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Introduction

In [1] Wall proved the following theorem:
If Vl,v2 are simply-connected compact 4-manifolds, which are
h-cobordant to each other, then there exists an integer k > O
such that Vv, # k(ngSQ) is diffeomorphic to V, # k(SszQ)
(# is the connected sum operation),

It follows almost immediately from this result that if V
is a simply-connected compact 4-manifold, then there exists an
integer k > O such that V # (k+1)P # kQ is diffeomorphic to
P £ mQ for some L,m > O, where P is ¢P2 with its usual
orientation and Q is ¢P2 with orientation opposite to the usual.

After the proof of his theorem Wall writes the following
([1], p. 147): '"We remark that our result is a pure existence
theorem; we have obtained, even in principle, no bound whatever
on the integer k",

As it was remarked in [2], the operation V # P (resp. (V #Q)
where V is an oriented 4-manifold could be considered as
performing of certain blowingeup of some point on V. We call
this blowing=-up ?—process (resp. 9-process).

We say that an oriented compact simply-connected 4-manifold
W is completely decomposable (resp. almost completely decomposable)

if W (resp. W # P) is diffeomorphic to 4P # mQ for some #,m > O.



Let V be an oriented compact simply-connected 4-manifold.

€
For (kl,kg) ZXZ, k;

obtained from V by k

20, kX, 20, let V(kl,kg) be a 4Y-manifold

J-processes and k, J-processes.

1
Denote by (v) = {(kl,k

2
2) € ZxZ kK, 20, k, 2 0, V(kl,kz) is
completely decomposable}. It follows from the theorem of Wall
that (v) 4 4. BAn important geometrical problem is to define
minimal elements of (v) (in any natural sense). A certain step
for solving this problem could be the construction of some
elements of (V) in explicit form, say in terms of the
2-dimensional Betti number and of the signature of V.

In the present work we show that such a construction is

possible when V admits a complex structure. The main result is

the following:

Theorem A. Let V be a compact simply-connected Y-manifold which
admits a complex structure. Take an orientation on V corresponding
to a certain complex structure on it. Let X(x),L(x) be cubic
pelynomials defined as follows:

K(x) = K(G(5x+l4))-x, L(x) = L{9(5x+4)), where

R(t) = %(t2-6t+ll), T(t) = %%(21:2-%@)

(k(x)

L({x) = 60750x

30375x3 + 6885ox2 + 52004x + 13092,

> + 1141,750x2 + 110265x% + 28595).



Denote by b_ (corresp. b ) the number of positive (corresp.
negative) squares in the intersection form of V and let
L} L]
k) = K(b+), k, = max(O,L(b+)—b_).

Then the pair (ki,k' € (v).

5)

From the Kodaira classification of compact complex surfaces
it follows that if V is a simply-connected compact complex
surface, then there exists a non-singular projective-algebraic
complex surface V such that V is diffeomorphic to V and one of
the following three possibilities holds: (a) V is rational;

(b) V is elliptic; (c) V is of general type. In the case (a)

our theorem is evident. In the case (b) we prove a much stronger
result:

Theorem B (see Theorem 12, 84, part II). Any simply-connected
elliptic surface V is almost completely decomposable.

(That is, (1,0) € (v)).

In the case (c) (see Theorem 5, 84, Part I) we use Bombieri's
results on pluricanonical embeddings ({3]), results of [2] on the
topological structure of non-singular hypersurfaces in ¢P3 and
the following:

Theorem C (see Theorem 4, §3, Part I). Let Vi be a projective
algebraic surface of degree n embedded in ¢PN, N > 5, such that

Vph is not contained in a proper projective subspace of EPN.



Suppose that Va is non-singular or has as singularities only
rational double-points, Let h: Gg —>V be a minimal
desingularization of Vv, (that is, G; has no exceptional curve

of the first kind s such that h{s) is a point on Vn). Denote by
X, the diffeomorphic type of a non-singular hypersurface of
degree n in EPB.
1(6;) = 0, Then

1) by (V) <p(x), p_(V) <p_(x),

Suppose T

11) V4 [b (x )b, (V )+11p # [b_(x )-b_(V )]0
is diffeomorphic to X # P.

Note that Theorem B together with results of [2],[4],[5]
shows that all big explicit classes of simply~connected algebraic
surfaces considered until now have the property that their
elements are almost completely decomposable 4-manifolds. That is,
the "theoretical" Theorem A gives much weaker results than our
"empirical knowledge". The interesting question is, how far we
can move with such "empirical achievements" in more general
classes of simply-connected algebraic surfaces.

I prepared this work during my visits to IHES,
Bures~sur~Yvette, France, and Sonderforschungsbereich, Bonn,

West Germany, in the spring of 1976. The excellent conditions



which I found in these Institutes were very important (and
necessary) for the appearance of this work. I am very
grateful to both of these Institutes.

The Appendix to Part I is essentially based on the
advice of D, Mumford. D, Mumford told me about Severi's
theorem and explained its use for the proof of part 3) of
Theorem 3, §3, Part I. The proof of part U4) of this theorem
is also due to D. Mumford.

The idea to use in the proof of Lemma 4, 81, Part II, a
non-ramified covering is due to P. Deligne.

W. Neumann and D. Husemoller read the manuscript before
it was typed and made many useful remarks.

I would like to express here my deep thanks to all of them.



Part I

Topology of simply-connected algebraic surfaces
of given degree n

§1. a topological comparison theorem for fibers of holomorphic
functions on complex threefolds.

Lemma 1. Let U be an open subset in 023, f: U —A be a

holomorphic function where A is the open unit disk in &, such

that f has only one critical point c on U, f(ec) = 0 (€4) and ¢

is a rational double~point on f-l(o). Let B_ be a closed

c-ball in U of radius € and with the center c, De' be a closed
2-disk in A of radius €' with the center O € 4 and such that

f-l(De,) is transversal to s, = BBe (and therefore
-1 n -
(1D Ns) =D )

Denote

: f—l(Dé,) nS€ —ﬁﬁe, .

fs=f'

1, n
£ (D),
It is clear that £ f-l(D€‘) n S, —;be, is a fibre bundle; let

¥: f-l(De.) n s, —> De,x f;l(o) be some trivialization

of it.
-1 ~ ..
Let U, = £ (1), T€ex, nh: U, —>U, be a minimal
desingularization of U, (that is, lﬁo does not have an exceptional

curve of the first kind s such that h(s) is a point on Uo),



T' € I)é,. Then there exists a diffeomorphism

-1
. n n
a: h (U B)— U, B

such that

-4
- . . — n
(aih l(Uonse)) (n iUonSe.)' U, Ns, u.. NS,

coincides with the canonical diffeomorphism f;l(o) —%>f;l(T')
corresponding to the trivialization ¢ of fs.

Proof. We use the theory of simultaneous resolution for
rational double-points (see [6],[7]). It follows from this
theory that there exists a positive integer m and a commutative

diagram of holomorphic maps
U
fl
A

~ %‘N
such that ¢, is proper, A= {°€¢}10|<l}, () = ", U-@f(c)—i A

~

U
l’f

®
<¢.——-‘———————_
- 3

? x

coincides with canonical projection (U-c) xA Iy "—e>z,

-1 e s R o~
gll -1 N (UO) —>U_ coincides with h: U, —> U_ and
9, (u,)

the function ? has no critical values.



o -1 ~ -1 ~ -1
Let B= 9, (B ), S=w(s), D=9 (De')’
~ ~ ~],~ ~ ~ -1 .
ol o i E(PINS—>T1). Because o, (c) Ns=2¢g
S lEh@)ns p 1

we can identify %’S: 'E-l(ﬁ)ng-—-—ﬁ ﬁ with [f-l(De,)ﬁse] XD D-
Now using #¢: f-l(])‘:_,)ns€ —_— De' X f;]'(O) we obtain a
trivialization of ?:"S, ¥ 'E_l(f‘;) s — ]S X 'Es'l(o) corres~
ponding to ¥. In particular, the canonical diffeomorphism
'E'S'l(o) —->Af‘s-l(¢), 9 E]S, corresponding to ¥ coincides with

f;l(o) _— f;l(am) corresponding to §. Let

% = | TP nE— .

~

It is clear that '5-1(5) is transversal to OB = S. Since f h

no critical points, ?B: ?-l(ﬁ)ng —->'ﬁ is a differentiable

fibre bundle and we can construct a trivialization

Y: 'E-l(ﬁ)ﬂg——é D~ X[?:"-l(o)ng] of ’EB such that the diagram

TEHINS s § x (E0))

|

s —Xs § x (E0)05)

is commutative.

Take © E}S-O with (U')m = T' and let E:’Egl(o)ﬁ 'EB-l(a'

a canonical diffeomorphism corresponding to Y,



‘Pl Jg' B = ¢1|~—l ~ " 'E-l(a')ng‘ﬁ f-l(T')nB€°
s 3 £ (o’l)ﬂB
Now it is easy to verify that we can take o = wl c' B " &:
E 2
Q.E.D.

Definition 1. Let W be a 3-dimensional complex manifold
and let V be a complex subspace of W, dimmV = 2, We say that
the singular locus E(V) of V is canonical if V is reduced and
for any p € §(V) we have one of the following possibilities:

a) p is a rational double point of V;

b) p is an ordinary singular point of V, that is, there
exists a complex coordinate neighborhood Up of p in W such that
V is defined in Up by one of the following equations:

(i) z,z, = O,

(ii) 212525 = 0 (triplanar point),

(iii) 2°-z 2° { pinch=-point).
17273

Theorem 1. Let W be a 3-dimensional complex manifold,
A= {t € ¢||t| < 4}, £: W — A be a proper holomorphic map.
Suppose that the singular locus S(V,) of V_ = f—l(o) is canonical
and let R denote the union of all rational double points of Vs
s = 8(Vgy)-R. Let hg: § — S be the normalization of S,

_1(

h: G; ——e,Vo be a minimal desingularization of Vo, C=h s),



10
hc: 6’-—>c be the normalization of C, T: TC — C be a regular

neighborhood of C in G;. Let x -++,X%, be all the triplanar

l’xz)
points of V., yl,yg,---,yp be all the pinch-points of Vo’

R ) -1
(

(xl’x2’x3) = hS xl)’ L= 1)2)"‘)v: ym = h

Consider V copies of ¢P2 {(with usual orientation), say
£ 4 4
P e . . i
Pl’ ) »P, and let (El. 62. 63) be the homogeneous coordinates

in Py, 4= 1,2,...,V,

o},

I
I}

(x € B y[e5(x)

4

(€ 2, [el(x) = 0, [ef) = l&f.]

where (i',i") = (1,2,3)-(i)},

£=1,2,-..,v, i=1,2,5 (see Fig. 1).

£ 4
Let Ti be a tubular neighborhood of S.» i=1,2,3,

L 4 L L 4 4 L.
£=1,2,++-,v. Take T.,T7.,T so that Tl’T T are pairwise

1’7273 2'73
l/ .
disjoint; for any i = 1,2,3 Ti n Ei is a tubular neighborhood
£ 4 2 2
of s, in E, and T, N E%,: g, T. N E%" = ¢ where
i i i i i i
(i.:i" = (1:2}3)—(i)'

Then there exist:

a) a complex-analytic projective line bundle T: A ———>§3

~

b) a differential embedding iC: C —> A such that

ﬂ-iC: C —>8S coincides with the canonical map corresponding






to hIC: C —>s, that is, Tei.: C —>5§ is a covering

~

of degree two ramified in exactly p points ;&,---,;; of S;
£ ~
¢) 3v pairwise disjoint closed 2-disks di with the centers X5
i=1,2,3, £ =1,2,...,V, Ongl- Kgl n(qm): where
. . oy=1l,~
q_m = lc((ﬂ'lc) (ym)): m= 1,2,--+,p;
. . 4 -1, .4 L
d) diffeomorphisms Vi: m (Bdi) —ﬁ>6Ti, i=1,2,3, £=1,2,,Y,
where ' = Tegp: A' — S5 and ®: A' —>A is the blowing-up

of A in the points ql,---,qp, with the following properties:

4
(1d) each *i’ i=1,2,3, 4= 1,2,-..,V, reverses the

3

by the complex structures

MmN

orientations induced on '~ (Bd yard oT

of A'-n"l(

£ 2
di) and Py-T.5
L . i 2
(2d) Vi is an isomorphism of the following S -bundles

- 2 £
with the base S': ﬂ'l 1,080} e l(adi)'—-e>8di and
TH(24))

i

4
BTi ——e»s (BT ——e»s corresponds to the canonical projection
TL L)
i T8
4 - 4 Y
(34) Wi(L'nﬂ' l(Bdi)) = B(TiﬂEi), where L' is the strict

image of iC(E) ina‘;

~
e) an orientation reversing diffeomorphism 7: OTC — OTC,

where
v 3 Vo3 4, 44
[ ] sl O - [V U -
(L'-L' A (z,-l 2 di)] V [z=1 i=1(Ei (Tir\Ei))]
(union SJ (E. -(T:nEf)) is taken in P,),



13

'} N 3 “L3g° LV) PJ Lopt
VLt N M T Tee)] —> e ey

£
is the diffeomorphism which is equal to *.‘ 1.4
g o (Bdi)

~ N
on the corresponding connected components, T: TC —— C

Y s /\
is a regular neighborhood of 6'0n A, where

VR NC
= L e -

vV.o3 _ 4 v 3
eV ou m l(ad-) — U }J (BT%) is the diffeomorphism
L1 i=1 1 41 i=1" 1

4
which is equal to *i on the corresponding connected components,
A
and the orientations of J0TC and JTC correspond to the
A .
orientations of TC and TC which are defined by the complex
structures of G; and A';
~ ~ . } A
f) open subsets U € C, U © C and a diffeomorphism no: Uu—>=U
A
T

such that (1) n(l—l(U) = E—I(A

I2)

U) where T =

.
| drc? o1’

and (2) the diagram

17" t(u) ~
u) —> 1 7(U)

T_l(

T T

A
U — U

is commutative;



) . = ~ A
g) diffeomorphisms u, (VO—TC) U_ (A-1C) — v,_, where

_1(

t € A-(0), Vv, = £ (t).

t
Proof. Let BL’Br;\’ 4= 1,2,+++,V, m=1,2,+4.,p, be
open small pairwise disjoint coordinate 6-balls on W such that

for any 4= 1,2,...,V {(corresp. m= 1,2,--.,p) the center of

B, (corresp. Br;\) is x, (corresp. ym) and V_ n B, {corresp.

v, n Bx:x) is defined in B, (corresp. B‘;‘) by the local equation
z](_z)z;“zél') = 0 (corresp. (22'(m))2 - zj’(m)(zi(m))e) where

L
zgz),zél),zé ) (corresp. zi(m),zé(m),zé(m)) are complex

coordinates in B, (corresp. B;n).
Let T: T —> S Dbe a regular neighborhood of § in W such
that for 4=1,2,...,V and m= 1,2,...,p
oT N 3B, 4 @, 3T N 3B 4 4,

3T is transversal to 6§L and to BEX;‘ and if

v

P
st=s (s n{Y B u (Y B,

~ ~

T' =T - [T N ((lkr-)l B,) U (ngl B,

~

S' and T

~ T ——= S8*' is a 4-disk Dbundle.

then T(T' ) 5

Let A'

{t € Cl:i el < %} Changing if necessary the

coordinate t we can assume that Yt € A', Vt is transversal

to OT.



18

Consider the ball Bl' We can assume that complex coordinates

Z1s25523 in B, are chosen so that f‘Bl = 22,25 [Recall that

z(l)z(l)z(l) = O 1is a local equation of Vo N B in B, Since

1 2 3 1 1
f'l(o) has no multiple components, £= 1 i 77 is an
z,7 'z, z3
invertible holomorphic function in some neighborhood of X . We
- (1) (1) - (1) ~
take z, = f1 Z7, 2y = 2570, z3 = z3 and choose Bl and T

smaller]), Changing, if necessary, 21122’23’t (t is the complex

coordinate in A) we can identify B, with the open ball

1
3
{(z,,z,,z_) € @ ) |z.|2 < fﬁ in ¢3 and f with the
1°72°73 . i B
i=1 1
function 212223.
Let 2 =V, NB. = {(2 zz)Eq:3 z =1 g| 12 33}
=Vy U By = gz, 232525 = 1, Az 1 <30

i=1

® be a small positive number,

Mo = {(z ) € @

1922773 |z, | < 146, i = 1,2,3}, for j = 1,2,3

M = Uzphzp,25) € ¢3'1+6 <lzglgz, lzpl <1, 2l <1,

~ ~ D A
, M =1 _ Nz, M= (/) M_.
j=0

=
i}

P
D
[N

Consider a 3-dimensional real euclidean space H%swith coordinates

. z 5 N 3
T1T5.T5 {see Fig. 2) and let I§i = {(rl,rg,rj)EIR r, >0, i=1,2,3}
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M, = {(rl,rg,rB) € Iéi

T)XoTy = 1, r. < 146, i = 1,2,3}, for j=1,2,3

1
My = L(r),r,,r,) € ]R3+’rlr2r3 =1, 16 <r. <2, r,<1, r.<1,
3

=

where (j',i") = (1,2,3)=(j)},

= M .,
=0 J
Identify U(1) with {g € m‘ lg| = 1} and let

3

Tz

= U(1)xu(1)xu(l) with coordinates 91952955 and T be the

subgroup of TZ defined by the equation: g19293 = 1. Writing
z, = r;g, whereY € R, r, >0, g, €, |gi| = 1, we identify

My with M_xT, »TJ_ with M XT and M with MXT.

It is clear that Mo is diffeomorphic to the triangle in E;
with the vertexes: a, = (——l——g , 145, 148), a, = (l+6,—————§,l+BL
(1+8) (1+5)
ag = (1+6,l+6;——}—7§). Let us take on M the orientation, which
(1+8)

on M, coincides with the orientation corresponding to the order

(al,aB,ae) of the vertexes a;,3,,a5.
Note that the map T —=U(1)xU(1) given by

(91,92,93) —->(gl,g2) is an isomorphism (of groups). Using this

isomorphism and the canonical orientation on U{l)xu(1)

{corresponding to the given order of factors and to the

positive rotation on U(1)) we fix an orientation of T. It is

easy to verify that the orientation on MXT which we now obtain

coincides with the orientation of MXT = M corresponding to the

complex structure on M,
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Consider a new copy of Iéswith coordinates 91’92’93

(see Fig. 3) and let

A= {(91192193) pl+p2+93 3, p. > 0, i = 152:3};

R, be the triangle in 8 with the vertexes

11 e 1y

1 1
=(2,§,§),b2— 552, 3)s b =(§,§,2):

for j = 1,2,3
R, be a polygon in A which is formed by the following four

straight lines:

™

1
1) p, = 55 2) p, =

’ -|=2-u.)4 -u=2 s
j j ;5 3) P, Pyus )pJ T

(j';j") = (1:2)3)-(.]))

Let T2 be a new copy of U(1)xu(1)xU(l) with coordinates

. 3 . . =
hl’hE’hB’ H a subgroup in Tp’ defined by the equations hl h2 h3.

Denote T = T /H.
P o

Consider P = ¢P2 with homogeneous coordinates ﬁl,€2,€3

chosen so that |€1| + I&zl + |&3| = 3, Let for j = 0,1,2,3

R = i(el,ee,e (leylulelleg D) € R

N

j=0



19

3

g .

Fi
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Take on R the orientation which on R, coincides with the
orientation corresponding to the following order of vertexes:
(bl,bz,bB). Thehmap Tp-——>u(1)xu(1), given by
[hl’h2’h3] — (h—l, ;—1—) is an isomorphism. Using this isomorphism
and the canonical orientation on U(1)xU(l) we fix an orientation
of Ty Writing €; = pihis Py € R, p, >0, h, €8, Ihil = 1,we
identify R with RXTp. It is easy to see that the orientation
of RXTp (corresponding to our choice of orientations of R and Tp)
coincides with the orientation on R )<Tp =R corresponding to the
complex structure.

There exists an orientation preserving diffeomorphism

a: R —M with the following properties:

a(Ry) = M, a(Rl) = M,, a(Rz) = My, a(RB) =My .
Let B': ’I‘i _ ’1‘3 be a homomorphism defined by the formula:
hy B3 hp
B'{(h,,h, ,n )= (==, ==, ==). Evidently ker B' = H and
1272273 h3 h2 hl
' i =
Im B T, If (91,9‘2,93) €T (that is, 919,95 1), then

1 1
[ —_— = —) = ¢ =
B ((gl’g ,l) (gngQ)g g ) (gl’g2’93). Thus Im B T. We
2 172
see that B' defines an isomorphism B: Tp —> T, Taking
a = axp: R(= RXTP) ~ M(= MXT) we can check that & preserves

orientation.



21

Let (i,j,k) be one of the triples (1,2,3),(2,3,1),(3,1,2).

Identify o with eixe® by the rule: (z1,22,23) — (z

3

(2520

Taking the projective closure of ¢2 we embed T~ in Elmez. Let
homogeneous coordinates in ¢P2 be no’nj’nk and let
n. n
z. = 4 z = X Denote
j no, K no.

- >
M, = {(21,22,23) €ac’, z.z.2

'_l
no
W
I
.—0
-
n
A
N
P.
N
no
-
Ul
-
N
N
I~
H
N
N
g
I~
'—l
[ S 4
<

3,2g|zi|g2,5, z, =0,z =o0}

Khi = [(21,22,23) €c j .

and let ﬂi: Mi —= K i be defined by

1,

it

z, (M (x)) = 2, (x), zj(“i(X)) 0, z, (M (x)) = 0, x € M.

ﬂi defines on Mi the structure of a fiber bundle with the base Kl i
2

and the fibers

]

-1
w (y) = {(21,22,23) €a’lz.z lz.| <1, lzkl < 1k

k 2z, ’
j }y) b

The embedding ¢5 ——%>ml X ¢P2 which we have constructed
above gives us a compactification W,: M. —>K. , of
i i 1,1
==~1 - .
Moo M) ) T -
i M ——%>Kl’l where Yy € Kl,i’ i {(y) is a non-singular

. 2 . Mo
rational curve in @GP defined by the equation 7.7 = . Let
Y q i E;G?T

Cji (corresp. C be a subset of ﬁ_ defined by no =7 =0

xi) i x
= = c M. c M, ) be
{corresp. ng=n. o), and Tji M, (corresp. T Mi)

j ki
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. 1 1
defined by |77k! g_——lnol (corresp. |T7j| _<_'z—_|T)°|),

z,
i
v, = {(21,22,23) € ¢, |zil = 2, 2 = 0, z, = o},
—=l '
! = ' = N = ' =
w (wri),rji I‘iﬂTJ_i,I‘. r,fe H_, arji,aki df .,

Ty ki ki’ ii

1

(1,2,3)=(m,n)},

1 1 ‘
Lon= [(61:65185) € P'lﬁml = slels legd <55 m
1,2,3, n= 1:2’3}

where m

Let 7= {1,2,3} and
@: [(leg)—diagonal] — [(ZXJ)—diagonal]

be a 1-1 map defined as follows

Q((lxa)) = (2;3), w((l:B)) = (231)1 ”((2:3)) = (1,2):
e((2,1)) = (1,3), »((3,1)) = (3,1), &((3,2)) = (3,2).
It is easy to see that ﬁi T (corresp. ﬁi T } defines on

ji ki

Tji (corresp. Tki) the structure of a 2-disks fiber bundle over Cji

) with this

(corresp. C..). Thus we can consider Tji (corresp. T

ki ki

projection as a tubular neighborhood of Cji (corresp. Cki) in D_/li.

~
& M we can construct a new space

B A -
ecause HJ,l, i

M=MU_ D' u T'5 u

u, ¥,
2 .
Hyy 21 H31 31 Hy 1

r' oy ri,u. T
2
3 13 H23 > H32 32 H .,

A direct verification shows that a(L_ ) = H
mn w(m,n)

' . . . where = g
diffeomorphisms W i Lo —>H 0 n) "

We obtain

L.
mn
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Note that L;n {corresp. Lmn) is a circle (corresp. 2-disk)

fibre bundle over a circle in P defined by £ , = O, !&m[ = %I&n

In the notations used above a fibre of the fibration L;n is given

by:
:—:= b= const € U(1), le..|=3 lgl=3lel.
Because B(hl,hg,hB) = (—:—;, ;i, ;-i-) we have
B({-:—i = bl}) = [g3 = b}
e({-i—i—: p}) = gy = g}
s({%= vl) = g, = bl
B([:—§= b}) = (g, = %}
B((:—;= p}) = {g = bl
a(c% = b)) = (g, = g

Considering H ., ,H, . as circle-~bundles over Y, (with projection "i)

Jji’ ki

we see that the fibers of H.

Ji’Hki are given by the condition

gi = const, Hence umn is a diffeomorphism of circle=bundles
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L. and H
mn @(m,n)

corresponding 2-disk bundles “mn: Lmn ——e>P$(m’n),

. Thus we can extend “mn to a diffeomorphism of
which
transforms the centers of fibers to the centers of fibers.

Considering E;i and 5-1 together we obtain an embedding

A: M —>P .

Let
s, = (e :€:6) €ple =0, |£]|=]&]l},

1
, 36, < 6 <28 ),

D

Loa = UEse,e)) €2, e | =

. . ,
:ﬁfnﬂ Lo U Lo U an (union in P).

We can consider‘an“ as the boundary of a tubular neighborhood

§ , of s , in P. A fiber of the corresponding 2-sphere fibration
m m

is defined as follows:

h
If b= Eﬂ (we can identify b with a point of sm,) then the
n
corresponding fiber F, is equal to the union of the fiber Lmn(b)
£
of Lmn over b, the subset of P, defined by arg Em = arg b,
n
|& |=l —l-lgl<l | < 2]t |, and the fiber L_ (b) of L
m' 3 2'°n' = %n = n'’ nm nm
over Db.
Now let (m,n) be one of the pairs (1,3),(2,1),(3,2).

Take on sm the orientation corresponding to the positive rotation
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h

m , . \
of h—n- Then the orientation on % ' Bsm, defined by the
complex structure on 3'm, induces on every Fb an orientation

which on Lmn(b) is opposite to the orientation corresponding to
the complex structure of the complex projective line Em = %‘bﬁn.
But that means that the orientation on %m,, considered as
B(P-Um,), defines on Fb an orientation which coincides on
Lmn(b) with the orientation given by the complex structure of

the line {im = %bgn]. This “complex" orientation on Lmn(b) defines

on Lr:m(b) = BLmn(b) an orientation which corresponds to the

h _,
positive rotation of fn——
oy
Since B((hl’hE’hB)) = (-h—B-, B q) we have that M
defines on “13(1‘13(1’)) (corresp. u2l(L21(b)), corresp. H}E(L}z(b)))
the same orientation as the positive rotation of 1

92
1 1
(corresp. go» corresp. =) does.

1 3
Let *:} ——->J« be given by ¥(1)

2, V(Q) =1, v(3) = 3.
A direct verification shows that X(I‘i) =%*(i)' Let

= . T ; . .
ki Xlri. i i %'*(i)' Let us fix on %m, the orientation

which is given by considering %m' as B(P-S’m,) and by the complex
structure of P-a’m, . We see now that Xi induces on the fibers
of l"i —> Y, an orientation which coincides with the
orientation given by the complex structure of these fibers., We

can check also that if )-?_: Yi —>s¢(i) is the diffeomorphism
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of bases corresponding canonically to )'i then X(:.z induces on Yi

the positive orientation (we consider Yi as a circle in the zi—axis

in ¢3). Take on I‘i the orientation which is given by I"i c Bﬁi

and by the complex structure of Ei-aﬁi. We obtain that A, is an

> >
orientation reversing diffeomorphism. Define \': UlI‘i —_ kg%fm.
3 i= m'=
A —
by A =X, andlet P= (UM,) U, [P~ T ,]. Using the
T, i A i A =1 m
i i=1 m'=

embeddings MJ.'. —_— ﬁi’ AT M —> P which we constructed above we

AN ~ ~ /\(l)
obtain an embedding \A: Z —> P, where 2z =132 N1 7/,

A1) _ 3 3 \
= (L) u(U N,

j=0 J =1 ]
3

n. = ((21:22323) €

3 2glzj|32,5, lzj.lgl, Izj..lgl,

(j';j") = (1,233)_(.].)}'

1)

A
Note that we can consider T( as a part of the regular

A

. ~ . ANSal . LTS
neighborhood T of § in W and P-A(Z) as a regular neighborhood in P

(1)

of the subcomplex C in /I} which is equal to
3 b
(U (egyue,) U (U (5,,-3,,0 ),
i=1 m'=1

where E , = ((§):6,:¢,) € P|e =0}, (5,%) = (1,2,3)-(1).
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Now we can do the same constructions for each By,

)

2,3,++,V, as we did for Bl' We obtain then for each

~ A
4= 1,2,++-,V a set Z, © W, a manifold with boundary P,,

annuluses Kt,l’ KA’2’ K&’5 on S, fibrations Ml,i —e’KL,i’

i=1,2,3, cross-sections C, i , {3,x) = (1,2,3)-(1), of
2

C :
4,xi

these fibrations, tubular neighborhoods T » Ty ik of these
L

3,31
. LN o o
cross-sections and an embedding XL: Z, —> P, which have the

same properties as

2% i, — D
s By Ky 90 Ky o0 Ky 50 My Ki,i7 %510 Sxiv Tyi0 Tixe
constructed above.,
We can define al (4)o(4) c £ = v, i
so T C P,, = 2,3,+++,Y, in the same

way as we defined T(l),c(l> and assume that V % = 1,2,.--,V

4 ~
T( ) is a part of the regular neighborhood T of S in W and

. AN . (4) .
consider P‘-NL(ZL) as a regular neighborhood of C in P,.

Consider now the ball Bi. We can assume that there are

complex coordinates 21’22’23 in Bl such that f,B' is defined in
1
' 2 2

Bl by the equation f = z, - zjzl. [Recall that

(23112 - 25 (2;1)2 - 6 ia a Local equation of v, 0 B in

Bi. Since f_l(o) has no multiple components

£
£ =
2 (zé(l))E_zé(l)(zi(i))e

is an invertible holomorphic
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function in some neighborhood of Y- We take

2 3 3 1
t we can identify B

2, < V?E zi(l) Z, = er Z'(l), z = z'(l) and choose B! and

T smaller]. Changing if necessary z

1°%p2%3, 1
with [(21,23,23) € g L_Iz.le < 3} and fIB with the function
i=1 1
22—2 22,
2731
1
- € ¢ =
Now let [] £(zl,z2,z3> oz, | <2, |z,] <2, 1235 <sh
2 2
= € ¢’ |z°- - -z N TT.
Z ((21,22,23) € |25-252) 1}, T=1z N}
Identifying ¢3 with ¢2x¢l we embed m3 in ¢P2x¢l. We take
n n
1 , .
zl = ﬁ:’ z, = ﬁ;’ where ”o’”l’ne are homogeneous coordinates in
GPE, and consider z3 as a coordinate in cl. Let
= 2112 2 2
= : s € - =
z = [(Ny: ny: N5 23) TP X |n2 2,7 n.t,
2 . . . 2. .12 2 _ .2 1
T = {{No: M3 Mos 23) € TP xa 'ne-anl =7, |23| < 2},
c, = ((no: Myt Ny 23) € z'no = o}.
Note that ”1 4 0 on CZ' Hence we can define CZ also by the
n
egquation ﬁe = 0, It follows from this that the set
1
= 1
= : : ; € = i
o ((no N Ny zj) Z,Inol < 2|nl|} is a tubular
neighborhood of CZ in 7.

It is clear that J, AT cT -T. Take x § T - . NT, we
1 1
have Ino(x)] > Elnl(x)l,lzj(x)[i 5. Hence no(x) 4 0,

20 (x) ] < 2, Tzp(30) | < Vitlzg(x) (2, (x))°] < V5 < 2.
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We obtain x € T. Thus T NT=7T7-mT
Let
K = [z3 € ml'%g |23| < %},
Tp=(x € UC ZB(X) € x},
"K: KK —> K is defined by projection
(M2 Mys My 25) —> (24).
Take z; € X and consider ﬂ;l(zg). We have ng-z;ni = ni,

lno‘ < %lnl - It is clear that 7, 4 0, so denoting
n n
u= =2, v = ==, we obtain vo-2z2 = u2; ] < L From
n n 3 =2
1 1
v = 4 u2+z;, lu|2 < %; |z§| > % we see that the projection of
ﬂ;l(z;) is an unramified map. Hence ﬂ;l(z;) is a disjoint union

of two 2-disks d+,d_ where

a,= Uuw) e e®flul < & v = 92,
a_= (la,v) €a®|lul <}, v = AP,

It is clear that these 2-disks are transversal to CZ and

we can consider them as fibers of the tubular neighborhoods 8C

of CZ corresponding to the points:

o Y/,
z3 = 23, u =0, V=4 z3
o o
and 25 = 23, U=0, v=- z3 .
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(Here +/~ and -}~ mean simply some choice of branches of } ).
Taking for each of the constructed 2-disks its center (that

is, its intersection with CZ) we obtain a map Pyt :IK - CK where

CK = CZNITK. We can assume that the canonical projection

p: §, —>C, is defined so that p|3x = py-

= 1
i m_: . : : H
Note that the projection ".: z —>€ ( Z(( Mot Mt Mo 23))=23)
has the following property: “2:1(23) is a non-singular rational curve

if z -Jr O and a pair of transversal non-singular rational curves

3

if z3 = 0. This means that we can consider "E as composition of

; . . 1 1 1 . 1 1 .
projection W': @p x @ —> and blowing-up of @P x € with
some center a € TT'-l(O).

Denote the embedding T € T by A': T —> T, We see from
3c AT = T-r that T-T is a regular neighborhood in T of a
subcomplex in T which is defined by the equation T)o = 0,

Now we can do the same constructions for each BI;, m= 2, p,

as we did for Bl. We obtain then for each m = 1,2,-:+,p an open

_a34 . : = T .m

2=disk dm on S with center Yo @ manifold Tm, a map n’ Tm ﬁdm

with T = T 9 (where T : G:Plxd —>» d 1is the canonical projection
m m m m m m

1

and am: E"m —>@&P"Xd  is the 9.process with some center

-1 —
] -si c
a € A (ym)), a non-singular complex curve C T such that
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Tale ° Cm ——>dm is a ramified covering of degree two with
ra

unique branch point over Y, 2 tubular neighborhood P’ 'Jm—-—> Cm

L . ', = . . -7 _
of Cpy in T, an embedding Xm. T, —>T_ with A (‘I‘m) To = I
?I =T\ where T =T NB' Nv,, and an annulus X_ < d_ with
Tm m m m m 1 m m

center Yo such that

T |—-1 = nm . (p |= )
n n
m{m (Km) L m m{m (Km) Tn -

Using Lemma 1 and the assumption that 3T is transveral to

' . . . ~ , 5 =1 ~ W
V. t€A' wecan identify VvV, Vlf‘rr with V_-h (Vof’fl‘). e

can consider h-l(VoﬁF) as a regular neighborhood of C in \70.
Denote TC = h_l(vofff") and let the corresponding projection be

T: TC —=> C.

Consider the annulus h-;'(Kz J..) on S, £=1,2,+++,v, 1 =1,2,3,
2

~&
). Let d, be
io

~ ~L ~L - ol
the closed 2-disk on S with center x, such that d, N n l(K J=ad,
i io S 4,1 io

~L -
We can assume that x., is the center of h l(K .
i S 4,i
y) ~h ] ~
Denote d, = h_(d., ). Let 4 be the closed 2-disk on § with
10 S 1o mo

center y  such that dmo n Km = Bdmo. Denote

v p
4 ~1 -1
" = S - U " = i " = "- 113
s (74550 U (U a1, ¢ =n7(s"), 2 (c"),
T = TITC": TCc" —> C", Let g: N —=>C" be the normal bundle
~ N
of C" in Vo’ a: N —> C" be the projective closure of q: N — C",

A
We can assume that TC" is a subspace of N (¢N) and 7"

]

A
qchu = q'TCu'
~ A ~ A ~ ~ ~ ~
Let N = N-TC", q = A ™ ¢ N —cCc", m = hs-q : N —> 58",
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~ Fas Pa R

C bYe the cross-section at infinity of q: N —>C", that is,
o~ A~

C = N-N.

Since V. is transversal to OT,

1 (S,,) vy nr~ (S")ﬁS"

~

v, 0¥ s
is a differential fibre bundle. (Changing if necessary T we can
assume that ?I?_l(S"): ?-1(8") —> S" is a 4-disk bundle). Using
the same arguments as in ([10),Lemma 2.1) we obtain that the typical
fiber of T!V n~-1(s,,) is diffeomorphic to sixz (I={xeR |O<x<l)

e e T l
Using our J.dent:.f:.cat:.on of Vl-VlﬂT with v ~h~ (v ﬁr} and the
A\

embedding TC" € N we obtain a diffeomorphism

v: B(Vl N T (s"))—> dN . We can assume that
~ ~ ~ ~ ~~—] ~
T G = ~] e = " ~

iB(Vlnf 1(5,,)) {(m |BN J+% . Now let A [vlm (s )}uw N,

_~ ~

and T : A —=> S" be defined by

T(x) i x € v, 0 Fl(s")

" (x) =
W (x) if x € N ,
Because T : N —> S" is a fibre bundle with typical fiber
diffeomorphic to the disjoint union of two closed 2-disks, we

_~ ~
see that M ;: A —>8" is an Sg-bundle.

