP(X;R) @ Hy(X;R) - R,
and the so-called cup- and cap-products,
—:HP(X:R) ® HY(X;R) - HP?T9(X;R),
~:HP(X;R) ® Hy(X;R) > Hp—p(X; R),

related by the formula (x — y,u) = (x,y —~ u) whenever x € H?(X;R), y €
HY(X:;R),and u € Hy14(X: R).

The following is the simplest form of the Poincaré duality for (topological) mani-
folds. Let M be a closed n-manifold oriented over aring R. Then the homomorphism

PD: H9(M: R) — H,_q(M; R)

defined by the formula x — x —~ [M], is an isomorphism, where [M] € H,(M; R)
is the fundamental class of M.
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Another way to formulate Poincaré duality is as follows. Let M be a closed n-
manifold oriented over a field R = F. Then the bilinear form

O:HIM;F)® H" 9(M;F) — F,

defined by the formula u ® v — (u — v, [M]) is non-degenerate. To see this we
note that the relation (¥ — v, [M]) = (u,v —~ [M]) makes the following diagram

commute 1®PD

HIM @ H" 1M HIM @ HM

Q\ /,)

F

The bilinear form ( , ) is non-degenerate because of the isomorphism Hom(H,(M; F),
F) = H9(M; F) over the field F. Since PD is an isomorphism, it follows that the
bilinear form Q is also non-degenerate.

The latter reformulation of Poincaré duality is not valid over the integers because
the groups H4(M ;7Z) and Hom(H, (M ; Z), Z) are not isomorphic, in general. This
problem can be fixed as follows. Let M be a closed rn-manifold oriented over the
integers, and let Tor denote the torsion subgroup. Then the bilinear form

HY(M)/Tor @ H"9(M)/ Tor — Z

defined by u ® v — (u — v,[M]) is non-degenerate over the integers, and induces
an isomorphism of H4(M)/ Tor to Hom(H"~4(M), Z) for all g.

Among numerous generalizations of Poincaré duality, a particularly useful one in
low-dimensional topology is Poincaré-Lefschetz duality. Let M be a compact n-
manifold with boundary dM which is oriented over R. Then foreach g, H4(M:; R) is
isomorphicto H,_4;(M,dM; R),and H4(M, dM; R) is isomorphic to H,_4(M: R).
Explicitly, the isomorphisms can be established by taking a cap-product with the rel-
ative fundamental class [M, 0M ] € H, (M, oM ; R). We also have a pairing

HY(M:R) ® H"9(M,dM: R) — R,

which is automatically non-degenerate when R is a field, and which becomes non-
degenerate over the integers after factoring out the torsion subgroups. For more gen-
eral duality theorems, see Hatcher [71], Section 3.3, and Spanier [150], Chapter VI.

The duality theorems have strong naturality properties in relation to the induced
homomorphisms in homology and cohomology. For example, the following diagram
is commutative

HI'\(M) —— HIYOM) —— HI(M,0M) ——  HI(M)

I I I I

Hy_gi1(M.0M) —— H,_y(0M) ——> H,_q(M) ——> H,_,(M,0M)
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where the horizontal lines are the long exact sequences of the pair (M, dM ), and the
vertical isomorphisms are given by either Poincaré or Poincaré—Lefschetz duality.

The following observation is useful when dealing with smooth manifolds; see [18],
Section 6. Let f : X — Y be a smooth orientation preserving map between smooth
closed oriented manifold X and Y. Suppose that S C Y is a closed oriented sub-
manifold of Y and that f is transversal to S. If ® € H*(Y;R) is Poincaré dual
to S then f*w € H*(X;R) is Poincaré dual to the submanifold f~1(S). In short,
under Poincaré duality, the pull back in cohomology corresponds to taking preimage
in geometry.

Reduced homology. Let us consider the chain complex (2) together with the aug-
mentation ¢: Co(X, R) — R defined as the homomorphism taking each generating
0-cell ¢ of Co(X, R)to 1 € R, so that

€ (Z rkck) = Z k.

The reduced chain complex Cq (X, R) is defined to be the chain complex such that
C, = C,ifg #0,Co = kere, and 9, = 9,. Note that £9; = 0 hence 8,(C;) C Co.
The homology groups of the reduced chain complex C (X, R) are called reduced
homology groups of X and denoted H«(X:R). If R = Z or R is a field, then
Hy(X;R) = Hy(X;R) for ¢ # 0and Ho(X;R) = Ho(X;R) ® R. Reduced
simplicial and singular homology groups are defined similarly starting with the corre-
sponding chain complex.

Simplicial complexes. Points xo, x1,...,x; in R™ are called independent if there
is no (k — 1)-dimensional plane in R™ passing through them all (of course, m should
be greater than or equal to k). The convex hull of (k + 1) independent points xg, x1,
..., Xy is called a k-simplex. It consists of all points of the form x = agxo + --- +
apxy suchthatag,as,...,ar are non-negative and ag +a +---+ ax = 1. A point,
an interval, a triangle, and a tetrahedron are respectively 0-, 1-, 2-, and 3-simplices.
The points xg, x1, ... x; are called vertices of the k-simplex they define. Any subset
of the vertices defines a simplex which is a face of the original k-simplex.

Let R™ be a fixed Euclidean space. A (finite) geometric simplicial complex in R™
is a finite collection, K, of simplices of R™ such that, for any simplex in K all its
faces also belong to K, and any two simplices of K are either disjoint or intersect in
a face of each. The underlying space of a complex K, that is, the set of points of R™
belonging to some simplex of K, with the topology induced by that in R™, is called
the polyhedron of K and written | K|, and K is called a triangulation of | K|. We define
a (finite) simplicial complex as a topological space X homeomorphic to a polyhedron
|K|. The combinatorial structure on X induced by that of K is called a triangulation
of X.
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The boundary of a (k + 1)-simplex A consists of all proper faces of A4; it is a
simplicial complex whose polyhedron is homeomorphic to a k-sphere and is usually
referred to as a k-dimensional PL-sphere. For each simplex A4 in a simplicial complex
K, the link of A in K consists of those simplices in K not meeting A which are faces
of simplices containing A.

Given two simplicial complexes, K and L, amap f: K — L is called simplicial
if, for any collection of vertices in K spanning a simplex, their images in L span a
simplex. For more details, see Hilton—-Wylie [74].

Simplicial homology. An important special case of cellular homology is simplicial
homology, where X is a simplicial complex and each g-simplex is regarded as a g-cell.
Because of the large number of simplices needed to triangulate even a fairly simple
space, simplicial homology is not very useful for explicit computation. However,
because the characteristic maps are embeddings, simplicial homology is much easier
to use in proofs. For example, the definition of the boundary homomorphisms d, is
much more transparent.

Singular homology. Singular homology is an abstraction of simplicial homology
where simplices are replaced by singular simplices. A singular g-simplex in X is a
continuous map o: A, — X where A, is a fixed standard g-simplex. The singular
g-simplices form a basis for the R-module of singular chains C,(X, R), which is
uncountably generated for most spaces X. This is a computational disadvantage, but
note that singular homology is defined for any space X; the rather nice structure of
CW-complex or simplicial complex need not be present.

Transversality. Let M and N be smooth manifolds of dimensions m and n respec-
tively, and let L be a k-dimensional submanifold of N. A smoothmap f: M — N
is said to be transversal to L if for any point x € M with f(x) € L, the subspaces
Trx)L and (dx f)(Tx M) span the tangent space 7 )N . This captures the idea that
f(M) and L cut across each other as much as possible. If m + k < n then f is
transversal to L only when f(M) N L is empty. It follows from the implicit function
theorem that if f is transversal to L, then £~1(L) is a smoothly embedded subman-
ifold of M, of codimension n — k. If M is compact, then f~1(L) is also a compact
submanifold of M.

A point y € N is called a regular value of a smooth map f:M — N if fis
transversal to y. In other words, y is regular if, for any point x € M such that
f(x) =y, thelinearmap dx f: TxM — Ty N isonto. Each x is then called a regular
point of the map £

Here is a transversality theorem proved by R. Thom, see Brdcker-Janich [23] or
Guillemin—Pollack [63]. Let f: M — N be a smooth map, and let L be a smooth
submanifold of N. Then f can be arbitrarily closely approximated by maps g: M —
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N which are transversal to L. If £ is a continuous map it still can be approximated by
transversal maps, by combining the transversality theorem with the following smooth
approximation theorem. Let f: M — N be a continuous map which is smooth on an
open neighborhood U of a closed set A. Then, arbitrarily close to f, there exists a
smooth map 7: M — N with h|4 = f|4.

All of these results have analogues for manifolds with boundary, which can be
found in the books cited above.

Tubular neighborhood. Let M C N be a submanifold, and let m and n be respec-
tively the dimensions of M and N. A tubular neighborhood of M in N is the image of
an embedding t: v(M) — N, where v(M) — M is a closed disc bundle associated
with a vector bundle over M of rank n — m, and ¢(x,0) = x whenever x € M. The
tubular neighborhood theorem, see for instance Guillemin—Pollack [63], asserts that
every smoothly embedded submanifold M C N has a tubular neighborhood, and that
the bundle in question can be chosen to be a normal bundle of M C N.

Universal Coefficient Theorem.  The version of the universal coefficient theorem
that we will use asserts that, for every space X and every Abelian group A, there are
the following exact sequences for all n > 0:

0 — Ext(Hy—1(X),A) - H"(X; A) - Hom(H,(X), A) — 0.
Each of these sequences splits, that is, there are isomorphisms for all n > 0,
H™(X; A) = Hom(Hy (X), A) & EXt(Hp—1(X), A),

which however need not be natural. Asacorollary, H'(X;Z) = Hom(H,(X:Z),Z).
Any textbook in algebraic topology has a treatment of this theorem, see for instance
Hatcher [71] or Spanier [150].

Whitehead Theorem. Let X and Y be connected CW-complexes. If a continuous
map f: X — Y induces isomorphisms on all homotopy groups, then f is a homotopy
equivalence. An important special case occurs when X is a connected CW-complex
and its homotopy groups 4 (X) vanish for all ¢ > 1. Taking Y to be a single point,
and f a constant map, the Whitehead theorem shows that X is homotopy equivalent
to Y and hence X is contractible. In fact, one can show with the help of the Hurewicz
theorem that if X is a CW-complex such that 71 (X) = 0 and H,(X;Z) = 0 for all
q > 1then X is contractible.



Lecture 1
Heegaard splittings

1.1 Introduction

Let My, and M, be compact 3-dimensional manifolds with homeomorphic bound-
aries, and f:dM; — dM, a homeomorphism. By gluing M; to M, along f we get
a new compact 3-dimensional manifold, M = M, Uy M,, with empty boundary.

Example. Two 3-dimensional balls glued by any homeomorphism of their bound-
aries produce the 3-dimensional sphere (for a proof, see Theorem 1.4).

In general, the result of this gluing operation depends on the homeomorphism f.

Example. Gluing of two copies of the solid torus S x D? results in S x S2 if f is
the identity. However, if £: S!xS! — ST x S isahomeomorphism of the boundary
torus interchanging the two copies of S! the resulting manifold is S3. The latter is
established with the help of the formula d(X; x X3) = (0X1 x X3) U (X1 x 0X>5). If
X1 = X, = D? are 2-dimensional discs, we get

§3 =9D* = 9(D? x D?) = (S' x D?) U (D? x 1),

which is a decomposition of the 3-sphere into two solid tori glued along their common
boundary, the torus S! x S1.

It is useful to keep in mind the following 3-dimensional picture of the 3-sphere
decomposition we just constructed.

Figure 1.1
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In Figure 1.1, the sphere S3 is represented as the result of revolving the 2-sphere
S2 = R? U {oo} about the circle £ U {oo} where £ is a straight line in R2. Under
this revolution, the disc D c R? \ ¢ generates a solid torus M;. Each of the arcs
connecting the discs D and D’ generates a 2-dimensional disc in S3, the set of all such
discs being parametrized by the points of the circle £ U co. Therefore, the complement
of the solid torus M; is another solid torus M, and S3 = M; U M,.

1.2 Existence of Heegaard splittings

A handlebody is an orientable 3-dimensional manifold obtained from the 3-ball D3
by attaching g copies of 1-handles D? x [—1, 1]. The gluing homeomorphisms match
the 2g discs D? x {£1} with 2g disjoint 2-discs in D3 = S?2 so that the resulting
manifold is orientable, see Figure 1.2.

Figure 1.2

The integer g is called the genus of a handlebody. The boundary of a handlebody of
genus g is homeomorphic to a Riemann surface of genus g.

It turns out that any closed orientable 3-manifold M can be obtained by gluing
together two handlebodies. In other words, M can be represented as M = H U H’
where H and H' are handlebodies such that H N H' = dH = dH’. Obviously, the
handlebodies must have the same genus, say g. Such a decomposition of the manifold
M is called a Heegaard splitting of M of genus g.

Theorem 1.1. Any closed orientable 3-manifold admits a Heegaard splitting.

Proof. Let T be a triangulation of a closed orientable 3-manifold M. We associate
with T a Heegaard splitting of M as follows. Let us replace each vertex of T by a ball,
each edge by a cylinder, each side of a tetrahedron by a “plate”, and each tetrahedron
by a ball, see Figure 1.3.

The union H(T) of the vertex balls and the cylinders is a handlebody, and so is the
union H'(T) of the tetrahedra balls and plates. Therefore, M = H(T) U H'(T) isa
Heegaard splitting of the manifold M . a
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Figure 1.3

1.3 Stable equivalence of Heegaard splittings

Given a Heegaard splitting M = H, U H, of genus g, one can easily construct
another Heegaard splitting of M of genus g + 1 as follows. Add an unknotted 1-
handle B to Hg to get a handlebody H, . of genus g + 1. Here, we call a handle
unknotted if there is a 2-disc D in M such that D N Hg 41 = dD and the curve 0D
goes along B only once, see Figure 1.4.

Figure 1.4

Next, we thicken the disc D to get C = D x I. Note that B U C is homeomorphic to
a 3-ball, hence

M = Hg U(BUC)U H, = (Hg UB)U(C U Hy),

where Hy U B = Hgy1. The thickened disc C intersects the handlebody H, in
two discs, therefore, C U H, = H§+1 is a handlebody of genus g + 1, and M =
Hgi1 U Hg s a Heegaard splitting of genus g + 1.

The operation described above is called stabilization. For instance, the genus 1
splitting of the 3-sphere described in Figure 1.1 can be obtained by stabilization from
a genus 0 splitting. Two Heegaard splittings of a manifold M are called equivalent if
there exists a homeomorphism of M onto itself taking one splitting into the other, and
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stably equivalent if they are equivalent after applying stabilization to each of them a
certain number of times.

The following result was proved by Singer [149], see also Reidemeister [133]. Our
proof follows closely the Fomenko—Matveev book [49].

Theorem 1.2. Any two Heegaard splittings of a closed orientable 3-manifold M are
stably equivalent.

Proof. We will prove that (1) any two Heegaard splittings associated to triangulations
as in the proof of Theorem 1.1 are stably equivalent, and (2) any Heegaard splitting is
stably equivalent to a Heegaard splitting associated to a triangulation.

Let T be a triangulation of M. A triangulation 7’ of M is called a subdivision
of T if each simplex of T’ is contained in a certain simplex of 7. A simple way
to construct subdivisions is as follows: we pick a point « in M, leave the simplices
not containing a unchanged, and subdivide each simplex containing a as shown in
Figure 1.5. In the picture on the bottom of Figure 1.5, the point « sits in the interior
of the tetrahedron, while in the top right picture it belongs to its bottom face. Such a
subdivision is called a star subdivision of T with the vertex a. According to Alexander
[4], any two triangulations of M have a common subdivision obtained from each of
them by a sequence of star subdivisions.

Figure 1.5

Observe that if a triangulation 7" is obtained by a star subdivision from a triangula-
tion T, then the corresponding Heegaard splitting M = H(T’) U H'(T’) is obtained
from M = H(T)U H'(T) by a sequence of stabilizations. One can see in Figure 1.6
that if the point a sits inside a tetrahedron, the handlebody H (T”) is obtained from the
handlebody H(T') by adding three unknotted handles. If a is on a side, we need four
stabilizations, and if a is on an edge, the number of stabilization operations equals the
number of tetrahedra containing that edge.
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Figure 1.6

Together with the fact that any two triangulations are related by a sequence of star
subdivisions, this observation proves claim (1).

To prove claim (2) we will need a couple of technical results. Let K be a one-
dimensional subcomplex of a triangulation of some 3-manifold. We denote by U(K)
the union of those balls and cylinders which correspond to the vertices and edges of
K. The space U(K) is a handlebody.

Let H, be a handlebody of genus g as shown in Figure 1.2, and I' C H, its axial
graph. By definition, the graph I is a collection of g circles in Hy intersecting in
exactly one point. It is obtained by contracting each of the handles of H, to an arc,
and then contracting the central ball to the point to which all the arcs are attached.
We claim that there is a triangulation = of Hg such that I" is a subcomplex and the
following two conditions are satisfied:

(a) the handlebody U(z("), where t(1) is the 1-skeleton of = with T' ¢ (), is
obtained from U(I") by adding unknotted handles;

(b) the handlebody U(¢(1) is obtained by adding unknotted handles to U(d7(1)
where 3t is the 1-skeleton of the restriction of ¢ to dH,.

It is very easy to construct such a triangulation — almost any will do. For instance,
one can represent Hg as a 2-disc with g holes times an interval and use the product
triangulation. It should be mentioned that properties (a) and (b) of a triangulation are
preserved when one passes to a star subdivision. It follows then from the existence of
a common star subdivision that any triangulation has a subdivision satisfying (a) and
(b). However, in what follows, we will not use this fact in its full generality.

Let M = H U H’ be an arbitrary Heegaard splitting of M. Choose a triangulation
T of M in which both H and H' are subcomplexes. Let  and t’ be the restrictions
of T on H and H’, respectively. Let I" be an axial graph of H. By subdividing T if
necessary, we may assume that t satisfies (a) and ¢’ satisfies (b). Then U((z)™) is
obtained from U((d7")™") by adding unknotted handles. By adding the same handles
to U(z™M) we get U(TV). The handlebody U(z(") in turn is obtained by adding
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unknotted handles to U(T"). In short, we have the following diagram
UT) - UD) - (D) = H(T)

where H(T) is a handlebody in the Heegaard splitting of M = H(T) U H'(T)
constructed from the triangulation 7" as in the proof of Theorem 1.1, and the arrows
represent adding unknotted handles. The original Heegaard splitting M = H U
H’ is equivalent to the Heegaard splitting of M into U(T") and its complementary
handlebody. The latter is stably equivalent to the splitting M = H(T) U H'(T). O

1.4 The mapping class group

In a Heegaard splitting H Uy H', handlebodies H and H’ are glued along their
common boundary F by a homeomorphism f: F — F. One can always orient H
and H' in such a way that the homeomorphism f is either orientation preserving or
orientation reversing. We choose the latter, keeping in mind the following example.

Example. Let S* = H U H' be the Heegaard splitting of S3 of genus 1 shown in
Figure 1.1. The standard orientation of S3 = R3 U {oo} given by the basis e; =
(1,0,0), e; = (0,1,0), and e3 = (0,0, 1), induces orientations on both H and H’.
Orient the boundary dH = T2 of H by choosing a basis a, b in its tangent space so
that the triple a, b, n is positively oriented where # is an inner normal vector to 72 in
H . Similarly, orient dH' by its inner normal vector with respect to H’. Since n is an
outer normal vector with respect to H’, the orientations that 72 gets as the boundary
of H and H’ are opposite to each other. Therefore, the gluing map is orientation
reversing.

Recall that two homeomorphisms fo, fi: F — F are called isotopic if there is a
homotopy f;, 0 <t < 1, between them such that each f; is a homeomorphism. Note
that if f preserves (or reverses) orientation, so do all homeomorphisms isotopic to f'.
Gluing H and H’ by isotopic homeomorphisms produces homeomorphic manifolds.
This observation justifies the following definition.

Let Homeo(F') be the group of all orientation preserving homeomorphisms of a
closed oriented surface F, and let Homeoo(F') be the normal subgroup of homeo-
morphisms isotopic to the identity. The quotient group

H(F) = Homeo(F)/ Homeoy(F)

is called the mapping class group of the surface F. This group is a subgroup of the
larger group of all homeomorphisms of F modulo isotopy. As a subgroup, it has
index 2 because the composition of any two orientation reversing homeomorphisms
is orientation preserving. Next, we will describe a set of generators in H(F).
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Let ¢ be a simple closed curve, i.e. an embedded circle, in F and pick an annulus
U(c) one of whose boundary components is ¢, see Figure 1.7. Let us identify U(c)
with the annulus {z | 1 < |z| < 2} in the complex plane, and define a Dehn twist
7. F — F along ¢ as the homeomorphism given by the formula

reoel® s . pl@t2n(r=1) (1.1

inside U(c), and equal to the identity outside. A less formal way to think of 7. is as
follows. Cut F along ¢, twist one of the ends through 360° in one of the possible two
directions, and glue the ends back together.

Tc

Ul(e) U(c)

Figure 1.7

Another choice of U(c) or replacing the curve ¢ by an isotopic curve give isotopic
twists. It is worth mentioning here that any two non-trivial homotopic simple closed
curves on a surface F are isotopic, see Baer [10] and [11], and also Epstein [42]. The
choice of the twist direction is essential — twists in opposite directions define elements
in H(F) which are the inverses of each other.

Dehn twists were introduced by Dehn [34]. A proof of the following theorem can
be found in Lickorish [104].

Theorem 1.3. Let Fg be a closed orientable surface of genus g. Then the group
H(Fg) is generated by the Dehn twists along the curves o;, B, vk, 1 < i,j < g,
1 <k < g—1,pictured in Figure 1.8.

03] (0%} Qg

" e
Bi B B

Figure 1.8



Section 1.5 Manifolds of Heegaard genus < 1 23

1.5 Manifolds of Heegaard genus < 1

Let M be a closed orientable 3-manifold. We say that M has Heegaard genus g if
it admits a Heegaard splitting of genus g and does not admit Heegaard splittings of
smaller genus.

The cases ¢ = 0 and g = 1 deserve special treatment. If g = 0, the splitting
surface is a 2-dimensional sphere. The following theorem is due to Alexander [4].

Theorem 1.4. The only closed 3-manifold of Heegaard genus 0 is S3.

Proof. Let us think of D3 as the unit ball |r| < 1in R3, and S? its boundary. Any
homeomorphism f:S2 — S? can be extended to a homeomorphism F: D3 — D3
with the help of the formula F(¢ -r) = ¢ - f(r), 0 <t < 1 (this result is usually
referred to as Alexander’s lemma). Now, let M be a manifold of Heegaard genus
0, so that M = D U D, with Dy = D, = D3. There exists a homeomorphism
carrying D1 to the upper hemisphere of S3. This homeomorphism can be extended
to a homeomorphism from M onto S3 with the help of Alexander’s lemma. m|

Figure 1.9

Let 72 = S! x S! be a 2-torus, and choose generators in 7,72 = Z & Z as
follows. Think of 72 as the boundary of a solid torus S! x D? embedded in R3
as shown in Figure 1.9. Let @ and v be the standard angle coordinates on 72. The
curves u and A given respectively by the equations ¢ = 0 and 8 = 0 are called the
meridian and longitude. They play a different role with respect to the solid torus in
that ;. bounds a disc in S x D? while A does not. These curves together give a set
of generators of the group 71 (72?) = Z @ Z. Orient the torus by choosing the basis
(0/0d, d/00) in the tangent space.

The mapping class group of the torus can be described explicitly as follows. The
w1 functor converts a homeomorphism f of T2 into a group automorphism f; of
71(T?) = Z & Z. A homeomorphism of 72 isotopic to identity induces the identity
map on i1 (T?). The automorphisms of Z & Z are given by the integral 2 x 2-matrices
invertible over the integers. A matrix is invertible over the integers if and only if
its determinant is 1. The matrix of f, corresponds to an orientation preserving
homeomorphism £ if and only if its determinant equals 1. Therefore, we have a
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well-defined homomorphism
I1: H(T?) — SL(2,7Z)

into the group SL(2, Z) of integral 2 x 2-matrices with determinant 1. Each matrix
in SL(2, Z) can be reduced to the identity by elementary transformations on its rows
and columns. Hence, each A € SL(2, Z) is a product of matrices of the form

1 +£1 and 1 0
0 1 *11)°

These matrices are realized by the twists along the curves i and A. Thus, IT is surjec-
tive. One can show, see e.g. Rolfsen [137], Theorem 2.D.4, that IT is also injective.
Therefore, we obtain the following result.

Theorem 1.5. The map I1: H(T?) — SL(2, Z) is an isomorphism.

The isotopy classes of orientation reversing homeomorphisms f: T2 — T2 are in
one-to-one correspondence with the integral 2 x 2-matrices of determinant —1. Such
matrices are of the form 7 - 4, where A € SL(2,7Z) and

r= (_(1) (1’) (1.2)

is realized by the torus homeomorphism (v, 8) — (¥, —0).

Now we can describe the 3-manifolds of Heegaard genus 1. Let M be a mani-
fold obtained by gluing two solid tori by an orientation reversing homeomorphism
f:T? — T? of their boundaries. In the meridian-longitude bases on the two tori,
(i1, A1) and (uz, A2), the homeomorphism f corresponds to a matrix

Az(_pqi) with gr 4+ ps = 1. (1.3)

In particular, the image of the meridian w; of the first torus is isotopic to the curve
—q - U2 + p - Az, Which winds —g times in the 6,-direction and p times in the -
direction on the second torus.

Lemma 1.6. The image of 1 completely determines the manifold M.

Proof. To see this we notice that the solid torus D? x S can be attached in two steps.
First we glue in D% x J where J is a small segment of S, see Figure 1.10. The entire
solid torus can be represented as

D?x 8! = (D?*x J)u D3,

hence to get M we only need to attach the 3-ball along its boundary dD3 = S2. All
orientation preserving homeomorphisms of S2 are isotopic to identity, which com-
pletes the proof. a
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Figure 1.10

The manifold M is thus completely determined by p and ¢g. This manifold is called
the lens space L(p, g). The condition gr + ps = 1 on the matrix (1.3) implies that p
and ¢ are relatively prime. One can easily check that 71 L(p,q) = Z/ p.

Different pairs (p, g) may give homeomorphic lens spaces L(p,q). This is due
in the first place to an ambiguity in the choice of basis curves on 72. On the one
hand, the meridians w1 and u, are determined uniquely (up to isotopy and change of
orientation) by the condition that they bound a 2-disc. If we change the orientation of
w1, we will have to change the orientation of A; as well. This operation replaces A
by —A. Therefore, we may assume that p > 0.

On the other hand, the choice of longitude is very far from being unique - any curve
of the form n - ;1 + Ay is as good as A since it maps to A; by n Dehn twists along
w1. The effect of replacing Ay by n - ;1 + Ay is in adding » times first column of A4 to
its second column; similarly, the effect of replacing A, by n - s + A5 is in subtracting
n times second row of A from its first row.

Now, if p = 0, one may assume that A = < is the matrix (1.2). The corresponding
lens space L(0, 1) is simply S! x S2. Suppose that p # 0, then one can make ¢
non-negative and less than p,i.e.0 < g < p—1. If p = 1 then g = 0, so one can

assume that 01
= (1)

and L(1,0) = S3, which is a manifold of Heegaard genus 0. Finally, if p > 2, then
1 < g < p—1, and we obtain the following result.
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Theorem 1.7. Any 3-dimensional manifold of genus 1 is either S! x S? or a lens
space L(p, q) with p and ¢ relatively prime, p >2,and 1 <g < p — 1.

To complete the picture we note that lens spaces with different p’s are not home-
omorphic — not even homotopy equivalent — since their fundamental groups are not
isomorphic. At the same time, lens spaces L(p,q) and L(p, ¢") with different g and
¢’ may be homotopy equivalent and even homeomorphic.

Example. For any relatively prime p and ¢ the lens spaces L(p,q) and L(p, —q) are
homeomorphic (via an orientation reversing homeomorphism). To see this, we simply
change the orientations of the both solid tori in the construction of L(p, g), e.g. by
reversing the orientations of the longitude A; and the meridian . In this new basis,
the matrix (1.3) is replaced by the matrix

(1)

Example. If we exchange the roles of the two solid tori in the construction of L(p, q)
the matrix (1.3) will be replaced by its inverse,

(72)
Pa)’
with gr = 1 mod p. Together with the result from the preceding example this implies
that lens spaces L(p, g) and L(p, ¢") with g¢" = +1 mod p are homeomorphic. For
example, L(7,2) and L(7,3) are homeomorphic. In fact, it is also true that the lens

spaces L(p. ¢) and L(p, q") are homeomorphic if and only if ¢’ = +¢*! mod p; this
was first proved in Reidemeister [132].

Example. It is worth mentioning in conclusion, even without a proof, that L(p, ¢)
and L(p,q’) are homotopy equivalent if and only if gg’ = +m? mod p for some
integer m, see Whitehead [159]. For example, L(5,1) and L(5,2) are not homotopy
equivalent, and L(7, 1) and L(7, 4) are homotopy equivalent but not homeomaorphic.

Remark. In these notes we have tried to follow the orientation conventions for lens
spaces of Raymond [131] and Hirzebruch—Neumann-Koch [76]. However, the oppo-
site orientation conventions are often used. Some authors, for instance Rolfsen [137],
take care of this problem by working with manifolds which are orientable but not
oriented.

1.6 Seifert manifolds

The construction of lens spaces can be generalized as follows. Let F = S2\ int(Df u
.-~ U D2) be a 2-sphere with the interiors of n disjoint discs removed. The product
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F x S is a compact orientable 3-manifold whose boundary consists of 7 tori (an) X
S1 i =1,...,n. The fundamental group of F x S! has a presentation

(X1,...,Xn, b | hxi = xjh, x1...x, = 1),

where the generators x; are represented by the curves 8Di2 oriented as the boundary
curves of F. Suppose we are given n pairs of relatively prime integers, (a;, b;),
i =1,...,n,witha; > 2. We glue in n solid tori so that the meridian of the i-th
solid torus is glued to a curve on (D7) x S isotopic to a; - x; + b; - h. For each i, the
image under this gluing of the curve {0} x S' ¢ D? x S! is called the i-th singular
fiber.

The closed manifold that we obtain by this construction is called the Seifert mani-
fold M((a1,b1), ..., (an, by)) of genus 0 with n singular fibers. The “genus 0” here
refers not to the Heegaard genus but rather to the fact that the genus of the 2-sphere
used in the construction is zero, and that the construction can be generalized by re-
placing S? with any closed orientable surface of genus g.

We do not make an attempt at fixing an orientation on a Seifert manifolds — this
will be done in Lecture 2.

Example. A Seifert manifold M (a, b) with one singular fiber is a lens space L(b, a).
A Seifert manifold M ((a1, b1), (a2, b2)) with two singular fibers is also a lens space.

If a Seifert manifold M has at least three singular fibers, it is not homeomorphic to
a lens space. This can be seen, for example, from the fact that the fundamental group
of M is not Abelian. Therefore, the Heegaard genus of M is at least 2.

Figure 1.11

In fact, the Heegaard genus of any Seifert manifold M ((a1, b1), (az, b2), (as, b3))
with three singular fibers equals 2. A Heegaard splitting of genus 2 can be constructed
as follows. Choose first two of the three solid tori that were glued into F x S! in the
construction above, and connect them by an unknotted solid tube inside M to get a
handlebody of genus 2. Its complement in M is shown in Figure 1.11. It is a solid
torus with two parallel circular tunnels drilled, plus a short tunnel connecting one of
these tunnels with the “outside world”. The other tunnel is filled according to the
(a3, b3)-rule. The short tunnel can be stretched so that the picture will look like a
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filled thickened torus with a handle. The filled torus is homeomorphic to a regular
solid torus. Thus, we get a Heegaard splitting of M of genus 2. For more details of
this construction see Lecture 19.

A similar construction shows that the Heegaard genus of a Seifert manifold with
n > 2 singular fibers is at most n — 1.

Remark. In conclusion we mention that Seifert manifolds admit a fixed point free
action of the circle S so that the singular fibers as defined above are the only orbits
of this action with non-trivial isotropy group: the circle wraps a; times in the direction
of the i -th singular fiber. For a general theory of Seifert manifolds we refer the reader
to Neumann-Raymond [122] or Lee—Raymond [98], see also Lecture 19.

1.7 Heegaard diagrams

Lemma 1.6 can be extended to Heegaard splittings M = H U H’ of arbitrary genus
g > lasfollows. Let H be a handlebody obtained by attaching g copies of 1-handles
D? x [—1, 1] to the 3-ball as shown in Figure 1.2. The central discs D? x {0} of these
handles have collars Di2 x J whose removal from H leaves us with a 3-ball. Attach
H to H’ by attaching these collars first so that the curves 8Dl.2 x{0},i =1,...,g,
are identified with g disjoint simple closed curves a1, ..., ag in the boundary of H'.
What is left to attach is the 3-ball; this can be done in a way which is unique up to
isotopy.

This construction shows that the collection of curves «q,...,ag in 0H' as above
completely determines M. This collection, together with the handlebody H’, is re-
ferred to as a Heegaard diagram for M. Note that the homology classes of curves
o1, ...,0g are linearly independent in H(0H'), being the images of g linearly inde-
pendent classes [aDi2 x {0}] € Hy(dH) under an isomorphism. This linear indepen-
dence is equivalent to the open surface 0H’ \ {&; U ... U «ag} being connected, see
Exercise 10.

Example. Figure 1.12 shows a Heegaard diagram of genus two. It consists of disjoint
curves o7 and a; on the surface dH’ and a choice of handlebody to call H’ (there
are two choices for H’, the inner and the outer one with respect to the embedding
dH' C S3 as shown).

In the previous example, a particular embedding of H’ in S3 enabled us to draw
a Heegaard diagram on its surface. Lacking such an embedding, one can rely on the
following description of an abstract handlebody.

Let F be a closed orientable surface of genus g, and Bi....,B¢ C F a family
of disjoint simple closed curves whose homology classes are linearly independent in
H1(F). Attach g copies of 2-handles to F x [0, 1] using curves By x{1},..., Bg x{1}.
This gives us a 3-manifold with two boundary components. One boundary component
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Figure 1.13

is F, and the other has Euler characteristic two and hence is a 2-sphere. Attaching the
3-ball results in a handlebody with boundary F.

Using this description, a Heegaard diagram for a 3-manifold M will consist of a
surface F of genus g and two g-tuples of curves (o, ...,ag) and (B1,...,Bg) In
F called respectively «-curves and S-curves. Each g-tuple must consist of disjoint
simple closed curves whose homology classes are linearly independent in Hy (F'), but
there are no conditions on how the two g-tuples interact. The manifold M = H U H'
is recovered from this data by using a-curves as the attaching curves for H and 8-
curves as the attaching curves for H’.

Example. The choice of the inner handlebody in Figure 1.12 gives rise to the Hee-
gaard diagram as shown in Figure 1.13.

Example. Figures 1.14, 1.15 and 1.16 show Heegaard diagrams of genus 1 which are
drawn, for the sake of convenience, in a plane from which two disjoint open discs have
been removed. To get back the surface of genus one from such a plane, we compactify
it by one point at infinity and glue the two boundary circles together using the obvious
mirror reflection. Figure 1.14 shows two Heegaard diagrams of S3, Figure 1.15 five
Heegaard diagrams of S! x S2, and Figure 1.16 two Heegaard diagrams of L(3, 1)
(with unspecified orientation).
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Example. Shown in Figure 1.17 is a Heegaard diagrams of S3 of genus two, with the
same convention about gluing the two boundary circles on the left together using the
mirror reflection, and doing the same for the two circles on the right.

Heegaard diagrams of the type described above, with «- and B-curves, feature
prominently in the theory of Heegaard Floer homology, see Ozsvath-Szabo [127]
for an introduction. They will not be essential, however, for the rest of this book.

1.8 Exercises

1. Determine the homeomorphism classes of compact 3-manifolds obtained from
D3 by identifying finitely many pairs of disjoint discs in its boundary.
2. Let F be an orientable compact surface of genus g with 9F = S!. Show that
F x I is a handlebody. What is its genus?
3. Use Poincaré—Lefschetz duality to prove the following about the Euler charac-
teristic x:
(@) x(M) = 0 for any closed orientable 3-manifold M ;
(b) 2x(M) = x(dM) for any compact orientable 3-manifold M with bound-
ary oM.
4. Prove that if a closed orientable 3-manifold M has Heegaard genus g then its
fundamental group has a presentation with g generators and g relations.

5. Prove that for any integer g > 0 there is a closed orientable 3-manifold of
Heegaard genus g.

Show that Heegaard genus of S x S x S equals three.

Use van Kampen’s theorem to calculate 71 L(p, q).

What is the Heegaard genus of a connected sum of two lens spaces?

Real projective space is the 3-manifold R P3 obtained from the 3-ball by iden-

tifying antipodal points on the boundary. Draw a picture showing that R P3 is

homeomaorphic to the lens space L (2, 1).

10. Let F be a closed orientable surface of genus g, and «1,...,cg a collec-
tion of disjoint simple closed curves on F. Prove that the homology classes
[@1], ..., [ag] € H{(F) are linearly independent if and only if the open surface
F\ {o; U---Uoag} is connected.

11. Prove that a Seifert manifold M ((a1,b1), (a3, by)) of genus zero with two sin-

gular fibers is a lens space, and use van Kampen’s theorem to calculate its fun-

damental group.

12. Let M = M((a1,b1),..., (an, by)) be a Seifert manifold of genus zero with
n > 3 singular fibers. Calculate 7y M and H{ M .

© o N o



Lecture 2
Dehn surgery

2.1 Knots and links in 3-manifolds

A finite collection of smoothly embedded disjoint closed curves in a closed orientable
3-manifold M is called a link. A one-component link is called a knot. We will not
distinguish between equivalent knots and links: two links, £ and £’, in M are said to
be equivalent if there is a smooth orientation preserving automorphism i: M — M
such that 2(&£) = £’. In case the links have two or more components, we also assign
a fixed ordering of the components and require that / respect the orderings. Every link
£ C M can be thickened to get its tubular neighborhood N (&£) which is a collection
of smoothly embedded disjoint solid tori, D% x S, one for each link component,
whose cores {0} x S form the link £.

Links in S3 = R3 U {oo} can be thought of as links in R3. The requirement that
each of the curves of a link be smoothly embedded avoids pathological examples like
the one pictured in Figure 2.1.

Q) SO e

Figure 2.1

Let P be aplane in R3 and p: R3 — P the orthogonal projection. Given a link £
in R3, we will say that p is a regular projection for £ if every line p~1(x), x € P,
intersects £ in 0, 1 or 2 points and the Jacobian dy, p has rank 1 at every intersection
point y € p~!(x). Every link admits a regular projection, see Crowell-Fox [32].
Thus links in S3 = R3 U {oo} are often described by their regular projections, and
drawn as smooth curves in R? with marked undercrossings and overcrossings at each
double point.

Any knot in S3 equivalent to the knot (cosz,sinz,0), 0 < ¢ < 2, is called a trivial
knot or an unknot.



Section 2.2 Surgery on links in S3 33

2.2 Surgery on links in $3

Let k£ be a knot in a closed orientable 3-manifold M, and N (k) its tubular neighbor-
hood. By cutting the manifold M open along the 2-torus oN (k) we get two manifolds
— one is the knot exterior K which is M \ int N(k), and the other is the solid torus
N (k) which we will identify with the standard solid torus D2 x S!. Thus K is a man-
ifold with boundary 0K = T2 and M = K U (D? x S1). One can use an arbitrary
homeomorphism /: 9D? x S' — 9K to glue D? x S back in K. The space we obtain
by this construction, 0 = K Uy (D? x S1), is a closed orientable 3-manifold. We
say that Q is obtained from M by surgery along k.

The manifold Q depends on the choice of homeomorphism 4. In fact, the manifold
0 is completely determined by the image under % of the meridian dD? x {x} of the
solid torus D? x S, i.e. by the curve ¢ = h(dD? x {x}) on the boundary of K. To
see this, one simply repeats the argument that proved Lemma 1.6 from Lecture 1.

If M = S3 then a curve on 9K is given, up to isotopy, by a pair of relatively prime
integers (p, g). The construction is as follows. The space K has integral homology
groups Ho(K) = H1(K) = Z and H;(K) = 0 if i > 2. Any meridian of N(k)
represents a generator of H;(K); this is a curve on 0K which we call m. Up to
isotopy, there is a unique longitude which is homologically trivial in K; this gives
another curve, £, on 0K. These two form a basis for H; (dK) which is unique up to
isotopy and reversing the orientations of 7 and £. The longitude £ is called a canonical
longitude to distinguish it from the longitude defined in Lecture 1.

