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Introduction 

In [i] Wall proved the following theorem: 

If VI,V 2 are simply-connected compact 4-manifolds, which are 

h-cobordant to each other, then there exists an integer k ~ O 

such that V 1 / k(S2×S 2) is diffeomorphic to V 2 ~ k(S2×S 2) 

(/ is the connected sum operation). 

It follows almost immediately from this result that if V 

is a simply-connected compact 4-manifold, then there exists an 

integer k ~ O such that V ~ (k+l)P ~kQ is diffeomorphic to 

LP ~ mQ for some ~,m ~ O, where P is ~p2 with its usual 

orientation and Q is ~p2 with orientation opposite to the usual. 

After the proof of his theorem Wall writes the following 

([i], p. i~7): "We remark that our result is a pure existence 

theorem; we have obtained, even in principle, no bound whatever 

on the integer k". 

As it was remarked in [2], the operation V ~ P (resp. (V /Q) 

where V is an oriented 4-manifold could be considered as 

performing of certain blowing, up of some point on V. We call 

this blowing-up V-process (resp. ~-process). 

We say that an oriented compact simply-connected 4-manifold 

W is completely decomposable (resp. almost completely decomposable) 

if W (resp. W ~ P) is diffeomorphic to ~P ~ mQ for some ~,m ~ O. 
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Let V be an oriented compact simply-connected !-manifold. 

For (kl,k2) ~ ~x~, k I ~ O, k 2 ~ O, let V(kl,k2) be a 4-manifold 

obtained from V by k I J-processes and k 2 q-processes. 

by (V) = {(kl,k2) g =x~Ik I & O, k 2 ~ O, V(kl,k2) 
L 

Denote is 

completely decomposable]. It follows from the theorem of Wall 

that (V) ~ ~. An important geometrical problem is to define 

minimal elements of (V) (in any natural sense). A certain step 

for solving this problem could be the construction of some 

elements of (V) in explicit form, say in terms of the 

2-dimensional Betti number and of the signature of V. 

In the present work we show that such a construction is 

possible when V admits a complex structure. The main result is 

the following: 

Theorem A. Let V be a compact simply-connected 4-manifold which 

admits a complex structure. Take an orientation on V corresponding 

to a certain complex structure on it. Let K(x),L(x) be cubic 

polynomials defined as follows: 

K(x) : K(~(Sx+~))-x, L(x) : ~(~(5x+~)), where 

~(t) = ~(t2-6t+ll), ~(t) = ~(2t2-4t+~) 

(K(x) 30375x 3 + 6885Ox 2 = + 52OO4x + 13092, 

L(x) = 6075Ox } + 14175Ox 2 + iiO265x + 28595). 



Denote by b+ (corresp. b_) the number of positive (corresp. 

negative) squares in the intersection form of V and let 

! | 

k I = K(b+), k 2 = max(O,L(b+)-b_). 

Then the pair (k~,k~) ~ (V). 

From the Kodaira classification of compact complex surfaces 

it follows that if V is a simply-connected compact complex 

surface, then there exists a non-singular projective-algebraic 

complex surface ~ such that ~ is diffeomorphic to V and one of 

the following three possibilities holds: (a) ~ is rational~ 

(b) ~ is elliptic; (c) ~ is of general type. In the case (a) 

our theorem is evident. In the case (b) we prove a much stronger 

result: 

Theorem B (see Theorem 12, §4, Part II). Any simply-connected 

elliptic surface V is almost completely decomposable. 

(That is, (i,O) E (V)). 

In the case (c) (see Theorem 5, §4, Part I) we use Bombieri's 

results on pluricanonical embeddings ([3]), results of [2] on the 

topological structure of non-singular hypersurfaces in ~p3 and 

the following: 

Theorem C (see Theorem 4, §3, Part I). Let V n be a projective 

algebraic surface of degree n embedded in ~pN N ~ 5, such that 

V n is not contained in a proper projective subspace of ~pN. 



Suppose that V n is non-singular or has as singularities only 

rational double-points. Let h: ~ ---~V be a minimal 
n 

of V n (that is, ~n has no exceptional curve desingularizat ion 

of the first kind s such that h(s) is a point on Vn). Denote by 

X n the diffeomorphic type of a non-singular hypersurface of 

degree n in ~p3. 

Suppose l(Vn) = o. Then 

i) b + (~n) < b+(Xn) , b_(~n) < b_(Xn) , 

ii) ~n ~ [b+(Xn)-b+(~n)+l]P { [b-(Xn)-b-(~n)]Q 

is diffeomorphic to X / P. n 

Note that Theorem B together with results of [2],[~],[5] 

shows that all big explicit classes of simply-connected algebraic 

surfaces considered until now have the property that their 

elements are almost completely decomposable 4-manifolds. That is, 

the "theoretical" Theorem A gives much weaker results than our 

"empirical knowledge". The interesting question is, how far we 

can move with such "empirical achievements" in more general 

classes of simply-connected algebraic surfaces. 

I prepared this work during my visits to IHES, 

Bures-sur-Yvette, France, and Sonderforschungsbereich, Bonn, 

West Germany, in the spring of 1976. The excellent conditions 
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which I found in these Institutes were very important (and 

necessary) for the appearance of this work. I am very 

grateful to both of these Institutes. 

The Appendix to Part I is essentially based on the 

advice of D. Mumford. D. Mumford told me about Severi's 

theorem and explained its use for the proof of part 3) of 

Theorem 3, §3, Part I. The proof of part 4) of this theorem 

is also due to D. Mumford. 

The idea to use in the proof of Lemma 4, §i, Part II, a 

non-ramified covering is due to P. Deligne. 

~. Neumann and D. Husemoller read the manuscript before 

it was typed and made many useful remarks. 

I would like to express here my deep thanks to all of them. 



Part I 

Topology of simpiy-connected algebraic surfaces 
of given degree n 

§i. A topological comparison theorem for fibers of holomorphic 
functions on complex threefolds. 

Lemma 1. Let U be an open subset in ~3, f: U -->4 be a 

holomorphic function where A is the open unit disk in ~, such 

that f has only one critical point c on Uj f(c) = O (~A) and c 

is a rational double-point on f-l(o). Let B be a closed 
e 

c-ball in U of radius E and with the center c, De , be a closed 

2-disk in A of radius E' with the center O E ~ and such that 

f-l(~ E ) is transversal to S = ~B {and therefore 
' £ E 

Denote 

fs = f f-l( : f-l(~ ) N S '>~ 
)NS ' e ~n • 

' E 

It is clear that %: f-l(~E, ) n S e 

~: f-l(~,) N S E ~ ~E#× fsl(O) 

>DE ~ is a fibre bundle~ let 

be some trivialization 

of it. 

Let U = f-l(7), T ~ ~, h: L bU o be a minimal 

desingularization of U o (that is, U~ o does not have an exceptional 

curve of the first kind s such that h(s) is a point on Uo) , 



T, E D~,. 

such that 

Then there exists a diffeomorphism 

e: h-l(Uo n Be) > UT, D B e 

lh-i(UoN S IUonSe ) N s oo~uT, N S (~ e) ) " (h-i  : ~o ~ 

coincides with the canonical diffeomorphism fsl(O) --~ fSI(T') 

corresponding to the trivialization ~ of fs" 

Proof. We use the theory of simultaneous resolution for 

rational double-points (see [6],[?]). It follows from this 

theory that there exists a positive integer m and a commutative 

diagram of holomorphic maps 

u <~ ~i 

i 
A~... 

coincides wi th canonical project ion (U-c) x~ ~ >~, 

" l  : , [ l (Uo)  ~>U coincides with h: T 0 ' '  >U and ~il(~o) o o 

the function ~ has no c r i t i c a l  values. 



[ l I ~  ilIs~l ~ -l<D~ Let B = , ), S = , , = , , ) ,  

% : ~ ~-l I~n~ : ~ - l ~  >~ .  ~ecause .~llc~ ~ ~ : 

we can identify ~S: ~ - l ( ~ ) n S  > # with [ f - - I (DE,)~SE]X~,~- 

NOW using ~: f-I(DE.)AS E } DE , x fsl(0) we obtain a 

trivialization of %" ~: ~-I(~)N~ > ~ × ~S I(O) corres- 

ponding to ~. In particular, the canonical diffeomorphism 

~Zl(O) ~ ~SI(@), Q ,D, corresponding to ~ coincides with 

fsl(O) >fsl(~m) corresponding to ~. Let 

It is clear that ~-i~) is transversal to ~B = ~. Since ~ h 

no critical points, %: ~-i(~)~ >~ is a differentiable 

fibre bundle and we can construct a trivialization 

~: ~-l(~)N~---~ ~ x[~-I(o)AB] of ~B such that the diagram 

~ - l ( ~ ) n {  , ~" > 9 x [~sl(o)] 

~ - l ( ~ ) n F  ~ > ~ x [~ - l (o )n~]  

is commutative. 

Take ~ E ~-0 with (~.)m = 'I" and let ~:~BI(O)--~ 'f'Bl( 0'' 

canonical diffeomorphism corresponding to ~, 



"I,O",B = ~l ~-l(a,)~ : ~-l(~')n~--~ f-l(~')nB~" 

Now it is easy to verify that we can take ~ = ~I,E',B 

Q .E .D. 

Definition 1. Let W be a 3-dimensional complex manifold 

and let V be a complex subspace of W, dim~V = 2. We say that 

the singular locus ~(V) of V is canonical if V is reduced and 

for any p E S(V) we have one of the following possibilities: 

a) p is a rational double point of V; 

b) p is an ordinary singular point of V, that is, there 

exists a complex coordinate neighborhood U of p in W such that 
P 

V is defined in U by one of the following equations: 
P 

(i) zlz e = o, 

(ii) ZlZ2Z3 = O (triplanar point), 

2 2 
(iii) Zl-Z2Z} (pinch-point). 

Theorem 1. Let W be a }-dimensional complex manifold, 

= It E ~I Itl < 4], f: W --~ A be a proper holomorphic map. A 

Suppose that the singular locus S(Vo) of V o = f-l(o) is canonical 

and let R denote the union of all rational double points of Vo, 

S = S(Vo)- ~. Let hs: ~---~S be the normalization of S, 

h-l(s), h: L • > V ° be a minimal desingularization of Vo, C = 
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hc: ~--~.C be the normalization of C, 7: TC --~C be a regular 

neighborhood of C in ~ o. Let Xl,X2,...,x V be all the triplanar 

points of Vo, yl,Y2,...,y p be all the pinch-points of Vo, 

(Xl,X2,X 3) sI(x~) ~ h-l(ym) ~ ~ ~ = h , ~ = 1,2,...,~, Ym = , m = 1,2,...,p. 

Consider ~ copies of ~p2 (with usual orientation), say 

PI,P2,...,PM and let (~i: ~2 : ~3 ) be the homogeneous coordinates 

in P~, ~ = 1,2,...,~, 

p~ E : (~ ~ ~ ( x )  = o }  

s i = 

where (i',i")= (1,2,3)-(i)}, 

= 1,2,-..,~, i = 1,2,3 (see Fig. i). 

L 
Let T. be a tubular neighborhood of si, i = 1,2,3, 

l 

= 1 , 2 , ' ' "  , 9 .  Take T1,T2,T3 so t h a t  T1 ,T2 ,T  3 a r e  p a i r w i s e  

disjoint; for any i = 1,2,3 T. N E. is a tubular neighborhood 
l 1 

~ ~ ~ T~I O E~..I = ~ where of s. in E. and T i N E = ~, 
1 1 ' ' 

(i',i-) = (l,2,3)-(i). 

Then there exist: 

a) a complex-analytic projective line bundle ~: A > ~; 

b) a differential embedding ic: ~ > A such that 

n°i : ~---~ coincides with the canonical map corresponding 
C 
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Fi~. 1 

11 

7~ ~7~\ ~~ ~ ~ 

. . . .  

Tc 

° 

3 

E~ 

TC 
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to hIc: C > S, that is, ~.ic: ~ > ~ is a covering 

of degree two ramified in exactly p points y'~l, °.o,~'p of ~; 
c) 3~ pairwise disjoint closed 2-disks d.1 with the centers xi, 

~ G i = 1,2,3, ~ = 1,2,...,~, on S - ~(qm) where m=l 

qm = ic((~'ic)-l(~m ))' m = 1,2,--.,p; 

d) diffeomorphisms ,~1 ~'-l(Sd~)--->ST:, i = 1,2,3, ~=I,2,..-,V , 

where w' = n.~: A' --~ ~ and ~: ~' ~A is the blowing-up 

of A in the points ql,-..,qp, with the following properties: 

(ld) each ~i' i = 1,2,3, D. = 1,2,...,v, reverses the 

orientations induced on ~.-i( ~ ~d i) ard ~Ti by the complex structures 

-1 ~ 
of A'-W' (d) and P~-Ti; 

(2d) ~. is an isomorphism of the following S2-bundles I 

with the base SI: ~'I : w'-l(Sd~) > 8d'~ and ~,-l(~d~) 
~T. z ~ ~ l > Si (~Ti ' ~si corresponds to the canonical projection 

T~ > si) ; 

(3d) ~(L'On'-l(sdi~)) = 8(T.~E?) where L' is the strict 

image of ic(~ ) in A'; 

e) an orientation reversing diffeomorphism ~: 8TC > 8TC ~, 

where 

3 ~ ~, 
(union i~J_l(Ei-(Ti~Ei )) is taken in P~), 
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f) 

V: L' N [ ~/ ~'-l(~di)] > 8(T ~E ) 
L=I i=l ~=l = 

is the diffeomorphism which is equal to i L,N~,-I(~d~) 

A A 
on the corresponding connected components, ~: TC > C 

A 
is a regular neighborhood of C on A, where 

3 ~ 3 
= A' - ~ ~ ~,-i( di ) U,[ (P~- Ti)], 

~=i i=l 

~=i i=l ~=i =l(;Ti) is the diffeomorphism 

which is equal to %i on the corresponding connected components, 

and the orientations of ~TC and ~T~ correspond to the 

orientations of TC and T~ which are defined by the complex 

structures of ~ and A'; 
o 

open subsets U c C, U c C and a diffeomorphism Do: U --> U 

such that (I) _ = _ ~) where _~ = • _~ = 

and (2) the diagram 

/%~I /% 

:L !: 
U > U 

is commutative; 
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g) diffeomorphisms ut: (~o-TC) U (A-TC) > Vt, where 

t ~ ~- (0) ,  v t = f - l ( t ) .  

Proo f .  L e t  B~,Bm, ~ = 1 , 2 , . . - , ~ ,  m = 1 , 2 , . . . , p ,  be 

open smal l  paiz-~ise d i s j o i n t  coordinate 6 - b a l l s  on W such tha t  

for any ~ = 1,2,...,~ (corresp. m = 1,2,-..,p) the center of 

B~ (corresp. Bm) is x~ (corresp. ym) and V ° N B~ (corresp. 

Vo N Bm ) is defined in B~ (corresp. Bm) by the local equation 

(~) (~)(~) 0 (corresp (z~(m)) 2 z~(m)(z~(m)) 2) where z I z 2 z 3 = . - 

z[~),z~),z~ ~) (corresp. zi(m),z~(m),z~(m) ) are complex 

coordinates in B~ (corresp. B' ). m 

Let T: T ~ S be a regular neighborhood of S in W such 

that for ~ = 1,2,...,~ and m = 1,2,...,p 

~G'n~4¢, ~ 'n~~4 ~, 

~ is transversal to ~B~ and to ~B' and if m 
p 

s = s -  [s n ( ( ~ i B ~ >  u ( ~  B~))] ,  
m=l 

p 

then g(g') = S' and g ~.: ~' > S' is a 4-disk bundle. 

Let A' = [t , ~{ It{ < ~]. Changing if necessary the 

coordinate t we can assume that ~t ~ ~', V t is transversal 

to ~g. 
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Consider the ball B I. We can assume that complex coordinates 

Zl,Z2,Z 3 in B 1 are chosen so that f B1 = ZlZ2Z 3. [Recall that 

z(1)z(1)z (1) = O is a local equation of V A Blin B1 . Since 
1 2 3 o 

f 
f-l(o) has no multiple components, fl = Zl(1)z2(1)z~l ) is an 

invertible holomorphic function in some neighborhood of x I. We 

= z (I) z 2 z i) z3 z and choose B 1 and take z I fl" 1 ' = ' = 

smaller]. Changing, if necessary, Zl,Z2,z3,t (t is the complex 

coordinate in 4) we can identify B 1 with the open ball 
3 

C(Zl,Z2,Z3) E ~3 ~" 2 3~ in ~3 i__Z~llZil < and fiB 1 with the 

function ZlZ2Z 3 . 

Let Z = V 1 N B 1 = C(Zl,Z2,Z3)E ¢31ZlZ2Z3 = i, ! 'zi'2 < ~' 
i=l 

5 be a small positive number, 

~o = {(Zl,Z2,Z 3) E ¢3] IZil <_ 1+5, i = 1,2,3}~ for j = 1,2,3 

i3j = { (=x,=2,= 3) ~ ¢3tx+5 <__ Iz j l  <__ e, Iz j ,  I <__ x, I=j,, I <__ l ,  

where (j',j")= (1,2,3)-(j)}, 

3 
K = ~ nz,  ~ = ~ nz ,  ~= U ~ 

3 J o o j=O J 

Consider a 3-dimensional real euclidean space ~3with coordinates 

rl,r2,r3 (see Fig. 2) and let ~3 = ri + [(rl,r2,r3)EIR3 ~ O, i=1,2,3} 
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Fig. 2 

J~ 

r~ 
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M o = [(rl,r2,r}) ~ IR 3+ Irlr2r3 = i, r i _< I+B, i = 1,2,7}, for j=1,2,3 

Mj = ~(rl,r2,r3) E ~+ Irlr2r~ = l, I+B < rj <_ 2, rj. <_ I, rj.. < i, 

} 
where (j',j") = (l,2,~)-(j)}, M = ~ M . 

j=O J 

I d e n t i f y  U($) w i th  [g E ¢ I  Igl = i ]  and l e t  

U(1)XU(1)XU(1) with coordinates gl,g2,g3, and T be the T z = 

subgroup of TZ~ defined by the equation: glg2g } = i. Writing 

z i = rig i where ~i E IR, r i > O, gi ~ ~' Igil = I, we identify 

~o with MoXT , ~j with MoXTj and M with MXT. 

It is clear that M is diffeomorphic to the triangle in ]R ~ 
o 

with the vertexes: al = ( i  1 (I+B)2 , l+D, 1+5), a 2 = (i+8,~(1+8)2 , 1+8), 

a} = (I+8,1+D, I~2). Let us take on M the orientation, which 
(1+5) 

on M o coincides with the orientation corresponding to the order 

(al,a3,a2) of the vertexes al,a2,a 3 • 

Note that the map T ~.U(1)XU(1) given by 

(gl,g2,g}) ---> (gl,g2) is an isomorphism (of groups). Using this 

isomorphism and the canonical orientation on U(1)XU(1) 

(corresponding to the given order of factors and to the 

positive rotation on U(1)) we fix an orientation of T. It is 

easy to verify that the orientation on MXT which we now obtain 

coincides with the orientation of MXT = ~ corresponding to the 

complex structure on M. 
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Consider a new copy of ~3 with coordinates pl,P2,p 3 

(see Fig. 3) and let 

= {(Pl,P2,P3)IPI+P2+P3 = 3, Pi ~ O, i = 1,2,3}, 

R o be the triangle in ~ with the vertexes 

b I (2, 1 1 1 1 1 1 : ~, ~), b 2 = ( ~ ,  2 ,  ~), b 3 = (~, ~, 2 ) ,  

for j = 1,2,3 

R be a polygon in h which is formed by the following four 
J 

straight lines : 

3 
R = ~ j  R .  

j=0 ] 

3) P], = 2pj,,; 4)pj,, = 2pj,,  

( j ' , j " )  = ( 1 , 2 , 3 ) - ( j ) ,  

Let T 3 be a new copy of U(1)~(1)~(1) with coordinates 
P 

h l , h 2 , h 3 ,  H a subgroup i n  T 3 d e f i n e d  by t h e  e ~ a t i o n s  hl=h2=h 3. p '  

Denote T = TP~. 
P P 

Consider P = ~p2 with homogeneous coordinates ~i,~2,~3 

chosen so that l~iI + 1621 + I~31 = 3. Let for j = O,1,2,3 

gj = {(~1,~2,~3) E Pl(lqL,l~21,1~31) ~ ~j} 
3 F=UF. 

3 j=O 



| 
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Take on R the orientation which on R O coincides with the 

orientation corresponding to the following order of vertexes: 

(bl,b2,b3). The map T ~U(1)xU(1) given by p 

[hl,h2,h3] ~ (~, ~--32) is an isomorphism. Using this isomorphism 

and the canonical orientation on U(1)×U(1) we fix an orientation 

of Tp. Writing ~i = Pihi ' Pi i JR, Pi > O, h i ~ ~, lhil = l,we 

identify ~ with R×T . It is easy to see that the orientation 
P 

of RXTp (corresponding to our choice of orientations of R and Tp) 

coincides with the orientation on R ×T = ~ corresponding to the 
P 

complex structure. 

There exists an orientation preserving diffeomorphism 

~: R --bM with the following properties: 

~(R o) = M o, ~(R I) = M 2, ~(R 2) = MI,~(R 3) = M 3 

Let 8': T 3 > T 3 be a homomorphism defined by the formula: 
P 

h I h 3 h 2 
8'((hl,h2,h3))= (~, h2 , ~). Evidently ker 8 ' = H and 

Im 8' c T. If (gl,g2,g3) E T (that is, glg2g 3 = I), then 

g~ g~g2 (gl'g2'g3 
8'((gl, ,i) = (gl,g2, ) = ). Thus Im 8' = T. We 

see that 8' defines an isomorphism 8: T --->T. Taking 
P 

= ~x~: ~(= RXTp) > M(= MXT) we can check that J preserves 

orientation. 
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Let (i,j,k) be one of the triples (1,2,3),(2,3,1),(3,1,2). 

Identify ~3 with ~1×~2 by the rule: (Zl,Z2,Z3) --~ (zi,(zj,zk)). 

Taking the projective closure of ~2 we embed ~3 in ~l×~p2. Let 

homogeneous coordinates in ~p2 be ~o,~j,Dk and let 

~J ~k 
z.j - ~o' Zk = ~o" Denote 

M' = [( ) ~3 z1~2~3= l, 2< Izil < 2,5, Izjl<l l~klil] i Zl'Z2'Z3 . . . .  ' ' 

5~ = {(Zl'~2'z3) ~ ~3 2 < Izil < 2,5, z. = 0 z x= o] 

and let "':l M~I > KI, i be defined by 

g 

Zi(~i(X)) = zi(x), zj(~i(x)) = O, Zk(~i(x)) = O, x 6 Mi . 

~. defines on M~ the structure of a fiber bundle with the base KI, 

and the fibers 

~[l(y) = ~(Zl,Z2,Z3) ( ~31zjz k = zi~y), izjl <_ i, iZkl <--i]. 

The embedding ~5 ~i x ~p2 which we have constructed 

above gives us a compactification ~ : M. ~K 1 of i 1 ,i 

M' ~l(y) is a non-singular ~'i: i" ~Kl,i where ~ y ~ El,i, n2o 

rational curve in ~p2 defined by the equation ~jU k = zi-~. Let 

Cji (corresp. Cki ) be a subset of M defined by ~ = ~k = O 
i o 

(corresp. ~o = ~j = O), and Tji c S-~l (corresp. Tki c Mi-- ) be 
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1 
defined by l~k[ ~ ~. l~oI (corresp. IDjl ~ ~--. I~oI), 

Yi = {(Zl'Z2'Z3) E • 3, Izil = 2, zj = O, z k = O}, 

: ~ - i ( ~  i )  ' : r  n ' : r  n = ~r~i, 5~.:~q ri ' ~ji i Tji' rki i Tki' Hji ' 

I 1 1 Lmn: [(~1:~2:~3 ) E P I~mI = ~I~nl, l~m. I & ~, m' : (l,2,3)-(m,n)), 

where m = 1,2,3, n = 1,2,3, 

L" mn m n  

Let ~: Cl,2,3} and 

~: [(JX~)-diagonal] ,i [(J. J)-diagonal] 
be a i-i map defined as follows 

, ( ( 1 , 2 ) )  : ( 2 , 3 ) ,  ~ ( ( i , 3 ) )  : ( 2 , 1 ) ,  ~ ( ( 2 , 3 ) )  : ( 1 , 2 ) ,  

m ( ( 2 , l ) )  = ( 1 , 3 ) ,  m ( ( 3 , 1 ) )  : ( 3 , l ) ,  ~ ( ( 3 , 2 ) )  = ( 3 , 2 ) .  

It is easy to see that ~i T . (corresp. ~i Tk2 defines on 
3z 

Tji (corresp. Tki ) the structure of a 2-disks fiber bundle over Cji 

(corresp. Cki). Thus we can consider Tji (corresp. Tki) with this 

projection as a tubular neighborhood of Cji (corresp. Cki) in Mi" 

Because Hji,Hki c M we can construct a new space 

~=~u r %31r]l u r %23 :~3 %32:3 u r: 2 H21 21 HI3 13 2 n12 x 

A direct verification shows that ~(Lmn) = H (m,n). We obtain 

diffeomorphisms ~mn: L'mn --~H (m,n) where ~mn = ~ L'mn 
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Note that L'mn (corresp. Lmn ) is a circle (corresp. 2-disk) 

fibre bundle over a circle in P defined by ~m' = O, I~mt = ~ l~nl .  
In the notations used above a fibre of the fibration L is given mn 

by: 
h 
__mm = b = const E U(1) l~m, [ = ~, [~m[ = ~[~n [ h " " n 

Because ~(hl'h2'h3) = (h~" h3h 2' ~21) we have 

~({~ = b}) = {g3 = b} 

h = 1 

h 3 
--= hi) = (g2 = b] 

8( {h2 

h2 i 
e(~-33 = b}) = Cg e = ~} 

h 1 
~( --= b}) = [g = b] 

[h 3 1 

h i 
~({h ~_ = b}) = (gl = b]" 

1 

Considering Hji,Hki as circle-bundles over Yi (with projection ~i) 

we see that the fibers of Hji,Hki are given by the condition 

gi = const. Hence ~mn is a diffeomorphism of circle-bundles 
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Lmn and H (m,n). Thus we can extend ~mn to a diffeomorphism of 

corresponding 2-disk bundles ~mn: L >~( mn m,n)" which 

transforms the centers of fibers to the centers of fibers. 

---I ~-i Considering ~ and ~ together we obtain an embedding 
mn 

X:M >p . 

Let 

Sm' = {(~o:~1:~2 ) ~ P ~m' = O, l~ml = I~nl] , 

: 1 
L'mn = C(~I:~ 2 ~3) e p, l~m, - ~' ~n -- < ~m -- < 2~n]' 

~b m' = L U L' U L (union zn P) e mn mn nm 

We can consider ~ as the boundary of a tubular neighborhood 
m' 

~m' of Sm, in P. A fiber of the corresponding 2-sphere fibration 

is defined as follows: 
h 
m (we can identify b with a point of Sm, ) then the Ifb=ff- 
n 

corresponding fiber F b is equal to the union of the fiber Lmn(b ) 

~m 
of L over b, the subs~ of P, defined by arg 7 -- ~ arg b, mn ~n 

1 
I~m,] - ~, ~l~nl & I~I ~ 21~nl, and the fiber Lnm(b ) of Lnm 

over b. 

Now let (re,n) be one of the pairs (1,3),(2,1),(3,2). 

Take on Sm, the orientation corresponding to the positive rotation 
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h 
m ~ ~m' of ~--. Then the orientation on m' = defined by the 
n 

complex structure on ~m' induces on every F b an orientation 

which on Lmn(b ) is opposite to the orientation corresponding to 

the complex structure of the complex projective line ~m = ~n" 

But that means that the orientation on ~m,, considered as 

~(P-~m,), defines on F b an orientation which coincides on 

Lmn(b ) with the orientation given by the complex structure of 

the line {~m = ~ b~n]' This "complex" orientation on Lmn(b) defines 

on L~(b) = ~Lmn(b ) an orientation which corresponds to the 

positive rotation of h n 

Since ~((hlJh2'h3)) = (~' h~ ~i) we have that ~ m n h  2' 

defines on ~13(L13(b)) (corresp. ~21(L21(b)). corresp. ~32(L~2(b))) 

l the same orientation as the positive rotation of 
g2 

(corresp. 1 corresp. I___) does. 
gl' g3 

Let ,: ~ > ~ be given by ,(1) = 2, ,(2) = l, '(3) = 3. 

A direct verification shows that k(~i) =~,(i)" Let 

ki = kl~i: ~i > ~%(i)" Let us fix on ~ m' the orientation 

which is given by considering ~m' as ~(P-~m. ) and by the complex 

structure of P-~m'" We see now that ki induces on the fibers 

of ~i > 7 i an orientation which coincides with the 

orientation given by the complex structure of these fibers. We 

o 
can check also that if ki: 7 i > s,(i) is the diffeomorphism 
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of bases corresponding canonically to k i then k~ induces on Yi 
l 

the positive orientation (we consider Yi as a circle in the zi-axis 

in ~3). Take on ~. the orientation which is given by ~. c ~M. 
l l i 

and by the complex structure of M.-~M.. We obtain that k. is an 
l l l 

3 3 
orientation reversing diffeomorphism. Define k': U ~. --9 ~-/~ 

3 3 i=l i m'=l m' 

by i' H i = li and let P = (~ Mi) UI,[P- W=l~m, ]. Using the 
i=l 

embeddings Mi ~ Mi' ~: ~ ' ~ p which we constructed above we 

~ ~ ~ ~(1) 
obtain an embedding k: Z ~ P, where Z = Z n , 

3 3 9 ( l )  = ( u  FIj) u ( U  l /~),  
j=0 J=1 

F~ = I:(z1,=2,= 3) ~ ~312 <_ Iz j l  <__ 2,5, Iz j ,  I <_ l ,  Izj,,I <__ l ,  

( j ' , j " )  = (1 ,2 ,3 ) - ( j ) } .  

Note that we can consider 9 (1) as a part of the regular 

neighborhood ~ of S in W and as a regular neighborhood in P 

/k 
of the subcomplex C (1) in P which is equal to 

3 3 
(~ (C~iUCki)) U ( ~ (Em,-~m,NEm,)), 
i=l J m'=l 

where Em' = [(~i:~2:~3) ~ P ~m' = O}, (j,k) = (1,2,3)-(i). 
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Now we can do the same constructions for each B~, 

= 2,3,''',v, as we did for B 1. We obtain then for each 

= 1,2,..-,~ a set ZZ c W, a manifold with boundary P~, 

annuluses K~,l, K~,2, K~, 3 on S, fibrations M~,i --->KL,i, 

i = 1,2,3, cross-sections C~,ji , C~,ki , (j,k) = (1,2,3)-(i), of 

these fibrations, tubular neighborhoods T~,ji , T~,jk of these 

cross-sections and an embedding ~: Z~ ~ P~ which have the 

same properties as 

/% A 

Z, P, KI,I, K1,2, K1,3, Mi > KI, i, Cji, Cki, Tji, Tjk, 

constructed above. 

We can define also T(~)C (~) c p~, Z = 2,3,...,~, in the same 

way as we defined T(1),C (I) and assume that ~ ~ = 1,2,..., ~ 

T (~) is a part of the regular neighborhood ~ of S in W and 

consider p~-k~(Z~) as a regular neighborhood of C (~) in P~. 

Consider now the ball B1. We can assume that there are 

complex coordinates Zl,Z2,Z 3 in B 1 such that f B{ is defined in 

! 

B 1 by the equation f = z~ - z3z ~. [Recall that 

- = D ' in (z~(1)) 2 z~(1)(z~(1)) 2 0 is a local equation of V O B 1 

B{. Since f-l(o) has no multiple components 

f 
f2 = (z~C1))2_z~(1)(zi(1))2 is an invertible holomorphic 
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function in some neighborhood of YI" We take 

! i 
z I = ~ zi(1) z 2 = ~ z~ (I) z 3 = z3(1) and choose B 1 and J • 

! 
smaller]. Changing if necessary Zl,Z2,z3•t we can identify B 1 

with [(Zl,Z3,Z3) ~ ~3 l~iizil2 < 3} and fiB 1 with the function 
,= 

2 2 
z2-z3z I • 

Now le t  ~ =  ~(Zl,Z2,Z3) E G3 l lZ l l  < 2, lz21 < 2, 

Z = {(Zl,Z2,Z3) ~ ~3 2 2 z2-z3z I : i}, T = Z A ~. 

Identifying ~3 with ~2x~l we embed ~3 in ~p2x~I. We take 

~I n2 
Zl = ~o' z2 - -- where ~O,WI,~2 are homogeneous coordinates in 

-- ~O ~ 

~p2, and consider z 3 as a coordinate in ~i. Let 

O 

C( o, z3) ' 2 

Cz = {(~0: hi: n2; z3) ~ ~ ~o = o]. 

1 
Iz31 < 7}, 

1 

Note that D1 ~ 0 on C Z . Hence we can define C z also by the 

O 
equation ~i = O. It follows from this that the set 

~C = C(~O: ~l: ~2; z 3) 6 Z IUol ~ ~IDI I ] is a tubular 

neighborhood of C Z in Z. 

It is clear that ~C n ~ c ~ _ T. Take x ~ T - ~C N T. We 

1 
have l~o(X) l > ~l~l(X) I,Iz3(x)I ~ 3" Hence ~o(X) ~ O, 

IZl(X) l < 2, Iz2(x) I <~1+Iz3(x)(zl(x))21 < V~ < 2. 
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We obtain x E T. 

Let 

Thus ~C N T' = T - T. 

K= Cz 3 ~cr J <__ I z31 <__~], 
~K = {x E EC z3(x) E K], 

~K: ~K ----~K is defined by projection 

(nO: 71: n2;  z 3) > (z3)- 

- 3 ~2 o~2 2 Take z 3 E K and consider ~Kl(z ). We have II2-Z3H 1 = no, 

lnol < llnll, it is clear that 71% O, so denoting 

Uo 72 2 o 2 1 
u =--nl , v = ~71 , we obtain v-z 3 = u ; m~l _< ~. From 

v = <_ ~; I >_ ~ we see that the projection of 

o -i o 
nKl(z3 ) is an unramified map. Hence ~K (z 3) is a disjoint union 

of two 2-disks d+,d_ where 

d+ = C ( u , v )  ~ ~2 tul  <__ ½, v = 

¢ 2 2 ~ ]  d_  = C ( u , v )  ~ lu l  <__ ½,  v = - . 

It is clear that these 2-disks are transversal to C z and 

we can consider them as fibers of the tubular neighborhoods C 

of C z corresponding to the points: 

o +g 
z 3 = z3, ~ = O, V = 

and z3 = z~, ~ = O, V = - z~. 
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(Here +f and -~ mean simply some choice of branches of /--). 

Taking for each of the constructed 2-disks its center (that 

is, its intersection with CZ) we obtain a map PK: ~K > C K where 

C K = CZ~ K. We can assume that the canonical projection 

P: ~C ---->Cz is defined so that P ~K PK" 

Note that the projection ~: ~ >~i (~((70 : 71 : 72; z3)~) 

has the following property: ~l(z3) is a non-singular rational curve 

if z3 ~ 0 and a pair of transversal non-singular rational curves 

if z 3 = 0. This means that we can consider ~ as composition of 

projection ~.: ~pl x ~i b ~i and blowing-up of ~pl x ~i with 

some center a E ~'-i(o). 

Denote the embedding T c T by k': T ~T. We see from 

~C ~ ~ = T-T that T-T is a regular neighborhood in ~ of a 

subcomplex in ~ which is defined by the equation 7 = O. 
O 

Now we can do the same constructions for each B' m' m = 2, p, 

as we did for B I. We obtain then for each m = 1,2,-..,p an open 

2-disk d m on S with center Ym" a manifold Tm' a map Wm: ~m >dm 

with ~ = ~ G (where ~m: ~p1Xd > d is the canonical projection 
m mm m m 

and ~ : ~ > ~plxd m is the G-process with some center 
m m 

c ~ such that a m ( l(ym)), a non-singular complex curve C m m 
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- -  Cm 
~m : C > d is a ramified covering of degree two with m m 

unique branch point over Ym' a tubular neighborhood Pm: ~m > Cm 

of C m in Tm' an embedding ~' -- ' : T >T with ~ (Tm) = T - ~m' m m m m 

= ~m ~' where T = ~ n B' A Vl, and an annulus K c d with 
T m m m m m m 

center Ym such that 

~m ~l(Km)~ m = ~m " (Pro ~m-l(Km)D~m) 

Using Lemma 1 and the assumption that ~ is transveral to 

V t t E A' we can identify V;-VI~ %-h-l(Vo~ ) with . We 

can consider h-l(Vo ~) as a regular neighborhood of C in %. 

Denote TC = h-l(Vo ~) and let the corresponding projection be 

• : TC ---> C. 

Consider the annulus h-l(K~,i ) on ~, ~ = 1,2,...,~, i =1,2,3. 

~£ hs I K~, i ~ We can assume that x i is the center of ( ). Let dio be 

~ ~ h; 1 K~,i ";o the closed 2-disk on ~ with center x i such that dio N ( ~ . 

Denote dio = hs(dio ) . Let dmo be the closed 2-disk on ~ with 

N K = ~d . Denote center Ym such that dmo m mo 

S "  = S - [ (  ~J d .  ) U (m=~ldmo ] C"  = h - l ( s  ' ' )  TC" = T - I ( c " )  
~=i 10 " ' " 

7" = 7 TC": TC" > C". Let q: N >C" be the normal bundle 

of C" in %, ~: ~ > C" be the projective closure of q: N ---> C". 

We can assume that TC" is a subspace of N (C and ~" = q .. = 

Let N~ = N-TC", q~ = qlN~ : N '>C", ~ : N ~ S" 
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C ~ be the cross-section at infinity of q: N >C", that is, 

A 
C -= N-N. 

Since V 1 is transversal to ~T, ~IvI~-I(s,,):VIN~-I(s")--~S" 

is a differential fibre bundle. (Changing if necessary T we can 

assume that ~ ~--l(s,,): ~-l(s") >S" is a ~-disk bundle). Using 

the same arguments as in ([lO],Lemma 2.1) we obtain that the typical 

fiber of ~IVlN~-l(s,, ) ,  is diffeomorphic to slxI (I=~xE]R lO<x<_l). 

Using our identification of Vl-VlDT~ with - -%-h-l(Vo~ ~ and the 

embedding TC" c N we obtain a diffeomorphism 

~--: ~(V 1 N ~-I(s")) > ~N~. We can assume that 

= (~I~N~)'~~'I ~ let A~ = [Vln~-l(s")]u~~ ~, $I) ) 71 ~(Vln~'l(s 

and ~ : A > S" be defined by 

~(x) if x E V 1 n ~-I(s" ) 

-=(x) = ~~(x) if x ~ N ~ 

Because ~: N ~ > S" is a fibre bundle with typical fiber 

diffeomorphic to the disjoint union of two closed 2-disks, we 

see that ~ : A ~ is an S2-bundle. 