It is easy to verify that we can do all our identifications

and constructions so that for any (#4,i), £ = 1,2,+++,V, i = 1,2,3,
M — X aa’ = 1,2 v, i=1,2,3
l,i K —ad& ‘,i - io? 4= sC s sV, 1 = 2C320,

L,1
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will coincide with

(where {j,k) = (1,2,3)=(i)) will coincide with

=, =1 2 ~
- n = cee
(m)) (Kt,i Bdio) C and for any m = 1,2,.+-,p
= o R . . . R
ﬂmlﬁ‘l(x - )’ m (Km-dmo) —>K -d__ will coincide with

m m mo

: (™) Mk =4 ) —>K -4, and
m mo m mo

-

——] ~
¢ N1 (K ~-d ) will coincide with C N (w ) l(x -d_ ).
m m m mo m mo

A ~ N — —
We define A as union of A , Pl,- «e,P,,T. ,«+,T where we identify
P

=, ~1 ) ~

a point x € (7 ) (K‘ .=9d; )(<a ), 4= 1,2,°+",V, i =1,2,3, with
,1 io

the corresponding point x' € M

(e P‘) and a point

L,i|K .

‘
2,17%%
- -1

1 , o~ — _
L K -4 : . . _
y € (7 ) ~( n mo)(CA) with the corresponding point y'em (Km dmo)(CI‘m).

v p
A~ (&) ] LN
Let C=C U [(glc ) U (nglcm] (union in A},

v
Tg= N U [(‘\‘31(3‘-/{‘(2‘)) u (an Jm)] (union in 5\\)

Because each M —> K

L.i L =1,2,---,¥,1=1,2,3, is a
’

L,i’

trivial Sz-bundle and ¢, ..,C . are "horizontal” cross-sections
L,31° 4,ki

in ﬁ‘ i —-7Kz i’ we can extend TT~: A~ —> S" to an Sz—bundle
] s

~ ~ p P~ ~e ~
~:a% — 5 -4 and C to a 2-manifold C~ in A~ where
m=1 mo

. ~ ~ -1 4 R
for any (4,i), £ = 1,2,+++,vV, i = 1,2,3, c~ N (m) (gio) is
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~

, . , , = 4
equal to disjoint union of two cross-sections of ™ over d

io®
. . . =-1 .
Using the canonical embedding of T (Km) —>K_in

?fm: T —>d  we extend A~ to a differential manifold A’

m
= P=-1 ~
(at-n” = Ulnm (dmo)), the map ™~ to a differential map
m=
w: A' —> 8 (e =7, w4 =1_'r‘ a1
AR ’ = m|=
| ﬂm (dmo) "m (dmo)

and ¢™ to a 2-manifold L' in A' (L'NA = ¢, L'ﬂ;\‘;l(dmo)=c m @

m m mo)'
The construction of -T_l’m: Em —_ dm shows that we can write m' = Teg,
where 1: A -ﬁg is an Sz—bundle, there exists a differential
embedding iC: ¢ —=>2a such that n’-ic: ¢ —> § coincides with

canonical map corresponding to h ot C — 8, 9: A' —> A is the

P
monoidal transformation of A with center equal to {_/ Qs where
m=1
-1, -1 Lo v ; ;
q = (hS (ym)) n J.C(C) and L' is equal to the strict image

of ic(?:) in A',
. . A A
It is easy to verify that we can construct A, C and TC
from A' and L' by the same way as in the statements c),d),e)
A
of our theorem. Now the existence of 7); OTC — JTC with the

properties formulated in the statements e) and f) and of

~ ~ A
diffeomorphisms u _: V_-TC Un (a-tC) —V, (see the statement g)

of the theorem) easily follows from our constructions. (Recall

that above we identified vl-vlﬁ'f with \70-h'l(v°n'f') and that

v nF = v, 07 v (U v (BT)) Q.E.D
1 1 =1 4 =l 0



g2. a topological comparison theorem for elements of linear
systems on complex threefolds.

Lemma 2. Let 1: X ——>Yg be an oriented differential Se-bundle,

Yg be a closed oriented surface of genus g, Yl’Y2 be two smooth

embeddings of s’ in X such that Y, Ny, =g, Y; is a cross-section

2

of T over "(Yi) and ﬂ(Yl),"(Yz) intersect transversally at one
2

point of Yg' Let d be a closed 2-disk in ¥ _ -~ (U ﬂ(Yi) and X be

i=1

obtained from X by the surgeries along Y., and Y2. Let Z be the

1

~

image of ﬂ-l(d) in X. Then there exist a differential map

7 X —>Y . and a 2-disk d © Y such that
g-1 g-1
~ o
(a) : X —:?Yg-l

(b) z=7 (d) and ?lﬁ-l(g): m l(E) —> d coincide with

is a differentiable Se-bundle,

Z — d corresponding to ﬁln-l( ) n-}(d) — 4,

d

Proof. Using the triviality of the Sz-bundle over Sl and
2
considering a tubular neighborhood of Lj ﬂ(Yi) in Yg we see that
i=1
only the case which we have to look at is the case g = 1. Thus

assume g = 1. Let p be the center of d, Si = ﬁtp) and X' be
obtained from X by the surgery along Si. Let Yi,Yé be the images
of Yl’YE in X' and X' be obtained from X' by surgeries along Yi,Yé.

1

Using uniqueness of tubular neighborhood (of S~ in Sq) we have to

prove only that X' is diffeomorphic to Su.
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First of all we shall prove that there exists a diffeomorphism

a: X' —> (slxs3)f¥ (SleE)2 (connected sum of copies of sleB)

. 1 1.3 3
= = <
such that for i = 1,2 a(Yi) (s xai)i (s"xs )i, a ,a, €.
Let Yo = m(y,), i= 1,2 =Y nyl and B be a small
i“ i’? - RSN ] q = 1 2 n

closed 2-disk in Yl—p with center gq. There exist differential
embeddings:

wi: I XI—> Y -p - int B, i=1,2

1

such that ¥_(IxI) N0 WQ(IXI) = @,

1

1 = . .
*i(IXBI) c 9B, Wi(EXI) = Y,-Y;MB, 1=1,2 {see Fig, 4).

Denote A, = vi(IxI), A=A_UaA_UB,

1 2
-1 , -1 1.3
We can assume that T (A) € X', X'=T (A) = s™xp” and the

structures of Slxs2 on ﬂ_l(aA) obtained correspondingly from

-1 1

m1(3a) —> 3A and from d(X'-m (a)) = 3(s*xD°)(= s'xs°) are the

same. Let r: X'-n_l(A) — 0A be a projection corresponding

to the equality X'-ﬂ-l(A) = SlxD5. We have

~

[ﬂ_l(#.(IX%)) u 'r-l(w,(an-%)] x I = {(Ixs2)usoxsz(s°xn
. (union in x') *

3)]xI

3 X I,

~ S
; -1 -1
It follows from this that T (y_ {IxI)) U T ~(

i ti(SIXI)) (union in X')
3

is diffeomorphic to S xI.
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Fig. 4

A= 4, (15T)
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Let X" be obtained from X' by the surgeries along
-1 1 -1 1 ~ B .
— T — ~ =
m (v, (1x5)) U T (v (01x5)) (R s7), 4 = 1,2,

We have

21 -1 ! y 4 y
X" = x' -iL=)l['rr (ti(IxI))u'r (vi(aIxI))]uBloDlouBllDllusgg)Eouazlbel

where D:_, i=1,2, j=0,l, are four copies of the 4~dimensional ball
2

Dq, and Bij: B(D:j)—aB(X'-k,)[“-l(*i(IXI))UT_l(

Vi(BIxI))]) are

1i=
smooth embeddings such that

B;,(2(0} ) = [n (v (xx3)) U 77w, (13))].

We can write X" = X" U X. where
1 n 2

x; = wi(s),

) -1 2 A 3 3

X, = [X'-m (A)_ing (ti(alxI))} UBiO[DleI] UBil[Dllu]

> >

U+ [DZ xx] U, [DZ,xI],
820 20 621 21

Dzj, i=1,2, j=0,1, are four copies of DB,

3 1 2
P i (D7 x3T) —> 3[x'-m ~(A) - T (v, (dIxXI
Bi; (D7,%1) [x'-m""(a) iLzl(vl( ))]

are smooth embeddings such that

' > -1 ) . i
Bij(Dink) =T wi(k,J), i=1,2, j=o0,1, kx=o0,1,

and 7: 8Xi-——>8x5 is a diffeomorphism such that
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-1 2 -1 2 -1
nar (3B-J v, (1x1)) = d(xt-n"(a) - U T(¥, (31x1),
i=1 i=1 *
M0l @ - n‘l(as_f) ¥, (Ix31) —>
m ( B—i=l¢i(1x 1) Padls

2
(X - mHa) - Uty (a1x1))
=1 i

is the identity map,

Tl(ﬂ"l(\vi(IXJ‘)) = Bnijxl i=1,2, j=o,1,
and h/ t €I
-1 3
U X9 =
n(w (¥, {£x3)) BDiJ. X t
. " 2 2 “ 1.3
We see that we can consider X, as D xS X, as S XD” and 7] as

1 ? e

1,03y

2
natural identification of 8(D2XS ) and (S~ xD Thus X" is

diffeomorphic to Sq.
Our construction of X" shows that we can get X' from S

per forming surgeries along two embeddings of So in SLl (see

Fig.b ), say b 1

and (b such that Y. and Yé are obtained

10°11) o0’ 2

as follows (Fig. 5).
Let Dij’ i=1,2, j=0,1, be small balls with the centers

bij’cij be points in B(Dij), 8. be smooth disjoint paths connecting

%

. y 20y w3
i - - .. = 87 j .
¢jo With ¢y, in s gJ/ ‘ D1j’ BDlJ i X3, ¢€; be smooth
i=1 j=0
paths in Sz XxI which are cross~sections of S? XI —> I and
3

. < { !
X = = .
connect cio with cil in Si I. Then Yl ﬁerl, Y2 62U€2
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We see from this that there exists a diffeomorphism

a: X' —> (sleB)l # (slx53)2 such that

» 1 1 .
a(v))= (stxa,), = (s'xs?),, i=1,2, a ,a, €5

From Slxs3 = (s xS )L} lyg (Slxsé) it follows that a  surgery

3 3

on Slxs along Slxa, a € S3, transforms Sle in Su. This immediately

gives that surgery on X' along Yi and Yé transforms X' into a connected

. 4 . . 4
sum of two copies of § , that is, into S . Q.E.D.

Theorem 2. Let W be a 3-dimensional compact complex manifold, [E]
be a complex (analytiec) line bundle on W, ¢b and vl be two global
(nolomorphic) cross-sections of [E]. Suppose that the zero=~divisor
(691)o of @1 is a complex submanifold Vl of W, the singular locus

of the zero~divisor (wo)° = Vo of %, is canonical and the

locus § of all ordinary singularities of Vo is an irreducible

complex curve., Suppose also that V1 is transversal to Vo in the

following sense: t/ x € Vl f Vo there exists a local complex coordinate
system (zl,z2,z3) on W with the center x such that in some neighbor-

hood Ux of x in W, Vl is defined by the equation z3 = O and VO is

defined either by the equation z, = O or by the equation z, 2 = 0,

Let h: V —> Vo be a minimal desingularization of Vo' Denote by p
the number of pinch-points of Vo’ by V the number of triplanar points
of V,, by b the intersection number §.V, (in W) and by g(S) the

genus of S (that is, the genus of a non-singular model of §).
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Suppose that p # O and that TTl(Vl) = nl(v) = 0. Then

1) if b # 0, then vy # P is diffeomorphic to
V # (2v+p+2g(8)-1)P # (V+2p+b+2g(5)-2)Q and
2) 4if b = O then vy # P A# Q is diffeomorphic to
V # (2v+p+2g(8)-1)p # (v+ep+2g(s)-1)0.
Proof. Let B = V_ n V). We construct a modification
.;7: W —W (following Hironaka's idea) as follows.,
I£B =@ then W =W and P is the identity map. If B # @ and
BNS=¢@ then @ is the monoidal transformation of W with the

center B, Now let B NS ¥ g and B Ns = {xl,xg,...,xb]. We can

take a coordinate neighborhood Uk of W with the center in

xk, k=1,2,.++,b, with coordinates zg_k),z(k),zgk) such that

2
(%)

v, Nu,_ is given by 2y =0 and V_ N U, is given by

1 k k

zg_k)-zék) = 0 (see Fig. 6). Let ng), i= 1,2, be complex curves
. . : (k) _ (x) _ .

in Uy given by the equations z; = 0, z3 = 0, §5 x1° Ukl —>Uk

(%)

be the monoidal transformation of Uy with center Bl R

}kz: Uk — U be the monoidal transformations of U with

k1l k1l
center E(k) where ﬁ(k) is the strict image of B(k) inU and
2 2 2 k1 b
&': W' —=w' be the monoidal transformations of W' = w-ka

k=1

b
with the center B - ka Evidently%’ﬁ2k! 1
x=1 ’ THU -
(&3P (U, )

coincide with e - . Using this identification we add
# g Y, =) ¢

to @ W' —=W" the disjoint sum U(\% u,, —>U

1k§62k’ 2k x) and
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obtain \%: W —_—W.

Denote B = gb-l(B). Clearly codimmg = 1 so let [B] be a

il

~ ~ ~ ¥* ~
complex line bundle on W defined by B, [E] éﬁ {E]-[B]. Dividing

*
on local equations of B we get from éb @, gS*ul some global

~ o~

AL S
cross-sections & ,®, of [E]. Let v, = Eﬁ -l(vi-vinB),

i = 1,2 ("strict images" of Vo’vl)’ S = gb_l(s-sﬂB). Clearly

(o), =V, i=1,2.

It is easy to verify (see Fig. 6) that G;ﬂql =dg, Gi is

isomorphic to V and then diffeomorphic) and that G; has as

,

singularities only ordinary singularities and rational double points,
S is the locus of ordinary singularities of G;, s is isomorphic to
s (that is, g(S8) = g(s)), p and V are for G; the same as for V

and if h: V ——e»GQ is a minimal resolution of singularities of

~

G; then 7 is obtained from V by b O-processes (that is, V is
diffeomorphic to V # b0).

The construction of éb: W -—> W shows that it is enough for
us to consider only the case B = @ and to understand also what kind
of modifications we can do in the case when an exceptional curve of
the first kind Sl on V exists with the properties: (a) h(Sl) does not

contain rational double-points, triplanar and pinch-points of V, and

(b) 8. intersects with h—l(s) transversally in a single point.

1
Thus we assume B = . Now f = wo/wl is a meromorphic function

with no indeterminacy points and we can apply Theorem 1. We shall

use the same notations as in the formulation of Theorem 1. Using
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part £) of Theorem 1 we can find a non-singular point p € U, small
AN
closed 2-disk dp in U such that if dp denotes no(dp), then we have

a commutative diagram:

77| -1
-1 T7Hd,) Al A
4 __'-—_L>
T (a,) )
T T
no|d i
a —L
P %

Identify now V

— ~ ~ .
y with Vv -rC U77 (A-rc) (that is, we shall consider

— a A
V -TC and A-TC as subspaces of Vl

can construct two embeddings {: (de[-—l,O])xSl —— ¥V -TC and

~ ~ 1 ~ A
¥: (dpx[o,l])xs —— A-TC such that

- S A~
¥((4 x[-1,o])xsl)ﬂaTc = y(a xoxsl) =T l(d Yy =7 l(d ) =
P p - P - P
A AN A ~
v(dpxoxs ) = ((dpx[o,l])xsl) N arc  and
A~ l AAA
\v’ x €d, x'¢ dp, y €8 Ty(xx0xy) = x, Ty(x'x0xy) = x',
~,
V(xxoxy) = ¥(n _(x)xoxy).
Let ¢ =234, 7T = aé‘, s° = (a x(-1)) U {c_x[-1,0))(union in
P p’ p p p- P P
dpx[_lyo]):
2 A ~
Sp+ = (ch[O,l]) U (g;X(l)) (union in dpx[o,l]). We have
cxo=652,'c\xo=as2 and ((n | Yx id){e xo)=/c\ X 0.
P p~-’ p p+ ole, p P
2 2 2 1 1
Define 8 = S U . S d let Y = ¢(d x{-1,0]xs
e TpT (M) xid)Tp* and lec ¥, = ¥(d x[-1,0)x57),

and 7N as the identity map). We
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~

~ l [} "
v o= w(dpx[o,l]xs ), Yp =Y UyYy".

p Clearly we can consider Yp as a

tubular neighborhood in V, of W(PXOXSl) = _'[-l(p).

J-manifold obtained from V

Let v be a
-1
1 by surgery along T “(p).

We have a map e: Si X S:L ———>8Yp defined as follows:

A

Vv(x,y) if x € Si+ and
e(x,y) = P
V(x,y) if x € Sp_.

Now V = (Sing) Ue(vl-Yp)' We can decompose V as follows:

vV = Xl U X2 where

2 oy ]
X, = (sp_ X D )Uelsi Xsl(vo-Tc-Yp),

>

It
—~
)

2 A /\ N
s XD )Uels§+xsl(A - TC - Yp).

We can construct "diffeomorphisms" @'

: vV -TC—YL:, — ¥ -TC,

A AN\ " ~ A .
®": A-T'C-Yp —— A-TC such that @' (corresp. ") is the

identity outside of some small neighborhood of

2

W(Sp_xsl)(corresp. ’W\(Sg xsl), E'W(S2 XSl)) = W(dpxoxsl)

A A A
(corresp. w"(w(s§+xsl) = w(dpxoxsl)) and there exist
"diffeomorphisms” @': 52 —d 52 ﬁa\ such that
= pT p’ = “p* p

2 , 2 1
VXGSP_,X ESp+,y€S we have

N

® (¥(x,v)) = ¥(®'(x)x0xy), &"(¥x',y) = He"(x*

Now let C° = c-dp, T = f:\-&\p, TC® = r'l(c')
. - — Palias N .,
We can write V =-TC® = (dpxng)uq,(v ~TC), A-TC' = (deD2)Ua,,(£—TC),




47

where
1 -1 ~ 1 Al A
a't' d X8 —>1 d a': d X8 T 4
) Ha), L xst— TN
s . . -1 /\_]_ A AN
are some trivializations of T (dp) —>d_ and T (dp) ——>dp.
2 1

Let e': Sp—xs — W(dpxoxsl)(corresp. e": s§+xSL@{c§;xoxsl))

be equal to
(' 2 oty)elel.o (o1)(corresp. (®"|&vuap woly)o(eleo yal)):
|v(sp_xs ) lsp_xs |Wsp+xs ) |sp+xs

We have diffeomorphisms

X, —>(s2 XD2)

b Ue,(v -TC),

2 2 A A
X2 —?(Sp'k XD )Ueu(A-TC)’

and because of the commutativity of the diagrams,

' " ALA
sf}_xs1 —e—->¢(dpxoxsl) 324_xsl —=—— Y(a xoxsl)
pr I and pr i\

w| n
2 2L 4 s° ——g————> )
p- P p* P

2

— /N A

we can identify Xl with V ~TC* and X, with A-TC®, We see that
A ~

there exists a diffeomorphism 7)°: OTC° ——> OTC" such that V

is

. . — " N A,
diffeomorphic to V —=TC Un. A-TC.

- - PaN
small neighborhoods of T l(dp) and /i l(dp) N° coincides with 7.

We see also that outside of some

In particular, we have that 7° reverses orientations coming from
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orientations on TC® and Té\' defined by complex structures of V
and A’,

Suppose that an exceptional curve of the first kind S1 with
the properties mentioned above exists on V. Let 9:V —>V

be the corresponding contraction. Without loss of generality we

- 1 -1
can assume that p = h l(s) n s, (=c n sl) and s” NTCc = v {p).
Let ¢ = 7(c), ¢* = 9(c’) and TC" = 9(IC’). We see that
S, NTc*® = g, that is, we can identify TC' with TC® and construct
s, (c¢V =rc*(cV)) in V., Let 9: ¥ —>§ be the corresponding

~ — A AL
contraction, We see that V is diffeomorphic to (z -Tg')U,n_(A-TC ).

Now let us make the following remark. Let M be a simply-

3><S]' —>M be a smooth enmbedding. Suppose

3

connected 4-manifold, i: D

that there exists a smooth 2-disk d embedded in M-i(D xsl) such

that 4 N i(BDBXSl)) = ad = i(axsl), a € ap° = s° and if

(22

M= (s“xp°)U M-i(D3xsl) then N = (axD2)Ui d is a

Ha(pPxs) laxsl
smooth 2-sphere in M with self-~intersection equal to =1, From the
last condition it easily follows that M is diffeomorphic to M #P#Q
and if Q‘N: M —> M 1is the contraction of N to a point then M is
diffeomorphic to M 4 P,

1° N = S1 we see that z

is diffeomorphic to Vl A P, We use now the notations V and C for

Applying this remark to the case M = V

V and ¢ in the case when there exists S, with the properties

1
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formulated above and for V and C in the case when such Sl does not

exist. Our aim now will be the prove the following

] — A Ea Y
Statement (*): (V—TC')Un‘,(A-TC') is diffeomorphic to
vV 4 (2v+p+2g(s)~1)P # (v+2p+2g(S)-1)Q.

Before proving the Statement (*) let us show how our Theorem
follows from it.

Case 1). b # O. We have V = V and Statement (*) says that

i is diffeomorphic to V # (2v+p+2g(8)-1)P # (v+2p+2g(s)-1)Q.
Going back to our arguments with ‘% : W —=W (in the beginning
of proof of the theorem) we see that Vv is diffeomorphic in our
initial notations to V # (b-1)Q. Because \71 is diffeomorphic

to Vl # P we get a diffeomorphism

vy # P =~V # (2uv+p+2g(8)=2)P # (v+2p+b+2g(s)-2)Q.

Case 2). b = 0. Let s x 82 be s x s° or P # Q. We have

—~

V=V, V= vy # 52,3‘(_ s® and Statement (¥*) says that

v, # 5% x 8% mT 4 (2veprg(s)-1)p # (vi2p+2g(s)-1)0.

~

Notethat p is the number of branch points for the map ¢ —> S
where E,g are normalizations for C and S and C -—?g is induced

by h ot C —=8, Hence p is even and the condition p # O really

2

means P > 2. We see that v42p+29(S)-2 > 0. Hence, vl,;! szﬂés
: : 2 2 . 2 2

has odd intersection form, Suppose 5 LS is actually S X S .
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Then if Vl has odd intersection form we have by a result of Wall

(see [8]) that v, ;{/sexs2

vy #P#qQ and if V, has even
intersection form then Vl # 32x32 has also even intersection form
which contradicts our remark above, We see that always we can

write here vy # 82’5 52

NVI#P#Q and we get
v, #PF QT # (2v+p+29(s)-1)P # (v+2p+2g(s)-1)0.

Proof of Statement (*).

Vo3

~ A -

Let s'=8 - U ad4,c =m l(s')nL', ™ = n'lc,: c'—>s"',
=1 i=1 *

g = g(S). Suppose g > 0. We choose smooth circles a, i = 1,2, 2g,

r
on S* - U% , where q.,+«++,q. are all the branch points of
=1 1

£
on S' with the following properties: (1) if |j-i} # 9,0 then

Na, = - - i
o g and (2) if 1 < i ¢ g then a intersects a;

transversally and in a single point. We claim that we always can

a.
1

make our choice such that the following additional property holds:
(3) There exist smooth circles aj'_, i=1,++,2g, on C*' such that

v, . -1
Q. - " - Lo ) —>a. and for
; is a cross-section of |1't" l(ai) (al) >0,

1<i<Kg ai intersects ai_}g transversally and in one point. We
proceed by induction. Let a = 2, 0.(") = @ and suppose that

al’”"a2g with the properties (1), (2) are chosen such that

when k # O there exist smooth circles a)!, i = 1,2,-+*,k, on C'
i

: n"'-l(a.) —_a,

such that a! is a cross-section of n"| .,
1 L1 1 —1(0. X ) 1 1
i
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g, Q.

and for any pair (i,j), i,j = 1,2,...,k with |j-i] i

intersects aJ'. transversally and in one point (for k = O these

conditions are empty). Consider « Suppose that m"~1( )

k+1° “x+1

is connected. Recall that p # O and let q' = qi. Take a € NP

2g
a ¢ o/ a;, and a' € n"-l(a). Let i': I —>C®' be a path in C'
i=1
i# k+1

which is the lifting of ak+l to C' satisfying the condition
i'(0o) = a'. Because TT"'l(ak+l) is connected we have i{l) # a'.
Note that al’”"a2g is the so~called canonical basis of §'
and we have that S' - L2Jq e, is connected. Hence we can find a
el
29
smooth path Y € 5' - le o, connecting a with g' and such that
i%ill
Yy Na = a., (See Fig., 7). Take a point b € a b #£ a,

k+1 x+1°

29
» ¢ U a;, and let 8(a,b) be the arc on a connecting a and b
i=1

k+1
i#x+l
2g
such that & n { Ua.)=¢.
iFk+l
2g P
We can find a smooth path ¥Y(a,b) on 8' - {Ja, - U%
- i
i=1 m=1
iFk+1
i n =
connecting a and b and such that Ya,b ak+l [a,b}, the closed
path Y(a,b) u 6(a,b) is homotopically trivial on S' and if U/is

p
U s(a,b) then )N (&zaqm) = q'.

the domain on S*' with BU/= Y
(a,b)
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Fig. 7
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(We choose b and ¥(a,b) sufficiently close to a and Y). Denote

= q —6( U ¥(a,b). Because T is of degree two we get that if

a,b)

i': I —>C' is the lifting of Ek+l to C' satisfying to condition

T'(0) = a' then 1'(1) = a’, that is, ™ 3(&

a is not connected.
k+l)

It is clear that a SO0 10y st

1° ., is again a canonical

29

basis of S'. Because we did not change a,,---,0, we see that we

1’ K

could from the beginning assume that ﬂ"'l( ) is not connected.

x4l

Thus ﬂ"-l(

) has two connected components, say o d

0lk-*-l k+l1,1 an

ak+l,2 and if k+1 > g we consider the point

-1
— " n n ]
*x+1 (ak+1 oLk+l-g) OLk+l—q

and take for a' the one of a

K+l k41,1’ ak+l,2 which contains Xk+l'

[
a

This finishes our induction. Now fix some 10"

'
e,

K 2g

,aeg >
with the properties (1),(2),(3). We can assume also that

A ISV
Vi=1,2,...,2q, aj €C° (that is, af Nq, = @). Ifg=0

P
we take Qg = aé = @,
- >
Consider P,, ¢ = 1,2,-+-,v. Let P, =P, 6 - &_{ T, . We know
1=

n o= 3.2 b 4

that C NP, = L)(Ei - E/ N T/). We can assume that
i=1

By 0Ty = Gxo€ m}lde (0 < gL (0) < 28,00, (10,50 = (1,2,3)=(4)).

4 4 1 £(x) o .
Let Yi,i' = {x € Ei’gi,(x) < -—ﬁi,,(x), Im e—l-:(—)-{-y = 0, 1 =(l,2’3)'(1 si),
) . L 4 1 4 _
aj;+ Pe a point of P, with éi(aii,) = 0, ii‘(aii') =3 gi“(aii') = 1,
~k

4=1, 4
ii i) @i,



It is clear that all gfi

ac’', Peee,al
of oC Now %y ,a2g

o e s '
2C%og2%0g 41’ ’a2gc

ai,

non-singular model for C), ai

i>29, j> 29, |j-i] # 0, g,~9 and for 29 < i ¢ 29+(g,-9) o

intersects af
2g9¢
k_) a;

i=1
L
Si, i=1,2,3, on C'

i+(g,-9)

Egc

~i

aic(i) with a where

9(1)i’

(1) = 2, 9(2) = 3, 9(3) = 1, and s&*

- - . L
1T «i‘%

2gc

U

1 N
aj: j=1,--

smooth paths tj’

%
,Egc, and 5i’
j= 1:2:

L =1,2,--+,9, where int(

the end-point of tj is aj

a' nNa when
b J+(g -g) N

is a part of some canonical basis of C',

, Where gc =

transversally and in one point.

- a!
i=1 1

i°ﬁ)

*39, 29+1,-

tj), int(t

naoa'
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, are on different connected components

say

g(C) where C is the

n a3 =@ when 1 > 29, j < 29 or
L}

1

Evidently

is connected and we can find disjoint smooth paths

™~

4
- dp such that 61 connects

g: (1,2,3) — (1,2,3) is defined by

u 2% ).

. ok
nac' = (a a(i)i

ig(i)

) Yy Vo1

e l)' qg(i)i

with all

us

i=1

and connect u,

i=1,2,3, 4= 1,2,+--,V, Dby disjoint

= 152’3:

- sl

-,2g9+(g i
v
Jj=1 =1 ji=1

—g) f:
) cc' -

|..a

when j < g and it is

Jjtg

£ %
J > 2g+l1, the end-point of tA belongs to 5..

N\
We obtain a bouquet~55 of circles on C such that all elements of

AN

58 are "very close" to tj U aj,

j € (1,---,9)U(29+1,.n,29+14g,-9)
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or t_j U G'J+g (J € (1)2,"'39): or tjmjﬂc—g(j€(29+l’...’Egﬂc-g))’

or to ti‘e' u Bf, i=1,2,3, £=1,2,+++,v, It is easy to verify
~, A
that there exists a deformation retraction of C onﬁ and we can
A, AN )
consider C° as a regular neighborhood of ?ﬁ)in C°. Thus we can consider

A A —_ A

TC' as a regular neighborhood of ﬂ))in ;\\ Using TIO: C —> C we define
A

ﬁ: 77;1(%) and we see that we can consider TC® as a regular

neighborhood of ﬁ in V.

We will use now the following result of R. Mandelbaum (see [5]).

Theorem (R. Mandelbaum). Let M_,M_ be compact differential

1772
S}
Y-manifolds, Ml is simply-connected, ‘@ = V Sk be a bouquet of
k=1
n circles, iJ.: B — int(MJ,), j = 1,2, be "smooth” embeddings,

‘%j = ij(ﬁ), iJ',:@:j ——# be a map inverse to ij:%ﬁﬁj(c MJ-),

T.: T/, —>%. be a regular neighborhood of . inM_, T = T, .
j '@J ﬁJ g g ‘%J i’ =3 J'BT S‘BJ.
Suppose that a diffeomorphism 77: BTﬁl —>5T$2 is given which

satisfies the condition: T, =1 ilT Let Sl

2 oty xor ¥ = 1,2,7°0,m,

be disjoint smooth circles in M, such that each S is isotopically

2 k2
equivalent to i (Sl). Then (M. -T®, ) U_ (M, -T# ) is diffeomorphic to
2 'k 1 1’ n 2 2
Ml 3 §2, whexe HQ is obtained from M2 by surgeries along
1
sk2’ k= 1,2,-+-,n.

In our situation this theorem gives the following:

~ ~%
Let aj, j = 1,2,---,2gc, Si, i=1,2,3, £ =1,2,+++,v, Dbe
smooth circles in A which are isotopically equivalent to aJ'.,

4 .
j=1,2,e00,29g,, B,,i=1,2,3, 4= 1,2,+++,v, correspondingly.
C i
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= = N A = ~ ~ A
Then (V-TC") Un.(A-TC') is diffeomorphic to V # A, where A is
N ~ .
obtained from A by surgeries along aj’ j= l,2,---,2gc,
£,
Bi’ 1= 1)2;}) L= 1,2,"',\".
~ : I .
Let A be a U-manifold obtained from A by surgeries along

i=1,2, £=1,2,-++,v. We need the following

M_. be two compact differentiable 4-manifolds,

1’72

. 3 1 . .22

M, be simply-connected, t, 1 DOxsT —> 1nt(Ml), ti: 8“xp”~ — int(M
i = 1,2,3, be smooth embeddings, T, = J_( 3XS ), T, = tl(SexDe)

TinTJ' = g, Tj._ n T_; =@ for i # j, 1,j = 1,2,3, T UT ' ='k=JlT;;_:

1—1

20 23 € 6T3, aj,,a 13 € BTl,

Lemma 3. Let M

2

€
3155233 BTl, a, # )55 3y € oT

a'. €937, a'!, € or' Y.,Y, (corresp. Yé,Y') be smooth

aj, # 2132 %21 o7 B3 32 Tpol3 3

disjoint paths in M, (corresp. M,) such that for j = 2,3

o)
int YJ < (int Ml)-T (corresp. int Yi < (int Me)-T') and

corresp. a! . with a'

Yj (corresp. Yj) connects a,. with a 13 jl)’

1j jl (
Let *i: BTi ——+>6Ti, i = 1,2,%5 be diffeomorphisms respecting

S2-bundle structures over S! on BTi,aTi (which come from

. X 2 1
diffeomorphisms tila(D3x81)=Sszl' s x s ————>BTi,

' 2 1 ' . . 2.1 1
ti'B(S2xD2)=52xsl' $° x s ———>BTi and projection 8°x8~ —=>87)
. ' v
and such that for j = 1,2 ay; = %(alj)’ aj = %(ajl)'

Define ¢: T —> T' by *'T = ¢., and let
i i

M= M, T -T UW M2—T and M be a 4Y-manifold obtained from M by

surgeries along s, = Y U !

v! and s, = Y_,U y .
w|av 3 . av3
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Let (sexnz)i, i

SQXD2, (Szxsl)i

1,2,3 Dbe three different copies of

a<s2xo2)i.

Then there exist diffeomorphisms of Se—bundles over Sl
L% aTi‘ —_— (szxsl)i, i = 1,2,3, such that if

My(9) = ((((my-r)u (s7x0°

)1)U (52XD2)2)U9 (SQXDE)

)
1 ®5 3

3

then M is diffeomorphic to My #'Me(w).

Proof of Lemma 3.

. LI
Because Ml is simply-connected we can find 4-disks Di’ i=1,2,3,

1

embedded in M, such that int(Di)(i 1,2,3) contains T, and if

17
~ ) ~
Yj’ j = 2,3, is the part of Yj lying on Ml-\“KDi then Yj
i=1
intersects Di and D? transversally and each of them only in one

point, Consider Dg, =1,2,3 as embedded in a 4—gphere Si and let

%; = Si-Ti. We can consider Ti as a tubular neighborhood of a
circle embedded in Si and we get diffeomorphisms e E; ——>(S2XD2)i.

2

We have also that if e : BE} — (s xSl)i is the corresponding

diffeomorphism of boundaries(we use BTi = 85;) then ef is a

diffeomorphism of $°-bundles BTi ———>sl and (ngsl)%f——*—>sl

where aTi —-—>sl came from aTi = Bti(DBXSl) = tiB(DBxSl) = ti(S2XSl)
. 2..1 1 . ’ -1

and projection $°xs” —> 8. Define @, = ei-(vi) and Me(@)

as in the statement of the Lemma.



~4 4y . .
Let D, = ei(si—Di). In an evident way we consider
Di’ i=1,2,3, as subspaces in M_(®). We see that we can identify
2oz 25

PIL

3 3
M with M- LJ)DH U,. (M (o)~ where £ is defined

i1t fF 2T

4 . Identify

Yy ~
by f|8Du = £;: BDi -——e»BDi and £, = eilaDi

i
— 3,
M K,/D and Me(g)—ky}sj with the corresponding subspaces of M.
i=1 i=1

Taking a ball D14 c Ml’ with
e (o) o (U
int(D’) 2 [( D, ) u Y v Y ] we reduce the proof to the case
i=1

. . 4 ~
when Ml is diffeomorphic to S and we have to show that M is

diffeomorphic to M (&)

Let M = (M M) - l) ( 2($)—D . We see that we can consider M as
a 4-manifold obtained from M by surgeries along two O-dimensional

spheres, say S embedded in fi, and consider ﬁ' as obtained

2, 31

from M by surgeries along two l-dimensional spheres s appearing

2753
) , o .
on M in the following way: If Sj = [bjl,bje}, j= 2,3,

bjl’biQ € M then there are smooth disjoint paths 72,?3 on M such

on M are obtained

that {j connects bjl with bj2’ j=2,3, and s

canonically from ? and 7 . These considerations immediately show

2 3
that M is diffeomorphic to Me(w). (We use that if a,b € s and S

2253

is obtained from Sq by surgery along s® = {a,b} then § is
3

and if S is obtained from S by surgery

3

di f feomorphic to Sle
1 ~ , , 4
along some S xc, c € § then S is diffeomorphic to S ).

Lemma 3 is proved,
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We return to the proof of Statement (*). Lemma 3 shows that

KI is diffeomorphic to A' # VYP. Let K]I be a 4-manifold obtained

~

from A by surgeries along ai, i=1,2,.++,29 (we identify ai with

~

their images on AI

A' T A # po, that is, KI

). From the construction of A* we know that

is diffeomorphic to A # pQ # VP, Let

a;, i=1,2,-+-,29, be the images of ai', i=11,2,¢.+,29, in A and

A]I be a 4-manifold obtained from A by surgeries along

a, i =1,2,+..,29. Clearly KII

i’ is diffeomorphic to A # po # VP,

But from Lemma 2 applied inductively we get that AII is an

Se-bundle over Se. Because p ¥ O we have from a result of wWall

~

(see [8]) that A is diffeomorphic to (P #AQ) # o0 # VP, Let

a/, i = 2g+l,+-,2q,, (corresp. a,, £ = 2gc+l,---,QgC+V) be the
. . 4~2g
images of Oy i= 29+1,-o-,2gc, (corresp. 53 C, 2= Egc-i-l,o--,

29C+\’) in KII' A is a 4-manifold obtained from XII by surgeries

~

along a;, is= 2g+1,---,2gc+\J. Because AII is simply connected and
has an odd intersection form we have from results of Wall (see {8])
that A is diffeomorphic to (P# Q) # po # VP 4 [2(9c"g)+\’] (p # Q).
From the classical Hurwitz formula we have: 2gc—2 = 2(2g-2)+p,
that is, E(gc-g) = 2g-2+p, We see that A is di £ feomorphic to

(P A Q) # o0 # VP # (2g-24p+V) (P #£0Q) ~

(2Vi4pi2g=-1)P # (Vi+2p+2g-1)0.

This finishes the proof of Statement (*) and also the proof of

Theorem 2. Q.E.D.



83. comparison of topology of simply-connected projective surfaces
of degree n and non-singular hypersurfaces of degree n in €pJ.