We fix the orientations as follows. Choose the standard orientation on S = R3 U
{oo}; it induces an orientation on K. We choose directions on the curves m and ¢
so that the triple (m, £, n) is positively oriented. Here, n is a normal vector to dK
pointing inside K, see Figure 2.2.

Figure 2.2

Any simple closed curve ¢ on 0K is now isotopic to a curve of the form ¢ =
p-m+ q-£. The pairs (p,q) and (—p, —q) define the same curve ¢ since the
orientation of ¢ is of no importance to us. One can conveniently think of a pair (p, q)
as a reduced fraction p/q. Then there is a one-to-one correspondence between the set
of isotopy classes of non-trivial simple closed curves on the torus K and the set of
reduced fractions p/q. This set should be completed by 1/0 = oo, which corresponds
to the meridian m. The result of 1/0-surgery on any knot k c S3 is again S3.
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Surgeries of the type described above are called rational. A surgery is called inte-
gral if ¢ = 1. Similarly, one defines rational and integral surgeries along a link £ C
M the surgery along each link component should be rational, respectively, integral.
In general, surgery along a knot k C M cannot be described by a rational number
since there is no canonical choice of the longitude (such a choice exists, however,
for a homology 3-sphere M, see Section 6.1). Nevertheless, the concept of integral
surgery still makes sense: the curve dD? x {x} on D? x S should be attached to a
curve on dK running exactly once along a longitude.

Theorem 2.1 (Lickorish [104] and Wallace [157]). Every closed orientable 3-mani-
fold M can be obtained from S3 by an integral surgery on a link £ C S3.

Lemma 2.2. Let hy,hy: 0H — 0H’ be homeomorphisms of the surfaces of two han-
dlebodies such that i1 = hpt. where 1. is a twist along a simple closed curve
¢ C 0H. Then the manifold M, = H U, H' is obtained from the manifold
M, = H Uy, H’ by an integral surgery along a knot k' C M, isotopic to the image
of c.

Proof of Lemma 2.2. We push the curve ¢ inside the handlebody H to get a knot
k C H. Let N(k) be its tubular neighborhood, and 4 = S x I an annulus connecting
¢ and oN (k), see Figure 2.3.

Figure 2.3

Let o: H \ int N(k) — H \ int N(k) be a homeomorphism which cuts the space
H \ int N(k) open along the annulus A, twists one of the rims by 360°, and glues
it back in. The restriction of the homeomorphism ¢ to dH is the twist 7. while
its restriction to dN (k) is a twist along the longitude A N N(k) of the knot k. Let
M/ = (H \intN(k)) Up, H',i = 1,2. The formula

2.1)

b(x) = o(x), ifxe H\IntN(k),
VT ifxen
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defines a homeomorphism of M| to M;. The conditions i = hate and ¢|pg = ¢
assure that the two parts of the formula (2.1) agree on the boundary, see Figure 2.4.

H \ int N(k) Q L H'
\L Tc id \L

H\ intN(k) Q o H’

Figure 2.4

Thus, if we remove the solid tori corresponding to N (k) from the manifolds M; and
M, they become homeomorphic. This implies that M, is obtained from M; by
surgery along the knot k. Since ® maps the meridian m of the torus dN (k) to the
curve m =+ £, this surgery is integral. |

Proof of Theorem 2.1. Every manifold M can be represented as M = H Uy, H’,
where H and H’ are handlebodies of genus g, and %, is an orientation reversing
homeomorphism of their boundaries. Similarly, S3 = H Up, H'. Therefore, h;lhl
is an orientation preserving homeomorphism so h;lhl = T¢y Tep * * Te,, WhEre 7¢; 1S
a twist along a curve ¢;. According to Lemma 2.2, multiplying the gluing homeomor-
phism by a Dehn twist has the same effect as performing an integral surgery along a
knot. A sequence of such multiplications gives a sequence of surgeries on knots, or a
surgery on a link. a

Thus, any closed orientable 3-manifold can be obtained by an integral surgery along
alink £ c S3. It should be emphasized again that the result of the surgery depends
not only on &£ but also on the choice of simple closed curves in the boundary dN (k)
of each component k of the link £. As we have seen, such a curve is uniquely deter-
mined by a reduced fraction p/qg, including 1/0. A choice of such a fraction for each
component of £ is called a framing of &£. A link &£ with a fixed framing will be called
a framed link. An integral surgery corresponds to a link framed by integers.

2.3 Surgery description of lens spaces and Seifert
manifolds

Let p > 2. The lens space L(p, 1) can be obtained by gluing together two solid tori
by the homeomorphism
-10
( p 1 )
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of their boundaries which attaches the meridian ; of the first torus to the curve
—u2 + p - Az on the second, see Figure 2.5 where p = 3.

Figure 2.5

If we turn the second solid torus inside out and think of it as a trivial knot exterior,
the meridian p; will be attached to the curve £ — p - m. Thus L(p, 1) has surgery
description shown in Figure 2.6.

< > - =
( _p
Figure 2.6

Similarly, any L(p,q) will be a rational surgery on a trivial knot with framing
—p/q. To produce L(p, q) by an integral surgery, replace one of the solid tori S!x D?
by S x A% where A? is an annulus. The construction above which produced L(p, 1),
will then give a manifold with boundary a torus. The latter can be pictured as a
surgered solid torus as shown in Figure 2.7; the lens space L(p, 1) can be obtained
from it by gluing in a solid torus by the homeomorphism

01
(°0). e

Repeat the construction with p replaced by any integer ¢ relatively prime to p. Glue
these two surgered solid tori together along their boundary by the homeomorphism
(2.2). We obtain S 3 surgered along the link pictured in Figure 2.7. On the other hand,

GG =Gt 7))

therefore, the link in Figure 2.7 represents L(pqg — 1, g).
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(=) -.CD.

Figure 2.7

Theorem 2.3. Any lens space L(p,q) has a surgery description as in Figure 2.8,

where p/q = [x1,...,Xxp] IS acontinued fraction decomposition,
1
[xl,...,x,,]=x1—1— (2.3)
Xo —
2 1
Xn
—X1  —X2 —X3 —X4 —Xn—1 —Xn
Figure 2.8

Proof. The construction for L(pg — 1, g) can be repeated sufficiently many times to
produce the link in Figure 2.8. The only thing we need to check is that, if p/q =
[x1,...,xn], then

—-gs\_ (-10 01 -10) (-10
pr) \xl 10 x2 1 xXn 1
for some r and s. This is true forn = 1 and n = 2 because
pq—1

L=1p) and = [p.ql.

By induction, suppose that p’/q’ = [x2,..., x], then
-10 01 —q" 5"\ _ —p’ —r’
x1 1 10 pr) \xip—q xir'+s" )’

/ / /

xX1p —q q 1

— =x1——,=x1——:[x1,...,xn].
)4 )4 [x2,...,Xn]

so that
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Since every rational number has a continued fraction of the form described, we are
finished. o

The link in Figure 2.8 is usually drawn as the weighted graph shown in Figure 2.9
where each vertex corresponds to an unknot, and two vertices are connected by an
edge if the corresponding unknots are linked.

—X1 —X2 —Xn

Figure 2.9

Example. The lens space L(7, 3) is a surgery on each of the following links in Fig-
ure 2.10 according to the continued fraction decompositions 7/3 = [3,2,2] and
7/3 =1[2,-3].

-3 -2 -2 -2 3

r——®

Figure 2.10

A Seifert manifold M((ay,b1),...,(an,by)) has a rational surgery description
shown in Figure 2.11. This description fixes an orientation of the manifold M. From
now on, we will referto M((a1, b1), ..., (an, by)) as an oriented 3-manifold with this
particular orientation.

/’N
N \_//
ay/b; az/by dn/bn

Figure 2.11

With the graph notations as above, the manifold M ((a, b1), ..., (an,by)) can be
described as shown in Figure 2.12 where a; /b; = [xj1, ..., Xim;]-

Example. The manifold M ((3,2), (4,—1), (5,—2)) has the surgery description shown
in Figure 2.13.
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X11 X12 X1m,
X21 X22 X2my
0
N
- — —
Xn1 Xn2 Xnmy
Figure 2.12
2 2 0 -2 2
I —4
Figure 2.13

2.4 Surgery and 4-manifolds

An oriented compact smooth 4-dimensional manifold W is called an (oriented) cobor-
dism between two closed oriented 3-manifolds M7 and M, if 0W = —M; UM, where
— M, stands for M7 with reversed orientation. If M; is empty, one says that M5 is
cobordant to zero.

There is a close relationship between surgeries on framed links and cobordisms.
Let k£ be a knot in M with an integral framing defined by a curve ¢ in dK such that
[c] = [k] € Hi(N(k)). Let a be a point on the boundary of D2. Then there exists a
unique (up to isotopy) diffeomorphism /: S x D? — N(k) such that h(S! x{0}) = k
and h(S! x {a}) = c. Glue a 2-handle D? x D? to the 4-manifold M x [0, 1] with
the help of the embedding #: S! x D? = (0D?) x D? - N(k) C M = M x {1}.
What we get is a 4-manifold W = (M x [0, 1]) Uy, (D? x D?). Itis called the trace
of surgery on k.

D2 x D2

D~

N(K)

M x {1}

M x {0}

Figure 2.14
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Theorem 2.4. The manifold W is a cobordism between M and the manifold obtained
from M by surgery on k.

Proof. The boundary of W consists of two components. One of these, namely M x
{0}, is homeomorphic to M. Gluing D? x D? to M x [0, 1] changes M x {1} as
follows: the solid torus N(K) = h(dD? x D?) is removed and replaced by the solid
torus D? x dD? (which is a “free” portion of the boundary d(D? x D?)). Note that
the meridian 9D? x {a} is identified with the curve ¢ = h(dD? x {a}). This means
that an integral surgery is performed on M x {1} along k with the framing given by
c¢. Formally speaking, the manifold W is not smooth as it has “corners” after gluing
in the handle. However, there is a canonical way to provide W with the structure of
a smooth manifold. One “smoothes out” the corners using techniques described, e.g.,
in Chapter 1 of Conner-Floyd [31]. a

Corollary 2.5. Any closed oriented 3-manifold is cobordant to zero.

Proof. Any closed oriented 3-manifold M can be obtained by an integral surgery on
a link in S3. Theorem 2.4 then implies that M is cobordant to S3 which, in its turn,
bounds a 4-ball. Therefore, M is cobordant to zero. O

Example. For any p, the lens space L(p, 1) is a surgery on the link shown in Fig-
ure 2.6. The corresponding 4-manifold £, = D*U (D? x D?) with boundary 9E, =
L(p, 1) can be thought of as a union of D* =~ D?x D? and a 2-handle D? x D? glued
along S' x D% C 9(D? x D?) by a certain homeomorphism /: S x D? — S x D2,
The homeomorphism £ attaches S! x {0} to S x {0} and twists a copy of D? p times
in the counter-clockwise direction as one completes one circle along S'. Schemati-
cally, this can be pictured as in Figure 2.15.

D* = D2 x D2 D% x D?

Figure 2.15

The central discs of both handles D? x D? are glued along S! to produce a copy
of S2 inside E,. The manifold E,, is then a locally trivial bundle over S with the
fiber D2,

Example. The manifold Ej is a trivial bundle, i.e. a product Eg = S2 x D2. Its
boundary is 0Eg = 3(S? x D?) = §2 x S!.
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Example. The manifold £ can be identified with C P2 \ int D#, where C P2 is the
complex projective plane, so that 9E; = 9(C P2\ int D*) = S3. Before we prove
this, we recall that, by definition,

CP? ={(z9,21,22) € C*\ 0}/C*

where C* is the multiplicative group of non-zero complex numbers acting by the
rule (zo, z1, 2z2) + (czo,cz1,c¢z2), ¢ € C*. The equivalence class of (zg, z1, z2) is
usually denoted by [z¢ : z1 : z2].

The complex projective plane C P2 is covered by three coordinate charts U; =
{z; # 0}, i =0,1,2, each of which is homeomorphic to C? via homeomorphisms

ho:Up — C2,  [z¢ : 21 : 22) = (21/20, 22/ 0),
h11U1—>(C2, [Z()ZZl :Zz]l—)(Zo/Zl,Zz/Zl),
hy: Uy — C2, [zo : z1 : z2] > (20/22.21/22).

The charts Uy and U; together cover all of C P2 but the point [0 : 0 : 1]. Therefore,
Up U Uy is a punctured C P2. Both ho(Up N Uy) and h1(Up N Uy) as subsets of C2
consist of all points (z, w) with z # 0so that hg(UyNUy) = h1(UpNU;) = C*xC.
The gluing map

—1

h h
h1(Up N Uy) ;> Uo NU; —0> ho(Up N UY)

is given by the formula (z,w) — (z=',wz~!). The points (z,w) with |z| > 1
are mapped by this map to the points (z, w) with |z| < 1. Thus one can truncate
ho(Up) and hy(Uy) by the condition |z| < 1, and think of the gluing operation as
happening along S!xC, where S is given by |z| = 1, according to the map (z, w) —
(z7!', wz™1). This is the map describing the manifold E1, after one replaces C with
the unit complex disc D? and hence the punctured C P2 with C P2 \ int D*.

As a complex manifold, C P2 comes with a canonical orientation. More careful
analysis shows that in fact £ is diffeomorphic via an orientation preserving diffeo-

morphism to CP~ \ int D* where C P stands for the complex projective plane with
reversed orientation, and that E_; = C P2\ int D*. The results of the last two exam-
ples can be summarized as in Figure 2.16.

OQ _Q 1@
§2 x D2 TP \intD* CP2\intD*

Figure 2.16
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2.5 Exercises

1.

Let M be a compact 3-manifold with M = S! x S!. Prove that M cannot be
simply-connected.

Let M be an integral homology 3-sphere, and let k& be a knot in M. Prove that
Ho(M \ k) = Hy(SY).

Regard D? as {(x.,y)|x? + y2 < 1}. Let ¢: D?> — D? be rotation about the
origin through the angle of 2z /n, where n is a positive integer. Let E be a
small disc centered at (1/2, 0), small enough so that E, ¢(E), ..., ¢" " 1(E) are
disjoint. Finally, let D,, be the disc with n holes,

n—1
Dp =D\ ¢' (intE),

i=0
and let X,, = D, x I/(x,0) ~ (¢(x),1). Describe X, as a link exterior.
Calculate 71 (X5) and find a 2-generator presentation for this group.
Let £ C S3 be a link separated by a smoothly embedded 2-sphere into two
non-empty sublinks. Prove that surgery on £ yields a 3-manifold which is a
connected sum of the manifolds obtained by surgery on the two sublinks.
Let k be a knot in S3. Prove that the 3-manifold obtained by a rational p/g-
surgery on k can also be obtained by an integral surgery on the link which
consists of k and a chain of unknots as shown in Figure 2.17 with framings

determined by a continued fraction decomposition p/q = [x1,...,xn].
. /\
D OO
r/q X1 X2 X3 Xn
Figure 2.17

. Prove that the 4-manifold obtained by surgery on the link pictured in Figure 2.18

is (S2 x §2)\ int D4,

OQ(DO

Figure 2.18

. Prove that the total space of the disc bundle associated with the tangent bundle

of S2 is diffeomorphic to £+, up to a choice of orientation (in particular, the
total space of the associated circle bundle is a copy of R P3).
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3.1 The linking number

Let L, and L, be two disjoint oriented knots in S or R3. Their linking number
Ik(L1, L) is defined in one of the following equivalent ways.

(1) Since H1(S3) = 0, the curve L bounds a surface F. Without loss of gener-
ality, one may assume that F is smoothly embedded and orientable, see Theorem 7.1.
Orient F by a normal vector n so that the triple ( =, v, n ) is positively oriented where
7 is a tangent vector to L1, and v is an inner normal vector to Ly in F. After a small
perturbation if necessary, we may assume that L, meets F transversally in a finite
number of points. At each of them L, passes locally through F in one of the possible
two directions, n or —n. Weight the intersections of the first type by +1 and those
of the second type by —1. The sum of these numbers is Ik(L1, L2). This number
is independent of the choice of F and perturbations, compare with the definition (3)
below.

(2) Consider aregular projection of L U L,. Each point at which L; crosses under
L, counts as shown in Figure 3.1. The sum of these numbers, over all crossings of
Ly under L, is called Ik(L1, L»).

Ly Ly
e —_— - —_—
L, +1 L, —1
Figure 3.1

(3) Let [L1] be the homology class in Hy(S3 \ L») carried by L. The group
H{(S3\ L,) = Z is generated by the homology class [m] of a meridian m of L,.
With the choice of orientation on m as shown in Figure 2.2 we define Ik(Lq, L,) by
the equation [L1] = Ik(L1, L3) - m.

Note that |k(L1, Lz) = ||((L2, Ll) and |k(—L1, L2) = — |k(L1, Lz) where —L4
is L1 with reversed orientation.

Example. The pairs of oriented knots pictured in Figure 3.2 have linking numbers
+2 and —2, respectively.
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BOLON

Figure 3.2

With the help of the linking number one can easily describe the canonical meridian-
longitude pair (m, £) foraknot k C S3. Recall from Lecture 2 that m and £ are simple
closed curves on dK such that [m] € H;(K) = Z is a generator, and £ is a longitude
such that 0 = [£] € H{(K). Comparing with the definition (3) of the linking number
we see that the condition [¢] = 0 is equivalent to Ik(¢, k) = 0. Also, the orientations
of both m and £ were chosen in Lecture 2 so that Ik(k,m) = +1, assuming that the
orientations of k and £ are consistent.

Example. Consider the trefoil knot pictured on the left in Figure 3.3. The “obvious”
choice of £ as a longitude “parallel” to k does not give the canonical longitude since

Ik(k,£) = —3. The canonical meridian-longitude pair is shown in Figure 3.3 on the
right.
m E
m .
J

Figure 3.3

With the above said, the integral n framing of a knot k£ corresponds to the choice
of a longitude ¢ such that Ik(¢, k) = n. Another convenient way of representing a
framed knot is in the form of a closed band (a homeomorphic image of S x I). One
component of its boundary (no matter which) represents the knot, and the other the
longitude, see Figure 3.4.

Shown in Figure 3.5 is a band representing a trivial knot with framing n — it has n
full right twists if n > 0, and —n full left twists if n < 0. One can easily see that the
orientation of the knot does not matter so there is no sign ambiguity here.
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knot

longitude
~

\n=3 Hn=—3

3.2 Kirby moves

As we have seen, any closed orientable 3-manifold can be obtained by an integral
surgery on a link in S3. The question is how to determine if two framed links in S3
give the same 3-manifold. The following are two elementary operations on a framed
link £ called Kirby moves which do not change the 3-manifold.

Move K1. Add or delete an unknotted circle with framing £1 which belongs to a
3-ball D3 that does not intersect the other components of &£, see Figure 3.6.

+1
L& - £ U

Figure 3.6

Move K2. Slide one component of the link &£ over another. Namely, let L, and
L, be two link components framed by integers n; and n», respectively, and L/, a
longitude defining the framing n, of the knot L, (the latter, as we know, means that
Ik(L2, L%) = n2). Now, replace the pair Ly U L, by Ly U L, where Ly = Ly #, L/,
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and b is any band connecting L to L/, and disjoint from the other link components.
The rest of the link £ remains unchanged, see Figure 3.7. We will say that L; was
slid over L,, and write Ly = L + L, when no confusion can arise.

O~ O

Figure 3.7

The framings of all components but L are preserved; the framing of the new com-
ponent Ly is equal to
ny+ny+2Ik(Ly, L»). (3.2)

To compute Ik(L1, L,) we need to orient both L and L, which have not been ori-
ented so far. We orient them in such a way that together they define an orientation on
Ly, see Figure 3.8. As this figure shows, the choice of orientations depends on how
the band b is glued in.

3 1

Figure 3.8

Theorem 3.1 (Kirby [82]). The closed oriented manifolds obtained by integral sur-
gery on framed links £ and &£’ are homeomorphic by an orientation preserving home-
omorphism if and only if £’ can be obtained from £ by a sequence of moves of types
Kl and K2.

The moves K1 and K2 have been known long before Kirby’s theorem. Kirby
proved the hard part of the theorem: if the manifolds are homeomorphic then the
links are related by the moves K1 and K2. We will only prove the easy part: the
moves K1 and K2 do not change the manifold.

Proof. Adding a disjoint unknotted 41 component to the link &£ corresponds to taking
connected sum of the manifold obtained by surgery along &£ with S3 surgered along
the unknot. Since the surgery of S3 on a (£1)-unknot produces S3 again, we are
finished.
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As for the second move, without loss of generality one may assume that the link
&£ consists of two components, £ = L; U L,. Let Ly U L, be obtained from £ by
move K2, and let M be the manifold obtained by surgery on L,. The manifold M
is obtained by gluing a solid torus in the exterior of L, so that the longitude of L,
defined by its framing is being glued to the boundary of a disc D = D? x {x} C
D? x S'. Since the knots L; and Ly are disjoint from L, one can think of them
as sitting in M. The knot Ly can then be isotoped into L (inside M) by pushing a
portion of it along the disc D. O

As we have seen before, integral surgery on a link represents a 3-manifold M as
the boundary of a 4-manifold W obtained by adding 2-handles to D*. The first Kirby
move replaces W by W#C P2 or W#(C_PZ; the second slides one 2-handle over
another without changing W, see Figure 3.9.

Figure 3.9

At this point there are a number of elementary examples that should be understood.

Proposition 3.2. An unknot with framing 1 can always be moved away from the
rest of the link &£ with the effect of giving all arcs going through the unknot a full
left/right twist and changing the framings by adding 1 to each arc, assuming they
represent different components of £ (in general, the framing changes according to the
rule (3.1)), see Figure 3.10.

Proof. Slide each arc once over the unknot and keep track of framings using (3.1). O

The cases n = 1 and n = 2 are shown in Figures 3.11 and 3.12. In Figure 3.12, if
the arcs belong to different components of &£, their framings increase by +1 each; if
the arcs belong to the same component, the framing changes by either 0 or +4.

The operation shown in Figure 3.10 together with discarding the unknotted, un-
linked component is called blow-down. The inverse operation in called blow-up.
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R vl I e
11
Figure 3.10
n—1 n ntl "
1 +1
| 1 | +1
Figure 3.11

NI T
SR =

Figure 3.12

Example. The framed links in Figure 3.13 all represent S3 as the boundary of various
4-dimensional manifolds.

G

Figure 3.13

Example. If one keeps track of all the 2-handles added, one can prove that certain 4-
dimensional manifolds, and not just their boundaries, are diffeomorphic. For instance,
the diagram in Figure 3.14 proves that (S? x S?)#C P? = CP2#CP24CP, com-
pare with Exercise 6 of Lecture 2.

Example. The two links in Figure 3.15 describe homeomorphic 3-dimensional man-
ifolds, both homeomaorphic to the Seifert manifold M((2, —1), (3, 1), (5, 1)), which is
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Figure 3.14

also called the Poincaré homology sphere and denoted X (2, 3, 5). The knot pictured
on the right in Figure 3.15 is called a left-handed trefoil. Its mirror image is called a
right-handed trefoil.

OO0 ¢ @

Figure 3.15

To show the first part of the statement, introduce three unknots with framing +1 and
slide the endmost circles over them (compare to Figure 3.11). Now apply the move
in Figure 3.12 to the three circles with framing —1. Iterate this process, discarding
unknotted, unlinked components, to get the links in Figure 3.16.

Apply Proposition 3.2 to a succession of unknots with +1 framing to finish the
argument, see Figure 3.17. Finally, to prove that this manifold is M((2,-1), (3, 1),
(5, 1)), we proceed as shown in Figure 3.18.

Example. For every m = 1,2,..., consider the Seifert manifold X(2,3,6m + 1)
given by the surgery graph shown in the upper left corner of Figure 3.19. One can
show as in the example above that X (2, 3,6m + 1) is a (—1/m)-surgery on a right-
handed trefoil.

On the other hand, the sequence of Kirby moves shown in Figure 3.19 proves that
3(2,3,6m + 1) can also be obtained by 1-surgery along the knot & pictured on the
bottom of Figure 3.19 — compare with Akbulut-Kirby [1], Figure 23. The knot & is
called a twist knot of type (2m + 2); where 2m + 2 stands for the minimal number
of crossings in its regular projection shown on the bottom of Figure 3.19.
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Example. Another example of a Seifert manifold which can be obtained by a surgery
on a single knot is the manifold M((3, 1), (4, 1), (7, —4)), see Figure 3.20. The knot
has 10 crossings in its regular projection, and has the name 10435 in the knot table of
Rolfsen [137].
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Figure 3.20
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Proposition 3.3. If in a framed link £ a component L, is an unknot with framing
zero which links only one other component L, geometrically once, then Lo U L; may
be moved away from the link £ without changing framings, and canceled.

Proof. If a strand of L; crosses Li, the component Lo can be used to change the
crossing without changing framings as in Figure 3.21.

Figure 3.21

An iteration of this move proves the first statement. The same move changes cross-
ings of L itself, thereby unknotting L; and changing its framing by an even integer.
We end up with the link pictured on the left in Figure 3.22.

OO -0 - 00

Each time the left circle is slid over the right, the framing changes by +2, so that
eventually we arrive at a link representing S3. a

For two oriented knots k; € M; and k; C M, let P; be a point on k; and
(D3, D}) aball neighborhood of P; in (M;,k;), i = 1,2. The connected sum of
the knots k; and k,, denoted by k;#k,, is an oriented knot in the manifold M;#M,
obtained by pasting together the pairs

(My \intD3}, ki \intD}) and (M \intD3, ka \ intDJ)
along an orientation-reversing homeomorphism (3D3,0D1) — (dD3,9D}). The

construction for knots in S3 can be described as follows: k#k» is a knot obtained by
taking diagrams of k; and k, separated by a 2-sphere and connecting them as shown
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in Figure 3.23 to match the orientations of the knots. In general, the connected sum
operation is not well-defined for non-oriented knots.

&SP Ay~ =

Figure 3.23

Example. The Figure 3.24 demonstrates that a surgery on a connected sum of knots,
k1#k,, is equivalent to a surgery on the link consisting of the knots k; and k5 linked
once by a 0-framed unknot. To see the equivalence, we simply slide k1 over k, with
the help of the second Kirby move, and then use Proposition 3.3 to cancel the pair

{0-circle} U k.

\/ vv
P = AN

kl ko kl#kz

Figure 3.24

3.3 The linking matrix

Let£ = Ly U---U L, be an oriented framed link in S3, the i-th component being
framed by e; € Z. The matrix A = (a;;), i, j = 1,...,n, with the entries
e;, ifi = 7>
ajj = .,
|k(Li,Lj), ifi 75 ]
is called the linking matrix of &£. It is symmetric since

aij = \K(L;. Lj) = IK(L;. L;) = aj;.
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The effect of the Kirby moves on A is follows. The move K1 replaces A by
0

A :
0
0---0=*1
Suppose that move K2 slides L; over L; to produce the pair (L; +L;)UL;. The new

linking matrix is obtained from A by adding (or subtracting) the j-th row to (from)
the i-th row and the j-th column to (from) the i -th column.

Example. For the links in Figure 3.8,
3 £2 . 83 or 0 —1
+2 1 31 -1 1)

3.4 Reversing orientation

Let M be a closed oriented manifold obtained by surgery on a framed link £ =
LiU---U Ly in S3, the i-th component L; being framed by e;, i = 1,...,n. Let
us fix an orientation on the link &£ and let A be the linking matrix of &£. Let —M be
the manifold M with reversed orientation. To get a surgery description of —M, we
reverse the orientation of the link exterior K by taking its mirror image with respect
to any plane in R3. This operation results in reversing orientations of the boundary
components of K so that each framing e; turns into —e;. Thus, the manifold —M will
be obtained by surgery on the link £* = LT U --- U Ly which is a mirror image of
&£, the component L7 being framed by —e;. Moreover, the orientation of £ induces
an orientation on &£* so that Ik(L}, L;‘.‘) = —Ik(L;, Lj) forall i # j. Therefore, the
linking matrix of £* is —A.

Example. We already know from Lecture 2 that the lens spaces L(7,3) and L(7,4)
are homeomorphic by an orientation reversing homeomorphism. This can also be
seen with the help of Kirby calculus as follows. Let us first represent the lens spaces
in question by their surgery diagrams, see Figure 3.25. The manifold —L(7, 3) then
has the surgery description shown in Figure 3.26, which identifies it with L(7, 4).

-2 3
L(1,3) = e—

-2 —4 —1 1 -3 2 -3
L(7,4)= — o T o— e o T o—o

Figure 3.25
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) 3 2 -3 2 -3
L(7,3) —L(7.3) —L(7,3) = L(7,4)

Figure 3.26

3.5 Exercises

1. Prove that surgery on each of the framed links in Figure 3.27 yields X (2, 3, 5).

( - /‘>

@—1 ‘1&

Figure 3.27

—1

a®

-1

2. Show that surgery on the knots shown in Figure 3.28 yields the Seifert homology
sphere (2, 3,7).

—1

D
®

Figure 3.28

3. Show that the 3-torus S x S x S can be described as the result of surgery on
the link pictured in Figure 3.29.

Figure 3.29
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4. Letk;y C Xy and k, C X, be oriented knots in oriented homology spheres,
K1 and K5 their exteriors, and (my,£1) and (m3, £,) the canonical meridian-
longitude pairs on dK; and 0K,, respectively. By the splice of ¥; and X,
along k; and k> we will mean the manifold X = K; U K, obtained by gluing
K1 and K> along their boundaries by an orientation reversing homeomorphism
matching m to £, and £; to m5.

(a) Prove that ¥ is a homology sphere.

(b) Define a trivial knot in a homology sphere ¥ as an unknot in a copy of
D3 C . Prove that the splice of £ and X, along trivial knots is simply
the connected sum X; # 2.

(c) Let homology spheres X and X, be obtained from X, and X, by (—1)-
surgery on, respectively, k1 and k». Let k¥ C X/ and kJ C X be the
images of the canonical longitudes £, and £,. Prove that the splice of
> and X, along k; and k, is homeomorphic to the homology sphere
obtained from X/ # X/, by (+1)-surgery on the knot k} #k.



Lecture 4
Even surgeries

A framed link £ = Ly U---U L, in S3 is called even if all its framings are even
integers.

Theorem 4.1. Any closed orientable 3-dimensional manifold can be obtained from
S3 by surgery along an even link.

Example. The Poincaré homology sphere X (2, 3, 5) can be obtained by surgery on
each of the links in Figure 3.15. The link on the left is even while the link on the right
is not.

The idea of our proof of Theorem 4.1 is to reduce a given framed link by Kirby
moves to an even link. A straightforward attempt at reducing the number of odd
framed components in the link is usually not a success. The right approach is to kill
the so-called characteristic sublink.

Let A = (a;j), i, j = 1,...,n, bethe linking matrix of &£ reduced modulo 2. Note
that A modulo 2 is well-defined for unoriented links while A itself requires a choice
of orientation of £, see Section 3.3. Consider the linear system over Z/2,

ai1xX1 + aizx2 + -+ ainXp = aii, i =1,...,n. (4.1)

The matrix A of this system is symmetric, and the right-hand side of the system is
the column of the diagonal elements of A. Such a system always has a solution. Let
(X1,...,xn), x; = 0or1, be asolution of (4.1). The sublink

£ ={Ljct|xj=1}

is called a characteristic sublink. A characteristic sublink always exists but it is not
unique if det 4 = 0 mod2. A link is even if and only if it has an empty character-
istic sublink. Once a characteristic sublink &£’ is fixed, each component of &£ can be
thought of as a pair (Lg, x;) where x; = 1 ifand only if Ly C £’ (xx is not to be
confused with the framing on Ly).

Example. Let us consider the link &£ shown in Figure 4.1. The equation (4.1) for this
link takes the form

110\ (x 1
111 [x] =11
011) \x; 1
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and this system has the unique solution x; = 0, x, = 1, x3 = 0. Therefore, there is
only one characteristic sublink, which consists of the middle circle of the link £. By
blowing the central curve down we obtain an even link describing the same 3-manifold
as the original link £.

-3 1 5

Figure 4.1

The Kirby moves have the following effect on a characteristic sublink £’. One can
easily see that the first move replaces &£ by LU (L1, 1) where L, 41 is the unknotted
link component in Figure 3.6. Suppose that a component L; is slid over a component
Lj in the second move. In the resulting link the components (L, xx), k # i, ],
remain unchanged while the pair (L;, x;) U (L;, x;) is replaced by (L; + Lj, x;) U
(Lj,x; + xj). To see the latter we notice that the effect of the second move on the
matrix A is in adding the j-th row to the i-th row and the j-th column to the i-th
column. It can be easily checked that (...,x;,....x; + xj,...) is a solution of the
new system. For instance, if both L; and L; were characteristic, and L; is slid over
Lj, then L; is no longer characteristic while L; 4 L; is.

Proof of Theorem 4.1. Any closed oriented 3-manifold is an integral surgery on a
framed link £. Let &£’ be its characteristic sublink. If £’ has more than one com-
ponent, we can slide one of its components over another by using the second Kirby
move. The result is a new link with fewer characteristic components. Thus one can
assume that the characteristic sublink consists of just one component, a knot k.

If the knot k is trivial, its framing can be changed to 41 by repeating the move in
Figure 3.10 of Lecture 3 sufficiently many times, after which the knot can be blown
down. This operation does not create any new characteristic components, therefore,
the characteristic sublink of the new link is empty.

In general, the knot k£ can be unknotted by Kirby moves so that it is still the only
characteristic component. It can be done as follows.

Step 1. Let us consider the transformation P which replaces one fragment of k£ with
another as shown in Figure 4.2, keeping the rest of it unchanged. We will prove that
the knot k can be turned into a trivial knot by a sequence of transformations P.

Step 2. The knot k bounds an embedded compact orientable surface F in S3, see
Theorem 7.1. This surface, of course, may intersect the other components of the link.
The classification theorem for such surfaces implies that F is isotopic to a surface
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Figure 4.2 Figure 4.3

which is a 2-disc D with several bands attached, see Figure 4.3. Here is the overall
idea. Fix a triangulation of the surface. A small neighborhood of each vertex forms a
disc. Thin neighborhoods of the edges form bands joining the discs together. Hence,
a neighborhood of the edges is homeomorphic to a union of discs with bands added.
One checks that adding the faces has the same effect as not attaching certain of the
bands, and that the number of discs can be reduced to one.

Step 3. The bands may be knotted and linked with each other, and each of them may
be twisted an even number of times (since the surface is orientable). With the help of
transformation P, the bands can be unknotted and unlinked.

Let us denote the points at which the i-th band is attached to the disc D by P; and
Q;. For any i, there exists a j such that the pairs (P;, Q;) and (P;, Q;) are linked in
oD = S! (otherwise the boundary of F would consist of more that one component).

P; Qi P; Pj
0; Pj 0; Qi
unlinked pairs of points linked pairs of points
on a circle on a circle

Figure 4.4

Let (P;, Qi) and (P;, Q;) be linked pairs of points on dD as shown in Figure 4.5.
Whenever there are points Py or Q, k # i, j, between P; and Q;, they can be slid
over the i-th band to the interval [ P;, P;]. Inturn, any points Py or Qy in [P;, P;] can
be slid along the j-th band to the right of Q;, and the points P or Qx in [Q;, O/]
can be slid along the i -th band to the left of P;.

Thus, we can isotope the surface F so that there are no attaching points between P;
and Q; other than P; and Q;. It may happen that some bands become linked again
under this procedure — if necessary, we unlink them by the transformation P.
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<N A

P; Pj Qi 0;

Figure 4.5

Step 4. We proceed by induction and show that the knot & is a connected sum of knots,
each of which is obtained as the boundary of a disc with only two bands. After that,
the number of full twists on each of the bands can be reduced to at most 1 since double
full twists can be eliminated by P, see Figure 4.6.

00

|4
J\B‘l

Figure 4.6

/

One can also assume that all twists are full right-hand twists so that the knot & is in
fact a connected sum of the knots shown in Figure 4.7 (if at least one of the bands is
not twisted at all, the corresponding knot is trivial).

T, - S

Figure 4.7

The knot in Figure 4.7 is a left handed trefoil. It can be unknotted by undoing a
double full twist with the help of the transformation P as shown in Figure 4.8.

Step 5. We only need to prove that the transformation P can be realized by Kirby
moves preserving k£ as the only characteristic component. This can be seen from
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) . €

Figure 4.8

Figure 4.9. Note that it is essential that the number of strands is odd so that we do not
introduce new characteristic components by the second Kirby move. Note also that
every time we apply the transformation P we add a new component to the link £.

)

Figure 4.9 O

Originally, Theorem 4.1 was proved by J. Milnor [112] by different techniques.
Our proof follows the lines of the proof given in the Fomenko—Matveev book [49],
which in turn modifies the proof of Kaplan [79].

4.1 Exercises

1. Prove that the linear system (4.1) always has a solution.
2. Kill the characteristic sublink in the link shown in Figure 4.10.

=

Figure 4.10

3 0



Lecture 5
Review of 4-manifolds

The main object of our interest in this lecture will be a connected, closed (compact
without boundary), oriented 4-manifold. Such a manifold will be either a topological
or a smooth manifold. To avoid the group theoretic problems arising from the fact that
any finitely presented group can occur as the fundamental group of a (smooth) closed
4-manifold, see [106], page 143, we assume that our manifolds are simply-connected.
All homology and cohomology groups are assumed to be with integral coefficients
unless otherwise stated.

5.1 Definition of the intersection form

Let M be a closed, oriented, connected, and simply-connected 4-manifold. By Poin-
caré duality, H4(M) = H°(M) = Z. The choice of a generator in H4(M) corre-
sponds to the choice of orientation of M. As soon as M is oriented, the generator
of H4(M) is called the fundamental class of M and is denoted by [M]. Since M is
simply-connected, H{ (M) = 0 and, by Poincaré duality, H3z(M) = 0. Therefore, all
homology information about M is contained in the second (co)homology.

Lemma 5.1. The groups H2(M) and H, (M) are torsion free.
Proof. The universal coefficient theorem in cohomology gives
H?(M) = Hom(H,(M),Z) & Ext(H{(M),Z),

and since H;(M) = 0, it follows that HZ(M) is torsion free. By Poincaré duality,
Hy(M) = H*(M). m]

Let us consider the bilinear form on the free Abelian group H2(M),
Ou:H*(M)® H*(M) - Z, (5.1)

given by the cup product, (a, b) — (a — b, [M]). This is a symmetric integral form
called the intersection form of the manifold M. By Poincaré duality, the form Qs
is non-degenerate over the integers, which means that in a certain basis of HZ(M)
(and therefore in any basis) its matrix is invertible over the integers. Note that an
integral matrix Q is invertible over the integers if and only if it is unimodular, that is,
det O = +1.
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Here is another way to define the intersection form for a smooth manifold M (a
similar definition for topological manifolds is more subtle, and we will not attempt it
here). Poincaré duality provides an isomorphism PD: H2(M) — Hp(M). We will
say that a class « € H,(M) is represented by a smoothly embedded closed oriented
surface F, C M if i«([Fy]) = « in homology, where i is the inclusion map and
[Fo] € Hz(Fy) is the fundamental class of F,. We will abuse notations and write
i+([Fo]) = [Fal € Hy(M).

Lemma 5.2. Let M be a closed oriented smooth 4-manifold. Any class « € Hy(M)
can be represented by a smoothly embedded closed oriented surface F,.

Proof. Let a € H?(M) be Poincaré dual to & € H,(M), and consider a natural
bijection
H*(M:Z) = [M.K(Z.2)] = [M.CP*],

where the brackets denote homotopy classes of maps. Since dim M = 4, we further
have that [ M, CP>] = [ M, C P?]. Under this bijection, the cohomology class a
corresponds to the homotopy class of amap f, : M — C P2. Since H*>(CP?) = Z
is freely generated by the Poincaré dual PD™![C P!] of the complex projective line
CP! c C P2, the correspondence between a and f, can be described as

a= f(PD7'CP).