It is easy to verify that we can do all our identifications 

and constructions so that for any (L,i), ~ = 1,2,.-.,9, i = 1,2,3, 

I L > K ~ = 1,2,..., ~, i = 1,2,3, M~,i K~,i-~dio ~,i - ~dio' 
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will coincide with 

: -I ~ i_Sd~o ' ) (--) i- dio)-- K 

C ,ji n C~,ki (where (J,k) = (1,2,3)-(i)) will coincide with 

(~)-l(K~,i-~d~o) n C ~ and for any m = 1,2,..-,p 

~m I~i (Km_dm O ~m-I ( Km-dmo ) : ) --~ Km-dmo will coincide with 

~ -- : (~)-l(Km-dmo) ~ Km-dmo , and 
I (~) -i ( Km_dmo ) 

N ~i( -- ---1(Ks_ • C m Km-dmo ) will coincide with C N (~) dmo) 

~ %' A .. T where we identify We define A as union of A , "'''Pg'TI' "' p 

("=)-I(K,, i a point x E -~d~ )(c A ~) ~ = 1,2,'--,~, i = l,e,3, with io J 

the corresponding point x' E M~, i K~,i -~d'~lO(c p~) and a point 

Y ((~)-l(Km-dm~(~) with the corresponding point y'6~ml(Km-%o)(~). 
U p 

Let ~ = C ~ U [(~=l ~ C ( ~ )) U (m=~l Cm] (union in ~)~ 

^ 
TC = N ~ U [(~i(~-~,(~)) U ( ~m) ] (union in ~). 

m=l 

Because each M~, i >K~,i, ~ = 1,2,.--,~, i = 1,2,3, is a 

trivial S2-bundle and C ,ji,C~,ki are "horizontal" cross-sections 

-- ~ ~ S" in M~, i • >K~,i, we can extend n : A ~ to an S2-bundle 
P 

~: A ~ > ~ - ~/ d and C-- to a 2-manifold C ~ in A ~ where 
m=l mo 

for any (~,i), * = 1,2,...,~, i = 1,2,3, C = N (~)-l(~i~o) is 



34 

equal to disjoint union of two cross-sections of ~ over d. . lo 

Using t he  c a n o n i c a l  embedding o f  L-I(Km ) > K m in  

: ~ > d we extend A ~ to a differential manifold A' 
m m m 

(A'-A = = ~ml(dmo)), the map ~ to a differential map 
m=l 

(dmo) dmo) 

and C ~ to a 2-manifold L' in A' (L'NA~ = C ~, L'N~l(%o)=Cm~m %~. 

The construction of ~ : ~ --~ d shows that we can write ~' = ~.~, 
m m m 

where ~: A ~ is an S2-bundle, there exists a differential 

embedding ic: ~ ~A such that ~Oic: ~ > ~ coincides with 

canonical map corresponding to hlc: C --~S, ~: A' ~A is the 
l 

P 
monoidal transformation of A with center equal to ~ q_, where 

m= 1 Ill 

qm = ~-l(hsl(ym)) N ic(~ ) and L' is equal to the strict image 

of ic(~ ) in A' 

It is easy to verify that we can construct A, C and TC 

from A' and L' by the same way as in the statements c),d),e) 
/% 

of our theorem. Now the existence of 7: ~TC b ~TC with the 

properties formulated in the statements e) and f) and of 

diffeomorphisms ut: %-TC U~ (A-TC) ~V t (see the statement g) 

of the theorem) easily follows from our constructions. (Recall 

that above we identified VI-VI~ with __~-h-l(Vo ~) and that 
v/k p 

V 1 N ~ = [V 1 a ~-I(s")] U ( k/Z,)~=l " U (m=~iTm)). Q.E.D. 



§2. A topological comparison theorem for elements of linear 
systems on complex threefolds. 

Lemma 2. Let ~: X --~Y be an oriented differential S2-bundle, 
g 

Yg be a closed oriented surface of genus g, 71,72 be two smooth 

embeddings of S 1 in X such that Yl N 72 = ~, 7i is a cross-section 

of ~ over n(7i) and -(Y1),~(Y2 ) intersect transversally at one 
2 

point of Yg. Let d be a closed 2-disk in Y - ~ ~(Yi ) and X be 
g i=l 

obtained from X by the surgeries along 71 and 72 . Let Z be the 

image of ~-l(d) in ~. Then there exist a differential map 

n: X -> Y and a 2-disk ~ c y such that 
g-i g-i 

~ S 2 -bundle, (a) ~: X ~Yg-1 is a differentia~le 
-i 

(b) Z = ~ (~) and ~J~-l(~): ~-i(~)__>~ coincide with 

Z ---> d corresponding to ~ -l(d ) : ~-l(d) > d. 

S 1 Proof. Using the triviality of the S2-bundle over and 
2 

considering a tubular neighborhood of ~ ~(7i) in Y we see that 
i=l g 

only the case which we have to look at is the case g = I. Thus 

assume g = i. Let p be the center of d, S 2 = ~p) and X' be 
P 

! ! 

obtained from X by the surgery along S 2 Let be the images p" Yl,Y 2 
I ! 

of 71,72 in X' and X' be obtained from X' by surgeries along 71,72 . 

Using uniqueness of tubular neighborhood (of S 1 in S 4) we have to 

prove only that X' is diffeomorphic to S 4. 
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First of all we shall prove that there exists a diffeomorphism 

~: X' > (S1XS3)l~ (SIxs3)2 (connected sum of copies of SIxs 5) 

such that for i = 1,2 ~(yi ) = (slxai)i c (slxs3)i J al,a 2 E S 3. 

o o o 
Let Y'l = n(Yi )' i = 1,2, q = Y1 A Y2 and B be a small 

closed 2-disk in YI- p with center q. 

embeddings: 

~i: I X I > YI- p - int B, 

such that ~l(iXi) n ~2(ixI) = ~, 

~i(zx~z) c ~B, 

There exist differential 

i = 1,2 

~i(ixI) = Yi-Yi~B, i = 1,2 (see Fig. 4). 

Denote A i = ~i(I×I), A = A I U A 2 U B. 

We can assume that n-l(A) c X', X'-~-I(A) = SIxD 3 and the 

structures of sirs 2 on ~-I(~A) obtained correspondingly from 

~-l(~A) --->~A and from ~(X'-~-I(A)) = ~(SIxD~)( = slxs 2) are the 

same. Let T: X'-n-l(A) > ~A be a projection corresponding 

to the equality X'-n-l(A) = SIxD ~. We have 

-i l ~ ) UsOxs2(sOxD3 ) [~-Z(*(Zx=I)) U • (,i(~z~)] xz ~[(Ixs 2 ]xz 
X Z(union in X ) 

~$3 Xl. 

It follows from this that ~T-l(~i(IXI)) U $-l(~i(~IXI)) (union in X') 

is diffeomorphic to S3XI. 



f~
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Let X" be obtained from X' by the surgeries along 

u s3), i = 1,2. 

We have 

2 , 4 u 4 --4 u 4 
X" = X' - ~ [~-I(Ii(IXl))UT-I(Ii(~TXI))]U j DIO j, DllUj~f20 ~21D21 

i= 1 iu "~ zu 

where D4..~], i = 1,2, j = O_~i~. are four copies of the 4-dimensional ball 

D 4, and ~ij: ~(D4ij )--~(X'-U [~-l($i(Ixl))uT-l(li(~Ixl))]) are 
i=l 

smooth embeddings such that 

8ij(~(D4ij)) = [~-l(ii(IXj) ) U T-l(li(~TXj))]. 

We can write X" = X'i U X'2 where 

' l  I(B) , Xl = ~l 

2 
X2 = [X'-~-I(A)- U T-l($i(~IXI) )] 

i=l 

U820[D~oXI ] 

U~l [D311xT] 

D 3 ij' i = 1,2, 

B' 3 x~i) 
ij : (Dij 

j = O,1, are four copies of D I, 

2 
> ~[x'-~-l(A) - t.J ~-l(*i(~I×I) )] 

i=l 

are smooth embeddings such that 

8' ~jXk) T lli(k,j ij(D = - ), i = 1,2, j = O,I, k = O,1, 

and 7: ~X{ > ~X 2 is a diffeomorphism such that 
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~1 2 2 
(~B-i__Ul*i(IX~I)) = ~(X'-~-l(A) - u'-l(*i(~IxI), 

i=l 

2 i#l ~-I(~B- U *i(I×al) > ~ l~-l(;B- ,i(ix;i) : • = i=l 

2 
--~(x' - ~-l(a) - U ~-l(*i(~I×I)) 

i=l 

is the identity map, 

D(n-l(~i(IXj)) = ~D~ijXI , 

and V t E I 

i = 1,2, j = O,1, 

n(--l(~i(txj)) = ~D~j × t .  

We see that we can consider X'~ as D2×S 2, X'2 as sl×D 3 and ~ as 

natural identification of ~(D2×S 2) and ~(SI×D3). Thus X" is 

diffeomorphic to S 4 . 

Our construction of X" shows that we can get X' from S 4 

performing surgeries along two embeddings of S ° in S 4 (see 

(b2ob2 ~ ' and ' are obtained Fig. ~ ), say ~IO Ii ) and , such that 71 ¥2 

as follows (Fig. 5). 

4 Let D.., i = 1,2, j = O,i, be small balls with the centers lj 
4 

bij,cij be points in ~(D..), 5. be smooth disjoint paths connecting 

with in S 4 z 4 4 
- ~ [ )D.., ~D.. = S ~ × j, £. be smooth 

ci° Cil' i=l j~=O 13 lJ i i 

paths in S~ ×I which are cross-sections of ST xI > I and 
1 i 

t = DiUel, i = connect Cio with Cil in S~ 1 xI. Then Y1 Y2 52ue2" 
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We see from this that there exists a diffeomorphism 

~: X' > (SI×s~)I ~ (SIxs~)2 such that 

~(~)= (slxai)i c (SIxs~)i , i = 1,2, al,a 2 E S 3. 

From SI×s } = (SIxs~)USIxs2(SIxs~) it follows that a surgery 

on SIrs ~ along slxa, a 6 S ~, transforms SirS } in S 4. This immediately 

' ' transforms X' into a connected gives that surgery on X' along Y1 and ¥2 

sum of two copies of S 4, that is, into S 4. Q.E.D. 

Theorem 2. Let W be a 3-dimensicnal compact complex manifold, [E] 

be a complex (analytic) line bundle on W, ~O and ~i be two global 

(holomorphic) cross-sections of [E]. Suppose that the zero-divisor 

(~i) ° of ~i is a complex submanifold V 1 of W, the singular locus 

= V of ~o is canonical and the of the zero-divisor (~o) ° o 

locus S of all ordinary singularities of V ° is an irreducible 

complex curve. Suppose also that V 1 is transversal to V ° in the 

following sense: V x E V 1 N V ° there exists a local complex coordinate 

system (Zl,Z2,Z3) on W with the center x such that in some neighbor- 

hood U x of x in W, V 1 is defined by the equation z} = O and V ° is 

defined either by the equation z I = O or by the equation ZlZ 2 = O. 

Let h: ~ b V ° be a minimal desingularization of V o. Denote by p 

the number of pinch-points of Vo, by 9 the number of triplanar points 

of Vo, by b the intersection number SoV 1 (in W) and by g(S) the 

genus of S (that is, the genus of a non-singular model of S). 



42 

Suppose that p ~ O and that nl(Vl) = ]TI(~ ) = O. Then 

i) if b ~ O, then V 1 ~ P is diffeomorphic to 

# (2~+p+2g(S)-l)P ~ (~+2p+b+2g(S)-2)Q and 

2) if b = O then V 1 ~ P ~ Q is diffeomorphic to 

# (2~+p+2g(S)-l)P # (~÷2p÷2g(S)-l)O 

Proof. Let B = V ° N Vl . We construct a modification 

~ : ~ ~W (following Hironaka's idea) as follows. 

If B = ~ then ~ = W and ~ is the identity map. If B ~ ~ and 

B N S = ~ then ~ is the monoidal transformation of W with the 

center B. Now let B N S ~ ~ and B N S = [Xl,X2,...,Xb]. We can 

take a coordinate neighborhood U k of W with the center in 

Xk, k 1,2, ,b, with coordinates ~k) ~k)~k) . . . .  z ,z •z such that 

(k) = O and V N Uk is given by V 1 N Uk is given by z 3 o 

zl(k)'z2(k) = O (see Fig. 6). Let B (k)i , i = 1,2, be complex curves 

in U k given by the equations zl!k) = O, z~ k ) = O, ~ kl: Ukl --->Uk 

be the monoidal transformation of U k with center B~ k), 

~k2:Uk2 ~ Ukl be the monoidal transformations of Ukl with 

center ~k)where ~k) is the strict image of B~ k) in Ukl and 
b 

3": ~" b W' be the monoidal transformations of W" = W-k__~ix k 
b 

with the center B - k=~iXk . Evidently~22k!(~ik~k)_l(Uk_Xk ) 

• Using this identification we add coincide with ~ I~"-l(Uk-X k) 

to ~': ~" }W" the disjoint sum ~(~ik%k: U2k ~Uk) and 
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obtain ~: ~ >W. 

Denote ~ = ~-I(B). Clearly codim~ = 1 so let [~] be a 

complex line bundle on ~ defined by ~, [~] = ~W[E]-[B]. Dividing 

on local equations of B we get from ~ ~W~l ~o" some global 

cross-sections ~o,~ 1 of [El. Let ~. = ~ -I(v.-V.NB) 
l l l ' 

i = 1,2 ("strict images" of Vo,VI) , ~ = ~-I(s-SNB). Clearly 

(~i)o = ~i' i = 1,2 

It is easy to verify (see Fig. 6) that L~I = ~, ~i is 

isomorphic to V 1 (and then diffeomorphic) and that ~o has as 

singularities only ordinary singularities and rational double points, 

[ is the locus of ordinary singularities of L, ~ is isomorphic to 

S (that is, g(~) = g(S)) p and ~ are for ~ the same as for V 
• O O 

and if h: V }~ is a minimal resolution of singularities of o 

then ~ is obtained from ~ by b ~-processes (that is, ~ is 
o 

diffeomorphic to V / bQ). 

The construction of ~: ~ ---~W shows that it is enough for 

us to consider only the case B = ~ and to understand also what kind 

of modifications we can do in the case when an exceptional curve of 

the first kind S 1 on ~ exists with the properties: (a) h(Sl) does not 

contain rational double-points, triplanar and pinch-points of V o and 

(b) S 1 intersects with h-l(s) transversally in a single point. 

Thus we assume B = ~. Now f = ~o/~i is a meromorphic function 

with no indeterminacy points and we can apply Theorem i. We shall 

use the same notations as in the formulation of Theorem i. Using 
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part f) of Theorem 1 we can find a non-singular point p E U, small 

closed 2-disk d in U such that if ~ denotes ~o(dp~.. then we have 
P P ' 

a commutative diagram: 

t-l(dp)  li-l(dp) > 

~o dp 
d 
P P 

Identify now V 1 with E -TC UD (A-TC) (that is, we shall consider 

-TC and A-TC as subspaces of V 1 and D as the identity map). We 

can construct two embeddings ~: (dpX[-l,O])XS 1 b V -TC and 

~: X[O,I])xS 1 ~ A-TC such that 

9((dpX[-1,O])XS1)D()TC = ~t(dpXOXS 1) = _'1"-l(dp) = q - l (  " ~ _  dp) = 
~ (dp~OXS I A *x I) A.A. ) = ~/((dpX[O,1])×S [') ~TC and 

S I V x £ dp, x' ~ dp, y 6 

~'(xxOXy) = ~'(~o(~)XOXy). 

Let Cp = ~do, % = ~d%, 

A ~  

' r ~ ' ( x x o x y )  = x ,  ' r ~ ( x ' x o × y )  = x ' ,  

S 2 =p_ (dp×(-l)) U (Cp×[-l,O])(union in 

d X[ -1 ,O ] ) ,  
P 

Sp+ = (CpX[O,l]) U ( X(1)) (union in dp×[O,l]). We have 

C XO ~S~ c ~ XO ~S 2 and ((7oi )× id)(CpXO) *~ = = = C X O. 
p -" p p+ c p 

P 

Define S 2 S 2 U(r/o .S 2p+ ' p = p- Ic xid) and let Yp = (~(dpX[-l,O]XS I), 
l P 
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~( ~ xs 1 Y" = d riO,l] ), Y = Y' U Y". Clearly we can consider Y as a 
P P P P P P 

tubular neighborhood in V 1 of ~(p×OXS I) = ~-l(p). Let ~ be a 

from V 1 by surgery along T-l(p). ~-manifold obtained 

S 2 S I We have a map e: X >~Y defined as follows: 
P P 

?(x,y) if X 6 S 2 p+ and 

e ( x , y )  = * ( x , y )  i f  x ~ S 2 . 
p -  

Now 

= X 1 U X 2 where 

We can decompose ~ as follows: 

X 1 = (S 2_ x D2)U e S2 xsl(~o-TC-Y'p), 
p- 

($2+ D2)Ue 2p+XSl(~ ' A. y .  x 2 = x - T c  - ) .  p S p 

We can construct "diffeomorphisms" ~': V -TC-Y' 
P 

~": A-TC-Y ~A-TC such that ~' (corresp. ~") 
P 

identity outside of some small neighborhood of 

V -TC, 

i s the 

2 1 z .  2 1) ~ , ( ~ ( S ~ _ × S 1 ) )  , (dpXO×S 1) ~(Sp_XS ) ( c o r r e s p .  $(Sp+XS , _ = 

(corresp. ~"(~(S~+XS I) = ~(~ ×orS1)) and there exist 
P 

2 2 /% 
"diffeomorphisms" _~': Sp_ > dp, _~": Sp÷ > dp such that 

V x E S 2 S 2 S I x' ~ y E we have p-' p+' 

®'()(x,y)) = )(~'(x)x0xy) w (,(x',y) ^ A _ , = ~ ( - (  ~ ~ . , = ' , , x , , x o x y , .  

• - -  ? "  ^ - - ~  T c "  ~ - l ' c " {  ~ ~^'c ~ - 1 . ^  = = , = ' r  { c ' ) .  NOW let C C-dp, = C-dp, 

(dpXD 2) -TC), ~ 14 = % . ,  ^ ~  "We can write ~ -TC" = %,(~ A-TC" ( XD 2)% (A-TC), 
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where 
s I ~ s I (~p) ~': d X ~ T-l(dp), ~": d X > ~-I p -- p -- 

dp and > d . are some trivializations of -i( ) > dp P 

Let e': XS 1 > ~(d ×oxsl)(corresp. e": S +XSI-~;(~XOXSI)) 
p- P P 

be equal to 

('' ~(S~.XSI) )'(e S2p XS l)(cOrresp" (~"I~S2p~XSI))°(elS2p÷XS I))" 

We have diffeomorphisms 

X 1 > (S~_×D2)Ue,(~ -TC), 

X 2 ~ (S~+ xD )Ue.(A-TC), 

and because of the commutativity of the diagrams, 

S 2 XS I e' ~ #(d XOXS I) S2p+XS 1 e" > ~(2 xOXS I) 
p- p P 

pr[ I~_ and pr i [~ 

2 ~' S2 ~' A S -- ~ d > d 
p- p P+ P 

A 

we can identify X 1 with ~ --TC" and X 2 with A-TC'. We see that 
A 

there exists a diffeomorphism 7": ~TC ° 7 ~TC" such that ~ is 

diffeomorphic to ~--TC" U~. A-TC: We see also that outside of some 

A-I. A . 
small neighborhoods of Tjl(dp) and ~ ~dp} 7" coincides with 7. 

In particular, we have that ~" reverses orientations coming from 
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orientations on TC" and TC'defined by complex structures of 

and A'. 

Suppose that an exceptional curve of the first kind S 1 with 

the properties mentioned above exists on ~ . Let ~: ~ ~V 

be the corresponding contraction. Without loss of generality we 

can assume that p = h-l(s) ~ S 1 (= C N Sl) and S 1 N TC = -l(p). 

Let C = ~(C), C" = ~(C') and TC" = ~(TC'). We see that 

S 1 n TC" = ~, that is, we can identify TC" with T~" and construct 

S 1 (c ~ -TC'(C ~)) in ~. Let ~: ~ >~ be the corresponding 

contraction, we see that ~ is diffeomorphic to (Z -T~')U~.(A-TC'). 

Now let us make the following remark. Let M be a simply- 

connected 4-manifold, i: D3XS 1 bM be a smooth embedding. Suppose 

that there exists a smooth 2-disk d embedded in M-i(D}XS I) such 

that d A i(~D~XSI)) = ~d = i(a×sl), a ~ ~D 3 = S 2 and if 

= (S2xD2)UiI~(D3XsI)M-i(D}XSI) then N = (aXD2)Uilaxsld. is a 

smooth 2-sphere in M with self-intersection equal to -i. From the 

last condition it easily follows that M is diffeomorphic to M ~P~Q 

and if ~N: ~ } ~ is the contraction of N to a point then M is 

diffeomorphic to M ~ P. 

Applying this remark to the case M = Vl, N = S 1 we see that -- 

is diffeomorphic to V 1 ~ P. We use now the notations ~ and ~ for 

and ~ in the case when there exists S 1 with the properties 
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formulated above and for ~ and C in the case when such S 1 

exist. Our aim now will be the prove the following 

Statement (*): (~-T~')U~(A-TC') is diffeomorphic to 

~ (2~+p+2g(S)-l)P # (~÷2p+2g(S)-l)Q. 

Before proving the Statement (*) let us show how our Theorem 

follows from it. 

Case I). b ~ O. We have ~ = Z and Statement (~) says that 

is diffeomorphic to V ~ (2~+p+2g(S)-l)P ~ (~+2p+2g(S)-l)Q. 
k 

Going back to our arguments with ~ : ~ >W (in the beginning 

of proof of the theorem) we see that ~ is diffeomorphic in our 

initial notations to ~ ~ (b-l)Q. Because ~i is diffeomorphic 

to V 1 ~ P we get a diffeomorphism 

v I / p ~ ~ # (2~+~+2g(s)-2)p # (~+2p+b+2g(s)-2)Q. 

Case 2). b = O. Let S 2 x S 2 be S 2 x S 2 or P ~ Q. We have 

= ~ , ~ = V 1 ~ $2 xx S 2 and Statement (~) says that 

v I # s 2 x s 2 ~ ~ # (2~+p+2g(S)-l)p ~ (~2p+2g(S)-l)Q. 

Note that p is the number of branch points for the map ~ • > 

where ~,~ are normalizations for C and S and ~ > ~ is induced 

by hlc: C > S. Hence p is even and the condition p ~ O really 

means p ~ 2. We see that ~+2p+2g(S)-2 > O. Hence, V 1 ~ $2 ~X S 2 

has odd intersection form. Suppose S 2 x S 2 is actually S 2 X S 2. 

does not 
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Then if V 1 has odd intersection form we have by a result of Wall 

(see [8]) that V 1 ~ S2XS 2 ~ V 1 # P ~f Q and if V 1 has even 

intersection form then V 1 ~ S2xS 2 has also even intersection form 

which contradicts our remark above. We see that always we can 

write here V 1 # $2~ S 2 ~ V 1 ~ P # Q and we get 

v I # P # Q = ~ / (2~+p+2g(S)-~)P # (v+2p+2g(s)-1)o. 

Proof of Statement (~). 

Let S' = ~ - ~ ~ di, C' = I?'-I(s')DL', ~" = 7' e': C'--~S', 
~=l i=l 

g = g(S). Suppose g > O. We choose smooth circles ~i' i = 1,2,..., 2g, 

on S' - ~l ~ ' ..,q~ , where ql'" are all the branch points of ~" 

on S' 2with the following properties: (i) if lj-il ~ g,o then 

n ~ = ~ and (2) if 1 < i < g then ~ intersects ~l+g 
i j -- -- i 

transversally and in a single point. We claim that we always can 

make our choice such that the following additional property holds: 

| 

(3) There exist smooth circles ~i' i = l,--.,2g, on C' such that 

n" ) >~i' and for is a cross-section of ~..-I 
l ~"-l(~i) : (~i 

1 < i < g ~i intersects ~ transversally and in one point. We 
_ _ ~ ~+g 

proceed by induction. Let s o = ~, ~' = ~ and suppose that 
o 

el,-..,e2g with the properties (i), (2) are chosen such that 

when k ~ 0 there exist smooth circles ~l' i = 1,2,.-.,k, on C' 

such that ~ is a cross-section of IT" : ~"-i(~ i) 
l ~"-l(~i) >~i 
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and for any pair (i,j), i,j = 1,2,...,k with lj-il = g, ~ 
l 

intersects ~[ transversally and in one point (for k = O these 
J 

conditions are empty). Consider ak+ I. Suppose that n"-l(~k+ I) 

is connected. Recall that p ~ O and let q' = q{. Take a E ~k+l' 
2g 

a ~ ~ ~., and a' E ""-l(a). Let i': I ~ C' be a path in C' 
i=l l 

i#k+l 

which is the lifting of ~k+l to C' satisfying the condition 

i'(O) = a' Because ~"-l(~k+l) is connected we have i(1) ~ a'. 

Note that ~l'''''~2g 

and we have that S' - 
i= 1 

i~k+l 
2g 

smooth path y C S' - 
i=l 

i~k+l 

y n ~k+l = a. (see Fig. 7). 

is the so-called canonical basis of S' 

is connected. Hence we can find a 

6 connecting a with q' and such that 
l 

Take a point b Q ~k+l' b ~ a, 

b~ 
2g 

~i' and let 
i=l 

i~k+l 

such that 8(a,b ) n ( 

B(a,b) be the arc on ~k+l 

We can find a smooth path 

connecting a and b 

2g 

~J~i ) = ~. 
i:l 

i~k+l 
2g 

y(a,b) on S' - ~ i  
i=l 

i~k÷l 
m=l 

connecting a and b and such that Ya,b N ~k+l = Ca,b], the closed 

path Y(a,b) U 8(a,b ) is homotopically trivial on S' and if ~is 

the domain on S' with ~V= Y(a,b) U 6(a,b) then ~N (~/i<) = q. 
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Fig. ? 
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(We choose b and Y(a,b) sufficiently close to a and Y). Denote 

~k+l = ~k+l-6(a,b) U Y(a,b). Because ~" is of degree two we getth~tif 

~': I > C' is the lifting of ~k+l to C' satisfying to condition 

~'(O) = a' then ~'(i) = a', that is, n"-l(~k+l) is not connected. 

It is clear that ~l'''''~k'~k+l'~k+2 '''''~2g is again a canonical 

basis of S' Because we did not change ~I'''''~K we see that we 

could from the beginning assume that ~"-l(~k+l) is not connected. 

Thus ~"-l(~k+l) has two connected components, say ~k+l,l and 

~k+l,2 and if k+l > g we consider the point 

Xk+l = n..-l(~k+ 1 N ~k+l_g ) n ~' k +l-g 

and take for ~'k+l the one of ~k+l,l' ~k+l,2 which contains ~+l" 

0 | 

This finishes our induction. Now fix some ~l,-..,~2g, ~l,...,~2g 

with the properties (1),(2),(5). We can assume also that 

, /k 
V i = 1,2,...,2g, ~'i c ~" (that is, ~i N dp = ~). If g = O 

we take s o = ~' = ~o 
o 3 

Consider P~, ~ = 1,2,..-,~. Let ~ = P~ - ~ T. We know 
i=l l 3 

that N ~ = ~ (E i - Ei n Ti). We can assume that 
i=l 

~ ~Ii 
Ei N T.I = [X ~ E i ~i"(x) --< ~i,(x) --< 2~i.(x), (i',i") = (1,2,3)-(i)} 

E~ ~i 1 ~i'(x) Let Yi,i' = {x E ,(x) <_ ~i..(x), Im ~ = O, i"=(1,2,3)~i',i ), 

aii , be a point of P~ with ~i(aii,) : O, ~i,(aii,) = ~, ~i..(aii,) = i, 

~i' = ( ~)-l(a% i" " ii ')" 



54 

It is clear that all aii , are on different connected components 

of ~C' Now ~'l'''''~2g is a part of some canonical basis of C', say 

' "'" ' ' "'''~2gc where gc g(C')(= g(~) where ~ is the ~l' "~2g'~2g+l ' ' = 

non-singular model for C), ~i A ~' = ~ when i > 2g, j < 2g or 
1 ] 

i > 2g, j > 2g, lj-il ~ O, gc-g and for 2g < i < 2g+(gc-g ) e~ 
-- l 

! 

intersects ~i+(gc_g ) transversally and in one point. Evidently 
2g c 

C' - U ~ is connected and we can find disjoint smooth paths 
l i=l 2gc /~ 

Bi, i = 1,2,5, on C' -~ ~ - d such that 8 connects 
i=l l p l 

~ where ~: (1,2,5) --~ (1,2,5) is defined by ai~q ( i ) with a~(i)i, 

~(i) = 2, ~(2) = 3, ~(3) = i, and 8 ~l N ~C' = (~i~(i) U ~(i)i )" 

= y~ )~ Y~ Let 8 ~ (~i~'~ ~ ,(i) a~( i i~(i) ~ =(i)i" 

i@(i) i ) i 
2g c v 3 

Take u O E C' - ~ ~' - ~ ~ ~ and connect u O with all 
j=l J ~=i i=l z 

! 

ej, j = l,.-.,2g C and 6~ • l' i = 1,2,5, ~ = 1,2,.--,~, by disjoint 

smooth paths tj, j = 1,2,.--,g, 2g+l,...,2g+(g-g), ti, i = 1,2,3, 

~gc ~ ~ 
= 1,2,-..,~, where int(tj), int(ti~ ) c C' - ~ ' - ~ ~ 6i, 

j=l ~j ~=l i=l 

the end-point of t is ~' n ~' when j < g and it is 
J ] J ~  - 

~J+(---g)gc when j > 2g+l, the end-point of t. belongs to 8.. 
J /~. -- l l 

We obtain a bouquet of circles on C such that all elements of 

are "very close" to t U ~ j E (l,''',g)U(2g+l,.-,2g+l+gc-g) j j' 
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or t U ~ (j e (1,2 ...,g), or tjUc~j+gc_g(jE(2g+l,...,2g+gc-g)) j j+g , 

or to t ~ t i U 8~, i = 1,2,3, ~ = 1,2,...,~. It is easy to verify 

that there exists a deformation retraction of C" on and we can 

/% /k A 
consider C" as a regular neighborhood of ~in C'. Thus we can consider 

TC" as a regular neighborhood of ~in Using ~ : ~ > C we define 
O 

= and we see that we can consider T~" as a regular 

neighborhood of ~ in ~. 

We will use now the following result of R. Mandelbaum (see [5])- 

Theorem (R. Mandelbaum). Let MI,M 2 be compact differential 

n 1 
t-manifolds, M 1 is simply-connected, ~ = V S be a bouquet of 

k=l k 

n circles, i : ~ > int(M ) j = 1,2, be "smooth" embeddings, 
J J • 

= ~), l j: ~j },~ be a map inverse to ij: ~ --> (c Mj), 

T j: T~j >~j be a regular neighborhood of ~j in M j, _jY = TjI~ j. 

Suppose that a diffeomorphism ~: ~T~I >~T~2 is given which 

• ., 1 , k = 1,2, satisfies the condition: ~2.~ = X2Xl_~ I. Let Sk2 "'',n, 

1 is isotopically be disjoint smooth circles in M 2 such that each Sk2 

1 (MI-T~I) U~ (M2---~2) is diffeomorphie to equivalent to i2(Sk). Then 

M1 ~ ~2' where M2 is obtained from M 2 by surgeries along 

s 1 k2' k = 1,2,.--,n. 

In our situation this theorem gives the following: 

Let ~j, j = 1,2,...,2gc, ~i' i = 1,2,3, ~ = 1,2,...,~, be 

! 
smooth circles in A which are isotopically equivalent to ~j, 

J = 1'2'''''2gc' i' i = 1,2,3, ~ = 1,2,...,V, correspondingly. 
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A A 

Then (V-TC') U~.(A-TC') is diffeomorphic to ~ ~, where ~ is 

A 
obtained from A by surgeries along ~j, j = 1,2, .... ,2gc, 

8i, i = 1,2,~, ~ = 1,2,---,~. 

Let be a 4-manifold obtained from A by surgeries along 

8~, i = 1,2, ~ = 1,2,...,~. We need the following 

Lemma 3. Let M1,M 2 be two compact differentiable t-manifolds, 

. S 2 XD 2 M 1 be simply-connected 2 t : D3XS 1 > int(Ml) , ti: ---> int(M2) l • 

= ti(D3xsl ) . 2 i = 1,2,3, be smooth embeddings, T i , T~ = ti(S xD2), 
3 3 

T.NT. = ~, T~ n T' = ~ for i ~ j, i,j = 1,2,3, T = ~ Ti, T' =~Ti, 
l J l J i=l i=l 

a12,a13 6 ST1, al 2 ~ a13, a21 E 8T2, a31 E 8T3, aL2,a~3 E ~TI, 
t ~ ! ! w ! 

a~2 ~ a13 , a21 { ~T2, a31 E 8T~, y2,y3 (corresp. y2,Y}) be smooth 

disjoint paths in M 1 (corresp. M2) such that for j = 2,3 

int yj c (int MI)-T (corresp. int Y'j c (int M2)-T' ) and 

yj (corresp. ~j!) connects alj with ajl (corresp. alj' with ajl )' . 

Let ~i: 8Ti ~>~Ti'' i = 1,2,3 be diffeomorphisms respecting 

I S2-bundle structures over S | on 8Ti,~T i (which come from 

S 2 S 1 diffeomorphisms t i ~(D3xSI)=s2×sI: X ~ ~Ti, 

t' S 2 S 1 ' and projection S2XS 1 >S I) i ~(S2×D2)=S2xS I: x ~T i 

and such that for j = 1,2 alj = ~](alj), a j l  = ~(aj l ) .  
T i = $i" and let Define ~: T > T' by 

M = M I-T U~ M2-T' and M be a 4-manifold obtained from M by 

! ! 

surgeries along s 2 = y2U$ 8Y2Y2 and s 3 = Y3U~Isy3Y3. 
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Let (S2XD2)i , i = 1,2,3 be three different copies of 

S2XD 2, (S2×S1)i = ~(S2XD2)i. 
Then there exist diffeomorphisms of S2-bundles over S 1 

> (s2×sl  i , i = 1,2,3, such that if 

M2(~) = ((((Me-T')U~I(S2XD2) 1)U~2( sexD2)2)o 3($2XD2) 3) 

then ~ is diffeomorphic to M 1 ~ M2(~). 

Proof of Lemma 3. 

i = 1,2,3; Because M 1 is simply-connected we can find 4-disks Di, 

embedded in M~,such that int(D~)(i = 1,2,3) contains Tl and if 

~j, J= i then % 
4 and D 4 transversally and each of them only in one intersects D 1 J 

point. Consider D 4 =1,2,3 as embedded in a 4-sphere $4 and let 
i' i 

7. = S~-T.. We can consider T as a tubular neighborhood of a 
l l l l 

circle embedded in S~ and we get diffeomorphisms e. : 7. ---->(S2XD2)i. 
l l l 

We have also that if e~:z ~'l ---> (S2XSI)i is the corresponding 

~T i ' is a diffeomorphism of boundaries(we use = ~i) then e i 

diffeomorphism of S2-bundles ~T i >S 1 and (S2XSI)~ r -->S 1 

where ~T. >S 1 came from ~T i = ~ti(D3×sl ) = ti~(D3xS1 ) = ti(S2×S1) 
l 

and projection S2XS 1 > S I. Define ~i = ei.(~i )-I and M2(~) 

as in the statement of the Lemma. 
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Let ~ 4 4 = ei(Si-Di). In an evident way we consider 

Di, i = 1,2,3, as subspaces in M2(_~ ). We see that we can identify 
3 L! 3 ./i 

M with M I- ~ D U~ (M2(~)- ~ D where f is defined 
i=l a i=l l 

by f ~D~ i = fi: ~D~i ~D~. and f = e I~D ~ Identify 
l i i l 

3 4 3 
MI-i__~/ID i and M2(@)-~D~ with the corresponding subspaces of M. 

= i=l i 

Taking a ball D 4 c MI, with 

3 4 
int(D ~) ~ [(~/D ) U ~2 U ~3 ] we reduce the proof to the case 

i=l l 

when M 1 is diffeomorphic to S 4 and we have to show that M is 

diffeomorphic to M2(~). 

~4 i( ~4 Let M = (MI-DI)Uf Me(~)-D 1. We see that we can consider M as 

a b-manifold obtained from M by surgeries along two O-dimensional 

spheres, say $2,$3,° o embedded in ~, and consider M as obtained 

from M by surgeries along two 1-dimensional spheres s2,s 3 appearing 

on M in the following way: If S ° = [bjl,bj2), J j = 2,3, 

bjl,bi2 ~ M then there are smooth disjoint paths y2,Y3 on M such 

that "~j connects bjl with bj2 , j = 2,3, and s2,s > on M are obtained 

canonically from ~2 and ~3o These considerations immediately show 

that M is diffeomorphic to M2(~). (We use that if a,b ~ S ~ and 

is obtained from S 4 by surgery along S ° = {a,b} then ~ is 

diffeomorphic to SIxs 3 and if ~ is obtained from S by surgery 

along some el×c, c E S 3, then ~ is diffeomorphic to S 4). 

Lemma 3 is proved. 
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We return to the proof of Statement (~). Lemma } shows that 

~I is diffeomorphic to A' ~ 9P. Let A~II be a 4-manifold obtained 

~i from by surgeries along ~i' i = 1,2,..-,2g (we identify ~'l with 

their images on ~i). From the construction of A' we know that 

A' ~ A ~ pQ, that is, ~I is diffeomorphic to A ~ pQ ~ vP. Let 

- I 

~i' i = 1,2,-.-,2g~ be the images of ~i' i = 1,2,...,2g, in A and 

AII be a ~-manifold obtained from A by surgeries along 

~i' i = 1,2,...,2g. Clearly is diffeomorphic to A~ pQ / ~P. 

But from Lemma 2 applied inductively we get that AII is an 

S2-bundle over S 2. Because p ~ O we have from a result of Wall 

(see [8]) that ~ is diffeomorphic to (P ~ Q) ~ pQ / ~P. Let 

~i' i = 2g+l,.-.,2gc, (corresp. ~, ~ = 2gc+l,.-.,2gc+~ ) be the 
, ~-2g 

images of ~i' i = 2g+l,--.,2gc, (corresp. ~ C, ~ = 2gc+l,... ' 

2gc+V ) in A~II. ~ is a 4-manifold obtained from A~II by surgeries 

along ai, i = 2g+l,-..,2gc+V. Because AII is simply connected and 

has an odd intersection form we have from results of Wall (see [8]) 

that ~ is diffeomorphic to (P~ Q) ~ pQ ~vp ~ [2(gc-g)+9 ] (p ~ Q). 

From the classical Hurwitz formula we have: 2gc-2 = 2(2g-2)+p, 

that is, 2(gc-g ) = 2g-2+p. We see that ~ is diffeomorphic to 

(2~+p+2g-l)P ~ (~+2p+2g-l)Q. 

This finishes the proof of Statement (~) and also the proof of 

Theorem 2. Q.E.D. 



§3. Comparison of topology of simply-connected projective surfaces 
of degree n and non-singular hypersurfaces of degree n in ~PJ. 

We shall use an old classical result of projective algebraic 

geometry. Because we need it in slightly modified form, we shall 

give the main parts of its proof in the Appendix to Part I (see 

P. ~9). The result is the following: 

Theorem 3. Let V be an irreducible algebraic surface in ~pN with 

only isolated singular points, say al,.-.,aq. Suppose that for 

any i = 1,2,---,q the dimension of the Zariski tangent space of V 

at a i is equal to three. Then for generic projection ~T: V > ~p3 

we have the following: 

(i) There exist open neighborhoods Ui, i = l~2,...,q, of w(~i) 

in W(V) such that V i = 1,2,...jq 

, : ~-l 
"I -l(ui) (Ui) >U i is biregular. 

q 
(2) TI(V) - ~(ai) 

i=l 
has only ordinary singular points. 