We shall use an old classical result of projective algebraic
geometry. Because we need it in slightly modified form, we shall
give the main parts of its proof in the Appendix to Part I (see

p. 99). The result is the following:

Theorem 5. Let V be an irreducible algebraic surface in GPN with

- ,a Suppose that for

only isolated singular points, say gy q

any i = 1,2,--+-,4 the dimension of the Zariski tangent space of V
at a; is equal to three. Then for generic projection M: V —> GPB
we have the following:

(1) There exist open neighborhoods Uy, i=1,2,--4,q, of ﬂ(ai)

in ™(Vv) such that k/ i=1,2,-++,9

-1
mo_ . i : :
I L)) (Ui) —>U; is biregular.

a
(2) mv) ~ L//W(ai) has only ordinary singular points.
i=1

(3) If N> 5, V is not contained in some proper projective

N N .
subspace of CP and V —> P is not the Veronese embedding of

2 . . .
CP in GPS, corresponding to manomials of degree two, then the

q
singular locus of ™m(V) - &_}W(ai) is an irreducible algebraic
i=1

curve S,(V) in m(V) and n'l(s"(v)) is irreducible.
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(4) IfN>ZF and V is not contained in some 3-dimensional

q
projective subspace of eB then mv) - \v)"(ai) has pinch-points.
i=1

Theorem 4, Let Vn be a projective algebraic surface of degree n
embedded in GPN, N > 5, such that Vn is not in a proper projective
subspace of GPN. Suppose that Vn is non-singular or has as
singularities only rational double-points. Let h: Gg —> Vv,

be the minimal desingularization of Vn. Let Xn be a non~singular

3

hypersur face of degree n in CTP”.

T (V) =
Suppose l(Vn) 0. Then

0) b (V) <b (X)), b (V) <b_(x)

(in particular, b2(Vn) < bg(Xn)) H

0,) ind(V ) > ind(x );
1) V4 [, (x)- (V_)+1]p # [b_(x_)-b_(V )]0

is diffeomorphic to X # P;

2) V # (b (x )b (V)#1]p# [b_(x )-b_(V )]0

n

is diffeomorphic to [b+(Xn)+l]P # [b_(x )lo.

More precisely, let Tm: Vn —-———>(I!P3

in @p°, Vv

be a generic projection of V,

] 1 ]
o= m(vy), v = v(Vn) {corresp. p = p(Vn)) be the number of

triplanar points (corresp.,pinch-points) of V;, S = S(Vn) be the

locus of ordinary singularities of V;, d = d(S(Vé)) be the degree
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of S, and in the case when S is irreducible (tnat is,Vrl# ¢P2[2]
where ¢P2[2] is the image of Veronese embedding ¢P2-——>¢95
corresponding to monomials of degree two, see Theorem 3 (3)),
let g = g(S(V;)) be the genus of (non-singular model of) S. If
v, = epe[2](< @p?), let g = g(s(v})) = -2.

Then

0)* i) b (x) -b (V)=

(n2-6n+11)-1-b+(§7n) =

s

= =V 3

Nle

+ d(n-4) =

= 2V + p + 2g-2,

1) _(x) = b_(v ) =

= 2%£(2n2-4n+3) -b_ (v )=

n

= =2V -g-p + d(2n-4) =

]

YV +2p +dn + 29 - 2;

1 gy _ 2 )4
oa) Ind(Vn) - Ind(Xn) = g(dn-l) + gd +

N~
©
+

\Jiél\)

1)'=2) \Tn # {-v%m(n-l;)u]p # [-2v+—2—p+d(2n-la)]o =

Vn # [2Vip+2g-1]P £ [V+2p+dn+2g-2]Q w

(-]
~ Xna(P knp;;/ 20,

n, 2 n-1 2
where k = g(n ~-6n+1l), L = ——3—-(2n =4n43),
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Proof, IfV = ¢P2[2] we can directly verify that all statements

of Theorem 4 are true. Thus suppose that V # ¢P2[2]. Consider

3

generic projection T Vn — qP and let T': Vn -——>V; be the

corresponding map of Vn to its image. Let Xn be a non-singular

3

hypersurface of degree n in €@P” with the properties: Xn does not
contain the images of rational double points of Va and Xn is
transversal to S = S(V;).

It is well known that the complex dimension of the Zariski
tangent space for a rational double point is equal three ([9]).

3

Now Theorem 3 shows that we can apply to VI'I,Xn C CP Theorem - .
Evidently, b = §.X = dn # 0 and we obtain from Theorem 2, 1)

that X # P is diffeomorphic to
?n # [2v+p+29-11P # [V+2p+dn+2g-2]0.

Let E' be a generic plane section of V;, E = ﬂ'-l(E'),
C = ﬁ'-l(s), K, be a canonical divisor on V (that is, K, = h(KG)

. . o Sy N 2
where Kv is a canonical divisor on V), m': V; —> CP be a

. . 2 ~ ~ oo .
generic projection of V; on P, M= m'n', D Dbe the ramification

locus of T in Vn and F = O be the equation of VQ in mPB.
Considering a partial derivative of F corresponding to

T V;.———>¢P2 we can easily see that (n-1)E = C+D (= means here
"is linearly equivalent"), Because K¢P2 = =34 where g is a

projective line in ¢P2 we have Kv = =3E+D, Thus D = KV+3E and

C = (n=1)E = D = (n-4)E - K,
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Let g, (corresp. gE) be the genus of (the non-singular model of)
C (corresp. E). Because C has 3V ordinary double points, E' is a
generic projection of E in ¢P2 and E' is of degree n and has d

ordinary double points we have

29 -
gC 2

(KV+C)C ~ 6V = (n-4)E((n=-d)E KV

)%n

(n-U (n—N)E.KV - 6v,

n{n-3)} - 24

(KV+E)E = 29 -2
and

K,.E = n(n=4)-24

2g,-2 = (n=4)°n = (n~4)[n(n-b)=2d]~6y = 2d(n=4)=6v .

Let E,S be the normalizations of C and S8 and p: ¢ — § be the
canonical map corresponding to ﬂ'lc: C —> S, Because p is of

degree two and has p branch-points we have
2g,-2 = 2(2g=2) + p and

o= Log o) = & _ Glnolt) - _ P
2g2_2(2gce) 2_d(1nl+) 3V 5 -

We see that 2v+p+2g-1l = =V+ £+d(n—14)+l and

2
V42p+dn+2g—2 = -2v+§p+d(2n-ll ).
Note also that in [2] it is proven that Xn # P is diffeomorphic

n-1
3 (

)=2') of our theorem are true. The

n 2
to k P #’LnQ where k= g(n -6n+l1l), L, = 2n"=4n+3). We see
1

that the statements 0'),
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statement Oa)' can be verified now by direct calculation (using the
formula 2g=2 = d(n-#)-}v-%).

Now we have only to verify the statement O),

But it immediately follows from O') using p ¥ O (Theorem 3 (4))
and p = 0o{2). (If b+(Xn) = b+(Vn) we have g = 0, p = 2, V = O,
Then d(n-4) = =1 and d = 1, n = 3. But for a surface V, we can

3

always find some ep' in €2 which contains Vj). Q.E.D.



B4, sSimply-connected algebraic surfaces of general type.

Theorem 5, Let V be a simply-connected non-singular (complex)
algebraic surface of general type, Vmin be the minimal model of V,

c=c(v) = Ks (self-intersection of the canonical class),
min

c =D (v), b_=1p_(v),

2
K Py = pg(V) {geometrical genus of V), b,

and k(x), £(x), K(X), L(X), R(x), I(X) € @[X] be polynomials of

degree three defined as follows:

R(x) = %(x2-6x+11); L(x) = E%i(zxg-uxg);
K(x) = K(9(5x+4))=x; L(x) = T(9(5x+4));
k(x) = K(2Xx+1), 2(X) = L(2X+1) .

Let m be a positive integer and

T =v4 [ﬁ(mgc)_epg_l]p p [max(o,i(m"‘c)-lopg-9+€)]Q,

G% if ¢» 6 or c»3 and p_» 4,
v = Gh if ¢=2 or c= 3,4,5 and Py < 3,
V. if ¢ = 1.

Then
(1) ¥ is completely decomposable;
(2) v # [k(p,)]P # [max(0,L(b,)-b_)]o =
=V # [k(pg) 1P # [max(0,4(p )~b_)]Q

is completely decomposable.
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[Remark. Note that

- 3 2 .
K(b+) = 30375b] + 68850b+ + 520011b+ + 13%092;

- 3 2 .
L(b+) = 60750b+ + 1111750b++1_1i265b+ + 28595;
k(pg) = 243000p§+251100p§ +21.1738pg + 164321 ;
2pg) = 1486000p3+ 129zsooop§ +11520p_ + 341360. ]

P . i =~ N = -~= - .

roof. Using V ®V . # aQ where a = c-c = b_ b_(len)ZC
and b+ = Epg+l (Hodge Index Theorem) it is easy to verify that it
is enough to prove our Theorem only for the case V = Vmin’ Thus

assume V =V _ . .,
min

Let m > O be an integer such that the linear system |mKV|
has no base points, the regular map E;’m: vV — EPN(m) corres-—
ponding to |va| is birational and Sbm(v) has as singularities only
rational double-points. Let V = S;m(v) and h: V —V be the map
corresponding to éﬁ%' We see that h: V —V is the minimal
desingularization of V and we can apply to V the Theorem 4, Note
that the projective degree of V is equal to (MK .mK) = m2c and

b_= lOpg+9-c (because b2(V) = Db +b_= 2pg+1+b_ (Hodge Index Theorem)

and l+pg = %E(c+2+b2(v))(Noether Formula)).

We get from Theorem 4 that Gg is completely decomposable.

Now results of E, Bombieri[3] show that we can take m = 3
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z

if ¢> 6 or ¢ Bandpgzll, m= 4 if ¢> 2 and m = 5 in all
cases. This proves the Statement (l) of Theorem 5.

The Statement (2) follows from (l). We have to remark
only that 32c < 9(51?’_#4) (because ¢ = 5b++1l-b_),
Ugc £9(5b++4) for ¢ < 5 (because b > 1 and

4%c < 8o, 9(5b++u) > 81) and 52c < g(5b++u) for ¢ = 1.



§5. Topological normalization of simply-connected algebraic surfaces.

Recall that we say that an algebraic complex function field R
is topologically normal if there exists a non-singular model
V = V(R) of R such that V is almost completely decomposable
(see [4]). Let R',R Dbe two algebraic complex function fields of
two variables. We say that R' is a satisfactorily cyclic extension
of R if there exist non-singular models V' and V for R' and R
correspondingly and a regular map £: V' —=>V such that f is a
ramified covering and the ramification locus of £ in V is non-
singular and linearly equivalent to {deg £).D where p° > © and
ID| is a linear system in V without base-points and fixed
components, (This is a small modification of the corresponding
definition in [4].)

We define ﬂl(R) = nl(v) where V is any non-singular model of R.

Definition 2. Let R be an algebraic complex function field of
two variables with ﬂl(R) = 0. We shali say that R' is a
topological normalization of R if R' is a satisfactorily cyclic
extension of R and R' is topologically normal.

It was proven in [4] that for any R with 1_(R) = O there

1
exists a topological normalization of R which is a quadratic

extension of R. Now we shall give to this result more explicit

form.
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Theorem 6, Let R be an algebraic complex function field of two

variables of general type, ﬂl(R) = 0, V be a non-singular model

of R embedded in a projective space EPN with homogeneous

coordinates (zo,---,z ). Let n= deg V, m = [—E] +l([—2] is the
V3 1B

integer part of —E).

3

Suppose that V is not contained in the hyperplane given by

z = 0. Let «§62m(20:"'°‘:2N) be a homogeneous form of degree 2m

of ZgstttaZy such that the corresponding hypersurface section of V
) ) g%m(zo:...:zN)
is non-singular. Let f = ( 5 ) y and R' = R(V£). Then
2
o

R' is a topological normalization of R.
Proof. The theorem follows from Theorem 4, results of [4],
{10], Sections 4 and 5, and from the following remarks:
a) If Em is a hyperplane section of V of degree m then
2 2
Qg(Em)—Q = (Kv+mEl)mE1 = mK,E,+n n > m n#m (because
K,.Ey > o).
r n
b) For m = L——]+l
V5

m°n 4+ m 42 2_%(n2—6n+11) -b,.

Theorem 7. Let R be an algebraic complex function field of two

variables of general type, ﬂl(R) = 0, Py = pg(R) (geometrical genus),

P, = P2(R)(2—genus), c= Pg-pg—l. Denote by
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6([33cl+l) if < >6 or c» 3 and Py > U

a = a(R) = 8([%§£]+1) if ¢e=2 or c¢= 3%,4,5 and Py <3
150 if ¢ = 1.

Let aza,aa be two regular pluridifferentials of R of degree 2a

and a correspondingly such that Ba # O and on some non-singular

model V of R zero~divisor (a. ) of a is a non-singular curve
a 2a‘o 2a

onV, Let f = —%3 and R' = R(YE). Then R' is a topological
Pa

normalization of R.
Proof. The theorem follows from Theorem 5, results of
[4], [10] and from the following remarks:
Let V be a minimal (non-singular) model of R, m' = % and Em,

be a non=-singular element of Iim'va where 1 = 3 if ¢ > 6 or ¢ >3

and pg > 4, i }y if ¢ = 2 or ¢ = 3,4,5 and pg <3 and i = 5 if

.2 2
¢=1. Let n=i"c. Then K, = Pg-pg-l = ¢ (because
Hl(v, [QKV]) = 0 (see [11]). As in the proof of Theorem 6

2

we have Eg(Em,)—2 > (m')“n+m' and (m')2n+m'+2 > %(n2-6n+ll)-b+.

Q.E.D.



APPENDIX TO PART I

GENERIC PROJECTIONS OF ALGEBRAIC SURFACES INTO EP3

1. A theorem of F, Severi.

The following theorem was proved by F. Severi in 1901
(see [12])) in non-singular case. We need a slightly more general
fact. Our proof is very close to Severi's arguments.

Theorem (F. Severi). Let V be an irreducible algebraic surface

5 such that V is

5

not contained in a proper projective subspace of CP-. Let K(V) be

5

with only isolated singular points embedded in TP

the variety of chords of V (that is, the algebraic closure in @P

5

of the union of all projective lines in @CP~ connecting two
different points of V).

Then 4 ¢ dimq:K(V) < 5 and dimcK(V) = 4 iff V is a projective
cone over some algebraic curve or the given embedding V ————>¢P5
coincides with the Veronese embedding of ¢P2 corresponding to
monomials of degree two (that is, V = ¢P2[2]).

Proof, It is clear that K(V) is irreducible and dimcK(V) < 5.

Suppose that dimmK(V) < 3. Let E be a generic hyperplane
section of V corresponding to some hyperplane cpg < ¢P5. Since
A GPN, we have K(E) # K(V)(X(E) is the variety of chords of E).
Hence dimcK(E) < 3. Because E is non-singular, we obtain from

dimmK(E) < 3 that generic projection of E in ¢P2 is also non=-singular.
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Denote by E' the image of this projection (clearly, E' is

isomorphic to E). Let [£] be the restriction on E' of a complex

B!

line bundle on ¢P2 corresponding to the projective line in ¢P2.
Then dﬂwﬁf«E',G[L]E,) = 3, It follows from this that E is contained

in some ¢P2 s GPg. Hence V is contained in a proper projective

5

subspace of @CP~. Contradiction.

Now consider the case dimcK(V) = 4§, Let x be a generic point

5

of K(V). Denote by rx the cone in @CP- which is union of all '"chords"

of V passing through x. It is clear that dimcrx < 2. Suppose
dimcrx = 1. Then using dimmK(X) = 4 we have that a generic
"chord" of V contains an infinite number of points of Vv, that is,

vV = ¢P2. Contradiction. Thus dimqrx = 2,
4 5

Consider a generic hyperplane CP_ of QP

4
- n
& and let E v mPE.

As above, dim_K(E) = 3. Because K(V), k(v) N EP; and K(E) are

[
irreducible, K(E) = k(v) N EP; and diqr(K(V)nmP;) = 3, we have

K(E) = x(v) N cr:Pu

s+ We can assume that x is generic on K(E). Let

zl,---,zm be all the chords of E passing through x. It is clear
L] m
' n =
that T N ap, WER
i=1
We can assume that x is a generic point on a generic "chord"

of E. Suppose m > 1. Then for a generic point x of a generic

"chord" of E there exists another "chord" of E passing through x.
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Let a,b ke two different generic points of E, and e be a
generic point of the "chord" k(a,b) corresponding to a,b. From
our supposition it follows that there exists another "chord" k(c,d)
of E, where c,d € E, ¢ # 4, such that e € k(c,d). Because e is
generic we can assume that ¢ is a generic point of E. Because
generic projection of E in CI:P2 has as singularities only ordinary
double points, dim K(E) = 3 and a,b are generic on E we have:
k(a,b) NE = {a,b} and c ¢ x(a,b), a ¢ x(a,b).

3

Now let ﬁa: E ——e»EPB be projection of E in @P~ with the

center a, E' = ﬂa(E)(that is, the closure of ﬂa(E—a)). Let M be
y

the two-plane in EPE

=T (b), ' = M (c), @' = 7_(q).

containing k(a,b) U k(c,d), M' = ﬂa(M),
Since b and c are generic on E, c,d € kx(a,b), a ¢ x(c,d),

we have that b' and c' are generic on E', b' # ¢', Db' # 4',

c' # d'. We have now that M' = k{b',c') (which is a generic

"chord" of E') meets E' in a third point.

. . : 4
Because E is not in a proper projective subspace of EPE,
E' is not a plane curve in ¢P3. It easily follows from this that

dimcK(E') = 3, that is, K(E') = cp’. a generic projection of E' in
¢P2 has the following property: if E" is the image of E' then E"

has as singularities only the images of the singular points of E'

with all the branches as images of the branches of the singular
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points of E' and finite number of ordinary double points. [This
can be proved by stability arquments in the singular case as well as

in the non-singular case]. We get a contradiction with the facts:

3

K(E') = @P” and a generic chord of E contains three different points.

Thus we obtain m = 1, But this means that x is a non-singular

point of I',, that is, I'_ is a plane in ¢P5. Let C_ =D, From
X x x x

r‘x n ang = Ll and £, is a gemeric "chord" of V, that is, it

meets V only in two points {because £, is also a generic "chord"

1

of E) we see that C, (which must be a curve) has projective degree

two. The construction of Px gives us a rational map of K(V) in
the grassmanian of 2-planes of EPS. Let T be the image of this
map. Since dimcK(V) = 4 and dimmrx = 2 we have that dimET > 2.

It is clear that for generic x,y € K(V) corresponding Cx,Cy are
algebraically equivalent and let us consider now the maximal

t € T'} of curves on V which

irreducible algebraic system {C(t)’

contains C, as a generic element (T' is a subvariety of the
corresponding Chow variety). If for generic x,y € K(V) we would
nave I, # Ty and C, = Cy then C, is a projective line. This
contradicts to deg(Cx) = 2.
But that means that the natural rational map T —=>T' is of

degree one and dimmT' > 2.

Now let us consider the different possible cases.
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Generic Cx contains some of the singular points of V., Because
V has only a finite number of singular points and T' is
irreducible we see that there exists a singular point ag of V

such that every C( t € T', contains it,

t)?

Generic CX is irreducible. $Since dimmT' > 2 then a generic
point a € V is contained in infinitely many irreducible

. c, .Nc
elements of {C(t)} Let ¢,,C, be two of them, o,cy 2 a,

a is non-singular on V,and hence for any C(t) which is "close"

to C,, we have that C(t) intersects C

o in some point a' which

1

is "close" to a. That means that there exists a non-empty

Zariski open subset U, in T' such that for any t € t&

1

corresponding C(t) intersects C. in some point a(t) # a.

1

By the same reason we have analogous U, © T' for C,. and

2 2t ©1

C, are of degree two and let rl’rg be 2-planes containing

i i cl. NnT
C1 and C2 correspondingly. Since aO € Cl n 02 1 o
5 which contains

there exists a hyperplane cPiz in P

r

and T2. Let E be the corresponding hyperplane section

1 12

of V. Evidently E12 = Cl+C2+D, where D is some non-negative

divisor (of Weil) in V. Because V ¢ E.,© EPig we have that

there exists a non-empty Zariski open subset U ©€ T' such that

All this

for any t € U the corresponding C(t) is not in El2'

shows that we can choose such C3 € {C(t)} that C3 is

irreducible, different from Cl’cg’ not a component of D and
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intersects < in some a' ¥ a, and C

n o ' [ (I 1
E ., C3 a,a',p'. Ifa b' we have from C, # C, that

, in some b # a . We have

intersection index of C_ with Cl+C2 in a' is greater than one.
>

C, > 3. Contradiction (deg C( = 2).

a t CP_ .
In any case, we get @ i2 3 2 t)

Generic Cx is reducible. Then each component of Cx must be a
projective line in ¢P5. Suppose that there exists only a finite
number of such lines which contain ag. This means that all C(t)
have a common line, say Ll‘ Thus every chord of V intersects 11.
Take generic mpg $ Ll and the corresponding E., We obtain that
any chord of E is passing through some finite number of points of
E N ‘l and thus it contains three different points. This
contradicts dimmk(E) = 3 and the fact that a generic projection
of E on ¢P2 has as singularities only ordinary double points.

We get that there exist an infinite number of projective lines

of ¢P5 in V containing a

5

o+ The existence of the Chow variety of

projective lines of €P~ which are contained in V gives us an
irreducible l-parametric algebraic system of such lines which are

passing through a,. We obtain that V is a cone over some

algebraic curve.

Generic Cx does not contain a singular point of Vv,

Generic Cx is reducible. As above we have an infinite number of

5

projective lines of €P” in V. The corresponding Chow variety
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shows that only a finite number of them can be "isolated", that
is, not in some infinite irreducible algebraic system of such
lines. If generic Cy would contain such an "isolated" line,

then we would have that every C( € {Ct} contains a certain

t)

line zl. This leads to a contradiction by the same arguments

as above (Case lb). We get that generic C, is a union of two

lines L. _,4

1x » which both are in some irreducible algebraic

2x

systems. Thus 4 > 0 and for any curve d

1
1x" "1x 2 9, AEx'tZX

in Vv, Cx.d > 0 (intersection numbers are defined because Cx

lies in the non-singular part of V). Because Cx is a plane

2) =52+21, 2 > 2,
X

2
curve we have 4. .4 = 1 and (Cx v 1 1 tox oy 2

1x 2x

Take now a different generic C_ ., If C contains £ or 4
Yy Y 1x 2%

we get that all C( ) € (C(t)} have a common component which is

t
i ib . = 4 4
impossible (as we saw above) Thus Cy 1y+z2y’ where zly, 2y
are different from &  ,4 and not "isolated“. If C_.C =0
1x’ 2x Xy
L, .4 = 4 = Ny = A = 0. i
then 1xf1y zlx oy £2x 1y zQx oy o] It is easy to
see that these equalities give that le and £2x are in the same

irreducible algebraic system as Lly‘ Thus £, .4 0.

Ix® 2x% 1x" 1y

Contradiction.

We get CyCy % 0 and let a € C_ Nc As above, we take

v*

a hyperplane containing Cx and Cy. Let Ex v be the corresponding
s

hyperplane section. Because Cy and Cy have no common component
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we have that Ex = Cx+cy+D where D is some non-negative divisor

s

(of A. Weil) on V, As we saw above, C,.D > O. We have

2=E L _=C_ +CC_ + D,C_> 241 = 3.

Contradiction.

Generic Cx is irreducible. Since dim T' > 2 we have for a generic
point a € V that there exists an infinite number of irreducible

1 and C2.

We can assume also that C1 and C2 are in the non~singular part

C(t) containing a. Take two different ones, say C

2
of V. We see that C > 0, that is, Cx > 0, and for any algebraic

12

curve d onV, C_.D> O, As above, take a hyperplane section E

X 12

V co ini . = C.+C_ 4D, wh D is a
of containing Cl and C2 We have E12 1¥C, D, ere

non-negative divisor (of Weil)} on V, and

2
2 = Ey,.C = 2C_ +D.C_.
We tC2—l D.C_= 0. N that D # 0. E,, is
ge x = N L = . ow suppose . 12

connected and thus D either contains C1 or C2 as components or

intersects with C1 or C2 in some points., In all cases we have

a contradiction with D.C2 = O, Thus D = O and El2 = Cl+C2.

Now C1 and C2 are Cartier divisors on V and we can consider
corresponding complex line bundles [Cl], [CE] over V., Clearly
[E] = [Cl]+[C2], where [E] is the line bundle corresponding to

hyperplane sections. We have the following exact sequences:
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(1) o) ——>H°(V,@V) —_— H°(v,ov[cl]) ——-—>H°(cl,sc [cl]c )

1 1

(2) o ﬁHo(V,GV[Cl})—) H°(V,@V[cl+c2]) —u°(c ole )

6 [c. .+
3
277c, 1 5

. 2
Cl and C2 are both rational non-singular curves. From Cl =1,

(C1+C2)C2 = 2 we get

(3)  aim. H%(C

. o] _
- 1’°Cl[c ) = 2, dim, H (c2,sC [cl+c2]C2) = 3.

]
¢ 2

Because dim, HO(V,& ) = 1, we obtain from (1),(2),(3) and from the
fact that V is not in a proper projective subspace of ¢P5

. (o)
dimy H (v, 6,[c,)) <3

. (e} . [e}
6 < dim, H (v, GV[E]) = dim;, H (v, ov[cl+c2]) <

. [o]
< dimy H (v, sv[cl]) + 3 < 6.
) , o . o _
This shows that dim, H (v, GV[E]) = 6 and dim, H (v, sv[clj) = 3,

2
Because Cl = 1 and C1 is irreducible we have that global cross-—

sections of [Cl] have no common zero and we can define a regular
map £f: V ——e>¢92 corresponding to HO(V, QV{CI]). It is easy to
see that f is surjective. We can find a @ € (v, GV[Cl]) such

that zero~-divisor of &, say C., is an irreducible algebraic curve

in V. Because the degree of Cl

is two we have that Ci is

contained in some 2-plane of Te°, Ci = 1 gives Ci Acy 4 g

of V containing C, and C.

and we can find a hyperplane section E 1 1’

1
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: > 2
E,=6% 1 o)

we get E,;.D' = O, that is, D' = O, E, = C1+Ci. Let [E'] be the line

bundle over ¢P2 corresponding to 24, 4 is a line in ¢P2. From

1 ] — = - = . ! =
+D', D' » 0. From E| = (cl+c N, E,.Cy E,.Cy 2

E, = C1+Ci we get that [E]} = £*[E'], and

1°(v, s [E] 2 exx°(ep®, 6 S[E']).
TP

But dim, HO(V,@ [E]) = 6 and also dim¢H°(mP2,G¢P2[E']) = 6.

We have

2

(4) BO(v, o [E]) = £1°(eP, o  o[E"]).

5 2

be the Veronese embedding of TP
5

2
Let £ : CP7 —>CP
(2]
corresponding to [E'], i: V —> @P” our original embedding which
(because of dinm,, H°(V,6 _[E] = 6) corresponds to [E]. E = [£*E']

and (4) give us the following commutative diagram:

V ——t PP

£
£{2]

EP2

which shows that V = f[2](mP2). Q.E.D.
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Definition. Let V be an irreducible algebraic variety embedded
in CPN, dimmv = k, Tx for non-singular x € V be the k-dimensional
. . N N*
projective subspace of CP tangent to V at x, @F be the dual
. N . . N*
projective space for @P and V* be the algebraic closure in &P
of the set of all t such that the corresponding hyperplane H¢ in
N

+*
¢P" contains T, for some non-singular x € V. We call v* (caP )

the dual projective variety for V.

Duality Theorem. If V is as above, then

. . . ; N*
(1) v* is an irreducible proper subvariety of P

(2) there exists a proper subvariety S(V*) in V¥ such that for
any t € v*-5(Vv*) the corresponding hyperplane H, in @B contains
Tx for some non-singular x € VvV, and for any such x the
corresponding hyperplane H; in EPN is tangent to V* at t;
(3) v is dual to V*;
(%) in the case dimGV* = N-1 we can take S(V*) so that for any
t € v*-s(v*) and for any non-singular x € vV with H 27 the
hyperplane section Et = Ht N v has at x a non-degenerate
quadratic singular point.

Proof. (1) Let VSm be the set of all non-singular points

J

*
of v, M'= {{x,t) €V__ x et , H 2.1, fi: I —> Vg

sm t X m

*
fé: r ———>¢PN be the maps induced by canonical projections.

It is easy to see that fi: T ———>Vsm is a fibre bundle over
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V_, With a typical fiber isomorphic to epV ¥l and that v* is the

*
algebraic closure of fé(r") in €F . We obtain that
dimcr' = kN-k=-1 = N-1 and that I'' is irreducible. Hence
dimmV* < N-1 and V* is irreducible.

~ N*
(2) Let V De the algebraic closure of I'' in VxgP |,

'and £'.

: V —>V* be the maps induced by fl 5

fl: vV —>V, f2

Take a point (vo,to) € P" such that t, is nonsingular

in V* and df, is surjective in (vo,to). Let (xl,---,xN) be some

affine coordinate systewm with the center in Vs YistttsVy be the

restrictions of x ,-..,x  onV_ (in some neighborhood of vo).

We can assume that the affine coordinates are chosen so that
there exists an open neighborhood U of Vo in Vsm such that
Y157ty are local coordinates of V in U and Yiep1? " YN are
regular functions of Vst teYy in U. We shall use capital

letters vee LY

N instead of yk+l,---,y .

Yp1? N

If v' € U then any hyperplane of PN passing through v'
N

is defined by an equation: a  + 3 ax, = O where
i=1

e~

a_ + gvaiyi(v') = 0. This hyperplane is tangent to V* at v'
i=1

iff it contains the following vector (with the origin in v'):

(dyl(v.)""JdYN(V'))-
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We have

z a.dyi(v') =0

i=1

or

N Eoooy
iajdyj(v') + }ki a Z_Y: \——l-(V')dyJ.(V') = 0,

. 1 oy .
i=1 i=k+l b j=1 yJ
% N JY .,
p R
‘. (aj + X a w(V‘))dy.(V‘) = 0.
j=1 i=K+1 j

We obtain the following system of equations:

or

These equations define an N-k-l-linear subspace gk(v'} of
N* D N .
TP parametrizing all those hyperpla es of TP which are tangent
to V at v'. It is clear that one of ay, i= k+i,...,N, is not
zero at to' We can assume that aN(to) # O. Taking U smaller
: N*
we can choose an open neighborhood U& of t, in CP such that

ag # O in U&, Uﬁ N V* is a non-singular open subset of V¥ and
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t' € UI\'I N V*, v' € U, Take affine coordinates in UL:I defined

as follows:

]

i .
sy =3, 1= 0,1, ,N~1.

Z

Now we write the equations {1} in the following form:

N-1 k dy X oy
i N
so".ESJ.(ZS,YJ'-YJ-)Jrz YYJ-YN’
i=k+l 7 oyo1 7 j=1 3
(2) .
-1 ¥, v,
s, = - s, STo -5 s d=1,2,-00.k
I ik T oYy Oy
Taking differentials we have
N-1 % éYi X x N-1 BQYi
ds_ = z (L—Y —Y.)ds.+2[( ——=<— S,
S R R R L LA
BQYN :|
(3} + ( <)y, | 4¥, ;
=1 Bylaym m 4
N-;l aYi k [ N-1 52Yi BZY
ds, = - —= gds, - z (Z‘ s, ) + :ldy'
z!
J i=k+l ayj R = R 0 i R ayjayl ayjayl
J = 1,2, ,k,
Let U' = UI\'I N v*¥, Any tangent hyperplane in a generic point

of U' is defined by a non-trivial linear combination of

dsg,eee,dsy g

ds_, - satisfy (3).

’dsN-l

equal to zero for any choice of dyl,---,dyk, where

¥
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One such combination is
N-1

k
(41 ds_ + E:y.ds. + E: Y.ds, = O .
° 3= ) ikt ot

N* .
The corresponding hyperplane in CP has the following

equation:
N-1

v (syme (e0)) + ) ¥, (v ) (syms (21))-0.
i=k+1

ek

{5} so-so(t') +

we can write {5} in the following form:

x N-1
(6} s  + jZAYj(V')SJ " ) ¥;(vi)s; +y(v) = o,

The point in QPN which corresponds to this hyperplane is v',

There exists a non-empty Zariski open subset V; in V* such

that V; is non-singular, V; c fé(P') and for any z € fé-l(vi),
(de)z is surjective. We see that we can take S(V*) = V*-Vi.
(3)*) Let Xx* = dim¢V*, Pi = {{x,t), x € o™, t € vi (vi is the

*
same as above), the hyperplane H; in EPN corresponding to x
. . . . N*
contains the k*-~dimensional projective subspace Tt —_— of CP
3

— e
The proof of (3) which we give here is due to F. Catanese.
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tangent to V* at t}. It follows from (2) that f'-l(v*) = S
2 1’ - "1

* ~
Let Tl be the closure of Ti in CP xgP . We obtain ¥ c rl'
Now the same arguments as in (1) show that rl is irreducible and

dimcrl = N-1l. Because dim¢6‘= N-1 we get V = rl' Evidently

prcPer is the dual algebraic variety for V¥, Thus we proved that

V is dual to V¥,

(4) Using the same notations as in (2) we can assume that

the local equation of Et in some neighborhood of x has the

following form:

k N-~1
Zsj(t)yj + Z si(t)Yi+YN = 0
j=1 i=k+1
N-1 aeyi 62YN
Denote b ,6 = E: s, (t) ———(x) + S—————(x), j,4=1,2,-
34 g b ooy, Y0¥y
We must prove that ):klbjzu = k. Suppose that it is not true.
Then there exist not all equal to zero constants ;1""’Ek such
that i 3 N%l aQY_ BQYN
c.( s, (t) L(x) + )) =0 .
i L7 dy .0 dy .dy,"
=i N ¥49v, Y 9%
_ %_ oY,
For i = k+l,--.,N denote c,6 = , c, s=(x)
Poog=r Y

Now we obtain from {3} that
N-1

(7) ) G, as, = o.
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* : :
Because dimg V' = N-1 and t is a non-singular point on V¥,

it follows from {4} that SysttaSy

at t, But this contradicts (7}. Q.E.D.

are local parameters of V¥

Corollary 1. If dimmv* = N-1, then f2 is of degree one.

Proof. We use the same notations as in the proof of the

Duality Theorem. We can assume that S(v*) D fE(GLP') and

v*-s(V*) is non-singular. Let t € v*-g(v*), 21,2, € f;l(t),
_ oo * ¥
X, = fl(zi), i = 1,2. We have that X%, € Ve, and Hxl’Hx2 are
tangent to V¥ at t. Since dim V¥ = N-1 then H* = H* and
T x x
1 2
X=Xy, 2y = 2. Q.E.D,

Corollary 2. If dimmv > 0, dimmv* = N=1 and V has only
isolated singular points then there exists a proper subvariety
s*'(v*) 2 8(V*) such that for any t € v¥-5'(V*) the corresponding
hyperplane section Et of V has only one singular point which is
an ordinary quadratic singularity.

Proof. Extend S(V*) as in the proof of Corollary l. Let

SRR be all the singular points of V and

§(v*)

N
s(v*)U( U(H; “v*).‘v/ i=1,2,++,N H; P V* because
i=1 9 i

dimmv* = N-1 and H: 2 V¥ would mean that V¥* = H; and
i~ i

dim¢V = 0 (V is dual to V*), Thus S'(V*) is a proper subvariety
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of V¥, Let t € v*~5'(V*), x Dbe a singular point of E . Because
x € V , We have that (x,t) €V (and H 2 Tx). As in Corollary 1
we see that x is unique on E_. From Duality Theorem (1) we get

that x is an ordinary quadratic singularity on E Q.E.D.

e

Corollary 3., Let dimcv = 2, Then dimcv < N-1 iff there
exists on V a l-dimensional algebraic system of projective lines
{LH’ 4 © M} such that for any fixed generic # S M and for all
x € ﬁu n V.n the corresponding T _ does rot depend on x and V is

. . N . . .
either a cone in CP  or an algebraic surface, with singular locus

of dimension one.

Proof. "If" part is evident. Consider the "only if" part.
It is evident that for x € Vem fgle(x) is an N-3-dimensional
. : N* -1 N-3
projective subspace of @P , Denote £, (x) = ap “(x). We
. N-3 N-5 . .
have a rational map g: V ~—e»GN where GN is the Grassmanian

*
of all N-3-dimensional projective subspaces of mPN .

Suppose dim¢g(v) = 2. That means that we have a 2-dimensional

. N—~
algebraic system {@P 3(x), x€Vsm} on V¥, If N = 3 we would have

dim V¥ = 2 = N=1. Thus N > 3. Because dimmv* < N=1 and

N=
U ep 3(x) is dense in V* we have that for generic t € V¥

x€&v
sm

there exists an algebraic curve D_. in V such that \/ x € D_,
t sm t

N - 4
cP 3(X)31L Let GPt be a generic 4-dimensional projective
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N* o A epd
subspace of CP containing t, V' = v* ¢Pt,
A, = gp' 0 o 7 (x) €D Let L b aximal projecti
x = TP, x), x e e e a maximal projective
N* . . N~3 .
subspace of @P contained in all C€PF “(x), x € D . It is clear

that dimmL < N-l4, We can suppose that mpi NL = t. It follows

from this that {kx} is a l-dimensional algebraic system of
projective lines on V' passing through t. We can assume that t
is non-singular on V* and (because of Bertini's Theorem) V' is

irreducible and t is non-singular on V', We get that V' is a

. . . N*
non-singular cone and thus V' is a 2-plane in CP . We see that

. - . . N*
V¥ is an N-2-dimensional projective subspace of @P ., Because V
. . . . . . N s s
is dual to V¥, V is a projective line in €P . Contradiction.