Choose £, within its homotopy class to be smooth and transversal to C P! ¢ C P2.
Then Fy = £, 1(CP) is a closed oriented surface smoothly embedded in M, and
its homology class [Fy] € H»(M) is Poincaré dual to a, after possibly reversing the
orientation of Fy. Since « is also Poincaré dual to a, we conclude that [Fy] = «. O

Let M be smooth. Represent o, 8 € H»(M) by smoothly embedded, oriented
surfaces Fy and Fg. Perturb either one so that F,, meets Fg transversally in n points

Py, ..., Py, schematically shown in Figure 5.1.
o p P, Py
Fp
Figure 5.1

Each point P; can be assigned a sign ¢(P;) = %1, according to whether Tp, F, ®
Tp, Fg has the same or opposite orientation as 7p, M. Then define the intersection
form on the second homology,

Hy(M)® Hy(M) > Z. (a.B)>a-B = &(P). (5.2)

i=1
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Lemma 5.3. The form (5.2) is well-defined. Let a,b € H?*(M) be cohomology
classes and « = PD(a), B = PD(b) their Poincaré duals. Thena -8 = {(a —
b,[M]) = Qum(a,b).

Proof. For a proof, we refer the reader to the book Bott—Tu [18], Section 6. a

To evaluate « - « for « € H,(M), one should represent o by two homologous
surfaces, Fo and F,, meeting transversally, and count the intersection points as above.
A convenient way to think of the surface F, is as a surface obtained from F, by a
“small perturbation”: schematically, this is shown in two dimensions in Figure 5.2.

Figure 5.2

From now on, we will not distinguish between the forms (5.1) and (5.2) and when
referring to an intersection form will mean either of them. Given a basis ey, ..., e,
in Hy (M), the intersection form determines the intersection matrix e; - e;. Standard
examples of (smooth) 4-manifolds and their intersection forms are as follows.

Example. H,(S?x S?) isisomorphic to Z @ Z with generators o and j represented,
respectively, by the surfaces S2 x {g} and { p} x S? where p is a point in the first copy
of 2 and ¢ a point in the second. Since o - @ = B - B = 0, and, with appropriate
orientations, @ - B = 1, the intersection form is given by the so-called hyperbolic

matrix,
01
- (00).

Example. H,(C P?) is isomorphic to Z with a generator represented by C P1. This
follows, for example, from the Mayer-Vietoris exact sequence for C P2 = E_; Ugs
D*#, see Lecture 2, and the fact that S2 = CP! ¢ E_; is a deformation retract
of E_;. The intersection form of C P2 is (+1); the intersection form of C P2 with

opposite orientation, C P, is (—1).

Example. Hy(M#N) = Hy(M) & H,(N) for any 4-manifolds M and N,
and Qpenv = Om @® Oy . In particular, the intersection form of p - C P2 # g .CP°
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with p ones and g negative ones on the diagonal.

Example. The Kummer surface
K3={[z0:21:22:23) € CP? | z§ + z{ + z5 + 25 = 0}

is a simply-connected closed oriented 4-manifold with intersection form Eg & Eg &
3 H where Eg is the following 8 x 8 unimodular matrix

2 1
1 -2 1
1 -2 1
1 -2 1

Eg = 1-2 1 0 1
12 1 0
0 1-2 0
1 0 0-2

(empty entries mean zeroes). It is the linking matrix of the framed link in Figure 5.3,
whose components should be properly oriented. As we know from Lecture 3, the
surgery on this link produces the Poincaré homology sphere 3 (2, 3, 5).

-2 -2 =2 =2 -2 =2 =2
| -

Figure 5.3

The framed link in Figure 5.4 gives an explicit description of K3, see Harer, Kas,
and Kirby [68]. It has 22 components, two of which have zero framings as shown.
The remaining 20 components are framed by —2. The surgery on this link gives a
4-manifold with boundary S3. To get a closed manifold one simply attaches a 4-ball
to its boundary.

It is worth mentioning that not every 4-manifold can be obtained by adding 2- and
4-handles to D*. Handles of other indices may be needed. The complete version of
Kirby calculus in dimension 4 can be found in Kirby [84] or Gompf-Stipsicz [61].
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one full one full
left twist left twist

Figure 5.4

5.2 The unimodular integral forms

Let L be a lattice (i.e. a finitely generated, free Abelian group), andlet 0: L L — Z
be a unimodular, symmetric, bilinear, integral form on L. An example of such a form
is the intersection form (5.1) or (5.2). There are three basic invariants of Q. The first
is the rank, defined by

rank Q = rankz L = dimp (L ® R).

The second is the signature, defined as follows. Tensoring with R gives a real sym-
metric form Q on L ® R. There is a basis for L ® R in which the form is diagonal,
i.e. there is a basis {e1,...,e,} With Q(e;,e;) = A;8;;. Suppose that we have b
positive A;’s and b_ negative A;’s so that b4 + b_ is the rank of Q, then we define
the signature of Q as

sign Q = by —b_.

The form Q is called definite if 54 or 5_ vanishes (in the former case Q is said to be
negative definite, and in the latter positive definite), and indefinite otherwise.
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The rank and the signature of Q are invariants of the associated real bilinear form.
The third invariant, called the type, is not. The type is said to be even if Q(x,x) =
0 mod 2 for all x € L, otherwise the type is said to be odd.

Two forms, Q1: L1 ® Ly — Z and Q,: L, ® L, — Z, are called isomorphic,
01 == Q», if there is an isomorphism ¢: L1 — L5 of lattices making the following

diagram commute:
¢
L1 ® Ly Ly ® L>

Q\ /Qz
Z
The rank, signature, and type are all invariants of the isomorphism. If Q is the
intersection form (5.1) of a manifold M, its rank, signature and type are referred to as
the rank, signature and type of the manifold M.

The following are some basic facts about unimodular, symmetric, bilinear, integral
forms Q, see Milnor-Husemoller [115] and Serre [145].

« If Q is odd and indefinite then Q = b1 - (+1) @ b_-(—1) where by +b_ =
rank Q and b4+ — b_ = sign Q.

 If Q iseven then sign 0 = 0 mod 8.

* Suppose that Q is even and indefinite. If sign Q0 < 0then Q ~a-Egs & b- H
where a = —(sign Q)/8 and b = (sign Q + rank Q)/2. If sign Q > 0 then
Q=~a-(—Eg) ® b-H,wherea = (sign Q0)/8 and b = (rank Q —sign Q)/2.

Example. The form Eg is even and negative definite with sign Eg = —8. The form
H is even and indefinite with sign H = 0.

5.3 Four-manifolds and intersection forms

The first question that we will address is the extent to which the intersection form
determines a 4-manifold.

Theorem 5.4 (Whitehead [160]). If M and N are simply-connected, closed, oriented
4-manifolds, then they are orientation preserving homotopy equivalent if and only if
their intersection forms are isomorphic.

Example. The intersection forms of CP24CP” and S2 x S2 are not isomorphic
over the integers because one is odd and the other is even (they are isomorphic over
the reals, though). Therefore, CP24#CTP and S2 x S2 are not homotopy equivalent,
either orientation preserving or orientation reversing.
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Theorem 5.5 (Wall [155]). Let M and N be simply-connected, closed, oriented,
smooth 4-manifolds. If their intersection forms are isomorphic then there isk > 0
such that M#k(S? x S?) is diffeomorphic to N#k(S? x S?).

The number & in this theorem is not specified. There exist, however, closed simply-
connected oriented smooth 4-manifolds with isomorphic intersection forms which are
not diffeomorphic, so that £ in the Wall’s theorem is not always zero. Such examples
can be constructed with the help of the Donaldson polynomials, see Donaldson [37].
The Donaldson polynomial of degree d,

Dg: H*(M:;R) - R

is defined with the help of the gauge theory for smooth 4-manifolds M satisfying cer-
tain conditions. These polynomials are diffeomorphism invariants. For convenience,
they are usually organized into a Donaldson series,

Dy (x) = ) Da(x)/d!
d

Example. Let M = K3 #C P~ be a connected sum of the Kummer surface K 3 with
CP’. The intersection form of M is Q=2-Es®3-H & (—1),sorank Q =23
and sign Q = —17 with b* = 3 and b~ = 20. This form is odd and indefinite
and therefore isomorphic over the integers to the form 3 - (+1) & 20 - (—1). Let
N =3.CP2#20-CP . The intersection forms of M and N are isomorphic. On the
other hand (see e.g. Kronheimer and Mrowka [94])

D (x) = e2&%)/2 . cosh Q(E, x), while Dy (x) =0

as analytic functions. Here, E = PD~![C P] is the cohomology class Poincaré dual
to the generator C P! of H2(<C_P2). Therefore, M and N are not diffeomorphic.
It should be mentioned that the situation is completely different if one uses C P?
instead of C P~ in the construction of the manifold M. It turns out that K3#C P2 is
diffeomorphic to 4 - CP2#19 - C_Pz, which can be shown directly with the help of
Kirby calculus.

Freedman’s theorem which is stated below implies that, in fact, if M and N are
closed simply-connected smooth 4-manifolds with isomorphic intersection forms then
they are homeomorphic.

Next we address the question of which forms can be realized as the intersection
forms of 4-manifolds.

Theorem 5.6 (Rohlin [135]). If M is a simply-connected, closed, smooth, oriented
4-manifold with even intersection form then sign M = 0 mod 16.
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This theorem prohibits many forms from being intersection forms of smooth
simply-connected closed 4-manifolds — this list includes, for example, Eg and Eg® H.
Simple-connectivity is essential: Habegger [66] constructed a smooth closed 4-mani-
fold M with Qs =~ Eg & H which is not simply-connected, see also Fintushel-Stern
[44]. Rohlin’s theorem will be proved in Lecture 10 in a more general form.

Theorem 5.7 (Freedman [51]). Given a unimodular, symmetric, bilinear, integral
form which is even (odd), there exists, up to homeomorphism, exactly one (two)
simply-connected, closed, topological 4-manifold(s) representing that form. In the
odd case, one of the manifolds is never smooth.

This theorem implies, for example, that there exists a simply-connected closed
topological manifold M with Qpy = Eg; this M cannot be smooth by Rohlin’s
theorem. Also, the manifolds M = K3#CP and N = 3-CP2#20-CP_ in
the example above are both smooth and have odd indefinite intersection forms that
are isomorphic over the integers. Therefore, M and N are homeomorphic but not
diffeomorphic. A very important special case of Freedman’s theorem is as follows.

Corollary 5.8. If a topological 4-manifold M is homotopy equivalent to S* then M
is homeomorphic to S*.

This proves the topological 4-dimensional Poincaré conjecture, a 4-dimensional
cousin of the 3-dimensional Poincaré conjecture recently proved by Perelman, see for
instance [119]. The question whether every smooth 4-manifold which is homeomor-
phic to S* is also diffeomorphic to S* remains unanswered; it is known as the smooth
4-dimensional Poincaré conjecture.

Theorem 5.9 (Donaldson [35] and [38]). If the intersection form of a smooth, closed,
oriented 4-manifold is positive definite then the form is isomorphic to p - (+1).

It is worth mentioning that, although the number of positive definite unimodular
integral symmetric bilinear forms of any rank is finite, it grows rapidly. For example,
there are more than 10°! positive definite forms of rank 40. However, Donaldson’s
theorem implies that none of these forms but the diagonalizable ones can be the inter-
section forms of smooth closed 4-manifolds.

Theorem 5.10 (Furuta [56]). If the intersection form Q of a smooth, simply-con-
nected, closed, oriented 4-manifold is even then rank Q > 5/4 - |sign Q|.

In particular, if an even form Q >~ a-Eg @ b- H is an intersection form of a smooth,
simply-connected, closed, oriented 4-manifold then a < b. Conjecturally, a stronger
conclusion holds for the latter theorem, namely, that rank Q > 11/8 - |sign Q|. This
is known as the 11/8-conjecture. The equality rank Q = 11/8 - |sign Q| is realized,
for example, by the Kummer surface K3.
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5.4 Exercises

1.

Prove that any integral symmetric bilinear form of rank 2 which is unimodular
and indefinite has a non-zero vector of square zero. Use this observation to
classify all such forms.

2. Verify directly that the form E is unimodular and has signature —S8.

3. Prove that the form Eg & (—1) is not diagonalizable over the integers. (Hint:

count the number of vectors of square —1).

. Prove that any closed, oriented, simply-connected 4-manifold with even inter-

section form and vanishing signature is homeomorphic to either S* or a con-
nected sum of several copies of S2 x §2.



Lecture 6
Four-manifolds with boundary

6.1 The intersection form

Let M be a compact oriented connected simply-connected smooth 4-manifold with
oM # @. Every class in Hy(M) can still be represented by a smoothly embedded
closed oriented surface (see for instance [61], Remark 1.2.4) so the intersection form

Om:H(M) ® Hy(M) > Z, (a,b)+>a-b, (6.1)

over the integers can still be defined as in (5.2). However, this form is not necessarily
unimodular. For instance, the intersection form of M = S2 x D?is Qp = 0.

Let R be a commutative ring with an identity element. An oriented 3-manifold
¥ is called an R-homology sphere if it has the same R-homology as S3, that is,
H.«(Z; R) = Hy(S3; R). If R = Z, we refer to X as an integral homology sphere, or
simply a homology sphere. If R = Q, we talk about rational homology spheres. For
example, every lens space L(p, q) with p > 1 is a rational homology sphere.

Theorem 6.1. The intersection form (6.1) is unimodular if and only if 0M is a disjoint
union of integral homology spheres.

Proof. Assume for simplicity that oM is connected. We will first show that, if the
form (6.1) is unimodular, then 0M is a homology sphere. Letix: Ho(0M) — Hy(M)
be the homomorphism induced by the inclusion i: oM — M. If imi, # 0 then the
form (6.1) is degenerate because a - b = 0 forany a € imi, and every b € H, M.
Since M is simply-connected, Poincaré duality, together with the universal coefficient
theorem, implies that H3(M,dM) = H'(M) = Hom(H(M),Z) = 0. Therefore,
we have the following exact sequence

0 — Hy(0M) 2> Hy(M) L5 Hy(M, 0M) — Hy(0M) — 0.

Then im{H,(0M) — Hy(M)} = imi, is trivial if and only if H,(dM) = 0. By
Poincaré duality the latter means that dM is an integral homology sphere.

If 9M is a homology sphere, H2(M) = H?(M,dM), and the non-degeneracy
of (6.1) follows from Poincaré—Lefschetz duality, which in our case states that the
form H>(M) @ H*(M,dM) — Z given by (a,b) — {(a — b,[M,dM]) is non-
degenerate. a
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Theorem 6.2. Let M be a 4-manifold with boundary obtained by integral surgery on
a framed link £ in S3. Then Q is isomorphic to the linking matrix of £.

Note that the linking matrix of &£ depends on how the components of &£ are oriented,
however, different choices lead to isomorphic linking matrices. The same is true about
the intersection form Q. In the proof, we will choose an oriented basis in H,(M)
and will orient &£ so that Qs will be equal to the linking matrix of £.

Example. The intersection form of E_;, obtained by (+1)-surgery on an unknot in
S3is (1), see Lecture 2. This is consistent with the fact that E_; Ugs D* = C P2
and, as we know, Q¢ p2 = (1).

Before we prove Theorem 6.2 we describe the following construction. Let k C
S3 = {(z,w) € C? | |z]> + |w|*> = 1} be a knot. It bounds a smooth surface
Fy inside D* = {(z,w) € C? | |z|*> + |w|*> < 1} such that F; N S3 = k and
the intersection is transversal, see Figure 6.1. For example, take a Seifert surface of
k in S3, see Lecture 7, and slightly push its interior radially into D*. Given such
an embedding F;, C D*, define f: F; — R as a restriction to F of the distance
function measuring the distance from a point x € D* to the center of D*. One may
assume without loss of generality that f(x) # 0 forall x € Fy.

)

g

Figure 6.1

S3

Let S? = {(z,w) € C? | |z]?> + |w|®> = t?} be the ¢-level set of the distance
function. Recall that the intersection Fy N S7 is called transversal at a point p €
FrNS2if T, Fy + T,S? = T,D*. The points p € F NS} at which the intersection
is not transversal are the critical points of f (where the gradient of f vanishes). In
local coordinates x* on Fy, this means that (3f/dx*)(p) = 0, so the Taylor expansion
of f near such a point p takes the form

52 o
10 = 100+ 2 (a7 ) 0 6 = P =y

i,J
A critical point p is called non-degenerate if

det( ”f )(p) £ 0.

xiox/
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Non-degenerate critical points are isolated. A function f whose critical points are all
non-degenerate is called a Morse function. A Morse function has only finitely many
critical points (since Fy is compact). Whether f is a Morse function or not depends
on the embedding F;, c D*. However, after a small perturbation of the embedding, if
necessary, one may assume that 7 is a Morse function, see Milnor [113]. From now
on, when talking about Fy, we will assume that the intersection Fy N S3 is transversal
at all but finitely many points, which are non-degenerate.

The surface F; can be conveniently thought of as a “movie”: at each “moment of
time” ¢, one can draw the intersection F; N S?, inside S3 or R3. Each intersection
is a (perhaps singular) curve in the 3-space, and together they span a 2-dimensional
surface in D*. For example, the surface Fj schematically pictured in Figure 6.1 might
have the movie description shown in Figure 6.2. In this example the knot k, which
appears in the r = 1 slice, is trivial.

empy - O O O Q Q
’ 5 O
8 5/8 6/8 7/8 1

t=1/8 2/8 3/8 4/

Figure 6.2

The slices S are 3-dimensional, so the intersection curves F; N S? may in general
be knotted. Figure 6.3 shows the movie of a surface bounded by the trefoil.

()

GO CO

t=0 1/4 2/4 3/4 =1
Figure 6.3

Let k and £ form a link in 3, and Fy, F; C D* be the surfaces as above such that
F, N S3 =kand F, N S3 = ¢. Suppose that Fj, and F are oriented. Then one can
define the intersection number Fj, - Fy as follows. First, perturb the embeddings (if
necessary) to make the intersection Fy N Fy transversal, keeping F; N S3 and F, N S3
fixed, then count the (£1)’s associated to the intersection points as in (5.2).

Lemma 6.3. Given an oriented link k U £ in S3, there is a canonical choice of orien-
tations on Fj and F; such that Ik(k, ) = Fy - Fy.
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Proof. Suppose that the link components k£ and ¢ are oriented, that the surfaces Fj
and F, intersect transversally, and consider a movie of Fj and F,. Each time the
surfaces intersect, the linking number changes by 1mod 2, see Figure 6.4.

D~@D+ QD

Figure 6.4

The movie connects the original link £ U £ with an empty link. Therefore, Fy, - Fy
equals Ik(k, £) modulo 2. The choice of orientations described in the rest of the proof
will give Fy, - Fy = lk(k, £).

Orient S3 = R3 U {oo} by the standard basis (e, e>, e3) in R3. The ball D* will
be oriented by (n, e1, e, e3) where n is the normal vector to S3 looking outside with
respect to the ball D*. Now, each of the curves Fy N S} inherits an orientation from
k. Suppose that F N S is oriented by its tangent vector, ¢;. Ata point p € F; N S?,
choose a vector n1 in the plane T, F; which is normal to #; and whose projection onto
the ¢-direction equals 1 (this projection is not zero due to the transversality condition).
The pair (n1,t,) orients Fy. The surface F, can be oriented similarly by (n», ).

Let p € F; N Fy. Inthe movie of F; and Fy, the point p corresponds to a crossing
change like the one in Figure 6.5 (here, k’ belongs to the movie of Fy, and ¢’ to the

movie of Fy).
Iy A k' E/\ k'
z\></ t+¢ \

el
Figure 6.5

(—e”

In the situation shown in Figure 6.5, as we pass through time ¢, the linking number
Ik(k’, £") increases by 1. On the other hand, we assign 41 to the intersection point p
according to whether the orientations of 7, Fy, @ T, F;, and T, D* agree or differ. Thus
we need to compare the orientations of the bases (n1,1,n2,12) and (n, e1, ez, e3).
The first basis is orientation-preservingly equivalent to (ny + ny, t1,t2,n1 —nz). The
vectors t1, 1, and n; — n, are all tangent to S,3, and n, + n, has positive projection
onto n. Therefore, one only needs to show that (¢1,1,,n1 — n,) defines the correct
orientation on R3. But as the strand k” moves upward with respect to the strand ¢/, the
vector n; — np must look upward, see Figure 6.6, so we are finished. The remaining
case, in which the linking number decreases by 1 as we pass through an intersection
point, is dealt with similarly. |
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ny—nz

Figure 6.6

Proof of Theorem 6.2. Suppose that M is obtained by p-surgery on a single knot &,
so that M = D* Ugi,p2 (D? x D?). By the Mayer-Vietoris exact sequence, the
group Hy(M) = H{(S! x D?) = Z is generated by the homology class of a surface
A obtained by gluing together surfaces F, c D* and G, C D? x D? such that
Fi N S3 =Gy NS3 =k, seeFigure 6.7.

D4 Gk

D? x D2

Figure 6.7

We choose Fj to be an embedded surface in D* as above. The surface G can be
chosen to be the central disc of D? x D2. The homological self-intersection 4 - A
can now be computed as follows. Let us consider a parallel copy G, of G inside
D?xD? thenk’ = G; NS> isalongitude of k S with linking number Ik(k, k") =
p. Let F; be a perturbation of Fy inside its homology class, transversal to Fy, and
such that | N §3 = k’. Then the surface A" = F Uy, G, is homologous to 4, and
A-A=A-A" = (FUGy) - (FUGy) = Fy - F| = Ik(k, k") = p. Here we used
the fact that G, N G; = @.

In general, if M is a surgery on a framed link, the result follows from the previous
argument, repeated for each link component, and Lemma 6.3. m]

Corollary 6.4. Let a 3-manifold X be obtained by surgery on a framed link &£ with
linking matrix A. Then X is a homology sphere if and only if det 4 = +1.

Corollary 6.5. Every integral symmetric bilinear form Q is the intersection form of
a smooth simply-connected 4-manifold M with boundary. If Q is unimodular, then
oM is a homology sphere.

Proof. Take a framed link £ with linking matrix Q; the manifold M is the surgery
on £. Since 71 D* is trivial, and adding 2-handles does not change the fundamental
group, M is simply-connected. |
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Example. The form Eg is realized by a smooth 4-manifold as in Figure 3.15 with
boundary the Poincaré homology sphere. The form H is realized by (S?xS?2)\int D*.

Corollary 6.6. Any closed oriented 3-manifold bounds a smooth oriented simply-
connected 4-manifold whose intersection form is even.

Proof. This follows from Theorem 6.2 and Theorem 4.1 of Lecture 4. O

6.2 Homology spheres via surgery on knots

A lens space L(p, q) is the (—p/q)-surgery on an unknot in S3. One can easily check
that H1(L(p,q)) = m1(L(p,q)) = Z/p. Therefore L(p, g) is a homology sphere
iff p = &1, in which case it is S3.

Any manifold obtained by a p/g-surgery on a knot has the first homology of
L(p,q); itis a homology sphere iff p = £1. For example, for any m, the (—1/m)-
surgery on right handed trefoil is a homology sphere; as we have seen in Lecture 3, it
is the Seifert manifold M((2, 1), (3,—1), (6m + 1,—m)).

6.3 Seifert homology spheres

Let M = M((a1,b1),...,(an,by)), €ach a; > 2 and n > 3, be a Seifert manifold,
see Lecture 1. One can see from the definition of M that

T (M) = (x1,....xp,h | [h,xi]] = l,xfihbi =1,x1...xp, = 1).

Moreover, H; (M) = coker A where 4: Z"+1 — 77+ s given by the matrix

0 an -0 b2
0 0 * an bn
1 1-.--10

in the natural basis xi,...,x,,h of Hi(M) obtained by Abelianizing 71(M). In
particular, M is a homology sphere if and only if det A = +1, that is,

n
al---an-Zbi/ai = +1.
i=1

The choice of the plus or minus sign here corresponds to the choice of orientation of
M . Note that if M is a homology sphere, the integers aq, ..., a, must be pairwise
relatively prime.
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Theorem 6.7. For any pairwise relatively prime integers ay, .. ., a,, witheach a; > 2,
there exists a unique (up to orientation preserving homeomorphism) Seifert manifold
M((ay,b1), ..., (an, by)) such that

l —_—
aran- )t =1 (62)
i=1
This oriented manifold is a homology sphere; it is usually denoted by X (ay,...,an).

Proof. The equation (6.2) reduced modulo a; takes the form b;ay---a; ---a, =
1 moda; (“hat” stands for the missing factor). We see that it determines b; uniquely
modulo a; for each i. The only freedom we have in choosing b; is in replacing b;
by b, = b; + kja; so that Y ;_, k; = 0. The latter is implied by the equation
(6.2). Thus, we only need to show that the manifolds M = M((a1,b1), ..., (an, by))
and M’ = M((a1.b}).....(an,b})) are homeomorphic. The manifold M’ has the
surgery description shown in Figure 6.8.

oS @uin)

Figure 6.8

The two links in Figure 6.8 describe homeomorphic manifolds because, for each i,

ai a; _0 1 _lo a;
bl{ b +kja; _bi +kia; | " bi |
aj

Now, one can slide the central 0-framed handle once over each of the (—k;)-framed
handles, and then eliminate, with the help of Kirby calculus, all the pairs of (0, —k;)-
framed handles. Since > 7_, k; = 0, the central handle still has framing 0, so we
arrive at the link diagram in Figure 6.9 which describes the manifold M. Therefore,
M and M’ are homeomorphic by an orientation preserving homeomorphism. m|

Example. To find a link description of 3 (5, 6, 7), first find b1, b», b3 such that 425, +
35b, + 30b3 = 1. For example, by = 3,b, = —1, b3 = —3 will do. Then calculate
the continued fractions

5

6 7
;=123 =16 —3=[-23]
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Figure 6.10

The linking diagram for X (5, 6, 7) is now described by the graph in Figure 6.10. The
choice by = 3,b, = —1, b3 = 4 would give 42b; + 35b, + 30b3 = 1 + 1-210 and
the diagram in Figure 6.11.

3 2 1 2 4
I —6
Figure 6.11

Remark. Theorem 6.7 explains the notation X (2, 3, 5) for the Poincaré homology
sphere in Lecture 3. The homology spheres in Figure 3.19 are Seifert homology
spheres X (2, 3, 6m + 1), and the one in Figure 3.20 is X (3,4, 7).

6.4 The Rohlin invariant

All 4-manifolds in this subsection are assumed to be connected, simply-connected,
oriented, smooth, and compact, with or without boundary. By the signature of such a
manifold we mean the signature of its intersection form.

Lemma 6.8. Let M; and M, be 4-manifolds with boundaries dM; and 0M5 such
that Hy(0M,) = H.«(0M,) = H.(S?), and let ¢p: IM; — M, be an orientation-
reversing diffeomorphism of their boundaries. Then M = M; U, M> is a smooth
manifold with sign M = sign M; + sigh M5.
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Remark. This theorem holds without the requirement that dM; and dM, be homol-
ogy spheres, and is known as the Novikov additivity of the signature, see for instance
Kirby [84].

Proof of Lemma 6.8. Let N (unoriented) denote the submanifold of M equal to the
identification of dM; with dM,. Let y be an element of H,(M) and intersect y
with N. Since H{(N) = 0, the 1-cycle y N N bounds in N, and y splits as a
sum of elements in H>(M;) and H(M>). Therefore, Qpr = Om, ® Om,, and
sign M = sign My + sign M. |

Let ¥ be an oriented homology sphere, and W a 4-manifold with boundary X
whose intersection form Q is even. Since Q is unimodular, its signature is divis-
ible by 8, and we can define the Rohlin invariant by the formula

1
wx) = gsign W mod?2.

A different choice W’ gives the same value of (%) because sign W — sign W/ =
sign(W Ug —W’) = 0 mod 16 by Rohlin’s theorem, see Theorem 5.6.

The invariant u has the following properties. If —X is X with opposite orientation
then u(—X) = (). Also, if X1 and X, are homology spheres then their connected
sum X1#3, is a homology sphere, and u(Z1#X5) = w(Z1) + n(Z2).

Example. The Poincaré homology sphere X (2, 3,5) bounds a smooth 4-manifold
with the intersection form isomorphic to Eg, see Figure 3.15. Since sign Fg = —8
and Eg is even, we find that ©(X(2,3,5)) = 1 mod 2.

Some deeper properties of the Rohlin invariant will be discussed in Lecture 11.

6.5 EXxercises

1. Prove that any Z/2-homology 3-sphere is orientable.
2. Given a positive integer s, find a link descriptions of £(2,2s — 1,25 + 1).

3. Prove that any Seifert homology sphere X(ay,...,a,) with even a; can be
obtained by a surgery according to an even-weighted star-shaped graph.



Lecture 7
Invariants of knots and links

7.1 Seifert surfaces

A Seifert surface for an oriented link in S3 is a connected compact oriented surface
smoothly embedded in 3 with oriented boundary equal to the link. As usual, we
draw links in §3 = R3 U {co} as links in R3.

Example. The left-handed trefoil pictured in Figure 7.1 bounds a Mébius strip, Mo,
which is not orientable, and also a Seifert surface, M;.

D @

M() M,
Figure 7.1

The surface M1 is homeomorphic to a punctured torus, which can be seen as fol-
lows. We first push in a narrow strip through the center band, then deform the resulting
surface M> by an isotopy to appear as M3, see Figure 7.2. The surfaces M3 and M4
are homeomorphic (though we had to change the embedding), and M, is obviously
homeomorphic to a punctured torus.

Figure 7.2
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Theorem 7.1. Every oriented link in S3 bounds a Seifert surface.

Proof. The proof consists of an explicit construction. Let us fix a regular projection
for the link. Near each crossing point, delete the over- and undercrossing and replace
them by “short-cut” arcs keeping track of the orientations. The result of this procedure
is a collection of circles, called Seifert circles, drawn over the link diagram.

In Figure 7.3, there are two Seifert circles on the left, one inside the other, and two
Seifert circles on the right, one under the other.

&y &=

Figure 7.3

These circles can be used to construct a Seifert surface as follows. Each of the
circles is the boundary of a disc lying in the plane, see Figure 7.4 where the discs are
shaded. If any of the circles are nested, the inner discs may need to be lifted above
outer discs, according to the nesting. To form the Seifert surface connect the discs
together by attaching twisted bands at the points corresponding to crossing points
in the original link diagram. These bands should be twisted to correspond to the
direction of the crossing in the link. If the surface is connected, it is a Seifert surface.
Otherwise, join the components by tubes. ]

gy &=

Figure 7.4

Given a regular projection of a link of n components, let ¢ be the number of cross-
ings and s be the number of Seifert circles. The Seifert surface constructed by the
algorithm above has genus g, where 2g = 2 —s —n + ¢. The least genus of all Seifert
surfaces of a given knot is called the genus of the knot; note that it is independent of
the knot’s orientation. For instance, the genus of the trefoil is at most 1 since it bounds
a Seifert surface of genus 1. The genus of an oriented link is defined similarly.

We saw in Lecture 4 that every embedded connected surface in R3 with non-empty
boundary is isotopic to a surface constructed by attaching bands to a disc. The surfaces
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M3 and M, pictured above give an example of surfaces constructed by attaching
bands to a disc. They are homeomorphic but not isotopic.

If a Seifert surface is presented as a disc with bands, that surface can be deformed
by sliding one of the points at which a band is attached over another band without
changing the isotopy type of its boundary. The resulting surface is again a disc with
bands. A Seifert surface can also be modified by adding two new bands, as illustrated

e MVA\:

Figure 7.5

One of the bands added is untwisted and unknotted; the other can be twisted (an
even number of times), or knotted, and can link the other bands. It is clear that the
boundary of the new surface is the same link as for the original Seifert surface. The
operation of adding such a pair of new bands is called stabilization. Two Seifert
surfaces for an oriented link are called stably equivalent if there is a sequence of
stabilizations that can be applied to each so that the resulting surfaces can be deformed
into each other.

Theorem 7.2. Any two Seifert surfaces for an oriented link are stably equivalent.

A proof of this theorem can be found in Levine [101] and also in the Kauffman’s
book [80], Theorem 7.7.

7.2 Seifert matrices

Given an oriented link &£, fix a Seifert surface F for &£. Since F is oriented, it is
possible to distinguish one side as a “top” side (formally, this means picking a non-
zero normal vector field on F which orients F). Given any simple closed oriented
curve x on F, one can form its positive push off, x ™, which runs parallel to x, and lies
just above F' in the direction of the normal field. Let simple closed curves x1,..., x,
generate a basis in H;(F'; Z). The associated Seifert matrix is the n x n matrix S with
Sij = IK(x;, x;r). It is not difficult to see that the Seifert matrix gets transposed when
one changes the orientation of F.
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Example. Figure 7.6 shows Seifert surfaces for the left-handed and right-handed tre-
foil knots together with bases for the first homology.

X 2 X2 X

L

Left-handed trefoil Right-handed trefoil
Figure 7.6

Orient the surfaces so that the normal field points towards us at the bottom part of
the surface. The corresponding Seifert matrices are

(1) = (3)

Example. If a Seifert surface F is formed from a single disc by attaching bands,
there naturally arises a family of curves on F which produces a basis for Hy(F; Z),
see Figure 7.7.

X3 X4

g PR
%%9/{ AN

Figure 7.7

Orient the surface in Figure 7.7 by the normal vector field pointing towards us at the
bottom part of the surface. Then the boundary knot has Seifert matrix

-4 100
0-110
0 101
0 001

The Seifert matrix clearly depends on the choices made in its definition. As for the
choice of a basis, any two bases are related by an invertible integral matrix U; the
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corresponding Seifert matrices are S and U T SU. Any deformation of the surface
results in a change of basis. The effect of stabilization on the Seifert matrix is to add
two new columns and rows, with entries as indicated:

(7.1)
0...0

Two integral matrices, S; and S», are called S-equivalent if there is a sequence of
stabilization operations (7.1) that can be applied to each so that the resulting matrices,
S} and S, are related by the equation S| = U TS, U for some invertible integral
matrix U. A consequence of Theorem 7.2 and the discussion above is the following:

Theorem 7.3. Any two Seifert matrices of an oriented link are S-equivalent.

7.3 The Alexander polynomial

Let S be a Seifert matrix for an oriented link £, and S T its transpose. The polynomial
Ag(r) = det(r1/28 —~1/28T) (7.2)

in7'/2 and r~1/2 is called the Alexander polynomial of £.

Corollary 7.4. The polynomial A¢(¢) is a well-defined invariant of an oriented link £.

Proof. One needs to prove that A ¢ (¢) does not depend on the choice of S. According
to Theorem 7.3, one only needs to check that det(z1/2S — r=1/25T) is not affected
by the stabilization (7.1) on S. This is a matter of elementary algebra. a

Note that Ag (1) = (—1) ) A (+~1). In particular, if k is a knot, then rank(S)
is even, so Ag(z) is in fact a polynomial in # and ¢~!, and Ax(z) = Ag(t~1). In
addition, Ag(z) is independent of the choice of orientation on k. The Alexander
polynomial of an unknot is 1.

Example. Both left- and right-handed trefoil knots have the Alexander polynomial
t=1 — 1 4 ¢. This proves in particular that both trefoil knots are not trivial; therefore,
their genus is 1.

Example. The Alexander polynomial of the knot in Figure 7.7 is 4:72 — 12¢=! +
17 — 12t + 412
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Example. Let p,q > 2 be relatively prime integers, and consider the polynomial
f(z,w) = z? 4+ w? of two complex variables z,w € C. It has a singular point
(0f/0z = af /0w = 0) at the origin. The intersection k, 4 of V = f~1(0) with a
3-sphere S, of radius ¢ > 0 centered at the origin is a knot in S, = S3 called the
right-handed ( p, ¢)-torus knot. The left-handed (p, ¢)-torus knot is a mirror image of
kp.q. 1tis easily verified that k, 4 lies in the torus consisting of all (z, w) with |z| = a
and |w| = b where a and b are positive constants (if ¢ = +/2thena = b = 1).
In fact, k., consists of all the pairs (a ¢’1?, b ¢’P9+i7/2) as the parameter § ranges
from 0 to 2. Thus k, 4, sweeps around the torus g times in one coordinate and p
times in the other.

Figure 7.8

The right-handed trefoil is the knot k5 3. Figure 7.8 shows the knot k3 7. It is
slightly pushed off the torus surface for a better view (the picture was created with the
help of Maple). We will show in Lecture 8 that

() (— 1—1)(1—1¢P9)
A 1) = ¢~ (P=Dg-1)/2 (— 7.3
k() T (7.3)
Example. Let k be a knot in S3 and k* its mirror image. Then

Apx (1) = Ap(2). (7.4)

This can be seen as follows. Let r: 3 — §3 be an orientation reversing diffeomor-
phism of $3 = R3 U {oco} induced by reflection with respect to a 2-plane in R3. Then
k* = t(k). Let F be a Seifert surface of k of genus g, then = (F) is a Seifert surface
of k*. If the orientation of t(F) is induced via t by that of F then, for any simple
closed curve x in F,

Ik(z(x), 7(x)") = Ik(z(x), 7(x 1)) = — Ik(x, xT),

and the Seifert matrices S and S* of the knots k& and k™, respectively, are related by
S* = —S§. Since the size of both S and S* is 2g x 2g, we see that Ag« (1) = Ag (7).
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Example. The right-handed and the left-handed (p, ¢)-torus knots are mirror images
of each other, therefore, their Alexander polynomials coincide.

Example. For a link £ with more than one components, A¢(¢) may depend on the
orientation of &£. Here is an example. Pictured in Figure 7.9 are two Seifert surfaces
of the Hopf link &£ with different orientations of the link components. Each of them is
a band with one full left- or right-handed twist. The bases in the first homology in both
cases are represented by the middle curves of the bands. The corresponding Seifert
matrices are (—1) and (1), respectively. Hence the Alexander polynomial A¢(¢) of
the link & is either —1/2 4 ¢=1/2 or t1/2 — t=1/2_ depending on the choice of its

Qo O

Figure 7.9

Theorem 7.5 (Conway formula). Let £, £¢, and £_ be three oriented links which
coincide away from the ball B, and intersect this ball in two unknotted arcs, each as
in Figure 7.10. Then

Ag, ()= Ag_(t) + "> =172 Ag (1) = 0.

Proof. Let Fy be a Seifert surface of the link £¢ which intersects B in two disjoint
discs, each of which is bounded by an arc on B and a component of £o N B. Denote
by F; and F_ Seifert surfaces of the links £ and &£_, respectively, which coincide
with Fy outside of B, and intersect B in the twisted bands shown in Figure 7.10.

£ £o £

Figure 7.10

The surfaces F; and F_ are homeomorphic. Let aq,...,a, be curves on Fy
forming a basis for Hy(Fy;Z), and let ap be a curve on Fy such that the curves
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ap,ai, ..., a together give a basis for Hy(F+;Z). If S+, S_, Sp are Seifert matri-
ces corresponding to these bases, then

therefore,

V25 1287 = fV2g, V28T 4 0 .
0
k ok *k
*

ZI/ZS() _ [—1/2SJ
*

The result follows by expanding det(¢'/25;. —¢~1/25T) and det(:/25_ —¢~1/25T)
along the first column. |

Example. Let us compute the Alexander polynomial of the twist knot k,, of type
(2m + 2)1 shown in Figure 7.11 (where m = 1), compare with Figure 3.19.

([0 @

Figure 7.11 Figure 7.12

The knot k,, bounds the Seifert surface shaded in Figure 7.12 (we added a half
twist to the knot projection to make sure that the obvious choice for a Seifert surface,
the twisted band, is orientable). Next we apply Conway’s formula with k,,, = £ at
the intersection marked with an arrow in Figure 7.12. The resulting links are shown
in Figure 7.13.
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o0 C

£y £o £

Figure 7.13

The knot £_ is a trivial knot with A¢_(¢) = 1, the link £¢ has Seifert matrix (m)
so that Ag, (¢) = m (¢t1/2 —t=1/2), therefore

A (0) = 1=m @' =172 = (L4 2m) —m (1 +171).

The knot k; is called the figure-eight knot. Its Alexander polynomial is 3 —¢ — ¢~ 1.
One can easily see that the knot k; has genus 1. If we allow m to be negative, the
choice m = —1 will provide us with a trefoil knot with the already familiar Alexander
polynomial —1 + ¢ + ¢~ 1.

7.4 Other invariants from Seifert surfaces

The intersection form of a compact oriented surface F is the bilinear integral form
I defined on the first homology of F as follows. Any two classes x,y € Hy(F;Z)
can be represented by simple closed oriented curves which intersect transversally in
finitely many points. Each intersection point is weighted by +1 according to the
convention shown in Figure 7.14, where the normal vector is assumed to point towards
us. The sum of these +1 is the intersection number /(x, y) = x - y.

y X

+1 for —1 for

Figure 7.14

If F is closed, the intersection form I is isomorphic to the form defined by the
cup-product in the first cohomology of F,

I:HY (F;:Z) H(F:Z) - Z, (a,b)+ (a — b,[F]). (7.5)
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The isomorphism H(F;Z) = H'(F;Z) is provided by Poincaré Duality. The form
I is skew-symmetric and unimodular, that is, its determinant is 4-1. The following is
a result from elementary linear algebra.