(3) If N >_ 5, V is not contained in some proper projective 

subspace of ~pN and V > ~pN is not the Veronese embedding of 

~p2 in ~pS, corresponding to mQnomials of degree two, then the 
q 

singular locus of ~(V) - ~(ai) is an irreducible algebraic 
i=l 

curve Su(V) in ~(V) and ~-I(sTr(V)) is irreducible. 
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(~) If N >~ and V is not contained in 3-dimensional some 
q 

projective subspace of ~pN then ~(V) - ~(ai) has pinch-points. 
i=l 

Theorem 4. Let V n be a projective algebraic surface of degree n 

embedded in ~pN, N > 5, such that V is not in a proper projective 
n 

subspace of ~pN. Suppose that V is non-singular or has as 
n 

singularities only rational double-points. Let h: ~ ~V n n 

be the minimal desingularization of V . Let X be a non-singular n n 

h y p e r s u r f a c e  o f  d e g r e e  n i n  ~P~.  

Suppose ITI(Vn) = O. Then 

O) b+(~n) < b+(Xn) , b_(%) < b_(Xn) 

(in particular, b2(~n) < b2(Xn) ) ; 

O a) ind(~ n) > ind(Xn); 

I) Vn ~ [b+(Xn)-b+(V--n)+l]P ~ [b-(Xn)-b-(Vn)]Q 

is diffeomorphic to X ~ P; n 

2) ~n ~ [b+(Xn)-b+(Vn)+l]P~ [b-(Xn)-b-(Vn)]Q 

is diffeomorphic to [b+(Xn)+l]P ~ [b_(Xn)]Q. 

More precisely, let U: Vn >~p3 be a generic projection of V n 

in ~P3, V'n = ~(Vn)" 9 = 9(V~) (corresp. p = p<V~)) be the number of 

triplanar points (corresp. ,pinch-points) of V'n, S = S(Vn) be the 

i 
locus of ordinary singularities of Vn, d = d(S(V~)) be the degree 
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of S, and in the case when S is irreducible (that is,V ~ ~p212] n 

where ~p212] is the image of Veronese embedding ~p2 >gp5 

corresponding to monomials of degree two, see Theorem 3 (3)), 

let g = g(S(V~)) be the genus of (non-singular model of) S. If 

Vn = ~p212]( c ~pS), let g = g(S(V~)) = -2. 

Then 

0) i) b+(Xn) - b+(~n) = 

= ~( n 2-6n+I1 ) -l-b+(~n) = 

= -M + ~ + d(n-~) = 

= 2v + p + 2g-2, 

ii) b_(Xn) - b (Vn) : 

= n~l(2n2-~n+3) - b_(Vn) = 

= -2V + ~p + d(2n-4) = 

= ~ + 2p + dn + 2g - 2; 

o) a Ind(~n) - Ind(Xn) = ~(dn-1) + ~ + 7p 2 6 +yg 

1 ) ' - 2 ) '  % ~ [ - M + d ( n - 4 ) + l ] P  ~ [ -2M~p+d(2n-~) ]Q = 

= V / [2M@p+2g-l]P / [M+2p+dn+2g-2]Q n 

Xn { P ~ k P ~ ~nQ'n 

~(n2-6n+ll), ~ = ~(2n2-4n+3). wher e kn = n 
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Proof. If V = ~P212] we can directly verify that all statements 

of Theorem ~ are true. Thus suppose that V ~ ~p212]. Consider 

generic projection ~: V >~P} and let ~': V >V' be the 
n n n 

corresponding map of V n to its image. Let X n be a non-singular 

hypersurface of degree n in ~P3 with the properties: X does not 
n 

contain the images of rational double points of V n 

transversal to S = S(V~). 

and X is n 

It is well known that the complex dimension of the Zariski 

tangent space for a rational double point is equal three ([9]). 

Now Theorem } shows that we can apply to V~,X n c ~p} Theorem 2--. 

Evidently, b = S.X n = dn ~ O and we obtain from Theorem 2, I) 

that X / P is diffeomorphic to n 

/ [2~+p+2g-1]P ~ [~+2p+dn+2g-2]Q. 
n 

E = ~'-I(E ), Let E' be a generic plane section of Vn, 

C = ~'-l(s), ~ be a canonical divisor on V (that is, ~ = h(~) 

where ~ is a canonical divisor on ~), ~': V' >~P2 be a 
n 

generic projection of V' on ~p2, ~ = ~'~', D be the ramification 
n 

locus of ~ in V and F = O be the equation of V' in ~p3. 
n n 

Considering a partial derivative of F corresponding to 

~': V' >~p2 we can easily see that (n-1)E ~ C+D (~ means here 
n 

"is linearly equivalent"). Because K~p 2 ~ -3Z where ~ is a 

projective line in ~p2 we have ~ ~ -3E+D. Thus D ~ ~+3E and 

C ~ (n-1)E - D ~ (n-4)E - ~. 



64 

Let gc (corresp. gE) be the genus of (the non-singular model of) 

C (corresp. E). Because C has 3 ~ ordinary double points, E' is a 

generic projection of E in ~p2 and E' is of degree n and has d 

ordinary double points we have 

2ge-2 = (~+c)c - 6~ = (n-4)E((n-4)E-~) - 6~ = 

= (n-4)2n - (n-4)E.~ - 6~, 

C~+E)E = 2gE-2 = nCn-3) -2d 

and 

~.E = n(n-~)-2d 

2gc-2 = (n-4)2n- (n-4)[n(n-4)-2d]-6~ = 2d(n-~)-6v . 

Let ~,~ be the normalizations of C and S and p: ~ > ~ be the 

canonical map corresponding to ~' C" C ..... > S. Because p is of 

degree two and has p branch-points we have 

2gc-2 = 2(2g-2) + p and 

1 A = d(n-4) - 3V Z . 
2g-2-- ~(2g c-2) - 2 - 2 

We see that 9~+p+2g-i = -v+ ~+d(n-4)+l and 

v +2 p +dn +2 g -2 = -2~ ~p +d ( 2 n-4 ). 

Note also that in [2] it is proven that X n ~ P is diffeomorphic 

to knP ~ ~n Q where kn = ~(n2-6n+ll)' Zn = ~(2n2-4n+} )" We see 

that the statements O'), 1')-2') of our theorem are true. The 



65 

and 

Then d(n-~) = -i and d = I, n = 3. But for a surface V 5 

always find some ~p4 in ~pN which contains V3)o 

statement Oa)' can be verified now by direct calculation (using the 

formula 2g-2 = d(n-~)-3v-~). 

Now we have o n l y  t o  v e r i f y  t h e  s t a t e m e n t  0 ) .  

But it immediately follows from O') using 0 ~ O (Theorem 3 (4)) 

p ~ 0(2). (If b+(Xn) = b+(VL) we have g = O, p = 2, v = O. 

we can 

QoE.Do 



~4. Simply-connected al~ebraic surfaces of general type. 

Theorem 5. Let V be a simply-connected non-singular (complex) 

algebraic surface of general type, Vmi n be the minimal model of V, 

c = c(V) = ~ (self-intersection of the canonical class), 
man 

~ 2 pg(V) = b (v), b = b (V), C = ~, pg = (geometrical genus of V), b+ + _ _ 

and k(X), L(X), K(X), L(X), ~(X), ~(X) E ~[X] be polynomials of 

degree three defined as follows: 

~(x) = }(x2-~+ii); ~(x) = x~--!(2x2-~x+3); 

~(x) = K(9(~+~)l-x; L(x) = t(9(~+~))~ 

k(x) : K(2X÷l), ~(x) : L(2X÷l) 

Let m be a positive integer and 

% = V ~ [~(m2c)-2pg-l]P # [max(O,~(m2c)-lOpg-9+~)]Q, 

li! if c>_ 6 
if c = 2 

if c= i. 

or c ~ 3 and pg ~ 4, 

or c = 3,4,5 and Pg ~ 3, 

Then 

(i) ~ is completely decomposable; 

(2) V ~ [K(b+)]P ~ [max(O,L(b+)-b_)]Q = 

= v # [k(pg)]p # [max(0,~<pg)-b_)]Q 

is completely decomposable. 
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[Remark. Note that 

~(b+l = 3037563+ + 6885062+ + 52004b+ + 13092; 

~(b+) - 6o75ob3+ + I~175ob2+ + ~65b+ + 28595; 

k(pg) = 2~30OOp3g + 2511OOp~ +211738pg + 164321; 

2,(pg) = 486000p3g + 1296000p~ +llSLm3rS~pg + 341360. ] 

Proof. Using V ~ Vmi n ~ aQ where a = c-c = b_-b_(Vmin) ~0 

and b+ = 2pg+l (Hodge Index Theorem) it is easy to verify that it 

is enough to prove our Theorem only for the case V = Vmi n. Thus 

assume V = V 
min" 

Let m ~ O be an integer such that the linear system I~I 

has no base points, the regular map --~m: V > ~pN(m) corres- 

ponding to Im~l is birational and ~m(V) has as singularities only 

rational double-points. Let V = ~m(V) and h: V --->~ be the map 

corresponding to ~m" We see that h: V --->~ is the minimal 

desingularization of V and we can apply to V the Theorem 4. Note 
m 

2 
that the projective degree of V is equal to (mK.mK) = m c and 

b_ = IOpg+~-c (because b2(V ) = b++b_ = 2pg+l+b_ (Hodge Index Theorem) 

1 
and l+pg = ~(c+2+b2(V))(Noether Formula)). 

We get from Theorem ~ that ~ is completely decomposable. 
m 

Now results of E. Bombier~[3] show that we can take m = 3 
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if c ~ 6 or c ~ 3 and pg ~ 4, m = 4 if c ~ 2 and m = 5 in all 

cases. This proves the Statement (I) of Theorem 5. 

The Statement (2) follows from (i). We have to remark 

only that 32c ~ 9(5~+4) (because c = 5b++~-b_), 

42c ~(5b++4) for c ~ 5 (because b+ h 1 and 

~2c ~ 80, 9(5b++4) h 81) and 52c ~ g(Sb +4) for c = I. 

Q .E .D. 



§5. Topological normalization of simply-connected algebraic surfaces. 

Recall that we say that an algebraic complex function field R 

is topologically normal if there exists a non-singular model 

V = V(R) of R such that V is almost completely decomposable 

(see [4]). Let R',R be two algebraic complex function fields of 

two variables. We say that R' is a satisfactorily cyclic extension 

of R if there exist non-singular models V' and V for R' and R 

correspondingly and a regular map f: V' >V such that f is a 

ramified covering and the ramification locus of f in V is non- 

singular and linearly equivalent to (deg f).D where D 2 > O and 

IDI is a linear system in V without base-points and fixed 

components. (This is a small modification of the corresponding 

definition in [4].) 

We define nl(R ) = UI(V) where V is any non-singular model of R. 

Definition 2. Let R be an algebraic complex function field of 

two variables with ~I(R) = O. We shall say that R' is a 

topological normalization of R if R' is a satisfactorily cyclic 

extension of R and R' is topologically normal. 

It was proven in [4] that for any R with ~I(R) = O there 

exists a topological normalization of R which is a quadratic 

extension of R. Now we shall give to this result more explicit 

form. 
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Theorem 6. Let R be an algebraic complex function field of two 

variables of general type~ nl(R) = O, v be a non-singular model 

of R embedded in a projective space ~pN with homogeneous 

(Zo, ,zN) [~] +l([~] is the coordinates .-- . Let n = deg V, m = 

integer part of _~n). 

Suppose that V is not contained in the hyperplane given by 

z O = O. Let ~2m(Zo: ..... :ZN) be a homogeneous form of degree 2m 

of Zo,.-.,z N such that the corresponding hypersurface section of V 

~2m(Z°:''':ZN) V R' R(~) Then is non-singular. Let f = ( ~ ) and = . 
z o 

R' is a topological normalization of R. 

Proof. The theorem follows from Theorem 4, results of [4], 

[iO], Sections 4 and 5, and from the following remarks: 

a) If E is a hyperplane section of V of degree m then 
m 

2g(Em)-2 = (~+mEl)mE 1 = m~El+m2n ~ m2n+m (because 

 v.El > o).  
b) For m = +l 

2 ~(n2_6n+ll m n + m + 2 h ) - b+. 

Theorem 7. Let R be an algebraic complex function field of two 

variables of general type, ~I(R) = O, pg = pg(R) (geometrical genus), 

P2 = P2 (R)(2-genus)' c = P2-Pg-l. Denote by 
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I 6([3V3c]+i) if c h 6 or c ~ 3 and pg ~ 

.16c~ 
a = a(R) = 8([~----j+l) if c = 2 or c = 3,4,5 and pg ~ 3 

150 if c = I. 

Let ~2a'8~ be two regular pluridifferentials of R of degree 2a 

and a correspondingly such that ~ ~ O and on some non-singular a 

model V of R zero-divisor (~2a)o of ~2a is a non-singular curve 
~2a 

on V. Let f = and R' = R(y~). Then R' is a topological 

normalization of R. 

Proof. The theorem follows from Theorem 5, results of 

[4], [i0] and from the following remarks: 

a 
Let V be a minimal (non-singular) model of R, m' = ~ and Em, 

be a non-singular element of lim'~I where i = 3 if c ~ 6 or c h 3 

and pg ~ 4, i = 4 if c = 2 or c = 3,4,5 and pg ~ 3 and i = 5 if 

.2 ~ p2_Pg c = I. Let n = I c. Then = -i = c (because 

Hl(v, [2~]) = O (see [Ii]). As in the proof of Theorem 6 

we have 2g(Em,)-2 h (m')2n+m' and (m')2n+m'+2 h ~(n2-6n+ll)-b+" 

Q .E .D. 



APPENDIX TO PART I 

GENERIC PROJECTIONS OF ALGEBRAIC SURFACES INTO ~p3 

§i. A theorem of F. Severi. 

The following theorem was proved by F. Severi in 1901 

(see [12]) in non-singular case. We need a slightly more general 

fact. Our proof is very close to Severi's arguments. 

Theorem (F. Severi). Let V be an irreducible algebraic surface 

with only isolated singular points embedded in ~p5 such that V is 

not contained in a proper projective subspace of ~pS. Let K(V) be 

the variety of chords of V (that is, the algebraic closure in ~p5 

of the union of all projective lines in ~p5 connecting two 

different points of V). 

Then 4 ~ dim~K(V) ~ 5 and dim~K(V) = 4 iff V is a projective 

cone over some algebraic curve or the given embedding V ~ ~p5 

coincides with the Veronese embedding of ~p2 corresponding to 

monomials of degree two (that is, V = ~p212]). 

Proof. It is clear that K(V) is irreducible and dim~K(V) ~ 5. 

Suppose that dim K(V) ~ 3. Let E be a generic hyperplane 

section of V corresponding to some hyperplane ~P~ c ~pS. Since 

V ~ ~P~, we have K(E) ~ K(V)(K(E) is the variety of chords of E). 

Hence dim~K(E) < 3. Because E is non-singular, we obtain from 

dim~K(E) < 3 that generic projection of E in ~p2 is also non-singular. 
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Denote by E' the image of this projection (clearly, E' is 

isomorphic to E). Let [Z]E' be the restriction on E' of a complex 

line bundle on ~p2 corresponding to the projective line in ~p2. 

Then dim~H°(E',~[~]E , ) = 3. It follows from this that E is contained 

in some ~p2 c ~p~. Hence V is contained in a proper projective 

subspace of ~pS. Contradiction. 

Now consider the case dim~K(V) = 4. Let x be a generic point 

of K(V). Denote by P the cone in ~p5 which is union of all "chords" 
x 

of V passing through x. It is clear that dim~ x <_ 2. Suppose 

dim~ x = i. Then using dim~K(X) = 4 we have that a generic 

"chord" of V contains an infinite number of points of V, that is, 

V = ~p2. Contradiction. Thus dim~ x = :_~. 

Consider a generic hyperplane ~P4 E of ~p5 and let E = V A ~pE ~. 

As above, dim~K(E) = 3. Because K(V), K(V) N ~PE 4 and K(E) are 

irreducible, K(E) = K(V) N ~pE 4 and dim(~(K(V)C~PEd) = 3, we have 

K(E) = K(V) N ~P~., We can assume that x is generic on K(E). Let 

~l'''''~m be all the chords of E passing through x. It is clear 
m 

that ~x D ~p4 E = ~ ~i" 
i=l 

We can assume that x is a generic point on a generic "chord" 

of E. Suppose m > i. Then for a generic point x of a generic 

"chord" of E there exists another ~'chord" of E passing through x. 
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Let a,b be two different generic points of E~ and e be a 

generic point of the "chord" k(a,b) corresponding to a,b. From 

our supposition it follows that there exists another "chord" k(c,d) 

of E, where c,d 6 E, c ~ d, such that e E k(c,d). Because e is 

generic we can assume that c is a generic point of E. Because 

generic projection of E in ~p2 has as singularities only ordinary 

double points~ dim K(E) = 5 and a,b are generic on E we have: 

k(a,b) N E = [a,b~ and c ~ k(a,b), d ~ k(a,b). 

Now let n : E }~p3 be projection of E in ~P3 with the a 

center a, E' = ~a(E)(that is, the closure of ~a(E-a)). Let M be 

4 
the two-plane in ~PE containing k(a,b) U k(c,d), S' = ~a(S), 

b' = Ua(b)' c' = ~a(C), d' = ha(d). 

Since b and c are generic on E, c,d ~ k(a,b), a ~ k(c,d), 

we have that b' and c' are generic on E', b' ~ c', b' ~ d', 

c' ~ d'. We have now that M' = k(b',c') (which is a generic 

"chord" of E') meets E' in a third point. 

Because E is not in a proper projective subspace of ~PE 4, 

E' is not a plane curve in ~pS. It easily follows from this that 

dim K(E') = 3, that is, K(E') = ~P~. A generic projection of E' in 

~p2 has the following property: if E" is the image of E' then E" 

has as singularities only the images of the singular points of E' 

with all the branches as images of the branches of the singular 
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points of E' and finite number of ordinary double points. [This 

can be proved by stability arguments in the singular case as well as 

in the non-singular case]. We get a contradiction with the facts: 

K(E') = ~p3 and a generic chord of E contains three different points. 

Thus we obtain m = i. But this means that x is a non-singular 

point of ~x, that is, ~x is a plane in ~pS. Let C x = rxNV. From 

x N ~p~ = ~i and ~i is a generic "chord" of V, that is, it 

meets V only in two points (because Z 1 is also a generic "chord" 

of E) we see that C (which must be a curve) has projective degree 
x 

two. The construction of ~ gives us a rational map of K(V) in 
x 

the grassmanian of 2-planes of ,~pS. Let T be the image of this 

map. Since dim K(V) = 4 and dim~ x = 2 we have that dim~T ~ 2. 

It is clear that for generic x,y E K(V ) corresponding Cx,Cy are 

algebraically equivalent and let us consider now the maximal 

irreducible algebraic system [C(t), t E T'} of curves on V which 

contains C x as a generic element (T' is a subvariety of the 

corresponding Chow variety). If for generic x,y E K(V) we would 

have ~x ~ ~y and C x = C then C x is a projective line. This 
Y 

contradicts to deg(Cx) = 2. 

But that means that the natural rational map T ~T' is of 

degree one and dim~T' ~ 2. 

Now let us consider the different possible cases. 
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i. Generic C contains some of the singular points of V. Because 
x 

V has only a finite number of singular points and T' is 

irreducible we see that there exists a singular point a of V 
o 

such that every C(t), t E T', contains it. 

la. Generic Cx is irreducible. Since dim~T' >_ 2 then a generic 

point a ~ V is contained in infinitely many irreducible 

elements of [C(t)]. Let CI,C 2 be two of them~ C2NC 1 9 a, 

a is non-singular on V;and hence for any C(t ) which is "close" 

to C 2 we have that C(t ) intersects C 1 in some point a' which 

is "close" to a. That means that there exists a non-empty 

Zariski open subset U 1 in T' such that for any t E ~I 

corresponding C(t ) intersects C 1 in some point a{t) ~ a O. 

By the same reason we have analogous U 2 c T' for C 2. C 1 and 

C 2 are of degree two and let ~i,~2 be 2-planes containing 

C 1 and C 2 correspondingly. Since a ° E C 1 N C 2 c ~i N P2 

there exists a hyperplane ~P~2 in ~p5 which contains 

~i and ~2" Let El2 be the corresponding hyperplane section 

of V. Evidently El2 = CI+C2+D , where D is some non-negative 

4 
divisor (of Weil) in V. Because V ~ El2 c ~PI2 we have that 

there exists a non-empty Zariski open subset U c T' such that 

for any t E U the corresponding C(t ) is not in El2. All this 

shows that we can choose such C 3 E [C(t)] that C3 is 

irreducible, different from CI,C2, not a component of D and 
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intersects C I in some a' ~ a o and C 2 in some b' ~ a o. We have 

ao,a' . = El2 N C 3 m ,b' If a' b' we have from C 1 ~ C 2 that 

intersection index of C= with CI+C 2 in a' is greater than one. 
J 

4 
In any case, we ge 2 ~P12" C} h 9- Contradiction (deg C(t ) = 2). 

lb. Generic C is reducible. 
x 

projective line in ~pS. 

Then each component of C must be a 
x 

Suppose that there exists only a finite 

number of such lines which contain a o. This means that all c(t ) 

have a common line, say ~i" Thus every chord of V intersects ~i" 

Take generic ~P~ ~ ~i and the corresponding E. We obtain that 

any chord of E is passing through some fini%e number of points of 

E N ~l and thus it contains three different points. This 

contradicts dim~K(E) = 3 and the fact that a generic projection 

of E on ~p2 has as singularities only ordinary double points. 

We get that there exist an infinite number of projective lines 

of ~p5 in V containing a o. The existence of the Chow variety of 

projective lines of ~p5 which are contained in V gives us an 

irreducible 1-parametric algebraic system of such lines which are 

passing through a o. We obtain that V is a cone over some 

algebraic curve. 

2. Generic C does not contain a singular point of V. 
x 

2a. Generic C is reducible. As above we have an infinite number of 
x 

p r o j e c t i v e  l i n e s  o f  ~p5 i n  V. The c o r r e s p o n d i n g  C h ~ '  v a r i e t y  
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shows that only a finite number of them can be "isolated", that 

is, not in some infinite irreducible algebraic system of such 

lines. If generic C x would contain such an "isolated" line, 

then we would have that every C(t ) 6 [ct] contains a certain 

line ~l" This leads to a contradiction by the same arguments 

as above (Case Ib). We get that generic C is a union of two 
x 

lines ~ix,~2x, which both are in some irreducible algebraic 

systems. Thus ~lx.~ix ~ O, ~2x.~2x ~ 0 and for any curve d 

in V, Cx-d ~ O (intersection numbers are defined because C x 

lies in the non-singular part of V). Because C is a plane 
x 

2 2 2 
curve we have ~ix" ~2x = 1 and (Cx) v = ~Ix+2~ix~2x+~2x ~ 2. 

Take now a different generic C . If C contains ~ix or ~2x 
Y Y 

we get that all C(t ) E {C(t ) ] have a common component which is 

impossible (as we saw above). Thus C = Y ~ly+~2y, where ~iy,~2y 

are different from ~lx,~2x and not "isolated". 

then Llx.~ly = ~ix~2y = ~2x.~ly = ~2x.~2y = O. 

see that these equalities give that ~ix and ~2x 

irreducible algebraic system as 

Contradiction. 

If C .C = O 
x y 

It is easy to 

are in the same 

Lly. Thus ~ix.~2x = ~ix.~ly = O. 

We get Cx.Cy ~ O and let a E Cx A Cy. As above, we take 

a hyperplane containing C x and Cy. Let Ex,y be the corresponding 

hyperplane section. Because C x and Cy have no common component 
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we have that E = C +C +D where D is some non-negative divisor 
x,y x y 

(of A. Weil) on V. As we saw above, Cx.D ~ O. We have 

2 = E .C = C 2 + C C + D.C > 2+1 = 3. 
x.y x x xy x-- 

Contradiction. 

2b. Generic C is irreducible. Since dim T' > 2 we have for a generic 
x 

point a E V that there exists an infinite number of irreducible 

C(t ) containing a. Take two different ones, say C 1 and C 2. 

We can assume also that C 1 and C 2 are in the non-singular part 

of V. We see that CI.C 2 > O, that is, C 2 x > O, and for any algebraic 

curve d on V, C .D > O. As above, take a hyperplane section El2 
x 

of V containing C 1 and C 2. We have El2 = CI+C2+D ~ where D is a 

non-negative divisor (of Weill on V, and 

2 = El2"Cx = 2C2x + D.Cx. 

We get C 2 = 1 D.C x = O. Now suppose that D ~ O. El2 is 
x 

connected and thus D either contains C 1 or C 2 as components or 

intersects with C 1 or C 2 in some points. In all cases we have 

a contradiction with D.C 2 = O. Thus D = O and El2 = CI+C 2. 

Now C 1 and C 2 are Cartier divisors on V and we can consider 

corresponding complex line bundles [CI] , [C2] over V. Clearly 

[E] = [CI]+[C2] , where [El is the line bundle corresponding to 

hyperplane sections. We have the following exact sequences: 
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(i) o >H°(V,~v ) > H°(V,~v[Cl ]) >H°(C~,~ [C~]~ ) 
± u I ± u 1 

(2) O --->HO(V'~v[CI])---> H°(V'~v[CI+C2 ]) ~H°(C' 2'~c2[C Ir +C2]c2) 

2 
C 1 and C 2 are both rational non-singular curves. From C 1 

(CI+C2)C 2 = 2 we get 

= I, 

(3) dim~ H°(CI,~cI[CI]Cl ) = 2, dim~ H°(C2,~c2[CI+C2]c2) = 3- 

o 
Because dim~ H (V,~v) = i, we obtain from (i),(2),(3) and from the 

fact that V is not in a proper projective subspace of ~p5 

dim~ H°(V, ~v[CI]) ! 3 

o [E]) = dim H°(V, ~v[CI~2 ]) < 6 & dim~ H (V, ~V 

i dim~ H°(V, %[Ci]) + 3 i 6. 

This shows that dim~ H°(V, Sv[E]) = 6 and dim~ H°(V, Sv[CI]) = 3. 

2 Because C 1 = 1 and C 1 is irreducible we have that global cross- 

sections of [CI] have no common zero and we can define a regular 

map f: V >~P2 corresponding to H°(V, ~v[CI]). It is easy to 

see that f is surjective. We can find a ~ ~ H°(V, ~v[CI]) such 

i that zero-divisor of ~, say Cl, is an irreducible algebraic curve 

j ! 
in V. Because the degree of C 1 is two we have that C 1 is 

2 = 1 gives ' a C 1 4 contained in some 2-plane of ~pS. Cl Cl 

! 
and we can find a hyperplane section E 1 of V containing C 1 and Cl, 
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2 2 = ' = 2 
E 1 = CI+CI+D' , D' >_ O. From E 1 = (CI+C2) = 4, EI.C 1 EI.C 1 

we get EI.D' = O, that is, D' = O, E 1 = CI+C {. Let [E'] be the line 

bundle over ~p2 corresponding to 2~, ~ is a line in ~p2 From 
I 

E 1 = Cl+C 1 we get that [E] = f~[E'], and 

H°(v, ,viii _= f~H°(~p 2, ~p2[E 

But 

We have 

(4) 

]). 

dim~ HO(v,~V[E]) = 6 and also dim~H°(~P2,~p2[E' ]) = 6. 

H°(V, ~v[E]) = f~H°((~p 2, ~p2[E']). 

f[2]: ~p2 >~p5 be the Veronese embedding of ~p2 

Q .E .D. 

Let 

corresponding to [E'] i: V 

(because of dim~ H°(V,~v[E ] = 6) corresponds to [El. 

and (4) give us the following commutative diagram: 

V i > ~p5 

~p2 

which shows that V = f[2](IP2). 

> ~p5 our original embedding which 

E-- [f~E'] 



~2. Dualit[ theorem and Corollaries of it. 

Definition. Let V be an irreducible algebraic variety embedded 

in ~pN, dim V = k, Tx for non-singular x E V be the k-dimensional 

projective subspace of ~pN tangent to V at x, ~P Ne be the dual 

projective space for ~pN and V ~ be the algebraic closure in ~pN~ 

of the set of all t such that the corresponding hyperplane H t in 

~pN contains T for some non-singular x E V. We call V ~ (~ ~P N~) 
x 

the dual projective variety for V. 

Duality Theorem. If V is as above, then 

N w 
(i) V ~ is an irreducible proper subvariety of ~P ; 

(2) there exists a proper subvariety S(V ~) in V ~ such that for 

any t E V~-S(V ~) the corresponding hyperplane H t in ~pN contains 

T for some non-singular x E V, and for any such x the 
x 

corresponding hyperplane H e in ~pN is tangent to V e at t; 
x 

(3) V is dual to V~; 

(4) in the case dimlY ~ = N-I we can take S(V ~) so that for any 

t E Vw-S(V ~) and for any non-singular x E V with H t m Tx the 

hyperplane section E t = H t N V has at x a non-degenerate 

quadratic singular point. 

Proof. (i) Let V be the set of all non-singular points 
sm 

J 
of V, ~'= [(x,t) E Vsm X CpN*, Ht = rx~' fl: ~' >Vsm' 

! 

f2: F' >~P N~ be the maps induced by canonical projections. 

It is easy to see that fl: F' ~Vsm is a fibre bundle over 
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V with a typical fiber isomorphic to ~pN-k-i and that V w is the 
sm 

I algebraic closure of f2(~") in ~P N~ We obtain that 

dim~' = k+N-k-i = N-I and that r' is irreducible. Hence 

dim~V ~ ~ N-I and V w is irreducible. 

N ~ 
(2) Let ~ be the algebraic closure of ~' in Vx~P , 

! m fl: ~ > V, f2: ~ ~ V~ be the maps induced by fl and f2" 

Take a point (Vo,to) E ~' such that t o is nonsingular 

in V w and df 2 is surjective in (Vo,to). Let (Xl,...,x N) be some 

affine coordinate system with the center in v o, yI,...,yN be the 

restrictions of Xl,...,x N on V x (in some neighborhood of Vo). 

We can assume that the affine coordinates are chosen so that 

there exists an open neighborhood U of v o in V such that 
sm 

Yl'''''Yk are local coordinates of V in U and Yk+I'''''YN are 

regular functions of YI'''''Yk in U. We shall use capital 

letters Yk+I'''''YN instead of Yk+I'''''YN" 

If v' E U then any hyperplane of pN passing through v' 
N 

is defined by an equation: a ° + a.x. = O where 
i 1 I l 

a ° + ~ aiYi(V' ) = O. This hyperplane is tangent to V ~ at v' 
i=l 

iff it contains the following vector (with the origin in v'): 

(dq(v')," "',dyN(v')). 
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We have 
N 

i_~la idYi ( v ')=o 

or 
N k ~y. 

] lajdyj (v') + ~ a i ~ o~(v')dyj 
i=k+l j=l 

N ~)y. 

(aj + ~ a i (v))dyj(v') 
j-=l i=k+l 

= O. 

(v') = O, 

We obtain the following system of equations: 

aiYi(v' ) + a = O, 
i=iL- o 

N ~y. 
l ayj v = aj + L_ ai ~( ') Oj 1 < j <_ k, 

i=k+l 

o r  

N k ~y 

a° =i=k+l / ai[]=IL ~y~(V')yj(v')- Yi(v')] . 

N ~y 

ai ~l , a~ = - (v) 1 < j < k. ~,, • _ _ 
3 i=k+l 

N ~ 
~P 

These equations define an N-k-l-linear subspace ~(v') of 

parametrizing all those hyperpla es: of ~pN which are tangent 

to V at v' It is clear that one of ai, i = k+l,...,N, is not 

zero at t O . We can assume that aN(to) ~ O. Taking U smaller 

! 
we can choose an open neighborhood U N of t o in ~P N~ such that 

a N ~ O in U' U' N V ~ is a non-singular open subset of V ~ and 
N' N 
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df 2 is surjective in any point (t',v') E ~"' with 

i 
t '  E U N N V * •  v '  ~ U.  T a k e  a f f i n e  c o o r d i n a t e s  i n  U'N d e f i n e d  

as follows: a. l 
s i  = ~N ' i = O , 1 , . - . , N - 1 .  

Now we write the equations {i] in the following form: 

N - 1 k ~Y i k ~YN 

o i=k+l j=l j=l ~YJ 

N-I ~Yi ~YN 
s. = k~ ~ j 1,2,..,k. 
J i= +i x ~yj 

Taking differentials we have 

C3] 

N-I /~ ~y k k N-I ~2y. 

 So= X X I 
i=k+l j=l ~Yj L=I m=l i= +I~Y~Ym 

2Y N 

m= 1 

ds. = - ] 

N-I ~y. k N-I ~2y. ~2YN 

i=k+l ~Yj x L 1 = +I si 

j = 1,2,...,k. 

Let U' = U' D V*. Any tangent hyperplane in a generic point 
N 

of U' is defined by a non-trivial linear combination of 

dSo,...,dSN_ 1 equal to zero for any choice of dYl,...,dYk, where 

dSo,--.,ds~_ 1 satisfy (3). 
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{4p~ 

One such combination is 

k N-I 

ds ° +  yds + > O 
j--~l 3 3 i=k+l i 1 

N* 
The corresponding hyperplane in ~P has the following 

equation : 
k N-1 

{5] s°-s°(t') + j~IV yj(v,l(sj_sj(t.))+ ~ Yi(v')(si-si(t'))=O- 

i=k+l 

Since 
k N-1 

YN(v') ~ -So(t') - yj(v')sj(t') i--~+l ~ )si(t 
j= 

), 

we can write {5] in the following form: 

k N-1 

C63 s + ~lyj(v ')sj + ~ Yi(v )s i+Y~<v >=o 
o j_ i=k+l 

The point in ~pN which corresponds to this hyperplane is v' 

* in V* such There exists a non-empty Zariski open subset V 1 

that V 1. is non-singular, V I* _c f P') and for any z E f (V , 

(df2)z is surjective. We see that we can take S(V*) = V*-V~. 

(3)*) Let k* " V* * = dlm~ , r~ = {(x,t), x E ~pN t ~ v I (V~ is the 

same as above), the hyperplane H* in ~pN* corresponding to x 
x 

of ~pN* contains the k*-dimensional projective subspace Tt,V. 

The proof of (3) which we give here is due to F. Catanese. 
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tangent to V* at t}. It follows from (2) that f~-l(v~) ~ rl. 

Let r I be the closure of ~'i in ~pNx~pN*. We obtain ~ _c ~i" 

Now the same arguments as in (I) show that ~i is irreducible and 

dim~ 1 = N-I. Because dim ~ = N-I we get ~ = ~i" Evidently 

pr~/1 is the dual algebraic variety for V*. Thus we proved that 

V is dual to V*. 

(4) Using the same notations as in (2) we can assume that 

the local equation of E t in some neighborhood of x has the 

following form : 

k N-I 

I S (t)yj + / si(t>Yi+Y N = O. 
j=l j i=k+l 

N-I ~2Yi ~2yN 
Denote bj~ =i=k+ll si(t) ~yj~y~--(x)+ j~(x), j,~ = 1,2,-..,k. 

We must prove that ]~kl~j~ll = k. Suppose that it is not true. 

Then there exist not all equal to zero constants Cl,...,c k such 

that k N-I O -2y 

I Cj( I si(t) ~2y~ X) + N ) 
j=l i=k+l ~yj;yz( ~yj;y (x) = O . 

k ~y.  

For i = k+l,-..,N denote ci = j=~l~ cj ~-~j(x)l 

Now we obtain from [5] that 
N-I 

X- [7] c i ds = o. 1 i=l 
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Because dim~ V = N-I and t is a non-singular point on V ~, 

it follows from {~] that Sl,...,SN_ 1 are local parameters of V ~ 

at t. But this contradicts [?]. Q.E.D. 

Corollary i. If dim~V ~ = N-I, then f2 is of degree one. 

Proof. We use the same notations as in the proof of the 

Duality Theorem. We can assume that S(V ~) ~ f2(~-~.) and 

V~-S(V ~) is non-singular. Let t E V~-S(Ve), Zl,Z 2 E fjl(t), 

x i = fl(zi), i = 1,2. We have that Xl,X 2 E Vsm and H ~xI,H~2 are 

tangent to V ~ at t. Since dim~V ~ = N-I then H ~ = H ~ and 
x I x 2 

x I = x 2, z I = z 2. Q.E.D. 

Corollary 2. If dim V > O, dimly ~ = N-1 and V has only 

isolated singular points then there exists a proper subvariety 

S'(V ~) ~ S(V ~) such that for any t E Ve-S'(V ~) the corresponding 

hyperplane section E t of V has only one singular point which is 

an ordinary quadratic singularity. 

Proof. Extend S(V ~) as in the proof of Corollary 1. Let 

al,...,a N be all the singular points of V and 
N 

S' (V~)  = S(V')U(~J(H~IhV~*).  V i = l  ~ i = 1 , 2 , ' ' ' , N  H" ~ V" because 
• = a i 

dim~V ~ = N-1 and Hai m V ~ would mean that V ~ = H ~ and 
- -  a i 

dim~V = O (V is dual to V~). Thus S'(V ~) is a proper subvariety 
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of V ~. Let t E V~-S'(V~), x be a singular point of E t. Because 

x E V we have that (x,t) E ~ (and H D ~x) As in Corollary 1 
sm t " 

we see that x is unique on E t. From Duality Theorem (~) we get 

that x is an ordinary quadratic singularity on E t. Q.E.D. 

corollary 3. Let dim~V = 2. Then dimlY < N-1 iff there 

exists on V a 1-dimensional algebraic system of projective lines 

[~ , ~ c M] such that for any fixed generic ~ c M and for all 

x E ~ N V the corresponding T does ~ot depend on x and V is 
sm x 

either a cone in ~pN or an algebraic surface, with singular locus 

of dimension one. 

Proof. "If" part is evident. Consider the "only if" part. 

It is evident that for x E Vsm f2fll(x) is an N-3-dimensional 

N ~ 
projective subspace of ~P . Denote f2fll(x) = ~PN-3(x). We 

have a rational map g: V >G where G is the Grassmanian 

of all N-3-dimensional projective subspaces of ~P N~ . 

Suppose dim~g(V) = 2. That means that we have a 2-dimensional 

algebraic system {~PN-3(x), x~V } on V ~. If N = 3 we would have 
sm 

dim V ~ = 2 = N-I. Thus N > 3. Because dim~V e < N-I and 

• PN-3(x) is dense in V ~ we have that for generic t E V ~ 
xEV 

sm 

there exists an algebraic curve D t in V such that V x E Dt, 
sm 

• PN-3(X) 9 t. Let ~P~ be a generic 4-dimensional projective 



g0 

~p N~ 
subspace of containing t, V' = V e D ~pt, 

k x = ~p~ A ~pN-3(x), x E Dt. Let L be a maximal projective 

subspace of ~P N~ contained in all ~PN-}(x), x ~ D t. It is clear 

that dim~L ~ N-~. We can suppose that ~P~ DL = t. It follows 

from this that {~x } is a 1-dimensional algebraic system of 

projective lines on V' passing through t. We can assume that t 

is non-singular on V ~ and (because of Bertini's Theorem) V' is 

irreducible and t is non-singular on V' We get that V' is a 

non-singular cone and thus V' is a 2-plane in ~P N~. We see that 

N ~ 
V ~ is an N-2-dimensional projective subspace of ~P . Because V 

is dual to V ~, V is a projective line in ~pN. Contradiction. 