Thus dimeg(v) < 2. If dimcg(v) = 0 then V* = @B 7 (x)

and V is a 2=plane in QPN. We see that only the case which we

have to consider now is dimmg(v) = 1. There exist non-empty

Zariski open subsets U of Ve and U, < g(v) such that g is defined

1

in all points of U, Uy = g(Uu) and (g-l(z)nU, z € Ul} is a

l-dimensional algebraic system of algebraic curves on U. Let

c, = g-l(z), z € U;. We have that GPN-3<X) is the same for all

x € C,. That means that T, 1is the same for all x € C,, and

T.2C,, x€c

x z°

Because dimmv* < N-1 and V is dual to V* (Duality Theorem

(3) ) there exists a l-dimensional algebraic system of projective

lines {lu, 4 € M} on V., Take generic x € U and let zu(x)’cz(x)
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be some elements of [LH,HEM} and lCz,zéUl] passing through x.

Suppose that A“(x) ¢ Cz(x)' Let M: V —>V be a generic
>

projection of V in ©P” such that 7 is an isomorphism in some

neighborhood of x. Let x = 7(x), ;H(X) = "(Zu(x))’ E;(x)= ﬁ(Cz&y,

T— v X ) C cr—nNvy,
” be the tangent plane of V at x. We have “(X) U cz(x) p v

Because Tx' is the same VY x' € C, we have that T§ is the same
b’;' in some neighborhood of X on E;(x)' That means that the
hyperplane section divisor of v corresponding to T§ contains

Ez(x) with the multiplicity greater than one. Hence the order

of tangency of T§ and V at x is greater than one, Because %

is generic on V we have that V is a.Z-plane in EPB. Thus V is
. N . R

a 2=plane in @P and dlmmg(V) = 0. Contradiction.

W : ) M
e see that lu<x)c cz(x)’ that is, for all x' € u(x) ¥ sm

the corresponding Tx' is the same,
Now suppose that V has only isolated singular points and V

. : . . N* .
is not a cone., Take generic line #* in CP . Because dlmmV*<:N4

we have #* N y* = @g. We can assume that N-2-~-dimensional projective
N-2 N . .
subspace (@P (4*) of @P dual to f* does not contain singular
. N-2 and € .
points of V. Let B = @p “(4*)Ny and x_ € B. Because V is not

a cone we can assume that an element E“(xo) of [Lu, 4 € M} passing

through x, does not contain singular points of V, that is,

4 c . € ¢ . T i
w(xg) Vom® Take x; M(xg)’ x, # x . There exists a
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hyperplane H such that H O ¢PN~2(£*) and H @ x;. Then H 2 ‘H'

Let E be the hyperplane section of V corresponding to H, Because

E D LH’ E is connected and evidently E # 2H (otherwise,

deg V = deg E = 1) we get that E has a singular point X, € lua

N*

Since x. € V__ we have that H © 7 ., Thus the point t(H) € @P
2 sm Xy

corresponding to H is contained in V* and v* N £* 4 g,

Contradiction. Q.E.D,

Corollary 4. Let dimmv = 2, dimmV* = N-l1. Suppose that V is
not contained in some 3~dimensional projective subspace of EPN.
Then for generic x,y € V, dimm(fx n Ty) < 1.

Proof, Let ™m: V —=V be a generic projection of V in

y —
€P . From Corollary 3 and dimcv* = N-1 we see that dimEV* = 3,

This shows that we can assume that N = 4,

Suppose that for generic x,y € V dimm(‘rxn'ry) = 1, That

means that there exists a 3-dimensional projective subspace of

-1
1

We see that for generic x,y € vV, GPl(x)nEPl(y) # @. Take

4 .
CP' containing T_ and Ty' Let mPl(x) = £ (£

> (x)),XGVS .

!
generic t € V¥, There exists a generic x € V with GPl(x) ot,
For all generic y € V we have that mpl(y)ﬂmp%x) # @. If the
union of mPl(y)ﬂmPl(x) for fixed x and generic y would be a
finite number of points on ¢P1(x) we would have that there exists
Y

a point b € V* such that b € ¢P (y) for all generic y € v, Let
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Hb be the hyperplane of GPM corresponding to b, We have Ty c Hb
for all generic y € V. Thus V € Hb. Contradiction,

We get that there exists a non-empty Zariski open subset
Uc ¢Pl(x) such that k/a €u, at€ EPl(x)ﬂmPl(y) for some y € Von
Considering the map f2: V —=v* and using dimGV* = 3 and
Corollary 1 we see that all a € U are singular points of V¥, But
taking t non-singular, we would have that mPl(x)(B t) intersects

with the singular part of V* in only a finite number of points.

Contradiction. Q.E.D,

Corollary 5. Let 3J(V) be the algebraic closure in o™ of
the union of T for all x € Vgme Suppose dimcv = 2 and V is not
in some 3-dimensional projective subspace of GPN.

Then dimmil’(v) < 4 if and only if dimcv* < N=-l.

Proof. The "if" part immediately follows from Corollary 3.
Consider the "only if" part. Using generic projection in QP
and Corollary 3 we see that without loss of generality we can
assume N = 4, Suppose dim¢J(V) = 3, {Tx,xévsm} is an algebraic
system of 2-planes in J{V). Let G be the Grassmanian of all 2-planes
of GPH, m; &€ —= G be the canonical ¢P2—bundle over G and
g: € ——e>¢P“ be the canonical map of € in GPM. We have a regular
map f: Vsm —>G., Let m: € ——%>Vsm be the EPg—bundle over Vsm
induced by W: & — G under £, f: € — € be the induced map,

T' = f(Vsm) and T be the algebraic closure of T' in G. It is clear
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that (V) is the algebraic closure of gf(€) in <IJP)4 and

-1

J(Vv) = g(m *(T)). We have an irreducible algebraic system

{EPz(t),tGT] on J(V) such that for generic t € T, GPg(t) is the
tangent plane of V in some generic x € V.
Consider two different possible cases.

Case 1. dim T = 1. Let C = fnl(t) for t € T', We have

a l-dimensional algebraic system of positive divisors on V. Let

Ct = Supp Ct’ Ct = Ct Vsm+

p)

For generic x € V there exists a

~

Ct(x) 3 x. Because f£(C,) is a point in G we have that for all

t

y € E;(x) the corresponding tangent plane is the same. But that

means that dimmv* < N-1.

Case 2. dich = 2. 1In this case we have that for a generic

z € J(V) there exist infinitely many different ¢P2(t) passing

through z. We can assume that for generic tl € T the

contains a non-singular point z of J(V)

2(

corresponding GPE(tl)

with such property. Let QP (t = T for some generic x € Vs

l) x m

2
and €P (t,) be another element of [¢P2(t),t € 7} passing through z.

o)

Then for all t' € T "close" to t, the corresponding ch(t')

2 . . .
intersects @P“(t,) in some non-singular point z' on 3J(V)

1)

“close" to z. We get that for generic t € T, GPz(t) intersects

EPe(t ) in some point z(t) which is non-singular on J{(V). Let

1
y € V., be such that ¢P2(t) = Ty' We obtain that for generic

x,y € v, T 0Nt contains a non-singular point of J(V). Because
x Y



95

im d = i n
dim, (v) % we have dlmm(Tx Ty) > 1. From Corollary 4

we get dimQV* < N-1. Q.E.D.

Corollary 6. Let dimV = 2, dimEV* = N-1, suppose that
V has only isolated singular points, V is not contained in a
3-dimensional projective subspace of CPN and for generic x € V
dimm[Tan] = 1. Then for generic x € V, Tx Nv is the union
of some projective line of GPN passing through x and of finite
number of points.

Proof. It is easy to see that there exists an irreducible
algebraic system of algebraic curves on V {Ct, té€r} and a
rational map £: V —> T such that £(V) is dense in T and

for generic x € v, T (

V) is the union of Cf(x) and of finite
number of points.

Consider two different possible cases.

Case 1. diqu < 1. Take generic t € T and let
D, = f-l(t) n Vg, Because dimmv* = N-1 we have that

T i €
Tyl # v, for generic vy,,y, € D_, vy, # y,. Because

Ct c U Ty we see that Ct is a projective line. Take
vED_
generic x € V. There exists an element Ct(x) of [Ct,tGT}

passing through x. (If not, we would have a line £4 € V such
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that all 7 2 £, x € Vgn. Then V* is in some N-2-dimensional
. N* . . .
projective subspace of @P , This contradicts dim V¥ = N-1).
. . . . r
Because Ct(x) is a projective line we have % Ct(x) and
C T Ny = Cf(x) + (finite number of points). Hence

D x.

C = Cf(x) and cf(x)

Case 2, dimGT = 2.

Suppose /M Ce # ¢ and let a € /Mc Then for generic

€7 rer

x € V we have Tx > a, Hence V* C H; where H; is the

*
hyperplane of EPN corresponding to a. Because dimmv* = N-1

we have V* = H:. But V is dual to V* and we get dimGV = O,

Contradiction.

Thus é;}ct = @. Because V has only isolated singularities

we see that for generic t € T, Ct = Vsm' Corollary 2 gives us
that for z € V¥ — §'(V*) the corresponding hyperplane section E,
has only one singular point x(z) which is an ordinary quadratic

. . . - -
singularity. It is clear that Cf(x(z)) Ez. If Cf(x(z)) Ez

we have that E, is in a 2-plane of GPN. Hence V is in a

3=~dimensional projective subspace of EPN. Contradiction,
Thus C ? E and because E_ is connected we see that
f(x(z)) z z

cf(x(z)) is non-singular, Cf(x(z))gx(z) and (Ez_cf(x(z)))cf(x(z))= 1.

In particular, we get that for generic t € T, Ct is non-singular

and irreducible. It easily follows from this and from dimmT =2
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that CE > 0. Suppose CE > 1. Then we have two possibilities:

1) For generic x,y € V, x # y, C n cf(y) contains two

£(x)

different points. In that case we have dimm(Tany) > 1 and

Corollary 4 gives us a contradiction with dimmv* = N-1,

2) For generic x,y €V, x# y, C )n Cf(y) is one point a(x,y)

f(x

and C is tangent to C at a(x . But that means that
£(x) g £(y) (x,y)

there is a projective line £ C Ta(x ) which is the common
]

. . N
tangent projective line in CP° of C and C at a(x .
=) proj £(x) £(y) ( ,Y)
We get T 24, Ty S L and dimm(Tany) > 1. Again Corollary 4

X s . . 2
gives us a contradiction with dlmmv* = N-1. Thus Ct = 1,

Take generic x € V p, and consider the linear system [Eu}
of all hyperplane sections of V having singularity at x. Each

o - .
Eu Cf(x) and let Du E =C Evidently each Du 3 x. Take

u Cf(x)*

n e
y € Ce(x)  Vem ¥ # x. Because (D } is infinite (as

sm
{Eu}(N > 3)) there exists a Du(y) 2 y. But Du'cf(x) = 1 and
€ n - - .
X,y cf(x) Du(y)’ x # y, give us that Cf(x) = Du(y)(cf(x) is
irreducible). We can write E = 2C +D' where D' is some
u(y) £(x)
non-negative divisor on V, Because Supp Eu(y) is connected we

. i o N pe
have: if D' # O then Ce(x) | D # §. Hence Eo(y) Ce(x) > 2.

But E .C =D .C + C .C = 2, Contradiction,
u(y) " £(x) u” £(x) £(x) " £(x)
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We get D' = O and E = 2C . We showed that for an

g u(y) £(x) Y
t € T there exists a hyperplane section E(t) of V such that
E(t) = 2c, .

Because dich = 2 we have infinite number of different

Ct passing through x, Take one of them, say Ctl’ Ctl # Cf(x)'

Consider the corresponding E(tl) = 2C, . Then E(tl) is singular
1

at x. Thus E(tl) > Nv, Weget C, 2¢C

t) f(x). Contradiction.

Q.E.D.



82, Proof of Theorem 3 (83, part I).

This theorem was formulated on page 60.

5

Proof of Theorem 3. Using generic projection V —> ¢CP we

can assume that N ¢ 5.
(1) Letxk, ,1i-= 1,2,---,q, be the algebraic closure in e
i
of the union of all projective lines z(ai,b) in g% connecting a,
and a point b € V-a;. Denote by M the parameter space of all

3

projections Vv —> ¢P” (M is irreducible). It is clear that

dimmKa. < 3 and we can find a proper algebraic subvariety S° in M
i =
such that for any T € M-S, we have that T is regular onV, ™
is locally biregular at each a,, i=12,-+-,q, and

. -1
Vl= 112""’q’ m (

"(ai)) = a,. This finishes (1).
Let §; be a small open (classical) neighborhood of S, in M.

Because M-§; is compact, we can find open neighborhoods ﬁ; of

a; in V such that T € M-§; and \/j.= 1,2,-++,9 we have that

I3

"-1(ﬂ(5.)) = G; and H‘C': G; ——e»ﬂ(al) is a biregular map. Let
i
(2) We can assume N = 5. (In the case N = 4§ almost the same
arguments work.,) A projection M € M is defined by its center which
is a projective line Lﬂ in GPB.
Denote by J(V) the algebraic closure of the union of all
fangent planes Tx of V where x is a non-singular point of Vv,

q
Let T(Vsm) be the tangent bundle of Vsm(Vsm = V—;:{ai) and
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Ve T(Vsm) —> 3(V) Dbe the canonical rational map. Define two
integers a,b as follows:
If dima:a’(v) < 4, thena =0, b =0, and if dima:U(V) = 4, then
a = deg J{(v) {in QPS), b = deg ¥.
Let M_ = {m € M—gg, 24; Nv = @, &4; intersects J(V) in a different
points and if a # O, then for any z € .t J(V) there exist b
different points xi(z) € Vem» 1= 1,2,7--,b, such that V’i

}. Clearly M_ is open and dense in M-S . Take
xi(z) o o
m € M. Let {zl,---,za} = Zﬂo N 3(v) and for any ¥ jo=1,000,a,

let xij’ i=1,...,b, be all the points of Vsm with T, 3z

ij J
Choose a hyperplane Ho in ¢P5 with xij f Ho’i=l""’b’ j=1l,+++,a,ad let
ﬁ; = {m € My, &g € Ho}. We shall prove the following
Statement I, Let Xy be an arbitrary element of
{xij, i=1,2,-++,b, j=1,-++,a}. There exists an open
s . R TT . vy
neighborhood Uxo of xo in Vsm’ a neighborhood Mxo of o in Mo

and an open dense M cm such that for any T' € M' we have:
Xg ° X0

for any y € Uy either (d'rr')y is a monomorphism or T' is a map
()
of pinch-type at y (and last possibility holds only for a finite

number of points of U, ).
o

Proof of Statement I. Let @ 5

= @P —Ho. We can assume that

affine coordinates zl,...,z5 of €

) _>(Zl:22123): zi(xO) = 0, is= 1:2,"':5)

are chosen such that "o is

oo W

given by (zl,-..’z5
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the hyperplane z3 = O does not contain T, n cg and projection

)
(zl,...,ZS) —_— (23,24) is locally biregular on V N Eg at x.
Let &i = zilvﬂﬂ%’ i=1,+*,5, We see that gj,ﬁu are local

parameters at X, - There exists a Zariski open neighborhood U of

X, in v N ¢5

° o such that for any y € U, €3-€3(y), &u-gu(y) are local

. 6 P . ' ) '
parameters at y. Consider @ with coordinates (61,62,63,€1,€2,€3)

and let z' = z. +e .z, +€! i = 3 ‘=z 5. For the
1 i ZjTE By TE; 2 . 1,2,3, el 23 Vﬂmg ©

5}
Jacobians
1 D(giygl) L] D(QI:E')
_ 3 _ Pl
715 BE,.E,) I o3~ B(E,,E))
we have:
. D(£,£3) RY: o¢, d¢,
?1? BE 6y = Gl En) t St s St

. D(E5.E5) ot ot ot
- 3 _ i 2 f
;7 o3 BTEETEZT = 62(-1—63 g ) o+ 53 EE; + €2€} BEf +
Ble,.6) % 3,

T3 DlE,,E,) T %2 8, T3,
2

Consider U x € and an algebraic variety W in U X ¢2 defined

by the equations:

Jrse) = o, Zé(m—:) =0
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We can find open neighborhoods Uy of X, in U and € of the
o

origin in ¢6 such that in U, x&
o

D(£5,€),) p(f, 72
D(E.,£,) 70, D(e ; # 0,
3°°y 17 %2
that is, W N [U, x€] is non-singular and of complex dimension six.
(e}
Let Wo be the irreducikle component of W passing through the point
(xo,o), that is,

N (ge) =W 0 (g <€)

a: W, —> ¢6 be the map induced by projection, a(Wo) be the

algebraic closure of a(W,) in ¢6. We have that either

dim¢a(wo) < 6 or there exists a proper algebraic subvariety S

of ¢6 such that a'a'l 6 ) a-l(¢6-s) —_— ¢6-S is an unramified

(e°-s
map. In the case dimaazwoi < 6 denote by S = aiwoi. Let

6
er=¢8n - Vet 21y € &
(€°-S). We get that for any (61,62,63,61,62,63)

the equations Z}ij = O and 2143 = 0 define two complex

subvarieties of Ux s say c! ,c! whlch in a neighborhood of any
(o)

13’ 23

common point of them are non-singular complex curves intersecting

transversally.
Fix any (el,ez,ej,ei,eé,eé) € &' and let f: Uxo —-—>¢3 be the
map defined by projection (21’22""’25) -——>(zi,zé,zé). Take any

y € Ux . Ify ¢ Ci} N¢'  then (df)y is a monomorphism. Suppose

23
veE€ci, Nc! , Let u-= g;-e'(y), v= g ~€(v), 2, = £/-£,(v),
are

13 23°

]
i
i=1,2. We can write Z, = yi(u,v), i = 1,2, where $i( v)
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D(z, ,u)
some power series of u,v, gi(o,o) = 0, Using the fact Braizj—(y) = 0,
>

i = 1,2, and a linear transformation of type Zi ——e»Zi—aiu we can

assume that @i(u,v) have no terms of degree one., Write

zZ, = aiu2 + 2B uv + Yiv2 + t.h.d. ("t.h.d."” means "terms of higher
degree",) We get from the transversality of Ci2,C13 in y that
P M1
det # 0, and in particular one of Y_,Y, is not zero. We
32 Y2 1’2

can assume Y, # 0. Now writing yl(u,v) = A(u,v)v2 + B{u)v + c(u)

and using A(0,0) = \ # O we see that we can find new local

parameters u,v such that z, = o+ d(u), d(u) has no terms of

degree one, d(0) = 0, and Z,_ = Eh2 + 2Buv + 752 + t.,h,d., B # O.

2

Let 2. =2 -d(u). We have now ;Q = El and z, = A(u,Zl)+§(u,Zl)v,

has no terms of degree one (and A(0,0) = 0) and

~

), 2

u = E(u,gl). We see that u,v are local parameters at y and in

B(u,Zl) = bu + t,h.d, b# 0. Letz,= zz-IA'(u,zl = E(u,zl),

some neighborhood of y the map f is given by the formulas:

g -2
Z1 = v
Z, = uv;
Z, =,

that is, £ is of pinch-type at y. Statement I is proved.
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Let M_= /\'mM , M= /M\m . Now it is easy to see
I . X, . I . b S
i=l,0 "1,) i=l,,b 71,3
j=1l,",a j=1,-,a

that for any point T of ﬁ; sufficiently close to no we have the
following: for any y € V., either (d‘n‘)y is a monomorphism at y

or M is a map of pinch-type at y. Choose such a T in ﬁ; and

denote it by T Because V is compact we can choose an open

I
neighborhood MI of T in Mo such that for any T € MI we have:
for any y € Vg either (dTT)y is a monomorphism at y or T is a
map of pinch~type at vy.

Let dimas(v) = 4 (that is, dim V* = N-1 (Corollary 5 of the

Duality Theorem)). For any x € Vem let X i Pe the union of all
3

projective lines of ¢P5 which connect x with other points of

. Nv and K_(V) be the algebraic closure in er? of U K. .

x T x€v X%

sm

From Corollary 6 of the Duality Theorem we get that for generic
x € v, T N1V is either a finite number of points or the union
of a projective line in Tx passing through x and of finite number

of points., In both cases we have for generic x € V, dimmK,r % <1
2

and thus dim¢KT(V) < 3. We can find 7' € M, such that

Lo n KT(V) = @. Let 4., N J(Xx) = {zi,*--,z;}, z! = @, and

*1,5°

LICICIN

. . L] =
be all the points of V_  with Txil ; 2z, <xi,o g).
3

[ 1
s ]
Suppose that for z}, 0< j<k<a we already have the following

property: k/ i=1,2,.++,b, ﬂ'_l(ntx‘i j)) = xi i
2 3
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For any x € vV let Kx be the algebraic closure in ¢P5 of all
projective lines connecting x with other points of V. Clearly
b
i K € T C = .
dim K < 3 and for x € v, T CSK. LetK ., UKX.
i=1 i K+i
We ha ', €2 N . i find
e ve z, 1 . Kk+l Because dlmka+l < 3 we can find a

g - - e £, N = z' ..
in MI arbitrarily close to such that %, Kk+1 zk+l

It is clear that Zy € 4., 0 3(V). suppose for some i = 1,2,:++,b

there exists a point y € ﬂ“-lﬂ"(x' ) with y # x! Let

i,k+1 i,k+1°

_ . 5 g .
,k+l) be the 2-plane in CP~ containing 2%y, and X )+l and

P( Ly ,x;
2 '
(%] een?)

Clearly 4

be the projective line containing x,

i,k+1 and y.

X, k1Y

z = b, N #(x

c p(Lu,x, i i
) p( - ’Xl,k+1) and there exists a point
'
, Y ) S K,
i,k+1 S K41 xi,k+1
J € L(x!
Hence zk+l (xi,k+l’Y)

). Because ﬂ(xi and

£ n g = z' we have z = z'
TT" [} .
Xi,k+1 k+1 kK41

and 4(x.

[ow
i,k+1’y X

)y T, . Thus 4&(x! 2Y)
T ]
Xi k4l i,k+l Xi x4l

) € . . n -
and z. . KT(V). But this contradicts 4g, KT(V) g. We see

-1 .
th t TTI' TT" =
a ( (xi,k+l)

€ K (V)

xi k41’ i=1,2,**+,b, Taking ™™
2

sufficiently close to A' we can uniquely define the points

z'j’EL"--nZS'(V),o_(_jg](, x' . €V _,i=1,2,++,b,

i,j sm
T, >2z", such that z' are close to z. and x" . are close
X, . J ] J s
1,]
to xi .. Because T" is of pinch-tvpe at all x; . we see that for

b ] 3
T* sufficiently close to ' we will have TT"—l(ﬂ"(xj'_'j)) = xi'j,
> ;b

0<j<K,1<1ighb.
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This argument shows that we can choose such nII in MI that for

any y € VSm with the property: T is of pinch-type at y, we have

II
-1 .
nim - - . "
II( II(y)) y. There exists an open neighborhood M , of T . in

M; such that for any m™e M . we have: Ify € Ve is such that W

is of pinch-type at y then “_1(“(y)) = y. Let E be a non-singular
: . . . 2

hyperplane section of V. For generic projection p: E — CP we

know that p(E) has only ordinary double points. It follows from

this that we can find a ﬂIII in MII such that there are only a

finite number of points in ”IE(V) which are not ordinary singularities.

We can assume also that for any x € ﬂﬂl(v)’ Eﬁ;(x) is a finite set.

. . [\ : me
There exists a neighborhood MDE of o in MII such that all MnI

have the same property as ﬂDI'

Let H, be a hyperplane in ¢P5 which does not contain all such

1

points x of V__ that ﬂ'nI(x) is not an ordinary singularity of

L\ M = {m € y
IE(Vsm)’ MII[ ( MIE’ m < Hl}'

It is easy to verify that we will finish the proof of part (2)

of our Theorem if we prove the following Stat ements and Corollaries.

s . €
tatement II. Let x,,x, €v_ , x; # X5, (x

™ ="
1’ mi¥y) o' %)
o T =1 T xi i
and IE( xl) IE( xg). Then there exist open neighborhoods

Uy,

of x,, i = 1,2, in V__, a neighborhood M of T __ in M
i 1 sm

X1 5%, I 1Ix
and an open dense M' <M such that for any 7' € M;
*10%2 *10%2 1°%2
we have:
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if ¥y € Ux’ Y, € sz are such that Tr'(yl) = “'(ye), yl*yg’

"
then T'( # "'(Tyg)'

T
Yl)

Corollary of Statement II. There exists a "IV € ﬁiﬁ such that

for any pair y,,v, € V., with "Iv(yl) = "1v(y2)’ ' # Yy, We have:

n ) # ”IV(Ty ). Moreover, we can find an open neighborhood
2

(T

— TT . — TT e - . :
MIV of v in MIII such that for any MIV we have: 1if

€ =
vy.¥, € Vg are such that ﬂ(yl) ﬂ(yg), vy # y, then

mry ) # My ).

Statement III. Let X%y, be three different points of

]

1

x
E 5
Vi, with ﬂIV(xl) = ﬂIV(XE) = “IV(XB) and dim¢[£:1ﬂ1v(fx

Then there exist open neighborhoods U, of X, i=1,2,3, in Vsm’
i

igh T in M
a neighborhood Mx X% of v in MIV and open dense
1°72°73
v % .x ©M, . . such that for any ' € M; < .x We have:
1’72273 1’7273 127273

lf YJ. e Uxi) i-= 192’5) are such that y% % Y2, y2 % y}) yl % y}

il = T = m i m(r =
and T (y, ) (v,) (yj) then dim, (M) ™ ( yl) o.
i=1
Corollary of Statement IIZ, There exists a “V € ﬁiv such that

L€ yy,vpYy € Vo, M(yy) = mlyy) = Wlys) and vy # vy, vy # vy,

¥y # Y then dim,

AT (T, ) = 0. Moreover we can find an open
i=1 \Y Y2

neighborhood ﬁ& of ﬂv in ﬁiv such that for any T € ﬁ§ we have:
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i € o =T =
if v),¥y,¥5 €V are such that (v,) ; (v,) (y3),

" i m =
Y # Yor Yo # Y33 ¥y # y5 then dimg {:} (Tyi) o.

Statement IV, Let xl’x2’x3’x4 be four different points of

Vem with ﬂv(xl) = ﬂv(xe) = "V(XB) = "V(XN)°

Then there exist open neighborhoods U, of X i=1,2,3,4,
i

. . n . -
inVv o’ a neighborhood Mx of - in MV and open dense

s 1oty
M? oM
Xl:"':x).l xl’...:xq
such that for any 7' € M' we have M\ ' (U_ ) = @&.
Xyt Xy i=1 i

Corollary of Statement IV, There exists a nVI € ﬁ& such that

(v) we nave: TT_l(x) has less than four elements,

for any x € W
v

VI
Note that all Corollaries immediately follow from the

Statements (arguments are the same as used for the construction

of T, (page 104 )),

Proof of Statement II.

We can choose affine coordinates in mi = CEPS-H1 such that

= 1,2,3, 2zly» z2|V are local

N
x
§
N
H:l
k]
n
1
o
ol
I

1
v = T n 5 T n 5.

parameters of at Xy and X z3 O on xl El and on %, Gl

We can find open neighborhoods Ui of x; in Gi, i = 1,2, such that

v N U; is given in Ui by equations:

z5 = Ai(zl’ZQ)’ z), = Bi(zl,zz),z5 = ci(zl’ZQ)’ i= 1,2,
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where Ai,Bi,Ci are power series of z A (O) = 0, Ai has no

17220 %4

terms of degree one, i = 1,2,3, and one of two numbers

Bl(o)-Bg(O), Cl(O)-CE(O) is not zero (we use Xy # x2). Consider
6

€" with coordinates (61’€2’€3’€i’€é’€é) and let
2
2! = z +€.2, +€'z j = 1,2,3. Consider €  with coordinates
j JJ“JS’J 3253
[ - ]
z1,25.

Taking smaller U. and U, we can choose an open neighborhood

1 2

~

U of (o) in ¢2xm6 such that there exist holomorphic functions Ai

€!) on

in U with the following property: z.! = Ai(zi,zé;el,..., 3

3

v N Ui’ i = 1,2, Let W be a complex-analytic subvariety in U

given by the equation:

_~ ! ! LR 2N ' —~ ' M =
F = Al(zl’ZQ’el’ ’€3) Ag(zl,z2,€1, ,63) 0.

(O)—BQ(O): %}Z—l(o) = Cl(o)-cg(o)'

. . oF
o) =
It is easy to verify that 52;( ) By

It follows from this that taking U smaller we can assume that W is

6

7-dimensional and non-singular. Let a: W —>( be the map

ixﬂ:{x¢6 -—><I:6 it is not

induced by projection. Considering &
difficult to construct an algebraic variety W and a regular map

a: W ——e>m6 such that W C W, W is open in W and a = E’W. We

see that there exists a neighborhocod &€ of (o) in €~ and a proper
analytic subvariety S in & such that either o'(u) = ¢

Yué€eés or Vue€e€s ana Vv € dd(u) (dOL)v is an epimorphism.

This remark finishes the proof of Statement II.
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Proof of Statement III.

We can choose affine coordinates in Qi such that ﬂiv on

v N ¢§ is given by (zl,-v-,25

) _— (21:22:23)1
z, (Mo (x)) = 2, (M (x,)) = zi("'m(x3
(x;) =0, 2 =0on 7 0 €, i = 1,2, z 42, = O

X. 4
i 1

)) =0, i=1,2,3,

zu(xj) =z

on TX3 n ¢5

1’ 22|V’ 23|V ( are local

corresp. z, |y, 23|V)

1l

. . W i
1 (corresp. at x, and x3) e can find

open neighborhoods Ui of X in ci, i=1,2,3, such that Vv n u;

parameters of V at x

is given in Ui by equations:

for i = 1: z, = Al(ZE’ZB)’ z), = Bl(z2’zj)’ zg = Cl(z2,23),
for i = 2: z, = A2(21’23)5 z) = 82(21,23), zg = 02(21’23)’
for i =

3:zl+22=A3(zl,23); z), = B3(zl,23), zg = CB(ZI’ZB)’

where Ai,Bi,ci are power series of the corresponding variables,

"

a. (o)

i o, Ai has no terms of degree one, i = 1,2,3,

83(0) = 03(0) = 0 and one of four numbers Bl(o)-BE(O),

Bl(o)-cg(o), B2(O)-Cl(0), Cl(O)'Ce(O) is not equal to zero
(we use that all xl,xg,x3 are different).

Consider m6 with coordinates (¢ and let

] » '
1,€2J€3,€1162’€3)
)

zj = zj+ejzu+€j25, j=1,2,3.

Taking smaller Ui’ i=1,2,3, we can choose a positive

number r such that there exist holomorphic functions



111

~

Al(zé’zé,el’GQ’EB’ei’ 2:6 )!

g 1] 1 [} ] T 1
A3(zl,zj,el,...,e3) defined for Izil <r, |ei| < r, |€i| < r,

AE(Zi,Zé,Gl,ee,---,e'),

i = 1,2,3, which have the following property:

z) = A (22’23’61’ -,eé) on v N Uy
zé = ﬁé(zi,zé,el,---,eé) on v N Uy
zi+zé = Xé(zi,zé,el,---,eé) on v 0 Uge
Let U = {zl, 2’23’ l,---,eé) 5x<r6 |zi]<x;|ei|<r, |ei|<r}

and W be a complex-analytic subvariety in U given by the equations:

Fi=12z; - A ( 3 "€3) =0
_ ) Ind ) ) —
F2 = 2 Az(zl,'z},v 1’ JGB) =0
F3 = z; +2) - A (zl,z3 1€ ’63) = 0.

JF 1 apl aF JF
EEI ael 52; SEI 52;
) )
S *
21 €

has at the point (0) the following form
1B (0) o cl(o) 0

o o B2(O) o ¢

1 o} (o} (o} ¢} .



112

It follows from this that taking r smaller we can assume that W
is 6-dimensional and non-singular. Now we have only to repeat
almost word by word the last part of the proof of Statement II.

Proof of Statement 1IV.

We can choose affine coordinates in ¢5 such that ﬂv on

1
5 .
v N ml is given by (zl,---,z5) o (21’22’25)’
zj<vv(xi)) =0, j=1,2,3, i=1,2,3,4, z)(x,) = z5(xq) =0,
= n 5 j o= = n 5
Zj O on ij ml, j 1,2,3, zl+22+z3 O on TXM ml,

(corresp. z are local parameters of V at xj,

1
j=1,2,3, (i',j") = (1,2,3)-(j), (corresp. xq). We can find open

2 lv?se v viZely)

neighborhoods Uj of Xj in Gi, j = 1,2,3,4, such that v N Uj is

given in U by equations:

for j = 1,2,3: z_ =4 _(z_,,2., z, = B.(z_,,z., z_ =C¢C_(z_,,z,

J 3 ’3 J J( J 3 J )’ L‘ J( J 3 J )l 5 J( J) J )J
for j = 4: zy 42,2, = Aq(zl,zg), z) = Bu(zl,z2), 2y = Cﬂ(zl’ZQ)’

where for j = 1,2,3,4 Aj,B_,Cj are power series of the corresponding

variables, Aj(o) = 0, Aj has no terms of degree one, BM(O) = Cu(o) =0

and the rank of the matrix

Bl(O) o o} cl(o) o) o]
o] BQ(O) o) o) cg(o) o)
(@] O B,(O o O C_(O0
5(0) 5(0)
is equal three (we use that all xl,xz,x3,xll are different).

--,eé) and let

) 6 .
Consider @ with coordinates (el,-



113

z2'=2z_ +e.2z, +¢€'z
3 j A i”s’

we can choose a positive number r such that there exist holomorphic

ji=1,2,3., Taking Ui’ i=1,2,3 smaller,

functions XJ.(ZJ'..,ZJ'. €30, 3= 1,2,3, (3%,3") = (1,2,3)-(3),

and Au(zi,zé,el,---,eé) defined for |zi| <r, |€i| <r, iei! < r,

i=1,2,3, which have the following property:

u)€1’

for j

1,2,3 Zi = Aj(zjn:zju:el: ':eé) on Vv N Uj

] = ! ' ' = ¢ ! “e M N
and for j Y4 zl+22+z3 Au(zl’ZQ’el’ ,63) on V Uq.
Let U = {(z.,z',z',e ,+-.,e!) € ¢3x¢6 lz!| < r, le.| <r, le/l<x}

172273271 ’ ’ i ’ i ’ i

and W be a complex-analytic subvariety of U defined by the equations:

- K}(zinngny 61"'.’€é) =0, j=1,2,3,
' [ ' . e V) =
z) 42,42, Au(zl,zz,el, ’€3) o.

F,. =12z

J
Fy

[P

It is easy to verify that the matrix

BFl Eil aFl _________ iii
521 ael 562 Beé
apu BFLl _____________ an
521 561 565

1 Bl(O) 0 o) cl(o) 0 o
o o B2(O) o) o Ce(o) o)
o o o BB(O) 0 0 03(0)

1 o o] o o] o] o |
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and thus it has rank 4.

It follows from this that taking r smaller we can assume
that W is 5-dimensional. Let a: W —~—>¢6 be the map induced by
projection. It is not difficult to construct an algebraic variety
W and a regular map a: W ——e»m6 such that W C W; W is open in W

and a = o We see that there exists a neighborhood & of (0) in

W
6 .
€ and a proper analytic subvariety S in € such that t/u € &-s,

a—l(u) = ¢. This remark finishes the proof of the Statement IV,

We proved part (2) of the Theorem 1.

(3) (D. Mumford). It is easy to see that from the condition of
the Theorem it follows that V is not a cone. From

Severi's Theorem (page 72) we get that K(V) has (complex)
5

dimension 5. Let G be the Grassmanian of projective lines in QP

and 5
Cp” <

be the canonical diagram corresponding to G (W.: &€ —= G is the

1l
canonical line bundle). Constructing chords we get a regular map
f: VXV-A —>G (A is the diagonal). Let ni: &' — vxv-~A be the

line bundle induced by T, under f and
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VXV-A_f-§ G

be the induced diagram. Evidently K(V) is the algebraic closure

in @P° of WEF(a'). Because dimEK(V) = 5, we have K{(V) = ap°,

Now considering ﬁQF: e ———>¢P5 and using Bertini's Theorem
we get that for generic line £ C cp (m F)-l(l) is an irreducible

2
algebraic curve in €', Let pi: VXV~-A —>V be the map induced

by projection on the first factor. It is easy to verify that
=1
() pm(nE)He) = xev|y €v, v £ x, Tly) = M0,

>

where "L: V —> @P” is the projection with center £. Let ¢ be

the algebraic closure of piﬂi(ﬂeF)-l(z) in V. We can assume that
£ is such that T, satisfies to the parts (1) and (2) of the

Theorem. Then we get from (*) that C = ﬂ;l(sﬂz(v))° Thus

’*;J’(S.rr (v) and s, (V) are irreducible algebraic curves. We proved
£ £

part (3) of Theorem 1.

(%) (D. Mumford) From Corollary 5 and 3 of the Duality Theorem we

>

get that dimas(v) = 4, Let T V —>@P° be a projection which

already satisfies the parts (1) and (2) of the Theorem and 2, © as

be the center of T. Because codim Z, = 4 we have that 2,0 3(v) # &.

But that means that W(V) has pinch points. Q.E.D.



PART II

ELLIPTIC SURFACES

§l. Deformations of elliptic surfaces with "non-stable"” singular
fibers.