Lemma 7.6. Let F be a closed oriented surface and I its intersection form repre-
sented by an integral matrix with respect to a choice of basis in H'(F;Z). Then
there is a real matrix U such that / = U T JU where J is the block-diagonal matrix

r= (08 ee(0):

Proof. Since 7 is non-degenerate, there exist vectors x,y € H(F;R) such that
I(x,y) # 0. These vectors are automatically linearly independent. We sete; = x
and e; = y/I(x,y). Then I(e1,ez) = 1 (and also I(ez,e1) = —1, I(e1,e1) =
I(ea,e3) = 0). Let P be the linear subspace of H!(F;R) spanned by the vectors ¢;
and e,. Denote by Q the linear subspace consisting of all the vectors u € H(F;R)
such that 7(u,e;) = I(u,e2) = 0. Then HY(F;R) = P & Q. This can be
checked as follows. First, any vector v € H!(F;R) can be represented in the form
v =aey + bey +u withu € Q. We simply choose a = I(v,ez)and b = —1(v, e1),
thenu = v — I(v,ez)e; + I(v,eq)es belongs to Q. Second, the intersection P N Q
is zero due to the fact that, for any u = ae; + bey, the coefficients ¢ and b can be
found by the formulasa = I(u,ex) and b = —1I(u, ey). Thus, H'(F:R) = P & Q,
and the matrix of I splits as
01 ,
(o)er

The obvious induction completes the proof. m]

Corollary 7.7. The determinant of the intersection form 7 of a closed oriented sur-
face F equals 1.

If F is a Seifert surface of a knot, the intersection form 7 is still unimodular with
determinant 1. If F is a Seifert surface of a link with two or more components, the
form I is degenerate because any boundary component of F gives rise to a class in
H1(F;Z) which is non-zero but has zero intersection with every class in Hy(F;Z).
Therefore, any matrix representing this intersection form will have the determinant
zero.

One can easily check from the definitions that, for any choice of a basis in
Hi (M Z), the Seifert form S and the intersection form I are related by the formula

I=ST—8.

Corollary 7.8. If k isaknot, A (1) = 1; if £ is a link with two or more components,
Ag(1) =0.
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Here is another bilinear integral form associated with an oriented link. For any link
£, the form Q = S + ST is symmetric. Since O = I mod?2 the form Q is even.
If £ = k is actually a knot then det Q is odd and, in particular, Q is non-degenerate
over the real numbers.

Let k be a knot in the 3-sphere, S its Seifert matrix, and Q = S + ST. By
Theorem 7.3 any invariant of Q which does not change under stabilization and change
of basis will be a knot invariant. For instance, the determinant of Q only changes by
a factor of (1) as S is stabilized, hence |det Q| = |Ag(—1)] is a knot invariant. It is
called the knot determinant.

A more interesting invariant of a knot can be obtained if we consider the signature
of 0. As Q is symmetric, it can be diagonalized over the reals. The number of posi-
tive entries in its diagonal form minus the number of negative entries is the signature
of Q, denoted by sign Q.

Theorem 7.9. The value of sign Q is independent of the choice of Seifert matrix, and
hence is a well-defined knot invariant called the knot signature, signk.

Proof. One only needs to prove that stabilization of S does not change the signature
of 0 =S+ST:

% 0 00

, 0 i 0o
0 = % 0 ~ 00 |-

* o..ok ok ] 0...0=x1

0...010 0...010

where ~»> stands for a sequence of elementary transformations on rows and columns.
Therefore,

* 1

sign Q’=signQ+sign(1 0) =sign Q. O

Example. The left- and the right-handed trefoils are not equivalent. They can be
distinguished by their signatures, since one has signature 2 and the other —2.

7.5 Knots in homology spheres

Let k C X be a knot in an oriented homology sphere, H.(X) = H.(S?). Let N(k)
be its tubular neighborhood and K = X \ int N(k) the knot exterior, compare with
Lecture 2. Then H«(K) = H.(S!); in particular, H;(K) = Z, and this group is
generated by a curve m C dK which we call the meridian of k. The canonical choice
of a longitude £ C 0K is given by the requirement that 0 = [{] € Hi(K). The
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orientations of m and £ should be chosen to be compatible with the orientation of
¥, see Figure 2.2. This choice of m and ¢ identifies 0K with S x aD? = S! x
S1. Let pg: 9K — 9D? be the projection of 9K = S x 9D? onto the second
factor. It maps the longitude to a single point and, when restricted to the meridian, is
a homeomorphism.

Lemma 7.10. The projection po: 9K — dD? extends to a continuous map p: K —
aD?2.

Proof. The projection po defines a homotopy class [po] € [0K,dD?] = [0K,S!] =
[0K,K(Z,1)] = HY(0K). The inclusion i : K — K induces a homomorphism
i*:[K,S'] — [0K, S], which coincides with the homomorphism i* : H!(K) —
H'(3K), and po extendsto p : K — St ifand only if [po] € imi*. The map i* can
be included in the long cohomology exact sequence as in the commutative diagram
below, whose vertical arrows represent Poincaré—Lefschetz duality isomorphisms:

Ho(K,0K) ——> Hy(0K) ——  H (K)

TPD | TPD TPD
HY(K) —— H'(K) —— H2(K,0K)

The element in H;(9K) corresponding to [po] € H'(dK) under the Poincaré duality
isomorphism is [¢]. Therefore, §[po] = PD~!i.[¢] = 0, and [po] € ker§ = imi*.
O

A similar construction works for oriented links in X of more than one component.
One should simply repeat the argument above using the projection

po: | J(8! x 8D*) — aD?.

i=1

Let £ C X be an oriented link in a homology sphere X. Its Seifert surface is a
connected compact oriented surface smoothly embedded in X with oriented boundary
the link £.

Theorem 7.11. Every oriented link £ C X bounds a Seifert surface in X.

Proof. Consider the link exterior K together with the projection po: 0K — dD?, and
extend it to a map p: K — dD?. After a small perturbation inside the homotopy
class of p, if necessary, we may assume that p is smooth and transversal to a point
x € dD2. Then p~!(x) = F’ is a properly embedded surface in K with boundary
£’ c 9K. Connect £ to £’ by annuli inside the normal neighborhoods of the link
components to get a surface F C X with boundary £. This surface may have several
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connected components; to make it into a Seifert surface, join these components (if
more than one) by tubes. |

Using such a Seifert surface, all the usual invariants of classical knot theory can
be defined in this more general context — the Seifert matrix, Alexander polynomial,
quadratic and intersection forms, and the knot signature. Note that the linking num-
ber in X can be defined with the help of definitions (1) or (3) of Lecture 3 but not
definition (2) (the one with regular projections).

7.6 Boundary links and the Alexander polynomial

The problem of computing the Alexander polynomial for knots in a general homology
sphere is more involved than that for knots in S3. Here, we describe a way to do the
calculations.

Lemma 7.12. Let k U £ be a link in a homology sphere ¥ with Ik(k,£) = 0. Then
there is a Seifert surface F, for £ such that Fy Nk = @.

Example. The following link is called the Whitehead link. The Seifert surface F;, of
£ shown in Figure 7.15 is disjoint from the knot k. It is obtained by attaching a tube
to the shaded disc with holes.

L <&

€
(¢

Figure 7.15

Proof of Lemma 7.12. Our proof is a customized version of the proof of Theorem 7.10.
Another proof can be obtained by first choosing an arbitrary Seifert surface for £ and
then getting rid of the intersections by adding tubes as for the Whitehead link above.
The condition Ik(k, £) = 0 ensures that this can be done.

Let K = Z\int(N(k)UN(¥)). This is a 3-manifold with two boundary components
each of which is a 2-torus. Its first homology H;(K) is generated by the canonical
meridians on dN (k) and dN(£). Let £ be the canonical longitude on dN(¢). The
choice of ¢’ identifies N (£) with S! x dD2. Consider the map pg: 0K — S! that is
defined as the projection S x 9D? — 9D? on AN (), and as a constant map to a point
xo € dD? on AN (k). The map po can be extended to a continuous map p: K — S,
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To see this, we consider the inclusion-induced homomorphism i*: H1(K) —
H'(0K) and include it into the following commutative diagram with exact rows:

Ha(K,0K) —— H (0K) ——  Hy(K)

TPD | TPD TPD
HY(K) —— H'(K) —— H2(K,0K)

The vertical rows in this diagram represent Poincaré-Lefschetz duality isomorphisms.
The element in H;(dK) corresponding to [po] € H'(0K) = Z? @& Z? under the
isomorphism PD is ([¢/],0). Note that £’ is the canonical longitude, and that £’ is
homologous to zero in the exterior of k since Ik(k, £) = Ik(k, £") = 0. It follows that
i«[£] = 0. Because of the commutativity of the diagram, §[po] = 0 and [po] € imi*.
The latter means that po extends over K.

To finish the proof, we use a small homotopy to make p into a smooth map transver-
sal to a point x; € S* different from xo € S', and make F; = p~!(x) into a Seifert
surface F as in the proof of Theorem 7.10. |

A link k£ U £ in a homology sphere X is called a boundary link if the knots £ and
£ bound disjoint Seifert surfaces. In particular, k and £ have zero linking number.
The condition of having zero linking number is weaker than that of being a boundary
link. For example, the Whitehead link in Figure 7.15 has Ik(k,£) = 0 but it is not
boundary, which can be shown using the following observation.

Lemma7.13. LetkUZ be aboundary link in a homology sphere =, and X' = X +¢-k
a surgery of ¥ along k with ¢ = 1. Then Aycs(t) = Agcx/(t) where £ C X' is
the image of £ C X under the surgery.

Proof. Let Fj and F; be disjoint Seifert surfaces for k and £. Choose cycles x,y C
F; and compute Ik(x, y™), which is the intersection number of y* and a Seifert
surface F of x. Since x and F}, are disjoint, we have Ik(x, k) = 0, hence the surface
F, can be chosen to be disjoint from k. Both y and F, are now away from the knot
k, hence the intersection y ™ N F is not affected by the surgery along k. This is true
for any curves x and y representing basis elements in Hy (Fy), therefore, the Seifert
matrices and the Alexander polynomials of £ ¢ ¥ and £ C X’ coincide. a

Example. The Whitehead link shown in Figure 7.15 is not boundary. Suppose it is,
and perform the (—1)-surgery of S3 along £. The result of this surgery is again S3,
however, the image k’ of the trivial knot k in the surgered manifold is the figure-eight
knot. The knots k and &’ have different Alexander polynomials, which contradicts
Lemma 7.13.



Section 7.6 Boundary links and the Alexander polynomial 95

Example. Let us compute the Alexander polynomial of the knot £ in the homology
sphere X obtained by surgery along the trefoil knot shown in Figure 7.16. The (+1)-
surgery on the knot k& shown in Figure 7.17 unknots the trefoil and turns X into S3.

QDH /o />+1
SRS

Figure 7.16 Figure 7.17

Since the knots £ and k have disjoint Seifert surfaces, see Figure 7.18, the Alexan-
der polynomials of £ C X and of its image in S are the same. The image of £ in S3 is
isotopic to the figure-eight knot shown in Figure 7.19, whose Alexander polynomial
isequal to 3 —¢ — ¢~ 1. Therefore, Aycx(t) =3 —t —t~ L,

X @
Nt

Figure 7.18 Figure 7.19

The following lemma demonstrates that the method we used in the preceding ex-
ample to compute the Alexander polynomial of a knot in a homology sphere has a
general nature.

Lemma 7.14. Let k be a knot in a homology 3-sphere X. Then there exists a knot £
in 3 suchthat Agcx(f) = Aycgs(t).

Proof. It follows from Lemma 12.2 that the 3-sphere S3 can be obtained by doing
(£1)-surgeries on the components of a link ¢y U --- U ¢y, in X with IK(c;, ¢;) = 0 for
alli # j,

S3 = Y4e1-c1+ -t emoom, & = =E1.

The proof is by induction on m. It is obvious for m = 0. Next, one can always
choose ¢, in its isotopy class so that the link & U ¢, is a boundary link. This can
be seen as follows. Choose Seifert surfaces, F and F,, for k and c,,. By general
position, the surfaces Fj and F, can be isotoped with the help of separate isotopies
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into discs with thin bands that are disjoint from each other. Hence, we may assume
that Fj and F, are disjoint. Of course, this may change the link k& U ¢,,, but both the
knot k and the knot ¢, are preserved.

As soon as the link k U ¢y, is boundary, Axcx(t) = Akrcse, c, (t) Where k C
Y + em - cm IS the knot k considered as a knot in the surgered manifold X + &5, - ¢p.
If we denote the manifold X + &, - ¢;, by X’ we have

S} =% +e1-di+-+em1-dm1,

where dq U -+ U dy—1 is the link ¢y U -+- U ¢;—1 considered as a link in X'. By
induction, there is a knot £ in 3 such that Ajcx(f) = Aycg3(?). |

7.7 EXxercises

1. Given a regular projection of a link of » components, let ¢ be the number of
crossings and s the number of Seifert circles. Prove that the Seifert surface
constructed in the proof of Theorem 7.1 has genus 1 — (s +n — ¢)/2.

2. Prove that the genus of the torus knot k, 4 is no greater than (p — 1)(g — 1)/2.

3. Use the formula (7.3) for the Alexander polynomial of a torus knot to prove that
the genus of k,, 4 equals (p — 1)(g — 1)/2.

4. Let p,g > 1 be integers and p’, g’ integers such that pg’ + p’q = 1. Prove
that the link in Figure 7.20 provides a surgery description for the right-handed
(p, q)-torus knot k, 4, that is, surgery on the circles labeled 0, p/p’, and q/q’
turns the knot & into kp 4 C S3.

p/p 0

L) 1

\_/ k
Figure 7.20

5. Compute the Alexander polynomial of the figure-eight knot. Prove that the
figure-eight knot has genus one.

6. A Whitehead double of a knot k is constructed by replacing k£ with the curve
shown in Figure 7.21 on the left. The picture on the right illustrates a double
of a trefoil knot. The number of twists between two parallel strands is arbitrary.
Show that a Whitehead double of a knot k& has genus at most one.
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D &S

~
KD

Figure 7.21

7. A knot in S3 is called amphicheiral if it is isotopic to its mirror image. Prove
that amphicheiral knots have zero signature.

8. Let k1#k, be a connected sum of two oriented knots, k; and k,, in homol-
ogy spheres. Prove that Ay sk, (t) = Ak, (t) - Ak, (t) and sign(k1#kz) =
sign(ky) + sign(kz).

9. Aknot k in S3 = dD* is called slice if there is a smoothly embedded proper
disc D2 c D* such that 90D? = k.

(@) Prove that the connected sum of an oriented knot £ with the knot —k*,
which is the mirror image of k with reversed orientation, is a slice knot.
(b) Prove that the connected sum of slice knots is a slice knot.

Oriented knots k;,k, C S3 are called concordant if the knot k; #(—k3) is
slice. The two properties above ensure that the concordance classes of oriented
knots in §3 form an Abelian group with respect to connected sums of knots, the
zero element being the class of a trivial knot. This group is called the (smooth)
knot concordance group.

10. Prove that slice knots have zero signature.

11. Let ky and &, be oriented knots in an oriented homology sphere X. Prove that
IK(k1,k2) = Ik(k2, k1).

12. Calculate the Alexander polynomial of the knot k in the homology sphere X
obtained by surgery on the two-component link shown in Figure 7.22.

Figure 7.22



Lecture 8
Fibered knots

8.1 The definition of a fibered knot

A knot k in a homology 3-sphere X is called a fibered knot of genus g if its comple-
ment X \ k is the total space of a locally trivial bundle p : ¥ \ k — S! whose fiber
F is an orientable surface of genus g. We require further that £ have a neighborhood
framed as S! x D2, with k = S! x {0}, in such a way that the restriction of p to
St x (D?\ {0}) is the map to S! of the form (x, y) ~ y/|y|. It follows that the
closure of each fiber F is a compact orientable surface of genus g, and that these
surfaces fit around k in the manner shown in Figure 8.1.

Figure 8.1

Lemma 8.1. Let k C X be a fibered knot. Then the closure F of each fiber F is a
Seifert surface for k.

Proof. We only need to prove that both the closure of F and its boundary are con-
nected or, given the knot exterior K = X \ int N(k), that the compact surface Fp =
F N K and its boundary dFy C 0K are connected. Both K and dK are fibered over
S, with fibers Fy and dF,, respectively. Consider the homotopy exact sequences of
these fibrations:

1 - m1(0F)) —— m(0K) —— 711(51) —> mo(dFy) — 1

| ! - |

1 - m(Fy) — m((K) —— 1 (S —— mo(Fy) — 1

This diagram commutes, and 71 (0K) — m1(S!) is surjective. Hence m1(K) —
m1(S1) is surjective, that is, both dF, and Fy are connected. a
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Note that in our proof of Theorem 7.10, we constructed a map p: T\int N(k) — S!
for any knot k. This map would be a fibration map for the knot &k exterior if we could
make it transversal to every point x € S!. However, this is not always possible.

Example. Let k be atrivial knot in S3. In Figure 8.2, the sphere S?3 is represented by
revolving the 2-sphere R? U {oo} about the circle £ U {oc}, compare with Figure 1.1.

Figure 8.2

Under this revolution, the point P generates the knot k. Each of the open arcs con-
necting P and P’ generates an open 2-dimensional disc F in S3. These discs exhaust
the knot k complement, they are disjoint, and they are parametrized by the points of
the circle £ U {oo}. Therefore, S3\ k = S! x F, and the projection onto the first
factor is a trivial F-bundle over S!. Thus k is a fibered knot in S3 of genus 0. The
closure of each of the discs F in S3 is a closed disc in S3 with boundary k.

Example. Any (p, g)-torus knot in S3 is a fibered knot of genus (p — 1)(g —1)/2; in
particular, a trefoil is a fibered knot of genus 1. A proof of this fact, which is based on
singularity theory, is sketched later in this Lecture. The paper Zeeman [161] has an
explicit construction of a genus 1 fibration of the trefoil complement, see also Rolfsen
[137], pages 327-333.

Example. Let X(ay,...,ay) be a Seifert homology sphere, and k a singular fiber,
see Lecture 1. The knot « is fibered, see e.g. Eisenbud—Neumann [41].

Example. The figure-eight knot is a fibered knot of genus 1, see for example Burde—
Zieschang [26], page 71.

It is worth mentioning that, given a fibered knot, the result of a 0-framed surgery
along it is a locally trivial bundle over S! with the fiber homeomorphic to F U D?, a
closed Riemann surface.
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8.2 The monodromy

The locally trivial bundle p : £\ k — S can be thought of as follows. View S!
as the interval [0, 27] with the ends identified. Since [0, 2] is contractible, every
bundle over it with the fiber F is isomorphic to the trivial bundle with the total space
F x [0,2x]. The original bundle p : ¥ \ k — S over the circle is then obtained by
identifying the surfaces F' x {0} and F x {2} by a homeomorphism  : F — F,
called the monodromy homeomorphism. The induced automorphism

h*ZHl(F)—>H1(F) (81)
is called the monodromy transformation.
Lemma 8.2. The monodromy transformation (8.1) is well-defined.

Proof. We will proceed by making precise the above construction of 2 : F — F.
Consider the map y : [0,27] — S! given by y(t) = e'’. The pull-back of the
bundle p : ¥\ k — S! via y is a trivial bundle over [0,27]. Therefore, there
is a continuous family of homeomorphisms n; : F,) — Fy), where F,;) =
p~ Ly (1)) is the fiber over y(¢) € ST, such that 7, = id and X \ k is obtained from
Fy(0) x [0, 27] by identifying the surfaces F, (o) and F, (o) = Fy (o) USIiNg /25 This
is the homeomorphism that we referredtoash : F — F.

Let us define G : Fy) x 1 — X\ k by the formula G(x,t) = hy(x). This map
makes the following diagram commute:

F,0) Y\ k
,-J / Jp
G 1
Fy(O) x I S

where G(x,7) = y(¢) and f is the inclusion of F), () into X \ k as a fiber over y(0).
In other words, G is a lift of G in the sense of diagram (5). Any two such lifts are
fiberwise homotopic; in particular, i, is defined uniquely up to homotopy, and hence
the induced map /i« = (h25)« in homology is well-defined. a

The monodromy transformation and a Seifert matrix of a fibered knot k are closely
related as explained in the following lemma.

Lemma 8.3. Let k be a fibered knot with a fiber F. Let us fix a basis in H;(F) and
let S be the Seifert matrix of k£ and M the matrix of the monodromy transformation
hy: Hi(F) — H,(F) with respect to this basis. Then M TS = ST,
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Proof. Letx,y € H(F) be basis vectors in Hy(F). If we think of them as columns,
we have S(x,y) = x'Sy, ST(x,y) = x"STy = y"Sx and h«(y) = My, so
we only need to prove that x T M TSy = yTSx. Since S(x, y) = Ik(x, (hz)«y) and
M x = (haz)«x, we need to show that

Ik((727) 5. (hr)xy) = K(y. (hz)+X).

The latter is obviously true,
IK((h2r)xx, (h)xy) = K((hn)xx, y) = IK(y, (hx)xx). m

Corollary 8.4. The Alexander polynomial of a fibered knot k& equals the symmetrized
characteristic polynomial of its monodromy transformation /..

Remember that the Alexander polynomial Ay (¢) of a knot k is symmetric in that
Ar(t™1) = Ag(r) and Ag(1) = 1. Therefore, the corollary asserts that the charac-
teristic polynomial of 4., after possibly multiplying it by a factor of +¢%, is equal to
the Alexander polynomial of k; in particular, it is symmetric.

Example. Let k be a right-handed trefoil. Then, in an appropriate basis,

(-1 0 eTw1e [ O1
S_( 1_1) and M =(S") S_(—ll)’

so that the characteristic polynomial of M is t2 — ¢ + 1. It becomes symmetric
after multiplying by ! to get —1 + ¢ + ¢~ 1, which, as we know, is the Alexander
polynomial of k.

Proof of Corollary 8.4. The Alexander polynomial of k is defined as
Ap(t) = det (11728 —171/28T).
Use Lemma 8.3 to obtain
Ax(t) =det(t1/28 —17V2MTS) = dettE — M ") - det 1 7V/25),

which is the characteristic polynomial of £, up to a factor of £¢° (killed by the sym-
metrization). O

Corollary 8.5. If k C X is a fibered knot with a fiber F, then the genus of k equals
the genus of F, i.e. the closure F is a Seifert surface of k of minimal genus.

Proof. Since F is a Seifert surface, the genus of k& cannot exceed the genus of F.
On the other hand, the degree of the Alexander polynomial of k equals the highest
degree of ¢ in the symmetrized characteristic polynomial of /., which in turn equals
the genus of F. Since the genus of k cannot be less than the degree of its Alexander
polynomial, we are finished. |
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Corollary 8.6. If a knot & is fibered then its Alexander polynomial is monic, i.e. its
top degree coefficient equals £1.

Proof. The top degree coefficient of Ay (¢) equals + det M where the matrix M of
h«: H{(F) — Hi(F) is invertible over the integers since & is a homeomorphism.
Therefore, det M = +1. m|

Example. The knot shown in Figure 7.7 is not fibered since its Alexander polyno-
mial, 4172 — 12t~ 4+ 17 — 12t + 412, has the top degree coefficient 4 and therefore
is not monic.

Given a fibered knot in X, one obtains a Heegaard splitting ¥ = M, Urp M, as
follows. We think of S as the interval [0, 27r] with the ends identified. Let M; be
the closure in X of the preimage under p of the upper half-circle, p~1([0, z]) =
F x [0, ]. Similarly, let M, be the closure of p~!([r,27]) = F x [rn,2x]. Both
M and M, are handlebodies of genus equal twice the genus of F, and the splitting
surface is IM; = dM, = F U F, the union of two copies of the closure F of F along
the knot k. The gluing map dM; — dM, is an extension to the closure of the map
given by the formula

(x,7) > (x,7), x €F, (8.2)
(x,0) — (h(x),27m), x €F,

where h = hay: F — F is the monodromy homeomorphism.

8.3 More about torus knots

We give here a rough sketch of Milnor’s [114] proof of the fact that the complement of
a (p, q)-torus knot admits a fibration over S by surfaces of genus (p — 1)(g — 1)/2.

Let f:C? — C be given by the formula f(z,w) = z? + w? where p and ¢
are relatively prime positive integers. The intersection of the (singular) surface V' =
{(z,w) | f(z,w) = 0} with the sphere S3 = {(z,w) | |z|* + |w|?> = 1} is a torus
knot k of type (p, q), see Lecture 7. The formula

ez, w) = SEw) (8.3)

|f(z. w)
defines a map ¢:S3 \ k — S onto the circle S! of unit complex numbers. Mil-
nor shows in Section 4 of his book that the map ¢ is transversal to every point in
S and therefore is the projection of a locally trivial bundle such that each fiber
Fexp(io) = ¢~ 1(¢'?) is a smooth open Riemann surface. All fibers Fexp(io) are natu-
rally homeomorphic via homeomorphisms that can be described explicitly: the map
he:S3\ k — S3\ k defined by the formula

he(z,w) = (e"/Pz, '/ y)
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carries each fiber ¢ ~1(y) homeomorphically onto the fiber ¢~ (e’ y) for all ¢ be-
tween 0 and 2. The monodromy homeomorphism 4 = h,5 is given by the formula

how(z, w) = (27 Pz 27y, (8.4)

The closure of each of Feyp(ig) In S3 has the knot k as its boundary. To see this,
pick a point (zg, wo) € k and choose local coordinates for S3 in a neighborhood U of
(zo,wo) Sothat f = u + iv where u and v are the real and the imaginary parts of f.
A point of U belongs to the fiber F; = ¢~ (1) ifand only if u 4+ iv = |u + iv|, or
u > 0, v = 0. Hence the closure of F; intersects U inthe setu > 0, v = 0. Clearly,
AFFNU =kNU.

Similarly, a point of U belongs to the fiber Fey, gy ifand only if u +iv = et +
iv|,orug >0, vg = 0whereuyg = u cosf+wv sinh, vg = —u sinf +v cosh, and
again 8Fexp(i9) NU =k NU. Thus all of the fibers Feyp; ) fit around their common
boundary & in the manner shown in Figure 8.1.

Further, Milnor shows that any fiber Fey,(;g) is naturally diffeomorphic to the sur-
face I'y given by the equation z? + w9 = ¢'? in C2. This description allows for an
easy computation of the genus of Feyp,i9) and I'y. It is enough to do calculations for
[y only. Let us consider the projection p: 'y — C, (z,w) +— z. If zP = 1 then
p~1(2) consists of just one point, (z, 0); otherwise, p~1(z) contains ¢ distinct points.
Therefore,

1To)=q-x(C)=p-(g=D)=1-(p—-1(g—1),

and the genus of I'y is (p — 1)(¢ — 1)/2.
To compute the monodromy of a torus knot, we need to digress to some algebraic

topology.

8.4 Joins

Let X and Y be CW-complexes, not necessarily connected. Let us form a new com-
plex X % Y by joining every point in X to every point in Y by an interval. This new
space will be called join of X and Y. More precisely, the space X «x Y is defined as
the quotient space X x Y = (X x Y x I)/~ where ~ is the equivalence relation

t=t'=0 and x=x" or

x,y,t) ~ (x',y',¢t") ifand only if
(x,y.1) ~ (x",y", 1) y {t:t’:l and y = .

Alternatively, X = Y can be thought of as consisting of all the quadruples (z, x, s, y)
where x € X, y € Y, and s, ¢ are real numbers suchthat0 <s,f <lands+1¢ = 1.
In addition, the following identifications are made: for every x € X, all the points
(0,x,1,y), y € Y, are identified into one point, and so are the points (1, x, 0, y),
x € X, for every given y.
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The operation * is commutative and associative up to homeomorphism. It is also
functorial in that any two continuous maps /' : X — X’ and g : ¥ — Y’ define, in
an obvious fashion, a continuousmap f * g : X * Y — X' x Y.

Example. Let X = Y = S° be a 0-dimensional sphere (a pair of points). One
readily seesthat X * ¥ = S,

Example. Ingeneral, S+ X = SX is asuspension over X. In particular, S?x §” =
SS" = §"*1, By induction it follows that S” x §” = §n+m+1,

In general, one can show that X * Y is homotopy equivalent to the suspension
S(X A Y) over the smash-product X A Y, see for instance Hatcher [71], Chapter 0.
Recall that X AY = (X xY)/(X vY) where the one-point union X vY is embedded
in X x Y as a pair of coordinate axes.

It now follows from the Mayer—Vietoris sequence that H, .1 (X *Y) = H, (X AY).
The homology of X A Y can be computed using the long exact sequence of the pair
(X xY, X vY) (for the sake of simplicity we work over C):

e Hy(X VYY) 2 By (X X Y) = Hy (X AY) = Hyo (X VY) = --- (85)

where H,(X vV Y) = H,(X) ® H,(Y) for all n > 0. According to the Kiinneth
formula,
Hy(X xY) = Z H;X ® H;Y.
i+j=n

Suppose that » > 1. The homomorphism i in (8.5) identifies H,X = H,X with a
copy of H, X in H, X ® HoY. Similarly, it identifies H,Y = H,Y witha copy of
H,Y in HyX ® H,Y. Therefore, i, is monomorphic. With a little more effort one
can show that ix: HoX & HoY — Ho(X x Y) is also monomorphic, so the long exact
sequence (8.5) splits into the short exact sequences, n > 0,

0> H, X ® H,Y > Hy(X xY) > Hy(X AY) -0,
and we have the final result,
Hyp1t(XxY)= Y HX®HY nx=o. (8.6)
i+j=n

This formula behaves naturally with respect to continuous maps of X and Y. A gen-
eral formula for H.(X * Y) over a principal ideal domain can be found in Milnor
[111].

Below, we will be applying the formula (8.6) to calculate H; (X = Y) where X and
Y are finite sets with discrete topology. The result,

Hi(X *Y) = Ho(X) ® Ho(Y), (8.7)
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can be double checked as follows. Let |X| and |Y'| be the cardinalities of X and Y,
respectively. The space X A Y consists of (|X|—1)(|Y|—1) + 1 points. Since X xY
is homotopy equivalent to S(X A Y), it can be thought of as a one point union of
(1X| — 1)(|Y] — 1) circles. Therefore, we get the isomorphism (8.7) where Ho X and
HoY are complex vector spaces of dimensions | X | — 1 and |Y | — 1, respectively.

8.5 The monodromy of torus knots

The surface V = {(z,w)|z? + w? = 0} C C? admits a C*-action given by the
formulaz - (z, w) = (t9z,tPw). This allows one to extend : 3\ k — S, see (8.3),
to a locally trivial bundle v: C2\ V — S! by the formula

zP +wi
|zP + wi|’

Yz, w) =

so that the R 4 -part of the C*-action identifies each fiber v =1 (y) with =1 (y) x R..
Thus the fibers of ¢ and ¢ have the same homotopy type.

Let Z/p c C and Z/q C C be the finite cyclic groups consisting of all p-th,
respectively, g-th roots of unity, and J = Z/p * Z/q their join. One can embed J
into C?2 by thinking of it as consisting of all vectors (s&,tn) € C? with s,z > 0,
s+t=1,andEeZ/p,neZ/qg. Notethat J  y~1(1).

Theorem 8.7 (Pham, [128]). The join J is a deformation retract of the fiber v ~1(1).

Proof. Given any point (z, w) € ¥ (1), first deform the coordinate z along a path
in C which is chosen so that z? moves in a straight line to the nearest point Re(z?)
of the real axis. Repeat the same for the coordinate w. The vector (z, w) moves to a
vector (z/, w’) such that (z')?, (w’)? € R. The value z? + w? > 0 does not change
during this deformation, so that we remain inside the fiber v =1 (1). Next, if (z/)? <0
move z’ along a straight line to zero, leaving z’ fixed if (z')? > 0, and same for (w’)4.
Thus the vector (z/, w’) moves in a straight line to a vector (z”, w”) € ¥~1(1) which
satisfies (z”)?, (w”)? > 0. It follows that z = s& and w = ¢ for some s, > 0 and
some § € Z/p, n € Z/q. Finally, move (z”, w”) along a straight line to the point

" w"/(s+1) e J.

Since the points of J remained fixed throughout the deformation, this completes the
proof. a

The monodromy homeomorphism (8.4) extends to a homeomorphism 7 = hyy:
v~1(1) > v~1(1) by the formula

h(z,w) = (27 Pz 27y,
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It carries J into itself, and the restriction /|7 can be described as the join
h=rp*xrg:J —J

where r,:Z/p — 7/ p is given by the formula r,(§) = e27i/Pg and similarly for
rq. Consider the induced homomorphism

(rp)«: Ho(Z/ p; C) — Ho(Z/p; C)

of reduced homology groups. For each integer v between 1 and p — 1 define the
homology class w, which associates the coefficient £ € C to each point £ € Z/ p.
Note that w,, is a reduced 0-homology class since the sum of its coefficients, £V, over
all p-th degree roots of unity £ is equal to 0. One can easily see that

(rp)«(wy) = e_zniv/pwv

so that w, is an eigenvector of (r, )« with eigenvalue e~27iv/P_Because of (8.7) the
eigenvalues of y 5
ha = (rp)s % (rg)« : H'(J;C) — H'(J;C)

are all the products £n € C where & ranges over all p-th degree roots of unity other
than 1, and n ranges over all ¢-th degree roots of unity other than 1. Thus the charac-
teristic polynomial of 4. equals

@ -nE -1
[ (=& = G =1

§r=1, n=1
En#1

and the symmetrized polynomial

~p-D@g-vy2, =D =1
(tP —1)(t9 - 1)

is the Alexander polynomial of the (p, ¢)-torus knot.

8.6 Open book decompositions

Let M be a closed oriented 3-manifold. An open book decomposition of M consists of
an oriented link £ C M, called the binding, and a locally trivial bundle p : M\ £ —
S whose fibers are open surfaces F called pages. In addition, & is required to have
a neighborhood £ x D? so that the restricted map p : £ x (D?\ {0}) — S is of
the form (x, y) — y/|y|. The closure of each page F is then a connected compact
orientable surface with boundary £.

Any oriented link £ C M that serves as the binding of an open book decomposi-
tion of M is called a fibered link. This generalizes the concept of fibered knot from
Section 8.1 to arbitrary closed oriented 3-manifolds and links with any number of
components.
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Example. The construction of Section 8.3 can be extended to other singular complex
surfaces, such as the surface V' given by the equation z2 + w?” = 0 in C? with
n > 1. The only singular point of V' is the origin, and the intersection of V' with
the unit sphere S3 ¢ C2isalink £ c S3 of two components, called the torus link
of type (2,2n). This link lies in a 2-torus; it sweeps around the torus twice in one
coordinate and 2n times in the other. For example, the torus link of type (2, 2) is the
Hopf link. Milnor’s construction desribed in Section 8.3 makes £ into a fibered link
whose fibers are connected surfaces of genus n — 1 with two boundary components.

Theorem 8.8. Every closed oriented 3-manifold M admits an open book decomposi-
tion.

Proof. This is essentially a corollary of Theorem 2.1 which states that every closed
oriented 3-manifold M can be obtained by an integral surgery on a link in S3.

Recall that in order to prove that theorem in Lecture 2, we represented M as M =
H Uy, H where H and H' are handlebodies of genus g, and h, : dH — 0H’
is an orientation reversing homeomorphism. For the sake of concreteness, we will
view the handlebodies H and H’ as giving the standard Heegaard splitting of S3 of
genus g so that S3 = H Up, H' where hy is the (orientation reversing) identity
homeomorphism 0H — 0H’. Then h = h;lhl : 0H — 0H is an orientation
preserving homeomorphism of the standard Riemann surface dH C S3. According
to Theorem 1.3, one can write / as a product 2 = 1., --- 7, 0of Dehn twists along
simple closed curves ¢; C dH ; these curves can be chosen from the finite collection
of 3g —lcurvesay,...,og, B1,....Bg, V1.-..,Yg—1 Shown in Figure 1.8.

To obtain the manifold M from S3, we first push each of the curves ¢; inside the
handlebody H along an annulus A as shown in Figure 2.3 to obtain a knot k; C H.
Then we drill out the interior of a tubular neighborhood N (k;) of k;, and glue N (k;)
back by a homeomorphism of its boundary. This can be done simultaneously for all

the curves c1, ..., ¢, by pushing them along the annuli to different depths inside H
and choosing tubular neighborhoods of the knots &; thin enough so that all the N (k;)
are disjoint.

The outcome of this construction is that there exist two collections of disjoint solid
tori N(k1)....,N(kn) C S*and N(k})...., N(k,) C M, where each of the knots
k! is the image of k; under the surgery, and a homeomorphism

@: S\ int(N(ky) U---U N(ky)) — M \ int(N(k}) U---U N(k,))

which carries the meridian of k; to a longitude of k; foreachi = 1,...,n. Inaddition,
the knots k1, . .., k, belong to the collection of 3g —1 annuli in 3 as shown in Figure
8.3. All of these annuli are round and planar, their intersections are orthogonal, and
each of them contains several of the knots k1, . . ., k, represented by round concentric
circles. Also shown in Figure 8.3 is an unknot £ C S3 which runs in the complement
to the annuli so that each of the annuli wraps geometrically once around £.
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Figure 8.3

The binding of an open book decomposition of M will now consist of the knot
@(¢) C M together with the knots k7, ..., k},. The unknot ¢ is fibered, see Figure 8.2,
and we can choose a fibration p : $3\ ¢ — S whose fibers intersect each N(k;) in
a meridional disc. Then

pog ™ i MN\INUN (k) U+ U N(ky)) \ 9() — S

is a fibration. Since its fibers intersect dN (k) in longitudes, this fibration extends to
a fibration
M\ (kjU--- Uk, Up) - S!

that gives an open book decomposition of M. Note that its pages are actually punc-
tured discs. |

Our discussion of open book decompositions is a very modest introduction to a
large and active area of research at the confluence of classical low-dimensional topol-
ogy with contact geometry and various theories of Floer homology. We highly rec-
ommend Etnyre’s lectures [43] as further reading.

8.7 [EXxercises

1. Construct a fibration of a compact orientable 3-manifold M over S such that
m1M — w1 S is not surjective. Is its fiber connected?

2. Letk c S3 beafibered knot of genus one. Prove that the Alexander polynomial
of k is either that of a trefoil or the figure-eight knot. (In fact, one can show that
k must be one of these knots, see for instance [26]).

3. Prove that the connected sum of two fibered knots is a fibered knot.



Lecture 9
The Arf-invariant

The theories of quadratic and symmetric bilinear forms are identical over a field F' in
which 0 # 2. In this lecture we are mostly interested in quadratic forms over Z /2,
where the two theories differ. The following section on the Arf-invariant of a quadratic
form over the field Z /2 follows closely the exposition in Chapter 3 of Browder [24].

9.1 The Arf-invariant of a quadratic form

Let V' be a finite dimensional vector space over Z /2. A function g: V — Z /2 is said
to be a quadratic form if I(x,y) = ¢(x + y) — g(x) — ¢q(») is a bilinear form over
Z/2. Note that I is symmetric in that 7(x,y) = I(y,x). Itis clear that I(x,x) =
q(2x) —2¢g(x) = 0 and ¢(0) = 0. A quadratic form ¢ is called non-degenerate if its
bilinear form 7 is non-degenerate, i.e. if the determinant of 7 is not zero in Z /2.

Example. Let U = (Z/2)? have a basis a,b. There is only one non-degenerate
symmetric bilinear form 7 on U given by I(a,a) = I(b,b) = 0 and I(a,b) = 1.
Define the quadratic forms go,q1: U — Z/2 by the formulas go(a) = go(b) = 0,
qgo(a + b) =1, q1(a) = q1(b) = gq1(a + b) = 1. The associated bilinear forms
of both g¢ and ¢; equal the form 7. However, the quadratic forms ¢o and ¢; are not
equivalent since the form go sends a majority of vectors of U to 0 while g, sends a
majority of vectors of U to 1. It turns out that any other non-degenerate quadratic
form ¢ on U is equivalent to either gq or ¢;.

To prove this we only need to consider the form ¢ with g(a) = 0 and ¢(b) = 1.
We change the basistoa’ = a, b’ =a +btogetg(a’) =0and g(b’) = g(a +b) =
I(a,b) + g(a) + g(b) = 0. Thus g is equivalent to gy.