Thus dim~g(V) < 2. If dim g(V) = 0 then V e = ~PN-~(x) 

and V is a 2-plane in ~pN. We see that only the case which we 

have to consider now is dim~g(V) = i. There exist non-empty 

Zariski open subsets U of Vsm and U 1 c g(V) such that g is defined 

in all points of U, U 1 = g(U) and {g-l(z)NU, z ~ Ul~ is a 

1-dimensional algebraic system of algebraic curves on U. Let 

C z = g-l(z), z ~ U I. We have that ~PN-~(x) is the same for all 

x ~ Czo That means that T x is the same for all x E Cz~ and 

m C z x ~ Czo T x 

Because dimly w < N-I and V is dual to V ~ (Duality Theorem 

(9)) there exists a 1-dimensional algebraic system of projective 

lines {~U' ~ E M} on V. Take generic x E U and let ~ (x),Cz(x) 
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be some elements of C~,~M] and LCz,Z6U I] passing through x. 

Suppose that ~(x) ~ Cz(x)" Let -: V >V be a generic 

projection of V in ~p3 such that u is an isomorphism in some 

neighborhood of x. Let ~ = W(x), ~(x) = ~(~(x) )' C--z(x) = ~(Cz~9" 

T--X be the tangent plane of ~ at x. We have ~(x) U C--z(x) c ~--x N ~. 

Because T is the same ~ x' E C we have that T-- is the same 
X i Z X 

V ~' in some neighborhood of ~ on C--z(x). That means that the 

hyperplane section divisor of ~ corresponding to T_ contains 
x 

Cz(x) with the multiplicity greater than one. Hence the order 

of tangency of T_ and ~ at x is greater than one. Because 
x 

is generic on ~ we have that ~ is a ~-plane in ~P3. Thus V is 

a 2-plane in ~pN and dim~g(V) = O. Contradiction. 

We see that ~ (x)C Cz(x) that is for all x' E ~ (x)NV 
• ' sm 

the corresponding Tx, is the same. 

Now suppose that V has only isolated singular points and V 

is not a cone. Take generic line ~ in ~P Nw. Because dim~V ~ <N-I 

we have ~ A V ~ = ~. We can assume that N-2-dimensional projective 

subspace ~pN-2(~) of ~pN dual to ~ does not contain singular 

points of V. Let B = ~PN-2(L~)NV and x ° £ B. Because V is not 

a cone we can assume that an element ~ (Xo) of [~ , ~ ~ M] passing 

through x o does not contain singular points of V, that is, 

~ (Xo) ~ Vsm. Take x I E ~ (Xo), x I ~ Xo. There exists a 
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hyperplane H such that H ~ ~pN-2(~w) and H D Xl" Then H D ~ . 

Let E be the hyperplane section of V corresponding to H. Because 

E D ~ , E is connected and evidently E 4 ~ (otherwise, 

deg V = deg E = i) we get that E has a singular point x 2 E ~ o 

Since x 2 E Vsm we have that H m Tx2. Thus the point t(H) E ~p Ne 

corresponding to H is contained in V ~ and V ~ n ~ 4 ~. 

Contradiction. Q.E.D. 

Corollary 4. Let dim~V = 2, dim~V e = N-I. Suppose that V is 

not contained in some 3-dimensional projective subspace of ~pN. 

Then for generic x,y E V, dim~(~ x n ~y) < i. 

Proof. Let ~: V >V be a generic projection of V in 

~p4. From Corollary 3 and dim V ~ = N-I we see that dim~ ~ = 3. 

This shows that we can assume that N = 4. 

Suppose that for generic x,y ~ V dim~(TxNTy ) = i. That 

means that there exists a }-dimensional projective subspace of 

• P~ containing Tx and Ty. Let ~pl(x) = f2(f~l(x)), x E Vsm. 

We see that for generic x,y C V, ~pl(x)N~pl(y) ~ ~. Take 

generic t E V ~. There exists a generic x E V with ~pl(x) ~t. 

For all generic y E V we have that ~pl(y)N~P~x ) ~ ~. If the 

union of ~pl(y)~pl(x) for fixed x and generic y would be a 

finite number of points on ~pI(x) we would have that there exists 

a point b E V ~ such that b ~ ~pl(y) for all generic y E V. Let 
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~ be the hyperplane of ~p4 corresponding to b. We have T c H b 
Y 

for all generic y E V. Thus V c ~. Contradiction. 

We get that there exists a non-empty Zariski open subset 

U c ~pl(x) such that Va E U, a ~ ~pl(x)c~pl(y) for some y E V . 
sm 

Considering the map f2: ~ >V ~ and using dim~V ~ = ~ and 

Corollary 1 we see that all a E U are singular points of V ~. But 

taking t non-singular, we would have that ~pl(x)(9 t) intersects 

with the singular part of V ~ in 0nly a finite number of points. 

Contradiction. Q.E.D. 

Corollary 5. Let ~(V) be the algebraic closure in ~pN of 

the union of Tx for all x E Vsm. Suppose dim V = 2 and V is not 

in some 3-dimensional projective subspace of ~pN. 

Then dim ~(V) < 4 if and only if dim V ~ < N-I° 

Proof. The "if" part immediately follows from Corollary }. 

4 
Consider the "only if" part. Using generic projection in ~P 

and Corollary 3 we see that without loss of generality we can 

assume N = 4. Suppose dim~(V) = 3. [~x,XEVsm} is an algebraic 

system of 2-planes in ~!V). Let G be the Grassmanian of all 2-planes 

of ~p4 ~: ~ > G be the canonical ~P2-bundle over G and 

g: ~ ~ ~p4 be the canonical map of ~ in ~p4. We have a regular 

map f: Vsm ~ G. Let ~: ~ >Vsm be the ~P2-bundle over Vsm 

induced by ~: ~ ~ G under fj f: ~ b ~ be the induced map~ 

T' = f(Vsm ) and T be the algebraic closure of T' in G. It is clear 
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that ~(V) is the algebraic closure of g~(~) in ~p4 and 

~(V) = g("-l(T)). We have an irreducible algebraic system 

{~P2(t),t~T] on ~(V) such that for generic t E T, ~P2(t) is the 

tangent plane of V in some generic x E V. 

Consider two different possible cases. 

Case i. dim~T = I. Let C t = f-l(t) for t ~ T' We have 

a 1-dimensional algebraic system of positive divisors on V. Let 

~t = Supp Ct, ~t = ~t A Vsm. For generic x E V there exists a 

C~t(x) ~ x. Because f(~t) is a point in G we have that for all 

y E ~t(x) the corresponding tangent plane is the same. But that 

means that dlm~V < N-I. 

Case 2. dim T = 2. In this case we have that for a generic 

z E ~(V) there exist infinitely many different ~P2(t) passing 

through z. We can assume that for generic t I E T the 

corresponding ~P2(tl) contains a non-singular point z of ~(V) 

with such property. Let ~P2(tl) = T x for some generic x E Vsm 

and ~P2(t2) be another element of [~P2(t),t E T] passing through z. 

Then for all t' E T "close" to t 2 the corresponding ~P2(t') 

intersects ~p2(tl) in some non-singular point z' on ~(V) 

"close" to z. We get that for generic t 6 T, ~P2(t) intersects 

~P2(tl) in some point z(t) which is non-singular on ~(V). Let 

y E V be such that ~P2(t) = • . We obtain that for generic 
sm y 

x,y E V, • N T contains a non-singular point of ~(V). Because 
x y 
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dim~(V) = } we have dim~(~xnTy) h i. From Corollary 4 

we get dimlY ~ < N-I. Q.E.D. 

Corollary 6. Let dim~V = 2, dlm~V = N-l, suppose that 

V has only isolated singular points, V is not contained in a 

3-dimensional projective subspace of ~pN and for generic x E V 

dim~[~x~V] = i. Then for generic x E V, Tx N V is the union 

of some projective line of ~pN passing through x and of finite 

number of points. 

Proof. It is easy to see that there exists an irreducible 

algebraic system of algebraic curves on V [Ct, tET} and a 

rational map f: V • 7T such that f(V) is dense in T and 

for generic x E V, ~x(V) is the union of Cf(x) and of finite 

number of points. 

Consider two different possible cases. 

Case 1. dim~T ~ i. Take generic t E T and let 

Dt = f-l(t ) n Vsm. Because dim V w = N-I we have that 

Yl ~ ~Y2 for generic yl,y 2 E Dt, Yl ~ Y2" Because 

C t ~ ~ • we see that C t is a projective line. Take 
Y~Dt Y 

generic x E V. There exists an element Ct(x) of {Ct,tET} 

passing through x. (If not, we would have a line ~ c V such 
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that all ~x D ~, x E Vsm. Then V ~ is in some N-2-dimensional 

p r o j e c t i v e  s u b s p a c e  o f  ~ P  N~.  T h i s  c o n t r a d i c t s  d i m  V ~ = N - l ) .  

Because Ct(x) is a projective line we have Tx D Ct(x) and 

Ct(x ) c Tx N V = Cf(x) + (finite number of points). Hence 

Ct(x) = Cf(x) and Cf(x) 9 x. 

Case 2. dim~T = 2. 

Suppose /~ C t ~ ~ and let a E /~C~. Then for generic 
tET tET ~ 

x E V we have T ) a. Hence V ~ c H ~ where H ~ is the x -- a a 

hyperplane of ~P N~ corresponding to a. Because dimlY ~ = N-I 

we have V~ = H~'a But V is dual to V ~ and we get dim~V = O. 

Contradiction. 

Thus t/~ETCt = ~. Because V has only isolated singularities 

we see that for generic t ~ T, C t c Vsm. corollary 2 gives us 

that for z ~ V ~ - S'(V ~) the corresponding hyperplane section E 
z 

has only one singular point x(z) which is an ordinary quadratic 

singularity. It is clear that Cf(x(z)) c Ez. If Cf(x(z) ) = Ez 

we have that E z is in a 2-plane of ~pN. Hence V is in a 

3-dimensional projective subspace of ~pN. Contradiction. 

Thus Cf(x(z) ) ~ E z and because E z is connected we see that 

Cf(x(z) ) is non-singular, Cf(x(z) )gx(z) and (Ez-Cf~(z)))Cf~= I. 

In particular, we get that for generic t E T, C t is non-singular 

and irreducible. It easily follows from this and from dim~T = 2 
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that C 2 2 t > O. Suppose C t > 1. Then we have two possibilities: 

l) For generic x,y E V, x ~ y, Cf(x) N Cf(y) contains two 

different points. In that case we have dim~(~xA~y) ~ 1 and 

Corollary 4 gives us a contradiction with dimlY ~ = N-1. 

2) For generic x,y E V, x ~ y, Cf(x)N Cf(y) is one point a(x,y) 

and Cf(x) is ~angent to Cf(y) at a(x,y). But that means that 

there is a projective line ~ c Ta(x,y) which is the common 

tangent projective line in ~pN of Cf(x) and Cf(y) at a(x,y). 

We get T ~ L, ~ D L and dim~(TxN~y ) > i. Again Corollary x y • -- 

2 i. gives us a contradiction with dim~V e = N-I. Thus C t = 

Take generic x ~ Vsm and consider the linear system [Eu~ 

of all hyperplane sections of V having singularity at x. Each 

Cf(x u Eu~(x) u E u ) and let D = . Evidently each D 9 x. Take 

y E Cf(x) N Vsm, y ~ x. Because [D u] is infinite (as 

{Eu](N > 3)) there exists a Du(y ) 9 Y" But Du.ef(x) = 1 and 

x,y ~ Cf(x) N Du(y), x ~ y, give us that Cf(x) _c Du(y)(ef(x) is 

irreducible). We can write Eu(y ) = 2Cf(x)+D' where D' is some 

non-negative divisor on V. Because Supp Eu(y ) is connected we 

have: if D' ~ O then Cf(x) A D' ~ ~. Hence Eu(y).ef(x) > 2. 

But Eu(y).Cf(x) = Du.Cf(x) + Cf(x).ef(x) = 2. Cont=adiction. 
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We get D' = O and Eu(y ) = 2Cf(x). We showed that for any 

t 6 T there exists a hyperplane section E(t) of V such that 

E(t) = 2C t. 

Because dim~T = 2 we have infinite number of different 

C t passing through x. Take one of them, say Ctl , Ctl ~ Cf(x)- 

Consider the corresponding E(tl) = 2Ctl. Then E(tl) is singular 

at x. Thus E(tl) m ~X n V. We get Ct I D Cf(x). Contradiction. 

Q.E.D. 



~}. Proof of Theorem } (§}; Part I I. 

This theorem was formulated on page 60. 

Proof of Theorem }. Using generic projection V ~p5 we 

can assume that N ~ 5. 

(I) Let Ka , i = 1,2,.-.,q, be the algebraic closure in ~pN 
1 

of the union of all projective lines ~(ai,b ) in ~pN connecting a i 

and a point b 6 V-ai. Denote by M the parameter space of all 

projections V >~P} (M is irreducible). It is clear that 

dim~Kai ~ ~ and we can find a proper algebraic subvariety S O in M 

such that for any ~ E M-S o we have that ~ is regular on V, 

is locally biregular at each ai, i = 1,2,''-,q, and 

Vi = 1,2,-..,q, n-l(~(ai) ) = a i. This finishes (I). 

Let ~o be a small open (classical) neighborhood of S O in M. 

Because M-~ is compact, we can find open neighborhoods ~. of 
o l 

a. in V such that ~ E M-~ 
l o 

"-l(~(~i) ) = ~ and ~I~, : ~- 
q l rU i l 

~'=v_ U~'. 
i=l i 

(2) We can assume N = 5- 

and V i = 1,2,'--,q we have that 

,(U~i ) is a biregular map. Let 

(In the case N = 4 almost the same 

arguments work.) A projection ~ ~ M is defined by its center which 

is a pro]ective line ~ in ~pS. 

Denote by ~(V) the algebraic closure of the union of all 

tangent planes ~ of V where x is a non-singular point of V. 
x 

q 
Let T(Vsm ) be the tangent bundle of Vsm(Vsm = V-~Ja~ ) and 

i=l ~ 
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~: T(Vsm) > ~(V) be the canonical rational map. Define two 

integers a,b as follows: 

If dim~(V) < 4, then a = O, b = O, and if dim ~(V) = 4, then 

a = deg g(V) (in ~pS), b = deg ~. 

Let Mo = {~ E M-~ o, ~ N V = ~, ~w intersects g(V) in a different 

points and if a / O, then for any z ~ ~ N ~(V) there exist b 

different points x (z)l E Vsm , i = 1,2,'--,b, such that V 

z E Txi(z)} . Clearly M ° is open and dense in M~. Take 

o E Mo. Let {Zl'''''Za} = ~o N ~(V) and for any zj, j = l,...,a, 

let xij , i = l,...,b, be all the points of Vsm with Txij9 zj. 

Choose a hyperplane H ° in ~p5 with xij ~ Ho, i=l,...,b , j=l,...,a,ar~let 

Mo = [~ ~ Mo, A n ~ Ho}. We shall prove the following 

Statement I. Let x o be an arbitrary element of 

{xij , i = 1,2,-.-,b, j = l,...,a}. There exists an open 

neighborhood Uxo of x ° in Vsm , a neighborhood Mxo of T o in M o 

i 

and an open dense M c Mxo such that for any ~' E M' we have: 
X O X O 

for any y ~ Uxo either (d~')y is a monomorphism or ~' is a map 

of pinch-type at y (and last possibility holds only for a finite 

number of points of Uxo). 

of Statement I. Let ~D - = ~p5 Ho. We can assume that Proof 
O 

affine coordinates Z l , . . . , z  5 o f  ~5o a r e  chosen  such  t h a t  'no i s  

given by (Zl,...,zs) > (Zl,Z2,Zs) , zi(Xo) : O, i = 1,2,''',5, 
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the hyperplane z 3 = o does not contain TXo n ~5o and projection 

(Zl,...,zs) > (z3,z4) is locally biregular on V N ~5o at x o- 

Let ~i = zi VN~oS" i = 1,''',5. We see that ~3,~ 4 are local 

parameters at x o. There exists a Zariski open neighborhood U of 

x O in V n ~ such that for any y E U, ~3-~3(y), ~4-~(y ) are local 

| | | 
parameters at y. Consider ~6 with coordinates (el,62,e3, el,62,e3) 

! ! | !I 
and let z i = zi+eiz~+eiz5, i = 1,2,3, ~i = zi VN~ 5 " For the 

o 
Jacobians 

| I | I 

13 = D(~3,~ ~) and 23 = D(~3,~ 4) 

we have: 
I 

+ c3 D(~3,~4 ) - c2 ~ - ~ " 

Consider U × ~2 and an algebraic variety W in U × ~2 defined 

by the equations: 

t 

13(~,~) = o, 
| 

f 23(~,c) = o 
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We can find open neighborhoods U of x 
x o o 

origin in g6 such that in x~ U x  o 

' D ' i D( ~3" % ) (~l~' ~ 2~ ) b(~3,,~4 ) ~ o,  ¢ o,  
D(~ 1 , e 2 )  

in U and g of the 

that is, W N [UxoXE ] is non-singular and of complex dimension six. 

Let W O be the irreducible component of W passing through the point 

(Xo,O), that is, 

Wo n (~o~) : w n ((~je)) , 

e: Wo ____> ~6 be the map induce~ by projection, ~(Wo) be the 

algebraic closure of e(Wo) in ~6. We have that either 

dim~a(Wo) < 6 or there exists a proper algebraic subvariety S 

of ~6 such that ~ -I(~6_S): a-l(~6-S) > ~6-S is an unramified 

map. In the case d i m ~  < 6 denote by S = ~ .  Let 

(¢6_ s , , ~, = • n ). we get that for any (el,~2,E3,Cl,C2,e) E ~' 

J 2' ' = O and = O define two complex the equations 13 23 

i 0 . 

subvarieties of UXo , say CI~,C23 whzch in a neighborhood of any 

common point of them are non-singular complex curves intersecting 

transversally. 

e' ~' ~'~ ~ Z' and let f: U >~3 be the Fix any (el,E2,e3, 1,_2,_3, Xo 

map defined by projection (Zl,Z2,...,z5) >(z~,z~,z~). Take any 

y ~ Uxo. If y ~ Ci3 N C23' then ~df)y" is a monomorphism. Suppose 

q I I i I 

Z E C~3 A c23. Let u = ~3-~3(y), v = ~4-~4(y), Z i = ~i-~i(y) , 

i = 1,2. We can write Z i = Oi(u,v), i = 1,2, where ~i(u,v) are 
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D(zi,u) 
some power series of u,v, ~i(O,O) = O. Using the fact D--~(y ) = O, 

i = 1,2, and a linear transformation of type Z > Z -a u we can 
l l l 

assume that ~i(u,v) have no terms of degree one. Write 

Z i = ~.u 2 + 2Biuv + Y.v 2 + t.h.d. ("t.h.d." means "terms of higher 
l l 

degree".) We get from the transversality of Cl2,Cl} in y that 

det 82 Y2 ~ O, and in particular one of YI,Y2 is not zero. We 

can assume ?l ~ O. Now writing ,l(U,V) = A(u,v)v 2 + B(u)v + C(u) 

and using A(O,O) = ?i ~ 0 we see that we can find new local 

-- --2 
parameters u,v such that Z 1 = v + d(u), d(u) has no terms of 

= -- 2 degree one, d(O) = O, and Z 2 ~u + 2~u$ + ~2 + t.h.d., ~ ~ O. 

Let ~i = Zl-d(u)" We have now v = ~i and Z 2 = A(u,Z1)+B(U,~l)~ , 

where A(U,~l) has no terms of degree one (and ~(0,0) = O) and 

~(U,~l) = bu + t,h.d, b ~ O. Let ~2 = Z2-~(u'~I)' ~} = B(U'~l)' 

- ~( u = U,~l). We see that u,v are local parameters at y and in 

some neighborhood of y the map f is given by the formulas: 

--2 
~i = v ; 

~2 = uv; 

that is, f is of pinch-type at y. Statement I is proved. 
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Let 
X, ,J . X. 

i=l,"'~ 1,3 l=l,'",b l,j 
j=l,"'~ j=l,..-,a 

Now it is easy to see 

that for any point n of M sufficiently close to ~o we have the 

following: for any y E Vsm either (d~)y is a monomorphism at y 

or n is a map of pinch-type at y. Choose such a n in M I and 

denote it by ~I" Because ~ is compact we can choose an open 

neighborhood M I of ~ in M ° such that for any ~ E M I we have: 

for any y E Vsm either (d~)y is a monomorphism at y or ~ is a 

map of pinch-type at y. 

Let dim~(V) = 4 (that is, dim V e = N-I (Corollary 5 of the 

Duality Theorem)). For any x E V let K be the union of all sm T,x 

projective lines of ~p5 which connect x with other points of 

N V and K (V) be the algebraic closure in ~p5 of U KT, x. 
x • xEV 

sm 

From Corollary 6 of the Duality Theorem we get that for generic 

x E V, T N V is either a finite number of points or the union 
x 

of a projective line in • passing through x and of finite number 
X 

of points. In both cases we have for generic x E V, dim~K T < 1 
,X 

and thus dim~K (V) ~ 3. We can find ~' E M I such that 

~. n KT(V ) = ¢. Let ~, D ~(X) = [Zl," a ~, Z'o = ¢' and 

i ,.. ¢ ! 
Xl,j, ,~,j be all the points of Vsm with Try 9 zj (xi, O = ¢). 

1 , j  
! 

Suppose that for zj, O < j < k < a we already have the following 

-1 ,j)) , 
property: V i = 1,2,-..,b, ~' (~I(x' i = xi, j 
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For any x E V let K be the algebraic closure in ~p5 of all 
X 

projective lines connecting x with other points of V. Clearly 
b 

dim~K x _< 3 and for x E Vsm , ~x --c Kx. Let ~+i = ~ K , . 

| 
We have Zk+ 1 E ~n, n ~+i" Because dim~+l < } we can find a 

I n" in M I arbitrarily close to n, such that ~n,, N ~+i = Zk+l" 

It is clear that Z'k+l E ~,, N ;(V). Suppose for some i = 1,2,---,b 

~"-i"" (x ,k+l ) there exists a point y ~ ~ with y ~ Xi,k+ I. Let 

"xi, k+l ) P(~,, ' be the 2-plane in ~p5 containing ~,, and Xi,k+ 1 and 

~(X~,k+l,y ) be the projective line containing Xi,k+ 1 and y. 

, 

Clearly (Xi,k+l,y) c P(~.,,Xi,k+l) and there exists a point 

z = ~,, N ~ ' (Xi,k+l,y). Because ~(Xi,k+l,y ) ~ Kx, and 
i ,k+l 

' ~ , 

L~,, ~ K x, = Zk+ 1 we have z = Z'k+l. Hence Z'k+l E (Xi,k+l,y) 
l ,k+l 
' 

and (Xi,k+l,y) c_ • , Thus ~(X~,k+l,y ) c K T , c KT(V ) 
xi ,k+l "xi ,k+l 

! 
and Zk+ 1 E KT(V ). But this contradicts An, , ~ K (V) = ~. We see 

( C ;,k+l ) sbl that ~"-i.~" x = Xi,k+l, i = 1,9,''' Taking ~" 

sufficiently close to A ° we can uniquely define the points 

z'~ g %~,, N ~(V) O < j < E, x" g V i = 1,2,...,b, 
] ' -- -- l,j sm' 

Z ..l , . | X " ,, 9 such that z. are close to z and . . are close x .  j j j J . , j  1 , j  
I I  

to x~ .. Because ~' is of pinch-type at all x. we see that for l,j 1,j 

~" sufficiently close to ~' we will have ~"-l(~"(x~',j)) = x" l,j' 

o<_j <_K, 1<iib. 
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and 

Ux i 

and an open dense M' 
Xl,X 2 

we have: 

This argument shows that we can choose such ~II in M I that for 

any y E Vsm with the property: ~ is of pinch-type at y, we have 
II 

~-lii(~ii(Y)) = y. There exists an open neighborhood MII of ~II in 

M I such that for any ~ ~ MII we have: If y E V is such that 
sm 

is of pinch-type at y then ~-l(~(y)) = Y. Let E be a non-singular 

hyperplane section of V. For generic projection p: E >~P2 we 

know that p(E) has only ordinary double points. It follows from 

this that we can find a WIII in MII such that there are only a 

finite number of points in ~rrr(V) which are not ordinary singularities. 

We can assume also that for any x ~ n]]i(V), ~(x) is a finite set. 

There exists a neighborhood MrFr of ~Trr in MII such that all ~ ~ MTr r 

have the same property as ~I]I" 

Let H 1 be a hyperplane in ~p5 which does not contain all such 

points x of Vsm that ~]ii(x) is not an ordinary singularity of 

, -- = [~ E Srrr, ~ c HI}. ~Ixi(Vsm ) MI~ 

It is easy to verify that we will finish the proof of part (2) 

of our Theorem if we prove the following Statements and Corollaries. 

Statement If. Let Xl,X 2 E Vsm , x I ~ x2, ~iIi(Xl) = -iii(x2) 

~rrr(TXl ) = ~iii(~x2 ) . Then there exist open neighborhoods 

of xi, i = 1,2 in Vsm , a neighborhood M of nl] I in MI~ 
' Xl,X 2 

c M such that for any ~' E M' 
Xl,X 2 Xl,X 2 
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Ux 2 if Yl E UX; Y2 ~ are such that n'(yl) = ~'(y2), yl~Y2, 

then ~'(~Yl ) ~ "' (Ty2)" 

Corollary of Statement II. There exists a ~IV E M]]I such that 

with "IV(Yl) = ~[Ev(Y2) Yl ~ Y2' we have: for any pair yl,y 2 E Vsm 

niV(TYl) ~ niV(TY2). Moreover, we can find an open neighborhood 

MIV of ~IV in MIII such that for any T; E MIV we have: if 

yl,y 2 E Vsm are such that ~(Yl ) = ~(Y2 )' Yl ~ Y2 then 

~( "ry l) F ~( "Y2 )" 

Statement III. Let Xl,X2,X } be three different points of 
3 

Vsm with ~Iv(Xl) = ~Iv(x2) = ~Iv(x3) and dim~[i=~l~iV(TXi)] = =  1. 

Then there exist open neighborhoods Ux. of xi, i = 1,2,3, in Vsm , 
l 

a neighborhood Mxl,x2,x} of ~IV in MIV and open dense 

M' c M such that for any IT. E M' we have: 
Xl,X2,X ~ Xl,X2,X ~ Xl,X2,X ~ 

if Yi E Uxi, i = 1,2,3, are such that Y~ ~ Y2' Y2 ~ Y3' Yl ~ Y~ 

and ~'(yl) = ~'(y2) = ~'(y~) then dim~ li~__l~'(Tyl)= = O. 

corollary of Statement II!. There exists a w V E MIV such that 

if yl,Y2,y } ~ Vsm , ~v(Yl) = ~(y2) = ~v(y~5 ) and Yl ~ Y2" Y2 ~ Y~' 
3 

Yl ~ Y~ then dim(]: i/~__l~V(Ty2) = O. Moreover we can find an open 

neighborhood % of ~V in MIV such that for any - , % we have: 
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if yl,Y2,y 3 E V are such that ~(yl) = ~(Y2 = ~(Y3 )' 
sm 3 

Yl ~ Y2' Y2 ~ Y3; Yl ~ Y3 then dim~ /~(i=l ~Yi ) = O. 

V 
sm 

in Vsm , a neighborhood M 
Xl,''',x 4 

Statement IV. Let Xl,X2,X},X ~ be four different points of 

with nv(xl) = ~v(X2) = ~v(X3) = ~(x4). 

Then there exist open neighborhoods Uxi of xi, i = 1,2,3,4, 

of ~V in % and open dense 

MXl,...,X 4 MXl,''',X 4 

such that for any ~' E M' 
Xl,'-',x 4 

we have ~-~ IT' (Ux,) = ~. 
i=l 

Corollary of Statement IV. There exists a ~VI E % such that 

-i for any x ~ ~vI(V) we have: ~vi(X) has less than four elements. 

Note that all Corollaries immediately follow from the 

Statements (arguments are the same as used for the construction 

of ~I (page 104 )). 

Proof of Statement II. 

We can choose affine coordinates in ~51 = ~pS-H 1 such that 

on VC~51 is given by (Zl,...,z5) > (Zl,Z2,Z3) ITT 

Zi(~T(Xl)) = Zi(~TII(X2) ) = O, i = 1,2,3, Zl V' z2 V are local 

parameters of V at x I and x2, z3 = O on Tx nl 5~5 and on Tx2 N ~5 I. 

we can find open neighborhoods U i of x i in ~i' i = 1,2, such that 

V N Ui is given in U i by equations: 

Z 3 = Ai(Zl,Z2) , z 4 = Bi(Zl,Z2),Z 5 = Ci(Zl,Z2) , i = 1,2, 
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Ai,Bi,Ci are power series of Zl,Z2, Ai(O ) = O, A.I has no where 

terms of degree one, i = 1,2,3, and one of two numbers 

BI(O)-B2(O), Cl(O)-C2(O ) is not zero (we use x I ~ x2). Consider 

! 

~6 with coordinates (EI,£2,E3,£~,£2,e3) and let 

z[ = z=+e~zh+e~z~, j = 1,2,3. Consider ~2 with coordinates 
] J J " J D 

q.z  
Taking smaller U 1 and U 2 we can choose an open neighborhood 

U of (o) in ~2x~6 such that there exist holomorphic functions ~. l 
t 

' = ~ ' '- ...,e3) on in U with the following property: z 3 Ai(Zl,Z2,el, 

V N Ui ' i = 1,2. Let W be a complex-analytic subvariety in U 

given by the equation: 

= , , . . .  _ % ( z l , z  = o .  F [l(Zl,Z2,¢l, ' 3 

~F (o) ) ~ -z (o)  = Cl(O). -c2(o) .  It is easy to verify that ~6~ = BI(O)-B2(O ' 3 

It follows from this that taking U smaller we can assume that W is 

Z-dimensional and non-singular. Let ~: W > ~6 be the map 

5 5 6 ¢6 
induced by pro~ection. Considering ~IX~IX~ > it is not 

difficult to construct an algebraic variety ~ and a regular map 

~: W >~6 such that W c Q, W is open in W and ~ = ~ W" We 

see that there exists a neighborhood ~ of (o) in ~6 and a proper 

analytic subvariety S in ~ such that either ~'(u) = 

Vu ~ 6-S or V u ~ ~-S and ~v E ~i(u) (d~) v is an epimorphism. 

This remark finishes the proof of Statement II. 
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Proof of Statement III. 

We can choose affine coordinates in ~ such that ~IV on 

V N ~ is given by (Zl,-..,zs) > (ZlJZ2,Z3) , 

zi(~iv(xl) ) : zi(~iv(X2) ) = zi(~iv(X3) ) : O, i = 1,2,3, 

z4(x3) = Zs(X3) = O, z. = O on 7x. N ~, i = 1,2, Zl+Z 2 = O 
l 1 

on Tx3 N ~, z2 V' z 3 V (corresp. z I V' z 3 V ) are local 

parameters of V at x I (corresp. at x 2 and x3). We can find 

open neighborhoods U i of x i in ~, i = 1,2,3, such that V N Ui 

is given in U i by equations: 

for i = i: z I = Al(Z2,Z3) , z 4 = Bl(Z2,Z3) , z 5 : Cl(Z2,Z3) , 

for i = 2: z 2 = A2(Zl,=3) ; z 4 : B2(Zl,Z3) , z 5 = C2(Zl,Z3) , 

for i = 3:zl+z2=A3(Zl,Z3) ; z4 = B3(Zl,Z3), z 5 = c3(zZ,z3), 

where Ai,Bi,C i are power series of the corresponding variables, 

Ai(O ) = O, A.I has no terms of degree one, i = 1,2,3, 

B3(O ) = C3(O ) = O and one of four numbers BI(O).B2(O), 

BI(O)-C2(O) , B2(O)-CI(O), CI(O).C2(O) is not equal to zero 

(we use that all Xl,X2~X 3 are different). 

! | I 
Consider ~6 with coordinates (el,e2,e3,el,e2,e3) and let 

I =  
zj Zj+ejz4+cjZ5, j = 1,2,3. 

Taking smaller Ui, i = 1,2,3, we can choose a positive 

number r such that there exist holomorphic functions 
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Al(z2,z3, ~i, ~2, e3, el, c~, e3) • A2(Zl,Z3, ¢1, e2, " " ", ¢3), 

~3(Z~Z~,El~...jE~) defined for Iz~l < r, IEil < r~ 

i = 1,2,3, which have the following property: 

z. = ~ ' ' -. e~) on V n Ul, 1 Al(Z2'Z3' ~i' "" 

Zl+Z2 = ~3(zl'z3'el'''''E3) on V N U3. 

IC~I < r, 
l 

Let~= [~i,z~ ' ~ ... ' 'z3' i' 'c3) ~ ~3x~6' Iz~l<=, l%l<r, loll<r] 
and W be a complex-analytic subvariety in U given by the equations: 

F 1 z~ ~ ' ' • • •, : - Al(.2,z3,~ I, ~) : o 

i ~ ! i | 

F 3 = z~ + z 2 - A3(Zl,Z3,el,...,e3) 

It is easy to verify that the matrix 

~F 1 ~F 1 ~F 1 ~F 1 ~F 1 

~F 3 ~F 

= O. 

has at the point (O) the following form 

lli BiO O ClO O 41 O B2(O ) O C2(O ) 

O 0 O O 
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It follows from this that taking r smaller we can assume that W 

is 6-dimensional and non-singular. Now we have only to repeat 

almost word by word the last part of the proof of Statement II. 

Proof of Statement IV. 

We can choose affine coordinates in ~ such that ~V on 

V n ~ is given by (Zl,...,z5) > (Zl,Z2,Z3) , 

zj(nv(Xi) ) = O, j = 1,2,3, i = 1,2,5,4, z4(x~) = z5(x@) = O, 

z.] = O on Tx.] A ~, j = 1,2,3, Zl+Z2+Z 3 = O on Tx~ A ~, 

zj, v,Zj.. V (corresp. z I v,Z2 V) are local parameters of V at xj, 

j = 1,2,3, (j',j") = (1,2,3)-(j), (corresp. x~). We can find open 

neighborhoods Uj of xj in ~, j = 1,2,3,4, such that V N U.3 is 

given in U by equations: 

for j = 1,2,3: zj = Aj(zj,,zj.), z~ = Bj(zj,,zj..), z 5 = Cj(zj,, ~..), 

for j = 4: Zl+Z2+Z 3 = A~(Zl,Z2) , z 4 = B~(Zl,Z2) , z 5 = C~(Zl,Z2) , 

where for j = 1,2,3,4 Aj,Bj,Cj are power series of the corresponding 

variables, Aj(O) = O, Aj has no terms of degree one, B4(O ) = C4(O) =O 

and the rank of the matrix 

I Bl(O) o o Cl(O) o o 

B2(o) o o c2(o) o 

o B3(o) o o c3(o) 

is equal three (we use that all Xl,X2,X3,X 4 are different). 

I Consider ~6 with coordinates (el,...,e3) and let 
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z~3 = zj + Ejz~ + £jzw,~ ~' j = 1,2,3. Taking U i, i = 1,2,3 smaller, 

we can choose a positive number r such that there exist holomorphic 

! ! 

functions __%(zJ .,z'_ ... = ' (1,2,3)-(j), j..,El, ,e3) , j 1,2,3, (j ,j") = 

and ~4(z~,z~,El,.-.,E~) defined for Iz~l < =, IEil < r, IE:l~ < r, 

i = 1,2,3, which have the following property: 

and 

f o r  j = 1 , 2 , 3  zI'] = %(z'.3,,zji,,el,...,e~) on V n U.3 

~ 4 ( Z l ,  , ,~{) for j 4 ' ' ' = ' z2,El, = Zl+Z2+Z 3 ... on V Cl U 4. 

e e o ! 
Let U = [(Zl,Z2,Z3,EI,...,E~) E ~3X~6, iz~l < r, TEil < r, l£iI<r} 

and W be a complex-analytic subvariety of U defined by the equations: 

= - z j  , ~ j  . . .  E~)  = o j = 1 , 2 , 3 ,  Fj  Z~ ~ . (  ' ,  ' . ,  e l ,  , ] 
~ 4  ' F 4 = z'+z'+z' - (Zl, ...,e 3 1 2 3 ' z2,el, ) = O. 

It is easy to verify that the matrix 

~F 1 ~F 1 ~F 1 ~F 1 

~F~ ~F~ ~F~ 

has at the point (O) the following form: 

Ii Bl(°) o 
o B2(o) 
O O B 3 

O O 

o ci(o) o 
o o c2(o) 

O 

O 

(o) o o c3(o) 
O O O O 
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and thus it has rank 4. 

It follows from this that taking r smaller we can assume 

that W is 5-dimensional. Let ~: W ~6 be the map induced by 

projection. It is not difficult to construct an algebraic variety 

and a regular map ~: W ~ > 6 such that W c W, W is open in 

and ~ = ~ W" We see that there exists a neighborhood g of (O) in 

~6 and a proper analytic subvariety S in g such that Vu E ~-s, 

-i (u) = ~. This remark finishes the proof of the Statement IV. 

We proved part (2) of the Theorem I. 

(3) (D. Mumford). It is easy to see that from the condition of 

the Theorem it follows that V is not a cone. From 

Severi's Theorem (page Z2) we get that K(V) has (complex) 

Let G be the Grassmanian of projective lines in ~p5 dimension 5. 

and 

2 I~ 1 

G 

be the canonical diagram corresponding to G (~I: ~ ~ G is the 

canonical line bundle). Constructing chords we get a regular map 

! 

f: VXV-~ ~G (4 is the diagonal). Let ~i: ~' >VXV-~ be the 

line bundle induced by ~i under f and 
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~, F 

be the induced diagram. Evidently K(V) is the algebraic closure 

in ~p5 of -2F(~'). Because dim~K(V) = 5, we have K(V) = ~pS. 

Now considering ~2F: ~, > ~p5 and using Bertini's Theorem 

we get that for generic line ~ c ~p5 (n2F)-l(~) is an irreducible 

| 

algebraic curve in Z' Let Pl: VXV-~ >V be the map induced 

by projection on the first factor. It is easy to verify that 

where ~: V ~ ~P~ is the projection with center Z. Let ~ be 

the algebraic closure of p~(~2F)-l(~) in V. We can assume that 

is such that ~ satisfies to the parts (i) and (2) of the 

Theorem. Then we get from (*) that ~ = ~I(s~,(V))o Thus 

"~I(s n (V) and S~ (V) are irreducible algebraic curves. We proved 

part (9) of Theorem i. 

(~) (D. Mumford) From Corollary 5 and ~ of the Duality Theorem we 

get that dim~(V) = 4. Let ~: V ~ ~ ~P~ be a projection which 

already satisfies the parts (i) and (2) of the Theorem and Z~ C ~pN 

be the center of ~. Because codim~Z n = 4 we have that Z~N ~(V) ~ ~. 

But that means that ~(V) has pinch points. Q.E.D. 



PART II 

ELLIPTIC SURFACES 

§i. Deformations of elliptic surfaces with "non-stable" singular 
fibers. 

Definition. Let f: V ~ A be a proper holomorphic map 

of a (non-singular) complex surface V to a non-singular compact 

complex curve A such that for generic x ~ A, f-l(x) is a 

(non-singular) elliptic curve and there are no exceptional curves 

in the fibers of f. Following Kodaira we call f: V ~ 6 an 

analytic fiber space of elliptic curves or an elliptic fibration. 