Definition. Let f: V-—>A Dbe a proper holomorphic map
of a (non-singular) complex surface V to a non-singular compact

_l(x) is a

complex curve A such that for generic x € A, £
(non-singular) elliptic curve and there are no exceptional curves
in the fibers of f. Following Kodaira we call f: Vv — A an
analytic fiber space of elliptic curves or an elliptic fibration.
Theorem 8. Let f: V —> A be an elliptic fibration which
has singular multiple fibers ("singular multiple fiber" means
“multiple fiber which (being reduced) is a singular curve"). Then

there exists a commutative diagram of proper sur jective holomorphic

maps of complex manifolds

where D= {1 € ¢||[7] < 1}, such that Flh_l(o): h—l(O) —_— p-l(o)

coincides with f: Vv —> A, for any T € D -(0),

-1 -

F|h'1('r): h (7) —=p (7) is an elliptic fibration without

singular multiple fibers and h has no critical values. Moreover,
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the number r(T) of multiple fibers of Flh'l('r) and the set of
corresponding multiplicities {ml( T) ,m2( T), e M) ()} do not
depend on T (T #o)

_Pr_cp_f_. The Theorem follows from the following

Lemma 4. Let £': v' —= D be a proper surjective map of
complex manifolds with a single critical value (0) € ) such that
for any 9 €D ~(0), £'"1(9) is a non-singular elliptic curve and

f'_l(o) is a fiber of type I, m>» 2, b> 1 (see [13]). Then

1) There exists e,c' € IR, €' > 0, 0K €K 1, and a commutative

diagram of surjective holomorphic maps of complex manifolds

wl

(1) 3%-’}/ X

DY D XD

where D, = {1 €a|lr] < ¢}, D, = (9| |9]ce}(D, D = D),
p': Dex—’De' —_ De' is the projection, F' is a proper map

such that F' lh'-l(o): h'—l(d) -ﬁp'—l(o) coincides with

f'|f"l(D€): f'-l(De) _— De’ for any T € De'—o’

F' lh'—l(f): h'—l('r) —ﬁp'_l(‘f) has as generic fiber a non-singular
elliptic curve, F"'l(o,'l') is the unique multiple fiber of

|-l ."l . . .
F'lh"l('r): h' ~(T) — p' (1) which is of type Jo (that is,

non-singular) and h' has no critical values;
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2) there exist el,e2 € R O< e2 < El < € and a commutative

diagram of holomorphic maps

v1'<x])€, iv
\ \ .
hy &F]'{ w
(2) 'De.-ffx—xx'De, F

P DD

where K = (9€g

e2<|°|<€l}, i, and i, are biholomorphic embeddings,

hl/'< and pl'< are evident projections, V]'( = f'-l(K),

Fl; = (£ x(identity), Kx0 —> D _x0

l ) i :
L] r
VK K |Kx0

coincides with the natural embedding K ——>D€ and

. -1 .
. t ' — ] : .
1V|V]'(x0' VX0 —>F ('Dexo)(— V') coincides with the natural

. >V,

embedding Vk

Suppose for a moment that Lemma 4 is already proved. Then
the proof of Theorem 8 proceeds as follows:

Let a,,+++,a be all the points of A such that j=1,2,¢e,r,
1 r p 3 )

f-l(ai) is a singular multiple fiber, D €. be a small open
2

neighborhood of aJ. in A such that De j is isomorphic to De
3

and Vt € De j_aj’ f-l(t) are regular fibers of f: V —> A,
2

v -1 .
Vj—f (D .),fj-fl

: v —> D . Using Lemma 4 and taking
€,] €,

v,
Y J



119

€ sufficiently small, we construct for all fj: V:'i —_— De 3 the
P

diagrams analogous to the diagrams (1) and (2). We shall use the
same notations as in Lemma 4 for the new objects which we obtain
adding only index j (that is, we have wJ"’F_:;’hjl"' and so on).

Without loss of generality we can assume that De' j does not
2’

depend on j and we shall use De‘ instead of De‘ 5 Let °J. be
2

a local parameter in De j which gives the above-mentioned
2

identification of P j and D. (that is,’D€ J_=[dj€a:,|aj|<e}),
3 k]

2
D = {¢. € ] = - D =
DJ { J C, I _]I S 62,_]‘}’ U 4 JL__J].D-) wl U UxDev)
-1 , .
Wy =f (U)XDE., Fy = (f|f_1(U))x(1dent1ty). W, W

and  h,: W —D —A,'De, are evident projections.

et pU: wlU

We have evident embeddings

KJ.XDQ. —> uxD_ (= W), v};jxDe. — f’l(u)xDe.(= W)

. > 0}) and

€ < €, €
72,5

K. = {9. €¢] € L2 , .
( {9 ; 24< | J| S TETRC

J

] . ,
hK- - hU‘V' xD i Pg = pU{K,xD n Taking €', €, . smaller
J Kj € ] b €

1,5

and e2 j greater we can suppose that :'LK could be extended to

3

J
an embedding l’Izj: KjxDe' _ De,ije'

where K, = {?. € qle g €.} and that
( ;= 19, o S 191 <

X
€,]

iz (XxD_) 0 (0)xD,, = 9. wow (D
J
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has two connected components. Denote by U_; one of them which

does not contain (O)x:De,. Let W ; be the interior part of

3

[

. 1
D xD.,) -ut, wld) g w4,‘=‘.‘
(D, ;xD..) - us, 5 My 5)s ey =Ry W
2

' (3) . .
P, =F, iy: W —>W. ., h, = h; .y. We can consider
5 a0 1,37 ) J|W(J)
i (corresp. i, j) as biholomorphic embeddings of Kj xDe'
b ’ )
(corresp. Vi x’De,) into w, 3 {corresp. W(J)). Using the
4 3

1
v {corresp. ijxDe' —)WU)

(corresp. W) which is the union

above-mentioned KjxDe‘ — W

we form new complex manifold w1

r
Y1u — (-\31 Wy5)
r J
r .
(corresp. W v (\JlW(J)))
r j=

(l) --,W(r))

Now we identify W (corresp. WU,W ,

w’ Y107 oWy

with the corresponding open subsets of W:L {(corresp. W). We define

F: W —>'W'l, p: W, —->'D€,, h: W —> De' as follows:



F(x) = .
F(x) if x € wld)
py(y) if y € W
p(y) = .
pJ(y) if y € Wy
h(x) _ hU(X)’ x € WU,

hj(x), x € W(j).

Using commutativity of (1) and (2) of Lemma 4 we can
verify that F, p, and h are well defined holomorphic maps and

that the diagram:

is commutative.
It is easy to see that this diagram satisfies all demands

of Theorem &. Q.E.D.

Proof of Lemma 4. Let Z(uﬁ be the modular function {the
"absolute invariant"). Kodaira remarks in ([13], 87) that there

exist N_ > O and a convergent power series f;}(z) such that
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(}(w) = oMW + {¥} (eeﬂiw) for Imw > N_.

Let ¢ > 0 and M_ = {(o,7) € c® |9 < e, |7] < €}. For €

sufficiently small we can define the following holomorphic

function in M€

Gnl - Tnl o —
B(9,7) = |/ 1 - , (B,00=1)
( T) ]_+(qnl_1nl)$(anl—7nl) ( >

where the positive integer ny will be defined later.

Let X be a complex variety in M€X<IP2 defined by the equation
2

2
z z, = Mzi - 32,2 - B(°,T)zz

. 2
where (zozzlzze) are homogeneous coordinates in €P°,
%: X —>M€ be defined by restriction of projection

2 L M . .
Meme ——e»Me. Let z =@ =T ¥, Evidently we can write

B(9,7) = B(z) = 1-zBl(z), where Bl(z) is a convergent power

R el myy Y Pl Bl
series and Bl(o) # 0. Let cl = ¢ Bl(° -y =T Bl(° -7 )

. n‘
where we fix a branch of '\/Bl(z),and

2
~ = -
Mys {( 1,71) € ¢

|°l| <€, |Tl| < €}, € is a sufficiently
small positive number.

Taking € smaller we can write the equation of X as follows:
n “1) 3

= 420 2 (-1 4091
zZ z_ = 4z 32,2 + (-1 + 1 T )z
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For any t € M_ %k—l(t) is a cubic curve in @P° which has

no singularities on the line z = 0. gk -l(t) is singular if and
ny 1y

only if (9,(t)) * - (7 (£)) =

(e(£)) Lo(r())" L = o).

0 (or equivalently

N

A
Z
o

1 Ny n‘ 22
Let M_ = {(9,7) € M_[O =T £0}, x=-—=, y= ol
(o]

Taking € smaller we can assume that there exists } > O such

n, n
that the equatien (on x) ij-jx -1+911—71l = O has exactly two
roots xl(a,T),xe(U,T) with |xi(°,T) + % < r when (9,7) € M;.

Let D(-~ %,r) =[x € ¢ |x+%| < r} and Y(9,T) be a segment of

the straight (real) line in D{- %,r) connecting x1(°,T) and X2(°,T),
n, n
; 1
5,(9,7) = {(X,y) € c®|x € v(9,7), y© = uxde3x -148 tor )2

(o,7) € Mé- 5l(°,f) is a homologically non-trivial l-dimensional
cycle in %ﬁ-l(O,T). Fixing an orientation of Gl(OO,TO) for some

(°°,T°) € Mé we can check that for any close path Y in M! with

origin (9 _,T ), 5.(9,T) has continuous changing along Y and

o’ o 1(
returns to sl(co’TJ with the same orientation, Now we can speak

about a continuous family of oriented l-dimensional cycles
-1
(s,(0,7) € $P~Na,7), (o,7) €m).

Let a(9,T) be a holomorphic differential on gfl(U,T),

(e,r) € Mé, which in the part of €p° with z # O is given by
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) w (QJT) =

a(e,r) = 1

wl%

a(e,T). wl(O,T) is a single-valued

al§a,7>
holomorphic function in M without zeroces. (1f wl(c',T') =0

for some (@',7') € M' we would have S a(e',t') = 0,
€
51(0',7')

a(e',7') = 0 and 5,(¢',T') is homologically zero).
& cl,lr') 1

Let 17 be a small open neighborhood of (UO,TO) in M;,

[52(0,7) € ‘gfl(d,T), (9,7)€ T} bve a continuous family of

oriented l-cycles such that for any (9,T) 617: ) G,T),GQ(U,T)

X
a(9,7)/w (9,7] > 0. we

g}

generate Hl(gb-l(U,T),Z) and Im[ ;
o)

RORS

denote w(9,T) = (§ a/wl(c,T) and get by standard arguments
o)

NCRY

that it is a multi-valued holomorphic function in Mé such that

for any close path v, in Me’ Y 3> (GO,TO) analytic continuation

of w(9,T) along Y gives w(e_,T )+ from w(e_,T ), where N € z.

If t = (0,7) € Mé then §D_l(t) is given in @p° by the

, . 2 3 2 3 .
following equation: zoz2 = Hzl-lezo-B(O,T)zo or in non-

homogeneous coordinates,

z
] y = z—2: Y2 = uXB - 2x =~ B(GJT)'

%
1
N' N
QO I
[o}

-1
We get that absolute invariant of Eﬁ (t)
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2 n n np n
NV S L o )
gg—279§ 27-278°(9,7) ~ 1.82(q,1) 'l _ M1

it

1 np L f1
LTt J,D (@ 5= 7).
-T

n
Fix a € €%, g 1 # 1, and denote

L = [(° € M
L= [(9,7) €

¢ = arl, z = g;'l(l. ).

o2

We see that y(t)lz has in (0,0) a pole of order n From

s ) 1

results of Kodaira it then follows that if 2; is the minimal

desingularizatian of Za then 2; has over {0,0) a singular fiber

of type Inl and

w(ar,r) = 5ﬂ;—i njlog v + £(7), 0 < |7 <&,

where € is sufficiently small and f(T) is a holomorphic function
in 0 ¢ [T] < €. Taking € smaller we can assume that

Inm w(aT,T) > N (for 0 < |7| < €) and thus

?(om,-r) _ e—21'riw(o,'r,'r) N ip, (ezn‘iw(a-r,'r)) (for 0 < |7] < &).

n ni

mi g.T
e2 iw(e, )’ p(e,7) = @ ~ T ©. We have

Denote q(9,7T) =

miE(T ~
qlav,T) = 17 1 )(o < {7| < €), that is, g{eT,T) is a
holomorphic function in 0 ¢ |7]| < €. Let Dé;: {r€x|oc|T|<e]}

and ®, Déf————>G2 be a holomorphic map defined by
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T —> (g(at,7),p(aT,T). Since

(aT 'rS :D q(aT,T) ; aT,T) 7——§_pa'r'r :D' (aT,T)

we have that gh(Dé) is contained in the subset C_ of c? given by

c, = [(p,q) € ¢2|p + paP(a) = aveaP(p), lpl < €, lal < €}

where we suppose that € and Ei

E& sufficiently small Ca is a non-singular analytic curve and

are sufficiently small., But for

because it evidently contains the set

((p,a) € 0®[p = a, In] < €, lal < &)

~

we have C_ = A. We see that p{aT,r) = g(aT,t) for 0 < |T| < €.

Hence
n n n n
Q(a,"')lz = (¢ 1. l)l and q(9,T) =¢ 1+1 inp.
4 £ €
a (6}
Let ny nl
£ = (9,1 € je tr 20, 5, = £ ~(0,0),
. - - * - . *
M. = M_-(0,0), M = M x€*, s = £ x¢*, 2
be a cyclic group of analytic automorphisms of M' = M=S5 generated
n n
. 1 1 N
by the transformation (9,T,w) —> (9,7,(¢® -7 “)w). Using

Kodaira's remark in ([13], p. 597) we construct from M and ﬁa
new complex manifold which we call Kodaira factor-space and
denote by M/% {holomorphic map %: M —>M/ P is given by:

¥(z') = ¥(z"), z',2z" € M, if and only if either z',z" € M*' and
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z' = g'(z") for some g' 5;29 or z' = z"). (It is easy to
verify that the condition for existence of M/SZ) indicated by
Kodaira in [13] is satisfied in our case).

-1 .
Let P (9,7) € 7°((9,7)) be given by

ZO(Po (011.)) = 0, Zl(P° (C,T)) = 0, ZE(PO (a,T)) = 1,

X(o) = [(°,T,zo,zl,z2) € Xl(s,T) € Mé and (zo,zl,zg) is a
. . -1 ~ -1 .
non-singular point of Sﬁ (o,m)}, C, = éb (t)nx(o), t = (°,T)€M€.

Evidently we can consider a(9,T) as a holomorphic differential on

~

C, for any t € Mé. Take (9',7*') € Zé. We can define a l-cycle

5. = (9',7') in C(9',7') such that 5,(9*,T') could be connected

1 1

(¢ ,T.) by continuous family of

with the previously defined 5 o’ To

1
. -1 . . . .
l-cycles in Eﬁ (t), t € v, where Y is a path in M€ connecting

(co’To> and (@',7') and Int(yY) < M. - Z_. A direct verification

then shows that
a(@',r') # o.

61§°',T')
We see that wl(q,T) is actually defined in M; and for each

¢.1) is a

(o,7) € M;, wl(O,T) # 0. (This proves also that wl(

(single~valued) holomorphic function in M_ and wl(a,T) £ 0,

(9,7) €11).

1
—_ ° E * i
Let al(c,'r) T—awl D) (c,'r),<( ,T) €M), Using
Tiw{e,"T n n
e2 iw(, )= ol ¢ 1 we define a holomorphic map

YO: X(

o) "Wy by ¥o(a) = [0(a),7(a); explom § o0, ),

P, (3(a),7@))
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where is taken along a path in ¢ g

P (9(a),7(a)) et
(e(a) = G(Eﬁ(a)),T(a) = T(éﬁ(a)). It is clear that Y  is
onto and a 1-1 map. Hence Yo is an isomorphism of complex
manifolds. We shall identify X(o) and M/ia . Kodaira's
construction of logarithmic transform (see [14], p. 770) shows
that a certain residue class k mod m is defined for a multiple

fiber of type b > 1, k is relatively prime to m. (Actually

I
m Db’
a topological definition for such a X could be given. For us it
will be important only that Kodaira's construction shows the

analytical uniqueness of a neighborhood of a wultiple fiber

oIp? P 2 1, when X is fixed).

Take the corresponding k = k(£') for the family £': V' —>D,
given in our Lemma and let k' € Z be such that kk' = 1 (mod m).

Let d = g.c.d. (x',b), k' = kjd, b =Dbd, n=mb, n; = mb.

(That is the definition of nl).

Denote p =1, let

1 1

xj(Q,T), yj(c,T) be two holomorphic functions in M; defined as

= exp(2wi —i). For j = 1,***,n
"1

follows:

2, (19,73%:(9,m)1) z,(19,75%,(9,7)])
x.(Q,T) = q,7) = zo([c’T;“S(a’T)])

; RICTACIC ) NIRRT



J
where T‘T c

wj(cpT) = -

=

n

=3+l

We use the following

X n (z°=0) =

() <o,v%étw€

and for € < %

2 )
|£:1(c-plf>

<1,

(that is, for (o,r) € £°,

129

°1

remarks:

y)
if 9-p T # O, 4=1,---

I l (o- 917) if for some 4' € (1,2,---,3),

T = .
o-py o

po(e,1), ¥ (¢ (8,7)) = [0,7;1]

iy

=3+l

wi(9,7) 41,

and for (@,T) € P7€—2' an equality

n

1 4
T T (o-#1m = (@

=i+l

n n
11N

gives first N > O and then

LN
;Ij;l(c-p ™)

Contradiction)

N-1
"1 “1|

7‘7‘(0-917)’ <1

zo([c,T;wj(c,*)]) # 0,

’NEZ,

< 1.

(°-9;T)

T+

33,
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Since /We—-Me = (0,0) we see that xj(c,T),yj(U,T) are

holomorphic functions defined in ﬁqe.
-1 . .
For (@*,1') € Ze, ?% (9',7') is the same rational plane
curve, say C, given in ¢P2 by the equation
3 2 >

2
2 2, = Hzl—lezo -z

Hence we can assume that 61(0',7‘) chosen above for
(or,1') € Ze is the same l-cycle on all E%_l(d',T'), (o',7') € ﬂe

2 . . .
(that is, images of 61(0',T') by Pﬁe X ¢P2 —> @P  coincide with

some l-cycle © c on the non-singular part ¢ of C). Now define by

1
e o - O
c "z lc’ YcTz e %Y. Yic”T c’
(o] (o] C 5
1C
&, = L a p = {(z =0,z.=0,z =1) € C
1c w c’ o A T ?
1c
1%
w()‘eQWiSa
c'\P 1c
Ps
P
where p € E and S is taken along some path in g,
Po
Yy
fe) 2 2
- . T _ T(T+6) .
T = X+ % (that is, X, = 71, v, = —j ). A direct

calculation shows that (changing if necessary the orientation

of ) we have

610
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(1_) T = iJ/8 wi-*i x = ;329__2 1 g = 31;/6 c(W +1)
- Ed - b
Vo1 c T u(w-12 T2 Yo u(wc-1)3
Take &' € (l,2,°~‘,nl) and let
Al’l = {(o,7) € M 'Q = pl T = o}, Az. = A‘,-(0,0),
= x (9,1 . v, ., =y (9,1 , W, e 1 )

Since Wiy —0 or oo when (¢,T) —(0,0)((e,7) € Ayy) we see

from (1) that

limx_, ,, = = = lim =0 .
éo,*)ecp)b‘ 2 @ 7)>0.0 Y3,
9,7 €A, °,T)6A
This shows that xj(0,0) = - %, yj(0,0) = 0.

Now let ®(x) be a (Single-valued)holomorphic function defined
. . 1 — 1 .
in some neighborhood of x = - 5 by 9(x) = 2¥x-1 and n(—E) = i)6.
Let y' =y + u(x)(x+-]25), x' = y-e(x )(x+l) {y,x' are some local

parameters at the point (x = - %, y = 0) of € ) From

v.(0,0) = 0 we see that (taking € smaller if

1
XJ_(O,O) = -EJ j

necessary) the following holomorphic functions in Me are well

defined:

y;(G,T) = yj(G,T) + w(xj(°,7))(xj(°,7) +3),

= [

).

x3(9,7) = y;(e,7) - e(x;(9,7))(x,(9,7) +
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Because

2

vi(0,7) = 4 (e, 7) - 3x,(9,7) - B(9,7)
we have

. . ny 11

yi(e,)x;(a,7) = (¢ T=t T)e(a,T)
where

B(@¢,T)-1
e(a’T) = qnl_-rnl s

that is, e(@,T) is holomorphic in pqe and e(0,0) # o.

vs 4(9:T)
Define on A,,, Tj z'(°’7) = T From (1) we
’ g
x5 40 (9, )45
see that on A‘, - wj L.(°,T)+1
c =
Ty () = WE ST
Jj, &
For 4' € (1,2,-:+,3), we have
Wo o (e,7) = l [ o-p; T
=3+l
Thus
lim z,( ,T) = 0 and lim (e, n=-iff.
A, 3(9, 73-5(0,0) "3, £4.3(9, 7)>(0,0) RN
y2
2
Since T, ,,(o,7) = [®(x. .(U,’l')]2 (we use P R 4(x =1))
i, 4 is4 ( 1.2 C
*c*2)
and &(- l) = i)/  we nave e(x. ,,(9,7)) = -7, ,,(9,T) and
2 isk is4
1 .
(o, = - 5) =
yj( s )IA Yigr Tj,z'(xj,t' + 2) = O, We obtain
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is holomorphic

£,,3(9,7)> (0p) g

J 4
vi(e,7r) = TT(9-p.T))e'(e,T) where e'(@,r)
j =1 177
in P4€.
Now let &' € (j+l,---,nl). We have
J -1
wj,l'(q’T ‘ | o~ pl . Thus
=1
lim 4 (9,7T) = o and lim
£,2(9,7)>(0,0) "3
We have ax,zl(G,T) = TJ,L'(O’T) and
xi g7 = . - T, X
J( : )‘ Vi, J,t( i, &'
We obtain
n
L L
x(a,7) = [(J-pl‘f))e'f(°,‘f)
J =j+1 J
where eJ(O T) is holomorphic in Pqe' Now

"1 . m
(@ “=r Te(o,T) = y;(",'f)x (9,7) =
Hence e{(@,T) = ej(c,T)eE(U,T) and

X has only one singular point

, 1
6 = (z,(6) =1, 2.(6) = - 55 2

1

T"T(c-olm

1
+ E) = 0.

e}(9,m)en(9,7).

eJ'.(o,o) # 0, e'Jf(o,O) # O.
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2
We can find an open neighborhood U of 8 in Pﬂeme such that

(¢,7,x',y') are local coordinates in U
z

N

' 1 ' 1 = _}_ = __?_ = ]
(x' = y-o(x)(x43), v' = y+p(x)(x43), x = z0 ¥~ zo)- X; =xNu
n n
is given in U by the equation x'y' = (@ g 1)e(°,7).

Now we take nl-l copies of GPl, say mpi, i= l,2,---,nl-1,
with homogeneousncgirdinates (gOi: ﬁliL i= l,---,nl-l, and
consider in U X Tl—T_EPi a subvariety YU defined by the

i=1

following system of equations:

4 = q— T
Y8y = &,(9-p,T)e(d,T)
i+l .
€iifoin ™ fosbrial(-ey 7T, i=1,eeemp-2,

' = -

x eln -1 gOn -l(c ).

1 1

It is easy to see that prU(YU) = X,;. Let s: Y, —>X, be

the map induced by projection, Xy g = {a € Xy T(g(a)) =},
3

-1 s . X
YU,? = s (XU,T). Standard verification shows that Y, is
non-singular, s| -1 : s-l(X ~¢) —>X ., is an isomorphism,
s (X -g) U v 8

u
Tes 1is a holomorphic function on Yvwithout critical values, and

s : Y i ini i i ities
|Yﬁ o u,0 ——e»XU’O is a minimal resolution of singulari
]

of XU o (that is, there are no exceptional curves of first kind
s

. -1
of YU,O in s 7(8)).
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Now identifying s-l(x - 0®) with X-6& we get from X-8 and Y
U U

a new complex manifold Y with a holomorphic map S: Y —> X such

u

that (i) ;';-I(X-G): ;'l(x-ﬁ) —> X-8 is an isomorphism,

(ii) Tes is a holomorphic function on Y without critical values
and (iii) if X, = {a € x, T(Fa)) = 7}, Y, = g-l(XT), then

le : Yo ——>Xo is a minimal resolution of singularities of Xo.
o

Let ??(I - @ .g, a)_;_l =§.'YT.: Y,, —>D_ ., where

s

= = ¢ - n
D pv = {(9,m) € MEIT T'}. For anya €D .,-D ., NI,

?'_l(a) is a non-singular elliptic curve (and a regular fiber
' —l z L] ]

of %TI)J g:;-- ((pl‘r‘:T ): TN #0, 4= O:l,"')nl_lx are

singular fibers of %"r' which have type I, and &;_1((0,0))

is a singular fiber of A50‘;: Y —>D

hich i t I .
° which is of type ny

€,0
Denote by Cc()o) the closure of s—1( gD-l(O,O)-Q) in Y. For
(i)

j=1,:+¢,m=1, let Co

be an algebraic curve in YU defined by

the following system of equations:

511 =0, i=1,:00,j=1, goi,= 0, i* = j+l,--~,n1-l,
x'=y'=0@=17T= 0,
(n;-1)
It is clear that Cgo),cgl),"',co 1 are all the

)_ (o)

. } =1 ny
irreducible components of ' 7(0,0). We assume c, ~=C,

let qii) _ C((Ji)n Cii+1)’ ali) _ C(()i)_qii)_q(()i-l)

and

, i=0,1,--0,n-

1,
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n-=1
~ Lt
¢, = col).
i=0
Take a point a € EﬁJ), j € (1,2,-~-,nl—l). We have
glj(a) # 0, &Oj(a) # 0. Let U, be an open neighborhood of a in
C [ ] ] (]
Y, (cY) such that Ya' € u,, glj(a Y # (g, goj(a ) £ 0. We

have a holomorphic function in U, uy = (gji) our

0j YU
. . dx . . . ~
differential a(9,T) = 3 which is defined on each C, t # (0,0)
can be rewritten in Ua by the following way:
] T
First we have y = X—§§—, yix' = 2$(x)(x+%). Since
w(—%) # O there exists a holomorphic function ¥(z) defined in

some neighborhood of z = O such that ¥(0) ¥ 0 and

x + % %(y'—x’)'(y'—x'). Thus we obtain

Q
]

dx _ [y(y'=x" ex ¥ (y'-x")] . '
e CEL DS

Because differentiation here is along the fibers of E}', that is,

when ¢ and T are fixed, and on Y

U
n n
y'x' = (¢ tor Lye(o,n)
we have x'dy' + y'dx' = O. Hence

o = [W(y'—x')+(y'—x')W'(Y'-X')]g§; .

Jj du
. T 4 dy* j
But inU_, y'-= uj L=l(°_plT)e(°’T) and we get —57 = —E?

du
ana o = [H(y"=x")(y"mx ) ¥ (y ) L,
J
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This formula shows that we can extend a(U,T) also to E}

du,
where it is equal to W(O)—G%n
' J

Let Gié) be a l-cycle on EiJ) defined by Iujl = 1. A direct

)

verification then shows that we can include 6&3 in a continuous
family of 1-cyeles (6)(a,m), (o,1) € M1, o)) (a,m) € &(a,m),

such that for (9,7} # O, 6&3)(3,7) is homologically equivalent

in C to the above constructed 5. (0,T). Because
(o,7) 1

du
w (0,0) = S a(0,0) = S ¥(0) —E% # 0

(3) _ b
810 [ujl—l

we see that we can extend al«U,T)(Q,T) # O) constructed above
also to the non-singular part of '§>'"1(o,o) such that we get a

holomorphic family [al(U,T), (o,7) € P1€], where o_(@,T) is a

1
holomorphic differential on € (¢ =C.).
(g,7) *7(0,0) o

Let ;(J), j= l,--',nl-l, be an analytic surface in X

given by the system:

]
@]

z

- ¢
1 zoxj( 5T)

z, - zoy.(a,T) 0.

j
(3)

Denote by P the closure in Y of ghl(F(J)—s). P(J) is given

in YU by the following system of equations:



2= +1
] 1
gll = ‘FL (U plT)eJ gOl’

3 ¢ -1
= a_ "w
€151 i ?( plT)ej

138

j+1
£ 1 (9-p T)e €
0j+1 =5+l 1 31+l
"
€ iqs Eo _3= T T (9=p TletE,
0j-1 Onl 1 4=+l 1 lnl 1

It is clear that plJ) is a cross-section of é‘l;': Y — M€

and that 2(3) n % "L0,0) € c(J)

Let E(O) = {a € X'zo(a

)

p(D(a,r) - o) nGiY(o,m

ol, p = g'l('l;‘(o)) and

i) - ~(1i .
Y( / 1(%b9 U cg ), i=0,1,--+,n-1.
(o) (ny-1)
It is clear that {Y .,Y } form an open covering of
~—l "~ ~
Y = X uc = U C .
(o) = 5 (o)) VS (a,7)

*
Let Ml = MGXCI: s S

analytic automorphisms of M.

1

(o,7)eM

= E_x c*, 9 be a cyclic group of

Ml-Sl generated by the transformation
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n, n
1 . .

(e,T,w) ———> (@,1,(9° 1, Jw). It is easy to verify that the

Kodaira condition for existence of Kodaira factor~space Ml/ @

is satisfied here (we gave references and little more explanation

on page 126).

2miw(e,T) _ JM1.M

i), ,(1)

holomorphic maps Y( D 4

Using e , we define for i = O,+-+,n -1

1
— Ml/g by

v4)(a) - [(s(a),7(a); exp(om xé ay(9(a),7(2)))]
(), 7(a)

a

where S is taken along a path in E(v(a) (@a) n Y(l).
2

#o(a), 7(a)
(1)

It is clear that each Y is onto and 1-1 map. Hence

i) | . . .
'1’( ) is an isomorphism of complex manifolds.

Denote w(j)(a) = ex_p(§ al(c(a),‘r(a))), a € Y(j),

pI)e(a), (a)

a .
G S is taken along a path in E(G(a),‘r(a)) n Y()),
p(a(a),(a))

j = O,-.n,nl—l.

Let p2 = p]]lo. We define analytic isomorphisms:
no:oyld)

ij: —_— Y(j+b)(c Y)

where the index j is considered as an element of the cyclic group

() (o) () (1)

z, = Z/(nl) of order n,, that is, Y = , , etc.,

1 l’
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by
°(hlj(a)) = p9(a)
(2) "(ny,(a)) = (a)
WPy (@) = Wl (a)ele,
where N ﬂik'b (h\-—l)
C = exp

m

Let a € Y(j) n Y(jl), j # j' (that is, (@(a),T(a) # (0,0)).

We shall prove that hlj(a) = hlj'(a)' Let aj = hlj(a)’

aj, = hlj'(a)' We have
(j+p) a, a..
(a.) J
e e G A SRR BRI AL
v ey U+l a(a), 7(a) 20", 0(a), 7(a)
3 R CNCOLION
= exp(em § a (e @), 7(a) -explemi § o, (&:96), T(a))
@y P/ (p9(a),7(a))

U+ (4 (8a),7(a))
- § a,(p,0(a),m(a)) =
29 (5 0(a),7(a))

a .
J
= exp(2m S ay(py(e(a),(a)) .:J-+?(°§‘:S);ZS;) ’
aj' j+o P2 ?
where we assume wW_= W = 1,
1) n

1
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From (2) we get

(540)
w (a;) ) p it wla) 50 v (9(a),7(a))
1 (l ° .
w0 +b5(a3) Wa) % w.(9(a),(a))
i1 1
Without loss of genermlity we can assume that (@(a)) ~={T(a) "#0
(that is, we have to prove only that the maps hlj and hlj' coincide
on an open dense subset of Y(j) n Y(j ». We have
¥b P -1 nl nl
(p,9(a),"(a)) = ( (e 0(a)-p 1(a)) "(moa((e(a)) ~=(r(a)) 7))
Vi P2 12 1

{(where congruence is considered in the group €¥),

J
w.(o(a),"(a)) = T T(o(a) )-prr(a))” L moa((a(a)) L=(1(a))"L).
=1

Because
Jth. £ j+b.
+b =P
TT(p,0-p ") = p2 ™ T [(0-p 1) =
=1 2 1 2 4=1 1

J+b ﬁ(c ol ) T’T("-D;T)

£=1~b L=

we obtain that

Wi p(Pp9(a),m(a)) . N
et = 557 T T (o) meyrta moal (e 476 )

and (by the same reasons)
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v p(p9(a),7(a)) . O
vaptPo » -i'=b 4 1 1
Jw;f_(,(a)’.r(a)) =0y T T Tloa-relmod( (@) *~(1(a)) D).

Hence
v (0,0(a), @) v (e(a),T(a) n n
J'4+b T2 = J=] j (mo 1 . 1
T O O P OV ) R G P CO A AL
and aj
) _ ny Ry
exp(2mi § o (py(9(a),"(a))) = Lmad((e(a)) *=(r(a)) 1).
aJ_l

(a) = n (a).

We see that a, = a., that is, h -,
J J 1)

1j
Now we can define an analytic isomorphism hi: Y(o) ———>Y(o)

by hl!{(a) = hlj(a) where a € Y(J).
For (¢,7) # (0,0) let q'(@,r) be the singular point of C(O -
2

We extend h! to h!: ¥, , ——Y where Y,'\=Y | U ‘(o7
1 0 hpE Vi) T Y %) ¥ Larryep 5T
(q'(e,r)) = q'(p_0," . = h! ;
by hl(q (a,7)) q (92 5T, hllY hi. In order to prove that
()
h; is analytic, it is enough to prove that hi is continuous. Let
{a(r), r=1,2,...}, be an infinite sequence with a(r) € Y(o)’
) NS S
lim a = q'(9,T). We have to prove that lim_ h.(@“)=q'(p 9, 7).
r>0m r—co 1 2

Suppose that it is not true. Then there exists a subsequence

[a(rp) (rp)) - a' € 8(

, p=1,2,+++,} such that linbohl(a

p9,7)’

(r ) -1
We obtain lim a P = h!

|€~
P56 p (at) €c

(a,7)° Contradiction.
2
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" j j +b,
Now we extend h. to h,: Y —Y Dby hl(qgj)) = qu+ )

1 1 ’
, ) (o) (my+1) (1) .
]l = 0:11"',nl-l: (qo = qO K] qO = qO ’ etc')) hl’Y(‘°)= hl‘

As before, we have to prove that hl is continuous. Suppose that

it is not true at some qgf), j € (O,l,---,nl-l). Take an

infinite sequence [Ur’ r = 1,2,---} where each Ur is a

(3)

relatively compact open neighborhood of qo

in v,
(e o) n,-1

= (3) L)) (3)
ﬂUr=qo ’ Ur+lcur’ Urﬁ(quo )=qo
r=1 £=0

and Ur—qéJ) is connected for any r = 1,2,+.-.

Denote U; = hi(Ur-qu)). It is easy to see that the

closure G; of U; is compact. A direct calculation shows

that if {ar, r = 1,2,---} is an infinite sequence with

e (i) . _ 1) . ' _ li+d)
c €¢, ,rl_zénmar q,”’ then lim hl(ar) q .

Hence

a

. <
LI ¢ N
r=1

e}
n, -1
® 1
— 2
Suppose there is a point a* € [ } U such that a' f L«j q( ),
r=1 % L=0 "°

that is,

1

- L

h! l(a‘) € \_/ q( ). Then there exists a positive

1 =0 ©

integer r such that U $ h"-l(
o s 1

' = cee i '€ ! i ' = ¢ We h
{ar, r=1,2, } with al Uro, rl%ﬂn a' = a'. We have

a'). Take a sequence
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- n=l, 4 n=-1
ny l (a' _ng ny 1(a£_) € Uro (because hy (ar)C:h1 (u FUro—q
Contradiction. Hence
® nl—l
-— (L)
N < UJa .
r=1 2=0

But each U' is connected. Thus each GI'_ is connected and from

we get that

j+b)

= U o U“_l =... and the compactness of

® _ o _
) U! 1is connected. We see that m u' =
r r

r=1
from this that h., is continuous at q(J). Thus we proved that

1

hlz Y —> Y is an analytic automorphism of Y,

oyt }
Uy
(() . It follows

Since Y is homotopically equivalent to %,'_1(0,0) we have
that TTl(Y) is isomorphic to Z. Let B: Z —> Y be an unramified

covering of Y corresponding to the subgroup dZ of Z ,

=g e, 2(n) = la €2]1(()=7)
1= Flagn 20— o

It is easy to see that all fibers of @" are connected and
that T is a holomorphic functi on on Z without critical values.
Hence each Z(T) (|7| < €) is nonsingular, for any

€ - : W=l : :
a De’,r De,'r n E€ the fiber g:; (a) is a nonsingular
||_l

elliptic curve (and a regular fiber of '§>1:) (pl'l’,"')),

T# 0, £=0,1,<++,n =1, are singular fibers of gb:_ which

1
have type I and & "_1((0,0)) is a singular fiber of
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E%o: z(0) __>De,0 which is of type Inld = Imbld =Ip=TI-

(o) (nl'l)

We can assume that S ONAPR L 8 are contained in some

circle ¢4 of C(ocﬁ’ which is a generator of ﬁl(Y), and that the
t4

order of qio)’___’qgn-l) in c_ coincides with the order of
their indexes.
d-1.
-1,.(3) ;
o) and let B (qo ) = ifé q(rnl+3).

Denote c; = B—l(c

We can assume that the points
q(O) :q(l) st :q(nl-l)’q( nl) I ,q(2nl-l) e :q((d'l)nl>:"': q( dnl"l)

have the same order on c; as their indexes. Because ﬂl(Y) =%z

has only one subgroup of index n, we obtain that there exists

1

unique analytic automorphism h: Z —>Z such that the diagram

—h .2

Js
—_—— Y
hy

B

-—- N

<

is commutative and h(q(0)) = g(b).