Lemma 9.1. For any non-degenerate quadratic form ¢: V — Z/2, there exists a
symplectic basis a;, b;, i = 1,...,n,for V suchthat I(a;,aj) = 1(b;,b;) = 0 and
I(a;.bj) = §i;, the Kronecker symbol. In particular, dim V" is always even.

Proof. Choose a basis in V, then the form I( , ) is given by its matrix I with
det/ = 1,and I(x,y) = x - Iy where “.” stands for the Euclidean dot product. For
any x # 0 there exists u such that x - u = 1, and hence I(x,y) = 1 fory = I 'u.
The vectors x and y are linearly independent because I(x,y) = 1; in particular,
dim V > 2. Choose a new basis in V' with the first two vectors x and y. The matrix /
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in this new basis takes the form

H x* 01
(*Io) WhereH—(lo).

By elementary transformations it can be turned into

H 0
0 L)’
The obvious induction completes the proof. a

Let g: V — Z/2 be a non-degenerate quadratic form, and a;,b;, i = 1,...,n,a
symplectic basis in V. We define the Arf-invariant of ¢ by the formula

Arf(q) =Y " q(aiq(bi) € Z/2.

i=1

One needs to prove that Arf(g) is independent of the choice of a symplectic basis.
This will follow from the study below of the non-degenerate quadratic forms over
Z7/2.

Example. The forms g, ¢1: U — Z/2 from the example above have Arf-invariants
Arf(go) = 0 and Arf(q1) = 1. Thus, the Arf-invariant provides a complete classifi-
cation of non-degenerate quadratic forms on U. Theorem 9.6 below will imply that
this is true in general.

Lemma9.2. On U & U, the forms qo + go and g1 + ¢; are equivalent.

Proof. Itis clear that the forms go + go and g1 + g1 have the same associated bilinear
fom/ onU @ U. Leta;,b;, j = 1,2, beabasis for U @ U so that a;, b; form a
symplectic basis of the j-th copy of U. If ¥; = q; +¢qi, i = 0,1, then Yo(a;) =
Vo(bj) =0and yi(a;) = ¥1(b;) =1, j = 1,2. Choose a new basis for U & U,

ay = a1 + ax, by = b1 + a,

ah =az+by+ay +b1, by =by+ay+b.

One checks easily that this defines a symplectic basis and v, (a}) =vola;), 1 (bj/.)
Vo(bj), j = 1,2 so that v is equivalent to vro.

O

Lemma 9.3. Let g: V — Z/2 be a non-degenerate quadratic form where dimV =
2m. Then g is equivalent to g, + (m — 1)qy if, with respect to some basis, Arf(g) = 1.
The form ¢ is equivalent to mgqy if Arf(g) = 0.
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Proof. Ifa;,b;, i = 1,...,m, is a symplectic basis for VV and if V; is the subspace
spanned by a;, b;, let ¥; denote the restriction of ¢ onto V;. It is obvious that g =
> i, where each y; is equivalent to either g or ¢;. By the previous lemma, 2¢¢ =
241, S0 q is equivalent to either mgqo or g1 + (m —1)go. But Arf(q; + (m—1)qo) = 1
and Arf(mgo) = 0, which implies the result. a

To complete the study of non-degenerate quadratic forms over Z/2, it remains to
show that ¢; = ¢1 + (m — 1)go and g9 = mgqo are not equivalent. We prove this by
the following lemma.

Lemma 9.4. The quadratic form ¢, sends a majority of elementsof V' to 1 € Z/2,
while ¢g sends a majority of elementsto 0 € Z/2.

Corollary 9.5. If ¢ is a non-degenerate quadratic form, then Arf(¢) = 1 if and only
if ¢ sends a majority of elements of V to 1 € Z/2. In particular, the Arf-invariant is
well-defined.

Proof of Lemma 9.4. We proceed by induction, the case m = 1 being trivial. Given a
non-degenerate quadratic form ¢ on V, let p(¢) be the number of vectors x € V' such
that ¢(x) = 1 and n(p) the number of vectors x € V such that ¢(x) = 0. Hence
p(@) + n(p) = 22" which is the number of vectors in V, including 0.

The functions p and n satisfy the identities p(¢ + go) = 3p(¢) + n(p) and n(p +
qo) = 3n(p)+ p(p). This can be seen as follows. Any vectorin IV @ U is of the form
(x,u)wherex € Vandu € U, and (¢ +qo)(x,u) = ¢(x)+qo(u). Three of the four
vectors in U have g9 = 0 and only one has go = 1, so for each vector x € V such that
¢(x) = 1 we have three vectors (x, u) such that go(u) = 0, thus (¢ + qo)(x,u) = 1.
Similarly, for each vector y € V such that ¢(y) = 0 there is one vector (y, v) such
that go(v) = 1,50 (¢ + qo)(y,v) = 1. Hence p(¢ + qo) = 3p(¢) + n(p), and the
other formula follows similarly.

Set r(¢) = p(p) —n(p). Then r(p + go) = 2r(g), so that if r(¢) > 0 then
r(p + qo) > 0and if r(¢) < 0then r(p + go) < 0. It follows, since r(g;) = 2
and r(go) = —2, that r(g1 + (m — 1)go) > 0 and r(mqo) < 0, which proves the
lemma. a

Since r in the above proof is obviously an invariant, it follows that g; + (m — 1)qo
is not equivalent to mgo. Thus we have proved the following result.

Theorem 9.6 (C. Arf [5]). Two non-degenerate quadratic forms on a Z/2-vector
space V of finite dimension are equivalent if and only if they have the same Arf-
invariant.
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9.2 The Arf-invariant of a knot

An important example of quadratic form arises in knot theory. Let k C X be aknot in
an oriented integral homology sphere X. Let F be its Seifert surface of genus g and S
its Seifert matrix in a fixed basis of the group H,(F;Z). The skew-symmetric form
I = ST — S is the intersection form of the surface F'; it is unimodular, see Lecture 7.
The form Q = S + ST is symmetric; it is even and has odd determinant because
O = I mod 2. We define the quadratic form ¢: H,(F;Z/2) — Z/2 by the formula

q(x) = % O(x,x) mod2. (9.0

One readily sees that g(x) = S(x,x) mod2. Its associated bilinear form is I =
O mod?2 since

gx +y)—q(x) —q(y) =Sx+y,x+y)—Sx,x) =S, »),
=S(x,y)+ S, x),

= (S +8T)(x,y) = O(x,y).

One can think of the quadratic form ¢ as follows. Construct a Seifert surface F of
k by attaching bands to a disc. There naturally arises a family of curves on F running
along the attached bands which give a basis in H;(F;Z/2). Let x be one of these
curves; then ¢(x) is the number of full twists mod 2 in a neighborhood of x. For
example, the quadratic form of the surface shown in Figure 9.1 is the quadratic form
q1 from the previous section.

doN)

Figure 9.1

Lemma 9.7. The Arf-invariant Arf(g) of the quadratic form (9.1) only depends on
the knot & C X and not on the choices in its definition.

Thus Arf(g) defines a knot invariant which is usually denoted by Arf(k) and called
the Arf-invariant of the knot k.

Proof of Lemma 9.7. One only needs to check that Arf(¢) does not change under the
stabilization operation on Seifert matrices. Stabilization replaces a Seifert matrix S
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by
[“5} 0
) S .
S = azg 0 ’
bl -~-b2g c 1
O-- 0 00

compare with (7.1). With the help of elementary row and column operations, one can
make c = 0anda; +b; = Oforalli =1,...,2g. Then 9’ = S’ + (S’) T is of the
form

00

, S+ ST

0 = 00
0 - 001
0 - 010

so a symplectic basis for 0 = S + ST mod2 can be completed to a symplectic basis
for 0’ = S’ +(S’)T mod2sothat Arf(¢’) = Arf(g) + Arf(go) = Arf(g) mod2. O

Theorem 9.8. For any knot k C ¥ in a homology sphere %,
1
Arf(k) = 3 Ay (1) mod2,

where A} (¢) is the second derivative of the Alexander polynomial of k defined by the
formula (7.2).

Proof. Let S be a Seifert matrix of k of size 2g x 2g,and Q = S + S 7. There exists
an odd integer a and an integral matrix P with odd determinant such that a® - Q =

P T DP where
D= (21’1 €1 )@...@ (2l’g Cg )
1 2q1 Cg 2qg
and cy, ..., cg are odd integers. To prove this claim, let us assume for a moment that
we can invert all odd integers. Since the form O = ||a;; || is even, a;; = 0 mod 2. At

the same time, det Q is odd, which implies that a;; = 1 mod 2 for some i. We lose
nothing by assuming that a1, = 1 mod 2. The matrix

A= (all 912)
alz dzz
has determinant a11a22 — afz = 1 mod 2 and hence is invertible. The matrix Q is of

the form -
AL
Q—(L " )
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where AT = Aand BT = B. If R is the invertible matrix
E A7'LT
r=(o ")
where E stands for the identity matrix, then

Q=RT(61_LA_IOL-|—+B)R, with detR = 1.
By induction,
O = R"DR (9.2)

where the matrix R in general is not integral because its elements were allowed to
have odd denominators. Let a be the common denominator, then ¢« = 1 mod2. To
complete the proof of the claim, multiply both sides of (9.2) by a2 and denote by P
the integral matrix a - R. Note that det P is odd.
Thus we have a basis {a;, b} in Hi(F;Z) such that

a®- Q(ai.aj) = 2pi8ij,

a*- Q(bi,by) = 2¢8i;,

a*- Q(ai, bj) = cidij.
Its image under the homomorphism H,(F;Z) — H(F;Z/2) is a symplectic basis
for ¢ mod 2 which we still call {a;, b;}, and

1

q(aj) = 2 Q(aj,a;) = pj mod2,
1

q(bj) = 3 Q(bj,bj) = q; mod2.

Therefore,

g
Arf(k) =Y pjgq; mod2.

j=1
Let us now compute A (—1) = det(i Q). It follows from the claim above that

g
(a®)?8 det(iQ) = (det P)*det(iD) = (det P)* [ [ (¢} — 4pjqy).
ji=1
Since x2 = 1 mod 8 for any odd integer x, we have that modulo 8,

g g
Ap(=1) =detiQ) =[] (1 —4pjqp) =1+4)_ pjgj =1+ 4Arf(k). (9.3)

J=1 j=1
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Next we will prove that
Ar(=1) =1+ 2Aj(1) mod8. (9.4)

Since Ax(1) = 1 and Ax(z) = Ag(t™1), see Lecture 7, the Alexander polynomial
Ay (t) can be written in the form (j > 1)

A() =ao+ Y a;(t/ +17/) whereag=1-2)a;.
J J

An elementary calculation shows that Ay (1) = 2 > j2aj. Therefore, the right-hand

side of (9.4) equals
L+4)" j%a.
J

On the other hand,

A(-D) =ao+2)Y (-1 a; =142 a;j(-1)) =) =1-4)"a;.
J J

j odd

Now one can easily check that (9.4) holds. Comparing (9.3) and (9.4) completes the
proof. m]

Example. Let k be a (p, g)-torus knot in S3, then its Alexander polynomial is

~(p-1g-n/2 (L= DA =17

Ap(t) =t (]—lp)(l—tq).

Therefore, the Arf-invariant of k£ equals

1 (P =D(¢* -1

— Al = 2. .

7 k(D o mod (9.5)
Example. The Alexander polynomial of a twist knot k£ of type (2m + 2)y is (1 +
2m) —m(t + ¢t~ 1), therefore, the Arf-invariant of k is m mod 2.
9.3 Exercises

1. Let k be a (p, g)-torus knot in S3. Verify by a direct calculation with the
Alexander polynomial of k that

(P2 —1(g*—1)
24 ‘

1

2. Let k7 and k, be oriented knots in homology spheres, and k; #k, their con-
nected sum. Prove that Arf(k, #k,) = Arf(ky) + Arf(ks).



Lecture 10
Rohlin’s theorem

10.1 Characteristic surfaces
Let M be a simply-connected oriented closed smooth 4-manifold, and
Om-Hx(M:Z) ® Hy(M;Z) > 7Z, a®br>a-b,

its intersection form. A closed oriented surface F' smoothly embedded in M is called
characteristic if

F-x=x-xmod2 forall x € Hy(M;Z). (10.2)

We abuse notation here and use the same symbol F' to denote a surface and its homol-
ogy class in Hy(M) = Hy(M;Z). Leteq,...,e, be abasisin Hy(M) then Oy is
given by its matrix a;; = e; - e;. One can easily check that a surface F = ) ¢g;e; is
characteristic if and only if

n
Zaijej =aq;; mod2 foralli =1,...,n. (10.2)
j=1

Example. Let M be a simply-connected oriented closed smooth 4-manifold. It can
be represented as M = (M \ int D*) U D*. Suppose that M \ int D* is the result
of a 4-dimensional surgery of D* along a link L = L; U---U L, in §3. Thus
M \ int D* is obtained from D* by gluing 2-handles. A basis in H,(M) can then
be generated by the surfaces F; = F/ U D? where F/ is a Seifert surface of the
knot L; (with its interior pushed radially inside D#), and D? is the central disc of
the corresponding 2-handle. The intersection matrix in this basis is isomorphic to the
linking matrix of L, see Theorem 6.2 of Lecture 6. The equations (10.1) and (10.2)
defining a characteristic surface turn into the equation for a characteristic sublink
L’ of L, see equation (4.1) of Lecture 4. The sublink L’ is defined uniquely since
det Qpr = +1. Given a characteristic sublink L’, one can associate a characteristic
surface F with it by gluing n copies of DZ, one for each component of L', to a Seifert
surface of L'.

With each characteristic surface ¥ C M, one can associate a quadratic form
G:H{(F;Z/2) — Z/2 (see below), and the Arf-invariant Arf(M, F) = Arf(qG).
The following is a generalization of Rohlin’s theorem 5.6 from Lecture 5.
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Theorem 10.1 (Rohlin [136]). Let M be a simply-connected oriented closed smooth
4-manifold, and F a closed oriented surface smoothly embedded in M. If F is char-
acteristic then

1

3 (SignM — F - F) = Arf(M, F) mod 2. (10.3)
Corollary 10.2 (Kervaire—Milnor [81]). If F in Theorem 10.1 is a 2-sphere then
signM — F - F = 0 mod 16.

This follows from Theorem 10.1 because if F is a 2-sphere, Hy (F; Z/2) vanishes
and Arf(M, F) = 0. The following corollary is obtained from Theorem 10.1 by
taking F' to be empty.

Corollary 10.3 (Rohlin [135]). If the intersection form of M in Theorem 10.1 is even
then sign M = 0 mod 16.

10.2 The definition of ¢

Let F be a closed oriented characteristic surface smoothly embedded in M. Suppose
that a homology class y € H(F;Z/2) is realized by an embedded circle y C F.
Since H1(M;7Z) = 0, y bounds a connected orientable surface D embedded in M
such that int D is transversal to F. We may deform D slightly to a new surface D’ so
that y’ = aD’ isacurve in F obtained by shifting dD inside F sothat 3D NaD’ = @.
One may assume that D and D’ intersect transversally. We define

G(y)=D-D'+ D-F mod2, (10.4)

where by D - D’ and D - F we mean the intersection numbers of int D with int D’ and
F, respectively.

Lemma 10.4. The formula (10.4) gives a well-defined quadratic form
G- H\(F;Z/2) > Z]2
whose associated bilinear form is the mod 2 intersection form of the surface F'.

Before we go on to prove this lemma, we consider the following important example.

Example. Suppose that an integral homology sphere X is embedded in M and sepa-
rates the surface F into two pieces, F = F’ U D?, where F’ C X is a Seifert surface
of a knot k C X. Then we have two quadratic forms,
q: H{(F';7Z/2) — 7Z/2, defined in (9.1) of Lecture 9, and
G:H((F;Z/2) — Z/2, definedin (10.4).
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We claim that the inclusion-induced isomorphism ¢: Hy(F’;Z/2) — Hi(F;Z/2)
makes the following diagram commute:

H\(F7)2) — 7.)2

“’l idl (10.5)
Hy(F:2/2) — 7.)2

This can be seen as follows.

Let y C F’ be an embedded circle in F’. Choose an orientable embedded surface
D with 3D = y suchthat D N D? = @ —simply take D equal to a Seifert surface of
y inside X and push its interior off D2. Then D - F = D - F' = Ik(y, k) mod 2. Let
N(y) be atubular neighborhood of y in X. Since F’ is a Seifert surface of the knot &,
the intersection dN(y) N F’ is homologous to k via the surface F/ \ int(N(y) N F’),
see Figure 10.1. This implies that [k] = [ON(y) N F'] € Hi(Z \ intN(y); Z) = Z.
Therefore, D - F = Ik(y, k) = Ik(y,dN(y) N F") = 0 mod 2.

N(y)

Figure 10.1

Thus G(y) = D - D' = KK(y,y") = Ik(y,y™T) = q(y) mod2 where y* is a
(positive) push-off of y.

Proof of Lemma 10.4. We first check that the number ¢(y) mod 2 is independent of
the choice of D. Let Dy and D, be two choices for D. If necessary, we may spin D,
as shown in Figure 10.2 to make S = D U, D, smoothly embedded (we want the
“outside” normal vectors of the surfaces D; and D, to have opposite directions along
their common boundary).

Shown in Figure 10.2 is a movie of D, spinning around y. We choose an interval
of y, represented by the time ¢ axis, so that at a fixed time y is represented by the
center dot (only shown in the first frame of the movie). The horizontal line is a slice
of F, normal to y. The vertical lines represent collars of D, and D’. Note that this
spin changes both D, - D} and D, - F by +1, so that D, - D} + D5 - F remains
unchanged mod 2.

LetS’= D{uD),thenS-S =S5-S"=Dy-D}|+ Dy- D) mod2. Since F is
characteristic, S-S = S-F mod2,soweget Dy-D|+D>-D} = D{-F+D>-F mod2
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el
)

— L
T \ S\
Figure 10.2

and Dy-D| + Dy -F = Dy - D} + Dy - F mod2. Thus g(y) is independent of the
choice of D.

Since any two homotopic closed simple curves on F are isotopic (see Lecture 1),
¢ (y) only depends on the homotopy class of y, and hence defines a map ¢: 71 (F) —
7/2.

Let y1 * v, denote a product of loops y; and y», then we claim that

q(r1 *y2) = q(y1) +q(y2) + y1-y2 mod2, (10.6)

where y1 - y» is the intersection modulo 2 of the homology classes represented by
y1 and y,. Since y; - y2 = y» - y1 mod2, the formula (10.6) implies that g(y; *
y2) = G(y2 * y1) and that the map g: 71 (F) — Z/2 factors through H;(F;Z) and
H{(F;Z/2).

Thus, to complete the proof we only need to check the formula (10.6). For the sake
of simplicity, let the curves y; and y, intersect transversely at one point, and let D,
and D, be surfaces that the curves bound as in the definition of g. Let y be a smooth
connected sum loop representing y; * y2, see Figure 10.3.

Y1

Figure 10.3

We get a bounding surface D for y from D, U D, and the curved triangles T; and
T, shaded in Figure 10.4. Push y off in the direction of a normal field of y extending
the normal fields on y; and y,.
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//’/\Tz

Figure 10.4

Then y and its push-off will link as shown in Figure 10.5, which indicates that
D-D'=Djy-D}+ Dy-D}+1mod2.

Figure 10.5 O

Lemma 10.5. Arf(M, F) only depends on the homology class [F] € Hx(M;Z/2).

Proof. This is a closed surface analogue of Levine’s theorem 7.2. For a complete
proof see Matsumoto [107]. O

Proof of Theorem 10.1. Let us consider the manifold M #C P2#C P_. Its intersec-
tion form is odd and indefinite, hence isomorphic to the form p - (+1) & ¢ - (—1)
with p = by (M) + 1and g = b_(M) + 1. By Wall’s theorem, see Theorem 5.5,

there is a k > 0 such that (M #C P2#T P )#k - (S2 x $2) is diffeomorphic to
(p-CP2#q-CP)#k-(S? x S2). Since
(S2x S2)#CP2 =CP #2-CP? and (S2x S2)#CP =CP2#2.CP’,
see Lecture 3, we have that for some £; and £,

M#€,-CP?#0,-CP> =a-CP*#b-CP",

wherea = €1 + by (M)and b = £, + b_(M).

Letn € Hy(CP?) =Zand7j € Hz((C_PZ) = 7 be the generators represented by
the embedded 2-spheres CP' ¢ CP2. Thenn-n=land -7 = —1. Ifaclass F
is characteristic in H, (M) then the class F, = F + £; - n + {5 - 77 is characteristic
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inM#4,-CP2#/4, .CP’. The property of being characteristic is preserved under
diffeomorphisms, therefore, the image of F. ina - C P2 #b TP~ is characteristic.

Both sides of the formula (10.3) are additive with respect to connected sums of
manifolds and characteristic surfaces. Therefore, if (10.3) is true for any two of the
following three pairs, (M1, F1), (M2, F>), and (M1 # M>, F1 U F»), it is true for the
third one. Obviously, sign C P2 — ;- = 0 = Arf(C P2, ) and signC P~ — 7 -7 =
0= Arf((C_Pz, 7). Moreover, both sides of (10.3) change sign with the change of
orientation. Therefore, the formula (10.3) only needs to be proved for characteristic
surfaces in C P2.

If n € Hy(CP?) = Z is a generator represented by the embedded 2-sphere C P!,
then a class s - n € H,(C P?) is characteristic if and only if s is odd. The complex
curve

C = {[x0: x1 : x2] | xox{~! + x5} C CP?

is homeomorphic to S? and represents the class s - 7, see Lemma 10.6 below. It is
smoothly embedded in C P2 except possibly at the point [1 : 0 : 0]. Let B be a 4-ball
of radius ¢ > 0 centered at [1 : 0 : 0]. In the affine plane xo = 1 the intersection
dB N C is given by the equations x§~! + x5 = 0, |x1]? + |x2|*> = &2. Therefore,
0B NC C dB = S3 isthe (s, s — 1)-torus knot kgs—1. Let S be a Seifert surface in
dB with boundary the curve dB N C, then the surface F = (C \ (C NintB)) U S
represents the class s - n. An easy calculation using the identification of the quadratic
forms ¢ and g in the example above shows that

Arf(C P2, s - ) = Arf(kg5—1),
= (2= 1)((s—1)>2—1)/24 mod2, see (9.5),
= (1—1s52)/8 mod2,
= (signC P2 — 51 - s1)/8 mod 2. o

Lemma 10.6. The complex curve C in C P? given by the equation xoxf_l +x5=0
is homeomorphic to S and represents the homology class s - [CP1] € H,(C P?).

Proof. The formula [xo : x1 : x2] — [xo : x1] defines a map ¢: C — C P. One can
easily see that ¢ is onto, and that for all points [x¢ : x1] distinct from [0 : 1] and [1 : 0]
the preimage ¢! ([xo : x1]) consists of s points, while ¢=1([0 : 1]) = [0 : 1 : 0]
and ¢~ 1([1 : 0]) = [1 : 0 : 0]. From this information, one can compute the Euler
characteristic of C, namely, y(C) = s - x(S?) —2(s — 1) = 2. Therefore, C is a 2-
sphere. The map ¢ has degree s, therefore, the induced map ¢«: H>(C) — H,(CP1)
is a multiplication by s.

Note that [0 : 0 : 1] ¢ C. This implies that the inclusion map i:C — CP?
factors through C P2\ {[0 : 0 : 1]}, which contains E_; as a deformation retract, see
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Lecture 2. Let 7: E_; — C P! be the projection [xo : x1 : x2] — [xo : x1] (with
fibers D?); then we have the following commutative diagram

C L E_4 L>(CP2

| dl

CcpP! —— cCPr!
Here, i and i are the natural inclusions whose composition is the inclusion i: C —
C P2. In the second homology, (i1)+ and 74 are identity isomorphisms, and by the
commutativity of the diagram, the map i = (i1)«(7); '¢x: Z — Z is multiplication
by s since @« is. a

10.3 Representing homology classes by surfaces

Let M be a simply-connected oriented closed smooth 4-manifold. As we know from
Lemma 5.2, every homology class u € H,(M) can be represented by a smoothly
embedded surface F. The following is one of the most intriguing problems in 4-
dimensional topology: given a class u € H, (M), what is the minimal genus of F C
M representing u? The class u is said to be spherical if it can be represented by an
embedded 2-sphere.

Example. Letn € H>(C P?) = Z be the generator represented by the complex line
CP! c CP?2, so that n is spherical. All other classes in H,(C P?) are then of the
form sn with s € Z. It suffices to consider s > 0. Rohlin’s theorem prohibits certain
classes sn from being spherical. For example, if the class 35 were spherical, we would
get a contradiction, since

sign CP2—3n-3n 1
3 =
The same argument works for the classes sn with s = +3 mod8; thereby show-
ing that they are not spherical. On the other hand, the class 25 is spherical — the
construction from the proof of Rohlin’s theorem that employed the complex curve
C = {xox3~1+x5 = 0} produces, in the case of s = 2, the surface {xox1 +x7 = 0}.
Its intersection with a small 3-sphere centered at [1 : 0 : 0] is the torus knot k> 1,
which is equivalent to an unknot. In particular, it bounds a Seifert surface S of genus
0. Now, the surface F = D? U S is a smoothly embedded 2-sphere representing 2.
In general, using a Seifert surface S of minimal possible genus (s — 1)(s —2)/2
to bound the torus knot kg s—; is the proof of Rohlin’s theorem provides the upper
bound of (s — 1)(s — 2)/2 on the minimal genus of embedded surfaces representing
sn in C P2. The famous Thom conjecture asserts that this is also a lower bound. This
conjecture was proved by Kronheimer and Mrowka [95] with the help of Seiberg—
Witten gauge theory.

; 2 # Arf(C P2,35) = 0 mod 2.



Lecture 11
The Rohlin invariant

11.1 Definition of the Rohlin invariant

Let X be an oriented integral homology 3-sphere. According to Theorem 6.2 and
Theorem 4.1, there exists a smooth simply-connected oriented 4-manifold W with
even intersection form such that 0W = X. Then the signature of W is divisible by 8,
and

wx) = % sign W mod 2 (11.1)

is independent of the choice of W, see Section 6.4 of Lecture 6. We call (%) the
Rohlin invariant of 2. It takes values 0 and 1 mod 2.

Suppose that M is a smooth simply-connected oriented 4-manifold with oM = %;
we do not assume an even intersection form. Suppose that M has a spherical charac-
teristic surface, that is, a smoothly embedded characteristic surface F C M of genus
0. Then

w(x) = %(signM — F - F) mod2. (11.2)

To check the formula (11.2), form a smooth closed manifold X = M Ux (—W). Then
F is a spherical characteristic surface in X, and

1 1 1
g(signM —F-F)—uX) = g(signM —F-F)— 3 sign W, by (11.1),

1
= g(sign X —F-F)=0mod2, by Corollary 10.2.

11.2 The Rohlin invariant of Seifert spheres

In this section we provide an algorithm for calculating the Rohlin invariant of
an arbitrary Seifert homology sphere X(ay,...,a,). A closed form formula for
w(x(au,...,an)) will be given in Lecture 19.

Any Seifert homology sphere X (ay, ..., ay) is the boundary of a manifold M ob-
tained by surgery according to a star-shaped tree T, see Figure 2.12. Each vertex of
I' has an integer weight, say e;, i = 1,...,s, attached to it. To calculate the Rohlin
invariant of X (ay, ..., a,) we first need to compute sign Q s, where Qs is the inter-
section form of M, and then describe a spherical characteristic class F C M, if such
exists.
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Each vertex of the tree I" corresponds to a basis vector in the second homology
group Ho(M) = 7Z° represented by an embedded 2-sphere. With proper orientations,
the intersection form Qs is isomorphic to the linking matrix A(I') = (aij)i,j=1,....s
with entries

ej, ifi =],
ajj = 51, ifthei-th and j-th vertices are connected by an edge,
0, otherwise.

There is a simple algorithm to diagonalize matrices of the form A(I"), see Duchon
[40] and Eisenbud—Neumann [41]. Let us allow trees weighted by arbitrary rational
numbers. Given such a tree, pick a vertex and direct all its edges toward this vertex.
Now, the tree can be simplified by performing operations of the two types shown in
Figures 11.1 and 11.2 (we re-index vertices if necessary).

€1 ° [}
(%) , ® ¢
€j
L
ex ® ¢
, 1 1
e. = e; — — — - _
J T e ex
Figure 11.1
0 1
“2 €k+1 * e
— > °
(95 —1 ® ¢
Figure 11.2

We end up with a finite collection of isolated points weighted by rational numbers
di,...,ds. Then D = diag(ds, ..., ds) isadiagonalization of A(T"), thatis, A(I") =
UT DU withdetU = +1. In particular, det A(T") = det D and sign A(I") = sign D.

Example. For the tree T" in Figure 11.3 we have det A(T') = detD =2-3.(1/6) -
(—=2)-(—1/2) =landsign A(T") =signD =3 -2 =1.

This algorithm works for any weighted tree (not necessarily star-shaped). As the
following example shows, the diagonal entries in D generalize the concept of a con-
tinued fraction.
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2 2 2
[ ] [ ]
1 1/6 1/6
5 3 5 3 —1/2 3
_— = [ ] —_— [ ] [ ]
—2 —2 o2
Figure 11.3

Example. The diagonalization D of the matrix A(I") corresponding to the tree in
Figure 11.4 has entries

[xn]’ [xn—l,xn]’ e ey [x27---axn—1,xn]’ [xl,--‘,xn—l»xn],

where [ , ] stands for continued fraction, see (2.3). The determinant of A(I") equals

(up to a sign) the numerator of the reduced fraction [x1, ..., Xy—1, Xn].
X1 X2 Xn
Figure 11.4

Having said this, we can easily compute the signature of Q3s. Now we move on
to finding the characteristic surface F C M. The surface F corresponds to the char-
acteristic sublink, thus it can be described as a collection of vertices in the weighted
tree I.

Lemma 11.1. If two vertices of a tree belong to a characteristic sublink, they are not
connected by an edge.

Proof. Suppose that two vertices, u and v € H, (M), framed by a and b, respectively,
belong to the characteristic sublink and are connected by an edge, see Figure 11.5.

D

Figure 11.5

Fix an orientation on the link sothat u -v = 1. Then F = u + v + --- and
F-F=u-u+v-v+2u-v+---=a+b+2+--- NotethatsignM — F - F
is divisible by 8. Reverse the orientations on the link components to the left of u
(including u). This operation preserves the signature and the characteristic sublink
but changes u -v from 1to —1. Thus F- F =a+ b —2+---, which is a change of 4
compared to the calculation of F - F above. This contradicts the divisibility by 8. O
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Corollary 11.2. The characteristic class in the manifold M is spherical.

Proof. The surface F consists of several disjoint 2-spheres. Connect them by tubes
to obtain a connected surface. |

Example. The Seifert homology sphere X (2, 3, 7) has the link description as in Fig-
ure 11.6.

2 0 -3
I =7
Figure 11.6
By the algorithm above, sign M = —2. To find the characteristic sublink, consider
the linking matrix,
01 1 1
12 0 0
A= 10-3 0}
10 0-7
and the system Ae = diag A mod 2 that defines the characteristic sublink. This system

is of the form

e1+ée2+e3=0

£0 =0
&0 + & =1
&0 + e3=1

and its only solution is e = (0,0,1,1). Therefore, F - F = -3 -7 = —10 and
w(=(2,3,7)) = 1/8 (=2 + 10) = 1 mod 2.

Remark. Let X be a Seifert homology sphere, and M a smooth manifold obtained
by surgery according to a star-shaped tree as in the above calculation of the Rohlin
invariant of X. It turns out that the quantity

ax) = é(signM —F-F) (11.3)

is independent of the choice of such a manifold M even before it is reduced modulo 2,
see Neumann [121]. Thus (11.3) defines an integer valued invariant of X known as
the fi-invariant (of Neumann and Siebenmann). This invariant was actually defined in
[121] for the so called plumbed homology spheres, of which Seifert homology spheres
are a special case.
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11.3 A surgery formula for the Rohlin invariant

Let k& be a knot in a homology 3-sphere X. We denote the homology sphere obtained
by (1/m)-surgery of X along k by

Let Agcx(¢) be the Alexander polynomial of k. Remember that it is symmetric in
that Agcs(1) = land Agcs(t™!) = Agcs(?).

Theorem 11.3. Let k be a knot in a homology sphere ¥ and ¢ = £1. Then
1
wE+e-k)=pu + 5 Ay cx(1) mod2.

Proof. Let W and W’ be oriented simply-connected smooth 4-manifolds with even
intersection forms whose boundaries are 9W = X and 0W’ = X/ = ¥ + ¢- k. Then

1 1
w(x) = 3 sign W mod2 and (YY) = 3 sign W’ mod 2.

Figure 11.7

Let V' be the union of the manifold X x [0, 1] and a 2-handle attached to X x {1}
along k with framing &, see Figure 11.7. The boundary of V is —X U ¥’. The union
of a Seifert surface of the knot k in X x {0} with the cylinder k x [0, 1] C £ x [0, 1]
and with the axis D? x {0} of the 2-handle is a closed orientable surface F smoothly
embedded in V' with self-intersection ¢ = £1. The homology class of this surface
generates the group H,(V';Z) = Z. The union

X =W Usxy V Usr (W)
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is a closed smooth oriented simply-connected 4-manifold with the intersection form
Ox = Ow ® Qv ® QO—_w, and with characteristic surface F C X. Therefore,

1
g(sign X—F-F)=Arf(X, F) mod2, by Theorem 10.1,
= Arf(k C ¥) mod2, by (10.5),

1
=3 A} cx(1) mod2, by Theorem 9.8.
On the other hand, sign X = sign W + & —sign W’ and F - F = ¢, hence
1 1
w() — () = 3 (sign W —sign W'y = 3 A} 5 (1) mod?2,
and the result follows. ]

1
Corollary 11.4. If k isaknotin S3 then u(S3 £ k) = 3 AJ(1) mod 2.

Recall from Lecture 7 that a link k£ U £ in a homology sphere X is called boundary
if the knots k£ and ¢ bound disjoint Seifert surfaces in X.

Example. If k is a knot in a homology sphere X and £ its canonical longitude then
the link £ U £ is boundary. Let us perform a (+1)-surgery on k to get a homology
sphere X’. The image of £ C X in X/ is well-defined; we again call it £. According to

Lemma 7.13,
Akcs(t) = Apcs4i(0). (11.4)

One can further perform a (41)-surgery on £ C X’ to get another homology sphere,
X" (it is a homology sphere because Ik(k, £) = 0 in ). We claim that

1
(E+k)+€=2+§~k.
To see this, we slide £ over k in X, the homology sphere ¥ being thought of as a
surgery along a link in S3 (p = 2 in the picture), and isotope the knot k + £ into a

small circle linking k geometrically once, see Figure 11.8.

1 p full twists  p — 1 full twists

_ _ k
ST

. k+ ¢ .
2

Figure 11.8
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The surgery on the resulting framed link k£ U (k + £) is equivalent to the rational
surgery on k with framing 1/2, see Figure 11.9.

K k
B)kw
1y 2 1/2

Figure 11.9

Of course, this result can be generalized for any number of parallel copies of the
knot k C X. Applying the surgery formula for the Rohlin invariant sufficiently many
times and keeping in mind the formula (11.4), we obtain the following result.

Corollary 11.5. Let k be a knot in a homology sphere X, and A ~x(?) its Alexander
polynomial. Then

1 m
M(E-l‘z'k) ZM(E)‘FE'AZCE(I)’ méeL.

11.4 The homology cobordism group

Let ¢ and X, be oriented integral homology 3-spheres. They are said to be homology
cobordant, or H-cobordant, if there exists a smooth compact oriented 4-manifold W
with boundary oW = —X, U X; such that the inclusion induced homomorphisms
H.(X;) —> H.(W),i =0, 1, are isomorphisms. For example, ¥¢ is H-cobordant to
itself via the product cobordism W = ¢ x [0, 1]. As the example below shows, not
all H-cobordisms are products.

A homology sphere X is said to be H-cobordant to zero if it is H-cobordant to
S3. Equivalently, = is H-cobordant to zero if there is an oriented smooth compact
4-manifold W such that 9W = X and H«(W) = H.(D*). Note that we only require
that Hy (W) = 0, not that 77y (W) = 0.

Example. The following construction of a non-trivial H -cobordism is due to Mazur
[109]. Let us consider the manifold S x D3 with boundary S! x S2. One can think
of S1 x D3 as the result of attaching a 1-handle D' x D3 to D*. Let us pick a knot
inS! x D2 c S x 52 as pictured in Figure 11.10.

Use this knot to attach a 2-handle to S' x D3 with framing 3. We get a smooth
4-manifold W with boundary. Its homology can be easily calculated with the help of
the Mayer—Vietoris sequence for W = (S x D3) Ugip2 (D?x D?), where S! x D?
now refers to a tubular neighborhood of the knot in 3(S! x D3). The key ingredient in
this calculation is that the inclusion induced map H;(S' x D?) — H{(S'x D3)isan
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Figure 11.10

isomorphism, due to the fact that the knot is homologous to S! x {0} € S! x D2. The
final result is that H.(W) = H.(D*), hence W is an H-cobordism. In a situation
like this we will say that the 1- and 2-handles cancel each other in the homology of W,
Moreover, one can show that 71 (W) = 0 so the manifold W is in fact contractible by
the Whitehead Theorem.

The boundary X of W can be described as follows. The manifold S! x S2 can
be thought of as the boundary of D? x S2. Then X is the boundary of the manifold
W' = (D? x S?) Ugi4g2 (D? x D?). The 4-manifolds W and W’ are distinct but
oW = 0W’. The manifold D? x S? can be obtained by gluing a 2-handle to the
4-ball D* along an unknot in $3 = dD* with framing 0 (this manifold was called Eq
in Lecture 2). Thus W’ has the link description as shown in Figure 11.11.

Figure 11.11

~

Shown in Figure 11.12 is a link description for the original manifold W, with the
dot signifying the fact that a 1-handle rather than a 2-handle is attached.

One can use Kirby calculus to show that the homology sphere X shown in Fig-
ure 11.11 is homeomorphic to X (2, 5,7), see Figure 11.13. In particular, 71(X) is
not trivial, hence X is homology cobordant to S3 via a homology cobordism which is
not a product.
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3 X

Figure 11.12

-5 -1 -3 2 -3 -1
’—]—’—' blow down O
-2 twice

slide 2-handle

2%\/\2/5

Figure 11.13

One can modify this construction to get other examples of homology spheres ho-
mology cobordant to zero. The framing 3 can be replaced by any integer p —among
the homology spheres obtained for various p are X (3,4, 5) and (2, 3, 13), see Ak-
bulut and Kirby [1]. The knot we started with can also be replaced by any knot which
passes through the 1-handle algebraically once. If it passes only once geometrically,
we end up with S3, see Proposition 3.3. Finally, one can construct homology cobor-

disms with more that one pair of canceling 1- and 2-handles.
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The set of all homology cobordism classes of oriented integral homology 3-spheres
forms an Abelian group ©3 with the group operation defined by connected sum. Here,
the zero element is the homology cobordism class of S3, and the additive inverse is
obtained by reversing the orientation. We call ®3 the integral homology cobordism

group.
Lemma 11.6. The Rohlin invariant  defines an epimorphism u: ©3 — 7 /2.

Proof. Suppose that a homology sphere X is homology cobordant to zero via a smooth
contractible 4-manifold W. Since the intersection form Qw = @ is even, we can
evaluate the Rohlin invariant as

1
n(X) = 3 sign W = 0 mod 2.

In the case 71 (W) # 0 one needs to generalize Rohlin’s theorem to manifolds which
are not simply-connected but still have Hy(W) = 0. Such a theorem is true, and in
fact, our proof in Lecture 10 goes through with only minor modifications. Thus u is a
homology cobordism invariant. It obviously defines a homomorphism, and it is onto
since u(X(2,3,5)) = 1 mod?2. a

For a few decades, the existence of the epimorphism p had been the only known
fact about the group ®3. It was even conjectured in the 1970°s that u: ©3 — Z/2 is
an isomorphism. In the 1980’s, techniques from gauge theory were utilized to prove
that the group ®3 is infinite.

Example. The Poincaré homology sphere ¥ = (2,3, 5) has infinite order in ®3.
To prove this, recall from Lecture 3 that (2, 3, 5) bounds a smooth compact oriented
4-manifold M with the intersection form Qjs = Eg. Let us consider an m-multiple
of X, the homology sphere m ¥ = X#---#X (m times). It bounds the manifold
X obtained as a boundary connected sum of m copies of M, with the intersection
form Qx = m Eg. Now suppose that there is an integer m > 1 such that m X is
homology cobordant to zero via a homology cobordism W, and form the manifold
X Uy x (=W). This is a smooth closed oriented manifold with the intersection form
m Eg, which is definite and non-diagonalizable over the integers (since it is even).
This contradiction with Donaldson’s theorem (Theorem 5.9) proves the result.