Theorem 8. Let f: V ~ A be an elliptic fibration which 

has singular multiple fibers ("singular multiple fiber" means 

"multiple fiber which (being reduced) is a singular curve"). Then 

there exists a commutative diagram of proper surjective holomorphic 

maps of complex manifolds 

h / W  ~m 

where ~ : {T @ ~IITI ! I}, such that Flh_l(o): h-l(o) 

coincides with f: V > A, for any T E ~-(O), 

> p-l(o) 

-l( F h_l(7): h-i T/t \ > p T) is an elliptic fibration without 

singular multiple fibers and h }]as no critical values. Moreover, 
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the number r(7) of multiple fibers of F h_l(7) and the set of 

corresponding multiplicities [ml(~),m2(~),.-.,mr(~)(~)~ do not 

depend on • < • ~ O) 

Proof. The Theorem follows from the following 

Lemma 4. Let f': V' ~ ~ be a proper surjective map of 

complex manifolds with a single critical value (O) E ~ such that 

for any ~ E~ -(o), f.-l(~) is a non-singular elliptic curve and 

f'-l(o) is a fiber of type mXb , m h 2, b h 1 (see [13]). Then 

l) There exists e,e' E ~, e' > O, O < e < i, and a commutative 

diagram of surjective holomorphic maps of complex manifolds 

W' 

, < p,  ~ c x ~ ,  

= I = [~E¢ I~1<c] (9  c c D  = ~ 1  ) w h e r e  "~6'  [ ~ e ~ I~1 < ~ ' ] ,  ~ 

P': ~eX'~)E' > ~C' is the projection, F I is a proper map 

such that F'lh,_l(o): h'-l(o) b p'-l(o) coincides with 

f' f,-l(~): f'-l(~ e) ~ De , for any T E De , ' ~O3 

F'lh,-l(~): h'-l(~) >p'-l(T) has as generic fiber a non-singular 

elliptic curve, F'-I(o,T) is the unique multiple fiber of 

F,ih,_l(T) : h,-l(T) > p.-l(T) whic h is of type mIo (that is, 

non-singular) and h' has no critical values; 
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2) there exist Cl,~ 2 ~ i~ O < E 2 < e I < c and a commutative 

diagram of holomorphic maps 

(2) 

i v 

D ~ ~  ' 

p ~ ~ *D~ 

where K : [q~l£2<IQl<£1}, i V and i K are biholomorphic embeddings, 

and p~ are evident projections, V~ = f'-l(K), 

I 

F~ : (f' v~)X(ident~ty)' iK KXO: KXO ~ D £ ×O 

coincides with the natural embedding K >~£ and 

, , - l ( D j o  ) , V~XO: VK×O > F (: V ) coincides with the natural 

embedding V~ ~ V'. 

Suppose for a moment that Lemma 4 is already proved. Then 

the proof of Theorem 8 proceeds as follows: 

Let al,-..,a r be all the points of A such that V j = 1,2,.-.,r, 

f-l(ai) is a singular multiple fiber, ~ e, j be a small open 

neighborhood of aj in & such that ~E,j is isomorphic to De 

and Vt ~ ~e,j-aj, f-l(t) are regular fibers of f: V ~ A, 

Vj' = f-l(D j ), f'j = f ~. : V!] ~ ~E,j" Using Lemma ~ and taking 
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! e sufficiently small, we construct for all fj: Vj > D E,j the 

diagrams analogous to the diagrams (1) and (2). We shall use the 

same notations as in Lemma 4 for the new objects which we obtain 

adding only index j (that is, we have W'j,F'j,hj.' .. and so on). 

Without loss of generality we can assume that ~¢,,j does not 

depend on j and we shall use De , instead of ~£,,j. Let ~'3 be 

a local parameter in ~ which gives the above-mentioned ¢,j 

identification of De,j and D e (that is,De, I~j  
2 

~ j  = [ : j  e ~, I : j l  £ e 2 , ] ]  ' u = ~ - jU__IDj, Wl u = u x D e "  

W u = f-l(u)xD£,, F U = (f f-l(u))X(identity): w U ----->WIu 

and hu: WU " ~ e'' PU: WIU 

We have evident embeddings 

~e' are evident projections. 

! 

K xD e > uxD e (:WlU) v K xP~. >f-1(u)x~e,(:w) 
J ! ! • . ] 

(Kj = [~j ~ ~I ~24< l~J I < el,J ' el,J < e, 62, j > O]) and 

; I , I h~j ~v~ ×D P~. = Pu KjxDe 
] 

Taking e', el, j smaller 

~nd E2, ~ J greater we can suppose that iK. could be extended to 
3 

an embedding i--Kj : KjxDe' 

(where K'3 = {~J E ~IE2 --< I@j 

3 

~" D c , j x D  c , 

E 1 ] and that 

Now (Dc,jxDe,) - i~.(KjXDe,) 
] 
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has two connected components. Denote by U' one of them which 
J 

does not contain (0)×26,. Let WI, j be the interior part of 

(Dc,jxDc) - u'. w (j) ,-i , Wl,j , j, = Fj (Wl, j), pj = pj , 

= F'Iw(j): w (j) - >w I h = h' W( Fj j , J, J J j ) . We can consider 

iK. (corresp. iv, j ) as biholomorphic embeddings of KjX~E, 

J V' , (corresp. K X~E ) into WI, j (corresp. w(J)). Using the 
J 

above-mentioned KjxD6 , > Wiu (corresp. V'K.×DE, >Wu) 
J 

we form new complex manifold W 1 (corresp. W) which is the union 

r 

wlu ~ ( t* ) r r j=l Wlj 

K XD , = ~ i K (KjXD ,) 
j=l j c j=l J 

(corresp. W U 
( ~ w(J))). 

r r j=l 
xD = xD ) 

j=l J j=i ~v,j j 

NOW we identify WIU , WII,-.',WIr (corresp. Wu,W(1),...,w(r) ) 

with the corresponding open subsets of W 1 (corresp. W). We define 

F: W >~i' p: W1 > D£,, h: W > ~E' as follows: 
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F(x) = ~ Fu(X) if x E W U 

Fj(E) if x E W (j) 

I pu((y) if y 
p(y) = Wiu 

pj(y) if y E Wl, j , 

h(x) = 
hu(X), x E WU, 

hi(x), x E W (j) 

Using commutativity of (1) and (2) of Lemma ~ we can 

verify that F, p, and h are well defined holomorphic maps and 

that the diagram: 

W 

D E , < P W 1 

is commutative. 

It is easy to see that this diagram satisfies all demands 

of Theorem 8. Q.E.D. 

Proof of Lemma 4. Let ~ (w) be the modular function (the 
V 

"absolute invariant"). Kodaira remarks in ([13], §7) that there 

exist N O > O and a convergent power series ~(z) such that 
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-2~iw ~ e2,iw) (w) = e + ( for Im ~ > N O . 

Let E > O and Me = ~(~'') ~ ~2 i~ I < E, l~I < ¢]. For £ 

s u f f i c i e n t l y  small we can define the following holomorphic 

function in M £ 
~ n • 

I+( qnl-~nl )~( ~nl-~ nl ) 

where the positive integer n I will be defined later. 

Let X be a complex variety in M ×~p2 defined by the equation 
6 

ZoZ22 ~z31 - 3ZlZ2o - B ( ~ ' T ) z 3 =  o 

where (Zo:Zl:Z2) are homogeneous coordinates in ~p2 

~: X >M E be defined by restriction of projection 
n I n_ 

M X~P 2 ~M . Let z = ~ -T £. Evidently we can write 
£ E 

B(~,T) = B(z) = l-ZBl(Z), where Bl(Z ) is a convergent power 

~[ n~ m~ ~ " ~n I nl i 
series and Bl(O ) ~ O. Let ~i = @VBl(= x-T *)' "i = T~l( - 

where we fix a branch of VBI(Z)j and 

M ~ = [(@l' E ~2 i~ll < Z, ITlI < ~], ~ is a sufficiently • i~ ~i ) 

small positive number. 

Taking c smaller we can write the equation of X as follows: 

2 31 2 o nl _nl~ 3 
ZoZ 2 = 4z - 3ZlZ + (-1 + ~i - ~i )Zo 
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For any t E M E 
no singularities on the line z = O. 

O 

n 1 
only if (Ql(t)) nl - (~l(t)) = O 

(a(t))nl-(T(t)) nl = O). 

-l(t) is a cubic curve in ~p2 which has 

~-l(t) is singular if and 

( or equivalently 

I Zl z 2 
Let M E' = {(~,T) E ME ~ntTDi~ O}, x = --,z O Y - Zo 

Taking E smaller we can assume that there exists ~ > O such 

n I n 1 
that the equatiQn (on x) 4x3-Sx -i~i -~i = (9 has exactly two 

roots Xl(@,T),x2(=,T) with Ixi(Q,T) + < r when (~,~) E M E . 

LetD(-i I~ ~,r) = Ix ~ • I x I < r} and y(~,T) be a segment of 

the straight (real) line in D(- 1 ~,r) connecting Xl(~,T ) and x2(Q,~), 

< I = nl nl 81(Q,T ) = (x,y) E ~2 x E y(@,T), y2 4xJ-3x -l~l -~l >' 

! 
(~,~) ~ M e • ~l(~,T) is a homologically non-trivial 1-dimensional 

cycle in ~-l(@,T). Fixing an orientation of 51(@o,To) for some 

(~o,To) E M' we can check that for any close ]~th M in M' with c E 
origin (#o,To), 51(@,T ) has continuous changing along ~ and 

returns to 81(#o,T ~ with the same orientation. Now we can speak 

about a continuous family of oriented 1-dimensional cycles 

Let ~(~,~) be a holomorphic differential on ~-l(~,T), 

(~,T) E M~, which in the part of ~p2 with z ° ~ O is given by 
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for some (G' 

I ~(~, 
61 ¢',~') 

~(=,~) ~ - --~ , WI(¢,T ) = ~(~,~). Wl(¢,T ) is a single-valued 

~IV¢'T) 
holomorphic function in M'E without zeroes. (If WI(¢',~' ) = O 

,~') ~ M' we would have (~ ~ ~(¢',T') = O, 
e 51 ',7') 

,T') = O and 51(~',7' ) is homologically zero). 

Let ~be a small open neighborhood of (@o, To) in M' £J 

~52(~,, ) ~ ~-l(~,T>, (~,T)E ~] be a continuous family of 

oriented 1-cycles such that for any (G,v) ~, 61(@,T),82(@,T ) 

generate HI(~-I(~,T)j~) and Im[ ~ ~(@,T)/~l(Q ,T] > O. We 

denote w(~,r) = I ~) ~/~l(~'~) and get by standard arguments 
62( , 

that it is a multi-valued holomorphic function in M' such that £ 

f o r  a n y  c l o s e  p a t h  y ,  i n  M' e" Y ~ ( ~ o ' ~ o )  a n a l y t i c  c o n t i n u a t i o n  

o f  m ( ¢ , ~ )  a l o n g  7 g i v e s  ~ ( ¢ o , ~ o ) + N  f rom W(ao ,To)  , w h e r e  N ~ ~ .  

If t = (¢,~) E M e then ~-l(t) is given in ~p2 by the 

following equation: ZoZ~ = ~z~-3ZlZ~-B(¢'v)z3 o or in non- 

homogeneous coordinates, 

Zl z2 2 
x= -- , y= --: y = 

z z o o 
4x 3 - 3x - B ( ~ , ~ ) .  

We get that absolute invariant of ~-l(t) 
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g•2 27 

(t)(= > ~) = 27_27~2(~ ~) g2-27g~ 
1 

I-B2(~, ~) 

1 nl ~ + ~ (~nl-~nl) • 

_ l~nl-~nl )~ ( ~nl-~ll 

@nl _ Tnl 

n 1 
Fix ~ E ~w, ~ ~ I, and denote 

We see that ~(t) J~ has in (O,O) a pole of order n I. From 

results of Kodaira it then follows that if Z is the minimal 

desingularization of Z then Z has over (O,O) a singular fiber 

of type and I n  1 

(~(~,,,1 = 12~i nll°g T + f(,) , 0 < I'I < T, 

where e is sufficiently small and f(~) is a holomorphic function 

in O ! J~J < ~. Taking ~ smaller we can assume that 

Im W(~T,T) > N O (for O < l~J < ~) and thus 

J(~T,T) -2~iw(~T,~) (e2~iw(~T = e + ~  'T)) (for O < i~l < ~). 

2~iw(~,~) nl Denote q(@,T) = e , p(~,T) = @ - • nl. We have 

q(~,~) = Tn~e2~if(T)(O < ITI < ~), that is, q(e~,~) is a 

holomorphic function in O _< J~J < ~. Let D~=£ [~E~ O<J~J<~] 
and ~ : D~ >~2 be a holomorphic map defined by 
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> (q(~7,9),p(~7,7). Since 

= ] = + ~ (q(C~T,T))= (C~',~) = ~ + 

we have that ~e(I~E ) is contained in the subset C~ of ~2 given by 

where we suppose that E and ~l are sufficiently small• But for 

~I sufficiently small C is a non-singular analytic curve and 

because it evidently contains the set 

C(P,q) ~ ~2 I ~ = p= q, IpJ < e l, lql < ~i} 

we have C = A. We see that p(~,~) = q(~T,T) for 0 < ITl < ~. 

Hence 

= (~nl-Tnl) l%l and q(~,T) = ~nl-,nl in q(Q,T) I~ u D e • 

Let 
= Gnl-~ nl -(O,0), 

z {(~,,) ~ o e = o], z~ = z e 

be a cyclic group of analytic automorphisms of M' = M-S generated 

nl • n l  w 
by the transformation (~,7,w) > (~,T,( - ) ). Using 

Kodaira's remark in ([13], p. 597) we construct from M andre 

new complex manifold which we call Kodaira factor-space and 

denote by M/~ (holomorphic map ~: M > M/~ is given by: 

~(z') = ~(z"), z',z" E M, if and only if either z',z" E M' and 
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z' = g'(z") for some g' 6~ or z' = z"). (It is easy to 

verify that the condition for existence of M/~ indicated by 

Kodaira in [13] is satisfied in our case). 

Let P 0 (@'T) ~ ~ -l((~'T)) be given by 

Zo(P o (=,~)) = o, Zl(P ° (~,T)) = o, z2(P o (~,~)) = i, 

= [(~,T,Zo,Zl,Z2) E XI($,T ) E M" and ) is X(o) c (Zo'Zl'Z2 a 
f 

~-I(@' T ~t ~-l(t) ~X(o) ' (q T)~M" non-singular point of ) }, = t = , e" 

Evidently we can consider ~(~,T) as a holomorphic differential on 

~t for any t E M;. Take (~',T') , T e. We can define a 1-cycle 

81 c (~',~') in ~(~',9') such that 61(Q',T' ) could be connected 

with the previously defined 81(~o,9o) by continuous family of 

1-cycles in ~-l(t), t E F, where y is a path in M~ connecting 

(~o,~o) and (~',T') and Int(Y) c M e - ~. A direct verification 

then shows that 

t ~(~',~') / o .  
61 ~',T') 

We see that wI(~,T ) is actually defined in M e and for each 

(@,~) E Me, Wl(~,T ) # O. (This proves also that wI(@,T ) is a 

(single-valued) holomorphic function in M e and Wl(~,T) ~ O, 

(~,~) E 11c). 

Let ~I(~,T) = Wl(1,~)~(@,T),((@,T) ~ Me). Using 

2~Ti~(~,,)_ 
e -- ~ nl ~ nl we define a holomorphic map 

¥o: X(o) >M/~ by Yo(a)= [@(a),,(a); exp(2wi ~ ~l(@(a)~ ~(a)), 

p o (@'(a),'r(a)) 
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where is taken along a path in C(~(a),~(a) ) 

~o(~(a),~(a)) 

(~(a) = ~(~(a)) T(a) = T(~(a)) It is clear that Y is 
J • O 

onto and a 1-1 map. Hence ? is an isomorphism of complex 
O 

manifolds. We shall identify X(o ) and M/~ Kodaira's 

construction of logarithmic transform (see [!4], p. ??O) shows 

that a certain residue class k mod m is defined for a multiple 

fiber of type mIb , b ~ i, k is relatively prime to m. (Actually 

a topological definition for such a k could be given. For us it 

will be important only that Kodaira's construction shows the 

analytical uniqueness of a neighborhood of a multiple fiber 

mIb , b ~ I, when k is fixed). 

Take the corresponding k = k(f') for the family f': V' >D 6 

given in our Lemma and let k' E ~ be such that kk' ~ 1 (mod m). 

Let d = g.c.d. (k',b), k' = kid , b = bld , n = mb, n I = mb I. 

(That is the definition of nl). 

Denote Pl = exp(2Wi kl). For j = l,...,nl-1 , let 
n 1 

xj(@,T), yj(~,T) be two holomorphic functions in S~ defined as 

follows: 

x (~,~) : ~l([~";w~ (~'~)]) 
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where 
L=I 

w0(°") I~j~i I n [ 
(~-p ") if for some ~' E (1,2,- ,j), 

L' 
~-Pl ~ = O 

We use the following remarks: 

X(o ) n (Zo=O) = (=,)~ M" P°(='~)" ~°(P°(a"')) 
c 

1 and for ~ < 

n 1 

= [:,~;l] 

(that is, for (~,~ E ~', wj(~,T) ~ I, Zo([Q,T;w j 

and for (~,T) ~ ~E--~" an equality 

nl ~ ~nl Tnl) N 
7-[(~-pl ~) = ( - , N~=, 
~=j +i 

gives first N > 0 and then 

(=,~)]) ~ o, 

1 = (~nl-Tnl)N 

~=j +i 1 

Contradiction). 

ion n i O: i < i. 
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Since ~6-M6 = (O,O) we see that xj(~,T),yj(~,T) are 

holomorphic functions defined in 

For (~',T') ~ ZE' ~-I(~.,T.) is the same rational plane 

curve, say C, given in ~p2 by the equation 

2 3 2 z 3 
ZoZ2 = 4Zl-3ZlZo - o 

Hence we can assume that BI(~',T' ) chosen above for 

(~',~') E Z is the same 1-cycle on all ~-I(~',T'), (~',T') E Z" 
E £ 

(that is, images of 51(~',T' ) by Me X ~p2 > ~p2 coincide with 

some 1-cycle DIC on the non-singular part ~ of C). Now define by 

z I z 2 dXc 

Xc = -~o C ' Yc = -~o C " ~C = YC ' ~iC = ~C" 

DIC 

1 
= ~C ' Po = (Zo=O'Zl=O'z2 =I) E C, 

IC wlC 

P 

Wc(P) = e2~i ~ ~{C 

Po 

P 

where p ~ ~ and ~ is taken along some path in 5, 

Po 

Yc T 2 = T(2+6) 
T = ~ (that is, x C = ~--+i, YC ~ ). A direct 

Xc+ 

calculation shows that (changing if necessary the orientation 

of 81C ) we have 
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Wc+l -3Wc 1 -3i~6wc(wc+l) 
( £ )  T = iF~Wc_l , ~c - 4 (Wc-1 )2  - ~' Yc = ~(Wc_ l )~  

Take Z' E (l,2,.-.,nl) and let 

A~ = [(=,~) ~ M~ - Pl ~= o], ^~, = ^~,-(o,0), 

x j  L' = x j ( ~ , T )  A~ " YJ '~ '  = YJ(~ 'T )  A~ ' wj~,  = w j (Q ,T ) I  
• , , A~, 

Since wj~. >O or oo when (~,~) --->(O,O)((Q,T) ~ A~,) we see 

from (i) that 

lim x 1 lim yj = O 
~ ~)--,X::p)J, ~' = = ~ '  ~ , ~ ) . - > ( o , ~  "~' 
~ , ~ ) ~ A ~ .  ~ , ~ ) ~ % .  

1 This shows that xj(O,O) = - 3' yj(O,O) = O. 

Now let m(x) be a (single-valued)holomorphic function defined 

1 in some neighborhood of x = - ~ by ,(x) = 2~x-~-l and ,(-~) = iy~. 

Let y' = y + ~(x)(x+ , x = y-~(x)(x+ (y,x' are some local 

parameters at the point (x = 1 O) of ~2). From - 3' y = 

x (O,O)j = - ~' yj(O,O)_ = O we see that (taking E smaller if 

necessary) the following holomorphic functions in ~£ are well 

defined: 
, 1 yj(~,~) = yj(~,~) + , ( x j (~ ,~ ) ) (~ j (~ , , )  + ~), 

1 Xj(Q,T) = yj(Q,~) - ~(Xj(~,T))(Xj(~,T) + ~). 
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Because 

y~(~,,) : ~ ( o , , )  - 3xj(o,,> - B(~,,) 
we have 

n I n 1 
y](~,7)Xj(~,T) = (~ -7 )e(.,T) 

where 
e(G,T) = B ( ~ l T ) - i  

Qnl_Tnl 

that is, e(Q,~) 

Define on 

is holomorphic in 

A , , ,  T j , ~ , ( ~ , T )  = 

~E and e(O,O) ¢ O. 

From 
X j , ~ , ( ~ , T ) ~  " 

(i) we 

see that on A£. 

T j , ~ , ( = ' , ~ )  = i] /g 
wj,~,(~,~)+l 

w ~,(~,~)-i 
J, 

For £' E (l,2,''',j), we have 

n 1 
wj,z,(o,,) = ~ ~-~). 

~=j+l 

Thus 

lim w 7) O and lim T (~,~)=-i~. 
A ~ , ~ ( a , , ) - > ( o , o )  j , ~ , ( o ,  = ^~ ,~(~ ,~) - ->~ ,o)  J ' ~ '  

2 
Since T23,~.(~,~) = [~(xj,£.(~,7)] 2 (we use T 2 YC 

(Xc~)2 = 4(Xc-l)) 

1 = i~ we have ~(xj,~. j and ,(- ~) (g,7)) = -T ,~,(Q,~) and 

1 
= y_ + O. We obtain 
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J 
y](q,~) = T~(~-p.T))e.'(@,T) where e'(~,T) 

in M E 
Now let #' E (j+l,--.,nl). We have 

J % -i w j , ~ . ( c , , ~ )  = l - - [ ( = - ~ l $ )  . Thus 

is holomorphic 

lim w. (q,T) = co and lim T (~,$) = ~. 
^~,~(',W)-->(O,O) J'Z' A~,~(a,W)-->(Op) j,L' 

We have ~,~,(~,$) = Tj,~,(Q,T) and 

x.(~,,) I : yj, , ,  - Tj (xj,~ +~I j ~ !  s 
J A%, 

We obtain 
n 1 

J %=j +I 

where e'~(~,~) is holomorphic in M Now j e' 

, nl 
(~nl-,nl)e(Q,,) = yj(",')X;(q,$)= ~T(@-91"))e;(~,')e~(@,'). 

%=i 

,i Hence e(Q,~) --- e ' . ( g , T ) e ~ ( ~ , ~ )  and e'.(O,O) ~ O, ej(O,O) ~ O. 
J J 

X has on ly  one s i n g u l a r  p o i n t  
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2 
We can find an open neighborhood U of ~ in MeX~P such that 

(~,T,x',y') are local coordinates in U 

, 1 , 1 Zl z2 
(x = y-,(x)(x~), y = y~(x)(x~), x = i--' y = ~)" ~ = X n U 

o n o 
is given in U by the equation x'y' = (~nl-T l)e(~,T). 

Now we take nl-i copies of ~pl, say ~P~, i = 1,2,...,nl-l, 

with homogeneous coordinates (~Oi: ~li~ i = 1,...,nl-1 , and 
nl-i 1 

consider in U × ~--~Pi a subvariety YU defined by the 
i=l 

following system of equations: 

Y'~o1 : ~ll(~-Pl T)e(~'~) 

= . . ,~ i+l~ 
~l~Oi+l ~Oi%li+l ~ -Pl ), i = 1,.. ,nl-2 , 

X'~lnl_ 1 = ~Onl_l(~-7 ). 

It is easy to see that Pru(Yu) = ~. Let s: YU ---->~ be 

the map induced by projection, XU, T = [a ' ~, 7(~(a)) = ,], 

= s-l(~jT). Standard verification shows that YU is Yu,, 
non-singular, s s-l(x_~): s-I(Xu--~) >Xu~ ~ is an isomorphism, 

U 
T.s is a holomorphic function on YuWithout critical values, and 

SlYu,o: YU,O >~,0 is a minimal resolution of singularities 

of XU, 0 (that is, there are no exceptional curves of first kind 

of YU,O in s-l(o)). 
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Now identifying s-l(x - ~) with X - ~ we get from X-@ and YU 
U U 

a new complex manifold Y with a holomorphic map ~: Y > X such 

that (i) s ;~(X-@): ~-I(x-') >X-@ is an isomorphism, 

(ii) T.s is a holomorphic function on Y without critical values 

and (iii) if X T = [a E X, 7(~(a)) = ~], YT = ~-I(xT)' then 

~Iyo: Yo -->Xo is a minimal resolution of singularities of X o. 

' YT 
Let ' = ~ °;' ~T' =~' , : YT' > DE,W, where 

De,~, = [(@,T) E Me T = T']. For any a 6 De,T,-De,7, n z e , 

~'-l(a) is a non-singular elliptic curve (and a regular fiber 

of T.), ~ T',7'), ,' ~ O, % = O,1,''.,nl-i , are 

t 

singular fibers of ~T' which have type I 1 and ~-i((o,o)) 

~' Inl - is a singular fiber of : Y > D e which is of type 0 0 ,0 

Denote by C (O) the closure of ~-i(~-i(o,o)-@) in Y. For 
o 

j = l,...,m-l, let C (j) be an algebraic curve in YU defined by 
o 

the following system of equations: 

~li = O, i = l,..-,j-l, ~o~ = O, i' = j+l,---,nl-l, 

x' = y' = Q = T = O. 

It is clear that C(°)'c'l)o (0 '''''Co hI-l) ( are all the 

irreducible components of ~'-i(o,o). We assume C (nl)- - C (O) and 
o o 

(i) = c(i)N c(i+l) F(i) _(i) (i) _(i-l) i = O,1,.-.,nl-i , 
let qo o o ' = Co -qo -qo ' 
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= U 
i=O 

Take a point a E ~(J)'o j E (l,2,...,nl-l). We have 

~lj(a) ~ O• ~oj(a) ~ O. Let U a be an open neighborhood of a in 

YU (c y) such that Va' E Ua, ~lj(a') ~ O, ~oj(a') ~ O. We 

have a holomorphic function in Ua, uj = (%) YU" Our 
~0] 

differential ~(~ T) = d/~ which is defined on each ~t t ~ (O,O) 

can be rewritten in U a by the following way: 

~' +x' -x' First we have y = 2 ' y' = 2~(x)(x~). Since.. 

~(_i) ~ O there exists a holomorphic function ~(z) defined in 

some neighborhood of z = O such that ~(O) ~ O and 

1 1 x + ~ = ~(y'-x')~(y'-x'). Thus we obtain 

dx 

Y 
[*(Y'-x')+(~'-x')*'(Y'-x')](dy,_~,). 

y'+x' 

Because differentiation here is along the fibers of ~', that is, 

when Q and T are fixed, and on YU 

n n 
y'x' = (a I_~ l)e(~,~ ) 

we have x'dy' + y'dx' = O. Hence 

dy' = r~t_ \ I_ ,~ f_ ,i L,ky, X,)+ky, X,)w,ky, X,)j y, 

, ~ '= 1 But in Ua, y = uj J (q-p~)e(~,~) and we get dyy, dUu 

3 
and ~ = [~(y'-x')+(y'.x')~'(y'-x')] du~ 

U. 
3 
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This formula shows that we can extend ~(o,7) also to ~ C. 
du. J 

where it is equal to ~(O) ) u. 
J 

Let 5~)'-lu be a 1-cycle on ~tJ)o' " defined by lujl = 1. A direct 

verification then shows that we can include D~ )" in a continuous 

family of 1-cycles {5[J)(~,~), (~,~)E ~], 8[J)(O,~)E ~(~,,), 

such that for (~,~) ~ O, ~[J)(~,~) is homologically equivalent 

in C(a,7 ) to the above constructed 51(a,T ). Because 

du. o  oo) !io o0) , 01  0u 
) lujl=l J 

we see that we can extend ~1~(~,7)(G,7) ~ O) constructed above 

also to the non-singular part of ~'-i(o,o) such that we get a 

holomorphic family {~i(~,~), (G,7) E ~ e} , where ~l(q,~) is a 

holomorphic differential on ~(~,T) (~(O,O) = ~O )" 

Let ~(J), j = l,''',nl-i , be an analytic surface in X 

given by the system: 

z I - ZoXj(~,~) = 0 

z 2 - ZoYj(q,7 ) = O. 

Denote by P(J) the closure in Y of ~-I(~(j)_s). P(J) is given 

in YU by the following system of equations: 
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y'  J ~ , 
= ']--[" (0'- Pl'r ) ej (0', T ) , 

.f,=l 

X' = (O'-Pl'r)ej (0', 'r) , 
~=j +i 

~ll = ~('-P~) e"-l~ol ' ~oj+l Z=2 3 

j +i ~ ,, 
7-]- (~-Pl~)ej ~lj 
~ = j  + 1  

+i 

~lj-1 T/'[( = ~-plT)e~-l~oj_l, ~Onl_l : 
~j 

~lj = e':-l~oj ] 

n l  , ~ ,, 

-F--~ ~-Pl~)ej~inl_l ~=j+l 

It is clear that P(J) is a cross-section of u~': Y > ME 

and that p(J) n ~ '-l(o,o) E ~(J) 
0 

Let ~(o) = ~a E X Zo(a ) = 0], p(O) = ~_i(~(o)) and 

p(i)(@,T) = p(i) n ~'-I(@,T), (~,T) E ME, 

y(i) = ~_iCX(o~ ) U ~(i)o , i = O,l,...,nl-l. 

It is clear that {Y(°),...,Y (nl-l)] form an open covering of 

Y(o) = ~-l(x(o)) u ~ = ~J ~(~,,) 

Let M 1 = ~e×~*, S 1 = ~£X ~*, ~ be a cyclic group of 

! analytic automorphisms of M 1 = MI-S 1 generated by the transformation 
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n I n 1 
(~,T,w) > (G,~,(~ -~ )w). It is easy to verify that the 

Kodaira condition for existence of Kodaira factor-space M1/ ~ 

is satisfied here (we gave references and little more explanation 

on page 126). 

2ni~(~,T) = ~nlTnl we define for i O,. Jnl-1 Using e , = -- 

holomorphic maps i(i): y(i) 
M1/~bY 

a 

¥(i)(a) = [(~(a),T(a); exp(2~i q ~l(g(al,T(a)))] 
(i~ ~), T(a) 

where ~ is taken along a path in ~(a),~(a)) N y(i) 
P(iI~(a ), • (a) 

It is clear that each ¥(i) is onto and 1-1 map. Hence 

~(i) is an isomorphism of complex manifolds. 
a 

Denote w(J)(a)= expC ~ ~l(~(a),T(a))), a E Y(J) 
pTJ)(~(a ),T(a) 

a 

is taken along a path in ~(,(a),T(a)) ~ Y(~)' 
P(J)(~(a) ,T(a)) 

j = O,...,nl-1. 

b 
Let P2 = Pl" 

hlj: Y(J) 

We define analytic isomorphisms: 

> y(j+b)(c y) 

where the index j is considered as an element of the cyclic group 

(nl) y(O) y(nl+l) y(1) etc 
~i = ~Z/(nl) of order nl, that is, Y = , = , ., 
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by 
O' (h l j ( a ) )  = p20'(a) 

~ 2 )  " r ( h l j ( a ) )  = "r(a) 

w(J+b)(hlj(a)) = w(J)(a)pJ~, 

where 
= exp ,Tik' "b 0"- I ) 

Let a E y(]) n Y(]') j ~ j' (that is, (~(a),T(a) ~ (O,O)) 

We shall prove that hlj(a ) = hlj,(a). Let aj = hlj(a), 

aj, = hlj,(a ). We have 

a] aj , 
w(]+b) (aJ)j '+b)= expI2wi( f~x~ ~ ~I(P~ ~(a)'~(a)) - , ~ al( P2°(a)'~(a))~ 1 
w ( (a j .  ) ~' P~'J ~'(p2o (a), 'r (a)) p(j +b)( p20.(a), ,r (a)) 

a] p(j  ' +b) ( p2.(Q.(,a),r (a)) 

= exp(2~i ~ ~l(P2~(a),T(a)) .exp(2~i J ~ ~l(~Q(a), T(a)) 
a j, p(O)(p2~(a) ' T(a)) 

p(j+b) ( p2(G(a ),T(a)) 

(o)~ ~l(02~(al''r(a) ) 
P (P2O(a),T(a)) 

a . 

~3 w~'+b(P2 ~(a)''(a)) 
= exp(2~i ~I(P2 (Q(a)'~(a)) w +h(p2~(a),T(a)) ' 

aj, j 

where we assume w = w = i. o n I 
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From (2) we get 

w(J+b)(aj) 

w(J'+b)(a~) 
_j-j' wCJ)(a) = p2j-j ' w ,(O(a),T(a)) 

= ~2 #J'~a) w (Q(a),,(a)) J 

nl ))~ 
Without loss of generality we can assume that (~(a)) -(7(a ~0 

(that is, we have to prove only that the maps hlj and hlj , coincide 

on an open dense subset of Y(J) N y(J'~. We have 

wj +b( p2q(a), ~(a) ) = 
j+b 
T~( ~2Q(a)-Pl7(a) )-l(mod((~(a))nl-(7(a) )nl)) 
L=I 

(where congruence is considered in the group ~), 

J 
wj(~(a),~(a)) = ~T(~(a)-Pl~(a ))-l(mOd((Q(a)) 

%=1 

nl_(~(a))nl). 

Because 

j+b 

4=1 %=1 

J+b T~(~_o~ ) J 
= P2 " q--[(~-DlT) 

"~I -b ~= 1 

we obtain that 

Wj+b(P2~(a),~(a)) 
wj(~(a),~(a)) _-- p2 j-b 

and (by the same reasons) 

o n n 

]~T (~(a)-P~'(a))(rood((~(a)) l-('(a)) I)) 
~=l-b 
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Wj+b(P2~(a),~(a) 
wj,(~(a),~(a)) 

0 n ))nl) 
,=-- p~j '-b ,.~(o(a)_~l~,r(a))(mod((o'(a)) I_( 'r(a 

~=l-b 

Hence 

w j. +b(p2~'(a) , 'r(a) 
wj +b(P2~(a) , 'r(a) 

9~_j. w~.(~(a),~(a)) n 1 w (~(a),T(a))(mod((~(a)) -(~(a)) nl) 
] 

a n d  
a 
J 

exp(2??i ~ ~l(P2(~(a),~(a)) ) _= l(mad((~(a))nl-(~(a))nl). 
a j '  

We see that aj = a'j, that is, hlj(a) = hlj .(a). 

| 

Now we can define an analytic isomorphism hl: Y(o) bY(o) 

by hi(a ) = hlj(a ) where a ' Y(J). 

For ~,~) ~ (0,O) let q'(Q,~) be the singular point of C(~,T )- 

. . . . .  - , L2 ~,(a,~)) We extend h I to hl: Y(o) >Y~) where ~o)-¥(o)U ((~ T)~M ~ 

Y(o) 
by hl(q'(~,')) = q'(p2~,'), hl = h I. In order to prove that 

il 

h I is analytic, it is enough to prove that h I is continuous. Let 

[a (r), r = 1,2,...], be an infinite sequence with a (r) ~ Y(o)' 

lira a (r) = q'(~,,). We have to prove that ~hi(a~))=q'(p2Q , ,). 
r-~0o 

Suppose that it is not true. Then there exists a subsequence 

[a (rp) ' a (rp)) 5( 
, p = 1,2,...,} such that ~moohl( = a' ~ p2~,~). 

a(rp)= 
We obtain p-~colim hi-l(a') ~ ~(a,T)" Contradiction. 
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lj+b) 
Now we extend h I to hl: Y --~Y by hl(q~J) ) : q , 

, (Iml) q~O) (nl+l) _(i)  etc.) hl Yio) " J = o'l'''''nl-l' ~qo = ' qo = qo ' ' = hl" 

As before, we have to prove that h I is continuous. Suppose that 

it is not true at some q(o j), j E (O,l,...,nl-l). Take an 

infinite sequence [Ur, r = 1,2,.-.} where each U r is a 

relatively compact open neighborhood of q(o j ) in Y, 

o0 (o nl-i (o ~) (J) ~ : r =  q j)  CUr, u r L ( ~ ] q  ) r=l " Ur+l r = qo 
%=O 

and Ur-q(oJ) is connected for any r = 1,2,.-.. 

' = hl(Ur-q(oJ)). It is easy to see that the Denote U r 

closure ~' of U' is compact. A direct calculation shows r r 

that if [ar, r = 1,2,--.] is an infinite sequence with 

E ~(J) l'm a r (o j) " q(j +b) mr o ' ~oo = q then rl~ hl(ar) = o " 

Hence co 

r= 1 
~D nl-i 

Suppose there is a point a' ' ~ ~' such that a' , ~_0 q(o ~), 
r=l r 

that is, 

integer r 
o 

{a' ' ~moo a' ' r' r = 1,2,...] with a'r E Uro, r r = a . 

nl-I 
h~-l(a (o ~1 ') ~ ~ q . Then there exists a positive 

~=0 

such that --Uro ~ h~'-l(a ' ) . Take a sequence 

We have 
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, - , , - i  ' ) c h " - l ( u  ' ~u  - q ( J )  
hl -l(a') = r ~  hl-l(ar ) ' (because h I (a r I r o r o o Uro 

Contradiction. Hence 
nl-i 

qo " r=l ~=-O 

But each U' is connected. Thus each ~' is connected and from 
r r 

"''D U--r = ~'~+l ~''" and the compactness of ~i we get that 

eD oo _ _(j+5) It follows ~'r is connected. We see that ~ Ur = qo " 
r= 1 r= 1 

from this that h I is continuous at q(o j ) . Thus we proved that 

hl: Y >Y is an analytic automorphism of Y. 

Since Y is homotopically equivalent to ~'-l(o,o) we have 

that ~l(Y) is isomorphic to 2Z. Let 8: Z ~ Y be an unramified 

covering of Y corresponding to the subgroup d~ of 2Z , 

~" = ~ .  ,, Z(')= [a'  ZlT(~'(a))~---T } 

• = z(~): z(~) ~ pc, ~. 

It is easy to see that all fibers of ~" are connected and 

that • is a holomorphic func~ on on Z without critical values. 

Hence each Z(~) (I~I ~ ¢) is nonsingular, for any 

a E DE, ~ - De, ~ N Z e the fiber ~"-l(a) is a nonsingular 

. . . . .  l~ ~ ~)), 
elliptic curve (and a regular fiber of ~7), ~T .(pl ~, 

~" ~ O, ~ = O,l,''-,nl-i , are singular fibers of 7 which 

have type I and ~"-l((~O)) is a singular fiber of 
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,i 

~o: Z(O) --->De, O which is of type Inl d = Imbld = Imb = I n . 

We can assume that _(o) (nl-1) qo " " " " 'qo are contained in some 

circle c o of C(o,a ~., , which is a generator of nl(Y ) , and that the 

• _~n-~) in c coincides with the order of order of q(o °)' " "'~o o 

their indexes. 
d-i 

Denote c' =o B-l(co) and let 8-1(q(oJ)) = U q(rnl+J)" 
r=O 

We can assume that the points 

q(O),q(1),-o-,q(nl-l),q(nl),-.-,q(2nl-1),-.-,q((d-1)nl), "'°,q(dnl-1) 

' as their indexes. Because Wl(Y) ~ Z have the same order on c o 

has only one subgroup of index n I we obtain that there exists 

unique analytic automorphism h: Z -->Z such that the diagram 

h 
Z > Z 

i J B 
Y > Y 

h 1 

is commutative and h(q(O)) = q(b). 