Let Gl (corresp. G) be a cyclic group of analytic
automorphisms of Y (corresp. Z) generated by hy (corresp. h).
A direct verification shows that G, is isomorphic to Z/mZ

1

and that any Gl—orbit has exactly m points, We get that G is

isomorphic to Z/mZ and that any G-orbit has exactly m points,
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~ o~ 2 ~ m ~ } ~ ~
Let M_ = {(3,7) €a”||g] < €, |T| < e}, WM _— M,
be given by Tw(o,r) = (¢",7), Z =2/G, B:Z —>2/G be
the canonical map.

It is easy to see that we have a commutative diagram of

holomorphic maps

Z
3 l
Let
—~

FP@) =1y, D)=

Z(7) = {a €2

Z(r)* Z(T)—%De,'r’

k
g=nh", g = ng(‘o)' Z(o) —> Z(o0). We can assume O < kX < m,

Evidently we have go(q(o)) = g{g(o)) = q{kb) and for any a € Z{o)

™
°'(go(a)) = ¢(g(a)) = p.o(a) where p = exp(%:'; . Now comparing

with the Kodaira construction of logarithmic transform and using
Kodaira's arguments in ([14], p. 769) we obtain that

§(o): Z(o) —>D_  has unique non-regular fiber at ¢ = O and

E

this fiber is of type mIb with the desired invariant k. We see

that we can identify f£': V' —>D_ with '3:(0): Z(o) —>D_ -
2

If T # O the only multiple fiber of g (1) E('r) —>D_

s T

corresponds to @ = O, Hence it is non-singular.
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Take positive integers € < €, 1i=1,2,3, such that € > €.

Let A = {(¢,r) € M€|€ P(O) - P(O)

o<lolcey, [rlce 3 a A’

v = g»"l(A)-pS). YAI is given in AXT® by the equation

y2 = ij - 3x - B(ag,T).

Because A is a Stein manifold we have that Axme and

YA c Axa:2 are Stein manifolds., It follows from this that
a"l(yA) is a Stein manifold.

T J -1 ' v . :
Let 2z, = Q h- (8 (YA)). z, is also a Stein manifold,

because it is isomorphic to a closed analytic subvariety in
m-1
J -1 ' - ' _ ' n : —
jl_o{h (8 (YA)). It is clear that h(ZA) = 2Z,, ’§; (ZA) = A and
‘-1 y s . . w=1
P (A)-ZA is a proper analytic subvariety of &b (a).

We obtain that Ep" = E(ZA) (which is isomorphic to Z};/G)

is a Stein manifold and g(%"-l(A))-E}; is a proper analytic

subset in '5(3"—1(1*) ).

€
B, =l(e,7) €aT =0}, Zp= H(A), Zp = @ (A,
9’“: -: ~-——>A’ ~ = ‘- 1 Zo~ —A .
A A A A,O 0 A,O (]

From the Kodaira construction of logarithmic transform
({14], p. 770) it follows that there exists a cross-section 77o
~ ~ ~
o ~ 1 2 —_ such that is not
£ Pr0 %o Ao ¢ n, 1s

contained in 2 = Z'. Since dimq:no = 1 we have that
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dlmm no n XhZA) = 0. Thus (changing if necessary €, 1= 1,2,3)

¢

we can assume that 7} C Z . Let 2 =2 N g~
[o] A A

A,0 A Taking 63

’o.
~I

smaller we can prove that ZA is homeomorphic to

2 - Fee|lF 5 iven b
A,OXD€3 (D63 {T ¢ ¢'| | < €3] and Z, ——e>D€3 given by
x —> ?'ga(x) coincides with the projection EX 0XDe —> D, .
’ 3 3
We see that the canonical map HQ(E',Z) ——5»H2(2; O,Z)
3
(corresponding to the embedding ﬁx o S 5;) is an isomorphism.
b
Since E; o and E; are Stein manifolds we get that the canonical
3
map Pic(ﬁx) -——>Pic(§x O) is an isomorphism and there exists a
2
complex line bundle [&€] on EX such that [&] g = [no] where
N A,O
[ﬂo] is a line bundle on 7. o corresponding to the curve
3
o~ . [ .
[y = -
Mo ZA,O (dJ.ma:ZA,O 2). Let g, be a cross-section of [no]

with zero-locus ﬁo. From the exact sequence

Bo(Z,, o[e)) — u°(Z, ,, sle] e ) —>o0

A,O

we have that there exists a cross-section & € HO(ZA,G[G])

such that |y, = s . Let 7= {x € EA'v(x) = 0}. It is

L}
A,0

clear that

n

nNZy =17 and din N = 2.
[o) [«

,0
Changing if necessary € i=1,2,3, we obtain that 7 is

closed in 2:- and gﬁ(n) = A, Because (7. 37—1(3,?)) =1,

LN

where (%,T) € A, we have that 7) is a cross-section of

~

g,gu Z

>

m——

>
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In order to finish the proof of Lemma 4 we shall use the
following

Lemma 5. Let A = {(o,7) € ¢2|e2 < lof < e, Iml < 63},
€ > 0, i=1,2,3, and Eﬁ: Z —>A Dbe a proper surjective
holomorphic map of complex manifolds such that (dgi)x is an
epimorphism for any x € 2 and all fibers of 3¥ are elliptic
curves, Let 2}(¢,T) be a holomorphic function in X} which for
any (@,T) € A is equal to the absolute invariant of Eﬁ_l(ﬁ,T).
Suppose that J(O,T)IT=O is not a constant (as function of @)
and that there exists a holomorphic cross-section 7 of Eﬁ: 2 —A,
Then there exist positive numbers ei, i=1,2,3, such that

€

<&y 65 & ey < & < €y, and if al = {(e,m)€a|r=0, e2'<|a|<ei},

Z

0 - W -

(o] (& o] €

ga"l(A'), P, = g;'zc.): zZ' —>a', D ; = [Tecll'r|< 63'}, then

there exists a commutative diagram of holomorphic maps

iy
Z'xDe, _— . 7
3
a ggxid
D <—P——-A'XD i
eé o eé ‘~\~i§\\\\§
. A
1
D
L]
D, P
>

where iZ and iA are biholomorphic embeddings,



150

D€3 = {T € a:,“rl < 63}’ iD(?> =T, p'(c"r) =7, P,q are

A'x0 -——>p"1(o) coincides

oni . : . .
canonical projections, lAlAéXO o

>p'—1(0) and

with the natural embedding Aé

11z 1%0° Z;XO —_— Eﬁ—l(p'—l(o)) coincides with the natural
)

embedding 2. ——> Eb_l(p"l(o))-

Proof of Lemma 5.

Changing, if necessary, ei, i=1,2,3, we may assume that
) -
So has no zeroes in A. There exist positive numbers

€i: i=1,2,3, 63

differential equation

[ ] ]
< € e2 < €2 < el < el such that the

3!

ay ?Z(wﬂ)

ar = - %g(v,'r)

has unique holomorphic solution g = &(T;9;) with

®(059;) = %, [Tl < &5, €f < |9 | <€) and e, < lo(739,)| < €

for |7| < €2, eé <ol < ey
efine

i’ﬁaxrkgia Ly iA(c

o™ = (8(739,),7) (al=le, )€e®| _, ex<lol<e].

It is easy to see that i, is a biholomorphic embedding,

A
iAIA'XO: A; X 0 ‘-e>p'-l(0) coincides with the natural embedding
o
-1
[ i vy s
Al—> p (0) ana p i, = igp.
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Let z' =2 X, (A(')xDe,E) (corresponding to EJ’» and iA),
i': z2' —= 7, g VA —>A_ X D63 Le canonical projections,
7= ';Ey, nto= (i')*n.
We have BJ
3 odoe  3F_df [ 3T ) of
g;y(cp('f;"o);"') = g,;g? + 5T = 36 - 37 + 357 = 0.
o9

Hence Z'(UO,T) does not depend on T. Let p": A x D_, —>A

L]
o € ©
>
b i jectd A .w t
e a canonical projection, g (7 lAc')xO e see that

7= (o)™ 7"

Changing, if necessary, ej'_, i=1,2,3, we can assume that
there exists an open covering [Ui,i € 3} of A; such that if
V., =U,XD,, i € ¥, then there exists a continuous family

i i et

{Bli(a:T):a (a"r),(a,'r) € Vi], where

21

=1
€K
61i(0,‘f),521(0,'\') I-l( #"e,r,z), b .(U’T)’52(0,T) generate

1i
Hl(ﬁ'_l(c,'f),zz), and a holomorphic family {ai(G,T),(G,T) € Vi}

where ai(G,'f) is a non-zero holomprphic differential on ?'-l(c,‘f).

We can assume also that if (@,r) € vy n Vj’ i,j € 3, then

(o9,7) + b, .5, .(a,7),

g.T
61j( s7) ;4011 ij

[+ = i
sz( :T) cij6li(°’T) + dij52i(°"r)

where aij ’bij’cij’dij € % depend only of i and j, and that
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Im > 0 |, i € 4d,
§ a,(a,m) v
62i o,T)
Let wli('.s,'r)= S czi(cr,'r), wgi(a,-r) = S ai(c,'r),
Gli(c’T) 62i(d,'r)
wli(c,-r) - 1
w, (9,7) = W, (@,7) * a,(9,7) = Wi(","‘)-

Note that wi(a,'r) does not depend on T. If it would not be so,
we would get that for some Go € A"J, wi(co,'l’) is a non=constant
holomorphic function, that is, it has a continuum set of values.
Then 2' |°=°o is not a constant. Contradiction (with g-gi = 0).

We can write w;(9,T) = wi(O).

Let (@,r) € v, n Vs i,j € J. We have



153

Let Gi be a group of analytic automorphisms

of Uix(L' which have the following form:
g ] €
( )Q) — ( s c+nlwi(°)+n2): nl)n2 Z .
Define a holomorphic map:

-1
¥ } (vi) —_— UiX(I!/Gi

x
by v (x) = [0($(x)), § &,(3'(x)))
n' (g (x)
x
where S is taken along a path in @S'_l(%(x))
n (3 ()
=1
Let ¥ ; = Yi'g;-l(uixo): 3 “(ux0) —>u /G,
It is clear that Yoi is an isomorphism. Denote Ti = Y;:_' and

define vi: FTHV) —> ziw_, by vilx) = (7,¥(x),7(F(x)).

W

=1 1 N
Let x € é (Vi) nag (Vj)’ i,jéeJ. We shall prove that
v LAY . = Y = Y .
i(x) j(x) Let x, = T, i(x), X, ’I‘j J_(x) We have

(H(x)) = a((x;)) = o(P(x,)), that is, P'(x;) = 56'(x.),

3
and for ¢ = 4i,j

Xz X

§ @@z =

&3 (x)) (mod(1,u,(a(3' (x))).
n' (3 (x,) n'§§>'(x)) o3 #915
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Now

X X
3 (x)) = § T (3 (%))
n'(;'(x) (08 (x))+di 5 g () *
and
Xy Xy
& (F(x.)) L 5 & (8 (x.)) =
n.(S&.(xj))J ¥ (x, oy #; (9F (), o g;'(xi))al & (x;
- (3 (x) + njw (9(3'(x))m
cijwl(qé’ (%)) 1_] [77(; a, + &' (x +2]
X , XJ
- ) (HER)= ( § (@ (x )moa(1,w @@ (),
bl For = 013 (x,) ] ?
15, (@)

(ni,né € z).

We see that x, = X Thus Vi(x) = Vj(x) and we can define a

i » . ' : _ .
holomorphic map V: z' —>2' X DE_Di with V|§D,_1(V ) = Vi. Itis
easy to verify that V is an isomorphism. Taking i, = i‘-(V_l)
we finish the proof of Lemma 5. Q.E.D.

This also finishes the proof of Lemma 4 (and of Theorem 8).

Q.E.D.
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Theorem 8a. Let f: V —> A be an elliptic fibration with
multiple fibers only of type mIo. Then there exists a commutative

diagram of proper surjective holomorphic maps of complex manifolds

where D = {r € ¢||T| < 1} such that Flh—l(o): h-l(o) ——e>p-l(0)
coincides with f£: V —>A, h has no critical values and for any

_1(

T € D-O, F'h—l(T): h () —-—>p_l(7) is an elliptic fibration

which has singular fibers only of tvpes wl  and Il'

Proof. Using Lemma 5 and the same arguments which we used
for deduction of Theorem 8 from Lemma 4 (see pp. 118-121) we see
that Theorem 8a will be proved if we prove the following

Lemma 6. Let £': V' —>D be a proper surjective map of
complex manifolds with a single critical value o € D such that
for any @ € D-o, f'-l(d) is a non-singular elliptic curve and
f'-l(o) is a non-multiple fiber of f': V' —= D. Then there exist

positive numbers e,el, € < 1, and a commutative diagram of

sur jective holomorphic maps of complex manifolds
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where D ={'r€a:||-r|<e},1) = (cea||le|l < e}, D =D,
el 1l € €

p': DEXD€ —> D, is the projection, F' is a proper map,
1 1l
such that

' . - . . .
a) F lh"l(o)' h 0) coincides with

f.'f"‘l(D ) f'-l(De) —>D;
€

b) h' has no critical values;

-1 -1
¢) For any T € D -o, F'Ih"‘l(T)’ h' "o (1) —>p' T(7)

1

has as generic fiber a non-singular elliptic curve and all

singular fibers of F'Ih‘-l(w)h.—l(T) ———>p'_l(7) are of type I,;

d) There exists a holomorphic cross-section 7 of

', '
P': W ‘——>])€ X Dei.

Proof of Lemma 6. Taking € sufficiently small we can assume

-1
. L e . : s
that f lf,_l(De). £ (De) ——e>De is obtained by minimal

resolution of singularities from the family of elliptic curves

which is given in D€x¢P2 by the following equation:

2 3 2 3
ZoZ, = 2] + p(d)zlzo + q(a)zo ,

where (z ) are homogeneous coordinates in mpg, p(e),ale)

01%11%5
are holomorphic functions of ¢, ¢ € D, and
Ale) = M(p(c))3 + 27(q(0))2 is equal to zero (in De) only at

¢ =0 (see {15], ch. vIiI, 86).
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3

Suppose for a moment that (p‘)Bq +2(q')” =0 and

2 2 e} dg
[ ] [} —— ] = L] =
(p')°p+3(q')” = O (where p -Bda, q 30)+ Then
3(p')3q - 2(p')2pq' = 0 and because p' 0 {if not, q' = O

and p = const, g = const, A = const) we have 3p'q-2q'p = O

and q° = CP% cC €. Nowg= JC 93/2, q' = yc %pl/gp',
2 2 4
(a)% = ¢ Zo(p")® ana ()% + 3020(p')% = 0, ¢ = - 5

(we used p £ 0 (because p' 4 0)). We see that A(e@) = O.
Contradiction.
We obtain that almost for all a € €,
R 3 . 2 W27 . .
{(p') q+2(q") -a_p [{(p')°p+3(q')"] is a non-zero holomorphic
function of (€ De)‘ Choose a_ with such a property and

demand also that a_ £ 0, q(c)—aop(a) 4 0 and (ao)3+p(o)a°-q(o) £ 0.

Now let X be a complex analytic subvariety in D€XD€,x¢P2

defined by the following equation:

z z° = 23+(p(c)+T)z

o 2+ (ale)ongr1e2

1

Suppose that X = (3,7;25:21:25) € X is either a singular

point of X or a critical point of the function T considered as a
holomorphic function on X. Then we have
~2 ~ o~ ~ o~ ~ ~ ~
- T T) =
z, + 2z°zl(p(c)+ ) o+ BZo(q(0)+ao ) =0
~D D ~ A~
335 + 22(p(F)47) = o;

-22.2 =0
2 o, ~3
p-(a)zlgg + q'(o‘)zo = 0.
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~d ~
We see that z_ # 0, z, = 0 and

4(p(3)+717 + 27(a(3)+a F1° = o

2q'(9)[p(d)+7)-3p" () [a(F)+a _F] = o.

Suppose p'(G) = 0, ¢'(F) = 0. Then taking € smaller we can
assume that 9 = O (because it cannot be p'(9) = 0, q'(9) = O).

Taking €' smaller, we can assume that the equation

]3

Ylplo)+T]” + 27[q(o)+ao‘r]2 O has only one zero T with |7| < €',
namely T = O, Thus we get T=o0.

1f p'(9) = 0, q'(3) # 0, we obtain p(d)+T = 0. Hence
q(;)+ao? = 0 and q(;)—aop(g) = 0. Taking € smaller, we can
assume that the holomorphic function q(c)—aop(a) has at most
one zero in D_ and at the point ¢ = © (if this zero exists).
Taking €' smaller we can assume that the equatinn p(o)+T =0
has at most one zero T with |T| < €' and this is T = O (if this
zero exists, that is, if p(o) = 0). Again we get T = O.

Consider now the case p'(9) # 0. Then

~ 2q'(e ~ o~
o = 3 gn q)[P(q)+T]

and

§(p()47)° + 2L

If p(9)+7 = 0, we obtain as above that T = O. Suppose p(d)+T # O.

Then
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) - 2 L] 3
p(FeF = -3 L&) 5 al@+4a T = -2 (g (i) 5
(p'(9)) (p'(9))

and

2(3)-a_p(3) = 2 L@, o <q'<3>>z )
° {(&)

(p'(d))° °(p'(d))

(p*(3))%a(@)+2lq" ()17 - a_p () (p*(8))%p(3)+3(a*(8))%] = o.
Taking € smaller, we can assume that the holomorphic function

1 1 2 1 2
(0*)%a + 2(a")” - age' [(p*)p+3(a")?]
has at most one zero in D€ and at the point ¢ = 0 (if this zero

exists). As above, we see from the cubic equation
3 2
4[p(o)+7)” + 27[a(o)+a 1] = O

that T = O,
We proved that X has no singular points with T = O and

that the function TIX has no critical values in Del-o.
Let S be a complex subspace of De'XDe defined by

2

)

B(,7) = u(p(2)47)° + 27(q(e)4a,")® = o.

Suppose that § has a multiple component §, with 8, > (0,0).

For any z' = (¢',7') € S, we have B(eyT') = o, §%K(0',T') = 0.

But
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2A(e,7) = 12(p(0)+7)? + sha (a(o)4a 1)

and we have

W) + gt = - Elp(a)sm),
o
4(p(e)+71)? & 27.—(p(e*)4r)" = 0.
81ao
Suppose p(@')+T' = 0. Then q(0')+aoT' = 0 and q(O')-aop(U') = 0,

As above, we get @' = 0 and T' = 0. Now let p(9¢')+T' # O. Then
3

2
p(9')+7' = -3a_, q(@')+a, 7' = -2a_ and
a(e') - ap(9') = a2
[o] o’
Since a2+aop(o)-q(o) # O we can assume, taking € smaller,

that aZ + aop(c) -~ q(9) # 0 for any ¢ € D_. This contradicts

q(e') - aop(ﬂ') = az. We see that S, does not exist,

Now taking € and €' smaller, we obtain that for any

T, € D., - o the equation Z(O,To) = O has only simple roots.

Let °o be one of these roots. Suppose that p(co)+T° = 0, Then

q(°o)+q;° =0, q(co)-%p(co) = 0 and, as above, we see that T_ = O.

Contradiction. These arguments show that if g: X —> Del is the

restriction to X of projection De,XDemez-——>D€, and
X, = [x € x{g{x) = 7 }, £: X —> D_,XD_ is the restriction
‘I’o o] € €
: 2
j X% X = 3 X
to X of projection DG,XDE CP ——>D€‘De,f1_o £ X, XTO —> T,XD_,

o}
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then for T # O the family f, : X, —> T,XD_ has only singular
o o

fibers of type I, (see [15], ch. vII, 86).

It is well known that X, has as singularities only a single
rational double-point, Taking simultaneous resolution of
singularities for the family {XT, T € De'} (see [6],[7]1), we get

a diagram

with desired properties a), b), c).
d) is evident (the corresponding holomorphic cross-section
comes from the cross-section {zo = 0, zl = O, z2 =1} of

£: X—>D€,XD€). Q.E.D.



§2. Lefshetz fibrations of 2-toruses,

Definition 3. Let f: M — S be a differential map of connected
compact oriented differential manifolds (which may have boundaries),
dim M = 4, dim S = 2. We say that £f: M — S is a Lefshetz

fibration if the following is true:
-1
a) oM = £ (98);

b) there is a finite set of points a Ay, € 5-05 such that

177"

H M
-1
_ M . - -
flf g Moy f (s kjai) — s \ Ja;
i=1 1 i=1 i=1

is a differential fiber bundle with connected fibers;

c} for any i € (1,2,:++,4) H2(f-l(ai),z) = Z and there

exists a single point oy € f-l(ai) such that

. -1
. . E -
cl) (df)x is an epimorphism for any x € f (ai) <y

c there exist neighborhoods Bi of a; in 8, Ui of oy in M

5)

and complex coordinates Xi in Bi and z.

11°%i2 in Ui’ which define

in Bi and Ui the same orientations as global orientations of §
and M restricted to Bi and Ui correspondingly, f(Ui) = Bi and

£ U : Ui ——e>Bi is given by the following formula:
i
2 2
A =
i %1t R

We shall call a ---,au critical values of f.

1232
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M
Remark 1. If a € § - k‘)ai, the genus of f-l(
i=1

a) does not depend

on a. If this genus is equal to one, we shall call f: M —> 8

"Lefshetz fibration of 2-toruses over S".

v

Remark 2. If a €s - L,/ai, j € (1,2,-++,4) and Y is a smooth
i=1

path in § connecting a, and aj and such that ai f Y,

i=1,2,-++,j-1,j+1,-++,4, we define by usual arguments of
Lefshetz theory (see [16]), so-called "Lefshetz vanishing cycle"

=1
E .
6j Hl(f (ag) ,%) corresponding to Yj'

Definition 4., Let £: M — S be a Lefshetz fibration of 2-toruses,

T2 be a 2-torus, O(T2) be the group of all diffeomorphisms of T2

preserving orientation, a: Sl ——e>0(T2) a differential map

(S iS a circle), a .. -,a be all critical values of
3
1 M

Y
f: M —>8, a € int(s) - U a;, D, be a small closed 2-disk in
i=1

M
int(s) =~ \Jai with the center a. Identify 0D, with Sl and
i=1

~1 . 2 -1 ~ 2
£ (Da) with D_XT". Let N_ = f (aDa), a: N, d)a(naxr } be

a diffeomorphism canonically defined by o (and by the

identification f_l( 2).

D_) = D_XT Denote
a a

M =M = £

1
a,a (

y Ua 2 .
Da) a(DaXT ) and let fa,a' Ma,a —> S be a map

which on M - f-l(Da) is equal to £ and on DaXT2 is equal to
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canonical projection DaXT2 —> D . We call f M —>5 a

a, 0’ “a,a

Lefshetz fibration of 2-~toruses obtained from f: M — S by

a-twisting at the point a.
Definition 5. Let fl: Ml ——>Sl, f2: M2 —>52 are Lefshetz

fibrations. We say that fl and f2 are isomorphic (as Lefshetz

fibrations) if there exist orientation-preserving diffeomorphisms

v: My —>M,, & sl —>8S, such that tpfl = fzv.
Remark 3. It is easy to prove that the a-twisting fa a: Ma o —> S
3 E

can always be defined by some a s Sl —->00(T2) where QO(TE) is

the component of the identity element in ﬂ(Tz) and that it

depends only on the class of a, in ﬂ'l(ﬁo(TE),Id). Hence we can

assume that in the notations £ »M o symbol o means an element

a,a’a,

of ﬂl(ﬂo(T2),Id).

Lemma 7. Let £: M —> S be a Lefshetz fibration of 2-toruses and

f M —> 8 Dbe some a-twisting of f: M —> S, Suppose that

a,a’ Ta,a

the canonical homomorphism
b -1
T - —_
1 (8 iL=Jlai, a) —> aug(H, (£ (a), 2)

is an epimorphism. Then there exists an isomorphism

v f—_>faoc

b4

of Lefshetz fibrations f: M —> S and fa t M -8,

V={9:8—=>5, $: M —M a} such that (i) @ = identity;
k]
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(ii) if Ty f—l(Da) —>D, X T° is a trivialization of

f_l(Da) -—-—>Da which we used in the construction of c-twisting

2
f;la(Da) —> D, which we obtain in the construction of a-twisting,

-1
= oT
then Wlf_l(Da) T, 1t

and T, gL (p.) —> D_ x 72  is the trivialization of
a,a'"a’ o~ a

*
Proof.) It is well known that the natural embedding

i: 72 —-—>ﬂ°(T2) (i(y)(x) = x+4y) is a homotopy equivalence
1% ,2)

(see [17]). Hence we can identify ﬂl(QO(TE),Id) with Hl(

and consider o as an element of Hl(f—l(a),z). Let

M
Y: {0,1] — 5 - Uai

i=1
"
be a path in § - {Ja; with Y(0) = v(1) = a and
i=1
-1 -1
Ye: B (£7(a),2) —> K (f (a),2)

be the canonical automorphism correspanding to Y. There exists

an isotopy ®, : S —s, t € [0,1], ®, = identity such that for

t
some open b
Ucs -D,UD Uai,
i=1
®, |, = identity (for any t € [0,1]), pt(a) = y(t) and al(Da) =D,.
We see that there exists an isomorphism V': £ —_—

£
a,a a,Y*(Oﬂ)

}

: : [ t . LY
of Lefshetz fibrations, V' = {g': § —>5, ¥': Ma,a —_%Ma,y*(a)

*iThe proof of Lemma 7 which we give here is based on an idea
of D, Mumford.
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such that g' = epl

W lest )+ Ualetw)) = Iy, (e em2(0)

where
i f-l(S-D ) —> 1 (s-D_)
Ja' a a,a a

and -1 —_T\—-.
j : £ S-D — f S~D
Sy(a)t £(80,) —> £} fsD,)

Now we can find an isotopy

are canonical identifications,
identity, such that Y/ t € [0,1)

vV : M —_— M vV =
t® Ta,v,(a) a,Y.(a)’ "o
-1 . .
£ vV =@ O « £ and V -1 = identity.
a a t 1-t 1 a a t|f
(@) Yela) 2 @)
Denote ¢JY= Vl-t’. We obtain an isomorphism of Lefshetz
Ed
fibrations Va,Y: fa,a —_ fa,Y*(a)’
—_— M
a,Y*(a)}’

Ya,y = {id: s — s, va’Y: Ma’a

It is clear that
= Jy,(a)] e L(u)

a,y f—l (U)) ° (ja‘f-l(U))

a,a

(¥

Let e,,e, be any free basis of Hl(f-l(a),x). Since
we have to prove our Lemma only

f = =
a,a (fa,czl)a,c!.2 for a Ole2
for the case o = e,;. Let 6 € Aut:*.(Hl(f—l(a),Z)) be an automorphism
M
with 9(e.) = e,+e_ and ¥: [0,1] —s - Ja, be a closed path
1 12 joq



167

5

in § - Uai with Y(0) = a and Y, = . Take
i=1
¥ ~={id: § =5, ¥ o~ M —>M }
el,Y el,Y a,e; a,el+e2

constructed above.

Now let o' € Aut:_k(Hl(f-l(a),z) be an automorphism with

M
2) = -e; and Y': [0,1] —58 - iL_)lai be a closed path in

n
s - Uai with Y'(0) = a and Y, = ©'. We have the following
i=1

chain of isomorphisms

£ Zf (s

a,e . ’a,e

1l 2

(f ) - £ ~f,
a,e,’a,-e

Denote by ¥: f —> fa o

3

,¥={p: 8 —>8, ¥: M ﬁMa,el}

the isomorphism which we obtained. It is clear that g = identity

M
and that there exists an open subset U C S—Da, U > Uai, such that
i=1

p
= i e —-— ' e
*lf'l(U) ig Now take b € U Uai, a BDa and let

1 f_l(U) i=1
M M
85: [0,1] — s - Uai be a smooth path in S - Uai with
i=1 i=1

Using a trivialization of f: M —=>S over § we can improve

Now from

]
[

v: £ — ¢ such that ¢
a,e) e a) e
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¥ =] -1 it easily follows that we can finally
(

improve ¥ such that it will satisfy all demands of our Lemma.

Q.E.D.

Remark to Lemma 7. Let f: M —> S Dbe the same as in

Lemma 7. Suppose in addition that dS ¥ @ and that there exists

a connected component s of d$ such that the fiber bundle
-1 2
(

f|S: £ "(s) —>s is trivial. Let J¥: f_l(g) —>s X T be

n (T2),Id) and i be a

some trivialization of fls. Let o € Trl( S

dif feomorphism f-l(g) —_— f-l(g) (over s) corresponding to a.

Then there exists a diffeomorphism ’5: M — M such that fB = '5
= a:‘

and SIf—l(E)

Proof. Let D be a closed 2-disk with oD = s,
2
)

=

=MU* (DxT

by £|M = £, EIDXT2 = canonical projection _]2)(’.1?2 —> D. Let a be

S=8U D, f: M —> 85 Dbe defined

? identity on s —

the center of D. Using g and the given trivialization

£ 7(D) = DXI° we define an a-twisting 55’9-: ﬂ.‘lxg’: —>5S of
T M S.
EaE e R LL
Y= {ia: s —>s, ¥: gﬁl\_a_i’g}

be an isomorphism which exists by Lemma 7 and has the property (ii)

Denote B = (¢ )—l. Using i—l(s) = M and the

(s)

£
—_,2
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identification of fa (S) with M as in Definition 4 we can

consider B as an autodlffeomorphism of M. Now it is easy to see

that £8 = B and Elf_l(s) = a. Q.E.D.

Lemma 7a. Let fl: M1 —> 85, f2: M2 —> S be two Lefshetz

fibrations with the same set of crltlcal values, say (a ---,au},

which is not empty. Let a € S - \~/a

Suppose that f (a) = l(a) and the corresponding canonical

2
homomorphisms 1 (S— LJIa ,a) —>Aut(H _1(
h Shth

(£,7(a),=z)) and

1
H -1
'rrl(s- };jlai,a) —)Aut_:k(l-l‘.'.(f:'2 (a),Z )) coincide and are epimorphisms.

Then there exists an isomorphism of Lefshetz fibrations

Y:of) —>f,, ¥= {g: s —8, ¥: My ——>M2},
ay

such that ®(a) = a, @ induces identity on nl(s - U ,a) and
i=1

vlf;l(a) = identity.

Proof. It follows from Lemma 7 that it is sufficient to
prove the following

Statement. Suppose that 0S is non-empty and connected,
S =8' UD, where D is a closed 2-disk, D N 3S is a segment in
oD, D contains exactly one of a

-1 say a S' is a

lJ u) 1’
2-manifold with boundary and ' 1 D= 3S' N 3D = oD - oD N o8,
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Denote by M_; = £ = fj IM,: M_; —=s', j = 1,2. Suppose
3

that there exists an isomorphism ¥': fi —_— fé,

1
M

: ; : T [ L . = i

induces identity on l(S ik=J2ai’a) and ¥ Ifll(a) id,

¥' = [@': sf —s y': M -ﬁ/Me'], such that g'(a) = a,e’

©'(s'MD) = S'ND, Then there exists an isomorphism
Y: £, —>f£,, ¥={g: 8§ =5, ¢: My —-->M2}

such that qa|s, = @', V's, = §' and ® induces identity on

M
'rrl(s - Uai).
i=1

Proof of the Statement. Let cj’ i = 1,2, be the singular

point of fJ_,l(a From the definition of a Lefshetz fibration

l)'

we have that for each j = 1,2 there exist neighborhoods B of a,

in D, Uj of <5 in f;l(D) and complex coordinates )‘j in B,

zjl’sz in Uj which define the same orientations as the global

orientations of S and M, restricted to B and Uj correspondingly, and

are such that £(U,) = B and f|U : U, —>B is given by the

J j J
following formula: kj = z§1+z?2. For a small € > O let
D .= {b €B[A (b €}, a' €D be defined by A _(a') = ¢
c.i { J( ) < €}, ; , y J( J) )

a, be a point in int(3s'M3p), a, = :p'(al), AT {0,1] —>D-De,l

be a smooth path with Yl(o) = al Yl(l) =a!, P : IxI —> D-D_

a» 1’ "1f ,1

be a (smooth) embedding with
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. (oxI) < int(ds'Mdp), I

1
1 (1xI) < ane’l, I‘l(Ix§) =Y.

1l

Then there exists an embedding sz IXI —>D = De > with
]

PQ(OXI) € int(9s'NaD), Pz(lxI) € D_ , and a diffeomorphism
3

w: ' Url(IxI) Up — 5 U I‘Q(IXI) Unb

€,1 €,2

such that ;|S, =9, ;‘Pl =7 ;(De l) =D and for any
b

o? €,2
L € D, s XQ(;(b)) = Xl(b). Define the Lefshetz vanishing cycle
2

Bj € Hl(f;l(aé)) as the homology class containing the circle

~ 2 2
Gj. (Re zjl) + (Re zj2) =€, Im zjl = Im 255 = o,

where orientation on 53 is taken according to the order

(Re zjl’ Re zj2) of the corresponding real coordinates,
Let Y, = (Y ), 8" = (y"l) (6.), j = 1,2. From the classical
2 177 73 j* i ’
Pickard-Lefshetz formula and from our assumptions about the
¥
representations of T, (s - Ljai,a) in
i=1
aut(H (f'l(a) Z) = Aut(H (f’l(a) z)
+ 171 ? + 1'72 ’
. . 1 " - "
corresponding to £, and f, it follows that (v ‘f_l(a"))*(ﬁl) = 45,

1 1

In the case when we have —6; we change the numeration of

)*(5i) = 5;-

i
Z,1+2,,+ Then for the new 87 we will have (¥ | _,
fl (al)
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For j = 1,2 and a small €' > O denote by

2
R, = {x €U ||z, (x)

j,e€! j | jl |
Taking € << €' we can assume that for each j = 1,2 and for any
b) is transversal to OR_ er® Define a

€,J b i,

) n Rl,e, —> £,

De,l
by

2y (1(0) = 2, (%), 25(7(x)) = 2,(x).

_ - ~ - ) -1, .
It is clear that £,T = §f; and 7(61) = b,. Since fj (aj)nRj,e'
is a tubular neighborhood of gj in f;l(a;) and
' - "\ = " . s
(¥ lfll(a;))*<51’ 6, we can construct a diffeomorphism
_u, —l ] —l s I = '
V£ (s'u T‘l(IxI))"'>f2 (s*u I, (IxI) such that ¥ |S, =¥,
£o08" = ("‘s'ur (IxI)) : (fllf'l(S'UT‘ (IXI))
1 1 1
and
Tul -l = T -1 .
£ (xa) MRy £,7(r (1xx)) OR)

Without loss of generality we can assume that
r (1 (b € x i A (B) < 7
1(1x1) = D¢ 1 | l(b)[ = ¢, -y <arg M b) < 7}

Then
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re(lxl) = (b € D€’2‘[X2(b)' =€, - % < arg le(b) < ;}.

For t € [— lt}

=1

"
— i = €
, 4] define e {v D_ .

je s]

Im Xj(b)ilm e

2

m ejt’ j = 1,2, Now choose a Riemannian metric,

and o, = Yq
te["_u_’)_!]

g,» on le(D) such that for any b € D, le(b) will be

17

orthogonal to BRl ¢! and construct a family of trajectories
L

-1

-1
qy. [0,1] —> fl (Ql) - fl (Ql) n Rl’e,,
where
- -1 a
y € £71(P(1x1)) - €77 (1x1)) ARy o,

£19,([0:11) = &5 g A (e ()

_1(

for any s € [0,1], qy([O,l]) is orthogonal to f;

£,(a,(s))) ac

the point qy(s) and fl(qy(s)) depends only on fl(y). It is clear

€ £71 cr o )M )
that for y £ (Pl(lxI)) n aRl,e' we have qy([o,l]) £ (Ql) Rl,e'
Now define a family of trajectories g'—,: [0,1] — f—l(Q ) 0 OR s
y 2 2 2,¢
- -1
[ 3 .
v £, (TQ(IXI)) n BR2,€, as follows:

q'— =T . _
Ty f-l(g)

We can choose a Riemannian metric g2 on f;l(D) such that for

any b € D, f-l(

07 o b) will be orthogonal to BR2 ¢+ and for any
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s € [0,1], E'y,([o;]) will be orthogonal to f;l(fg(g';,(s)» at
the point E';,(s). Now using g, we extend the family {E'?,} to
———————————— e
-1 -1
. . . v, - n
the family of trajectories Ayt [0,1] — £, (QE) £, (Q2) R2,€'

with the properties analogous to the properties of the family
[qy}. Using the families [qy] and (q;,] and the diffeomorphism T
we extend V“ to a diffeomorphism

...1(

—n. -1 [ T
¥": £ (s U Tl(IxI) u Ql) > £,

s* U Pe(IxI) u Q2)
such that

7||

1s'ur xx) = ¥

1

£,08" = (E'S.UTl(IxI)UQl) . (fllle(s'url(IxI)U019 .

Our statement easily follows from the existence of ¥

with these properties. Q.E.D.

Definition 6. We shall say that a Lefshetz fibration of
2=-toruses f: M —> S is regular if S is diffeomorphic to 52
(2—dimensional sphere), and the set of critical values of £ is not
empty.

Definition 7. Let fi: Mi —_ Si, i = 1,2 Dbe two Lefshetz
fibrations, le = 882 = @, such that the non-singular fibers of £,

and f2 have the same genus. Let a(l) €s,, i=1,2, be some
i

non-critical values of fi’ D (1) be a closed 2-disk in Si with
a
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i . . s -
the center a( ) which does not contain critical values of Ii, and

B: oD — oD be some orientation reversing diffeomorphism.
(1) al(2)

Identify f_'l(n ) with D
i a(J.) i

.\ XC, where C is the typical non-singular
ali)™

, _ ~ -1 -1 ,
fiber of £, and f,. Let B: f, (ana(l)) —> £, (ana(2)) be defined

by B = B x (Identity) and

il

M=M ®M, = (M - £7(D - fgl(Da(g))),

$ =5, # s, = (sl -D (1)) Ua (se—D <2)),

f: M — S be defined by f'M 10 ) = fi‘m).
i1 ) i T )

clear that f: M —>8 1is a Lefshetz fibration and we call it

direct sum of fl and f2 and write f = fl 5] f2.