Fukumoto—Furuta [54] and Saveliev [141] used the ji-invariant (11.3) to prove that
any Seifert homology sphere with non-zero Rohlin invariant has infinite order in ®3.
Many examples of Seifert homology spheres that have infinite order in ©3, with both
zero and non-zero Rohlin invariants, were given by Fintushel and Stern [46]. Furuta
[55] proved that the group ®3 is infinitely generated. In fact, he showed that, for
any pair of relatively prime integers p, ¢, the homology 3-spheres X (p, g, pgk — 1),
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k > 1, are linearly independent over the integers in ®3. All of the above results rely
on either Donaldson or Seiberg—Witten gauge theory on orbifolds.

The group ®3 has a distinguished history in the study of manifolds. Its structure is
closely related, for instance, to the following problems.

1. Let 3 be a homotopy 3-sphere, that is, a closed oriented 3-manifold with 71 (X) =
0. The now solved Poincaré conjecture asserts that any homotopy sphere is in fact
homeomorphic to S3. In particular, it answers in positive the following question: is it
true that w(X) = 0 for all homotopy 3-spheres? In fact, this question was answered
positively long before the Poincaré conjecture was solved — this was done by A. Cas-
son in 1985 with the help of his A-invariant. Together with M. Freedman’s work on
topological 4-manifolds, this led to a construction of a topological 4-manifold which
is not homeomorphic to any finite simplicial complex (such manifolds are called sim-
plicially non-triangulable). This construction and the A-invariant will be discussed in
detail below.

2. The following problem is still unsolved: does there exist an element of order two
in ®3 with non-trivial Rohlin invariant? This is Problem 4.4 on Kirby’s list [83]. If
this problem has a positive solution, then a theorem of Galewski and Stern [58] and
Matumoto [108] will imply that all closed topological #-manifolds are simplicially
triangulable if n > 5, see Lecture 18. It is known, see [54] and [141], that no Seifert
homology sphere with non-zero Rohlin invariant, or any homology sphere which is
homology cobordant to it, can have order two in ®3 (the proof uses the ji-invariant).
Incidentally, it is not known if ®3 has any elements of finite order, with any Rohlin
invariant.

3. The following is Problem 4.49 on Kirby’s list [83]. Let X be an integral homology
3-sphere with Rohlin invariant one. Can X be homology cobordant to itself via a
simply connected homology cobordism? Note that 3 x [0, 1] is a homology cobordism
of X to itself which however is not simply connected unless ¥ = S3. Taubes [153]
showed that the answer is negative for ¥ = X(2,3,5); this result was extended
to some other Seifert homology spheres by Fintushel and Stern [45]. The problem
remains unsolved in general.

11.5 Exercises

1. Compute the Rohlin and the j-invariants of (2, 4k — 1,8k — 3) for all inte-
gers k.

2. Let X be the Brieskorn homology sphere X (2,7, 13).
(a) Prove that u(X) = 0.
(b) Use Theorem 5.10 to prove that X is hot homology cobordant to zero.
(c) Prove that X has an infinite order in the homology cobordism group.
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3. Prove that 3 #(—X) is homology cobordant to zero for any homology sphere X.
4. Prove that, for any integer n, the integral homology sphere obtained by (1/n)-

surgery on a slice knot in S 3 is homology cobordant to zero.

Prove that if an oriented 3-manifold M bounds a smooth homology ball then M
is a homology 3-sphere.

Prove that if a homology 3-sphere X can be embedded in R* then (%) = 0.
In particular, the Poincaré homology sphere cannot be embedded in R*.

Let ¥ be the splice of homology spheres ¥, and X, along knots k; and k».
Prove that u(X) = w(Z1) + n(Z2).



Lecture 12
The Casson invariant

Let § be the class of oriented integral homology 3-spheres. A Casson invariant is a
map A: 8 — Z with properties (0)—(2) listed below.

(0) A(S3) =0, and A(8) is not contained in any proper subgroup of Z.
(1) For any homology sphere X and knot & C X, the difference

1 1
A(Z+—-k)—)t(2+—-k), mez.  (121)
m+1 m

is independent of m.

Therefore, the difference (12.1) is an invariant of the knot k C X; it is denoted
by A'(k c X) or simply A/(k). Let k U £ be a link in a homology sphere X with
Ik(k, £) = 0. Then for any integers m, n, the manifold

1

T+ —-k+ ! i

m n

is a homology sphere. Note that the quantity

1 1 1 1
A(z+ K+ -E)—A(2+—-k+ -e)
m+1 n—+1 m n+1

_x(mL.Hl.e)+A(z+i.k+l.e)
m+1 n m n
1 1
:A’(kc2+—-€)—k’(kc2+—-£)
n+1 n

1 1
:)U(ECZ‘+—-k)—)U(ECZ+—-k)
m+1 m

is independent of both m and », and denote it by A" (k, £ C X) or A" (k, £).

(2) M(k,¢ c ) = 0 for any boundary link k U £ in a homology sphere X.

The existence and uniqueness of a Casson invariant are given by the following theo-
rem.

Theorem 12.1 (Casson). There exists a Casson invariant A which is unique up to
sign. Moreover, it has the following properties:
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(3) M (trefoil) = =£1.

(3) V(k C £) = FA] (1) - A/ (trefoil) for any knot k C .

(4) A(—X) = —A(X) where —X stands for X with reversed orientation.
(5) A(Z1# Z2) = A(Z) + A(Z2).

(6) A(X) = u(X) mod?2 where w is the Rohlin invariant.

By a trefoil we mean either a left-handed or a right-handed trefoil; by (3') their
MA’-invariants coincide.

The scheme of the proof is as follows. We first prove that (0), (1), (3), and (3')
imply uniqueness. The next step will be to prove that (0), (1), (3), and (3") imply (4),
(5), and (6), and finally, that (0), (1), and (2) imply (3) and (3’). After that we will
only need to prove the existence of a Casson invariant satisfying (0), (1), and (2).

(0), (1), (3), (3') = uniqueness

Lemma 12.2. Let X be a homology sphere. Then thereis a link ky U --- U k, in §3
such that

@ T=S3+¢e-ki 4+ +en kn,

(b) e = x1foralli =1,...,n,

(c) Ik(ki, k;) =0foralli # j.
Proof. The homology sphere X is a surgery along a framed link £ in S3. The linking
matrix A of £ is unimodular, and one may assume without loss of generality that it
is also odd and indefinite. Then A is diagonalizable over the integers by elementary

transformations on the rows and columns. Since all elementary transformations can
be realized by the second Kirby move, we are finished. |

Now we can prove uniqueness. Let X be a homology sphere, and kq U --- Uk, a
linkin S3asinLemma12.2. LetY; = S3+¢1-k1+---+¢-k; fori =0,1,...,n,
sothat ©o = §3, ¥, = %, and each X; is a homology sphere. Then

A(Z) = MEn) = (A(Zn) — A(Ep-1)) + MEp—1) —A(Zn—2)) +...

+ (A(Z1) — A(Z0)) + A(Z0),
where A(Z¢) = A(S3) = 0. Foranyi = 1,...,n,
AME) —A(Zi—1) =& - A (ki C Zi—1).
Therefore,
n n Py
AME) =Y e Nk C Simp) = (Z =2 A;giczi_](n) A (trefoil),  (12.2)
i=1 i=1

S0 A is unique up to the choice of A’ (trefoil) = =+1.
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0). (D), 3). 3) =4

fX=S34+¢ ki +---+ep-kpthen—X = S3—¢g; kY —--—ep -k, where
the link k7 U--- Uk, is a mirror image of the link ky U - - Uk, see Section 3.4. Note
that —%; = S3 — &1 ki —---— & -k so the result will follow from (12.2) after we
prove that

Agrc—z; (1) = Az, (). (12.3)

We abuse notation here in that we denote by k; both the knot k; c S3 and its image
in £;_1, and similarly for k.

The formula (12.3) can be checked as follows. Itis true fori = 1 by (7.4). Let ¢
be an orientation reversing diffeomorphism of 3 with k! = t(k;). The map  maps
the exterior of the knot k1 C S3 to the exterior of the knot k7 C S3. Therefore, it
extends to a homeomorphism 7;: 1 — —X; satisfying t1(k2) = k5. The proof of
(7.4), after a minor modification, shows that

AszE] (Z) = Ak;c—z] ([)

An obvious induction on i completes the proof.

0). (D), (3). (3) = (5)

Let =, be obtained by the surgery on a framed link £ C S3, and X, by the surgery
on a framed link £, C S3, both links being as in Lemma 12.2. Let £ = £ U £»
be a union of the links £; and £, in S3#S3 = §3. The surgery on & produces
31 # 35, and the formula (12.2) can be applied again to prove that A(X; #X,) =
A(Z1) + A(Z5). The key ingredient here is that the Alexander polynomial of a knot
k in a homology sphere X is the same no matter whether & is considered a knot in X
or a knot in a connected sum T # X',

(0). (D), (3). (3) = (6)

This follows from (12.2) and the surgery formula for the Rohlin invariant, see The-
orem 11.3.

©). (), @)= @) @)

Lemma 12.3. Let k be a knot in a homology sphere X. Then there exists a knot £ in
S3suchthat A'(k € £) = A'(£ € S3) and Agcx(t) = Aycgs(t).

Proof. For the Alexander polynomial part, this is the statement of Lemma 7.14 proved
in Lecture 7. The same proof goes through with A’ in place of A”(r), after one uses
Casson’s property (2) for boundary links. a
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Thus we only need to prove that A'(k € S3) = 3 A7(1) for knots k in S3. Let k
be a knot in S3. By changing crossings in a knot diagram for k, one can make it into
an unknot. Since both A’ and % AJ (1) are zero for an unknot, we only need to check
that both invariants change by the same rule as we change a crossing.

By “change of crossing” we mean the operation on a knot pictured in Figure 12.1,
assuming that the rest of the knot remains unchanged.

X=X

Figure 12.1
This operation can be realized by surgery as follows. Let us orient the knot £ and

consider a disc D with boundary 0D = ¢ as shown in Figure 12.2. The disc D
intersects the knot k in precisely two points.

Vol Vol

Figure 12.2

A (£1)-surgery of S3 along the unknot ¢ yields S3 again, while turning the knot &
into k., see Figure 12.3 for the (+1)-surgery.

VAN AN
SN Q\D K

Figure 12.3
We call this operation a twist across D. Without loss of generality we consider only
the first case in Figure 12.2, so that the change of crossing is obtained by (+1)-surgery
along ¢. We find that

N(ke) = M(k) =Mk C S3+¢) =Nk c S3) = A" (k,c C S%).
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Two twists on a knot k, one across D and the other across D’, are called disjoint
if D N D’ is empty and the pairs of points D N k and D’ N k are unlinked in &, see
Figure 12.4.

1 2 1 2
1 2 2 1
unlinked pairs (1, 1) and (2, 2) linked pairs (1, 1) and (2, 2)
on acircle on acircle
Figure 12.4

Suppose that a twist of the knot k across D’ is disjoint from the twist across D, and
let ¢’ = dD’. We get two new knots, k.- and koer = k¢, the difference A/ (k¢er) —
A (k) being equal to A (k,c € S3 + ¢’). We claim that

Mik,e c 8% =1"(k,c c S*+¢). (12.4)

The formula (12.4) is verified as follows:

Nk,e cS3+c¢)=M(k,c CS?)
=WNccSP+k+c)-NecS*+)—A(ec S +k)—V(ccS?)
=MN(eCSP+k+c)-NecSP+k)—A(ccS>+c)—A(ccS?))
=A(c,c' c834+k)—L"(c.c' C S?).

Since the twists across D and D’ are disjoint, the link (¢, ¢’) is aboundary link in both
S3and S3+k, see Figure 12.5. Therefore, A" (c, ¢’ € S34+k) = A"(c,c’ c §3) =0
by Casson’s property (2), which proves (12.4).

Figure 12.5
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A formula similar to (12.4) holds for the second derivative of the Alexander poly-
nomial. Namely, if the knots &, k., k., and k.., are as above, then

1 1 1 1

EAZF(I)—EAZ(U = EA;C/CC/(I)_EAZC/(I)' (12.5)
This can be checked with the help of Conway’s formula, see Theorem 7.5:

Ak (6) = Ag(t) = (> = 1712) Ay, (0),

Ao (1) = D, (1) = =2 =172 Mg L (1),

Ao (1) = Do, (1) = £ =172 Aoy (1),
where koo is a link of three components (due to the fact that (c, ¢’) is a boundary
link). Therefore, Ay, (1) = 0, see Corollary 7.8. The difference of the left- and the

right-hand sides of the formula (12.5) equals one-half the second derivative at r = 1

of the function /2  .—1/2\2
f6) = 202 —17Y2 010 ().

The function f(¢) is the product of three functions each of which equals O at ¢ = 1,
therefore, /" (1) = 0.

Thus the change in A’ (k) due to a twist across D is the same for all knots obtained
from k by a twist disjoint from the twist across D, and the same is true for % Ay (D).

Figure 12.6

Let us fix k£, ¢, and D. By using twists disjoint from twists across D, one can turn
the link (k, ¢) into a link (k’, ¢) shown in Figure 12.6 (n = 2 in the picture).

Note that &’ is an unknot and that k. = k,, where k, is the knot shown in Fig-
ure 12.7. By (12.4), we have

A'(k,c € S =Nkl =N (K') = N(kn) — N (k') = A (kn).

Now because of (12.5) we only need to compare A’(k,) with % AZ" (1). Let ¢’ be
an unknot as in Figure 12.8, and perform the twist across D’ with dD’ = ¢’. Then
(kn)er = kp41, S0 that

N (knt1) = A'(kn) = A" (kn.c" C S?).
By (12.4) the number A" (k,, ¢’ C S3) is independent of . Hence, for any #,
N (knt1) = A'(kn) = A" (ko. ¢’ € §%) = X (k1) — A (ko) = X' (k1) (12.6)
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Figure 12.7 Figure 12.8

where k1 is a trefoil. Therefore, A’(k) is proportional to A’ (trefoil) for any knot k. By
property (1), A’(trefoil) must be equal to +1 or —1.

On the other hand, (12.6) holds with A" replaced by % A’ (1). Since AZ} (1) =2
for the trefoil k1, we have

1
N(k) = 3 AJ (1) - A'(trefoil)  for any knot k.

This completes the proof of Theorem 12.1 except for the existence part. Existence
will be proved in the next several lectures.

12.1 Exercises

1. Prove that any homology sphere X that admits an orientation-reversing homeo-
morphism has (%) = 0 mod 2.

2. Let X be the splice of homology spheres ¥; and ¥, along knots k; and k.
Prove that A(Z) = A(Z1) + A(22).
3. Prove that the Casson invariant of the homology sphere shown in Figure 12.9

in independent of p € Z. (Hint: apply Casson’s surgery formula to the knot k&
shown in Figure 7.22).

Figure 12.9
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The group SU(2)

The Lie group SU(2) consists of all complex (2 x 2)-matrices A such that AAT = E
and det A = 1. As a manifold, it can be identified with the 3-sphere S3 as follows.
Any matrix A € SU(2) is invertible, therefore, the condition AAT = E can be
rewritten in the form AT = A~L. If

A:(ab) then AT:(Q?) and A_lz( v_b),
uv b —u a

so the condition AT = A~!isequivalentto v = a andu = —b. Thusany 4 € SU(2)
is of the form

<

A= (_Zf Z) witha,bh € C, det4 = |a|*> + |b|* = 1.

This provides the identification
SUQ) = {(a,b) € C? | |a|> + |b|* = 1} = S°.

On the other hand, SU(2) can be identified with the Lie group Sp(1) of unit quater-
nions. Recall that the norm |¢| of a quaternion ¢ = x + yi + zj + wk € H is defined
by the formula |¢|? = x2+y2+2z24+w?, orby |¢|?> = g§ where § = x—yi—zj —wk.
One can easily check that | pg| = | p||¢|. The group Sp(1) consists of all quaternions
g with |g| = 1. Since |x 4 yi +zj + wk|?> = x% + y% + 2% + w?, the group Sp(1) is
topologically a 3-sphere. The identification Sp(1) = SU(2) at the level of Lie groups
is given by the formula

a+bj»—>(_§2). (13.1)

The unit quaternions 1, i, j, k are identified via (13.1) with the following matrices:

10\ . (i 0\ 01 0
== (0h) =) o= (00) #=(00)

Let U(1) = S! be the group of unit complex numbers. Then the identification
(13.1) provides a canonical inclusion U(1) — SU(2) such that

. el o
el(pl—)( 0 e_iw).
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Theorem 13.1. The group U(1) C SU(2) is a maximal commutative subgroup in
SU(2). All other maximal commutative subgroups in SU(2) are of the form C~! .
U(1l) - C where C € SU(2).

This is an easy exercise involving the quaternions. We will sometimes refer to the
elements of U(1) € SU(2) as complex numbers.

The trace of a matrix defines a function tr: SU(2) — [—2,2], A — tr A. Note that
+ E are the only two matrices in SU(2) with trace £2; the rest of the group satisfies
—2<trd<?2.

Theorem 13.2. Two matrices, A and A4’, in SU(2) are conjugate if and only if tr 4 =
trA'.

Proof. The = direction is obvious. Consider a matrix A € SU(2) as a linear operator
on C2. Since C is algebraically closed, A has an eigenspace with eigenvalue A € C.
Choose a unit vector ¥ = (x, y) in this eigenspace, and let

_(x—=y Iy (x
C_(y x)eSU(Z) sothatC(O)_(y)
_ 1 A _ Ao
C 1AC(O)=(O) or C 1AC=(O/3)

for some a, B € C. Since C~'AC € SU(2), we have that

then

A0

ctAc = (0 /-\) with detC~'AC = |A]? = 1.

Thus any matrix A € SU(2) can be conjugated in SU(2) to a matrix of the form

(% o) 132)

whose trace equals 2 cos ¢. The trace uniquely defines e*¢ up to complex conjugation.

Since _ )
e 0\ (0-1 e 0 01
0 ¢¢) \1 0 0 el -10
we are finished. O

In the quaternionic language, this theorem asserts that any unit quaternion is conju-
gate to a complex number e'¢, 0 < ¢ < m. Thus, the conjugacy classes in SU(2) are
in one-to-one correspondence with the sets tr=!(¢) with —2 < ¢ < 2. The equation

o

S

2 ) =c (13.3)
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is equivalent to the equation 2Rea = c. The latter defines a hyperplane in R* = H
whose intersection with SU(2) = S3 ¢ R*istr=!(c). Thustr=!(c) = S?if -2 <
c <2,and tr!(=2) = {—E}, tr_1(2) = {E}. Schematically, the conjugacy classes
in SU(2) can be pictured as the vertical line segments in Figure 13.1, each segment
representing a copy of S2, which intersects the circle U(1) of unit complex numbers
in exactly two points, ¢’ and e~*¢, unless e’ = +1.

ey

u() el
Figure 13.1

At the level of vector spaces, the Lie algebra s11(2) of the group SU(2) can be iden-
tified with the tangent space to SU(2) at 1 = E, so that su(2) = 71 SU(2). To de-
scribe su(2) in terms of matrices, we consider the exponential map exp: 77 SU(2) —
SU(2) given by @ +— e®. Then a € su(2) if and only if exp(a) € SU(2), which is
equivalent to the following:

dete* = e =1 <« tra=0,
—T
(e®) =)' — a+a =o0.

Thus, su(2) is the 3-dimensional vector space of skew-hermitian matrices with zero
trace. All such matrices are of the form

Ot:(“z ,b), acR, beC.
—b —ia

Ifb =u+ivwithu,v € R then

ia u+ivy i0+ 01 " 0i
—u+iv —ia )TN o=i )"\ Z10) T o

corresponds to the quaternion ai 4+ uj + vk. Therefore, s11(2) can be thought of as a
subspace of H consisting of purely imaginary quaternions. The Lie algebra structure
on su(2) is given by the Lie bracket

o, B] = aB — Ba. (13.4)
Theorem 13.3. The exponential map provides a diffeomorphism
exp: B, (0) — SUQ2) \ {-1}

where B, (0) C su(2) is the open ball of radius = centered at the origin.
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Proof. Ase8%8™" = ge®g—1 we only need to show that the map exp: (—im,im) —
ST\ {—1}, i — €'?, is a diffeomorphism, see Figure 13.2. The latter is obvious.

—ig ip

Figure 13.2 O

Remark. The following is a useful formula for evaluating the exponential map. Let
g be a purely imaginary quaternion of unit length, so that Req = 0 and |¢|*> = 1.
Then, for any real number 6,

e?% = cosf + ¢ - sinb.

This can be seen as follows. Since Re ¢ = 0, there exists a unit quaternion u such that
g = uiu~'. Then
96 — puiu'6 _ puGOuT _ 06 =1 — y(cosh +isinf)u! = cos6 +q-sinf.

The tangent space T, SU(2) at g € SU(2) can be identified with the image of s11(2)
under left or right translation by g:

(Lg)x(5u(2)) = T SU(2),  (Rg)«(su(2)) = Tg SU(2)
where Lg(A) = g-Aand Rg(A) = A- g forany A € SU(2).

Example. The space 7; SU(2) consists of the matrices of the form

A ia b\ _ (i O\(ia b\ (-—a ib
l(—é —ia)_(O —i)(—B —ia)_( ib _a)’ aeR, beC.
The group SU(2) acts on itself by conjugation,

A Adg:SU(2) — SUQ2), Ady(B) = ABA™L.

For any A, the derivative d; Adg of Adg : SU(2) — SU(2) at 1 gives an action of
SU(2) on its Lie algebra, called again Ad4,

A Adgsu(2) - su(2), Adg(a) = Adad™L.
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Note that Ad4 is a Lie algebra homomorphism with respect to the bracket (13.4). Thus
we have a homomorphism

Ad: SU(2) — Aut(su(2)), A+ Ady. (13.5)

The derivative of this map at 1 € SU(2) can be computed as follows: choose o €
su(2), then, up to order &2,

Aditea(B) = (1 +ea)B(l —ea) = B + e(af — fa).

Denote by ady :su(2) — s1(2) the linear operator ady (8) = [, 8], then Ad; 4.0 (B) =
(1 + eady)(B) up to order 2. Thus, (d; Ad)(x) = ady.

Theorem 13.4. The map (13.5) is well-defined as a Lie group homomorphism
SU(2) — SO(3). Itis the universal (double) cover of SO(3); in particular, 7; SO(3) =
7]2.

Proof. The map (13.5) is a homomorphism; Ad(AB) = Ad(A)Ad(B) because
Adgp(x) = ABx(AB)™! = A(BxB™1)A™! = Ad4 Adg(x) for any x € su(2).
Since su(2) = R3 as a vector space, one can think of Aut(s11(2)) as a subgroup
of GL3(R). Then the map (13.5) is well-defined as a homomorphism Ad: SU(2) —
GL3(R).

The Euclidean dot-product in R® = s1u(2) can be described by the formula

1
U-v= —3 tr(uv) = —Re(uv)

depending on the realization of su(2) by either matrices or quaternions. One can
easily check that Ady preserves the dot-product:

1
(Adqu) - (Adgv) = -3 tr(Aud=! AvA™1)
! tr(uv)
= —=1r(uv) =u-v.
2

Therefore, Ad(SU(2)) C O(3), the orthogonal group of R3. Since SU(2) is con-
nected, the image of SU(2) should belong to the connected component of the identity
in O(3), that is, to SO(3). The map SU(2) — SO(3) is obviously smooth, hence is a
Lie group homomorphism.

The map SU(2) — SO(3) is surjective. Each matrix from SO(3), thought of as
acting on R3, is a product of rotations about the coordinate axes. Thus to show sur-
jectivity we only need to show that the matrix

1 0 0
Ry =1 0 cosy —siny
0 siny cosy
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of rotation about the x-axis through an angle v belongs to the image of Ad. The
rotations with respect to the other two coordinate axes can be handled similarly. Let

¢ =1vy/2and .
e’ 0
A= ( 0 e_i“’)

Ady(i) = e'®ie™™® =i,
Ady(j) = e'?je ' = e?9j =cosy - j +siny -k,
Ady(k) = e'%ke™% = ¢?Pk = cosy - k —siny - J.

then

Therefore, Ad4 = Ry.

Suppose that Ad(A4) = Ad(B) then AxA~! = BxB~! forall x € su(2), in other
words, B~! 4 commutes with all x € su(2). This is only possible if B~14 = +E,
hence B = +4 and (13.5) is a double cover. Since 71 SU(2) = 1S3 is trivial, this
cover is universal. ]

Algebraically, the homomorphism SU(2) — SO(3) can be described as the quo-
tient map of SU(2) by its center Z/2 = {+E}. Topologically, it is the standard
double cover S3 — R P3 after the identification SO(3) = RP3.

13.1 Exercises

1. Solve the equations A2 = 1, 42 = —1 and A3 = 1 in the group SU(2).

2. Let us view SU(2) as the group of unit quaternions, and denote by U(1) C
SU(2) the subgroup of unit complex numbers. The group H = U(1) U j -
U(1) C SU(2) is called the binary dihedral group. Verify that H is a group, and
find its image in SO(3) under the homomorphism Ad : SU(2) — SO(3).

3. Thegroup Qg = {£1, £i, £, £k} is an order eight subgroup of SU(2) known
as the quaternion group. Find the image of Qg in SO(3) under the homomor-
phism Ad : SU(2) — SO(3).



Lecture 14
Representation spaces

14.1 The topology of representation spaces

Let M be a compact orientable manifold of dimension less than or equal to 3. Since
M is homeomorphic to a finite simplicial complex, its fundamental group admits a
finite presentation,

711M=(t1,...,tn|r1,...,rm). (141)

The space of SU(2)-representations of w1 M is defined as the space R(M) =
Hom(z; M, SU(2)) with the compact open topology, where 71 M has the discrete
topology and SU(2) = S?3 has the topology induced from R*. Remember that the ba-
sis of the compact open topology on R(M ) consists of the sets Ug,y = {f:miM —
SUQ2) | f(K) c V}forall compact K C 71 M and all open V' C SU(2). Note that a
set is compact in the discrete topology if and only if it is finite. Therefore, the topol-
ogy on R(M) can be conveniently described by its sub-base, which consists of all
subsets Ug,y ={f:miM — SU(2) | f(g) € V} of R(M), one for each g € 1M
and each open subset V' C SU(2).

Another way to describe the topology on R(M) is as follows. Consider the space
SU(2)™M of all maps 71 M — SU(2) (not just the homomorphisms). By compar-
ing the sub-bases of topologies, one can show that the compact open topology on
SU(2)™™ coincides with the product topology. Therefore, the topology on R(M)
can be thought of as the topology induced by the inclusion of R(M) into the product
SU@R)™mM,

The space R(M) can be turned into a real algebraic set as follows. Consider a finite
presentation of 71 M as in (14.1). Each SU(2)-representation of 71 M is uniquely
determined by the images of the generators #;, each of which can be viewed as a
vector in R*:

e (i T )~ e <R

Thus we get an inclusion R(M) — R*". All ;! are also represented by vectors in
R4. Any product of generators and their inverses is represented by an SU(2)-matrix
whose entries are polynomials in xi, yr, ux, and vg. Therefore, each relation ry in
the presentation (14.1) of 7y M corresponds to a set of polynomial equations in R*”.
In addition, for each k, we have the equation x? + yZ + u7 + vZ = 1. Thus, one can
think of R(M) as a subset of R*” described by a system of real polynomial equations,
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or as a real algebraic set. In fact, R(M) is a closed subset in SU(2)", in particular,
R(M) is compact.

14.2 Irreducible representations

A representation «: 71 M — SU(2) is called reducible if there is a proper non-zero
C-vector subspace U C C? such that a(g)(U) c U forall g € myM (if sucha U
exists it has to be 1-dimensional). Otherwise, « is called irreducible.

Let « be a reducible representation; then in an appropriate basis,

b
a(g) = (a(f C:’) gemM.

Since a(g) € SU(2), we find that by = 0, cg = dg, and |ag|?> = 1. Therefore, a(g)
is of the form

ez 0
a@)= () e )o gemm

This means that a representation « is reducible if and only if it factors through a copy
of U(1) in SU(2).

The reducible representations of 7y M in SU(2) form a closed subset in R(M).
Therefore, the space R (M) of irreducible representations is an open subset in R(M).
Informally, this means that a small perturbation of an irreducible representation is
again irreducible.

The group SU(2) acts on R(M) by the rule o — gag™!. The stabilizers of this
action can be described as follows.

Among the reducible representations we will distinguish the following three classes:
the trivial representation 6 defined by the formula 6(g) = 1, the central representa-
tions that factor through the center Z/2 = {%1} of SU(2) but are different from 6,
and the other reducible representations, which factor through U(1) but are not central.
If a reducible representation « belongs to one of the first two classes its stabilizer is
the entire group SU(2), otherwise, Stab(a) = U(1).

Lemmal14.1. Let X be a homology sphere, then any reducible representation 71 X —
SU(2) is trivial.

Proof. Any reducible o: 71X — SU(2) factors through a copy of U(1) C SU(2).
Since U(1) is an Abelian group, the entire commutator subgroup [71 X, 71 X of m; 2
ismapped by ¢ to 1 € SU(2). As m1X/[m1 2, m1X] = H; X, we get a factorization
a:m X — Hi X — U(l) — SU(). Since H; X is trivial, « = 6. O

Suppose that « is irreducible, then Stab(a) = Z/2, the center of the group SU(2).
As we see, the action of SU(2) on R(M) is not free. However, the action of SO(3) =
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SU(2)/{=1} is free on the subspace R'™ (M), and we define the representation space
R(M) = R"™(M)/SO(3). The topology on R (M) is the quotient topology. The full
quotient space R(M)/ SO(3) will be denoted y (M) and called the character variety
of M. Its elements are called characters of representations.

14.3 Representations of free groups

Let M be a handlebody of genus ¢ > 1, as described in Lecture 1. Since 71 M is
a free group on g generators, R(M) = SU(2)# as a topological space, and R(M)
inherits a smooth structure from SU(2)&. The subspace R (M) C R(M) is open,
therefore, it is a smooth open (hon-compact without boundary) manifold of dimension
3g. When g = 1, this manifold is empty. The representation space (M) is then a
smooth open manifold of dimension 3g — 3.

14.4 Representations of surface groups

Let F be a closed oriented Riemann surface of genus g > 1, and Fp = F \ int D?
where D2 isadiscin F. Let dFy = y be the oriented boundary of Fy; then we have
a well-defined map

h: R(Fp) — SU(2), h(a) = a(y),

so that R(F) = h~1(1). The group m; Fy is a free group of rank 2g. The standard
basisai.by,....,ag,bg in w1 Fy such that

g g
Y = 1_[ [an,bn] = l_[ anbnazlb;l
n=1 n=1

provides the identification

R(Fo) = SU(2),
o — (A13B17'--’Ag’Bg)’

where 4, = a(a,) and B, = a(b,). The map h: SU(2)%¢ — SU(2) is now given by

the formula
g

(A1.B1.....Ag. Bg) > [ [ [4n. Bal.

n=1

Theorem 14.2 (lgusa [78], Shoda [147]). The map & is surjective. It is regular at
irreducible representations and only at them; in other words, dy 4 is onto if and only
if  is irreducible.
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Corollary 14.3. R(F) is a smooth open manifold of dimension 6g — 6 (empty if
g=1).

Proof of Theorem 14.2. Let R, = €' then h(Ry, j, 1,...,1) = e¥je %=1 =
Ry, If A € SU(2) then A = CR,C ! for some ¢ and C € SU(2). Hence A4 =
h(CR,/2C~1,CjC™1,1,...,1),and h is surjective.

For any representation « = (A1, By, ..., Ag, Bg), we have the following natural
identification of the tangent spaces

TaR(Fo) = T4, SU(Q2) & Tp, SUQR) & --- & Ta, SU(2) & Tz, SU(2).

By applying appropriate left and right translations to each factor of the splitting of
To R(Fp) and to Tj,) SU(2), we can construct the following commutative diagram

dyh
T4, SU2) & Tp, SUQ) & -+ & Ta, SUQR) @ T, SUR) —> Tha SUQ)
gT(LAl)*ea---ea@Bg)* ;T(Rm))*
TySUQ & TiSUQ) & - @ T SUQR) & T SUQ)  —2— T, SUQ)

It suffices to prove that D is surjective if and only if « is irreducible.
Let u, belong to the copy of 77 SU(2) corresponding to 74, SU(2). Then

(La,)«(1 +suy) = Ap(1 + cuy)
and

h(A1,...,An(1 + cup), By, ..., Bg)
= [A1, B1]- -+ [An—1. Bu=1][An (1 + guy), Bul[An+1. But1] - [Ag, Bg]
= Cu—1[An(1 + cuy), B4)C, ' Cy, (14.2)

where Cr = [1%_,[An. Ba]. 0 < k < g, s0that Co = 1 and Cz = h(c). Now,
[An(1 + eun). Bp] = An(1 + eun) By (1 — eun) A, ' By
= [An, Bu] + e(Apun By A, B! — Ay Byun A, B (14.3)

up to order 2. To return from T, SU(2) to 77 SU(2), we multiply (14.2) on the
right by 2 ()~!, and taking into account (14.3), we conclude that

D(0,...,0,u,,0,...,0)
= Cp_1Anun A, Cty — Cu1 An Byun B 4,1 CY
= Xn — Cye1AnBn A, C xn Cuo1 An B A1 CLL
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where x, = Cp—1A4,unA,'C,},. Let v, belong to the copy of 77 SU(2) corre-
sponding to 7', SU(2). Then (L, )«(1 + evy) = By(1 + evp), and

h(A1, ..., An, Bo(1 4 &vy), ..., Bg) = Cp—1[An, Bu(1 + evn)]C;; Cq,  (14.4)
where

[An, Bu(1 + evn)] = AnBn(1 + gvy) A, (1 — ev,) B, !
= [An, Bp] + ¢ (AanUnA,TIBn_ — ApByrA 1)

up to order g2. As before, we obtain

D(0,...,0,u,,0,...,0)
= Cp1AnBpvpy B 1 ATYCY — Cu1 A By A 0y A B AT CY
= yp — Cn—14, B, A, ' B, 1A Y ynCro1 An By An B AICY

where y, = Cy—1A4nByv, B, 4;1C, 1. Therefore, the image of D consists of all
vectors of the form

g g
> (1=Adg)xn + Y (1=Adg,)yn. Xn.yn € T1 SU(2),

n=1 n=1

where F, = Cp—14,B,A;'C7} and G, = Cp—1 A, By A B YA;ICL . One
can easily check that the elements

{cn—lanbnaglcn__lp Cn— lanbna b 10;1 _1 }n 1,..,8>
where ¢ = ]_[ﬁ=1 [an, by, form a basis of the free group w1 Fo, hence a representa-
tion (A1, By,.... Ag, Bg) is reducible if and only if (Fy, Gy, ..., Fg,Gg) is. Thus,
the second statement of the theorem is equivalent to the following claim: a free group
representation (F1, G, ..., Fg, Gg) is irreducible if and only if the map

g g
> (1=Adg,) + Y (1-Adg,)

n=1 n=1

IS surjective.

Let us compute the image of 1 —Adg with F € SU(2). Suppose that F # =+1; then
Adg € SO(3) is a non-trivial rotation through an angle ¢ about an axis Rg. Let us
denote by C ¢ the plane through the origin perpendicularto Rg,sothat Cr @ Rr =
R3. The axis R is fixed by Adg, therefore, im(1 — Adg) = Cp. In the case
F = +1, the operator AdF is the identity, so im(1 — Adg) = 0.
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Recall from the proof of Theorem 13.4 that if F = ¢’V then

1 0 0
Adr = | 0 cos2yr) —sin(2y)
0 sin2y) cos(2y)

Therefore, two operators, Adr and Adg, commute if and only if F and G commute.
Non-trivial operators Adz and Adg commute if and only if their rotation axes coin-
cide, thatisRr = Rg.

With this understood, suppose that a representation « is reducible. Then it factors
through a copy of U(1), which means that all F,, and G,, commute. Hence the oper-
ators Adfr, and Adg, have a common rotation axis R ¢, so that imD = Cr # R3.
If « is irreducible, then there are at least two operators among Adg, and Adg, with
different rotation axes, Rg and Rg. Then im D contains both Cr and Cg, which
together span R3. m]

14.5 Representations for Seifert homology spheres

In this section we describe the representation spaces of the fundamental groups of
Seifert homology spheres following Fintushel-Stern [45]. The fundamental group of

3 = ¥(ai,...,ay) has the following presentation
mE = (X b [x] =1 xgc =% k=1,...0n, x1...x, = 1),
where
ai...ay ib—k =1.
k=1 %
Lemma 14.4. If « is an irreducible representation of 71(X(aq,...,an)) in SU(2)

then a(h) = £1.

Proof. If (k) # =1 then it belongs to only one copy of U(1) in SU(2). Since A
is central, «(2) commutes with a(g) for all g € 71 X. Therefore, all a(g) lie in the
same copy of U(1), and « is reducible. a

Lemma 14.5. If « is an irreducible representation of 71 (X (a1, ...,as)) in SU(2)
then at most n — 3 of the a(xy) are equal to +1.

Proof. Suppose that a(x;) = +1 for k = 3,...,n. Then a(x1)a(x2) = £1 and
a(x1) commutes with a(x,). Hence « is reducible, a contradiction. a

First, we will describe the representation space R(Z(p, g, r)) for a Seifert homol-
ogy sphere with three singular fibers. According to Lemma 14.5, ifa: 71 X(p, g, 1) —
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SU(2) is an irreducible representation, none of the «(xy) is equal to 1. After conju-
gation, one can assume that &:(x;) € C, and the condition «(x1)? = a(h)™?1 = +1
implies that «(x;) is a degree p root of 1 or —1, depending on « (%) and b;. More
precisely, a(x1) = e™1/P where 0 < £; < p and £ is even if «(h)? = 1 and ¢,
is odd if (h)?* = —1. One cannot assume that a(x2) or a(x3) are complex num-
bers, but one can determine their conjugacy classes: a(x,) € S», the conjugacy class
of e™it2/4 where 0 < €, < g ({2 is even iff a(h)?2 = 1), and a(x3) € S, the
conjugacy class of e™1€3/7 ‘where 0 < £3 < r ({3 is even iff a(h)?3 = 1).

Therefore, as soon as we fix (k) = =1, we can associate to each irreducible
representation « a triple (1, €2, £3) with £1,£,,£3 chosen as above. Not all such
triples define a representation because, for some of the choices, the last relation
a(x1)a(xz)a(x3) = 1 may not be satisfied. The product «(x;)a(x2) belongs to
a(x1) - S», the image of S, under a rigid motion of S3 taking 1 to a(x1). The rela-
tion xyx2x3 = 1 can be written in the form x;x, = x5! with a(x3)~! conjugated
to a(x3). Therefore, a triple (€1, €5, £3) defines a representation if and only if the
intersection (a(x1) - S2) N S3 is not empty.

Let us consider the projection of SU(2) to the upper half of the complex circle
given by the formula A > e? @ccosRe(4)  The entire conjugacy class S3 is mapped
to a single point p = e™3/7 while the image of a(x1) - S, is an interval I, see

Figure 14.1.
1 1
)4 P
|
l
—1\ |83 Wa! —1 1

Figure 14.1

The intersection (a(x1)-S2) N S3 is notempty if and only if p € . The ends of the
interval I are the projections of the intersection points of «(x1) - S> with the complex
circle, that is, the images of ™ (¢1/2%£2/9) in the upper half-circle. Thus we have the
following condition on (£, {5, £3):

14 14 14
cac-2-5)
r p q

In case the intersection (a(x1) - S2) N S3 is not empty, it is a circle. Therefore,
together with each representation we have a whole circle of representations. In fact,
all representations on this circle are conjugate to each other. One way to prove this

L1 4>

p q
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is to notice that in our construction one can conjugate everything by a unit com-
plex number, keeping «(x;) complex, but changing «(x;2) and «(x3) within their
respective conjugacy classes. The circle of unit complex numbers gives rise to the
circle (x(x1) - S2) N S3. Another way to prove that all representations on the circle
(a(x1) - S2) N S3 are conjugate would be to check the following technical result by
an explicit calculation.