Let G 1 (corresp. G) be a cyclic group of analytic 

automorphisms of Y (corresp. Z) generated by h I (corresp. h). 

A direct verification shows that G 1 is isomorphic to ~mZ 

and that any Gl-orbit has exactly m points. We get that G is 

isomorphic to ~/mZ and that any G-orbit has exactly m points. 
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Let Me = [(~,~) E ~2 I~I < 6m, I~l < el, ~: ~c > ME 

be given by ~(~,T) = (~m,v), ~ = Z/G, ~: Z > Z/G be 

the canonical map. 

It is easy to see that we have a commutative diagram of 

holomorphic maps 

Z 

Let 

ff(~) = {a E z ~ ( ~ B ( a ) )  = ~}, (~) = f f ( ~ ) :  f f ( ~ ) - - - > D  , ~ ,  

g h k = " go = g Z(o): Z(o) ~Z(o). We can assume 0 < k < m. 

Evidently we have go(q(o)) = g(q(o)) = q(kb) and for any a E Z(o) 

r2ui~ 
$(go(a)) = G(g(a)) = p.f(a) where p = exp[-~--]. Now comparing 

with the Kodaira construction of logarithmic transform and using 

Kodaira's arguments in ([14], p. 769) we obtain that 

~(o): ~(o) > D has unique non-regular fiber at ~ = O and 
£jo 

this fiber is of type mIb with the desired invariant k. We see 

that we can identify f': V' -->D 6 with ~(o): ~(o) ----->DE, O. 

If • ~ 0 the only multiple fiber of ~ (v): ~(v) ----~D 
E,T 

corresponds to G = O. Hence it is non-singular. 
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Take positive integers e. < E, i = 1,2,3, such that ¢1 > c2" l 

Let A = {(~,T) E ~ e2<IO1<£i' i,i<63~, PA(O) = p(O) A' 

YA : ~'-l(A)- O). YA is given in AX~ 2 by the equation 

2 y = 4x 3 - 3x - B(O',T). 

Because A is a Stein manifold we have that Ax~ 2 and 

YA c AX~ 2 are Stein manifolds. It follows from this that 

~-l(y~) is a Stein manifold. 
m-i 

! 

Let Z A = ~-~ hJ(8-1(YA)). Z A is also a Stein manifold, 
j=O 

because it is isomorphic to a closed analytic subvariety in 

J(8-1(YA)). It is clear that h(ZA) = ZA, ~"(Z~) = A and 
j=O 

~'-I(A)-Z~ is a proper analytic subvariety of ~"-I(A). 

We obtain that Z~ = B(Z~) (which is isomorphic to ZA/G ) 

is a Stein manifold and ~(~"-I(A))-~ A is a proper analytic 

subset in ~(~"-I(A)). 

Im m £3], Let ~ = [(~,~) ~ £ e 2 < I~l < 61, I~I < 

From the Kodaira construction of logarithmic transform 

([14], p. Z?O) it follows that there exists a cross-section o 

of ~ ~,O1 ~,O > ~o such that ~o is not 

contained in nz~ - ZA. Since dim~ o = 1 we have that 
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dim ~o N (Z~ZA) = O. Thus (changing if necessary 6i, i = 1,2,3) 

c Z A. Let = Taking e} we can assume that ~o A,O ZA Z~,o" 

smaller we can prove that Z~ is homeomorphic to 

~' (D e ~ {~ E ~I I~I < E~ and Z~ ~ given by 'o)%Dc3 ~ 3 ° De3 

X ~ T~ (X) coincides with the projection Z~,oXD£3 > De3. 

We see that the canonical map H2(~,=) > H2(~,O,=) 

(corresponding to the embedding ~' c ~i) is an isomorphism. A,O 

Since ZA, O and Zl are Stein manifolds we get that the canonical 

map Pic(~) ~Pic(~,O) is an isomorphism and there exists a 

complex line bundle [~] on Z~ such that [~] Z~,O = [7o] where 

~' corresponding to the curve [~o] is a line bundle on A,O 

• ! 

~O C Z~, O (d~m~ZA, O = 2). Let ~o be a cross-section of [~o] 

with zero-locus ~o" From the exact sequence 

J jO 

we have that there exists a cross-section ~ ~ H°(ZA~' 

= ~o" Let ~ = Ix E Z~ ~(X~ = O]. such that ~ Z~,O 

clear that 
N ~. = ~ and dim~ = 2. A,O o 

,o[e] ) 

It is 

Changing if necessary £i' i = 1,2,3, we obtain that 7 is 

closed in ~A~ and ~ (~) = ~. Because (7. ~ -i(~,~)) = l, 

where (~,~) ~ ~, we have that 7 is a cross-section of 

~.F~ >~. 
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In order to finish the proof of Lemma ~ we shall use the 

following 

Lemma 5. Let A = [(~,T) E ~21e 2 < I~J < el, I~l < e3} , 

e i > O, i = 1,2,3, and ~: Z -->A be a proper surjective 

holomorphic map of complex manifolds such that (d~)x is an 

epimorphism for any x E Z and all fibers of ~ are elliptic 

curves. Let ~(Q,T) be a holomorphic function in ~, which for 

any (~,T) E A is equal to the absolute invariant of ~-l(~,~). 

Suppose that ~(Q,T)IT= 0 is not a constant (as function of ~) 

and that there exists a holomorphic cross-section ~ of ~: Z --~A. 

Then there exist positive numbers e~ l' i = 1,2,3, such that 

! | ! ! ! 

e3--< ¢3' e2 -- < 62 < el -- < 61' and if Ao = [(~,T)6A T=O, e2<I~l<c~] , 

Z = ~- o)' ~o = ~ Z~: Z'o >A'o, De~ = [7E~ I~I< , then 

there exists a commutative diagram of holomorphic maps 

i z 
Z '×D > Z o E' 

X i d  

D c . <  P A ' × D  , " 
O e3 ~ ~  A } 

De3 

where i z and i A are biholomorphic embeddings, 



1 5 0  

D£3 = (~ E ~II~I < £3} , iD(~ ) = T, p'(@,~) = ~, p,q are 

canonical projections, iA A~×O: A~XO >p'-l(o) coincides 

with the natural embedding A' >p'-l(o) and 
O 

izlz~o: z'×Oo > ~-1(p'-1(°11 
-1 0 -1 ' - - - ' - - -> ~ ( p ( O )  embedding Z ° 

coincides with the natural 

Proof of Lemma 5- 

N Changing, if necessary, el, i = 1,2,3, we may assume that 

~ has no zeroes in A There exist positive numbers 

i i | 
Ei, i = 1,2,3, e% < e3, E 2 < e 2 < e I < e I such that the 

differential equation 

d_~ _- _ ~(,,T) 
d~ ~(~,~) 

has unique holomorphic solution ~ = ~(T~qo) with 

i ! ! 

'(O;~o) = ~o, I T] < e 3, e 2 < {go I < e I and e 2 < I,(,;~o) l < e 1 
! ! ! 

for I'I < e 3, e 2 < I@oi < e I • 

pefine , , 
~:Ao ~x .~  ~ q(=o,,r) = ( ' ( ' ;~o) , ' )  (Aot:(m ")Ee21.~=o , e2<l=l<ex]" 

It is easy to see that i A is a biholomorphic embedding, 

iAIAo×O: A'o × O ----~p'-l(o) coincides with the natural embedding 

A' , ,  ~, p'-l(o) and p'i A o = IDP" 
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Let Z' = Z ×A (A;×DE)) (corresponding to ~ and iA) , 

i': Z' --->Z, ~': Z' ---->A' × D' be canonical projections, 
o c 5 

2'" i17' ~'" <i,~.~. 
We have 

~7 ~b-~ +b~- b~ + = o. 

Hence J'(~o,T) does not depend on T. Let p": A' X D ~ >A' o E O 

J J be a canonical projection, " = A;xO" We see that 

j ' -  <p"l*j". 
Changing, if necessary, £;, i = 1,2,3, we can assume that 

there exists an open covering [Ui,i E g] of A'o such that if 

V i = UiXDe; , i E ~ then there exists a continuous family 

[81i(~,T),62i(~,~),(~,~) ~ Vi], where 

51i(~,,),521~,T) E Hl(~,-i(~,,,=), Dli(~,,),~2(~,~) generate 

HI(~'-I(~,~),~), and a holomorphic family [~i(~,~),(~,,) E Vi} 

where ~i(~,~) is a non-zero holomorphic differential on ~,-I(Q,~). 

We can assume also that if (Q,~) ~ V i N Vj, i,j E ~, then 

81j(~,') = aijSli(~,~) + bij~2i(~,'), 

~2j(=,~) = cijSli(=,~ ) + dij~2i(0,~) 

where aij,bij,cij,dij ~ ZZ depend only of i and j, and that 
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Im ~C 'r) ~ i ( ~ ' ' )  > 0 , V i ~ ~. 

52i Q, 

Let ~. (= ,~ ) ,  =2i(=,,- ) = ! cq(c,,,¢), %i(~"0= ~z" (='~') " 52" (="~) 

~li(~, ~ ) 
®i(~ , , )  = w 2 i ( ~ ,  ) ' 

1 

Note that mi(~,T ) does not depend on T. If it would not be so, 

we would get that for some ~o E A',o ~(~o,~) is a non-constant 

holomorphic function, that is, it has a continuum set of values. 

Then ~' ~=~o is not a constant. Contradiction (with ~ = O). 

We can write wi(~,¢ ) = wi(o ). 

Let (Q,~) ~ V i N Vj, i,j ~ J. We have 

I ~ ) = cij%(~) + d. 

This shows that cijwi(~)+dij ~ O. Since 

B2jI~,,l~J (~',) - cijwi~)+dij :~i (~'')) 
= O 

we obtain that ~j(Q,T) = 1 ~i(~,~). 
cijwi(~)+dij 
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Let G. be a grQup of analytic automorphisms l 

of U.X~ which have the following form: 
l 

(@,~) > (~, ~+nlwi(@)+n2) " nl,n 2 E Z . 

Define a holomorphic map: 

¥i ~ '-i V : ( i ) > ui~/c i 

by 

where 

Let 

x 

~i(x) : [°(~'(~))' 7'I}'(~)) ~(~,(x))] 

x 
is taken along a path in ~'-l(~'(x) 

~'('(x)) 

_- : ~,-l( 
~oi ~il~,-l(ui×o) ui~°) -->ui~/Gi" 

It is clear that ~oi is an isomorphism. Denote T.l = y-lol, and 

define v. : ~'-l(vi) > Z'XD . by Mi(x)= (Ti$i(x),,(~(x)). l o 6 3 

Let x E ~'-l(vi) N ~'-I(vj), i,jEJ. We shall prove that 

Mi(X)'-Mj(X). Let x i = Ti~i(x), xj = TjYj(x). We have 

@(~'(x)) = ~(~'~xi)) = ~(~'(xj)), that is, ~'(xi) = ~'(xj), 

and for ~ = i,j 

7' 

x~ x 

(~'(x~)~ ~(~'(x~)) = 7'I~'(x))~(~'(x)) (mod(l,w~(~(~'(x))). 
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Now 

and 

X 
~(~(x)) = 

((x)) ] 

x i 
.~, ~(~I(xj ))= 
( (xj)) j 

X 

l I ~i(~'(x)) cijWi(~'(x))+di7 D' ~ ' ( x ) )  

X. l 

I~ [i(~'(xi)) = 
cijWi(~'(x))+dij ~' '(Xi) ) 

X 
1 [~ $i(~,(x ) 

eij~i(~'(x))+dij '(x~ 
+ niW i(~(~'(x) )+n~] = 

x xj 

, (x)) ] (~' (x)) + ~ % ( ~(X))5 ' (xj)) (rood( I, mj~(~' (x)))) 
niSi(~(x))+ ~ ' (  (xj) ~j(~ 

+n~B2(~'~)) 

(nl,n ~ ~ ZZ). 

We see that x. = x.. Thus Vi(x) = 9j(x) and we can define a 
3 

holomorphic map 9: Z' > Z'o × De3, with ~ ~,-I(v i) = ~i" It is 

easy to verify that v is an isomorphism. Taking i z = i'*(V -I) 

we finish the proof of Lemma 5. Q.E.D. 

This also finishes the proof of Lemma ~ (and of Theorem 8). 

Q .E .D. 
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Theorem 8a. Let f: V '~ A be an elliptic fibration with 

multiple fibers only of type mI . Then there exists a commutative 
O 

diagram of proper surjective holomorphic maps of complex manifolds 

W 

D ~ W  1 

where D = [7 ~ ~1171 < l} such that FIh-l(o): h-l(o) > p-l(o) 

coincides with f: V --->4, h has no critical values and for ~y 

E D~, F h_l(T): h-l(~) >P-I(~) is an elliptic fibration 

which has singular fibers only of types mI o and I 1. 

Proof. Using Lemma 5 and the same arguments which we used 

for deduction of Theorem 8 from Lemma 4 (see pp. 118-121) we see 

that Theorem 8a will be proved if we prove the following 

Lemma 6. Let f': V' >D be a proper surjective map of 

complex manifolds with a single critical value o ~ D such that 

for any ~ ~ D-o, f,-l(Q) is a non-singular elliptic curve and 

f'-l(o) is a non-multiple fiber of f': V' ---~D. Then there exist 

positive numbers £,el, £ < i, and a commutative diagram of 

surjective holomorphic maps of c~plex manifolds 

| 

Del< p' DeXDe I 



where D 
e I 

p': D XD 
e e 1 

such that 

a) F' h 
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I = [~ ~ ~I '~' < 6), D C D, = [" ~ ~ I'I < el], D e c 

>Del is the projection, F' is a proper map, 

,_i(o): h'-l(o) > p'-l(o) coincides with 

, : f,-l( 
f If,-l(De) D e ) > De; 

b) h' has no critical values; 

c) For any • 6 DEI-O, F' h.-l(~): h'-l(~) > p,-l(,) 

has as generic fiber a non-singular elliptic curve and all 

singular fibers of F' h,-l(7)h'-l(7) > p,-l(7) are of type Ii; 

d) There exists a holomorphic cross-section ~ of 

F': W' >D e x Dci. 

Proof of Lemma 6. Taking 6 sufficiently small we can assume 

'I De) > De that f f,_l(De): f,-l( is obtained by minimal 

resolution of singularities from the family of elliptic curves 

which is given in D X~P 2 by the following equation: 6 

2 = 

where (Zo:Zl:Z2) are homogeneous coordinates in ~p2 p(=),q(~) 

are holomorphic functions of ~, G E DE, and 

d(~) = 4(p(~)) 3 + 27(q(=)) 2 is equal to zero (in DE) only at 

= = O (see [15], Ch. VII, ~6). 
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Suppose for a moment that (p,)3q + 2(q,)3 ~ O and 

(p)2p+3(q,)2 dp q, = ~) Then ' ~ O (where p' = dQ' " 

}(p')~q - 2(p')2pq ' ~ O and because p' ~ 0 (if not, q' ~ 0 

and p ~ const, q ~ const, A ~ const) we have ~p'q-2q'p ~ O 

and q2 = Cp~ C ~ ~. Now q = V~ p~/2, q, = ~ ~pl/2p,, 

(q,)2 = C ~p(p,)2 and (p')2p + 3C~p(p,)2 ~ O, C = - 2-~ 

(we used p ~ 0 (because p' ~ 0)). We see that A(~) ~ O. 

Contradiction. 

We obtain that almost for all ao E ~, 

(p')3q+2(q')}-aoP'[(p')2p+5(q')2] is a non-zero holomorphic 

function of Q(E DE). Choose a ° with such a property and 

demand also that a O / O, q(~)-aoP(~ ) ~ 0 and (ao)3+p(O)ao-q(o) ~ O. 

Now let X be a complex analytic subvariety in DeXD¢,X~p2 

defined by the following equation: 

2 = 

Suppose that ~ = (~,;;zL:;l:~2) E X is either a singular 

point of X or a critical point of the function T considered as a 

holomorphic function on X. Then we have 

) 
- Z 2 + + 3Zo(q(F)+ao~ ) = 0 

~z I + (p(~)'+V) = o; 

- 2z2z ° = 0 

p,(~)~iz'~2o + q'(~)~ : O .  
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We see that ~o ~ O, z~2 = O and 

7] e o 4[p(~)+?] 3 + eZ[q(~)~ ° = 

2q' (~) [p(~) +V] -3P' (~)[q(F) +ao? ] = O. 

Suppose p'(~) = O, q'(~) = O. Then taking e smaller we can 

assume that ~ = O (because it cannot be p'(@) ~ O, q'(@) ~ O). 

Taking E' smaller, we can assume that the equation 

4[p(o)+T]3 2 + eT[q(o)+aoT ] = O has only one zero • with I~I < E' 

namely T = O. Thus we get ~ = O. 

If p'(~) = O, q'(~) ~ O, we obtain p(~)+~ = O. Hence 

q(~)+a O~ = O and q(~)-ao p(~) = O. Taking E smaller, we can 

assume that the holomorphic function q(q)-aoP(Q ) has at most 

one zero in D and at the point ~ = O (if this zero exists). 
6 

Taking E' smaller we can assume that the equatinn p(o)+T = O 

has at most one zero T with ITI < e' and this is • = O (if this 

zero exists, that is, if p(o) = O). Again we get ~ = O. 

Consider now the case p'(~) ~ O. Then 

q(~) + a ~ = 2 q'(__~_Ir 
o ~ p ' ( ~ )  t p(7)  +7] 

and 
~ ( p ( ~ ) + ; ) 3  + 2T.~ (q(F)) 2 

9 ( P ' ( ~ ) ) 2 ( P ( ~ ) + 7 )  2 = O. 

If p(~)+~ = O, we obtain as above that ~ = O. 

Then 

Suppose p(~)+~ O. 
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and 

p(~÷;= -) (q,(~))2 
(p,(~))2' q(~)~ ; : -2 (q,(~))3 o (p,(~))3 

q(~)-'aoP(~) = -2 (q,(~))3 
(p,(~))3 + ~ao(q'(~l) 2 (p,(~))2 ' 

(p,(~))3q(~)+2[q,(~)]3 _ ao p,(~)[(p,(~))2p(~)+3(q,(~))2] = O. 

Taking e smaller, we can assume that the holomorphic function 

(p,)3q + 2(q,)3 _ aoP,[(p,)2p+3(q,)2] 

has at most one zero in D and at the point ~ = 0 (if this zero 
E 

exists). As above, we see from the cubic equation 

4[p(o)+,] 3 + 27[q(O)~o~] 2 = 0 

that ~ = O. 

We proved that X has no singular points with • = O and 

that the function T X has no critical values in D£,-o. 

Let S be a complex subspace of D XD defined by 
6' £ 

~(~,~) = 4(p(~)+~) 3 + 27(q(~)~0~) 2 = o. 

Suppose that S has a multiple component S 1 with S 1 ~ (O,O). 

For any z' = (Q',T') ~ S 1 we have ~(~'~') = O, ~--~(~',T') = O. 

But 
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~---6~;(q,,) = 12(p(o)+, )  2 + 54ao(q(=)+ao,)  

and we have 

+ ao7' = - ~o(p(G')+7)2 , 
q(~') 

4(p(~')+~') 3 +~Z 4-!--(p(~')+T') 4 
81a 2 

o 

= O. 

7' = O and q(Q')-a p(~') = O. Suppose p(a')+T' = O. Then q(G')+a O o 

As above, we get a. = O and 7' = O. Now let p(~')+T' ~ O. Then 

p(Q')+T' = -3ao, q(~')+a O = -2a3 o and 

q(~') - aop(.') = a 3 o 

Since a~+aoP(O)-q(o ) ~ O we can assume, taking e smaller, 

that a 3 + a p(~) - q(O) ~ O for any ~ E D . This contradicts 
o o E 

q(Q') - aoP(@') = a3 o" We see that S 1 does not exist. 

Now taking E and E' smaller, we obtain that for any 

T o E De, - o the equation ~(q,~o) = O has only simple roots. 

Let Qo be one of these roots. Suppose that p(@o)+7o = O. Then 

q(Qo)+a~o = O, q(@o)-%p(@o) = O and, as above, we see that 7o = O. 

Contradiction. These arguments show that if g: X ~ De, is the 

,×D X~P 2 >DE, and restriction to X of projection D e E 

XTo = CX 6 Xlg(x ) = 70] , f: X > DE'XDE is the restriction 

l 

= I $ xT ---> T°XDe' to X of projection De. XDE x~P2 >D~7o f X70 o 
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then for T ~ O the family fT : XTo > ~o×D E ~s only singular 
O O 

fibers of type I 1 (see [15], Ch. VII, §6). 

It is well known that X o has as singularities only a single 

rational double-point. Taking simultaneous resolution of 

singularities for the family {X~, • E DE, ] (see [6],[Z]), we get 

a diagram 

W ¢ 

Cl ~ p' e e I 

with desired properties a), b), c). 

d) is evident (the corresponding holomorphic cross-section 

comes from the cross-section (z O = O, z I = O, z 2 = i~ of 

f: X --->De. XDe). Q.E.D. 



§2. Lefshetz fibrations of 2-toruses. 

Definition 3. Let f: M --->S be a differential map of connected 

compact oriented differential manifolds (which may have boundaries), 

dim M = 4, dim S = 2. We say that f: M --~ S is a Lefshetz 

fibration if the following is true: 

a) ~M = f-l(~s); 

b) there is a finite set of points al,... ,a 

flf-l(s_i=lai)~ : f-l(s - i__~lai ) ~ S - ~a.i=l l 

E S-~S such that 

is a differential fiber bundle with connected fibers; 

c) for any i E (1,2,.-.,~) H2(f-l(ai),= ) = = and there 

exists a single point c. E f-l(ai) such that 
l 

ell (df)x is an epimorphism for any x E f-l(ai)-ci, 

c 2 )  t h e r e  e x i s t  n e i g h b o r h o o d s  B i o f  a .  i n  S ,  U .  o f  c .  i n  M 1 1 1 

and complex coordinates X.x in Bi and Zil,Zi2 in Ui, which define 

in B. and U. the same orientations as global orientations of S l l 

and M restricted to B i a n d  U i c o r r e s p o n d i n g l y j  f ( U i )  = B i a n d  

f Ui: U.l >B.l is given by the following formula: 

2 2 
X i = Z i l  + z i 2  • 

We shall call al,a2,-.-,a critical values of f. 
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Remark 1. If a ~ S - Uai, the genus of f-l(a) does not depend 
i=l 

on a. If this genus is equal to one, we shall call f: M ~ S 

"Lefshetz fibration of 2-toruses over S" 

Remark 2. If ao E S - ~a i, j ~ (1,2,-..,~) and Y is a smooth 
i=l 

path in S connecting a ° and aj and such that a i ~ Y, 

i = 1,2,--.,j-l,j+l,...,~, we define by usual arguments of 

Lefshetz theory (see [16]), so-called 

5. ~ Hl(f-l(ao),= ) corresponding to y.. 
] 3 

"Lefshetz vanishing cycle" 

Definition 4. Let f: M---~S be a Lefshetz fibration of 2-toruses, 

T 2 be a 2-torus, n(T 2) be the group of all diffeomorphisms of T 2 

preserving orientation, ~: S 1 >~(T 2) a differential map 

(S 1 is a circle), al, ~ • ..,a be all critical values of 

f: M -->S, a E int(S) - U a i, D a be a small closed 2-disk in 
i=l 

int(S) - i__~lai with the center a. Identify ~D a with S 1 and 

f-l(Da) with DaXT2. Let N = f-l(~Da) ~: N b~(DaXT2 ) be a ' a 

a diffeomorphism canonically defined by 

identification f-l(Da) = DaXT2 ) . DenOte 

M = M - f-l(Da) ~(DaXT2 ) and let f a,~ 

which on 

(and by the 

: M a,~ a,~ 

_ ~2 
M f-l(Da) is equal to f and on D a 

S be a map 

is equal to 
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XT 2 --~ D a We call f : M > S a canonical projection D a . a,~ a,s 

Lefshetz fibration of 2-toruses obtained from f: M --->S by 

s-twisting at the point a. 

Definition 5. Let fl: M1 ---~Sl' f2:M2 ---->S2 are Lefshetz 

fibrations. We say that fl and f2 are isomorphic (as Lefshetz 

fibrations) if there exist orientation-preserving diffeomorphisms 

@: M 1 >M2, ~: S 1 ----->S 2 such that ~fl = f2 ~" 

Remark ~. It is easy to prove that the s-twisting f : M --->S ajs aj~ 

can always be defined by some ~ : S 1 ~o(T 2) o ---> where ~o(T 2 ) is 

the component of the identity element in ~(T 2) and that it 

depends only on the class of s o in Wl(~o(T2),Id). Hence we can 

assume that in the notations fa,s,Ma,~ symbol s means an element 

of ,l(~o(T2),Id). 

Lemma ?. Let f: M > S be a Lefshetz fibration of 2-toruses and 

f : M ~S be some s-twisting of f: M --~S. a,s a,s 

the canonical homomorphism 

~I(S - i=~lai , a) > Au~(Hl(f-l(a), =)) 

Suppose that 

is an epimorphism. Then there exists an isomorphism 

~: f ~ f of Lefshetz fibrations f: M---> S and f : M --->S, a,~ a,~ a,~ 

= [~: S ---> S, ~: M --~M ] such that (i) ~ = identity; a,fx 
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(ii) if Tl: f-l(Da) ~ D a X T 2 is a trivialization of 

f-l(Da) >D a which we used in the construction of Q-twisting 

and ~2: f-I (D) ~ D X T 2 is the trivialization of a,Q a ~ a 

f-1 (D) > D a which we obtain in the construction of Q-twisting, a,~ a 

then ~If_l(Da ) = T~lo~ 1. 

-) 
Proof. It is well known that the natural embedding 

T 2 i: >Qo(T 2) (i(y)(x) = X+y) is a homotopy equivalence 

(see [l?]). Hence we can identify ~l(~o(T2),Id) with Hl(T2,Z~ ) 

and consider Q as an element of Hl(f-l(a),~Z ). Let 

Y: [0,I] > s - t/a l 
i=l 

be a path in S - ~ a i with Y(O) = Y(1) = a and 
i=l 

Yw: Hl(f-l(a),Z) .... > Hl(f-l(a),=) 

be the canonical automorphism correspQnding to Y. There exists 

an isotopy 

some open 

~t: S ~>S, t ~ [O,i], ~o = identit~ such that for 

U C S - De, U D ~ ai, 
i=l 

"t U = identity (for any t E [O,i]), ,t(a) = y(t) and ,l(Da) = Da. 

We see that there exists an isomorphism ~': fa3 Q > fa,¥~(Q) 

of Lefshetz fibrations, ~' = [~': S --->S, ~': Me, Q ~Ma,y~(Q )] 

~)The proof of Lemma Z which we give here is based on an idea 
of D. Mumford. 
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such that ~' = ~l 

a,o.  

where 

Jc~: f'l(S-Da ) > f-1 (S-D) a ,~ a 

and 
Jy.x.(O,): f-I(s-D a) + f ~  a,y (i, a 

are canonical identifications. Now we can find an isotopy 

9t: M a,Y.(e) > Ma,y~(~)' ~o = identity, such that V t ~ [O,1] 

f ~ o ~_ a,ye(~) "Vt ~l_t. ,11 fa,y~(~) and < )( )identity. 
Denote ~" = vlO~'. We obtain an isomorphism of Lefshetz 

%Y 
fibrations ~,Y: fa,~ > fa,Y~(~)' 

,y {id: S --> S, ,¥: Ma, e > (~)}, 

It is clear that 

a,o,  

Let el,e 2 be any free basis of Hl(f-l(a)~X ). Since 

fa,e = (fa,~l)a,~2 for ~ = ~i+~2 we have to prove our Lemma only 

for the case ~ = e I. Let 0 E Aut(Hl(f-l(a),=)) be an automorphism 

with 0(el) = el+e 2 and ~: [O,i] --->S - i=~lai be a closed path 
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in S - ~ a i 
i=l 

with ~(0) = a and ~ : O. Take 

.... {id: S -->S, ~ . . . .  >M a } 
el,? el,~: Ma,e I ,el+e 2 

constructed above. 

Now let ~' E Aut(Hl(f-l(a),~ ) ~  be an automorphism with 

~'(e2) = -e I and y': [O,1] --~S - ~a i be a closed path in 
i=l 

S - U ai with y'(O) = a and y~ = ~'. We have the following 
i=l 

chain of isomorphisms 

N 

f f 
a,e I a,el+e 2 (fa,el)a,e 2 -- (fa,el)a,Y~(e2) = 

)a,_el f- (fa,e I -- fa,o 

Denote by ~: f > fa ' ~ = ~: S --~S, ~: M --->Ma,el ] 
, e  1 

the isomorphism which we obtained. It is clear that ~ = identity 

and that there exists an open subset U c S-Da, U D ~V1ai, such that 

= " I . Now take b E U - U ai, a' ~ ~D and let 
~If-l(u) 3el 1 f-l(U) i=l a 

5: [0,i] ~ S - ~a i be a smooth path in S - ~a i with 
i=l i=l 

5(o) = b, 5(1) = a' 

Using a trivialization of f: M ~S over 5 we can improve 

~: f---> fa,el such that ~ f_l(a. ) = 3el[f_l(a. ). Now from 
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I = je I f_l( a it easily follows that we can finally f-l(a, ) ') 

improve % such that it will satisfy all demands of our Lemma. 

Q.E .D. 

Remark to Lemma ?. Let f: M > S be the same as in 

Lemma ?. Suppose in addition that dS ~ ~ and that there exists 

a connected component s of ~S such that the fiber bundle 
m 

f £: f-l(£) --->~ is trivial. Let ~: f-l(£) --~ ~ T 2 be 

T 2 some trivialization of f £. Let ~ ~ ~l(nO( ),Id) and ~ be a 

diffeomorphism f-l(£) ~ f-l(~) (over £) corresponding to ~. 

Then there exists a diffeomorphism ~: S --~M such that f~ = 

and ~If-l(~) = ~. 

Proof. Let ~ be a closed 2-disk with 8~ = ~, 

M = M U~ (DXT2), S = S Uidentity D, f: M • > S 
-- -- -- o n  ~ . . . .  

by ~I M = f, ~IDXT 2 = canonical projection ~xT 2 > D. 

the center of D. Using ~ and the given trivialization 

be defined 

Let a be 

m 

f-l(D) = D~T 2 we define an ~-twisting 

f: M --->S. Let ~: f > f 

¥= {id: s--~_s, ~: M 

f : M >S of 
-~_,c~ -a,~_ -- 

>M ] 

be an isomorphism which exists by Lemma Z and has the property (ii) 

Denote ~ = (~ )-l Using f-l(s) = M and the < _ ~_(s) 
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identification of f-i (S) with M as in Definition 4 we can 

consider 8 as an autodiffeomorphism of M. Now it is easy to see 

that f~ = ~ and ~ f-l(~) = ~. Q.E.D. 

Lemma 7a. Let fl: M1 > S, f2:M2 > S be two Lefshetz 

fibrations with the same set of critical values, say [al,.--,a ], 
U 

which is not empty. Let a E S - ~a.. 
i=l 1 

Suppose that f?l(a) = f~l(a) and the corresponding canonical 
U 

homomorphisms ~ I ( S -  Qj  a i , a  ) > Nu~(FIl( f l l  ( a ) , ~..) ) and 
i = l  

ta 
, , l ( s -  L / a i , a )  co inc ide  and are epimorphisms. 

i = l  

Then there exists an isomorphism of Lefshetz fibrations 

~: fl >f2' = [~: S --~S, ~: M 1 >M2} , 

such that ~(a) = a, ~ induces identity on 

~Ifil(a ) = identity. 

Proof. 

a i 
~I(S - ~ ,a) and 

i=l 

It follows from Lemma 7 that it is sufficient to 

prove the following 

Statement. Suppose that ~S is non-empty and connected, 

S = S' U D, where D is a closed 2-disk, D ~ ~S is a segment in 

~D, D contains exactly one of al,...,a , say el, S' is a 

2-manifold with boundary and S' N D = ~S' n ~D = ~D - ~D n ~S. 
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Denote by M'j = f-l(s'),3 f'j = fj M~: M'j >S', j = 1,2. Suppose 

i I that there exists an isomorphism ~': fl > f2' 

~' = ~,': S # --~S~ %': M1 -~M , such that ,'(a) = a,,' 

induces identity on "l(S'- i=2~a''a)l and %' f[l(a) = id, 

~'(S'nD) = S'nD. Then there exists an isomorphism 

~: fl > f2' ~ = [~: s --~s, ~: M 1 > M 2} 

such that ~ S' = ~'' $ S' = $' 

~I(S- Wail. 
i=l 

and ~ induces identity on 

Proof of the Statement. Let cj, i = 1,2, be the singular 

point of f;l(al). From the definition of a Lefshetz fibration 

we have that for each j = 1,2 there exist neighborhoods B of a 1 

in D, U. of c. in f~l(D) and complex coordinates ~. in B, 
J J J J 

Zjl,Zj2 in Uj which define the same orientations as the global 

orientations of S and M, restricted to B andUj correspondingly, and 

are such that f(Uj) = B and fluj:2 Uj >B is given by the 

2 following formula: kj = Zjl+Zj2. For a small ¢ > O let 

De, j = {b E B kj(b) < e}, a[ E D be defined by kj(a~) = ~, 
- -  J e,j 

. . ii 

a I be a point in int(~S'N~D), a 2 = ~'(al) , ¥i: [O,1] >D-DE, 1 

" yl ( ' rl: be a smooth path with Yl(O) = el, l) = el, IXI --->D-De, 1 

be a (smooth) embedding with 
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1 
~l(OXl) c int(~S'n~D), ~l(lXl) = ~Dc,l, rl(lX~) = YI" 

Then there exists an embedding r2: i×i >D - D , 2 with 

~2(OXI) ~ int(~S'0~D), ~2(IxI ) C De, 2 and a diffeomorphism 

~: s' u rl(ZXZ) u D ~S' U U n c,1 ~2 (xxx) c,2 

such that ~IS. = ~', ~°~i = ~2' ~(Dc,1) = De, 2 and for any 

b E D£,l, ~2(~(b)) = ~l(b). Define the Lefshetz vanishing cycle 

8j ' Hl(f~l(a~) ) as the homology class containing the circle 

~j: (Re Zjl)2 + (Re zj2)2 = e, Im Zjl = Im zj2 = O, 

where orientation on ~ is taken according to the order 
3 

(Re Zjl , Re zj2 ) of the corresponding real coordinates. 

Let Y2 = ~(¥i )' 5" =j (jy-1)~(Sj), j = 1,2. From the classical 

Pickard-Lefshetz formula and from our assumptions about the 

representations of ~I(S - U ai,a ) in 
i=l 

Au~H l(fll(a),~) = Au~H l(f~l(a),z) 

I " 

corresponding to fl and f2 it follows that (*' fil(el) )~(B1) = _+B 2. 

ii 

In the case when we have -B 2 we change the numeration of 

z21,z22. Then for the new 62 we will have (t fil( al ))~(B ) = B 2 . 
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For j = 1,2 and a small e' > O denote by 

Rj ,e .  = {x E u j ] l Z j l ( X )  l 2 + tz j2(x)  l 2 

Taking E << e' we can assume that for each j = 1,2 and for any 

b ~ De,j, f;l(b) is transversal to ~Rj,e.. Define a 

diffeomorphism 
m T: f i l ( D E , l  ) n RI, e' > f21(Dc,2) A R2,e, 

by 

~ 2 l ( , ( . ) )  = Z n ( X ) ,  z 2 2 ( . ( . ) )  = ~12 ( . ) .  
m ~ --1 ! 

It is clear that f2 T = ~fl and ~(81) = ~2" Since fj (aj)NRj,E. 

is a tubular neighborhood of ~] in fj-l(aj), and 

Ifll(a " (~' - {)).(51) = D2 we can construct a diffeomorphism 

~": f~l(s'u rl(IXI))--~ f~l(s'U ~2(IxI)) such that ~" S' = ~'' 

and 

f2 "~'' = (~ S'L~l(I×I)) ° (fl fil(s'U~l(l×I) ) 

I : T I l(rl( ~" i( n fl l~i)) n ~ , ~  fl rl (l×I)) RI,E' 

Without loss of generality we can assume that 

rl(lXl ) = {b E De, 1 Ikl(b) I : c, -7 <- arg kl(b ) ~ ~]. 

Then 
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r 2 ( l x I  ) = [b 6 De, 2 I i 2 ( b )  = c, - ~ <_ arg k2(b)  <_ [ } .  

" : ~b E D IIm kj(b)-Im eit}, For t 6 [- ~, ~] define ejt ¢,j 

= ~. ~ ejt , j = 1,2. Now choose a Riemannian metric, and Qj t6[-~,~] 

[I(D f[ l (b)  wil l  be gl' on f ) such that for any b 6 De,l, 

orthogonal to ~RI,c. and construct a family of trajectories 

%:  [O, l ]  > f i l ( % )  - f i l ( % )  n ~ i , ~ , '  

where 

y E f [ l ( ~ l ( 1 X l )  ) _ f ~ l ( ~ l ( l X l )  ) n RI ,  E,, 

f l q y ( [ O , l ] )  : e. 3 arg k l ( f l ( y ) ) '  

for any s ~ [O,i], ~([O,1]) is orthogonal to f~l(fl(qy(s))) at 

the point qy(S) and fl(qy(S)) depends only on fl(y ). It is clear 

that for y E fll(~l(iXI)) N ~RI,6. we have qy([O~l])Cfll(Ql)N~Rl~£.. 

Now define a family of trajectories q,~.: [0,i] --~ f~l(Q2) A ~R2,e. , 

~'  ~ f ~ l ( ~ 2 ( l × I ) )  N ~R2,£, as f o l l ows :  

q '7 '  : ~ ' q~ - l ( ~ , )  

We can choose a Riemannian metric g2 on f~l(D) such that for 

any b ~ D£,2, f21(b) will be orthogonal to ~R2.e. and for any 
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• ' --' (S))) at s E [0,i] q ~,([0~]) will be orthogonal to f21(f2( q ~, 

! the point q'~,(s). Now using g2 we extend the family {q ~,} to 

the family of trajectories q' :y, [O~l] > fjl(Q2)-fjl(Q2)~ R2,e, 

with the properties analogous to the properties of the family 

[qy}. Using the families [qy} and [qy',} and the diffeomorohism~ 

we extend ~" to a diffeomorphism 

~": fll(S' U ~l(I×I) U QI)~>fjl(s' U ~2(I×I) U Q2 ) 

such that 

~ s,url(Z×i) " , , 

f2"~ '' = (~ S'U~"I(I×I)UQI) ° (flIfiI(s'u~I(I×I)UQI# 

Our statement easily follows from the existence of ~" 

with these properties. Q.E.D. 

Definition 6. We shall say that a Lefshetz fibration of 

2-toruses f: M > S is regular if S is diffeomorphic to S 2 

(2-dimensional sphere), and the set of critical values of f is not 

empty. 

Definition 7. Let fi: Mol > S i, i = 1,2 be two Lefshetz 

fibrations, ~S 1 = ~S 2 = ~, such that the non-singular fibers of fl 

and f2 have the same genus. Let a (i) E Si, i = 1,2, be some 

non-critical values of fi" Dali~ ) be a closed 2-disk in S.l with 
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the center a (i) which does not contain critical values of fi' and 

~: ~Da(1) > ~Da(2) be some orientation reversing diffeomorphism. 