Theorem 9., Let f£: M —> S be a reqgular Lefshetz fibration
of 2-toruses, fO: Mo —> 8, be a Lefshetz fibration obtained from
a Lefshetz pencil of cubic curves in cp® by blowing up of (nine)
base points of this Lefshetz pencil. Let e{M) be the Euler charac-
teristic of M. Then e(M) > 0, e(M) = O (mod 12) and f: M —> S

is isomorphic to the direct sum of S{%l copies of fo: My —> 5,.

Proof. Let a --,au be all critical values of f: M —> S,

_]_(

1’

o
a € s - é:Qai, c,=£ (a ), ¥

o l"'.’YH be disjoint smooth

paths which connect a. with a

° l,---,au respectively,
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o
Y --~,Y; be generators of ﬂl(s— Ljai,ao) which correspond to

Ed
1 im1

Y e ,---,Ou be automorphisms of H

l’...,Yu’ 1

to Yi,...,y'

(¢ _,Z) corresponding
1' 7o’

% 51,...,5“ €y

corresponding to ¥

1(CO,Z) be Lefshetz vanishing cycles

l,---,Yu and el,e2 be generators of Hl(Co,Z)

with (e = 1. Let Dj’ j=0,1,--+,4, be small closed disjoint

1°%2)
2-disks in S with the center aj, j = 0,1,...,h. We can assume that
the sets Yi n DJ" i€ (112:"’;“): 3 € (1,2,"',“), i 7! j, are
empty and that each of the sets Y, n aDi’ Y n 5Do, i=1,2,"+,H,
has only one point. Let ao = Yi n BDO, a; = Yi N BDi and Y; be

the part of Yi from a, till ai. We can assume that

=-1 : :
Y. = Y;-0D, Y] (0D, is oriented as the boundary of D;)and that

the order of points a, ,---,a on oD where oD _ is oriented as
P lo ’ o o}

do

the boundary of Ig coincides with the order of their indexes.
Now classical Picard-~Lefshetz formula tells us that

Oi(z) = z-(z.5i)6i, z €H CO,Z), i=1,2,.«+,h. It is clear

1
also that @, @, - -« 8, = 1Id (we write the multiplication of

automorphisms of Hl(co,zﬁ here and further from the left to the
right (as the multiplication of corresponding matrixes!) and use
the notation z@ = e(z)).

Let X (corresp. y) be the automorphism of H CO,Z) defined

1
X = z- Y= z- €

by zX = z (z.el)el (corresp., zy = z (z.e2)e2), z Hl(co,z).

It is well known that each 5, is a primitive element of Hl(CO,Z).

Hence there exists an automorphism A; of H CO,Z) preserving

1
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intersection form and such that e, = 61. For any z € Hl(Co,Z)

we have

-1

l —
'el)el)Ai = z—(zAi,el)elAi =

-(zATl

zATl§A. = (zA]
i i i i

= z—(zAT%A eA. JeA, =2z - (2.5,)6
RS A U] 03785

-1 ~
Thus ©, = AT x Ay and l [(Ai X Ai) = Id.
i=1
M [
For i = 1,2,.++,k=1 let q,: ﬂl(S - }:éai,ao) —i»nl(s - E:iai,ao)

"
be an automorphism of ﬂl(s - k“/ai’ao) defined by
i=1

ag (Y9) = Yy,emeeay (g ) = ¥i g @ (Y)) = ¥ s

Y:

' |"l|| —
a, (Y 4) = Y/ IIYY l+2) =Y

i+l ia¥iYiae 4 e (V) = v

i+2’ M

It is easy to see that qi(Yi)""’qi(Y;) correspond to

some new choice of disjoint smooth paths Yl""’YH connecting
1 -1
(¥y)sreesa; 7 (Yy)

a, with a ---,au and the same is true for qi

l’
(see Figs. 8 and 9). We denote these new paths by
1 -1

(Yl)’...’qi (Y“)- We call

transformations qi and q;l elementary transformations of the

q;(¥y),-++,q;(y,) (corresp. q

paths on the base.
Now if G is a group and (xl,---,x“) is a HM-tuple of elements
of G, we call the transformations

(regsemenx) =3 eeeuXy g0y 00X %Xy 0% 40070 0%
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Fig. 8 (For qi)

q,(%.y)

. -1
Fig. 9 (For a; )

S i+y

i)
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and

-1
(epseeenmy) == Grpyeeexy o3y%g g X3 70%0% 000 0%y

elementary transformations of H-tuples in G.

Using e,,e, as a basis we identify H,(C ,Z) with Z®%Z and
o

1

CO,Z) preserving intersection

2

the group of all automorphisms of Hl(

form with the group SL(2,Z). It is clear that an elementary

transformation of the paths on the base correspond to some

elementary transformation of the H-tuple (© ,...,Ou) < sL(2,%)

1

and vice-versa.
We see that if (21"..’9p) c sL(2,7) is obtained from

(91,...,9 ) by some finite sequence of elementary transformations

"

then there exists a set of disjoint smooth paths Y --,iu on S

1’

connecting a, with al,---,au and such that 91""’2u correspond

Y by the same way as ©

to ll""’—u l’."’QH correspond to Yl,...,yu_

Now we shall use the following

~ 10 ~ 1 -1
Lemma 8, Let x = ||l l||, y = |§ l||and Aj,eecaAy € sL{2,z)
be such that if o, = AIl XA, i=1,2,-++,4, then
e. - -9 = Ill © Then M = O (mod 2) and there exists a
17t 9y o1l

finite sequence of elementary transformations starting with some
elementary transformation of (el,...,e ) such that if (e
u bl

is the resulting M=tuple in SL(2,Z) then

(=) =;;,g =';’--

=1 0 X, © = Y, ,9 =x, 08 =Y.

58541 T o8
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Proof. We use the following Theorem of R. Livne. (For the
proof see Appendix II, page 223.)

Theorem of R. Livne: Let G be a group with two generators a

2
and b and relations a- = b~ = 1 (that is, G is isomorphic to the

free-product [(Z/28)«* (B/3Z)]). Let s, = a>pat for i = 0,1,2,

. -1 .
and Ql,Q2,~--,Q“ € ¢ be such that if y; = Q;759;, i= 1,2,¢00,M,
then yl-yg-...-yu = 1. Then there exists a finite sequence of

elementary transformations starting with some elementary
transformation of (yl,...,y“) such that if (Xl""ﬂzu) is the

resulting subset of G then each Vi i=11,2,¢+-,4, is equal to

J

one of the element s,..
ents so,sl, 5

Complement to the Theorem of R. Livne

Let G,a,b,s be the same as above and YystttaYy € G

s.,S,.
o’71’72

be such that each of Yo i=1,2,--+,4, is equal to one of the

elements S,48 and Yyteeety, = 1. Then # = O (mod 2) and

1°52 ¥

there exists a finite sequence of elementary transformations

starting with some elementary transformation of (yl,yg,---,yu)

such that if (Xl"'°’yu) is the resulting M-tuple in G then for

. M
any j = 1,2,c,5, Yoy = 810 Yoy T Spe
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Proof. Note that a cyclic shift in a tuple (xl,---,x“) can

be obtained by a finite sequence of elementary transformations
(see Appendix II).

Denote by A the number of yj in YyscorsYy with yj = s_.
Let us call the statement of the Complement to the Theorem of
R. Livne in the case when M,A are given "Statement [u,A]".
Now consider the set ® of all pairs [p,M, b € Z, X € g,
: > 0, X > 0, and define the following order in 8: We say

=n, XX '
1 B, 1< Let ®

be the subset of # consisting of all [p,N] for which the

N’Xl ~IX¢ . . ~ ~ ~
[Ht’l] < PH, ]} if either W< B oor M

"Stat ement [H,M] is not true. Suppose that B' # @ and let

{4, A] be a minimal element of B',

Suppose that A # O. Then we can write YyteeetYy in the
following form
m m, m,+
.M 2 "
yl ven y“ = so Xlso X2 cees so X“.
where
Yok L4
(1) X, = sl’Js s3 Xk, .20, £ >0and if N #0
’ =0 & 33 )
then for all i = 1,2,-+**,N_, k. . > O, i1 5 >0
s ’J
N
o VAR Y
A%
(M = LI (kl +Ll Yy, A= m.).
KA N j &
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We can write also

m2 % ml
yl - yH = Xlso X2 ‘e H'So .
Suppose that k = 0, Then because s s, = s (s-ls s ) and
0,] o2 2'72 o2

-1 .
s. we can reduce (by an elementary transformation) our

Sp 5585 = 8

situation to the "Statement [H,A-1]" which is true. This

contradicts [M,A] € 8', The same arguments show that IN > 0
"l -l JJJ
(we use 5.5, = (slsosl )sl and s;s_s,~ = 52).
Using elementary transformations on the {ordered) set of
factors of X,, j = 1,2,-++,M', we can get different expressions

for Xj’ j=1,2,-++,4', as a positive word written in the letters

sl,s2. Among all these expressions we can find a wmaximal ( for

each Xj’ j=1,2,---,u") according to lexicographical order

(sl is the first letter and s, is the second one). This shows

2

that we can assume that we already have yl,---,yu such that each

Xj’ j=1,2,-++,u, cannot be transformed by elementary trans-
formations of its factors into a word which in the form (1)

{that is, when we put corresponding s, and s, instead of yi)

is greater according to lexicographical order than Xj.
Take j € (1,2,++.,u') with Nj # 0. Now suppose that some

kij =1, i€ (1,2,---,Nj). We have that in the expression (1) of

Xj there is a subproduct which has the following form: 525152‘

. _ . - <=1 -1
Using Sls2sl = 525152’ that is, sl = 52 Sl 323132, we get
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$.8.8, = 8 (s_ls s )s, = s.s [s_l(s-ls s )s,] = s.s.s
27172 1'71 271°°2 172°72 1727172 17271

It follows from this that using elementary transformations we can

replace 525152 by 518251' This contradicts the maximality of Xj

in the lexicographical ordering. Thus we obtain

k, i = cee N ..
i,j > 1, i 1,2, ’Nj
ko j
S at 4 = 1. We h = ’ cesens o
uppose that o,j 1 e have Xj s1 s2sl .
. : . 0,]
U E
sing substitutions SISQSl ———>525152 we can transform sl szsl
ko .
in 525152 *J . As we showed above, any substitution of the form
8,558 ———>52s152 is a sequence of elementary transformations.
Thus we come to the situation where Xj = 52...... , but this

leads to the contradiction as we explained above, Thus we obtain

to,3 > 1

J, i e .o - L. = L' = .
Now suppose that for some i € (2,3,. ’Nj 1), i1, i3 1
We have that in the expression (1) of Xj there is a subproduct which
K: s
s.s.s, %3 s..
17271 271

has the following form: Using substitut ions

X: .
i .
s3g s. in

s.5.,8, ™> s_.s8.5,, and kij > 2 we transform Sls2sl 58y

17271 2712
ki j-2
El : .
31525152515252 . Hence performing elementary transformations,

we can come to the situatinn when a part of Xj has the form

. B - 1. . .
515251525152 ut 51325132s152 1 This shows that using a
cyclic shift we can reduce our situation to the Statement

[W=6,A] which is true. This
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contradicts [M,A ] € ®'. We see that if for some i € (2’3""’Nj-1)

L. . =1 then 4, . > 1. Let us prove now that if for some
i-1,j 1,]

1 E Y JA = .
i€ (2,3, ,Nj), i-1, 1 then ki_l,j > 3 and ki’. >3

Suppose ki—l j = 2., Then in the expression (1) for Xj we
3

have a part of the following form: szsiszsi. Using elementary

transformations we transform this part to 815251825152' This

contradicts [W,A] € B' (as we saw above).

Now suppose that ki j = 2. In this case we have in the
2

expression (1) for Xj a part of the form SiSQSiSE which also

5,.,5,8,.8,8S

can be transformed by elementary transformations in s 585,885+

1

As above, we get a contradiction with [u,A] € B', For

L. R YR
-1
i= 1,2,..-,Nj , we denote Y, g ) ye shall say that

. = 8
i,] 2 i

Y. . is of the first (corresp. second) kind if g, . > 1 (corresp.
1,] l_lJJ

= 1). We proved that Y, ; is of the first kind and that if
3’

Y. . is of the second kind then Y, . is of the first kind, It
i,j i-1,3

o1,

follows from this that we can find a set 2., _.,«++,2 . of
1,3 €553

elements of G such that (i) each Z, 57 4= 1,-oo,tj, is equal
3

either to some ¥, ., i € (1,2,-+.,N.) where Y, . is of the
l"J J l,

first kind or to some product Y, Y i € (2,3,---,Nj)

-l)j i:j,
where Yi 3 is of the second kind, and
2
X . 4

t.
j .
0,] N,j
s | ] Z, .s =X..
1 =1 £,j72 J
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FPor any element c € G we define a reduced form of ¢ by
writing c as a positive word in the letters a,b (generators of G)
and performing all possible cancellations (using a3 = b2 = 1. It
is clear that ¢ has unique reduced form,

Let ZL be such that Zz ., is equal to some Y, . where
Jj ,J 1

>

Y, 32 i€ (l,---,Nj),is of the first kind. Then it is easy to
3

verify that the reduced form of ZL 3 can be written as bR, .ba
bl
. X: = 4. .
. € i=1,j.1,] = i-1,j3 L,
with some R‘,j G (we use s, s, s, bs

2, k,

4 _ _ . .
i-1,j 2 i,j 2. 2 and Sy ba”, Sy aba) Consider Z

£,]

hich i i € R .

which is equal to some Yi-l,jYi,j’ i (2,3, ,Nj) where Y ,

is of the second kind and Yi 1,3 is of the first kind. We have
=t

>3

11_2,j > 2, zi—l,j = 1 and as we proved above, ki—l,j > 3, ki,j >

Now we can write

Lio,3 ko1, RiLj
= — ] s )
Za,5 = Yio1,i%4,5 - %2 S1 $551
S T B
= s, )y N 23 "ap sll’J aba .

It is easy to see from that formula that the reduced form of Z‘ j
3

can be written as (sz jba) with some R, ; €G.
3

3

1 if N, =0
J

We define T, = +
’ TP (vr, .ba).
Fl !’:J.
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It is clear that if Nj # O, then the reduced form of l!j

5
is equal to T—J(b R, ba) and could be written as hija with

£=1 s]
ko . £N' j
some R, € G, We have X, = s ’Jrjfs J°, If N, # 0, that is,
b] b 1 j2 J
11i # 1, we cannot have cancellations in s ’JTT- J’J between
sl and || and between !( and 52 If Nj = O, that is, l‘j =1,
k X g
we cannot have cancellations in s1 ’Jseo’J between sl and s,
[
L
Now s X, = a2babas °,3" {{ NJ’J
o j 52 ’
X . £ =1
_ 0,] Ny,J 2 2. _
sto sl -FE s2 ba -a b
k. 4 -1
N.
slo’J]—E s, i3 pap.

These formulas show that we have no possibilities for further

cancellations in s X. and X.s
o j o

This contradicts the equality
T
Y, =
i=1 %

Now let us consider the case A = O, that is, all YysttesY

M

are equal either to sl or to 52. We can write X = T—ryi(=
=1

in the following form:

N ki zl
(2) X=11s,"s

. i 72

i=0

where
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Using a cyclic shift of indexes (1,2,...,4) we can assume
that k, > O, zi >0 for all i = 0,1,-.+,N, It is clear that

N > 0. By the same arguments as above we can prove here that X
k LN
can be written in the form sloTTs2 where the reduced form of TV

is equal to bRba. HEnce X = slobRbas2 and we have no

possibilities for further cancellations in X. This contradicts

X =1, Q.E.D.

Let us return now to the proof of Lemma 8. Let Z be the

center of SL(2,z), PSL(2,z) = sL{2,z)/Z, : SL(2,Z) — PSL(2,=)

~

be the canonical homomorphism, x = (x), y

i=1,2,--¢,K, a =yx, b= y2x. Clearly x = aba, y = ba2. It

I

(%), 5, = 8(ey),

is well known that PSL(2,Z) is generated by a and b and that all

corresponding relations are generated by the relations a’ = 1 and

2 — - — -1
b” = 1. Since 0)°.-.70, = 1 and o, = v(Ai) xg(Ai) we can

apply the Theorem of R, Livne, and the Complement to it. Thus

we get that M = O (mod 2) and there exists a finite sequence of

elementary transformations starting with some elementary

transformation of (91,---,9“) such that if (gl,"-,gu) is the
resulting subset of PSL(2,Z) then
gl—x, =Y, '“’9-21-1=x’22!,=y’ -..’9“_1=X,

=2
e, =v.
8,= Y
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It is clear that we can lift our elementary transformations to the
group SL(2,Z). Thus we get that there exists a finite sequence of
elementary transformations starting with some elementary
transformation of (91,---,9“) such that if (gl,.--,gu) is the

resulting subset of SL(2,Z) then

9(9,) = x, »(8,) = vorrs(8,, 1) =%, 8(8,, )=y,

From the definition of elementary transformation it follows
that each gi, i=1,2,.-+,4, is conjugate to % (and to ;, because
% is conjugate to ;). A direct verification shows that if @ is an
element of SL(2,Z) which is conjugate to % (corresp. to y) and
9(8) = x (corresp. ®(8) = y) then ® = x (corresp. © = y). We

obtain that for any j = 1,2,..., %, 92j-1 = ;, 92j =Y.

Now we return to the proof of Theorem 9. From Lemma 8 we

get that we can assume that paths ¥ ,---,Y“ are chosen so that

1

for any j = 1,2,---,5, 5p5u1 = ©1» Opj = €+ A direct

verification shows that if M, is a positive integer with

1

M. < H, M, <12, then ©.+...*® ¥ 1. It is easy to verify
1s 1 1 My

that ©,%¢..*®,, = 1. We see that k=0 {mod 12). Let k =

Consider fo: Mo ——e»So and let f: M —> S5 be a Lefshetz

i

B
12°

fibration which is the direct sum of kX copies of fo: Mo —_ So‘



189

Let {;1""'5L} be the set of critical values of £,

o
a, €s ~ \_Jai. Applying to £: M —> S5 our above considerations
i=1
we construct a system of disjoint smooth paths Vl,---,Yu

connecting 36 with a ,-.-,E such that corresponding Pickard-

¥l
Lefshetz transformations are given by the matrices e ,...,6“
: - ~—= ~ Mo .
with 2j-1 = x, 92j =y, j= 1,2,---,5, in some free basis
- - ——], =
e;,e, of Hl(f (ao),Z).

Now we get from Lemma 7a that ¥ is isomorphic to f.

Corollary 1. Let f£f: M —>S be a Lefshetz fibration of
2-toruses, 05 = g, Then M is simply-connected if and only if
f: M —= S8 is regular.

Proof. a) Suppose f: M —> S is regular. Let (a ---,au)

l)
be the set of critical values of f: M —> 8§,

£

{

'1(s'), £' = £l M —>8", a €s',

M

. _ - t

§S' =8 -\ Iai,M Ml
i=1

Co = f °

From Theorem 9§ it follows that there exists a set of smooth

disjoint paths Yl,---,Yu in S connecting ag with a,,«..,a

1,

such that the corresponding Lefshetz vanishing cycles

H

cae €
61, ,Su Hl(co,ZD generate H CO,Z). That means that the

1
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image of m (C ) in ﬂl(M) is trivial. Since f': M' — S' is a

l( o

fibre bundle we have the following exact sequence:
ki ' ™ '
(3) mico) —> mm') —g—>",(s").

Let Di’ i=1,2,-++,k, be a small closed 2-disk in S with

the center ai, S.

i = BDi. From the definition of Lefshetz

fibration we get that there exists a local cross-section 5; of
£] -1 £(p.) D,. Let s, = dD,. ¢ ti h 5

lf- (Di). i —_— i* e si = it onnecting eac si
with a point Xo € Co by some smooth path in M' we get a

collection (¢ --',°u} of elements of "l(M',xo) such that

l’

g(cl),...,s(cu) generate T (s,ao) and images of 51,~--,°u in

1
ﬂl(M,xo) are trivial. Clearly "l(M‘) ——e>”l(M) is an

epimorphism. Hence we see from the exact sequence (3) that

"l(Co) ——>"1(M) is an epimorphism. Thus ﬂl(M) = 0,

b) Suppose that "l(M) =0, If ﬂl(s) # O we take any
G € ﬂl(s), @ £ 0, Then there exists a & € ﬂl(M) such that
f*(a) = 9 and W, (M) # 0. Contradiction. Thus "l(S) = 0 and
S is diffeomorphic to 2-sphere. Suppose that the set of critical

values of f: M —>85 is empty. Then f£: M —> S is a fiber bundle

and denoting by Co its typical fiber we have an exact sequence:

m(s) —> M (cy) —> T(M) ——=T (5).
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But Tfl(s) =0, ﬂ2(s) =%,7T (C)=2Z@®Z, Hence Wl(M) £ 0.

1' 7o

Contradiction. Q.E.D.

Corollary 2. Let £.: Ml-—-> S

1 f:Mg-ﬁsgbetwo

1’ "2
regular Lefshetz fibrations. Then f1 and f2 are isomorphic

(as Lefshetz fibrations) if and only if the corresponding

two-dimensional Betti numbers bQ(Ml) and b2(M are equal.

5)

Proof. Immediately follows from Theorem 9. Q.E.D.

The next Corollary gives another approach to a result of

A. Kas (see [18%]).

Corollary 3 (A. Kas). Let Vl and V2 be elliptic surfaces

over ¢P2 with no multiple fibers, with at least one singular

fibre and with no exceptional curve contained in a fiber. Then

(v,) = b (Vv

V., and V, are diffeomorphic if and only if b l) A

1 2 2 2)'

Proof, It follows from Theorem 8a that we can assume that

Vl and V_, have only singular fibers of type I Then the

2
corresponding maps fl: V1 -——>¢Pl, £

1
ot V2 —_— mpl are regular
Lefshetz fibrations of 2-toruses, Now Corollary 3 follows from
Corollary 2.

Theor em 10.*) Let £f: V —= A be an analytic fibration of

elliptic curves, V(f) be the number of multiple fibers of

*)

This Theorem generalizes results of Kodaira's work on homotopy
K3 surfaces (see [19]. The case V(f) = O was proved by A. Kas
(see [181).
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f: V—=A. Then V is simply-connected if and only if the
following conditions are satisfied:
(i) A is isomorphic to GPl,
(ii) there exists a fiber of f: V —>A which (when reduced)
is a singular curve;
(iii) 0 ¢ V(f) ¢ 2 and in the case V(f) = 2 the multiplicities

my ,m, of multiple fibers are relatively prime numbers.

Proof. a) Suppose that nl(v) = 0. Then (i) is evident,
Proof of {iii) is contained in the proof of Proposition 2 of [19].
Consider (ii). Suppose that all fibers of f£: V —> & are non-
singular curves. Let a,b € A be such that for any c € A-a-b,
f-l(c) is not a multiple fiber of £: V —>4, D_ and D De small
closed 2-disks with the centers in a and b respectively,

s, = oD, s, = BDb. Since f-l(a) is non-singular, that is, a

a b

2-torus, and (f-l(a).f_l(a))v = 0 we have that the differential
normal bundle of f-l(n) in V is trivial., Hence f—l(sa)

(corresp. f_l(Da)) is diffeomorphic to saxT2 (corresp. Dang)

(f—l(sa) is the boundary of a regular neighborhood f—l(Da) of

f-l(a) in V). We obtain dimmHl(f-l(s ),@) = 3. It is clear

a

—_— -1
that S, —_ A—Da—Db is a homotopy equivalence., Hence f (sa)
. _l ~ett——
is homotopy equivalent to f (A-Da—Db) and

. -1, = -1 ~ 2 .
dlmQHl(f (A—Da-Db),Q) = 3., From f (Da) = D_XT° we easily

get that
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), £ 3s.);a@) = 1.

, -1
dlmmH 2( £ (1)‘_:l a

By the same reasons

o), £7Hs.)5a) = 1.

dim_:1_(f .

@2
It is clear that

s,)s@)e, (7 (p, ), £

H (v,f'l(A-Da-D ),a) = H (£ b

2 b 2 a a

s ) @) .

Hence dimaHz(V,f-l(A-Da—Db);Q) = 2 and from the exact sequence

I I
H2(V,I (A-Da-Db)’m) _—>Hl(f (A-Da_Db) :Q) —> Hl(v;m)

we see that Hl(V,Q) # 0, Thus ﬂl(v) # 0. Contradiction.
(ii) is proved.

b) Now suppose that conditions (i),(ii),(iii) are satisfied
and prove nl(v) = 0.

From Theorems 8 and 8a it follows that we can assume that

all singular fibers of V are of type I, or I . Let a,b € A

be such that for any c¢ € a-a-b, f_l(c) is not a multiple fibre

of f: V—>4, a RAPLN € A be such that f-l(ai), L= 1,000,

1}
are all the singular fibers of f: V — A which have type Il'
From Kodaira's theory of logarithmic transform it follows that

~

there exists an analytic fibration of elliptic curves f: G’-—>A

At

~ 1 . . .
such that f ?-I(A-a—b)' £ (A—a-b) — A-a~-b is isomorphic to
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: f-l(A-—a-b) —> A-a-b and 'E-l(a),’r:‘-l(b) are regular

£l 71 pmamb) .

fibers of f: V - A, Take a € A-a-b - ) a,. From Theorem 9 we
i=1

obtain that there exists a set of disjoint smooth paths

Y +,Y in A~a-b connecting a_with a

" ° l,---,au such that the

100"
corresponding Lefshetz vanishing cycles

_1(

B,,+e,5 € Hl(f_l(ao),%) generate H. (£ ao),Z). We see that

1’ M 1

the image of ﬂl(f-l(ao)) in nl(v) is equal to zero.

%)

Let D {corresp. Db) be a small closed disk in A—b—lv}ai
i=1
et

(corresp. in A—a-Ljai) with the center a (corresp. b),
i=1

s, = BDa (corresp. s, = BDb), s (corresp. sb) be a cross-section
~ ~a] ~ -1
of flg-l(sa). £ (sa) >s, (corresp. flf-l(sb) (sb)——>sb).

Let E; (corresp. s

b) be a cross-section of flf'l(s )

a
(corresp. f’f'l(s ) £ (sb) —_ sb) which corresponds to
b

g; (corresp. §£) (recall that E'g is isomorphic to

'l( A-a-b)

Llf_l(A_a_b)). Let m, (corresp. m_ be the multiplicity of the

fiber f_l(a) (corresp. f-l(b)). (Possibly both or one of m_ My
are equal to one.) In [19], p. 68 (Proof of Lemma 6) Kodaira

~ P~ _‘m
shows that we can choose s_ (corresp., Sb) such that the loop saa

T . -
(corresp. Sy, ) is homotopic on V to some loop in £ l(ao). From

—m

Im["l(f_l(ao» —> ™ (V)] = 0 we infer that saa {corresp. s.

o ) is

homotopically equivalent:to zero in V.,
v
Let A' = A-a-b-Uai, f'l(A') =M', £' = f,M,: M' - A,
i=1

_ =1
c,=f (ao).
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Since £': M' —=> A' ig a fiber bundle, we have the following

exact sequence:

B’ B Ao
(3) m(c)) ——= M) —— T (8Y).
M
Let D,, i = 1,2,..-,4, be a small closed circle in A-a-b- a, with
i j=1
i
the center a;, s; = BDi. There exists a cross-section gi of
~1 : - - - = N
f}f—l(si)' £ (si) —>s;. Using s,,.-.,s ,8 ,8 Wwe construct such
¢ ..... @ ¢ ¢ i ' e g g
elements @, 9,959, in ﬂl(M ) that B(Ol), ,B(au),ﬁ( a),B( b)

generate ﬂl(A'), B(e )B(U—l)

a b ) is in a subgroup of ﬂl(M') generated

by B(Gl),~'-,8(0“), images of -~-,““ in ﬂl(V) are trivial and

g
l,

9, (corresp. 9 ) is a conjugate to the loop E; (corresp. =. It

L) )

is clear that the canonical homomorphism g: Wl(M') —_— "l(V) is an
epimorphism. We see {from (3)) that any z € ﬁl(M‘) can be written
in the form z = z'-2", where z' € B'(Wl(Co)), z" is in the subgroup

of ﬂl(M') generated by @ ¢,.,9, . Then w(z) is in the subgroup

l:"': v

of ﬁl(V) generated by ®(%;) and ¢(9,) generates ﬁl(V) {pecause
m = 1 it

(V) = o ().

We have also that an;I is in the subgroup of "l(M') generated

),8'(e

-1
b )

-4 csa @ '
by 9., 9 and B (el

nl(Co). We see that w(cao
Pz Iy

mentioned above, S, » 8  are homotopically equivalent to some loops
Mg ny,
That means that I Qb are conjugate to some elements of

2) where e,,e, are generators of

= 1, that is, w(Ua) = @(°b). As we

)). From w(B'(Wl(CO)) = 0 and w(ca) = e(ab) we obtain that
(89,012 = [9(9,)]"®

we have ®{95) = 0. Hence W (V) = oO. Q.E.D.

= O, Because m and W, are relatively prime
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We introduce now the following notations:
Let X,m € Z be such that m > 1 ahd k is relatively prime to m,

{o € ¢)|lo| < €}]. Let G be a group of

For € > O denote D€

automorphisms of D 3 X @ consisting of transformations
el

(9,8) =>(9,¢4n imn,), ny,n, € 2 (0 € I} » L €a)

and let F(D 1) = D %[ x €/G. Denote by [¢,f] the point on F(D 1]{:)
€ € €

corresponding to {9,¢) € D1 x €, Let % be a cyclic group of
€
analytic automorphisms of F(D l) generated by
b
€

2mi

k
g: [9,8] —>[p9, L + ] where p=em ,

sk

and F_ = F(DGI_JI.‘_)/% . Denote by [0,t] the point on Fm,k

corresponding to [0,t] € F(D 1) and by f _: F — D_  the map
E-m_ m,k m,k €

. o~ m
given by fm’k([°,C] ) =9,

Definition 8 Let f: M —S be a differential map of compact
oriented differential manifolds, dim M = 4, dim § = 2, 05 = @#. We
say that £: M — S 1is a Kodaira fibration with V multiple fibers

where V € Z , V > 0 if the following is true:
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a) if V=0, f: M —S is a Lefshetz fibration of 2-toruses,

cve,c, €58,

) if VvV > 0 then there exist V points, say c v

l:

V closed disjoint 2-disks El""’Ev © S with the centers in

Cy,+e+,q, respectively, V pairs of integers (ml,kl),---,(mv,kv),

where for any j = 1,2,...,V, mj > 1 and kj is relatively prime to

mj, and V commutative diagrams

w.
—
(B ) Fo %y
f|f'1(EJ.) .
J
Ej j = 1,2,:00,V,
®j
such that
v 1 \%
(i) f v_l :M—Uf(Ej ————>S-UEJ
M- £ (Ej) j=1 j=1
is a Lefshetz fibration of 2-toruses;
(ii) for any j = 1,2,...,v, o, and 'j are orientation preserving

diffeomorphisms {where orientations of De and Fp x, are defined by
30%3
complex structure).
Let T(f) (& S) be the set of critical values of f: M —> § if

V = 0 and the set of critical values of
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\Y) v
M-Uf'l(EJ_) —5 - UEJ

£ v 1 :
M-l )£ (E.) i=1 j=1

if v>0, T'(f) =g if V=0 and T'(f) = fcl,.--,cv] if v > 0.
We call T(f) (corresp. T'(f) set of non-degenerate (corresp.
degenerate) critical values of f: M — S,

Definition B8A Let f: M —> S be a Kodaira fibration with

V multiple fibers and in the case V > O let [cl,---,cv} be the
set of degenerate critical values of f: M —> S, and
By, B b, Llmp k), eee, (im0 3, (e, ¥0,), 0, (wy, %)} be the
same as in Definition §. Let Dé = {@ € @jo < |o] < €},

F'(p) = ([9,¢] € F(De)'o # o}, Fox = f;fk(D;).

Following Kodaira we define a map

Am,k Fm,k —F (De)
vy A L ([e,2]) = [&" X 10g 0]
Y m,k 3 = ’ C - o114 og .

Let V > 0 and F(De)j (corresp. D_ .), j 1,2,+++,V, be V copies of
F(D_ ) (corresp. D_)}.
€ €
~ v 1l
Define a new YJ-manifold M as union of M - L/ £ (cj) and
j=1

. . -1 .
F(De)l""’F(De)V where we identify x € £ (Ej_cj)’ jo=1,2,°°,v,

. € p-
with Amj,kj*j(X) F (De)j'
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v
Define the 2-manifold S as union of S - \v/cj and
j=1

s20,D where we identify a € Ej-cj, j=1,2,+++,V, with

D
€,1’

¢j(a) € D, T Let f: M —>§ be a map defined by

2

€.V

3

v
. £(x) if x €M -1{Jec,
F(x) = =1~
'ij(x) if x € F(De)j where TTJ.([",C]) = 9.

In the case V = O we take M = M, s = s, f- £, It is clear
that f: M ——>§' is a Lefshetz fibration of 2-toruses and that the
set of non-degenerate critical values of f: M — S coincides

with the set of critical values of £: ﬁ‘—ﬁ»g (by evident embedding

v
s - ch, — ).
=1 -

We shall call £: M e S the Lefshetz fibration corresponding

to Kodaira fibration f: M — 8§,

Definition 9. Let f{ M — S Dbe a Kodaira fibration. We
call f: M — S regular if § is diffeomorphic to a 2-sphere and
the set of non-degenerate critical values of f is not empty.

Let e(M) be the Euler characteristic of M. We define
(M) = S%%l and (following F. Hirzebruch) call it arithmetical

genus of M,
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Lemma 9, Let f: M —> S be a Kodaira fibration with V
multiple fibers) t: ﬁ ——>§ be the corresponding Lefshetz
fibration.

Then i) e(M) = e(g‘f);

ii) if £: M — S is regular, then e(M) > O and
e(M) = 0 (mod 12}, that is, Z(M) is a positive integer.

} be the set of degenerate critical

Proof., i) Let {cl,...,cv

values of f: M —S. It is clear that e(f-l(cj)) =0,
e(F(De)j - F'(De)j) =0, j=1,2,-++,V, We have

ii) Immediately follows from i) and Theorem 9. (E M —75

is a regular Lefshetz fibration if f: M —> S is regular).

Q.E.D.

Lemma 10. Let f: M — S be a regular Kodaira fibration with
V multiple fibers. Suppose that V ¢ 1 and z(M) = 1. Then M is
di ffeomorphic to P # 90.

Proof. If V = O then Lemma 1O follows from Theorem 9.

Consider the case V = 1. Let f£f: M -—->§ be the Lefshetz

fibration corresponding to f: M —> S, By Lemma 9 X(M) = %(M) = 1
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and by Theorem 9 ?: ﬁ‘——>§' is isomorphic to foz MO —_— So‘

Identify %‘: gﬁg with fo: Mo —> 8,. Let S be the

degenerate critical value of f: M — S and E, (ml,kl),(al,vl)

be the same as in Definition 8. Identify M-f-l(cl),F(De)l

(corresp. s ) with their images in M (corresp. S). Let

- D
h €,1

c, be the center of De

1 Without loss of generality we can

,17
assume that De (considered in So) is contained in some

)

51

coordirm te neighborhood U of c. in S, (= ap

1 with complex

coordinate T and that T(E&) = 0 and D_ ; is given in U by

,1
[T] < e. Let e e 1 (¥ (a),=n)

corresponding to the vectors i,1 € € by our identification

, a€ D_,,bea basis of H

2a 1

~1 . .
£ (De,l) = F(De)l = D¢ 3 X €/G. Using the family

-1
. e : > Iy
{ela,ega,a De,l} we can identify the complex manifold fo {D

e,l)

with D€ X m/Gm where Gw is the group consisting of analytic

,1

automorphisms
T € € €
(7,8) —> (7, tsny(r)+n,), ny,n, €z (1 €D ., ¢ €0)

and w(T) ii a holomorphic function in D_ , with Im w(T) > o.

1
s
Let e* = "1, Dy = fo e allo| ¢ e}, G: be the group of

analytic automorphisms of De*xc consisting of transformations

(9,7) —> (@, Linw(™Y+n,), n;,n, € Z (9 € D, ¢ € @)

and F(De*’w) = DE*XE/G;. As above we denote by [9,f] the
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point on F(De*,w) corresponding to (@,r) € DE*XE). Let :’w be

the cyclic group of analytic automorphisms of F(De*’w)

generated by the tra nsformation
2T

kl m
(0,6 —=1[p0, £ +=], p=¢e "1
™

= -] ~ :
and le’kl’w F(De*:w)ﬁj&- Denote by [€,£] the point on
i €
Fm X ,w corresponding to [@,(] F(De*’w)' Let
1°71° 1
. _ ¢ .
DE,l { DE,l # O}:
F = g, € ] ol}.
MoKy e e myakys¥y ’

Define a holomorphic map

. -1
A : — f D b
ml’kl’wl ml,kl,w o ( e,l) Y
m k
~ 1 1
A ([9,£)) = [ 7, C-5=5 log O]
ml,kl,wl 211 Mo,w
where we denote by [T,C]M o the point on f;l(D€ l) corresponding
o) 2
. . . -1
€ =
to (T,t) De’lxc by our identification f_ (De,l) De,lxc/Gw'
N
Define a new complex manifold M_ as union of F and
o ml}kl)w
-1,~ .
- 3 3 e c .
M -£ (cl) where we identify x € F_ x ,w( F X ,w) with
171 1’71
-1, . -1,~
A € c -
ml’kl’w(X) fo (De,l)( My fo (cl))'
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A
It is clear that Mo is obtained from M, by Kodaira's

logarithmic transform at 31 (see [14] p. 768 ). Let

~ N X i

fo: Mo —> 85, Dbe the holomorphic map canonically corresponding

to £ : M —>S,.