Lemma 14.6. Let « and § be irreducible representations of 71X (p, ¢, r) in SU(2)
such that

(1) a(h) = (h) and a(x1) = B(x1) € C,
(2) tr(ee(x2)) = tr(B(x2)), and
(3) tr(a(x2)a(x3)) = tr(B(x2)p(x3)).

Then there is a complex number ¢ such that 8 = car ¢~ 1.

Corollary 14.7. The space R(XZ(p, g, r)) is finite.

Example. The fundamental group of (2, 3, 5) has the presentation
(x1,x2,x3,h | [h, xr] = 1, x% =h, x% =hl, xg =h7! x1xx3 = 1).

If (k) = 1 then a(x1)? = 1 which means that «(x;) = 1 and the representation
a is reducible. Let «(h) = —1; then we have the following choices: £; = 1, £, = 1,
and {3 = 1,3. Since 1/5,3/5 € [1/6,5/6], both triples (1,1,1) and (1,1, 3) are
realized as representations. The space R (X (2, 3, 5)) consists of two points.

Example. The fundamental group of X (3, 4, 7) has the presentation
(x1,x2,x3,h | [h, x] =1, x13 = h?, xg =hl, x; =h73, X1x0x3 = 1).

If «(h) = 1 then the choices for (¢, ¢, £3) are (2,2,2), (2,2,4),and (2,2,6). The
interval [1/6,5/6] contains 2/7 and 4/7, but not 6/7. If a(h) = —1 then £; =
2,4, =1or3,and ¢35 = 1,3, 0r 5. The interval [5/12, 11/12] does not contain 1/7,
and the interval [1/12, 7/12] does not contain 5/7. Therefore, the triples coming from
representations are (2,2,2), (2,2,4), (2,1,3), (2,1,5), (2,3,1),and (2,3, 3).

Let us now consider a Seifert homology sphere X(p, ¢, r,s) with four singular
fibers. The group 71X (p, g, r, s) has two types of SU(2)-representations: in the first
type, one of the generators goes to +1, and in the second, the images of all generators
differ from £1. Representations of the first type can be handled as before, so we will
concentrate on representations of the second type.

Let us choose a quadruple (£1,4»,£3,£4) according to the usual rules, and fix
a(xy) = e™0/P et Sy, k = 2,3, 4, be the conjugacy classes of e7it2/4  emits/r
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and e™i4/s respectively. We wish to find a(xg) € Sy such that a(x1)a(x2)e(x3) -
a(x4) = 1. This means that in SU(2) = S3 we must find radii r, r3, and r4 of the
2-spheres a(x1) - Sz, a(x1)a(xz) - S3, and a(xq)a(x2)x(x3) - S4, respectively, which
form a linkage spanning from a(x;) to 1. If such a linkage can be formed, then we
can find a representation with the given (¢1,£»,£3,£4). The connected component
of this representation is the configuration space of the given linkage modulo rotations
leaving the complex circle invariant.

To see the linkage, identify S3 with R3 U{oco} using stereographic projection S3 —
R3. We may assume that the complex circle is mapped onto the z-axis. The 2-
spheres in 3 correspond to 2-spheres in R3 U {oo}, but the concept of linkage is
somewhat changed since spheres of the same radius in S can project to spheres with
different radii in R3 U {oo}. The linkage at hand has three radii, r5, r3, and r4, which
are distorted by stereographic projection, so we denote them by r}, 5, and ry, see
Figure 14.2.

/
)
/ r’
r 3
r/
4
Figure 14.2

Suppose that r; > r} > r} > ry. Then there are exactly two rigid configurations in
the configuration space shown in Figure 14.3.

Figure 14.3

If we fix a generic 5, the configurations (divided out by rotations preserving the z-
axis) form a circle, see Figure 14.4. For different choices of r}, these circles, together
with the two points arising from the rigid configurations, form a 2-sphere.
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/

)

Figure 14.4

Thus we have proved that the representation space R(X(p,q,r,s)) consists of a
finite number of isolated points and a finite number of 2-dimensional spheres.

Example. The fundamental group of X(2, 3, 5, 7) has the presentation
(x1,x2,x3, X4, 1 | [h, xx] = 1, x% =h1, xg’ = h?,
xg = h?, xZ =h"* X1x2X3x4 = 1).
Suppose that a(k) = 1 then a(x;) = 1. In the case a(x;) = 1, we have {1 = 0
and a(x2)a(x3)a(x4) = 1, and we check if a quadruple (0, £5, €3, £4) corresponds to
a representation by checking the condition

6 03] ¢ 6 ¢
2 3<—4<1—‘1—(—2+—3)‘. (14.5)

3 5 7 3 5

We end up with 4 representations (0, 2, 2, 2), (0,2,2,4), (0,2,2,6), and (0,2, 4, 2).
If w(x1) = —1then £; = 2 and a(x2)a(x3)a(xs) = —1, so instead of (14.5), the
= _Zl<l-=<1-

condition ' '
2 3

1-(=+=).

3 5 7 (3 + 5)

should be checked. From this, we get 4 more representations, (2,2, 2,2), (2,2, 2,4),
(2,2,4,4),and (2,2, 4, 6). Similar computations with « (k) = —1 and at least one of
the a(x ) equal to =1 produce the representations (1,0, 2,2), (1,0, 2, 4), (1,0, 2, 6),
(1,0,4,4),(1,2,0,2), (1,2,0,4), (1,2,2,0), and (1,2, 4,0).

Suppose that none of the a(xy) equals +=1. Then a(h) = —1 and we have the
following choices: £; = 1,4, = 2,3 = 2o0r4,and {4 = 2,4, or 6. To determine
if any of them defines a representation, we need to check whether the intersection
(a(x1) - S2) N (x(xq) - S3) is not empty. The property of this intersection being
non-empty does not change if we replace a(x4) - S3 by its conjugate. Therefore, we
may assume that «(x4) € C. The computation then reduces to checking whether
the intervals on the upper half of the complex circle corresponding to a(x1) - S» and

by L3 Ly

(14.6)
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a(x4) - S3 intersect each other. It turns out that in our example all the combinations
of the ¢; can be realized, so we get six two-dimensional spheres in R(Z(p,q,r,s))
(in addition to 16 isolated points we already have).

In general, the components of R(Z(a1,...,a,)) are smooth closed manifolds of
even dimensions not exceeding 2(n — 3), see Fintushel-Stern [45]. For more in-
formation on the representation spaces R(X (a1, ...,a,)) see Bauer—-Okonek [13],
Furuta—Steer [57], Kirk—-Klassen [87] and Saveliev [143].

14.6 Exercises

1. Prove that the SU(2)-character variety y(72) is homeomorphic to the quotient
of the 2-torus 72 = S x S by the action of Z/2 given by 7(z,w) = (Z, W)
(where S! is viewed as the unit circle in the complex plane). This character
variety is commonly referred to as “pillowcase”.

2. Letk C X beaknotinahomology sphere X, and K = X\ int N(k) its exterior.
Then the inclusion map i : dK — K induces a map

i*: x(K) — x(0K)

of SU(2)—character varieties. ldentify y(9K) with the pillowcase x(T?) by
choosing a canonical meridian—longitude pair on dK. Calculate the image of i *
in the pillowcase if k is a trivial knot, and if k is a trefoil knot in S3.

3. Letk C X beaknotinahomology sphere X, and K = X\ int N(k) its exterior.
The character variety y(K) admits an involution t : y(K) — x(K) defined on
representations by the rule

t(@)(g) = (-1)*®a(g) forall g € 71 (K).

where o : 71(K) — H1(K) = Z is the Abelianization homomorphism. Prove
that the fixed point set of = consists of the characters of binary dihedral repre-
sentations, that is, representations with the image in the binary dihedral group
U(l) U j-U() C SU(Q).

4. Let k C X be a knot in a homology sphere X, and K = X \ int N(k) its
exterior. Prove that any irreducible binary dihedral representation « : 71 (K) —
U(l) U j - U(1) sends meridians of k to trace-free matrices, and canonical
longitudes to 1.



Lecture 15
The local properties of representation spaces

Let 7 be a finitely presented discrete group. We wish to analyze the local structure
of Hom(z, SU(2)) and Hom(zr, SU(2))/ SO(3) near a representation a: 7 — SU(2).
To do this one normally finds the tangent space at «. Since the space Hom(zr, SU(2))
is not a smooth manifold in general, we need to use the more general concept of the
Zariski tangent space, see for example Chapter 2 of Shafarevich [146].

Let X C R” be given by a system of equations F; = --- = Fy,, = 0 inthe variables
X1,...,Xn. To find the Zariski tangent space to X ata point x° = (x¥,...,x%) € X
we write x = x% +¢-a witha € R" and ¢ € R, and plug this in each polynomial F;.
We get:

F(x° +¢-a) = Fi(x°) +¢- Li(a) + Gi(ea) = & - Li(a) + Gi(ea),
where G; (¢a) is divisible by 2. The Zariski tangent space to X at x° consists of the
vectors a € R” that satisfy the equations Ly(a) = --- = Ly, (a) = 0.
Example. Consider the cone X  R3 given by the equation
F(x,y,z) = x2 +y2 —z22=0,
and find the tangent space to X at a point (xo, yo, zo) € X. We have:

F(xo + ga, yo + b, zo + ec) = (xo + £a)* + (yo + eb)? — (20 + £c)?
= e(2x0a + 2yob — 2zoc) + €2 - (a? + b* — ¢?),

so that the tangent space at (xo, yo, zo) consists of all the vectors (a, b, ¢) such that
xoa + yob — zoc = 0. At any point of X other than the origin, the Zariski tangent
space is the (usual) tangent space to X at a smooth point. At the origin, the Zariski
tangent space is the entire R3.

We begin by finding the Zariski tangent space to Hom(z,SU(2)) at «. Let us
consider a small perturbation x +— a(x) + en(x) of a where n(x) € T, () SU(2)
for all x € #. By applying right translation, we can write n(x) = &(x)a(x) with
&(x) € T1 SU(2). One can think of £ as a function &: w7 — su(2). In order for & to be
in the Zariski tangent space to Hom(sr, SU(2)) at «, the map x — (1 + e&(x))a(x)
should be a representation up to order &2,

(I + e§(xy)axy) = (1 +ef(x))a(x) - (1+e&(y))a(y).
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After dropping «(xy) and the higher order terms on both sides, this takes the form

§(xy)a(xy) = §(x)a(x)a(y) + a(x)§(y)a(y).

If we multiply this equation on the right by :(xy)~! we will get the so-called cocycle
condition

§(xy) = §(x) + Adg(x) £(1). (15.1)

A map &:r — su(2) satisfying the condition (15.1) is called a 1-cocycle; all 1-
cocycles form a real vector space Z. (s, su(2)). Thus we have proved that

Ty Hom(zr, SUQ2)) = Z, (. su(2)).

Next we turn to the action of SO(3) on Hom(sr, SU(2)) by conjugation. To compute
the tangent space to the orbit of « we need to determine when two 1-cocycles, &; and
&>, are equivalent in the sense that there exists u € su(2) such that

(1 + e&1(x)a(x) = (1 + eu)(1 + eb2(x)a(x)(1 + eu) ™
up to order 2. We get the following condition:

§1(x) = 2(x) = u — Adg(x) u. (15.2)

A 1-cocycle £:m — SU(2) is called a 1-coboundary if there exists u € su(2) such
that £(x) = u — Adgy(x) u for all x € m. The 1-coboundaries form a vector space
Bl(m,su(2)).

The space HJ(m,su(2)) = Zk(7,su(2))/BL(w,su(2)) is called the first coho-
mology group of = with coefficients in the 7-module s1(2) where the action of
is given by the composition Adoa: 7 — SU(2) — Aut(su(2)). The result of our
computations can now be stated as follows:

T, (Hom(z, SU(2))/ SO(3)) = H, (m, su(2)).

Example. Let us consider the case of « = 6, where 6 is the trivial representa-
tion, 6(g) = 1. Let M be a topological space with a finitely presented funda-
mental group. Then Hj} (w1 M,su(2)) = H'(M,su(2)). This can be seen as fol-
lows. The 1-cocycles &:m1 M — su(2) satisfy the cocycle condition £(xy) =
£(x) + Adg(x) £(¥) = §(x) + &(»). Inparticular, £(xy) = £(yx), so the 1-cocycles
are simply the R-linear maps Hy M — su(2). All coboundaries are trivial, therefore,
Hy(m1M,su(2)) = Z,(m1 M, su(2)) = Hom(H{ M, su(2)) = H' (M, su(2)).

Example. Let M be an oriented handlebody of genus g, hence 1 M is a free group
on g generators. As we know from Lecture 14, R(M) = R'™(M)/SO(3) is a
smooth open manifold of dimension 3g — 3. Therefore, the Zariski tangent space
to R(M)/SO(3) at any orbit @ € R(M) is the “honest” tangent space to a smooth
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manifold, so Hj (71 M, su(2)) = R3¢73. On the other hand, H; (71 M, su(2)) =
H'(M,su(2)) = R38. The “wrong dimension” reflects the fact that @ is a singular
point in the quotient R(M)/ SO(3). Still, Hy (11 M. su(2)) = Zj(m1 M, su(2)) is
the tangent space to R(M) at 9.

Example. Let F be a closed oriented Riemann surface of genus g, then HJ (w F,
su(2)) = R® 76 for any irreducible o, and H} (w1 F.su(2)) = H'(F,su(2)) =
ROE.

Example. This example is due to Fintushel-Stern [45]. Let X = X(a1,...,an) bea
Seifert homology sphere and «: 71 X — SU(2) an irreducible representation. Suppose
that a(xg) # £l fork = 1,..., mand a(xy) = £1fork = m +1,...,n. Then
m > 3 according to Lemma 14.5. We will show that H} (71 2, su(2)) = R?™~5,

We first describe the 1-cocycles &: 711X — su(2). Since & is a central element
in 771X we have that £(gh) = &(hg) for all g € m1X. This implies that £(g) +
Ady(g) E(h) = E(h)+&(g) (remember that o (h) = £1) and that Ady(g) £(h) = £(h)
forall g € m1X. Since « is irreducible this means that « (%) = 0. A similar argument
showsthat é(xz) =0fork =m+1,...,n. Ifk =1,...,m, we get

(I+ A+ AR+ + A HE) =0, (15.3)
E(x1) + A1§(x2) + A1428(x3) + -+ A1... Am—18(xm) = 0, (15.4)
where Ay stands for Ady (). Each A, k = 1,...,m, considered as an operator on

su(2) = R3, has an axis R and perpendicular plane of rotation
Cr = im(l — Ag) = ker(l + Ay + A2 + -+ AFT),

To satisfy (15.3) we need to choose &(x;) € Ci fork = 1,...,m. This gives 2m
degrees of freedom in the choice of the cocycle &, but these are still subject to (15.4).
Consider the linear map L: C1 & --- & C,,, — R3 given by

L(z1,....z2m) =z1+ A120 + A1Apz3+ -+ A1 ... App—1Zm.

Since « is irreducible, at least two of the axes, say R; and R,, are distinct. The axis
R; is fixed by A4, so Ry and A1 (Ry) are distinct. Hence their perpendicular planes
Cy and A;(C») span R3. Thus L is surjective and the relation (15.4) eliminates three
of the degrees of freedom in the choice of £&. The space of cocycles has dimension
2m — 3.

The space of coboundaries is spanned by im(1 — Ady(g)). & € mX. Since « is
irreducible, this span is the entire R3. The space of coboundaries is 3-dimensional, so
H}(m 2, s5u(2)) = R2m6,



162 Lecture 15 The local properties of representation spaces

15.1 Exercises

1. Calculate the Zariski tangent spaces Ty, y(T?) to the pillowcase y(7?) at all
a € y(T?).

2. Letk C M beaknotinaclosed oriented 3-manifold M, and K = M \int N(k)
its exterior. The inclusion mapi : 0K — K inducesamapi* : y(K) — x(dK)
and, for every @ € y(K), the linear map of tangent spaces dyi™* : Tox(K) —
Ti+o x(0K). Use Poincaré—Lefschetz duality to prove that the image of the latter
map is always half-dimensional.



Lecture 16
Casson’s invariant for Heegaard splittings

16.1 The intersection product

Let X be a homology sphere, ¥ = My Ur M, a Heegaard splitting, and Fy =
F \ int D2, We have the following commutative diagram of inclusions

i M J1
7 S
FRb — F P
~ 7
iz M, = 72
Choose a basepoint in Fy and apply the 1 functor to obtain a commutative diagram
of groups where all homomorphisms are surjective:

1 M1
/
mFy — mF mE
~ T
1 Mz
After applying the SU(2)-representation functor R, we obtain a commutative diagram
of spaces
if R(Ml) it
R(Fo) ~— R(F) R(%)
i R(M3y) /2
in which R(M1), R(M3) and R(Fy) are actually smooth manifolds. One can easily
check that all the maps in this diagram are injective.

Lemma 16.1. The intersection R(M1) N R(M>) in R(Fp) is transversal at the trivial
representation 6.

Proof. Transversality of the intersection R(M;) N R(M>,) at 6 is equivalent to
the assertion that i Tg R(M1) + iy Ty R(M2) = Ty R(Fp). With the identification
ToR(My) = H'(My,su(2)) for k = 1,2, and TyR(Fy) = H'(Fy,su(2)) =
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H'(F,su(2)), the space i} Ty R(My) + iy Ty R(M>) is the image of the map
it +iy: HY (M, su(2)) ® H' (M5, su(2)) — H'(F,su(2)) (16.1)
which can be included in the Mayer-Vietoris sequence
o> HY(Z,su(2)) > HY (M1, su(2)) @ H (M, su(2))
— HY(F,su(2)) > H*(Z,su(2)) — ---
Since X is a homology sphere the map (16.1) is an isomorphism. a

By restricting ourselves to irreducible representations, we get the commutative di-
agram of inclusions

i= _ R™(M1) i
RI"(Fg) ~— R™(F) RI"(3)
iy  R"(Mp) )
All spaces in this diagram except possibly for R'"(X) are smooth open manifolds.
Lemma 16.2. The intersection of R" (M) and R (M) in R'™(F) is compact.

Proof. We see from the diagram above that R™ (M)NR"™(M,) = R™(Z) = R(X)\
{0} since X is a homology sphere, see Lemma 14.1. The space R(X) is compact, and,
by Lemma 16.1, the point # € R(X) is isolated. Therefore, R (X) is compact. O

By taking the SO(3)-quotient of the representation spaces in the last commutative
diagram, we get the commutative diagram of inclusions,

ir _ R(M)_
/ \
R(Fy) ~— R(F) R(X)

iy R(M3y) )2
Again, all spaces in this diagram are smooth open manifolds, with the possible excep-
tion of R(X).
Corollary 16.3. The intersection of R(M;) N R(M>) = R(X) in R(F) is compact.

Both R(M7) and R (M) are submanifolds of R(F) but they are not necessarily
transversal to each other. Choose any isotopy of R (F') with compact support that car-
ries R(M») to R(M,) where R(M5) is transversal to R(M7). Since dim R(M;) =
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dim R(M») = 3g —3 and dim R(F) = 6g — 6, the intersection R(M1) N R(M>) is
a finite number of points. Given orientations on R(M7) and R(M>) (see below), we
have an induced orientation on R (M>), so we can define the algebraic intersection of
R(My) and R(M>) as the sum

HRMDNRM) = Y e (16.2)
a€R(M)NR(M2)

where &4 equals +1 depending on whether the orientations of the spaces 7o, R(M1) @
TaR(M>) and T, R(F) agree. By a standard homological argument, the number
(16.2) is well-defined.

Definition. Given a genus g Heegaard splitting ¥ = M; Ur M, of a homology
sphere X, its Casson invariant is

AME, My, M) = %#(!R(Ml) N R(Ma)). (16.3)

It is not immediately clear from this definition that A(X, My, M5) is always an
integer; this will be proved in Lecture 17, see Corollary 17.6.

Theorem 16.4. Let ¥ = M; Ur M5, be a Heegaard splitting of a homology sphere
3. Then the intersection R(M1) N R(M3) in R(F) is transversal at « € R(X) if
and only if H} (712, su(2)) = 0.

Proof. The group H} (712, su(2)) can be included in the following Mayer—Vietoris
exact sequence in group cohomology, see Brown [25], page 51:

0 — Hj(mXZ,su(2)
iXix
— HM My, 5u(2)) @ HL (71 My, 5u(2)) —> H} (7, F,51(2)) — ---

We abuse notation here and use the same symbol « to denote the induced represen-
tations of 71 M, w1 M>, and 7r1 F. The intersection in question is transversal at « if
and only if the map i + i is surjective. Since « is irreducible, H} (1 Mg, su(2)) =
R3873 k = 1,2, and HJ (1 F,su(2)) = R%~6. Therefore, the map iy + iJ is
surjective if and only if H] (712, su(2)) = 0. |

Example. If & = X(p,q,r) then H} (71 2, su(2)) = 0 for any irreducible «, see
Lecture 15, so we get the transversality.
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16.2 The orientations

Let F be a closed oriented surface of genus g, and consider the intersection form
[:HY(F;R)x H'(F;R) > R, I(a,b) = {(a — b,[F]),

compare with (7.5). This form is unimodular, i.e. det / = =1, by Poincaré duality on
the surface F. In fact, Lemma 7.6 implies that det / = 1, and det 7 is not affected by
a different choice of orientation on F.

The basis we constructed in Lemma 7.6 is called a symplectic basis in H(F;R).
Any two symplectic bases are related by a transition matrix C such that

clJjc =1J. (16.4)
Since det J = 1, the equation (16.4) implies that (detC)? = 1, and detC = =+1.

Lemma 16.5. Let C be a matrix suchthat CTJC = J, thendetC = 1.

Proof. Let A = (a;;) be a 2g x 2g skew-symmetric matrix. Its Pfaffian Pf(A) is
defined by the formula

PR(A) = ) e(0) aiy jy +++ iy j,

(o2

where the summation is over all possible partitions o of the set {1,2,...,2¢g —1,2g}
into disjoint pairs {i,, j, }, where one supposes thati, < j,, a = 1,..., g, and where
¢(o) is the sign of the permutation

o—(l 2 - 2g—1 Zg)
it g g Je )
The Pfaffian has the properties that (Pf(4))2 = det A and Pf(C T AC) = det C -Pf(A)

for any matrix C of order 2g. One can apply the latter formula to (16.4) to get Pf(J) =
det C - Pf(J). Since Pf(J) = 1, we are finished. ]

Corollary 16.6. The vector space H!(F;R) = R?&, where g is the genus of F, has
a canonical orientation defined by a symplectic basis. This orientation changes by a
factor of (—1)& if the orientation of F is reversed.

Let X = M; Ur M, be a Heegaard splitting of genus g of a homology sphere X.
The inclusions iy: F — My, k = 1,2, induce homomorphisms i,j:Hl(Mk;R) —
H'(F;R). The Mayer-Vietoris exact sequence

.. > HY(Z:R)
if+iy

— HY(M;R) ® H'(M»;R) —= HY(F;R) > H*(Z;R) — ---
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with H1(Z;R) = H?(Z;R) = 0 implies that i H'(M1;R) + iy H'(M2;R) =
HY(F;R). Therefore, H!(M;;R) and H!(M,;R) can be thought of as direct sum-
mands of dimension g in the space H'(F;R) = R2?&. Since H!(F;R) is canoni-
cally oriented, an orientation of H !(My;R) defines an orientation of H1(M,;R) by
requiring that i 4+ 5 be orientation preserving.

Example. Consider the standard genus two Heegaard splitting of the 3-dimensional
sphere, S3 = M| Ur M5, see Figure 16.1, with M being the inner handlebody. The
above-described orientation of the cohomology group H ! (F;R) is given by the basis
{a1, B1, a2, B2) consisting of the Poincaré duals of ay, b1, a2, b2 € H{(F;R) shown
in Figure 7.14. If one orients H ! (M;;R) by the basis (o, a2) then H1(My; R) will
be oriented by (82, B1)-

by

by
A f
U (A

Figure 16.1

Let Fy = F \ int D2. The orientation of F orients the boundary circle, y, of Fy.
Choose an orientation on SU(2); this fixes, in particular, an orientation on su(2) =
71 SU(2).

A choice of basis (consistent with the orientation) for H(F;R) identifies the
representation space Hom(rr1(Fp), SU(2)) with SU(2)28. The map h:SU(2)%8 —
SU(2) defined by the formula o — «a(y) together with the orientation of SU(2) ori-
ents the nonsingular part of 2=1(1), and also R(F) c h~'(1)/SO(3) by the rule
that the identification su(2) & TR(F) = TR(Fy) is orientation preserving. This
orientation of R(F) is independent of the initial choice of orientation of SU(2), but
it does depend on the orientation of F via the sign of the intersection form / and
the orientation of y. Change the orientation of F, and the orientation of R(F) will
change by a factor of (—1)8+1,

A choice of basis (consistent with the orientation) for H!(M;;R) identifies the
space Hom(mq(My), SU(2)) with SU(2)8. The orientation of SU(2) orients this
space, and thus R(M;) C SU(2)%/SO(3). If g is even, the choice of SU(2) ori-
entation affects the orientation of R(M;). Obviously, the orientation of H!(Mi;R)
affects the orientation of R(M;). The orientations of H'(M;;RR) and SU(2) also
orient R(M>).
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The orientations of both R(M;) and R(M,) change when the orientation of
H'(My;R) is changed; and, in the g even case, when the orientation of SU(2) is
changed. In both cases, the orientation of T, R(M1) & ToR(M>) at a point of in-
tersection « is insensitive to these choices. However, changing the orientation of F
changes the orientation of 7, R(M;) & Ty R(M>) by a factor of (—1)&. Therefore,
changing the orientation of F' changes the sign of A.

The handlebody M, played a special role above. Switching the roles of M; and
M, in the definition of the orientations on H'(M1;R) and H'(M,;R) changes the
orientation of T R(M1) @ ToR(M>) by (—1)&. In addition, the orientation of
ToR(M3) & TyR(M,) differs from that of T, R(M;) & Ty R(M>) by (—1)8+1
since dim R(M;) = dim R(M,) = 3g — 3. Therefore, switching roles of M; and
M, changes the sign of A.

Thus, the sign ey in (16.2) is well-defined given the orientation of F and the spec-
ification of which handlebody to call M;. Changing both choices leaves A invariant
so it is only the induced orientation of X which must be specified to avoid ambigu-
ity (deciding which handlebody to call M; specifies the normal vector to F - this,
together with an orientation of F, orients X).

16.3 Independence of Heegaard splitting

Thus, we have defined an invariant A(X, My, M;) of a Heegaard splitting ¥ = M{Ug
M, of a homology sphere X. Next, we will show that A(X, My, M>) only depends on
> and not on the choice of Heegaard splitting. We will denote this number by A(X)
and call it the Casson invariant of X.

Itis obvious that A(X, M1, M>) is the same for equivalent Heegaard splittings. Ac-
cording to Theorem 1.2 of Lecture 1, any two Heegaard splittings of ¥ are stably
equivalent, hence, it suffices to show that A(X, M1, M>) is invariant under stabiliza-
tion.

Let ¥ = M| Ups M} be a Heegaard splitting obtained from ¥ = M; Ur M
by the addition of an unknotted handle, see Figure 16.2. Then we have the following
identifications: 7wy M| = Z % mi My, and m; M} = Z x w1 M>, where the factors Z
are generated by the loops ag and by, respectively, see Figure 16.2.

ao
2%
(L
> >

Figure 16.2
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Let Fj = F'\int D? be the surface F’ with an open disc removed, then 71 F/ =
7 * 7. % 71 Fy, with the group Z * Z freely generated by ag and bg. Therefore, we get
the following identifications of the representation spaces:

R(M]) =SU(2) x R(My), k=1,2,  R(F}) =SU(2) x SU(2) x R(F).
The induced inclusions are of the form
SU(2) x R(M;) — SU2) x SUQ2) x R(Fp), (A,a) > (A4,1,a),
SU(2) x R(M3) — SU(2) x SU(2) x R(Fy), (B,a)+— (1, B,a),

and these maps factor through R(F"). Inside R(F;) and R(F"') we have the following
identifications

R(M{)N R(M}) = (SU(2) x 1 x R(M7)) N (1 x SU(2) x R(M>))
=1x1x(R(M;)NR(M3)) =1x1x R(2),

see Figure 16.3 where the box represents the product R(Fj) = SU(2) x SU(2) x
R(Fo).

|
|

SUQ2)
|
|

SU(2) ATt~ R(KY)
e R(M>)
-7 R(My)
Figure 16.3

Since R(X) = R"(Z) U {6}, we see that
R™(M{) N R™(Mz) = 1x 1 x (R™(M)) N R"™(My)),
and the same holds after factoring out by the SO(3)-action,
R(M{) N R(M3) =1x1x(R(M1) N R(M2)).

The manifolds R(M}) and R(M>) may need to be perturbed into J/i(Mé) and
R(M>) respectively so that the intersections R(M7) N R(M,) and R(M1) N R(M>)
are transversal. We claim without proof that the perturbations can be chosen so that

RM]) N R(M) =1 x1x (R(My) N R(My)), (16.5)
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see Akbulut-McCarthy [2], pages 70-78. After that, the invariants A (X, My, M>) and
A(X, M{, M) are given by the formulas

(_1)g+1

AME, M{, My) = 5

—1)8
> &, and A(E,Ml,M2)=( 21) > ea,
o

o

where both summations go over the same finite set of points (16.5). Thus to finish the
proof it suffices to check that &/, = —¢4.

For the sake of simplicity, we will assume that the intersections R(M{) N R(M})
and R(M7) N R(M>) are transversal. All cohomology will have real coefficients.

The space H'(F') = R @ R @ H!(F) is oriented by the choice of sym-
plectic basis Poincaré dual to (ag.bo.a1,b1....,ag,bg) wWhere the Poincaré dual
of (a1,b1,...,ag,bg) is a symplectic basis in H!(F), and the cycles ao and b
are pictured in Figure 16.2. This choice orients R(F;) so that the identification
TR(F}§) = su(2) & su(2) & TR(Fo) given by the choice of ag and by is orientation
preserving. To orient R"(F’), we consider the map

g
W R(F§) = SUQ), (Ao Bo. A1..... Bg) > [ ] [Ak. Bi]
k=0

with R(F’) = (#)~'(1), and orient R"™(F’) by the rule that the identification
im(dh’) @ ker(dh') = TR(Fy) is orientation preserving at any irreducible repre-
sentation, where ker(dh’) = TR(F’) and im(dh’) = su(2). At any irreducible
representation in R(F’) of the form (1,1, «) we have di/ = 0 & 0 @ dh. Here
h: R(Fp) — SU(2) is the map that provides orientation for R(F) at an irreducible
representation by the rule that su(2) & TR(F) = TR(Fy) is orientation preserv-
ing. Since kerdh’ = su(2) @ su(2) @ kerdh we conclude that the orientation of
TR(F') coincides with the direct sum orientation of su(2) @ su(2) @ TR(F). The
same is true for the SO(3)-quotients, that is, 7R (F’) is oriented as the direct sum
su(2) @ su(2) ® TR(F).

Choose an orientation on H'(M,) and orient H'(M>) so that the identification
HY'(My) ® H'(M,) = H'(F) is orientation preserving. Choose the product ori-
entation on H'(M]) = R @ H'(M;), and orient H'(M;) so that the orientation
on HY(F') = HY(M]) & H'(M}) is canonical. This orientation of H1(M}) dif-
fers from the product orientation H!(M}) = R & H'(M,) by (—1)&. This is true
because the space R @ H'(M,) @ R @ H' (M), with the product orientations of
the factors, gives the canonical orientation on H'(F') = R@® R @ HY(F) =
R®R@ H ' (M,)® H' (M) only after we pull the second R-factor through H ! (M),
while dim H'(M,) = g.

Keeping in mind the factor (—1)%, we orient H'(M}) as a product, and com-
pare the orientations of the space To R(M/{) ® To R(M)) = su(2) ® To R(M1) @
s1(2) ® ToR(M>), which has the (—1)8~! times the orientation of su(2) @ su(2) ®
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Ty R(My) & ToR(My), with the orientation of T R(F') = su(2) @ su2) &
Ty R(F). The orientations of T, R(M1) & ToR(M2) and Ty R(F) differ by &g,
therefore, &), = (=1)8 (=1)8"leg = —e&q.

16.4 Exercises

1. Verify the properties of the Pfaffian stated without proof in the proof of Lem-
ma 16.5.

2. Given homology spheres X and X, calculate R (X # X») in terms of R(Xy)
and R(X,). Use this calculation to give another proof that A(X; #3,) =
A(Z1) + A(Z3). Assume for the sake of simplicity that the Zariski tangent
spaces of R(X1) and R(X,) all vanish.

3. Given a homology sphere X, verify that A(—X) = —A(X) directly from the
definition (16.3). Assume for the sake of simplicity that the Zariski tangent
spaces of R(X) all vanish.



Lecture 17
Casson’s invariant for knots

17.1 Preferred Heegaard splittings

Let k£ be a knot in a homology sphere X. In the following two lemmas, we construct
Heegaard splittings of X compatible with surgery along k.

Lemma 17.1. There exists a Heegaard splitting ¥ = M; Ur M, such that k is a
separating curve on F.

Proof. Choose a Seifert surface F’ for k. Thicken F’ to get a handlebody F’x[0, 1] C
3. Let K be the closure of the complement of F’ x [0, 1] in X. This is a compact
3-manifold, not necessarily a handlebody. Its boundary is 0K = 9(F’ x [0,1]) =
F’'x{0} U (aF’ x[0,1]) U F’ x {1}, a closed surface of genus twice the genus of F”’.
The knot k is embedded in the surface 9K as dF’ x {1/2} C dF’ x [0, 1] and separates
it. Consider a triangulation of K and drill tunnels along its 1-skeleton, adding the
corresponding 1-handles to F’ x [0, 1]. One can assume that the tunnels start and end
away from the knot k. An argument similar to the one in the proof of Theorem 1.1
of Lecture 1 shows that this procedure produces a Heegaard splitting. It may happen
however that the knot & no longer separates the surface because we attached some
1-handles starting on one side of the knot £ and ending on the other. The situation can
be easily fixed by sliding the attaching discs of such 1-handles to F’ x {0}. a

Lemma 17.2. There exists a Heegaard splitting ¥ = M; Ur M, such that M; =
F’ x[0,1] and k = 0F’ x {1/2} is a separating curve on F = 9(F’ x [0, 1]).

Proof. Repeat the proof of Lemma 17.1 to construct a Heegaard splitting with all the
additional 1-handles attached to F’ x {0}. Then drill from F’ x {1} to F’ x {0} and

through the cores of those 1-handles, see Figure 17.1. m]
l/ l// \\,\‘
(I (I
(I (I
L ! ‘ F' x {0}
L1y
L U | F'x {1}

Figure 17.1
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The following lemma provides a preferred Heegaard splitting for a boundary link,
and it will be used later in this lecture to prove property (2) of the Casson invariant,
see Lecture 12.

Lemma17.3. Let k UZ be a boundary link in a homology sphere X. Then there exists
a Heegaard splitting ¥ = M, Ur M, suchthat My, = F’ x [0,1], £ = 0F' x {1/2},
and k is a separating curve in F’ x {0}.

Proof. Let F; and F, be disjoint Seifert surfaces for k and £. Thicken F; to F; <0, 1]
so that F, x [0, 1] is still disjoint from F. Let F; be the boundary of F x [0, 1] and
form the connected sum of Fj and F, by tubing them together. By choosing the
tubing away from k and ¢, we obtain a surface F” with the properties that £ = dF”
and k is a separating curve in F”. The rest of the proof continues along the lines of
the proofs of Lemmas 17.1 and 17.2. ]

17.2 The Casson invariant for knots

Let k be a knot in a homology sphere X, and let ¥ = M; Ur M, be a Heegaard
splitting of genus g such that k C F separates F as F = F' Uy F”, see Lemma 17.1.
Denote by 7 a Dehn twist of F along k. For any n, a Heegaard splitting of the
homology sphere

1
S+ -k
n

can be obtained from the splitting ¥ = M; Ur M, by composing the gluing map
with ¢”. Introduce the notation R; = R(M;) and R, = R(M;). By functoriality,
the map t induces the diffeomorphism t*: R(F) — R(F) which maps R, C R(F)
to T* R, C R(F), and

w41 k) = S b @ = S wmin e,
Therefore,
A(E—F;-k)—k(ﬁl—kl-k)

n+1 n
(=1® wyn+1 *\1

= [HR 0 (@) Ry) — (RN () R2) ]

- % [HRN @I R) —#ER O ()T Ry) ]

(=%

= — 5 #[@ R~ R) N ()R]
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We wish to study the difference t*R; — R and to show that the number #((t*R1 —
R1) N ()" TLR,), and hence

1 1
)V(k):/l(2+—-k)—)t(2+—-k),
n—+1 n
are independent of n. This will prove property (1) of the Casson invariant, see Lec-
ture 12.

First of all, we will describe the action of t* on R(F) = R"(F)/SO(3). The
space R(F) = Hom(m; F, SU(2)) can be identified as

R(F) = {(.a") | &'(k) = " (k)} C R(F') x R(F").

Suppose that the base point of F belongs to F’. Then the action of 7. on 71 (F) is
trivial on the loops in 71 F’, and is given by the formula r.x = k~!xk on the loops
in 1 (F"), see Figure 17.2. The map t*: R(F) — R(F) is then given by the formula

r*(o/,ot") — ((X/,O[,(k)_l '(X” -O/(k)),
which in turn gives rise to the map t*: R(F) — R(F).

k
a
\J

F//

F/
Figure 17.2

As our next step, we define
R_(F)={a:m F — SUQ) | a(k) = —1} C R(F).

All representations in R_(F) are irreducible: if a:7; F — SU(2) is reducible it
factors through H; F, and since k is a separating curve on F, we have 0 = [k] €
HF,s0a(k) = 1. One can think of R_(F) as the product

R_(F)={,d")|d (k) =1, a"(k) = -1} = R_(F') x R_(F"),

where R_(F’) = (W')"'(—=1) and R_(F") = (h"")~1(—1) for the maps h’: R(F’) —
SUQ2) and »”: R(F"") — SU(2) given by /' (a’) = o’ (k) and 1" (a”) = o’ (k). Since
—1 € SU(2) is a regular value for both 4" and 4" (see Theorem 14.2), R_(F) =
R_(F)/ SO(3) gets the structure of a smooth closed manifold of dimension 6g — 9.
The embedding R_(F) C R'(F) is SO(3)-equivariant, therefore, we get an induced
embedding R_(F) C R(F).

The map * : R(F) — R(F) restricts to R_(F) as the map t*(a’,a”) =
(o, o' (k)~L-a” o' (k)) = (o, ). Therefore, id = t*: R_(F) — R_(F).
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Lemma 17.4. There exists a canonical isotopy
Hy: R(F)\R_(F) > R(F)\ R_(F), te]01],

such that Hy = id and H; = t*. In particular, H, isotopes R to t*R; in the
complement of R_(F).

Proof. We showed in Theorem 13.3 that the exponential map exp: s1(2) — SU(2),
o — e%, is a diffeomorphism on the ball of radius & about 0,

exp: By (0) = SU(2) \ {—1}.

In particular, the natural contraction B, (0) x [0, 1] — B (0), (X,t) — t - X, expo-
nentiates to a natural contraction of SU(2) \ {—1},

(SUQ2)\ {=1}) x[0,1] = SUQ) \ {—1}, (4,1) > A"

These contractions are equivariant with respect to the action of SO(3). We define an
isotopy H;: R(F) \ R—(F) — R(F)\ R_(F) by the formula

H ' o) =, @ E)"H oo (k). (17.1)

This formula makes sense because «’(k) # —1 for (¢’,a”) € R(F)\ R_(F).
One can check that the isotopy defined by (17.1) induces a well-defined isotopy
Hy: R(F)\ R_(F) — R(F)\ R_(F). |

Figure17.3, essentially borrowed from Akbulut-McCarthy [2], schematically shows
the space R(F). Shaded is the trace of the isotopy H;. Note that the isotopy H; does
not extend over R_(F), and that it keeps the reducible representations fixed.

The intersection R(M7) N (t*)" 1 R(M5) is transversal at the trivial representation
0 in R(Fy) because Z+ﬁ-k is a homology sphere, see Lemma 16.1. By computing
the differential of H,, one can show that H;(R(M1)), 0 <t < 1,istangentto R(M;)
at 9, see Akbulut-McCarthy [2], page 92. Hence one can cut out an open SO(3)-
equivariant neighborhood U, of 8 from R(M;) without changing the intersection
H(R1 x 1) N (t*)"TIR, in R(F).