Identify f~l(Da(i) ) with Da(i)XC , where C is the typical non-singular 

fiber of fl and f2" Let ~: f~l(~Da(1) ) ~ f~l(~Da(2) ) be defined 

by ~ = ~ × (Identity) and 

M = M 1 ~ M 2 = (M 1 - f~l(Da(1) ) D~ (M 2 - f~l(Da(2))), 

S = S 1 ~ S 2 = (S 1 - D e ( l )  ) U8 (S2-Da(2)), 

f: M --->S be defined by f Mi-f~l(Da( ~ ) = fi Mi-f~l(Da(ii ). It is 

clear that f: M ---~S is a Lefshetz fibration and we call it 

"direct sum of fl and f2" and write f = fl ~ f2" 

Theorem 9. Let f: M --~S be a regular Lefshetz fibration 

of 2-toruses, f : M ~ S o be a Lefshetz fibration obtained from 
o o 

a Lefshetz pencil of cubic curves in ~p2 by blowing up of (nine) 

base points of this Lefshetz pencil. Let e(M) be the Euler charac- 

teristic of M. Then e(M) > O, e(M) ~ O (mod 12) and f: M --->S 

is isomorphic to the direct sum of e(M) copies of f : M --->S o. 
12 o o 

Proof. Let al,...,a ~ be all critical values of f: M > S, 

a O E S - i=l~a ,l Co = f-l(ao)' YI'''''Y~ be disjoint smooth 

paths which connect a o with al,...,a ~ respectively, 
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I | 

YI,...,Y~ be generators of ~I(S- ~/ai,ao) which correspond to 
i=l 

~I,...,Yu, @i,...,@ be automorphisms of HI(Co,Z ) corresponding 

' .. y' 51,...,5 ~ E HI(Co,Z ) be Lefshetz vanishing cycles to ¥i' "' U' 

corresponding to YI,...,yU and el,e 2 be generators of HI(Co,~ ) 

with (el.e2) = I. Let Dj, j = O,i,...,~, be small closed disjoint 

2-disks in S with the center aj, j = 0,i,...,~. We can assume that 

the sets Yi N Dj, i E (1,2,-..,~), j E (1,2,--.,~), i ~ j, are 

empty and that each of the sets Yi N ~Di, Yi N ~Do, i = 1,2,-'-,~, 

has only one point. Let a = ¥i N 8Do, a' = io i ¥i N ~D i and ~i be 

from a o till a~ We can assume that the part of ¥i l" 

Y' =i ~i'~Di'~ 1 (~Di is oriented as the boundary of D~and that 

the order of points alo,...,a o on ~Do where ~Do is oriented as 

the boundary of D o coincides with the order of their indexes. 

Now classical Picard-Lefshetz formula tells us that 

@i(z) = z-(z.Bi)Bi, z ~ HI(Co,~), i = 1,2~.--,~. It is clear 

also that @I @2 "'" @~ = Id (we write the multiplication of 

automorphisms of HI(Co,~ ) here and further from the left to the 

right (as the multiplication of corresponding matrixes:) and use 

the notation z@ = @(z)). 

Let ~ (corresp. ~) be the automorphism of Hl(Co,~ ) defined 

by z~ = z-(z.el)e I (corresp. z~ = z-(z.e2)e2) , z ~ Hl(Co,= ). 

It is well known that each 6.1 is a primitive element of HI(Co,Z ). 

Hence there exists an automorphism A i of HI(Co,Z ) preserving 
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intersection form and such that elA i = Di" 

we have 

zA'-l~A'i 1 = (zA~l-(zA~l'el)el)Ai z-(zAi'el)elAi 

= z-(zAilAi.elAi)elA i = z - (z.~i)5 i. 

1 Thus O. = A. -1 ~ A. and ~(A~ x Ai) = Id. 
1 1 1 i=l 

For i = 1,2,...,~-i let qi 

For any z G HI(Co,Z ) 

: ~I(S - i=l~ai'a°) --->~l(S - i=~l a'z'aO) 

be an automorphism of ~I(S - ~a.,a ) defined by 
i=l i o 

qi (Y i )  = 

! qi(Yi+l) 

! I 

yl, ,qi(Yi_l) = y qi(Yi) = y i-l' i+l' 

, - i y  . . . .  . y ,  
= Yi+l iYi+l" qi(Yi+2 ) = Yi+2' ""qi (~) ° 

| 

It is easy to see that qi(yi),...,qi(y~) correspond to 

some new choice of disjoint smooth paths YI,...,Y~ connecting 

a O with al,...,a ~ and the same is true for q~l(Yi),...,q~l(Y~) 

(see Figs. 8 and 9). We denote these new paths by 

qi(Y1),--.,qi(Y~) (corresp. q~l(Yl),---,q[l(Y~). We call 

q[l transformations qi and elementary transformations of the 

paths on the base. 

NOW if G is a group and (Xl,...,x) is a ~-tuple of elements 

of G, we call the transformations 

-i 
(Xl,''',x ~) >(Xl,''',Xi_l,Xi+l,Xi+ixixi+l,Xi+2,''',x ~) 
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Fig. 8 (For qi ) 
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ai 

Fig. 9 (For q~l) 

~o 
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and 

(Xl,''',X ~) > (Xl,''',Xi_l,XiXi+ 1 xZl,xi,xi+2,''',X ~) 

elementary transformations of ~-tuples in G. 

Using el,e 2 as a basis we identify Hl(Co,~ ) with ~ and 

the group of all automorphisms of HI(Co,~ ) preserving intersection 

form with the group SL(2,~). It is clear that an elementary 

transformation of the paths on the base correspond to some 

elementary transformation of the ~-tuple (~l,...,@) = SL(2,~) 

and vice-versa. 

We see that if (~l,---,~) c SL(2,2Z) is obtained from 

(~i,...,~) by some finite sequence of elementary transformations 

then there exists a set of disjoint smooth paths ~I,...,~ ~ on S 

connecting a ° with al,...,a ~ and such that ~i'''''~ correspond 

to ll,...,Y~ by the same way as ~i,...,@ correspond to Yl,...,Y . 

Now we shall use the following 

iO ~-i 
Lemma 8. Let x = II 1 1 II' ~ = I II I and AI,...,A ~ E SL(2,Z) 

be such that if ~i = A~ 1 ~ Ai' i = 1,2,-..,~, then 

" "  " II ° • . : iII . Then , ~ O (mod 2) and there exists a 

finite sequence of elementary transformations starting with some 

elementary transformation of (~i,...,~) such that if (~i,...,~) 

is the resulting ~-tuple in SL(2,~) then 
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Proof. We use the following Theorem of R. Livne. (For the 

proof see Appendix II, page 223.) 

Theorem of R. Livne: Let G be a group with two generators a 

and b and relations a 3 = b2 = 1 (that isj G is isomorphic to the 

free-product [(~/~)~ (=,~=)]). Let s. = a2-~a i for i = O,1,2, 
1 

and QI,Q2,...,Q~ E G be such that if Yi = Q[iSoQi' i = 1,2,...,~, 

then yl. Y2"...'y~ = i. Then there exists a finite sequence of 

elementary transformations starting with some elementary 

transformation of (yl,...,y~) such that if (ZI,...~U) is the 

resulting subset of G then each~i , i = 1,2,.--,~j is equal to 

one of the elements So,Sl,S2. 

Complement to the Theorem of R. Livne 

Let G,a,b,So,Sl,S 2 be the same as above and yl,.'.,y~ E G 

be such that each of Yi' i = 1,2,-.-,~, is equal to one of the 

elements So,Sl,S 2 and yl.....y ~ = i. Then ~ ~ O (mod 2) and 

there exists a finite sequence of elementary transformations 

starting with some elementary transformation of (yl,Y2,.-.,y~) 

such that if (~i,...,~) is the resulting ~-tuple in G then for 

U 
any j = 1,2,-..,~, [2j-i = Sl' ~2j = s2" 



181 

Proof. Note that a cyclic shift in a tuple (Xl,...,x) can 

be obtained by a finite sequence of elementary transformations 

(see Appendix If). 

Denote by k the number of yj in yl,...,y ~ with yj = s o . 

Let us call the statement of the Complement to the Theorem of 

R. Livne in the case when ~,k are given "Statement [~,k]" 

Now consider the set • of all pairs [~,~], ~ g ~, ~ E =, 

> O, ~ ~ O, and define the following order in ~: We say 

[~i] < [~,~] if either ~l < ~ or ~i = ~ ' ~i < ~ " Let ,' 

be the subset of m consisting of all [~,~] for which the 

"Statement [~,~] is not true. Suppose that ~' ~ ~ and let 

[~,k] be a minimal elemelit of m' 

Suppose that k ~ O. Then we can write yl'....y ~ in the 

following form 

m I m 2 m~, 
yl.....y ~ = So XlS ° X 2 .... So X~, 

where 

N 
] k. ~. 

(i) X. = ( I Sl l'j s k > O, ~N > 0 and if N. ~ 0 
J i=O ' o,j -- J ,j J 

then for all i = 1,2,-..,Nj, ki, j > O, ~i-l,j > 0 

~, ~, Nj ~, 

(~ = m + (ki,j+Li,j) X = m ). 
= j 1 i=O j j 1 j J 
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We can write also 

m2 m 1 
Yl "'" Y~ = X l S o  X 2 . . .  X s I O 

Suppose that k = O. Then because SoS 2 = s2(s21SoS2) and 
o,j 

-i 
s 2 SoS 2 = s I we ~an reduce (by an elementary transformation) our 

situation to the "Statement [~,k-l]" which is true. This 

contradicts [~,~] ~ m'. The same arguments show that ~N 
J,J 

(we use SlS O = (SlSoSll)s I and SlSoSl I = s 2). 

> O 

Using elementary transformations on the (ordered) set of 

factors of Xj, j = 1,2,.--,~', we can get different expressions 

for Xj, j 1,2,--., • as a positive word written in the letters 

Sl,S 2. Among all these expressions we can find a maximal (for 

each Xj, j = 1,2,-..,~') according to lexicographical order 

(s I is the first letter and s 2 is the second one). This shows 

that we can assume that we already have yl,...,y~ such that each 

Xj, j = 1,2,...,~, cannot be transformed by elementary trans- 

formations of its factors into a word which in the form (i) 

(that is, when we put corresponding s I and s 2 instead of yi) 

is greater according to lexicographical order than X . 
] 

Take j ~ (1,2,.-.,~') with N ~ O. Now suppose that some 
J 

kij = i, i ~ (I,2,...,Nj). We have that in the expression (1) of 

Xj there is a subproduct which has the following form: S2SlS 2. 

Using SlS2S 1 S2SlS2, that is s I -i -i = , = s 2 s I S2SlS2, we get 
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= -i SlS2[s~l ( - SlS2Sl" S2SlS 2 Sl(S 1 S2Sl)S 2 = sllS2sl)s2] = 

It follows from this that using elementary transformations we can 

replace S2SlS 2 by SlS2S 1. This contradicts the maximality of X. 
3 

in the lexicographical ordering. Thus we obtain 

ki, j > i, i = 1,2,---,Nj. 

k 
Suppose that Lo, j = i. We have X. = Sl°'Js2s I ....... 

J k 
o,j 

Using substitutions SlS2S 1 > S2SlS2 we can transform s I s2s 1 

k 
in S2SlS2 °'j. As we showed above, any substitution of the form 

SlS2S 1 > S2SlS2 is a sequence of elementary transformations. 

Thus we come to the situation where Xj = s 2 ...... , but this 

leads to the contradiction as we explained above. Thus we obtain 

~o,j > i. 

Now suppose that for some i ~ (2,3,...,Nj-I), ~i-l,j = ~i,j = i. 

We have that in the expression (i) of X there is a subproduct which 
3 

~ i ' J s 2 s  1 . has the following form: SlS2 s Using substitutions 

ki,j 
SlS2S 1 ---~ S2SlS2 and k i j  ~ 2 we t r a n s f o r m  SlS2S 1 s2s I i n  

k, .-2 
SlS2SlS2SlS2S2 l'] . Hence performing elementary transformations, 

we can come to the situation when a part of X. has the form 
3 

SlS2SlS2SlS 2. But SlS2SlS2SlS 2 = I. This shows that using a 

cyclic shift we can reduce our situation to the Statement 

[~-6,~] which is true. This 
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contradicts [~,k ] ~ i' We see that if for some i ~ (2,3,...,Nj-I) 

$i-l,j = 1 then ~. > I. Let us prove now that if for some l,] 

i ~ (2,3,...,Nj), ~i-l,j = 1 then ki_l, j _> 3 and k.~,j >_ 3. 

Suppose ki_l, j = 2. Then in the expression (I) for X we J 
2 2 

have a part of the following form: S2SlS2S 1. Using elementary 

transformations we transform this part to SlS2SlS2SlS 2. This 

contradicts [~,k] ~ m' (as we saw above). 

Now suppose that k. = 2. In this case we have in the 
l,j 

2 2 
expression (1) for X. a part of the form SlS2SlS 2 which also 

J 

can be transformed by elementary transformations in SlS2SlS2SlS 2. 

As above, we get a contradiction with [~,~] E m' For 

~i-l,j ki,j 
i = 1,2,..-,Nj , we denote Yi,j = s2 s I . We shall say that 

Yi,j" is of the first (corresp. second) kind if ~i-l,j > 1 (corresp. 

~i-l,j = 1). We proved that YI,j is of the first kind and that if 

Yi,j is of the second kind then Yi-l,j is of the first kind. It 

follows from this that we can find a set Zl,j,...,Ztj,j of 

elements of G such that (i) each Z~,j, ~ = l,-..,tj, is equal 

either to some Yi,j i E (1,2,-..,Nj) where Y. is of the 
' 1 , j  

first kind or to some product Yi_l,j-Yi,j, i ~ (2,3,--.,Nj) 

where Y. . is of the second kind, and 
1,3 

t ko, j J Z~,j s~N,J 
s I ~--[ = X. 
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For any element c E G we define a reduced form of c by 

writing c as a positive word in the letters a,b (generators of G) 

and performing all possible cancellations (using a 3 = b 2 = ~. It 

is clear that c has unique reduced form. 

Let ZL, j be such that Z~,j is equal to some Y'l,3" where 

Yi,j" i C (l,...,Nj),is of the first kind. Then it is easy to 

verify that the reduced form of Z~ can be written as bRm .ha 

with some R~,j ~ G (we use s2X-l'Jsll'3 = ~2 U~l ' 

~i-l,j ~ 2, ki, j ~ 2 and s 2 = ba 2, s I = aba). Consider Z~,j 

which is equal to some Yi_l,jYi,j, i E (2,3,'..,Nj) where Yi,j 

is of the second kind and Yi-l,j is of the first kind. We have 

~i-2,j h 2, ~i-l,j = 1 and as we proved above, ki_1, j h ~, ki, j h 3 

Now we can write 

ki_l,3s2s~i,j Z~,j = Yi_l,jYi,j = s2i-2'Js I 

~i_2, j -2 ki_l, j-3 ki, j-} 
= s 2 b s I ab s I aba . 

It is easy to see from that formula that the reduced form of Z~,j 

can be written as (bR~,jba) with some R~,j E G. 

I 1 if N = O 
We define ~ = ~ 3 

J I~ "j (bR~ jba). 
1~=1 , 
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It is clear that if Nj ~ O, then the reduced form of ~j 

is equal to V~b~=l R~,jba) and could be written as bR baj with 

k o , j  SN-,j 
some R E G. We have X = s ~s 2 J If N ~ O, that is, 

j j l ~ j 
• ~Nj, j 

Wj ~ i, we cannot have cancellations in Sl°'J , , j s between 

and ~j and between ~j and s 2. If N.j = O, that is, ~--~i = I, s 1 

we cannot have cancellations in ko,j ~o,j between s I and s 2. s I s 2 
k -i ~N 2 o , j  j 

X = a babas I ~--[j s 2 3' Now s o j 

xjs o = s~ °' j~j s2N3' j-lba2.a2b = 

k ~N -i 
= Sl°'J~-~, 'J s 2 J'J bah. 

These formulas show that we have no possibilities for further 

cancellations in SoX j and Xjs o. 

This contradicts the equality 

~Yi = i. 
i=l 

Now let us consider the case ~ = O, that is, all yl,...,y ~ 

are equal either to s I or to s 2. We can write X = 7~yi(= i) 

in the following form: 

N k. ~. 
(21 x = l q -  sils2 ~ 

i=O 
N where 

( ' k i + ~ i )  = U. 
i =O  
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Using a cyclic shift of indexes (1,2,...,~) we can assume 

that k > O, ~ > 0 for all i = O,1,...,N. It is clear that 
l i 

N > O. By the same arguments as above we can prove here that X 

ko ~N 
can be written in the form Sl ~s 2 where the reduced form of 

ko ~N 
is equal to bRba. HEnce X = s I bRbas 2 and we have no 

possibilities for further cancellations in X. This contradicts 

X = i. Q.E.D. 

Let us return now to the proof of Lemma 8. Let Z be the 

center of SL(2,=), PSL(2,=)= SL(2,=~Z, ,: SL(2,=) ---~PSL(2,Z) 

be the canonical homomorphis,~, x = ~(~), y = ,(~), ~i = ~(~i )' 

2 
i = 1,2,...,~, a = yx, b = y x. Clearly x = aba, y = ba 2. It 

is well known that PSL(2,~) is generated by a and b and that all 

corresponding relations are generated by the relations a 3 = 1 and 

b 2 = i. Since ~I-....~U = 1 and ~i = ~(Ai)-ix~(Ai) we can 

apply the Theorem of R. Livne, and the Complement to it. Thus 

we get that ~ ~ O (mod 2) and there exists a finite sequence of 

elementary transformations starting with some elementary 

transformation of (~i'''''~) such that if (~l,''',~/) is the 

resulting subset of PSL(2,~) then 

El = x, ~2 : y '  " ' "  ~ 2 ~ - 1  : x ,  ~ : y ,  . . . ,  ~ , - i  : x, 
=y. 
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It is clear that we can lift our elementary transformations to the 

group SL(2,2Z). Thus we get that there exists a finite sequence of 

elementary transformations starting with some elementary 

transformation of (~i,..-,O) such that if (~I,...,~U} is the 

resulting subset of SL(2,2Z) then 

®(~_l ) = x, ~(~_2) = y, ..,,(~_2~_1 ) = x, ~(~-2~ ) -- Y" "'" 

,(~_~_i ) -- x, ,(~) = y. 

From the definition of elementary transformation it follows 

that each e., i = 1,2,..-,~, is conjugate to x (and to ~, because --l 

is conjugate to ~). A direct verification shows that if ~) is an 

element of SL(2,2Z) which is conjugate to x (corresp. to ~) and 

,(~)) = x (corresp. ,(~)) = y) then 8 = x (corresp. ~ = ~). We 

obtain that for any j = 1,2,..., ~, --~2j-I = x, ~)2j = ~" 
Q .E .D. 

Now we return to the proof of Theorem 9. From Lemma 8 we 

get that we can assume that paths yl,...,¥ are chosen so that 

for any j = 1,2,...,~, B2j_l = el, B2j = e 2. A direct 

verification shows that if ~i is a positive integer with 

~l ~ ~' ~i < 12, then ~i.....~ 1 ~ 1. It is easy to verify 

that ~l" "''~12 = 1. We see that ~ ~ O (mod 12) Let k - ~ 
• " 12" 

Consider f : M > S and let f: M } S be a Lefshetz o o o 

fibration which is the direct sum of k copies of fo: Mo > So" 
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Let [al,...,a ] be the set of critical values of T, 

a L E S - ~ai. Applying to ~: M >~ our above considerations 
i=l 

we construct a system of disjoint smooth paths ~I'''''V~ 

connecting a O with al,.. ,a~ such that corresponding Pickard- 

Lefshetz transformations are given by the matrices ~i'''''~ 

with ~2j-i = ~" 9--2j = ~" j = 1,2,...,~, in some free basis 

el,e 2 of Hl(~-l(~o),~). 

Now we get from Lemma ?a that ~ is isomorphic to f. 
Q.E.D. 

Corollary i. Let f: M ---~S be a Lefshetz fibration of 

2-toruses, ~S = ~. Then M is simply-connected if and only if 

f: M > S is regular. 

Proof. a) Suppose f: M ----~S is regular. Let (al,...,a) 

be the set of critical values of f: M }S, 

S' = S-Uai,__ M' = f-l(s'), f' = f M': M' --~S', a ~ S' 
i=l o 

C O = f-l(ao) . 

From Theorem 9 it follows that there exists a set of smooth 

disjoint paths ¥i,...,¥~ in S connecting a ° with 
al,...,a ~ 

such that the corresponding Lefshetz vanishing cycles 

51,...,5 ~ E HI(Co,~ ) generate HI(Co,Z ) . That means that the 
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image of ~l(Co) in ~l(M) is trivial. Since f': M' ---> S' is a 

fibre bundle we have the following exact sequence: 

(3) ~l(co) > ~l(M') --F-->'TI(S'). 

Let Di, i = 1,2,'-.,~, be a small closed 2-disk in S with 

the center ai, s i = ~D i. From the definition of Lefshetz 

fibration we get that there exists a local cross-section ~, of 
l 

f f-l(ni): f-l(Di) --->D i. Let ~ = ~ . Connecting each ~. l 1 l 

with a point x ° ~ C o by some smooth path in M' we get a 

collection C~I,..-,~ ~] of elements of ~l(M',Xo) such that 

~(al),-..,8(~ ) generate ~l(S,ao) and images of ~I''''' ~ ~ in 

~l(M,Xo) are trivial. Clearly ~I(M') ~I(M) is an 

epimorphism. Hence we see from the exact sequence (3) that 

~l(Co) --->~l(M) is an epimorphism. Thus ~I(M) = O. 

b) Suppose that ~I(M) = O. If ~I(S) ~ O we take any 

~ ~I(S), ~ ~ Oo Then there exists a ~ ~ ~I(M) such that 

f~(~) = ~ and ~l(M) ~ O. Contradiction. Thus ~I(S) = O and 

S is diffeomorphic to 2-sphere. Suppose that the set of critical 

values of f: M --->S is empty. Then f: M --~S is a fiber bundle 

and denoting by C its typical fiber we have an exact sequence: 
o 

~2(s) > ~l(co) > ~I(M) ---~l(S). 
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But ~l(S) = O, ~2(S) = Z, ~l(Co) = = O~. Hence ~l(M) ~ O. 

Contradiction. Q .E .D. 

corollar~ 2. Let fl: M1 > Sl' f2:M2 > S 2 be two 

regular Lefshetz fibrations. Then fl and f2 are isomorphic 

(as Lefshetz fibrations) if and only if the corresponding 

two-dimensional Betti numbers b2(Ml) and b2(M2) are equal. 

Proof. Immediately follows from Theorem 9. Q.E.D. 

The next Corollary gives another approach to a result of 

A. Kas (see [i~]). 

Corollary 3 (A. Kas). Let V 1 and V 2 be elliptic surfaces 

over ~p2 with no multiple fibers, with at least one singular 

fibre and with no exceptional curve contained in a fiber. Then 

V 1 and V 2 are diffeomorphic if and only if b2(V1) = b2(V2). 

Proof. It follows from Theorem 8a that we can assume that 

V 1 and V 2 have only singular fibers of type I I. Then the 

corresponding maps fl: V1 >~pl, f2:V2 > ~pl are regular 

Lefshetz fibrations of 2-toruses. Now Corollary 3 follows from 

Corollary 2. 

Theorem iO. ~) Let f: V > 6 be an analytic fibration of 

elliptic curves, ~(f) be the number of multiple fibers of 

~)This Theorem generalizes results of Kodaira's work on homotopy 
K3 surfaces (see [19]. The case ~(f) = O was proved by A. Kas 
(see [18]). 
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f: V 

following conditions are satisfied: 

(i) A is isomorphic to ~pl, 

(ii) 

(iii) 

~. Then V is simply-connected if and only if the 

there exists a fiber of f: V --~ which (when reduced) 

is a singular curve; 

O ~ ~(f) ~ 2 and in the case ~(f) = 2 the multiplicities 

ml,m 2 of multiple fibers are relatively prime numbers. 

Proof. a) Suppose that ~I(V) = O. Then (i) is evident. 

Proof of (iii) is contained in the proof of Proposition 2 of [19]. 

Consider (ii). Suppose that all fibers of f: V > ~ are non- 

singular curves. Let a,b E ~ be such that for any c ~ ~-a-b, 

f-l(c) is not a multiple fiber of f: V --~, D a and ~ be small 

closed 2-disks with the centers in a and b respectively, 

s a = ~Da, s b = ~D b. Since f-l(a) is non-singular, that is, a 

2-torus, and (f-l(a).f-l(a))v = O we have that the differential 

normal bundle of f-l(~) in V is trivial. Hence f-l(sa) 

f-l(Da) XT 2 (corresp. D XT 2) (corresp. ) is diffeomorphic to s a a 

(f-l(sa) is the boundary of a regular neighborhood f-l(Da) of 

f-l(a) in V). We obtain dim~Hl(f-l(Sa),~ ) = 3- It is clear 

that s a > A-De- ~ is a homotopy equivalence. Hence f-l(Sa) 

is homotopy equivalent to f-l(A-Da-Db) and 

dimoHl(f-l(~-Da-Db),~) = 3. From f-l(Da) ~ Da MT2 we easily 

get that 



dim~H2(f-l(Da) , 

By the same reasons 

It is clear that 
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f-l(sa);~ ) = i. 

f-l(sb);@ ) = i. 

H 2(v,f-l(A-~Da-Db ),@) = H2 (f-l(D a).f-l(sa);@)~H2 (f-l(Db) ,f-I(%9;@). 

Hence dim~H2(V,f-l(A--~a-Db);@ ) = 2 and from the exact sequence 

H2 (V, f-i (A---~Ta-Db) ;, ) > Hl( f-l(A-Da-Db) ,~ ) > HI(V,~) 

we see that HI(V,~ ) ~ O. Thus ~l(V) ~ O. Contradiction. 

(ii) is proved. 

b) Now suppose that conditions (i),(ii),(iii) are satisfied 

and prove ,I(V) = O. 

From The~ems 8 and 8a it follows that we can assume that 

all singular fibers of V are of type I 1 or m oI. Let a,b ~ 

be such that for any c ~ a-a-b, f-l(c) is not a multiple fibre 

of f: V > A, al,...,a u ~ A be such that f-l(ai) , i = I,''',~, 

are all the singular fibers of f: V --~A which have type I I. 

From Kodaira's theory of logarithmic transform it follows that 

there exists an analytic fibration of elliptic curves 7: ~-->A 

such that ~ ~-~A-a-b): ~-l(A-a-b) > A-a-b is isomorphic to 
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flf-l(A_a_b): f-l(A-a-b) > A-a-b and ~-l(a),~-~b) are regular 

fibers of ~: ~ --->A. Take a O ~ A-a-b - ~ a i. From Theorem 9 we 
i=l 

obtain that there exists a set of disjoint smooth paths 

yl,...,Y~ in A-a-b connecting a O with al,...,a ~ such that the 

corresponding Lefshetz vanishing cycles 

51,...,5 ~ ~ Hl(f-l(ao),Z ) generate Hl(f-l(ao),Z ). We see that 

the image of ~l(f-l(ao )) in WI(V) is equal to zero. 

Let D a (correSpo Db) be a small closed disk in A-b-i=~la i 

(correspo in A-a-Uai) with the center a (corresp. b), 
i=l 

s a = ~Da (corresp. s b = ~Db) , S~a (corresp. S~b) be a cross-section 

of ~ ~-l(~a): ~-l(sa) ~>s a (corresp. ~ T-l( : ~-l(sb)--->Sb). 
s b ) 

Let ~a (corresp. S--b) be a cross-section of flf_l(sa): f-l(sa)~ s a 

(corresp. flf_l(Sb): f-l(sb) ~ sb) which corresponds to 

~a (corresp. S~b ) (recall that ~ ~(A-a-b) is isomorphic to 

@If-l(A_a_b) ) . _  Let m a (corresp. m b be the multiplicity of the 

fiber f-l(a) (corresp. f-l(b)). (Possibly both or one of ma,m b 

are equal to one.) In [19], p. 68 (Proof of Lemma 6) Kodaira 
--m a 

shows that we can choose s a (correspo Sb) such that the loop s a 

(corresp. ~) is homotopic on V to some loop in f-l(ao). From 

Im[~l(f-l(ao )) --~l(V)] = O we infer that ~a (corresp. ~b rob) is 

homotopically equivalent, to zero in V. 

Let A' = A-a-b-~ai,-- f-l(A') = M' ~' = fl, : M' ---> A' 2 -- Sl • 

i=l 
C O = f-l(ao) . 
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Since f': M' > A' is a fiber bundle, we have the following 

exact sequence: 

(~) ~I(Co) >r~l(M') ~ nl(A' ). 

Let Di, i = 1,2,.--,~, be a small closed circle in A-a-b- a . with 
j=l 3 
jdi 

the center ai, s i = ~D i. There exists a cross-section si of 

flf-l(si): f-!(si) --~ s i. Using Sl,...,su,Sa,Sb we construct such 

elements GI'''''Q~'Qa '~b in ~I(M') that 8(~i),.-.,~(~ ),~(~a),8(~b) 

generate ~I(A'), S(~alS(~bl ) is in a subgroup of ~I(M') generated 

by 8(~i) ,---,8(~), images of ~i''''" ~ ~ in ~I(V) are trivial and 

qa (corresp. ~b) is a conjugate to the loop ~a (corresp. s--b). It 

is clear that the canonical homomorphism ~: ~I(M') ) ~I(V) is an 

epimorphism. We see (from (~)I that any z g ~l(M') can be written 

in the form z = z'.z", where z' E 8.(Ul(Co)), z" is in the subgroup 

of nl(M') generated by ~i,..-,~ ,me. Then ~(z) is in the subgroup 

of ~I(V) generated by ~(Qa) and ~(~a) generates ~I(V) (because 

~l(V) = ~(~l(M')). 
We have also that q ~-i is in the subgroup of ~I(M') generated 

ab 

by ~i,''', ~ and ~'(el),~'(e2) where el,e 2 are ~enerators~ of 

~l(Co). We see that ~(QaOb I) = i, that is, ~(~a) = ~(~b). As we 

_m e _m b 
mentioned above, s a , s b are homotopically equivalent to some loops 

ma ~mb 
in C O . That means that qa ' b are conjugate to some elements of 

8'(~i(Co) ). From ~(8'(~i(Co) ) = O and ~(@a) = ~(~b) we obtain that 

[~(~a)] ma = [~(~b) ] = O. Because m a and m b are relatively prime 

we have ~(~a) = O. Hence ~I(V) = O. Q.E.D. 



§3. Kodaira fibrations of 2-toruses. 

We introduce now the following notations: 

Let k,m ~ ~ be such that m > 1 a~d k is relatively prime to m. 

For 6 > O denote D = [m ~ ~I IGI < 6}. Let G be a group of £ I 

automorphisms of D 1 × ~ consisting of transformations 

E m 

(Q,~) ---> (q,~+nli+n2) , nl,n 2 ~ ZZ( ~ E D 1 , ~ E ~) 

and let F(D i) = D 1 × ~/G. Denote by [g,~] the point on F(D¢!)m 
E ~ E ~ 

corresponding to (G,~) ~ D 1 X ~. Let ~ be a cyclic group of 

analytic automorphisms of F(D ~) generated by 
6 ~ 

2wi 
k 

g: [~,~] > [p~, ~ + ~] where p = e m , 

= F(D !)/~ • Denote by [~,~]~ the point on F 
m,k 

and F 
m,k £m 

corresponding to [~,~] ~ F(D !) and by F > D the map £m fmk: £ m,k 

given by fm,k([G,~] ~) = ~m. 

Definition ~. Let f: M ---~S be a differential map of compact 

oriented differential manifolds, dim M = 4, dim S = 2, ~S = ~. We 

say that f: M --->S is a Kodaira fibration with V multiple fibers 

where ~ ~ ~ , ~ ~ O if the following is true: 
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a) if 9 = O, f: M --~S is a Lefshetz fibration of 2-toruses, 

b) if ~ > O then there exist ~ points, say Cl,...,c 9 ~ S, 

closed disjoint 2-disks El ...,E ~ c S with the centers in 

Cl,...,c ~ respectively, 9 pairs of integers (ml,kl),...,(m~,~), 

where for any j = 1,2,...,v, m > 1 and k is relatively prime to 
J J 

m., and v commutative diagrams J 

f-l(Ej) ~ Fmj,kj 

f I ]fmj,kj 
E .  > D , j = 1,2,...,~, 

such that 

(i) f M_& f_l(~j ) : M- ~7 f-l(Ej ) >S - k/E 
j=l j=l j 

j = l  

is a Lefshetz fibration of 2-toruses; 

(ii) for any j = 1,2,...,~, ~ and ~ are orientation preserving 
3 J 

diffeomorphisms (where orientations of D and F m are defined by e j , k j  

complex structure). 

Let T(f) (c S) be the set of critical values of f: M ~ S if 

= O and the set of critical values of 
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-i : M-~f-I(Ej)" ~ >S - " ~JE. f 
M-j=~if (Ej) j=l j=l j 

if V > O, T'(f) = ~ if ~ = O and T'(f) = {Cl,...,c 9] if 9 > O. 

We call T(f) (corresp. T'(f) set of non-degenerate (corresp. 

degenerate) critical values of f: M --->S. 

Definition 8~. Let f: M > S be a Kodaira fibration with 

v multiple fibers and in the case ~ > O let [Cl,..-,c ~} be the 

set of degenerate critical values of f: M > S, and 

{EI,...,Eg} , [(ml,kl),...,(m~,~)],C(~l,)l),...,(~,)~)} be the 

same as in Definition 8. Let D'6 = [G ~ ~ 0 < I~I < £], 

• = f-l(D). F'(D£) = [[@,~] ~ F(D6) ~ ~ O], Fm, k m,K 6 

Following Kodaira we define a map 

Am,k: F~, k ~F'(D) 

k 
by Am,k([~,¢]~) = [ m ~ _ 2~i log =] 

Let ~ > O and F(De) j (corresp. De,j) , j = 1,2,'-.,~, be ~ copies of 

F(DE) (corresp. De). 

Define a new ~-manifold ~ as union of M - ~ f-l(cj) and 
j=l 

F(De)I,.-.,F(De) 9 where we identify x ~ f-l(Ej-cj), j = 1,2,.-.,v, 

with Amj,kj~j(x ) E F'(De)j. 
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Define the 2-manifold ~ as union of S - ~ ]c and 
j=l ] 

De,I,..-,De, v where we identify a E E -c.,] J j = 1,2,...,~, with 

,j(a) E D£,j. Let ~: ~ >~ be a map defined by 

~ f(x) if X ~ M - ~ ~ C 
J ~(x) = j=l 

~j(x) if x ~ F(D6) j where ~ ([~,~])j = Q. 

In the case M = O we take ~ = M, ~ = S, ~ = f. It is clear 

that f: M --->~ is a Lefshetz fibration of 2-toruses and that the 

set of non-degenerate critical values of f: M --~ S coincides 

with the set of critical values of f: M ---~S (by evident embedding 

s - Uo- 
j=l J 

We shall call f: M ..> ~ the Lefshetz fibration corresponding 

to Kodaira fibration f: M --~S. 

Definition 9. Let f~ M --~S be a Kodaira fibration. We 

call f: M --->S regular if S is diffeomorphic to a 2-sphere and 

the set of non-degenerate critical values of f is not empty. 

Let e(M) be the Euler characteristic of M. We define 

e(M) 
~(S) = 12 and (following F. Hirzebruch) call it arithmetical 

genus of M. 
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Lemma 9. Let f: M --->S be a Kodaira fibration with 

multiple fibers f: M ~ be the corresponding Lefshetz 

fibration. 

Then i) 

ii) 

e(M) = e(~); 

if f: M --~S is regular, then e(M) > O and 

e(M) --O (mod 12), that is, Z(M) is a positive integer. 

Proof. i) Let ~Cl,...,c 9] be the set of degenerate critical 

values of f: M --~S. It is clear that e(f-l(cj)) ~O~ 

e(F(DE) j - F'(DE)j) = O, j = 1,2,...,9. We have 

9 9 
e(M) = e(M, ~f-l(cj)), e(~) = e(M, ~-l(cj)). 

j=l j=l 

Hence e(M) = e(~). 

ii) Immediately follows from i) and Theorem 9. (7: ~--~ 

is a regular Lefshetz fibration if f: M --~ S is regular). 

Q .E .D. 

Lemma iO. Let f: M --~S be a regular Kodaira fibration with 

multiple fibers. Suppose that ~ ~ 1 and ~(M) = i. Then M is 

diffeomorphic to P ~ 9Q. 

Proof. If ~ = O then Lemma i0 follows from Theorem 9. 

Consider the case 9 = i. Let 7: ~ -->~ be the Lefshetz 

fibration corresponding to f: M --~S. By Lemma 9 Z(~) = ~(M) = 1 
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and by Theorem 9 7: ~--~ is isomorphic to fo: Mo > So" 

Identify f: M --~ with fo: Mo > S o . Let c I be the 

degenerate critical value of f: M---~S and El, (ml,kl),(~l,~l) 

be the same as in Definition ~. Identify M-f-l(cl),F(De) 1 

(corresp. S-Cl,De,l) with their images in M (corresp. ~). Let 

~i be the center of De, I. Without loss of generality we can 

assume that DE, 1 (considered in So) is contained in some 

coordim te neighborhood U of ~i in So (= ~pl) with complex 

coordinate T and that T(~I) = 0 and De, 1 is given in U by 

I~I < E. Let ela,e2a , a C De, 1 ,be a basis of Hl(~-l(a),= ) 

corresponding to the vectors i,l E ~ by our identification 

~'I(DE,I) = F(De) 1 = D6j I x ~/G. Using the family 

{ela,e2a;a ~ DE,I~ we can identify the complex manifold f~I(DE,I) 

with De,IX ~/G W where G is the group consisting of analytic 

automorphisms 

(T,~) > (v, ~+nl.J(T)+n2) , nl,n 2 ~ 77.. ('I" ~ DE,I, ~ ~ ~) 

and (u(T) is a holomorphic function in D6,1 with Im W(T) > O. 
1 

I Let E* = e ml, D£. = {@ E ~ I~I < e*], G*W be the group of 

analytic automorphisms of D£.X~ consisting of transformations 

(,,T) ---> (Q, ~+nlw(~ml)+n2) , n.,n~A n ~ = (Q ~ D ~ E ~) 

and F(De.,w ) = D£.~/G~. As above we denote by [~,~] the 
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point on F(DE.,W ) corresponding to (~,~) E D6. X(~). Let ~ 

the cyclic group of analytic automorphisms of F(De.,w) 

generated by the transformation 

kl ml [ a ,~ ]  ~ [ p ~ ,  ~ + N-~I], p = e 

be 

and Fml,kl, W = F(De.,W)/~W. Denote by [~,~]~ the point on 

Fml,kl,Wl corresponding to [~,~] E F(DE.,W). Let 

D6, 1 = [~ E D6, 1 T / 0}, 

Fml,kl, m = [[~,~]~ E Fml,kl,~l ~ ~ 0}. 

Define a holomorphic map 

aml, l, l: Fml,ki,  f l(D , I) 
m I k 1 

^ml,xl,~l ([q'~]~) = [~ ' ~-2-~Y log ~]Mo,~ 

where we denote by [T,~]Mo, ~ the point on f~l(De,l) corresponding 

to (~,~) ~ D6,1X~ by our identification fol(DE,l) = D6,1X~/G W. 