Let Ky (corresp. K ) be the canonical bundle of Mg
o o
l(a)], a € So—g and the

( o~ . -
corresp. M ). Using KMO = _[fo )

Kodaira formula for canonical class for elliptic surface with

multiple fibers (see [14]), p. 772) we have

kg = -L£,7(a)] + (m-1)[£, ().

. ~1 =1, ~ _ =1,~
Evidently [fo (a)] mi[fo (cl)]. Hence KMO = -[fo (cl)]
and all puri-genuses of ﬁb vanish. Since ﬂl(Mo) =0

~
(Theorem 10) we have that Mo is a rational surface. Since

~ A A .
e(M ) = e(M) = 12 we have b.(M_) = 10. M_ could be obtained

o o 2V o [e}
from some minimal rational surface by @-processes. Because any
minimal rational surface is diffeomorphic either to P or to P kq

2..2 ~N . .
or to §"xs” we see that M_ is diffeomorphic to P # 9q.
A
We shall prove now that M is diffeomorphic to M.

Let ul(T) = Re w(T), vl(T) = Im w(7T) and At T —>C be

a diffeomorphism defined by

£ —> Re £ +u (T)Im & + iv_ (T)Im ¢

1 1
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(A'r is a non-degenerate real-linear orientation-preserving

transformation because vl('r) = Im w(T) > O)., As above, we use

- AN
for the points of f l(El) (corresp. fol(De l)) the notation
2
[c,;}; (corresp. [°,C]§ ). Define a map
o
-1 Al
A: f (El) —> £ (De’l) by
[a,C]; I [U’ A ml(C)]ﬁ

' € = , — =1,—
Let e' =3, D= {'TEDe’l [v] < €'}, E=@ (D), s = oD
= S | A=l VTR qr L ETE
A= A|f_1(aE). f (3E) — £, (op), s' = s-E, S, =S,
t -1 v ' -1 ' A. -1 1
M* = £ “(8'), M= £ (so), M= £ (s)

Let i_: M' ! i M ' i i

lM ﬁMo, 1Mo Mo e Mo be isomorphisms

corresponding to our constructions of £f: lcf ——ﬁ’Sv and

(AT -1 1
( (

~
£ .Mo-—éso, a: £

o s) ~—> f; s) be a diffeomorphism which

is equal to
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Let o be an element in 1 (Tz) corresponding to & and the
1 -1
( o (De,l) B

l} for the

trivialization of f; s) —>s given by f;l(g) cf

D _X%/G. Using our choice of {e ,e, _;a €D
€,1 R €

1,a’ 2,a

) =D _xt/G it is easy to verify that
€,1 w

P
identification f;l( D

2

€,1

a € ﬂo(T . Now by Remark to Lemma 7 (see p. 168) we obtain a

~ ~ ~ N
dif feomorphism slf'l(S) = a. Define A: M —>M_ by
o ‘&

~ . - -1 '

Alf-l(ﬁ) N A'f_l(ﬁ)’ A l f—l(s') = (lﬁ;) L - I iy: We see
/N

that M is diffeomorphic to Mo' Thus M is diffeomorphic to

? ¥ Je. Q.E.D.

Definition 10. Let fi: Mi - Si’ i= 1,2, be two Kodaira
fibrations. We define direct sum of Kodaira fibrations

£,85,: M@, —>8§, ¥ S, Dby the same way that in Definition 7

we defined direct sum of Lefshetz fibrations (see Def. 7, p. 17").
Lemma 11. Let fi: Mi ——>Si, i= 1,2, be two Kodaira
fibrations, f: M — S be a Kodaira fibration which is isomorphic

to £,@f: M @M, —>S, 4 §,. Suppose that ﬂl(Ml) =0 = n‘l(M) =0

and the intersection form of Ml is of odd type.

Let U be an open 2-disk in S2 which does not contain

critical values of f2, b,c € U, ch be a smooth path in U
l(b), s, c f;l(c) be two smooth
-1

(

connecting b with c, sb c f;

circles such that YpoxSp? S. Jenerate H (£ ~(ec),z) where

* b’ Tc 1
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b),Z) ———>Hl(f-1(c),z) is the canonical isomorphism

corresponding to ch. Then

> = : 03 z “
i) M # P 4 Q is diffeomorphic to M, # M,, where M, is a
4-manifold obtained from M2 by surgeries along sb and s _;
c

ii) if f.: M, —>§

1 1 is isomorphic to fO: Mo ——j»So

1

{see the formulation of Theorem 9) then M 4 P is

diffeomorphic to

pHSQHMZ .

Proof, Let a(l) € §;, 1= 1,2 Dbe some non-critical value

-1, (i) )
of fi’ C(i) = fi ( 1 ), n(i). Tc(i) —_— C(i) be a tubular

. . . 2 .
neighborhood of C(i) in Mi' Since (c(i))M. =0, i=1,2, there

1

exists an isomorphism E of fiber bundles n(l)‘BTC( BTC(D——é C(l)

1)

" . . . . .
and (2)|8TC( BTC(E) ——e»C(g) which reverses orientation of fibers

2)

Let 8: C(l) ———>C( e an isomorphism of bases corresponding to

2)

E. Using the definition of direct sum of Kodaira fibrations, we see
that we can identify M with [M,-TC U> |M, -TC . Let
y [ 1 (1)] ) [ P (2)]

x. € C(

1 B be a small open 2-disk on C(

11)’ 1 1)
Tﬁi)= Wl)(c(l)-El), TC(E) = HE;)(C(g)-BEl). Consider

with the center xl’

s = B(ﬂ( )(xl)) as a subset in M. Let M be a 4-manifold

1

obtained from M by surgery along s. Now using the same arguments

as on pages 45-47 we see that there exists an orientation reversing
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(1

diffeomorphism B8°': OTC ) ———>8TC(2) such that M is

diffeomorphic to

[Ml-TCEl)] UB.[ME—TC€2)].

Now suppose that fl: M1 ———>Sl

fo: Mo ———>S°. We know that Mo is isomorphic to ¢P2 with nine

is isomorphic to

@-processes such that the corresponding exceptional curves,

say 8(1),...’6(9),are cross-sections of fo: M° —_— So'

Identifying flz Ml ———>Sl with fO: Mo-——> So we can assume

that xl = &(l)

g, My —M be a canonical contraction of 6(1) to a point,

-1 (1)
n C(l) and ﬂ(l)(xl) = e/Nn Tc(l)' Let

(o = 0.C; TC; = g(TC.,). It is evident that we can
€1y = %1%y &) T o(ry)

1 1

1
with ngl) (by identification M -6( ) with

identify TC;
identify ( 1

)

1)

gl—dl(e . Using the same arguments as on page 48 we see

that M 4 P is diffeomorphic to
M,-TC/ U,. [M -TC, .
myregy) Vg MpmmC(y)]

Now applying a result of R, Mandelbaum (see [5]) which we

mentioned and used on page 55 we get that M is diffeomorphic

) 2
- (where M2 is defined as in the formulation of the

Lemma). In the case when fl: M, —> 8,

£,: M) —>8_ we obtain that M# P is diffeomorphic to

to My H M

is isomorphic to

o P
M, 4 M,, that is, to P 4 80 4 M,. Since the intersection form of
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Ml is of odd type we have that the intersection form of M is also

of odd type. Using ﬂl(M) = O and results of W~ll (see (8]) we
obtain that M is diffeomorphic to M 4 P 4 ¢. Thus

M#P#Q~M1H=M;’ and in case ii) M4 P~ P 4 8 # M. Q.E.D.

Lemma 12, Let f: M —> S be a Kodaira fibration with V
multiple fibers. Then M is simply-connected if and only if the
following conditions are satisfied:

(i) f: M — s is regular;

(ii) 0 Vv <2 and in the case V = 2 the corresponding

multiplicities wy and m, are relatively prime.

Proof, That is almost word-by-word repetition of the prcof

of Theorem 10. Q.E.D.

Lemma 13. Let L be a 3-dimensional manifold diffeomorphic

to a lense space (see [20]), M = Lxsl, c, = pxs1 where p € L,

02 be a smooth circle in M with C2 n Cl = @, N be a 4-manifold

obtained from M by surgeries along C1 and C2. Suppose that

ﬁl(N) = O. Then N is diffeomorphic to an s°-bundle over s°
. 2..2
(that is, to s°x8° or to P % Q).

Proof, Let g; = {7 €c¢

AR RN ORI LNt

1

~ ~

i=1,2,3,5 = [T € c’l?l,! <1}, D €¢q

1
-~
-3

|7, 1 <1l
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Z = Dlxse, 2 = Dlxs2, Y = ZXS3’ Y = ZXS3' We can identify L with

z U'P Z where §: 3z —> 0Z is defined by

N~ ~a ~b ~c ~d ab

( 1’ ) = ( 1 T2:T, To)s a,b,c,d €7, det || o dH= 1. Now we
can assume that M = Y U* Y, ¥: Y —> dY is defined by

"~ ~ ~ 3
*(Tl:Te)TB) = ( 1:T )XTB’ and p £ Z, p= (011)’ Cl = pX57.
Denote by

m
—,4—}, 1' =8 _~-I_,

m
= € -
I {x €s_, < arg ‘I'2(x) < ° =T,

° 2

i

D(‘r}) = D XI Xy, y € S35 T}(y) = =y D('l' )(union in Y).

7 |T 21’

Let A: TC, —C

1 be defined by

1

AT T_) = (0,1,7 ).

1272073

as a tubular neighborhood of C, in M,

We can consider \: TCl - C 1

1

Now we have two possibilities for a surgery of M along Cl which

correspond to two non-equivalent trivializations of M: Tcl —_ Cl,

We can assume that these two trivializations, say

£: TC, ——>D(1)x83, £,: TCy ——>D(l)x83, are defined as follows:

-1
fO(Tl’TQ’TB) = ((Tl,'r?,l)"f}), fl(Tl,'erT}) =((Tl T} ,72,1),73.

Define an autodiffeomorphism a: Y —>Y by

a(Tl’TE’TB) = (7173,72,73). Let o' = a'BY: Y —>3dY and
~ - ~ ~ ]
& = vl F — . et 2, 2)= 20

. It is easy

~ —~a' T T .
). Now define an

to verify that &“'(? T "’)=(13:23:3
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~ '

T1s 2’T3

41

).

) = (

We obtain an isomorphism B: M —>M with B!§'= a: 34 =

autodi ffeomorphism a: ¥ —> Y by & (7. A; N‘A;
a. It is

= TC A8 = A, Since

B(rc,) 1’ .

easy to see that B(Cl) =Cy,

) =

~1 . -1 :
(B ID(l)de).fl.a(Tl,TQ’Tj) = (B lD(l)xld) of (T TB’ 2: 3

“Hpeay X 1((T,7,,1),75) = ((1),7,,1),7;) we have that

X id)'fl-B = £ . Hence B-l transforms £, in f

=1
ID(l) o

and we have to consider only the case when our surgery corresponds
to the trivialization fo' Denote by M[Cl] a 4-manifold obtained

from M by surgery along C, corresponding to fo. We can construct

1

M{c ] as follows: Let D3 = ['r3

M[C M-TZC ) U (op(1)x 3), where

€ q 173[ < 1}. Then

) ar(c.) — an(l)xs3

fola'r(c 1

1

Now for any x € D, denote by

1

Sz(x) = (xxIéxs )Y (xXBIéXDB)

3
where union is taken in
[} e o ) e
M[cl]((xxzoxs3 M Tchi, (xxBIOXDB) BD(l)XDB).
Let

x, €0, T (x) =0, 15°(x ) = U/ °(x) (union in nlc,]) and

x€Dl
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be defined as follows: If z € Sg(x), x € D,, z = %Xy,

1-’
where

y € ((I(_') X SB) U (BIo X D3)

{boundaries are identified by evident way), then A'{z) = X XY

it

=
>
(w]

' 3
jY (anxDB) and let D oXPx

) = Sz(xo). Now

. 2 . '
Identify S (xo) with (ons3

be a 3-disk with boundary (I;xs ) U (BI;XD

3 3
identify A': Tsz(xo) ———>Se(xo) with pr: D

xsz(xo) — 5%(x )

1 )

and let X be a 4-manifold obtained from M[Cl] by surgery along

2 . . PR .
S (xo) corresponding to the given trivialization. We have

2 ,
X = M[Cl] - TS (xo) U (sl X I % 133)

where the boundaries are identified by evident way.

Using

(zxs )U(DlXIOxS

5) = 3 )

= — X
M-TC M (D1 I xS

1 >

and

M[Cl]-Tsz(xo) = {[(Ex's})u(nlxléxs})]u[aD(l)x%]} -

~

- ((DlXIC',xSB) U (Dlxazoxnj)} = (Zxs )U(SlXIOXDB)

we have

X = [(zx§3) u (s,

onxnj)] u [SlXIOXDB].
We see that we can identify X with

(ZXSB)U(SIXSQXDB) = (ZXSB)U*(BZXDB)



212

which is isomorphic to (szj)uid(aZXDB)’ where
D, = {7, €c . Usi
5= 175 € Cf)p ). Using
~ Sy oo
(zxsz)uid(aszB) (D xsexsj) (slxsgxn3)

[(Dyx85) U4 (5,%D5)] X
we see that X is isomorphic to 33
>

xS1 and we can consider M[Cl]

as a Y4-manifold obtained from S xSl by surgery along a smooth

3

circle, say 41, embedded in S XSl. Without loss of generality we

can assume that ¢, < (Y-0¥). Thus the image of C. in X is well

2
defined. Denote the corresponding smooth circle in S3 1 (= x)

by 12. Now we can consider N as a 4-manifold obtained from
3

soxst by surgeries along 4, and £2 (llnlg = @), Let x € SB,
— l —
L= xx87, 21 (resp. 32) be homologically equivalent to nll
(resp. n27). Since ﬂl(N) = O we have that either n; = O, n, £0

or n, # 0, n, =0 or ny £ 0, n, # 0, n are relatively prime,

2 1"
Consider the third case, that is, n; # o, n, % 0, n;,n, are
relatively prime, We can assume n, > 0, 0< n, < n, . Let
n, = n2q+r, where r,q € Z, © L£r«L Ny, £4(r) be a smooth circle

in SBXS1 homologically equivalent to r4 and such that

g(r) N zl =g, &(r) N L, = @, X(nz) be a 4-manifold obtained
from X by surgery along 22 and Ei, '{r) be the images of El,i(r)
in X(ng). It is clear that “l(X(nE)) = ZVnQ% and that ﬂi,ﬂ'(r)
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are homologically equivalent in X(ne) (that is, Li,i'(r) correspond
to homotopically equivalent embeddings of sl in X(nz». Now we use
the following remark of Wall (see [8], p. 135): For l-manifolds

in 4-manifolds every homotopy may be replaced by an isotopy. We
see that we obtain N by performing surgery in X(n2) along £'(rx),

3

that is, we obtain N from S xSl by surgeries along 12 and £(r).

Hence we can replace the pair (nl,nz) by (ne,r). Repeating this
process after finite number of steps we come to the pair (n',0).
Thus we could assume from the beginning that our pair (nl,nz) is

(n',0). Because T (N) = O we have n’ = 1. But then

l(
. 4 . . . 2 2
X(n') = X(1) » 8" and N is diffeomorphic to an S“-bundle over S°,

Q.E.D.

Lemma 14, Let f: M — S be a Kodaira Fibration. Suppose

that M. (M) = 0 and X(M) = 1. Then M § P is diffeomorphic to

X
2P 4 9a.

Proof. Let V be the number of multiple fibers of f: M —>S.
By Lemma 12, V < 2 and £: M —> S is regular. If V < 1 then our
Lemma follows from Lemma 10. Consider the case V = 2.

From Lemma 9 and Theorem 9 it follows that the Lefshetz
fibration corresponding to f: M —>S coincides with fo: M, —> S,.
Let {cj,cp}, (BLELY, [(mp,kp),(my, k)0, ((w;,¥,),(w,,9,)) be

definedq for £f: M —S as in Definition 8. From Definition 83it
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2
follows now that we can consider M_ as union of M - \_J £
j=1
, Where we identify x € f—l(Ej—cj), j=1,2,
) € F'(De)j (see Definition 8@ ) We can identify

ol

and F(De)l,F(D )

€
with Am 4 ,k_vj(x
37 ]

also S_ with S so that for j = 1,2 f;l(EJ_) will be equal to F(De)j'

Thus we have an identification of f;l(Ej) with ij((t/(i,l)),

where (i,l1) means the group of automorphisms of @ consisting of

transformations
. € .
E —> ¢ +nyi +n, n,n, €2
. . -1
Let elj’e2j be the basis of homologies of Hl(fl (cj),Z)

corresponding to the vectors i and 1 on €, We shall prove that

there exists a smooth path ? on So connecting cl and c2 and such

that ¥ does not contain critical values of fo: Mo ﬁso and the

isomorphism oy Hl(f_l(cl),z) -—-—>Hl(f-l(c2),z), corresponding
to ;, has the following property:
oglers) = e1ps ogleyy) = eyt
~ fo) ~
Let x = || i l”’ y = ||é i” It is well known that the group

SL(2,Z) is generated by the matrices % and y. For any A € SL(2,Z)
denote by d(A) the minimum of the lengths of all words in the

~ o oavm] A=) R
alphaket x,y,x ~,y =~ which correspond to A, Let @€ be the set
of all swmooth paths Y which connect <y with Cy and do not contain
critical values of fo: M —>8,. For any Y € G let
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e, H

v 1(f

-1(c

),2) ——>Hl(f-l(c2),'ZZ) be the isomorphism corresponding

1
to Y and AY be the element of SL(2,Z) corresponding to QY and to

of H (f'1

11701 1 of H_(f

12,%22 1

Denote by d, = d(A_,). Let d = mind, and Y be an element
Y Y vea Y

the bases e (el),z) and e cg),%).

of @ with 4y = d. We claim that dv = 0 (that is, we can take

7 = 7). Suppose that dv > 0., Take a closed 2-disk D in So such
that ? c int(D) and D does not contain critical values of

£+ M —>8_. From Lemma 8 it follows that we can find two

critical values, say a of fo: Mo —é»so and two smooth paths

l’a21

connects c

n =
Yl,Y2 on S such that Yl Y2 c 2) 1

10 N1 (corresp. Y

with a, (corresp. a2), Y, (corresp. Y2) does not contain critical

values of fo: Mo —e>so different from al {corresp. a2) and if

e, (corresp. 92) denotes the automorphism of Hl(f-l(el),z)

corresponding to Y, (corresp. Y2) then the unimodular 2-matrix

A(Ol) (corresp. A(92)) which corresponds to N (corresp. 92) and

to the basis e of Hl(f_l(cl),z) is equal to x (corresp. y).

11°%21

It is easy to see that we can assume that each of Yl’Y2 intersects
oD only in one point. Hence we can change Yl’Y2 so that we will

y, 0¥ =c

ny -
have Yl Y Cy0 Yo

1 Let W(A?) be a word in the
alphabet §,§,§"1,§'1 which corresponds to Av and has the minimal

length., We can assume that there exists a small circle s on SO

with the center oy and such that each of Yl’YE’V intersects s
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only in one point, Let b, = Y

1 s, b Y2 s , b y'ts.

1 2

Let us say that we are in the case I (corresp. II) if the triple
(bl’b’bg) corresponds to positive {corresp. negative) rotation of s.
Let a be the first letter in W(A?) from the left. (We shall write
here the composition of transformations from the left to the right,
as multiplication of matrices!). We say that we are in the case
(1,0') (corresp. (II,a')) where o' is equal to one of ;,;,2_1,§_1,
if we are in the case I (corresp. II) and a = a'., Now for each of
our eight cases we construct new path ;' as it is shown in Fig. 10.
It is easy to verify directly that Ay, = a-lA?. Hence

d?, = d(Av,) < d(Av) = dv. We obtain a contradiction with the
minimality of d?. Thus dv = O and we take 7 = v.

Let D be a closed 2-disk on S_ such that Ej < int(D),

i = —C' i = =
j=1,2, Y € int(D). Using 97(911) €155 O;(egl) e, we
can construct a trivialization of f_|_-1 : f-l(D) — D, say
o|f, (D) o ‘= =
¥
fol(_) ———> D X 02
fo lpr
2 T 2
2 . -1 . L

where T = €/(i,l), such that for £ (Ej)’ j = 1,2, ¥ coincides

with our previous identification f; E.) =E. x (&¢/(1,1)).
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Fig, 10

Case (II,;—J‘)
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Now it is easy to verify that f£: M —> S is isomorphic to the

direct sum of fo: Mo ﬁso and a Kodaira fibration f2: M2 —_— 52
2 1

which is constructed as follows: We take S = EP~ with homogeneous
£ £
coordinates (£ :£.). Let T = 2L , T = —9-,
o' "l £ 3
o 1
1 . 1
E={x €ap |7(x) ¢ €}, E'= (x € @ap™, 7'(x) < €}, €< 1.

We shall use the following notations: Let x,m € Z,

sl_(weg

iw| = 1}, p_= (o € f]9] < €],

G be a cyclic group of automorphisms of D 1 X §l generated by

B
2m4
g: [9,w] ﬁ[p6,wpk], where p=e ™ , @€ D% , w € gi,
€
1
L ,=(1xs9)/c,
H el

[0,w]~ be the point of Lm , corresponding to [o,w] € D T]ﬁ X §1,

’k €
—=>D_ be the map defined by f ([o,w]7) = °m, and
€ —m,k

Lokt ook
. -1

L° . = D -0).
m,k -]-fm,k( € )

Let c_,c € cpt be defined by 7T(cgy) =0, T'(c_) = O,

o) ©
_ _ C_ o _ l_ .
and E. = E —c_, E. = E'~c_, U = CP (COUCOO). Define a
3~dimensional manifold L as the union of stl, L ,L s
- m. L,k m,,X
121 Mo
where we identify x € L , x = [9,w]”, with
m, ,k
1’71
M1 d 1 1 1

[@ ,W(-l?]-) ] € E. x8 CcU x5
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and x' € L X’ x' = [U',w']~ with
2772
=K
. g
IRCAD 2, W|(1°'§) 2] € E! x_s_l cu xgl. Let f: L —'>¢Pl
be defined by
€ 1
prU(x) when x € Ux§™,
f(x) = £ (%) when x €L s
—ml,kl ml,k1
£ (x) when x €L
—-me,k2 m2,k2
Now we take M. = LxS' and £ = fe(pr.)
2 2 - L’

P
By Lemma llii) we have that M } P is diffeomorphic to P # 8Q#D%2

where M; is a Y-manifold obtained from M2 by surgeries along

certain disjoint smooth circles sb and sC constructed in Lemma 11.

This construction (see the formulation of Lemma 11) is such that

we can take s = pxsl, S, = 4Xq, where p €L, gc¢ s and ¢ is a

smooth circle in L. Since ﬂl(M) = 0 we have nl(M $P) = 0 and

then nl(M;) = 0. Now it is easy to see that L is diffeomorphic

to a lense space and because ﬂl(M;} = O the circle g must be a

representative for a generator of Wl(L). Using Lemma 13, we obtain
o . . 2 2

that M2 is diffeomorphic to an S -bundle over S . Because the

I
intersection form of P 4 80 is odd, we nave that P # 8 # M, is

diffeomorphic to P 480 # P# Q (see [8]). Thus M § p = 2P § 90.
Q.E.D.
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Theorem 11, Let £f: M — S be a Kodaira fibration with

M) = 0. Then ¥x(M) = e(m) is a

V multiple fibers such that T 13

1
positive integer and the following is true:
i) if x(M) = 1 and Vv #¥ 2 then M is diffeomorphic to P 4 gQ;

ii) in all cases M § P is diffeomorphic to

M)P 4 (1lox(M)-1)q.

Proof, i) follows from Lemma 12 and Lemma 10, Because
TTl(M) = 0 we have that X(M) is a positive integer by Lemma 12 and
Lemma 9

ii) Using Lemma 14 we see that it would be enough to prove

the following inductive

Statement (*). Suppose that x(M) > 1 and that for any Kodaira
fibration £': M' — S' with m (M') = 0 and X(M') < X(M) we have
that M' # P is diffeomorphic to 2x(M')P 4 (10x(M')-1)Q. Then

M #§ P is diffeomorphic to 2x{M)P # (1lox{M)-1)0.

Proof of Statement (*). From Lemma 12 we know that Vv < 2 and

~

that the Lefshetz fibration of 2-toruses £: f’f —_— § corresponding
to f: M —> S is regular. We have also e(M) = e(M) (Lemma 9).

Since x(M) > 1, we obtain from Theorem 9 that there exists a

~

regular Lefshetz fibration of 2-toruses f2: ﬁz _— §2 such that

T M —)5 is isomorphic to the direct sum of fo: Mo —_— So and

?

~

Fh

2: ——-> o Using Definitions 8, 8a and 10 we can construct a
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Kodaira fibration f£f_: M2 — S

5 with V multiple fibers such that

2

f2: M2 ———>§é is the Lefshetz fibration corresponding to

fg: M2 ———>82 and f: M —=> S is isomorphic to the direct sum

of £ : M —>S and f: M, —>S,. By Lemma 11 ii) we have

~ ~3
that M § P is diffeomorphic to P # 80 # M, where M, is

obtained from M2 by surgeries along two smooth disjoint circles

. 2 2 . 2..2 .
embedded in M,. Let 8" x S” be either $"xs” or P # Q. Applying
Lemma 12 to £f: M —>S and f2: M2 ———>82
(we use ﬂl(M) = 0). Then by the results of Wall (see [8]) we get

z
that M, is diffeomorphic to M, # 2(S2 X 52)

2
; . 2.2
diffeomorphic to P 4 8o 4 M, # 2(s"xs7).

we obtain ﬂl(Mg) =0

. Hence M § P is
Since the intersection
form of P # 8a § M, is of odd type we obtain (again referring to
[8]) that (P #3ok,) b2(s”xs%) = (PhBad,) Ho(pho) =~ m (5PH100).
It is clear that X(M) = X(M2)+X(Mo), that is, X(Me) = x{M)-1.
Using the supposition of the induction we have that
M, B P& 2x(M,)P § 10x(M,)-1)Q.

Hence

Mie~M, $0P 4100) = (M kP) § (2P 4 10Q) =

2x(M2)P 4 (1ox(M2)—1)Q 4 2p 4 100 =

2x(M)P 4 (lox(M)-1)o. Q.E.D.



B4, Topology of simply-connected elliptic surfaces.

Theorem 12, Let V be a simply-connected elliptic surface.
Then V is almost completely decomposable,

Proof. Without loss of generality we can assume that V is
a minimal elliptic surface, that is, there exists a holomorphic
map £f: V —> A, where A is a compact Riemann surface such that
for generic x € A, f—l(A) is an elliptic curve and there are no
exceptional curves in the fibers of f. From Theorems 8 and 8a it

follows that we can assume that all singular fibers of f: V —> A

are of type mI0 or Il.

It is easy to see then that £: V — A will be a Kodaira

fibration. Now the theorem follows from Theorem 11l. Q.E.D.

Corollary. Let Vl,V2 be simply-connected elliptic surfaces
with b2(Vl) = b2(V2), T(Vl) = T(V2) (7(v) is the signature of V),

Then V, # P is diffeomorphic to v, $ P.



APPENDIX II

R, Livne. A theorem about the modular group.

Let G be a group, and (a -..,an) be an n-tuple in G, Let T

l)

be the set of all n-tuples (b ,---,bn) in G which satisfy:

1
1) blbz"'bn = a,a,...a ;
2) there is a permutation ¢ of 1,---,n such that bi is

conjugate to ac(i).
For 1 < i ¢ n-1 define transformations Rj on T:

R ces) =
(» 217052541 Py ipr )

FEIPERTI.

-1 ).

(Byeeedy 1B505P 5P 5P 54y P00 e

It is clear that Rj maps T into itself: the conditions 1), 2) are
still satisfied after their application. Moreover, Rj are bijective,
In fact, the inverses are given by

_l(

R,
J

-1
bl)"')bj_llbj :bj +l,bj +2:"') - (bl,...;bj-l’bjbj +le ij ,bJ 427 ere ) .

Both Rj and R;l will be called "the elementary transformations",.

The analysis of "global monodromy" in complex geometry motivates
the following algebraic problem:
Let C be the group of transformations of T which are equal to finite

sequences of elementary transformations. Describe the action of C
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on T, (For example, when it is transitive?)

The case when G is a free group and (al,v--,an} are free
generators of G was considered by E. Artin in [21]). He proved
that in this case C acts transitively on T.

Let a;*...ra = A. Applying R__,+...*R,*R, to (bl,---,bn) €T
we get (bg,---,bn,A-lblA). Now if A is in the center of the group G
(especially if it is 1) we see that C contains any cyclic shift on
(bl,...,bn)_

Now let G be the modular group I' ¥ ZB*Z , Wwhich we present as
{a,v a3 = b2 = 1}. Any element in G can be expressed as a word in
a and b. Each element g € G has a unique presentation as tl-...'tk,
where each ti is a,a2 or b, and successive ti's cannot be two Db's
or two powers of a. We call such a presentation g = tl i tk
“reduced" and define £(g) = k, the length of g.

2

Let s, = 2 b, sy = aba, s, = ba2. They clearly satisfy:

a) 5,8185.8,8;5_ = 1.

b) They are conjugate to each other (by powers of a).
It is clear that for an element g in reduced form tl---tk, the
reduced form of the inverse g — is t£ s ti where

b if t, = b,
i

t, = a if t,
i i

a if t,
i

]
o
-

1
[
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If we conjugate S, OF S, by en element t of length 1, we end
up with one of the Sy - Therefore, any conjugate of the 8 is either

one of them, and then we call it “short" or else it is

Q-labaQ = Q_lslo, where Q is expressed in reduced form tl".tk’
- . . 3 ] -
Q is written as tk tl and tl = b,
In this case we say this conjugate is "long".
Theorem, Let 900t s9, be conjugates of the Sy such that

Then, by successive application of alemen{ary transformations

++e,h )

the n-typle (gl,---,gn) can be transformed to an n-tuple (hl, n

with each hi short.
1
s

Proof. Express each of the long g; as Q; Qi’ and define

1

gy, es9,) = )2(0;).

We carry the proof by induction on L(gl,-o-,gn). If
L(gl,°-~,gn) = 0, all the g's are short, as required. For the
induction, we need the following

Asgertion. For some i, 1 < i ¢ n-1, we have

).

Proof. Assume the contrary, that for all i, 1 i £ n-l,

L(gi-g } < max{kx,4) where % = z(gi), L= 2{qg,

i+l i+l

we have z(gigi+l) > ﬂ(gi),l(gi+l). We shall show that the
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expression gl-~-gn cannot reduce to 1, a contradiction.

1t

2g,), £ = &g ). Write

Let i be fixed and k .
i i+l

= v = T et I3 = (% =
gi tk tl’ gi+l tl tz, where (tj) (tj') 1,
j=1,...,k, j'=1,...,4, (that is, in reduced form).

The reduced form of g,g, is then either
i7i+1

. € ...t ... t ...E,, wn
tk tm+lrtm+l tﬂ or tk tm+lr or rtm+1 tz, where
2(r) < 1.

There are two cases:

2 = i = =
1) £(r) 0, that is, r = 1. If 9,954 = txrotpa OF

=t ....t 2 = |4 ).
959541 = Emyp- -ty we have L(g g, o) = [4-k| < max(x,£)

Contradiction. Hence

G, =t ..t T LT,

93941 T Fxr et Fnar oo T

s . i . £ . E i

uppose m > O Since tk tm+1tm+l tz is the reduced form

of gig one of the t must be equal to a or a2 and

i+17 ml? Sl
the second must be equal to . But then one of tm,Eg must be
equal to b and because tng = 1 we have tm = E; = b, That means
that either t =t =Db or E =t = b. Contradiction.
m+1 m m+1 m

Thus m = O,

2 ~ .
2 = i = = =
2) (r) 1, that is, r =aora”, t . =t - =h. Inthis case
~4 ~
t,=%t, for 1< j<m=land t =t = a2 or a. We have
J J - = m ]
k,% < Z(gigi+l) = k+£-2m+l, hence k,% > 2m~-1. If k is even,

since all other conjugates of the s, are of

gi must be so or s 1

2’
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odd length. Therefore k = 2, m = 1, ty = a2 or a. Hence 9; = 8

We have k > 2m in this case.

Similarly, if £ is even, then £ > 2m and 9541 = Sor If k

is odd, write g; = Qzlabaoi, where q = E(Qi) > 0. We have
k = 2g+3.

Suppose 2m~1 = k. Then m = g+2 and we have tm = b which
contradicts ty = a2 or a. Therefore k > 2m-1 and because k is
odd, we have k > 2m+{ > 2m. Similarly, if £ is odd, 4 > 2m.

Now denote for each i = 1,2,--+,n, k; = z(gi) and write

each 95 i=1,2,-+-,n, in the reduced form as follows:

g, = tjsl) . .t(li) = %(;) .. ."E]((i') ,

1 1

: ; i) ~i
that is, for any j = 1,2,.--,ki, éj)= tki2j+1' Denote r,m

considered above (for the pair g9 ) respectively

i+l
Let r l, m ., =m = 0.

r, . m,o. .. =r =
i,i41° Ti,i+l 0,1 n,n+l oi n,n+l

Our above consideration shows the following:

2 ® ~(i+1)
a) If m, |, # O then r, . = a or a_ and t = t =
+
i,i+1 i,i+l mi,i+1+l mi;ﬁli
If mi,i+l = 0, then ri,i+l = 1.
. 2
b) If = =
) ki is even and mi,i+l # 0, then 9; ba s, and
. ., = 0 . .= 1. . . .
mio1Li s rl_l’l 1. If ml_l,l#=0(kl even), then

2
. = ab= a m, . = .. =
93 %o nd i,i+l 0, rl,l+1

mi_1,it™ a4 S %57

0"

l. We see here that
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k.-1 k,=1
i i

1,i ST s My ST o that ds,

c) If k., is odd, then m,
i i

< ki-l. Now from m, < ki-l it follows

m, Lo+, L L LR
i-1,i i,i+l i-l,i i,i+l =

that m,

i1 )+1 , that is, in the reduced form of g,

Lt <y g g4

(1)

m, .
i-1l,i

+1 is either on the left side from

(1) ~
t =t
mi,i+1+l ki_(mi,i+1+l)+l

L. . i .
coincides with t( ) Now we can write

mi1,itt my it

n . .
(*) g, ce.9g_ = ] (g(l) see z(l) e, . ..
1 i1 mi_l’i+l ki—(mi’i+l+l)+l i,i+l

Note that if riia S 1 (i < n-1), then one of
(1) $(i+1)

- L

s7(mg 5 )AL Tmy gl

~ 2 .
t is equal to a or a and the second is

2

equal to b, If # 1, then r, or a and

Ti,i+l i,i+1 T 2
Eilz(m +
AT ML a4

= Eﬁl+l) 1= b. We see that the right side in
i,i+l

1)+1 1

*)
(*) is the reduced form of gy.--9,- Hence g,...q £ 1.
Contradiction. The assertion is proved.

We return to the proof of the theorem:

) < l(gi) we shall show that application of R, or RTl

If #(9;9 i

i+l

will reduce L if not both 9, and 95 4 are short, and similarly if

1
£g;9.) < l(gi+l).
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Assuming, as we might, z(gi) > l(gi+l) we show that
£ 2 if 4 2 i i
(g5) > (g, ) (it £(g;) < #(g;,;) it will follow that

z . . - »
ﬁ(gi) < (gi+l))' In fact this is clear if 9,41 1 short. If

S s -1 -1
it is long, then 9; = Qi aba Qi and g, Qi+laba Qi+l' If

i+l =
£ = 4 t
(Qi) (Qi+l)’ the b's do not cancel, and

2(9,9;,1) > #g;),%(g;,,). Thus £(g;) > #(g; ). Now we have

l(g;ilg ) < Z(gi). Applying R, we evidently will reduce

i%in
-1
= cee . 2 ig, i i . i
L L(gl, ,gn) If (gi) < (gl+l) application of R, wiil
reduce L., To finish the proof we must consider the case where

both g, and 9;,, are short. In this case,(gi,gi+l) is (sl,so),

(so,s2) or (52’51) and all these possibilities can be transformed
to each other by R, and R;ln Now if one of 95 j = 1,2,+++,n, is
long, say gj, for j' > i+l, take the smallest such j'.

Consi der the sequence Yy = 95 Yo = G490t taY, = gj'—l

where u = j'—i- Let us prove by induction that for any u',

2 <u' <, (yl,---,yu,) can be transformed by a finite sequence
of elementary transformations to (yi,---,y&,), where y!, is any of
8,98y s5,: For u' = 2 it is clear. Suppose it is true for some

u' < u,

Define a function v: (0,1,2) —> (0,1,2) by v(o) = 1,

v(2) = 0, v(1) = 2. Now let vy = s

w4l o T € (0,1,2). We can

transform (Yl:"',YuuYu._l_l) to (y]'."'.’ylll"yu"’-l) with
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Yi, = 8

- Now the pair y&,,y

v(T)" w4l IS (sl,so), (so,se) or

(52,51) and all these possibilities can be transformed to each
other by elementary transformations. The inductive statement
is proved.

We see that we can assume that gj'-l is any of S,1815,. But

for one such s_, T = 0,1,2, Z(sng,) < ﬂ(gj,). We now apply Rj'

The same arguments work if there exists a long gj, with

j' < i. The theorem is proved.
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