The only reducible representation in the intersection of R(M;) and (t*)" 1 R(M>)
is 6 because ¥ + ﬁ -k is a homology sphere, see Lemma 14.1. Therefore, one can
find an SO(3)-equivariant open neighborhood V;, of the reducible non-trivial repre-
sentations in R(M) disjoint from (¢*)* 1 R(M>).

Let W, = U, U V. We may assume that R"(M;) \ W, is a smooth compact
manifold with boundary, and denote its SO(3)-quotient by R} C R;. The cycle

§ =R — HOR| x I) — R
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reducibles

Figure 17.3

is compact, and
#((T*R1 — R) N ()" R2) = #(8' N (%) Ry).

We may in addition assume that W, is disjoint from R_(F). Let N be a compact
manifold neighborhood of R; N R_(F) in R; contained completely in R/. Let
R = R} \ int(N). We choose N so that R is a smooth manifold. Let

B=1"R{—HOR] xI)— RY.

Since B is a compact boundary in R(F), we have that #(8 N (t*)"t1R,) = 0.
Finally, we define the difference cycle § = §' — 8. Clearly,

#((T* Ry — R1) N ()" TRy = #6 N ()" T R2) = #((*)""TVS N Ry).

The homology class of § is independent of the choice of A, and also independent of #,
because 6 belongs to a tubular neighborhood of R_(F') and can be collapsed to a cycle
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in R_(F), see Section 17.3 below. The action of t* on R_(F) is trivial, therefore,
(z*)~(*+D§ = §, and the number #((t*R1 — R1) N (t*)"T1R,) is independent of
n. Thus, the knot invariant A’(k) is well-defined, and we have proved property (1) of
the invariant A, see Lecture 12.

17.3 The difference cycle

Let X = M, Ug M, be a Heegaard splitting as in Lemma 17.2 with M; = F'x [0, 1]
and F = d(F' x [0,1]) = F’ U, F'. Lettr:SU(2) — [—2,2] be the trace function
on the Lie group SU(2), and define the argument function arg: SU(2) — [0, r] by the
formula arg(A) = arccos(tr(4)/2). Then the manifolds R, R_(F), and the tubular
e-neighborhood N, of R_(F), for ¢ > 0 small enough, can be identified as follows:

R1 ={(.) |« € R"(F")}/SO(3),
R_(F)={@,a") |, a" € R(F'), arga’(k) = arga” (k) = 7}/ SO(3), and
Ne = {(c,a") | o' 0" € R(F'), o' (k) = o (k),m —e < arga’(k)}/ SO(3).

The cycle 6 is homologous to the cycle §y constructed as follows. Let

8e = (J Hi(R1 N 0Ne)
t

= U{(a/,o/(k)_t o' -a(k)) | arga’(k) = m — e}/ SO(3)
t

={(¢',g7" -’ -g) | g €SUQ)*, arga (k) = 7 — &}/ SO(3),

where SU(2)? consists of all g € SU(2) with 0 < arg g < 7 —¢ (shown schematically
as the shaded portion of the sphere in Figure 17.4).

Figure 17.4

The cycle &g is the limit of 5, as ¢ — 0. Since the limiting value of SU(2) as & — 0
is the entire group SU(2), we see that

So ={(¢'.g7"-a' - g) | g € SUQ), & (k) = —1}/SO(3).
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The cycle §q has the following interpretation. The product action of SO(3) x SO(3)
on R_(F’) x R_(F’) defines the projection p: R_(F’) x R_(F') - R_(F') x
R_(F") onto the quotient, with the fiber SO(3) x SO(3). The map p factors through
R_(F) = R_(F') x R_(F’")/SO(3) (where the action of SO(3) is diagonal) to
define the projection p: R_(F) — R_(F’) x R_(F’) with the fiber SO(3). Let
A C R_(F") x R_(F’) be the diagonal, then

p N A) = {(d, &) | & = Adg o' for some g € SU(2)
and o/ (k) = o' (k) = —1}/ SO(3).

Since SU(2) is a regular double cover of SO(3), see Theorem 13.4, we conclude that
8o = 2- p~1(A). Thus, we have proved the following theorem.

Theorem 17.5. Let k be a knot in a homology sphere . Then
N (k) = (=DF #(p~H (D) N Ra).

Corollary 17.6. A(X) € Z for any homology sphere X.

17.4 The Casson invariant for boundary links

Let £ U £ be a boundary link in a homology sphere X. Choose a preferred Heegaard
splitting ¥ = M; Up M5 asin Lemma 17.3 so that M; = F’ x [0, 1] where F' is a
Seifert surface of ¢, and k is a separating curve in F’. Let ;. and t; be Dehn twists
along k and ¢, and & and hy their inverses. Note that the Dehn twists along k and ¢
commute. Then

N ) = A(E 4k +0) —AE+ k) —AE + ) + A(D)

—1)&
_ 2) JHRL N R2) — (R N R2) —#H(R1 N 1) R2) + #(R1 N R2)|
Y
_ 2) [#BERE R O R2) — #(hF Ry N Ra) — #(hFR1 N R2) + #H(R1 N R2)]
(=1)*

= [FOEGE Ry = R1) 0 Ra) = (0 Ry = Ra) N Ra)]

Replace 7, R; — R by the difference cycle é;. Since 7,3, = 8¢ we have h;§; = &,
S0 Ry — hy R can be replaced by ;. Thus

" (_l)g *
N(k, ) = == - #((h:5¢ = 80) N Ra).

We wish to prove that 78, — §; = 0 so that the property (2) of Casson invariant,
which states that A”(k, £) = 0 for all boundary links k£ U £, holds.
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We will slightly abuse notation and denote by &, both the cycle 6, and its homology
class in Hy(R_(F)). As we already know, §; = 2 - p~1(A), which implies that
PD(8¢) = 2- p*PD(A) € H*(R—(F)). The map hy: R_(F') — R_(F') induces
homomorphisms in both the homology and cohomology of R_(F’); again we call
them £ The following diagram is commutative:

i

H*(R-(F)) — H*(R-(F))
p*T p*T
H*(R_(F') x R_(F")) h—]t> H*(R_(F") x R_(F"))

The map i here is induced by h¥: H*(R_(F')) — H*(R_(F")), with the help of
Kinneth formula.

Theorem 17.7 (Newstead [124] and [125]). Let F’ be a Riemann surface with con-
nected boundary aF”’, and h: F’ — F’ a diffeomorphism such that id = h.: H.(F') —
H«(F'"). Then & induces the identity map in the cohomology of R_(F’).

Since k is a separating curve in F’, the homomorphism (h)«: H«(F') — H«(F’)
is the identity. Theorem 17.7 now implies that 4% = id, hence hi: H*(R-(F)) —
H*(R—(F)) isthe identity map on the image of p*. In particular, 43 (2-p* PD(A)) =
2. p*PD(A), therefore, hy (PD(8;)) = PD(8¢) and PD(h;8¢) = PD(8). Since PD
is an isomorphism, 2.8y = &;.

17.5 The Casson invariant of a trefoil

Let k be a left-handed trefoil in S3. We will show that A/(k) = +1. Since $3 —k =
3(2,3,5) is the Poincaré homology sphere, this will imply that A(2(2, 3,5)) = +1
and thus will prove property (0) of the invariant . Remember that A was defined only
up to a sign. As soon as we know that A(2(2,3,5)) = =£1, we fix the sign of A by
requiring that A(2(2, 3,5)) = —1.

We proved in Lecture 8 that the trefoil is a fibered knot of genus 1. Let its com-
plement in S3 be fibered by surfaces of genus 1 with closure F’, and construct a
Heegaard splitting S3 = M; U M, of genus 2 as in (8.2). This is a preferred Hee-
gaard splitting in the sense of Lemma 17.2 with F = F’ U F’. The corresponding
representation spaces can be identified as follows:

R(My) ={(.a') | &’ € R"(F')}/SO(3).
R(M>) = {(,h*d") | o’ € R"(F')}/ SO(3).

Lemma 17.8. The manifold R_(F) is a copy of SO(3), and the homology class
p~H(A) € H3(R_(F)) equals (up to a sign) the fundamental class of R_(F).
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Proof. The class p~1(A) is the inverse image of the diagonal A C R_(F’) x
R_(F’"), where p is the projection of the SO(3)-bundle R_(F) — R_(F)xR_(F’).
We will show that R_(F’) is a point, which will imply the lemma.

Since F' is a punctured torus, its fundamental group is a free group on two genera-
tors. Therefore, R_(F") = {(A, B) € SU(2) x SU(Q2) | [4, B] = —1}/ SO(3). After
conjugation, we may assume that

e’ 0
A:( 0 e_i‘”)

a b
B_(—Bc_l)’ a,bG(C.

Then the condition AB = —BA implies that ae’? = 0 and be!? = —be™'¢. There-
fore, a = 0 and ¢ = /2. After conjugating the representation (A, B) by a matrix
commuting with A, i.e. by a diagonal matrix, we can make b into a real positive num-
ber. Since det B = 1 we must have b = 1. Therefore, R_(F’) contains only one
point, the SO(3)-conjugacy class of the representation

e 0 01
A_(O ) B_(_IO). o

Recall from Theorem 17.5 that £1'(k) = #(p~'(A) N R(M>)). We know that
p~H(A) = R_(F), so we only need to compute the intersection R_(F) N R(Ms)
in R(F). Using the description of R(M>) given above, we see that

with0 < ¢ < 7. Let

R_(F)NR(Mp) ={(',h*a’) |a’ € R_(F")}/SO(3) = R_(F") = {point}.
The proof of the fact that A’(k) = £1 will be complete after we check the transver-
sality condition.

Lemma 17.9. The manifolds R_(F) and R(M>) intersect transversally in R(F).

Proof. First, we make a dimension count. Since the Heegaard splitting has genus
g = 2, we find that dim R(M>) = 3g —3 = 3, dimR_(F) = 6g — 9 = 3, and
dimR(F) = 6g — 6 = 6. Next, we compare the tangent spaces at @ € R_(F) N
R(M>):

TaR(M2) = {(€,dh*(§)) | § € T R (F')}/5u(2),
ToR-(F) ={(. 1) | §.n € Tw R-(F')}/sn(2).

Their intersection consists of the pairs (£, dh*(€)) such that £ € Ty R—(F’) modulo
the coboundaries. Therefore, dim (T R(M>) N Ty R—(F)) = 0, which, together with
the dimension count, establishes the transversality. O



Lecture 18
An application of the Casson invariant

18.1 Triangulating 4-manifolds

As mentioned in the Introduction, the concepts of topological, smooth, and PL man-
ifolds coincide in dimension 3. According to Cairns [27] and Hirsch [75], every 4-
dimensional PL-manifold has a unique smooth structure, and vice versa. Topological
manifolds in dimension 4 are utterly different from PL or smooth manifolds. On the
one hand, there are topological 4-manifolds that admit many different smooth struc-
tures, and on the other, there are topological manifolds without any smooth structures,
see Lecture 5. Recall that the latter follows from theorems of Rohlin and Freedman.

Theorem 18.1 (Rohlin). If X is a smooth, closed, simply-connected 4-manifold
whose intersection form is even then its signature is divisible by 16.

Theorem 18.2 (Freedman). Given a unimodular, symmetric, bilinear, integral form
QO which is even, there exists exactly one simply-connected, closed, topological 4-
manifold whose intersection form is Q, up to a homeomorphism.

Idea of the existence proof. Freedman [51] shows that every homology 3-sphere
bounds a homology 4-ball V', a compact topological 4-manifold with H.(V) =
H.(D*%*). This statement fails to be true in the smooth category because homology
spheres with non-trivial Rohlin invariant cannot bound smooth homology balls.

Now, given the form Q, one can find a smooth simply-connected 4-manifold X
whose intersection form is Q and whose boundary is a homology sphere X, see Corol-
lary 6.5. Let V be a homology ball bounding X, then W = X Uy (V) is a closed
topological simply-connected 4-manifold with intersection form Q. |

Note that, according to Quinn [129], all non-compact 4-dimensional topological
manifolds are smoothable, therefore, the manifold W in the proof above is smooth in
the complement of a point.

Example. Let ¥ = 3 (2, 3, 5) be the Poincaré homology sphere. It bounds a canoni-
cal smooth simply-connected manifold X with the negative definite intersection form
Eg. The intersection form of the manifold Wg = X Ux (—V'), where V' is a homology
ball bounding %, is again Eg. The form Eg is even and has signature —8. Therefore,
Ws is not smooth by Rohlin’s theorem.
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Theorem 18.3. The manifold Wg is hot homeomorphic to a simplicial complex.

Recall that PL manifold of dimension » is a simplicial complex that admits a com-
binatorial triangulation (a triangulation is combinatorial if the link of each its vertex is
PL-homeomorphic to S”~1). We already know that Wg is not smooth, therefore, it is
not PL. Theorem 18.3 claims more: it says that Wy is not triangulable in the weakest
possible sense — it is not homeomorphic to any simplicial complex, not necessarily
combinatorial.

Proof. Suppose that Wy is triangulable. After passing to a star subdivision, one may
assume that the triangulation of Wy is PL in the complement of the open star of a
vertex v. This gives the link of the vertex v a PL-structure X so that the star of
v is homeomorphic to a cone C(X) over X. Since Wy is a topological manifold,
we may assume without loss of generality that there is an open neighborhood of v
homeomorphic to an open ball D# that contains C(X) and is contained in a bigger
cone over X. Then we have a series of inclusions,

Y — C(X)\{v} — D*\ {0} — T xI,

where [ is an open interval. Their composition, followed by the projection ¥ x I —
¥, is obviously the identity map ¥ — X. This implies that X is a retract of D# \ {0}
and, in particular, that X is a homotopy sphere.

Since the trivial group 1 (X) does not have irreducible SU(2)-representations, the
Casson invariant A(X) must vanish. But then ©(X) = A(X) = 0 mod2, see The-
orem 12.1. On the other hand, X bounds a smooth simply-connected compact 4-
manifold Wsg \ int C(X) with intersection form Eg. Therefore, u(X) = 1 mod?2.
This contradiction proves the theorem. a

A similar construction with other even unimodular forms of signature 8 modulo 16
would produce more examples of closed topological 4-manifolds that are not triangu-
lable.

Remark. In the proof of Theorem 18.3, once we established that X is a homotopy
sphere, we could use the Poincaré conjecture to conclude that X is homeomorphic to
S3. This would imply that C(X) is homeomorphic to D# and hence the manifold W
is smooth, contradicting Rohlin’s theorem. Our argument with the Casson and Rohlin
invariants avoids using the Poincaré conjecture, which at the time of Casson’s original
work in 1985 was still open.

18.2 Higher-dimensional manifolds

The relations between topological, smooth, and PL manifolds in dimensions 5 and
higher are more complicated than in dimension 4 — for example, the concepts of
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smooth and PL manifolds no longer coincide. Kirby and Siebenmann [86] showed
that there exist topological manifolds in all dimensions greater than or equal to 5 that
are not PL. It is still not known whether all topological manifolds in these dimen-
sions are simplicially triangulable (i.e. homeomorphic to a simplicial complex). Sur-
prisingly enough, this triangulation problem reduces to a problem in 3-dimensional
topology, see Galewski—Stern [58] and Matumoto [108].

Theorem 18.4. Every closed topological manifold of dimension n > 5 is simplicially
triangulable if and only if there exists a homology 3-sphere X such that (%) = 1
and X # X is homology cobordant to zero.

A theorem of Fukumoto—Furuta [54] and Saveliev [141] asserts that Seifert homol-
ogy spheres ¥ = X(ay,...,a,) have the following property: if u(¥) = 1 mod?2
then no multiple mX of X with m # 0 is homology cobordant to zero. Thus if one
is to look for a homology sphere X as in Theorem 18.4, all Seifert fibered homol-
ogy spheres, as well as all homology spheres homology cobordant to them, should be
excluded from consideration.

18.3 Exercises

1. Prove that the Casson invariant of a homology sphere is not completely deter-
mined by its fundamental group. (Hint: Consider a homology sphere X with
A(X) # 0and its two doubles, X # X and X #(—X).)

2. A knot k in S3 has Property P if 7{(S3 + (1/n) - k) is trivial if and only if
n = 0. Prove that if Aj/(1) # 0then k has property P. In fact, Property P holds
for all non-trivial knots in S3, see Kronheimer and Mrowka [96].



Lecture 19
The Casson invariant of Seifert manifolds

In this lecture we give a closed form formula for the Casson invariant of Seifert
homology spheres X (ai,...,a,); the modulo 2 reduction of this formula will give
a closed form formula for the Rohlin invariant of X(a,...,a,) promised in Lec-
ture 11. We first deal with the manifolds X (p, ¢, r) and describe the representation
space R(Z(p,q.r)). Itturns out that all the points in this representation space con-
tribute to the Casson invariant with negative sign. As we have proved in Lecture
15, the space R(Z(p, g, r)) is non-degenerate, therefore, A(Z(p, ¢, r)) equals minus
one-half the cardinality of R(XZ(p,q,r)). The latter integer has multiple interpreta-
tions in terms of the number of integral lattice points in certain tetrahedra, Dedekind
sums, and Milnor fiber signatures. The general formula for A(X (a1, ..., as)) follows
from the one for A(X(p, g, r)) by a splicing additivity argument, and we refer the
reader for that to the paper Neumann-Wahl [123].

19.1 The space R(X(p,q,r))

Recall from Lecture 14 that the space R(X(p, ¢, r)) is finite. Moreover, the conju-
gacy class of a representation « in R(XZ(p,q,r)) is described uniquely by a triple
(£1,42,¢3) of integers ¢; of the parities determined by the choice of Seifert invariants
and «(h) = £1,andsuchthat0 < ¢; < p,0 <4, <¢q,0 < {3 <r,and

51 Ez 53

—_ - = — <

p q r

The latter inequality can be rewritten as
£ L 14 L 14 . (L L IS

max{_l_i, __1+_2} <—3<m|n{—1+—2,2——1——2}

2 P 4 2N

or as the system of the following four inequalities

R T B . B B B
r r
bt bt e ae)
b, b, b b b _,
P q r p q r

If we allowed integers £1, £,, £3 of arbitrary parities, the inequalities (19.1) would
describe the integral lattice points in the tetrahedron A C R3 with vertices (0, 0, 0),
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(0,q,r), (p,0,r), and (p,q,0). Let us denote the cardinality of T(p,q,r) = AN
7Z3 CcR3byt(p.q,r).

Lemma 19.1. The cardinality of R(XZ(p, ¢, 1)) equals %r(p, q,r).

Proof. The group Z/2 & Z/2 with generators s, ¢ acts freely on T'(p, ¢, r) by the
rule s(x1, x2,x3) = (x1,9 — X2, 7 — x3), t(x1,%2,x3) = (p — x1,9 — x2, x3). For
any given triple of integers, (x1,x2,x3) € T(p,q,r), its orbit consists of the four
points,

(x1,X2,%3),  (X1,4 — X2, 7 — x3), (19.2)

(p—x1,9 —x2,x3), (p—X1,X2,7 —X3).
The condition that a triple of integers (x;,x2,x3) defines a representation in
R(XZ(p,q,r)) fixes the parities of xq, xp, and x3; exactly one out of four triples
(19.2) has the right parities. a

Remark. The cardinality of R(Z(p,q,r)) also equals one quarter the number of
integral lattice points in the tetrahedron in R3 with vertices (. 0, 0), (0, ¢,0), (0,0, r),
and (p,q,r). These points are identified with the points in T'(p, g, r) via the map
(x1,x2,x3) > (p — X1, — X2, — X3).

There are many curious formulas expressing t(p, ¢, r) interms of p, ¢, and r. Here
are some of them.

Lemma 19.2. Let t; be the number of integral lattice points (x, x2, x3) such that
0<x1<p,0<x3<¢q,0<x3<r,and

k—1<2 4245
p q r
Then t(p,q,r) = —11 + 72 — 3.

Proof. Let # = (p — 1)(¢ — 1)(r — 1) be the cardinality of the set P = [(0, p) X
(0.9) x (0,r)] N Z3 c R3, and denote

Tkz{(xl,xz,x3)eP k—1<ﬂ+2+x—3<k},
pP q r

so that 7z is the cardinality of Tj. Since we always have that

X X X
0<2L+242 23
r 4 r

the set P splits into the disjoint union P = T; U T, U T3, see Figure 19.1. It should
be observed at this point that

ﬂJrﬂqu—3=lor2
4 q r
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is impossible, since these equalities would imply
X197 + x2pr + x3pq = 0 mod (pgr)

and then x; = Omod p, x, = 0 modg, x3 = 0 modr, which is prohibited by
0<x1<p,0<xy<gqg,and0 < x3 <r.
s

, <
/ N
| — AN
— % N
!
|
— =4 -
_ -
-

P T T, Ts

Figure 19.1
Thus # = 71 + 12 + 73, and in addition the cardinality of P \ T'(p,q,r) is 7 —

©(p,q.r). Theset P\ T(p,q,r) can be split as shown in Figure 19.2, and then the
obvious symmetries will imply that

11=T3=Z(ﬂ—f),

sothat —7; + o — 13 = 7 — 411 = ©(p,q,71). O
Al
Figure 19.2

Another formula for z(p, g, r) involves the so-called Dedekind sums. For any real

number x let
_ x—[x]—%, ifx¢2Z,
(@) = {0 ifxeZ,

9
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where [x] stands for the greatest integer less than or equal to x. For any pair of
relatively prime integers a, b such that a > 0 the Dedekind sum s(b, a) is given by

wo-E() ()

The next result follows from the fact that

©(p.q.r) = (p—D(g—D(r —1) =41,

see the proof of Lemma 19.2, and the calculation of t; in Mordell [117], see also
Rademacher-Grosswald [130], Theorem 5 of Section 3.E:

1
o(p.gr)=1-—(1- P2q*r* + p*q* + ¢*r® + p*r?)
pqr

+4s(pq.r) + 4s(pr.q) + 4s(qr, p).
It is proved in Rademacher-Grosswald [130], Section 2.C, formula (25), that
a—1

1 1+ nm 1+ n—bm
s(b,a) = 4_ Z m —bm’
a — 1-n" 1-7

where 7 is any primitive a-th root of unity. This implies the following formula for
7(p,q,r), which can also be found in Neumann-Wahl [123], Lemma 1.5 and Re-
mark 1.7,

t(p.q.r)=1-— (1—p*¢*r* + p*q* + ¢*r* + p*r?)
3pgr

—d(r, pq) —d(q, pr) —d(p,qr).

Here we define, for relatively prime integers a, b with a > 0,

1 E+1 241
d(a,b):a Z ETl éb—l’ (19.3)
ga=1,5#1
1 mk bk o )
=—— cot{ — Jcot{ —— ], by specifying & = exp(Rrik/a).
a a a
k=1

19.2 Calculation of the Casson invariant

The next step in computing A(2(p,q,r)) is to show that all representations in
R(Z(p, q,r)) are counted with the same (negative) sign so that A(X(p, ¢, 7)) equals
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minus one-half the cardinality of R(Z(p, g, r)). We constructed a Heegaard splitting
of Z(p,q,r) of genus 2 in Lecture 1. With the help of Kirby calculus, it can be de-
scribed as follows. The manifold X (p, ¢, r) can be thought of as the surgery on either
of the links shown in Figure 19.3, where byqr + bapr + bspg = 1, compare with
Figure 2.11. Itis an easy exercise in Kirby calculus to show that surgeries on the links
in Figure 19.3 produce homeomorphic manifolds.

0 _bs
/x A r
k3
A 4 r P Ky 4\ ks
by by b3 by by
Figure 19.3

Let N(ky) be a tubular neighborhood of the knot k; in S3. When we perform a
(p/b1)-surgery along k1, we drill a tunnel along the knot k1, which is the core of the
solid torus N (k), and fill it with a solid torus S! x D? according to the (p/by)-rule.
The so surgered solid torus N(ky) will be denoted by T;; it is homeomorphic to a
solid torus again. The solid tori 7, and T3 are defined similarly from surgeries on
ko and k3. We connect Ty and 75 by a solid tube as shown in Figure 19.4 to get a
handlebody M/ of genus 2 inside X (p, q,r).

Figure 19.4

The complement of M; in X(p,q,r) can be viewed as the solid torus 73 with a
solid tube attached as shown in Figure 19.5; the result is homeomorphic to a handle-
body M, of genus 2.

Thus we get a Heegaard splitting X(p,q,r) = My Urp M, of genus 2. The man-
ifolds R(M7) and R(M>) have dimension 3 and the intersection R(M1) N R(M>)
in R(F) is transversal, see Theorem 16.4 and the calculation of H! (71 Z(p,q,r);
su(2)) in Lecture 15. Therefore, the intersection numbers of R(M;) and R(M>)
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Figure 19.5

in R(F) can be computed directly from the Heegaard splitting description provided
above. An elementary but rather technical calculation in local charts proves the fol-
lowing result, see Lescop [100].

Theorem 19.3. Let X(p,q,r) = My Ur M, be the Heegaard splitting of a Seifert
homology sphere described above. Then for every « € R(M1) N R(M>), the inter-
section number of R(M7) and R(M>) in R(F) is equal to —1.

Another proof of this fact, which uses gauge theory, can be found in Fintushel-
Stern [45]. Thus we arrive at the following formula,

1
AME(p.q.1)) = —3 #R(Z(p.q,1)),

where #R (X2 (p, g, r)) stands for the cardinality of the finite set R(XZ(p,q,r)). To-
gether with Lemma 19.1 and the calculation of (p, g, r) thereafter, this provides
us with the following explicit formula for the Casson invariant of X(p,q,r). The
mod 2 reduction of this formula gives a closed form formula for the Rohlin invariant
of X(p,q,r), as promised in Section 11.2.

Theorem 19.4.

ME(p.q.r)) = —3[1 - 2

(l _p2q2r + p2q2 +q2r2 + p2r2)

8 3pgr

—d(p.qr) —d(q. pr) — d(r. pq)]

where d(a, b), for relatively prime integers a,b with a > 0, is given by the for-
mula (19.3).

Remark. One can also use the surgery formula to compute the Casson invariant of
certain Seifert homology spheres. Using the surgery description of a right-handed
(p.q)-torus knot k, 4 given in Exercise 4 of Lecture 7 one can deduce that the ho-
mology sphere X (p, ¢, pq + 1) can be obtained by (—1)-surgery on k, ,. The surgery
formula for the Casson invariant then implies that

1
AZ(p.g.pa+ D) =—5 AL, (1) ==(p* = 1)(g* = 1)/24,
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see Exercise 1 of Lecture 9. For any positive integer m, the homology sphere
3(p,q,pqm £ 1) is obtained by (—1/m)-surgery respectively on the right-
or left-handed (p,q)-torus knot.  The surgery formula implies again that
A(Z(p,q, pgm £ 1)) = —m(p> = 1)(¢*> — 1)/24.

Let p,q,r > 2 be integers, and f(x,y,z) = x? + y4 + z" a polynomial in
three complex variables. Let us consider the hypersurface V(p,q.r) in C3 given
by the equation f(x,y,z) = 0. This is a smooth non-compact manifold of real
dimension 4 with the exception of the singular point (0,0,0). Let S> c C3 be a
small 5-dimensional sphere centered at (0, 0, 0), then the intersection V(p, ¢, r) N S
is a smooth 3-manifold called the link of singularity of V(p, ¢, r) at (0,0, 0). If the
integers p, ¢, and r are pairwise relatively prime then V(p, ¢, r)NS> can be identified
with the Seifert homology sphere X(p, ¢, r), see Neumann—Raymond [122]. Note
that a similar construction with the polynomial x? + y? of two complex variables
provided us with torus knots in Lecture 7. The circle action on X (p, ¢, r) mentioned
in the end of Lecture 1 is given by the formula ¢ - (x, y,z) = (t9"x,tP"y,tP9z),
t € S, with the singular fibers given by the equations x = 0, y = 0, and z = 0,
respectively.

The formula
Sy
p(x,y,2)

|f(x.y.2)|
definesamap ¢: S°\ X (p.q.r) — S onto the circle of unit complex numbers, which
is a projection of a locally trivial bundle such that each fiber F is a smooth simply-
connected 4-manifold, see Milnor [114]. A natural compactification of F' is a smooth
manifold M(p, ¢, r) with boundary X(p, g, r) called the Milnor fiber, compare with
Lecture 8.

Theorem 19.5 (Fintushel-Stern formula, see [45]).

|
A(Z(P’q,r)) = g SIQnM(p’qu)'

Proof. As we already know, A(X(p, g, r)) equals minus one-half the cardinality of
R(Z(p,q.r)), hence minus one-eighth of —7; + 75 — 73, sSee Lemma 19.2. The latter
quantity is equal to the signature of the Milnor fiber, see Brieskorn [22]. a

Results similar to Theorem 19.4 and Theorem 19.5 also hold for Seifert homology
spheres X (a1, ...,ay,) with arbitrary n, and for more general links of singularities,
see Neumann-Wahl [123].

19.3 Exercises

1. Calculate the Casson invariant of the homology spheres shown in Figure 12.9.
2. Calculate the Casson invariant of (3, 4,5 + 12k) for all integer k.
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Since its introduction in the 1980s, the Casson invariant has been generalized in var-
ious directions. It has turned out to be relevant to many recent developments, in
particular, the application of ideas from the physics of gauge theories to the study
of manifolds in 3 and 4 dimensions. In the notes below we review some of these
developments without attempting an exhaustive account.

Gauge theory. Throughout the text we briefly described various applications of
gauge theory. We did not advance very far in this direction because we did not
want to require from the reader an extensive knowledge of differential geometry
and elliptic theory. There are many books on differential geometry, for example,
Kobayashi—-Nomizu [90] or Warner [158]. Perhaps the book most relevant to gauge
theory applications is Nicolaescu [126]. By the elliptic theory we mean the theory
of (pseudo) differential elliptic operators, see e.g. first two chapters of Shubin [148],
and the Index Theorem, see Atiyah—Bott—Patodi [6] for the closed manifold case and
Atiyah—Patodi-Singer [7, 8, 9] for manifolds with boundary. These are the original
papers which still provide an excellent treatment of the subject. Other sources include
Berline—-Getzler-Vergne [14] and Gilkey [59].

Gauge theory itself can be learned from Freed—Uhlenbeck [50], Donaldson-Kron-
heimer [39], and the Seiberg—Witten gauge theory from Morgan [118].

Instanton Floer homology. A gauge theoretic meaning of Casson’s A-invariant was
discovered by Taubes [152] and Floer [47], who interpreted A as the Euler character-
istic of a homology theory now commonly known as the instanton Floer homology.
More precisely, to any oriented integral homology 3-sphere X, Floer associated eight
Abelian groups I,(X),n =0, ..., 7, so that

7
A(Z) = % > (1) rank I,(Z). (%)
n=0

The groups 7«(X) are functorial in that, for an oriented 4-cobordism W between
homology spheres Xy and X; there exists a homomorphism Wy: I.(Zo) — 1«(Z1),
of non-zero degree, in general. The definition of 7,(X) and W, makes essential use
of gauge theory on ¥ and W. In short, this is an infinite-dimensional analogue of
the Morse theory, see Milnor [113]. For a quick introduction to Floer homology see
Braam [20]. More substantial treatment can be found in Donaldson [36].

In Floer [48] and Braam—Donaldson [21] the Floer homology was extended to in-
clude some 3-manifolds other than integral homology 3-spheres, and cobordisms be-
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tween them; in particular, all 3-manifolds having the integral homology of S x S2.
The surgery formula for the Casson invariant was then refined in terms of the Floer
exact triangle as follows.

Let £ C X be a knot in a homology sphere <. We introduce two other manifolds:
the homology sphere %’ obtained from X by (—1)-surgery on k, and the manifold K,
ahomology S x S2, obtained by 0-surgery on k. The natural cobordisms X, Y and
Z arising as the traces of the surgeries induce homomorphisms in Floer homology.
These homomorphisms can be included in the following exact triangle (a long exact
sequence) of total degree —1

1.(K)
N
1.(2) Zs - 1.(2)

Here, the homomorphisms Z. and X are of degree 0, while the connecting homo-
morphism Y. has degree —1. Moreover, the Euler characteristic of 1..(K) is expressed
in terms of the Alexander polynomial as

7
Alcg(D) =" (=1)"rank I,(K).

n=0

so Casson’s surgery formula follows from the exactness of the triangle.

Floer homology is generally difficult to compute. An algorithm for computing
the Floer homology 7«(Z (a1, ...,ay)) of Seifert homology spheres is described in
Fintushel-Stern [45]. There also exists a closed form formula for 1. (X (ay,...,an)),
see Saveliev [140]. For some other computations of /. see Fukaya [53], Kirk—
Klassen—Ruberman [88], Klassen [89], Li [102], Saveliev [142], Stipsicz—Szab6 [151],
etc.

Another application of the Floer homology is related to the Donaldson polynomials.
Recall from Lecture 5 that a Donaldson polynomial for a smooth closed 4-manifold
(satisfying certain technical conditions) is a polynomial Ds: H?(M,R) — R on the
second cohomology of M. For a manifold W with boundary oW = X a homology
sphere, the Donaldson polynomials take their values in 1..(X),

Dw: H2(W,R) — I.(2).

If a closed manifold M is splitas M = W; Uy W, along a homology sphere X, then
Dy is obtained by “gluing” Dy, and Dy, with the help of some natural pairing on
1.(X), see Donaldson [36] for an accurate treatment.

Casson-type invariants in dimension four have been studied by Ruberman and
Saveliev, see survey [139]. A variant of instanton Floer homology is the instanton
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knot Floer homology of Kronheimer and Mrowka [92]; this theory is closely related
to Khovanov homology and other knot invariants.

Seiberg—-Witten and Heegaard Floer homology. These are two Floer-type homol-
ogy theories of 3-manifolds and links which appeared after the instanton Floer ho-
mology and whose relation to the Casson invariant is not as direct. The former theory
is based on Seiberg—Witten monopoles, and its exhaustive treatment can be found in
Kronheimer—-Mrowka [93]. The latter theory relies on pseudo-holomorphic discs in
certain symplectic manifolds, and we recommend Ozsvath—-Szab6 [127] for an intro-
duction.

Casson-Lin invariant. An analogue for knots of Casson’s original construction of
the A-invariant was worked out by Xiao-Song Lin in [103]. Let k be a knot in S3, and
§3 \ k its complement. Lin counts irreducible SU(2)-representations of 71 (S> \ k)
such that all meridians of k C S3 are represented by trace-zero matrices in SU(2).
The resulting integer A (k) is an invariant of the knot k; it is usually referred to as the
Casson—Lin invariant. In fact, Lin showed that i (k) is not a new invariant — up to
a constant, it equals the knot k& signature. It should be mentioned that the Casson-
Lin invariant of a knot is different from the Casson invariant of a knot described
in Lecture 17, and that the the instanton knot Floer homology of Kronheimer and
Mrowka [92] is closely related to representations 71 (S3 \ k) — SU(2) with trace-
zero meridians.

The Casson—L.in invariant was generalized in Herald [72] and Heusener—Kroll [73]
by counting representations with a fixed (but not necessarily zero) trace of the merid-
ians. Refining the Casson—Lin invariant and its generalizations into a Floer homology
theory is still ongoing.

Lin’s construction was also extended to links of two components in Harper—Saveliev
[69] by using the so called projective SU(2)-representations; the resulting invariant
was shown to equal the linking number between the components of the link. The paper
[70] constructs an instanton Floer homology for two-component links in homology
spheres whose Euler characteristic is the aforementioned linking number.

Equivariant Casson invariant. The Casson-Lin invariant and its generalizations
are closely related to equivariant Casson theory on manifolds with cyclic group ac-
tions. To obtain an equivariant version of the Casson invariant, one counts only irre-
ducible representations preserved by the group action induced on the SU(2)-character
variety; see Collin—Saveliev [30] and Ruberman-Saveliev [138].

Casson invariant for other Lie groups. Casson type invariants for SU(n) with
n > 3 were developed in Boden-Herald [17] and Cappell-Lee—Miller [28], and for
some other Lie groups in Curtis [33].
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Casson invariant for general 3-manifolds. In the late 80s, the Casson invariant
with all its properties was extended to homology lens spaces (3-manifolds with the
integral homology of a lens space) by Boyer-Lines [19], and to all rational homology
3-spheres by Walker [156]. Later, the Casson invariant was extended to all closed ori-
ented 3-manifolds by Lescop [99] using a combinatorial formula. The new invariant
becomes simpler as the first Betti number b; = rank Hy (M ; Q) of the manifold M
increases, vanishing for all manifolds with b1 > 3.

Combinatorial definition of the Casson invariant. It turns out that one can define
the Casson invariant of a homology sphere X in purely combinatorial terms starting
with a surgery presentation of X. It is not easy to do: since ¥ has many different
surgery presentations, one needs to ensure that whatever combinatorial formula one
comes up with gives the same answer for all of them. Of course, any two surgery
presentations of X are related by a sequence of Kirby moves, hence all one needs to
check is that the answer does not change under these moves; the latter can be done
with the help of Casson’s surgery formula. The problem with this approach is that
the Kirby moves can take us out of the class of integral homology 3-spheres, which
is the natural domain of the Casson invariant. Walker [156] and Lescop [99] have
succeeded in solving this problem by extending the Casson invariant to a larger class
of 3-manifolds. Habiro [67] found a solution which does not require ever leaving the
class of integral homology 3-spheres. His solution relies on Hoste’s formula [77] for
the Casson invariant of a homology sphere obtained by surgery on a framed link &£
as in Lemma 12.2, and on a new move called band slide which (unlike Kirby moves)
preserves the linking matrix of £.

Finite type invariants. The Casson invariant belongs to a large class of so-called
finite type invariants developed by V. Vassiliev. The papers Birman [16], Bar-Natan
[12] and Kontsevich [91] may serve as a good introduction to this theory; see also
[97, 120, 154].
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Difference cycle, 176
Donaldson polynomials, 69, 192

Eilenberg—MacLane space, 6
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Fibered knot, 98

Fibered link, 106
Figure-eight knot, 89
Floer exact triangle, 192
Floer homology, 191
Framing, 35
Fundamental class, 11, 63

Gluing construction, 7
Group cohomology, 160

Handlebody, 17
genus, 17
Handles, 7
Heegaard genus, 23
Heegaard splitting, 17
of a Seifert manifold, 28, 188
stabilization, 18
Heegaard splittings
equivalent, 18
stably equivalent, 19
Homology, 7
cellular, 3
simplicial, 14
singular, 14
Homology cobordism, 129
group, 132
Homology sphere, 72
H -cobordant to zero, 129
Homology spheres
H -cobordant, 129
Homotopy 3-sphere, 133
Homotopy lifting property, 9
Hopf link, 87
Hurewicz theorem, 9

Intersection form, 63
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genus, 82
signature, 91
slice, 97
trivial, 32
Knot concordance group, 97
Kummer surface, 66

Lens space, 25
Link, 32
boundary, 94
even, 58
framed, 35
Link of a simplex, 14
Link of singularity, 190
Linking matrix, 54
Linking number, 43, 93
Locally trivial bundle, 10
fiber, 10
Longitude, 23
canonical, 33, 91

Manifold, 1

closed, 1

cobordant to zero, 39

open, 150

piecewise linear, 1

smooth, 1

with boundary, 1
Mayer—Vietoris sequence, 8
Mazur homology sphere, 129
Meridian, 23, 33, 91
Milnor fiber, 190
Monodromy, 100

Open book decomposition, 106

Orientation, 11

Pfaffian, 166

Pillowcase, 158
PL-homeomorphism, 11
PL-sphere, 14

Poincaré conjecture, 133
Poincaré duality, 11

Poincaré homology sphere, 49
Poincaré-Lefschetz duality, 12
Property P, 183

Quadratic form, 109
non-degenerate, 109
Quaternion group, 147

Reduced homology, 13
Regular point, 14
Regular projection, 32
Representation
irreducible, 149
reducible, 149
Representation space, 150
Rohlin invariant, 80, 123

Seifert manifold, 27
circle action, 28, 190
singular fiber, 27
Seifert matrix, 83
S-equivalence, 85
Seifert surface, 81, 92
stable equivalence, 83
Simple closed curve, 22
Simplicial complex, 13
Skeleton, 3
Smash-product, 104
Splice, 57
Surgery, 33
integral, 34
rational, 34
Symplectic basis, 109, 166

Torus knot, 86

Trace of surgery, 39

Transversality, 14

Trefoil, 49

Triangulation, 13
combinatorial, 1
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Tubular neighborhood, 15, 32 Vector bundle, 10

Twist knot, 49
Whitehead double, 96

Whitehead link, 93

Unimodular matrix, 63 Whitehead theorem, 15, 68
Universal Coefficient Theorem, 15

Unknot, 32 Zariski tangent space, 159
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