Define a new complex manifold M o as union of Fml,kl, ~ and 

we " (C 'W ) with Mo-f~l(~l) where identify x E Fml,kl, w Fml,k 1 

Aml,kl,W(x) ~ f~l(De,l)(C Mo-fol(~l)). 
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A 
It is clear that M ° is obtained from M o by Kodaira's 

logarithmic transform at ~i (see [~], p. Z6~ >. Let 

fo: Mo > so be the holomorphic map canonically corresponding 

to fo: Mo > So" 

Let KMo (corresp. K~o) be the canonical bundle of M O 

(corresp. ~o)" Using KMo = -[f~l(a)], a ~ So-~ 1 and the 

Kodaira formula for canonical class for elliptic surface with 

multiple fibers (see [~], p. 7Z2 ) we have 

KAM 0 = - [ f o l ( a ) ]  + ( m l - l ) [ f o l ( C l ) ] .  

Evidently [f~l(a)] : m [ f ~ l ( ~ l )  ] .  Hence K~ : - [ f ~ l ( ~ l )  ] 
0 

and all puri-genuses of M O vanish. Since ~l(Mo) = 0 

/k 
(Theorem iO) we have that M is a rational surface. Since 

o 

A A could be obtained e(Mo) = e(Mo) = 12 we have b2(Mo) = 10. M O 

from some minimal rational surface by :-processes. Because any 

minimal rational surface is diffeomorphic either to P or to P ~ Q 

or to S2XS 2 we s e e  t h a t  M ° i s  d i f f e o m o r p h i c  t o  P ~ ~ Q .  

We shall prove now that M is diffeomorphic to M o- 

Let Ul(~ ) = Re ~(~), Vl(T ) = Im ~(T) and A : ~ >~ be 

a diffeomorphism defined by 

> Re ~ + Ul(~)Im ~ + ivl(~)Im 
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(A T is a non-degenerate real-linear orientation-preserving 

transformation because Vl(~ ) = Im w(~) > 0). As above, we use 

for the points of f-l(El) (corresp. ~:I(D6,1) ) the notation 

o 

A: f-1(E z) 

[~,~]~ 

Define a map 

~ l ( D  l) by 

> [~, Aamz(~)]~o • 

It is easy to verify that A is a diffeomorphism and that 

A )-A = f f-l( El ) (fo ~:I(D, I) 

Y {" ~ D~, l I'I < ~'J ~:,[1(y) s: ~H. Let £ ' = ~, = _ , , _ 

= A f-z(~): f-1(~ 

M' = f-l(s,), 

> (aN), s' = s-:~', s' = s -~, o o o 

"o = fo ( o ) ,  = fo ] (so  ). 

Let iM: M' --->M~, i%: M'o b M'o be isomorphisms 

corresponding to our constructions of 7: M ~ and 

/k A 
fo: MO > So' ~:- f: l(s) '- > f:l(s)_ be a diffeomorphism which 

is equal to 



205 

Let ~ be an element in Q (T 2) corresponding to ~ and the 

trivialization of f;l(~) >s given by f;l(~) c f;l(D£,l) = 

D6,1X~/G. Using our choice of {el,a'e2,a;a E DE,I ] for the 

identification f~l(D¢,l) = De,I×~/G w it is easy to verify that 

E ~o(T2). Now by Remark to Lemma ? (see p. 168) we obtain a 

diffeomorphism f~l(£) = _ ~" Define ~: M ~ M O by 

f-l(~) = A f-l(~), A I f-l(S') = (i~o)-i ° ~ " iM" We see 

^ 
that M is diffeomorphic to M . Thus M is diffeomorphic to 

O 

p ~ 9Q QED 

Definition iO. Let fi: Mi --> Si' i = 1,2, be two }(odaira 

fibrations. We define direct sum of Kodaira fibrations 

fl~f2: MI~M 2 > S 1 ~ S 2 by the same way that in Definition ? 

we defined direct sum of Lefshetz fibrations (see Def. Z, P. I?~). 

Lemma Ii. Let fi: Mi --->Si' i = 1,2, be two Kodaira 

fibrations, f: M --~S be a Kodaira fibration which is isomorphic 

to fl~f2: MI~JM 2 > S I ~ S 2. Suppose that nl(Ml) = O = ~I(M) = O 

and the intersection form of M 1 is of odd type. 

Let U be an open 2-disk in S 2 which does not contain 

critical values of f2' b,c E U, Ybc be a smooth path in U 

connecting b with c, s b c fjl(b), Sc c fjl(c) be two smooth 

circles such that Ybc Sb, s c generate Hl(f-l(c),~ ) where 
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Ybc*: Hl(f-l(b)'Z) 

corresponding to Ybc" 

i) 

ii) 

>Hl(f-l(c),~ ) is the canonical isomorphism 

Then 

M # P ~Q is diffeomorphic to M 1 ~ M2, where M 2 is a 

~ - m a n i f o l d  o b t a i n e d  f rom M 2 b y  s u r g e r i e s  a l o n g  s b a nd  Scl  

if fl: M1 >S 1 is isomorphic to f : M ~=> S o o o 

(see the formulation of Theorem 9) then M ~ P is 

di f feomorphic to 

P ~ M  2 

Proof. Let a (i) E Si, i = 1,2 be some non-critical value 

of fi' C(i) = fl l(a(i))' ~(i): TC(i) ~ C(i ) be a tubular 

neighborhood of C(i ) in M..l Since (C~i))M. = O, i = 1,2, there 
l 

exists an isomorphism ~ of fiber bundles ~(i) I~TC(1): ~TC(I ) b C(I ) 

and ~2) ~TC(2): ~TC(2) ~ C(2 ) which reverses orientation of fibers. 

Let B: C(I ) ~C(2 ) be an isomorphism of bases corresponding to 

~. Using the definition of direct sum of Kodaira fibrations, we see 

that we can identify M with [MI-TC(1)] ~ [M2-TC(2)]. Let 

x I ~ C(1), E 1 be a small open 2-disk on C(I ) with the center Xl , 

-i 
~[) ~l)(C(1)_El) ' TCi2 ) ~-i = = (2)(C(2)-8EI). Oonsider 

s = ~(~(1)(Xl)) as a subset in M. Let M be a 4-manifold 

obtained from M by surgery along s. Now using the same arguments 

as on pages 45-47 we see that there exists an orientation reversing 
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diffeomorphism 

diffeomorphic to 

8": ~TCil ) >~TCi2 ) such that M~ is 

Now suppose that fl: M1 b S 1 is isomorphic to 

f : M > S . We know that M is isomorphic to ~p2 with nine o o o o 

Q-processes such that the corresponding exceptional curves, 

say ~<l) (9), ,...,~ are cross-sections of f : M > S o . o o 

Identifying fl: M1 >S 1 with fo: Mo > S o we can assume 

that x I ~(1) N C(1) and ,-I ~(i) = (1)(Xl) = n Tc(1). Let 

~i: M1 > ~i be a canonical contraction of Z (I) to a point, 

~il) = QICil)" T~il) = Q(TC(~). It is evident that we can 

identify TCil ) with T~il) (by identification MI-~(1) with 

MI-~I(Z(1)) . Using the same arguments as on page ~8 we see 

that M ~ P is diffeomorphic to 

[MI-TC~)] U~ [M2-TCi2)]. 

NOW applying a result of R. Mandelbaum (see [5] ) which we 

mentioned and used on page 55 we get that M ~ is diffeomorphic 

to M 1 ~ M 2 (where M 2 is defined as in the formulation of the 

Lemma). In the case when fl: M1 > S 1 is isomorphic to 

f : M >S o we obtain that M ~ P is diffeomorphic to o o 

M 1 ~ M2, that is, to P # 8Q ~ M~. Since the intersection form of 



208 

M 1 is of odd type we have that the intersection form of M ~ is also 

of odd type. Using -l(M) = O and results of W~II (see [8]) we 

obtain that M-- is diffeomorphic to M ~ P ~ Q. Thus 

and in case ii) M ~ P ~ P ~ 8Q ~ M~ M # P ~ Q ~ M 1 ~ M 2 ~ 

Lemma 12. Let f: M -~ S be a Kodaira fibration with 

multiple fibers. Then M is simply-connected if and only if the 

following conditions are satisfied: 

(i) f: M --~S is regular~ 

(ii) 0 ~ 9 ~ 2 and in the case ~ = 2 the corresponding 

multiplicities m I and m 2 are relatively prime. 

Proof. That is almost word-by-word repetition of the proof 

of Theorem i0. Q.E.D. 

Q .E .D. 

Lemma 13. Let L be a 3-dimensional manifold diffeomorphic 

to a ~ense space (see [20]), M LXS 1 pxS 1 = , C 1 = where p E L, 

C 2 be a smooth circle in M with C 2 N Cl = ~, N be a 4-manifold 

obtained from M by surgeries along C 1 and C 2. Suppose that 

WI(N) = O. Then N is diffeomorphic to an S2-bundle over S 2 

(that is, to $2×S 2 or to P ~ Q)o 

Proof. Let ~" =1 [~i ~ ~I }~i ' 

i = %-- c,q ,, lql <_ 
= i], s i= {~i Ee ll,il = 1}, 

D1 = {~i E ~ i~ll <_ i], 
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= ~I~2, Z = DIXS2, ~ = ~x~3, Y = ZXS 3. We can identify L with 

U Z where ~: ~ > ~Z is defined by 
m 

,(TI,T2) = (~ ~,~ ), a,b,c,d ' Z, detll ac II = i. Now• we 

can assume that M = ~ U~ Y, ~: ~--~SY is defined by 

,(Lj~j~3) = ~(~j~)×Lj and p ~ Z, p = (O,1)~ Cl = pxS 3. 

Denote by 

~} I' = S2-I ° , I o = Ix ~ $2, - [ ~ arg Te(x ) ~ , o 

D(T3) = DIXIoXY , y ~ $3, T3(y ) = T3, Te I = ~ D(,3)(union in Y). 

Let ~: TC1 --->C 1 be defined by 

X(Vl,~2,~ 3) = (O, l ,V3) .  

We can consider ~: TC I --->C~ as a tubular neighborhood of C 1 in M. 

Now we have two possibilities for a surgery of M along C 1 which 

correspond to two non-equivalent trivializations of k: TC 1 ~ C1, 

We can assume that these two trivializations, say 

fo: TCI >D(1)XS3' fl: TC1 > D(1)XS3, are defined as follows: 

fo(T l 'V2 '~3)  : ( ( ~ l ' ' 2 ' l ) ' v 3 ) '  f l (T l ' ~2 '~3  ) = ((Vl " ~ l ' ' e ' l ) ' ' 3 ) "  

Define an autodiffeomorphism u: Y --->Y by 

~(TI,~2,T3) = (TIT3,T2,T3). Let ~' = ~ BY: BY ~Y and 

~. = ~-l ~: ~ > ~. Let II a' b' c d' II = II a b -1 ' c d II " It is easy 

to verify that ~'(~1,72,~3) = (~',72~ 3 ,T3). Now define an 
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, -  ~ , -  ~ ' , ~ )  
autodiffeomorphism ~: ~-->~ by ~(~I,~2,T3) = t~ 1 3,T2 3 

We obtain an isomorphism 8: M ---~M with 8 = ~, = ~. It is 

easy to see that 8(C1) = CI, 8(TCI) = TC1, XB = &. Since 

(8-i D(1)xid)'fl'8(Tl'T2'T 3) = (8-1 D(1)Xid)°fl(Vl~ 3'T2'T3 ) = 

= (8-1 D(1) X id)((T1,T2,1),T3) = ((TI,~2,1),~3) we have that 

(~-l D(1) X id).flo 8 = fo" Hence ~-i transforms fl in fo 

and we have to consider only the case when our surgery corresponds 

M[c z] 
M[c z] 

to the trivialization fo" Denote by M[CI] a b-manifold obtained 

from M b y  s u r g e r y  a l o n g  C 1 c o r r e s p o n d i n g  t o  fo"  

as follows: Let D 3 = [T 3 E ~I IT31 ~ 1]. 

= ~ Uf, (~D(1)XD3) , where 
o 

We can construct 

Then 

f '  = o  fo ~T(C1): ~T(C1) > ~D(1)XS3" 

NOW for any x 6 D 1 denote by 

s2(~) = (xxI~xs 3) u (xx~I~ 3) 

where union is taken in 

M[c 1] M-7 T, 
Let 

Xo E DI, ~l(Xo ) = O, TS2(Xo ) = ~/ 
x~D l 

k' :  TS2(Xo ) > S2(Xo ) 

(xX~:CoXD 3) E 3D(1)XD3) o 

S2(x) (union in M[Cl] ) and 
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be defined as follows: If z (S2(x), x ( D~, 

where 
~E ((~,oXS 3) u(~i~ ×D 3) 

z = xXy, 

(boundaries are identified by evident way), then ~'(z) = XoXY. 

Identify S2(Xo) with (Io×S3> U (~I~KD3) and let D 3 = I~XD 3 

be a 3-disk with boundary (I~×S3) U (~I~xD3) = S2(Xo ). Now 

identify l': TS2(Xo ) ~ S2(Xo ) with pr: DI×S2(Xo) > S2(Xo ) 

and let X be a t-manifold obtained from M[Cl] by surgery along 

S2(Xo ) corresponding to the given trivialization. We have 

x = M[c l] - Ts2(Xo ) u (s i x z' x o 03) 

where the boundaries are identified by evident way. 

Using 

M-~c I : M-(DlXloXS 3) = (ff~31U(olXIoXS 31 
and 

M[CI]-TS2(Xo) = {[(Z'XS3)U(DIXIoXS3)]U[()D(1)XD3]} - 

- {(ozxzoxs 3) u (OlX~ZoXO3)} 

we have 

x = [(~'xs~) u (slXZoXD3)] 

: (~'X~)U(SlXZoXD 3) 

u [SlXZoXD3]. 
We see that we can identify X with 

(ffx~3lU(SlXS2×D3) (~x~3)u,(~zxo3) 
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which is isomorphic to (~3) Uid (~×~3) , where 

Using 

we see that X is isomorphic to S3XS 1 and we can consider M[Cl] 

as a ~-manifold obtained from S3xs I by surgery along a smooth 

circle, say ~i' embedded in S3XS I. Withou~h loss of generality we 

can assume that C 2 c (~-~). Thus the image of C 2 in X is well 

defined° Denote the corresponding smooth circle in $3×S 1 (~ X) 

by ~2" Now we can consider N as a 4-manifold obtained from 

S3XS 1 by surgeries along ~i and ~2 (~ln~2 = ~)" Let x ~ S 3, 

= xxsl' ~i (rasp. ~2) be homologically equivalent to nj 

(rasp. n2~ ). Since ~I(N) = 0 we have that either n I = O, n 2 ~ 0 

or n I { O, n 2 = O or n I ~ O, n 2 ~ O, nl,n 2 are relatively prime. 

Consider the third case, that is, n I ~ O, n 2 ~ O, nl,n 2 are 

relatively prime. We can assume n I > O, O < n 2 ~ n I. Let 

n I = n2q+r , where r,q ~ ~. O ~ r < n2, ~(r) be a smooth circle 

in S3xS 1 homologically equivalent to r~ and such that 

~(r) ~ ~i = ~' ~(r) n L 2 = ~, x(n2 ) be a 4-manifold obtained 

from X by surgery along ~2 and ~,~'(r) be the images of ~l,~(r) 

in X(n2). It is clear that ~l(X(n2)) = ~/n2= and that ~'l,~'(r) 
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are homologically equivalent in X(n2) (that is, ~,~'(r) correspond 

to homotopically equivalent embeddings of S 1 in X(n2~. Now we use 

the following remark of Wall (see [8], p. 135): For 1-manifolds 

in 4-manifolds every homotopy may be replaced by an isotopy. We 

see that we obtain N by performing surggry in X(n2) along ~'(r), 

that is, we obtain N from $3×S 1 by surgeries along 42 and ~(r). 

Hence we can replace the pair (nl,n2) by (n2,r) . Repeating this 

process after finite number of steps we come to the pair (n',O). 

Thus we could assume from the beginning that our pair (nl,n2) is 

(n',O). Because ~I(N) = O we have n' = I. But then 

X(n') = X(1) ~ S ~ and N is diffeomorphic to an S2-bundle over S 2. 

Q.E.D. 

Lemma i~. Let f: M -->S be a Kodaira Fibration. Suppose 

that ~I(M) = O and X(M) = 1. Then M ~ P is diffeomorphic to 

2P 9Q 

Proof. Let 9 be the number of multiple fibers of f: M --->S. 

By Lemma 12, v ~ 2 and f: M ---> S is regular. If ~ ~ 1 then our 

Lemma follows from Lemma i0. Consider the case ~ = 2. 

From Lemma 9 and Theorem 9 it follows that the Lefshetz 

fibration corresponding to f: M ---~S coincides with fo: Mo --> So" 

Let {ci,c2] , CEI,E2~ , [(ml,kl),(m2,k2)] , {(,i,~i),(,2,~2)] be 

defined for f: M --->S as in Definition ~. From Definition 8&it 
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2 
follows now that we can consider M ° as union of M - j~=if-l(cj) 

and F(D£)I,F(D6) 2 where we identify x ~ f-l(Ej-cj), j = 1,2~ 

with A mj ,kj@j(x ) E F'(D6) j (see Definition 8 a) We can identify 

also S o with S so that for j = 1,2 f~l(Ej) will be equal to F(D 6 

Thus we have an identification of f~l(Ej) with Ej×q~/(i,l)>, 

where (i,l) means the group of automorphisms of • consisting of 

)j 

transformations 

~ ~ + nli + n 2, nl,n 2 ~ ~ . 

Let elj,e2j be the basis of homologies of Hl(f~l(cj),= ) 

corresponding to the vectors i and 1 on ~. We shall prove that 

there exists a smooth path ~ on S O connecting c I and c 2 and such 

that ~ does not contain critical values of f : M -->S and the 
o o o 

isomorphism ~: Hl(f-l(cl),~ ) ~Hl(f-l(c2),~), corresponding 

to ~ has the following property: 

~(ell) = el2, ~(e21) = e22. 

Let x= II O - 1 II, ~ = . Tt is well known that the group 

SL(2,=) is generated by the matrices ~ and ~. For any A ~ SL(2,ZZ) 

denote by d(A) the minimum of the lengths of all words in the 

alphabet x,y,x ,y which correspond to A. Let ~ be the set 

of all smooth paths y which connect c I with c 2 and do not contain 

critical values of fo: Mo ---~So" For any y E ~ let 
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Qy: Hl(f-l(cl),~ ) --->Hl(f-l(c2),~ ) be the isomorphism corresponding 

to Y and Ay be the element of SL(2,~) corresponding to ~y and to 

the bases ell,e21 of Hl(f-l(el),= ) and e12,e22 of Hl(f-l(c2),= ). 

Denote by dy = d(Ay). Let ~ = min dy and ~ be an element 
y6~ 

of n with d~ = 7. We claim that d~ = 0 (that is, we can take 

= ~). Suppose that d~ > O. Take a closed 2-disk D in So such 

that ~ c int(D) and D does not contain critical values of 

fo: Mo --> So" From Lemma 8 it follows that we can find two 

critical values, say al~a2, of fo: Mo --~So and two smooth paths 

¥I,Y2 on S O such that Y1 N Y2 = Cl' Y1 (corresp. M2) connects c 1 

with a I (corresp. a2) , Y1 (corresp. y2) does not contain critical 

values of fo: Mo --->So different from a I C corresp, a2) and if 

f-i ~i (corresp. ~2) denotes the automorphism of HI((el),~) 

corresponding to Y1 (corresp. y2) then the unimodular 2-matrix 

A(~I) (corresp. A(~2) ) which corresponds to ~i (corresp. G2) and 

to the basis ell,e21 of Hl<f-l(cl),= ) is equal to ~ (corresp. 5). 

It is easy to see that we can assume that each of yi,Y2 intersects 

~D only in one point. Hence we can change ¥1,¥2 so that we will 

have ~i N ~ = Cl 9 Y2 N ~ = c~. Let W(A~) be a word in the 

.... 1 ~-i 
alphabet x,y,x ,y which corresponds to A T and has the minimal 

length. We can assume that there exists a small circle s on S O 

with the center c I and such that each of ¥i,Y2,~ intersects s 
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only in one point. Let bl = ¥i N s, b 2 = Y2 N s , b = ~ ~ S. 

Let us say that we are in the case I (corresp. II) if the triple 

(bl,b,b2) corresponds to positive (corresp. negative) rotation of s. 

Let ~ be the first letter in W(A~) from the left. (We shall write 

here the composition of transformations from the left to the right, 

as multiplication of matrices:). We say that we are in the case 

~ i  ~-i 
(I,~') (corresp. (II,e')) where ~' is equal to one of x,y,x ,y , 

if we are in the case I (corresp. II) and ~ = ~' Now for each of 

our eight cases we construct new path ~' as it is shown in Fig. iO. 

It is easy to verify directly that AT, = ~ . Hence 

d~, = d(A~,) < d(A~) = d~. We obtain a contradiction with the 

minimality of d~. Thus d~ = O and we take ~ = ~. 

Let D be a closed 2-disk on S O such that E = int(D), 
-- 3 

j = 1,2, ~ C int(£). Using ~(ell ) = el2 , ~(e21 ) = e22 we 

can construct a trivialization of fo f~l(D): f~l(£) __~, say 

fol(D) -- > D × T 2 

D > D 
- -  i d  - -  

where T 2 = ~/(i,l), such that for fol(Ej), j = 1,2, ~ coincides 

with our previo~as identification fol(Ej) = Ej X (~/(i,1)). 
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Case (I,~) 

Fig. I0 

~2 
Case (I,~) 

Case (I;~-l) 

~2 7 

Case (II,~) 

N 

% w 
case (i,g-~) 

case (II,7) 

Case (II,~ -1) 

/ 

Case (II,~ -I) 
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Now it is easy to verify that f: M ---> S is isomorphic to the 

direct sum of fo: Mo --->So and a Kodaira fib=ation f2:M2 > $2 

which is constructed as follows: we take S 2 = ~pl with homogeneous 

~l ~o c o o r d i n a t e s  ( ~ o : ~ i ) .  L e t  • = ~ T '  = - -  

• ~ l '  

E = {x E ~pll~(x ) <_ el, E' = [x ~ cpl, T'(x) < e}, £ < i. 

We shall use the following notations: Let k,m E ~ • 

S 1 : {w ~ ~ i ~ l  = 1 } ,  D = Ca ~ ~II~I < 6} 

G be a cyclic group of automorphisms of D 1 X S 1 generated by 

2hi 
~: [~,w] ---> [~6,wpk], where p = e m ~ ~ D 1 w ( S ~ 

E 

L = (D 1 X SI)/G 
m,k E~ -- -- ' 

[O,w] N be the point of Lm,k, corresponding to [~,w] E D 1 X ~l 
6 ~ 

f--m,k: Lm,k >D e be the map defined by f~,k([~w]~) = Qm and 

L" = f-i (o -o) 
mjk -~mjK E " 

Let Co,Coo E ~pl be defined by T(Co) = O, ~'(coo ) = O, 

and E. = E -Cos E.' = E'-Cco, U = ~pl_(coUCoo). Define a 

3-dimensional manifold L as the union of UXS I, 

where we identify x ~ L , x = [Q,w] N, with 
ml,k 1 

-k 
m I , ~ , 1 sl sl [~ ,w~]~T~ ] ~ E. x_ cu x_ 

Lml,kl'Lm2,k 2' 
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and x' ~ L , x' = [~',w'] ~ with 
m2jk 2 

m2 ~, -k 
[ ( ~ , )  , w,(_[~_q.) 2 ]  ~ E: X S 1 = U X S J-. Let 

be defined by { iii enx s 

f(x) : x) when x E Lml,kl, 

f_m2Jk2(X) when x g Lm2,k 2 

f : L ---> ~p1 

NOW we take M 2 = LXS 1 and f2 = f°(PrL)" 

By Lemma llii ) we have that M ~ P is diffeomorphic to P ~ 8~M~ 

~2here M~ is a b-manifold obtained from M 2 by surgeries along 

certain disjoint smooth circles s b and s constructed in Lemma ii. 
C 

This construction (see the formulation of Lemma ii) is such that 

we can take s b = pXS I, s = ~×q, where p E L, q E S 1 and ~ is a 
C 

smooth circle in L. Since ~I(M) = O we have ~I(M #P) = O and 

then ~I(M~) = O. Now it is easy to see that L is diffeomorphic 

to a lense space and because ~I(M2) = O the circle ~ must be a 

representative for a generator of ~I(L). Using Lemma i}, we obtain 

S 2 " that M 2 is diffeomorphic to an S2-bundle over Because the 

intersection form of P ~ ~Q is odd, we have that P ~ 8Q 4 M 2 is 

diffeomorphic to P ~Q # P~ Q (see [8]). Thus M ~ p ~ 2P ~ 9Q. 

O .E .D. 
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Theorem ll. Let f: M ---> S be a Kodaira fibration with 

multiple fibers such that ~I(M) = O. Then X(M) = e(M)12 is a 

positive integer and the following is true: 

i) if ~(M) = 1 and ~ ~ 2 then M is diffeomorphic to P ~ gQ~ 

ii) in all cases M ~ P is diffeomorphic to 

2×(M)P 4 (IO×(M)-I)Q. 

Proof. i) follows from Lemma 12 and Lemma iO. Because 

~I(M) = O we have that X(M) is a positive integer by Lemma 12 and 

Lemma ~. 

ii) Using Lemma i@ we see that it would be enough to prove 

the following inductive 

Statement (~). Suppose that X(M) > i and that for any Kodaira 

fibration f': M' --->S' with ~I(M') = O and X(M') < X(M) we have 

that M' ~P is diffeomorphic to 2X(M')P ~ (IOX(M')-I)Q. Then 

M # P is diffeomorphic to 2X(M)P ~ (IOX(M)-I)Qo 

Proof of Statement (e). From Lemma 12 we know that ~ < 2 and 

that the Lefshetz fibration of 2-toruses ~-: M----> ~ corresponding 

to f: M --->S is regular. We have also e(M) = e(M) (Lemma 9). 

Since X(M) > l, we obtain from Theorem 9 that there exists a 

regular Lefshetz fibration of 2-toruses ~2: % ~ ~2 such that 

~: M b ~ is isomoDphic to the direct sum of f : M > S and 
o o o 

~2: % ~ 2 "  Using Definitions ~, 8~ and lO we can construct a 



221 

Kodaira fibre tion 

f2 

of 

f2:M2 ---~$2 with v multiple fibers such that 

: M2 >~2 is the Lefshetz fibration corresponding to 

: M 2 >S 2 and f: M ---->S is isomorphic to the direct sum 

fo: Mo ----->So and f2:M2 ----->S2" By Lemma ii ii) we have 

that M ~ P is diffeomorphic to P # ~Q # M~ where M 2 is 

obtained from M 2 by surgeries along two smooth disjoint circles 

embedded in M 2. Let S 2 ~ S 2 be either S2×S 2 or P ~ Q. Applying 

Lemma 12 to f: M ~S and f2:M2 ~S 2 we obtain ~I(M2) = 0 

(we use ~l(M) = 0). Then by the results of Wall (see [8]) we get 

~ S 2 that M 2 is diffeomorphic to M 2 ~ 2(S 2 x ). Hence M # P is 

diffeomorphic to P ~ ~Q ~ M 2 # 2($2XS 2) . Since the intersection 

form of P # 8Q ~ M 2 is of odd type we obtain (again referring to 

[8]) that (P ~Q~M2)~2(S2×S2 ) = (~Q4~)#2(P~) ~M2~P~IOQ ). 

It is clear that X(M) = X(M2)+X(Mo), that is, ~(M2) = X(M)-l. 

Using the supposition of the induction we have that 

M 2 ~ P ~ 2×(M2)P ~ IO×(M2)-I)Q. 

Hence 

M~P=M 2~P4loQ) =(M 2~p) # (2P# loQ) = 

2X(M2)P ~ (IOX(N2)-L)Q # 2P # IOQ 

2×(M)P ~ (lo×(M)-I)Q. Q.E.D. 



~4. Topology of simply-connected elliptic surfaces. 

Theorem 12. Let V be a simply-connected elliptic surface. 

Then V is almost completely decomposable. 

Proof. Without loss of generality we can assume that V is 

a minimal elliptic surface, that is, there exists a holomorphic 

map f: V • ~ ~, where ~ is a compact Riemann surface such that 

for generic x E A, f-l(A) is an elliptic curve and there are no 

exceptional curves in the fibers of f. From Theorems 8 and 8a it 

follows that we can assume that all singular fibers of f: V > 

are of type m oI or I I. 

It is easy to see then that f: V > ~ will be a Kodaira 

f±bration. Now the theorem follows from Theorem Ii. Q.E.D. 

Corollary. Let VI,V 2 be simply-connected elliptic surfaces 

with b2(Vl) = b2(V2) , ~(Vl) = ~(V2) (~(V) is the signature of V). 

Then V 1 ~ P is diffeomorphic to V 2 ~ P. 



APPENDIX II 

R. Livne. A theorem about the modular group. 

Let G be a group, and (al,...,an) be an n-tuple in G. Let T 

be the set of all n-tuples (bl,--.,bn) in G which satisfy: 

i) blb2...b n = ala2...an; 

2) there is a permutation ~ of l,'--,n such that b. is 
l 

conjugate to a~(i). 

For 1 < i < n-I define transformations R. on T: 

Rj(bl,...,bj_l,bj,bj+l,bj+2,... ) = 

(bl. -i • .bj_l,bj +l,bj +ibjbj +l,bj +2' " " " ) " 

It is clear that R. maps T into itself: 
3 

still satisfied after their application. 

In fact, the inverses are given by 

the conditions i), 2) are 

Moreover, R. are bijective. 
3 

R~l(bl,...~j_l,bj ,bj +l,bj +2 "''') = (bl' "'~j-l'bjbj +lb~l'bj ,bj +2"" "" )" 

Both R. and R[ 1 will be called "the elementary transformations". 
3 3 

The analysis of "global monodromy" in complex geometry motivates 

the following algebraic problem: 

Let C be the group of transformations of T which are equal to finite 

sequences of elementary transformations. Describe the action of C 
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on T. (For example, when it is transitive?) 

The case when G is a free group and {al,..-,an] are free 

generators of G was considered by E. Artin in [2~]. He proved 

that in this case C acts transitively on T. 

= A Applying Rn_ 1. .R2.R 1 to (bl,-..,bn) ~ T Let al.....a n . . . .  

we get (b2,'..,bn,A-~iA). Now if A is in the center of the group G 

(especially if it is i) we see that C contains any cyclic shift on 

(bl,''',bn). 

Now let G be the modular group ~ ~ 5~Z2, which we present as 

[a,bla3 = b 2 = i]. Any element in G can be expressed as a word 
I 

in 

a and b. Each element g E G has a unique presentation as tl-...'tk, 

2 
where each t. is a,a or b, and successive t. 's cannot be two b's 

l l 

or two powers of a. We call such a presentation g = t I ... t k 

"reduced" and define ~(g) = k, the length of g. 

Let s o = a2b, s I = aba, s 2 = ba 2. They clearly satisfy: 

a) S2SlSoS2SlSo = 1. 

b) They are conjugate to each other (by powers of a). 

It is clear that for an element g in reduced form tl..-~, the 

| ! 

reduced form of the inverse g-i is t k -.. t I where 

I b if t i = b, 

t' = = i a if t i a , 

a if t = a 2 . 
l 
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If we conjugate s o or s 2 by en element t of length l, we end 

up with one of the s.. Therefore, any conjugate of the s is either 
l l 

one of them, and then we call it "short" or else it is 

Q-labaQ = Q-iSlQ , where Q is expressed in reduced form tl---tk, 

Q-I is written as tk...t I and t I = b. 

In this case we say this conjugate is "long". 

Theorem. Let gl,...,g n be conjugates of the el, such that 

gl....-g n = i. 

Then, by successive application of~lemen~ary transformations 

the n-typle (gl,...,gn) can be transformed to an n-tuple (hl,...,hn) 

with each h. short. 
l 

Proof. Express each of the long gi as Q[iSlQi, and define 

L(gl,...,gn) = ~(Qi). 

We carry the proof by induction on L(gl,...,gn). If 

L(gl,..-,gn) = O, all the g's are short, as required. For the 

induction, we need the following 

Assertion. For some i, 1 ~ i ~ n-l, we have 

Z(gi.gi+l) < max(k,~) where k = Z(gi) , ~ = ~(gi+l ). 

Proof. Assume the contrary, that for all i, 1 ~ i ~ n-l, 

we have ~(gigi+l) h ~(gi),~(gi+l )" We shall show that the 
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expression gl.--g n cannot reduce to i, a contradiction. 

Let i be fixed and k = ~(gi) , ~ = ~(gi+l ). Write 

gi = tk'''tl' gi+l = ~i'''~" where ~(tj) = ~(~j ,) = l, 

j = l,...,k, j' = i,...,~, (that is, in reduced form). 

The reduced form of gigi+ 1 is then either 

tk...tm+irt~m+l...~ or tk...tm+lr or where 

~(r) i i. 

There are two cases: 

i) L(r) = O, that is, r = i. If gigi+ 1 = tk...tm+ 1 or 

gigi+ 1 = tL+l...~, we have ~(gigi+l) = l~-kl < max(k,~). 

Contradiction. Hence 

gigi+l = tk...tm+ItL+l...~ ~. 

Suppose m > O. Since tk...tm+ItL+l...~ ~ is the reduced form 

of gigi+l, one of the tm+l,tL+ 1 must be equal to a or a 2 and 

the second must be equal to b. But then one of tm, L must be 

equal to b and because t ~ = 1 we have t = ~ = b. That means 
mm m m 

that either tm+ 1 = t m = b or tL+ 1 = < = b. Contradiction. 

Thus m = O. 

2) ~(r) i, that is, r a or a 2 = = , tm+ 1 = tm+ 1 = b. In this case 

t. = t. for 1 < j < m-I and t = ~ = a or a. We have 
3 3 -- -- m m 

k,~ ~ ~(gigi+l) = k+~-2m+l, hence k,~ ~ 2m-l. If k is even, 

gi must be s o or s2, since all other conjugates of the s I are of 
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odd length. Therefore k = 2, m = l, t 1 

We have k ~ 2m in this case. 

2 
= a or a. Hence gi = s 2 . 

Similarly, if ~ is even, then ~ ~ 2m and gi+l = So" 

is odd, write gi = Q~labaQi' where q = ~(Qi) ~ O. We have 

k = 2q+3. 

If k 

Suppose 2m-1 = k. Then m = q+2 and we have t = b which 
m 

2 
contradicts t m = a or a. Therefore k > 2m-i and because k is 

odd, we have k ~ 2m+i > 2m. Similarly, if ~ is odd, ~ > 2m. 

Now denote for each i = 1,2,---,n, k i = ~(gi) and write 

each gi' i = 1,2,..-,n, in the reduced form as follows: 

• -- "'" k ' 
l l 

that is, for any j = 1,2,...,ki, t(i)_ ~(i) Denote r,m 
j - ki- j +i" 

considered above (for the pair gi,gi+l) respectively 

ri,i+l, mi,i+ I. Let ro, 1 = rn,n+ 1 = l, mol. = mn,n+l = O. 

Our above consideration shows the following: 

2 (i) ~(i+l) 
= a or a and t = = b. a) If m. ~ 0 then r 

~,i+l i,i+l m. l,i+l +I mi ,i+~{ 

If m.l,i+l = O, then ri,i+ 1 = i. 

b) If k.l is even and mi,i+ 1 ~ O, then gi = ha2 = s2 and 

= O, ri_l, i = I. If mi_l,i~0(k i even), then mi-l,i 

gi = a2b = So and m.l,i+l = O, ri,i+ 1 = 1. We see here that 

mi_l,i+mi,i+ 1 <_ ki-1. 
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k.-i k.-i 
c) If k.l is odd, then mi-l,i --< a2 ' mi,i+l -- < __12 , that is, 

mi_l, i + mi,i+ 1 ~ ki-l. Now from mi_l,i+mi,i+ 1 ~ ki-i it follows 

that mi_l,i+l ~ ki-(mi,i+l+l)+l , that is, in the reduced form of gi' 

~(i) 
mi-i, i +i 

is either on the left side from 

t (i) 
mi,i+l+l = tki-(mi,i+l+l ) +i 

or ~(i) coincides with t (i) 
mi_l,i+l mi,i+l+l" 

Now we can write 

.. = . . .  ~(i) 
(~) gl " gn ~ (~(i) +i +l)ri,i+l" 

i=l mi-l,i ki-(mi,i+l+l) 

Note that if ri,i+ 1 = 1 (i ~ n-l), then one of 

~(i) 1 ' 2 k.-(m .... + )+i ~(i+l)m is equal to a or a and the second is 
l l,l+± i,i+l +I 

2 
equal to b. If ri,i+ 1 ~ I, then ri,i+ 1 = a or a and 

~(i) = ~(i+l) = b. We see that the right side in 
ki-(mi,i+l+l)+l mi,i+l+l 

(~) is the reduced fo~m of gl...g n. Hence gl...g n ~ i. 

Contradiction. The sssertion is proved. 

We return to the proof of the theorem: 

If ~(gigi+l) < ~(gi) we shall show that application of R.~ or R? II 

will reduce L if not both g i  and g i + l  a r e  s h o r t ,  and s i m i l a r l y  i f  

~(gi~+l ) < ~(gi+l). 
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Assuming, as we might, ~(gi) ~ ~(gi+l) we show that 

~(gi) > ~(gi+l ) (if %(gi) & L(gi+l) it will follow that 

~(gi) < ~(gi+l) ). In fact this is clear if gi+l is short. If 

it is long, then gi = Q?labal Q'l and gi+l = Qi~l abe Qi+l" If 

~(Qi) = ~(Qi+l ), the b's do not cancel, and 

~(gigi+l) > ~(gi),~(gi+l). Thus ~(gi ) > ~(gi+l ). Now we have 

-1 we evidently will reduce ~(gi+lgigi+l) < ~(gi). Applying R i 

L = L(gl,...,gn). If ~(gi) < Z(gi+l) application of R?la will 

reduce L. To finish the proof we must consider the case where 

both gi and gi+l are short. In this case, (gi,gi+l) is (Sl,So) , 

(So,S2) or (s2,sl) and all these possibilities can be transformed 

to each other by R.I and R? I.I Now if one of gj, j = 1,2,..',n, is 

long, say gj. for j' > i+l, take the smalle~such j'. 

Con~der the sequence Yl = gi" Y2 = gi+l'''''Yu = gj'-i 

where u = j'-i . Let us prove by induction that for any u', 

2 ~ u' ~ u, (yl,...,yu,) can be transformed by a finite sequence 

of elementary transformations to ( ' "''Yu ' Yu' YI'" ',) where ' is any of 

Suppose it is true for some So,Sl,S 2. For u' = 2 it is clear. 

u' < u. 

Define a function v: (O,1,2) > (O,1,2) by v(O) = l, 

v(2) = O, v(1) = 2. Now let Yu'+l = sT" ~ E (O,1,2). We can 

• .. ~ to (YI' ' transform (YI' 'Yu''Yu'+l ~ ' ...,yu,,Yu,+l ) with 
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! 

yd, = SV(T). NOW the pair yu,,Yu,+l is (Sl,So) , (So,S2) or 

(s2,sl) and all these possibilities can be transformed to each 

other by elementary transformations. The inductive statement 

is proved. 

We see that we can assume that gj'-I is any of So,Sl,S 2 . But 

for one such sT, T = O,1,2, Z(s gj ) < ~(gj ). We now apply R . , , j 

The same arguments work if there exists a long gj, with 

j' < i. The theorem is proved. 
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