Homological stability for general linear groups

Relatore: Prof. Holger Reich Candidato: Luigi Caputi

16 Ottobre 2015

Correlatore: Prof. Mario Salvetti

Controrelatore: Prof. Giovanni Gaiffi

Schema Tesi

- Introduzione
 - Stabilità omologica
 - Verso la formalizzazione
- Set-up categoriale
 - Categorie omogenee
 - Gruppi di automorfismi in categorie omogenee
 - Teorema di stabilità omologica
- 3 Stabilità omologica per $GL_n(R)$
 - Come procedere?
 - Stable range condition
 - Poset di sequenze split unimodulari
 - Stabilità omologica per gruppi generali lineari

Stabilità omologica

Sia $\{G_n\}_{n\in\mathbb{N}}$ una famiglia di gruppi discreti e omomorfismi iniettivi:

$$\ldots \hookrightarrow G_n \hookrightarrow G_{n+1} \hookrightarrow \ldots$$

Definizione

La famiglia $\{G_n\}_{n\in\mathbb{N}}$ soddisfa stabilità omologica a coefficienti costanti se esiste una funzione crescente $f: \mathbb{N} \to \mathbb{N}$ tale che, per ogni $n \in \mathbb{N}$, le mappe indotte in omologia

$$H_i(G_n; \mathbb{Z}) \to H_i(G_{n+1}; \mathbb{Z})$$

siano isomorfismi per $0 \le i \le f(n)$.

Un esempio negativo

Poiché $H_1(\mathbb{Z}^n)\cong\mathbb{Z}^n$, la famiglia $\{\mathbb{Z}^n\}_{n\in\mathbb{N}}$ non soddisfa stabilità omologica.

Esempi classici

Un esempio negativo

Poiché $H_1(\mathbb{Z}^n) \cong \mathbb{Z}^n$, la famiglia $\{\mathbb{Z}^n\}_{n \in \mathbb{N}}$ non soddisfa stabilità omologica.

Esempi positivi:

- Gruppi simmetrici (Nakaoka, '61);
- Gruppi di trecce (Arnold, '69);
- Gruppi generali lineari $\{GL_n(\mathbb{F}_p)\}$ (Quillen, '74);
- Mapping class group per superfici (Harer, '85);

Esempi classici

Un esempio negativo

Poiché $H_1(\mathbb{Z}^n) \cong \mathbb{Z}^n$, la famiglia $\{\mathbb{Z}^n\}_{n \in \mathbb{N}}$ non soddisfa stabilità omologica.

Esempi positivi:

- Gruppi simmetrici (Nakaoka, '61);
- Gruppi di trecce (Arnold, '69);
- Gruppi generali lineari $\{GL_n(\mathbb{F}_p)\}$ (Quillen, '74);
- Mapping class group per superfici (Harer, '85);
- ...
- Gruppi di automorfismi in opportune categorie (Wahl, 2015).

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

Se:

- ad ogni gruppo G_n associamo un G_n -complesso simpliciale X_n ;

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

- ad ogni gruppo G_n associamo un G_n -complesso simpliciale X_n ;
- l'azione di G_n sui p-simplessi di X_n è transitiva, per ogni p;

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

- ad ogni gruppo G_n associamo un G_n -complesso simpliciale X_n ;
- l'azione di G_n sui p-simplessi di X_n è transitiva, per ogni p;
- lo stabilizzatore di un *p*-simplesso di X_n è isomorfo a G_{n-p-1} ;

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

- ad ogni gruppo G_n associamo un G_n -complesso simpliciale X_n ;
- l'azione di G_n sui p-simplessi di X_n è transitiva, per ogni p;
- lo stabilizzatore di un *p*-simplesso di X_n è isomorfo a G_{n-p-1} ;
- alta aciclicità: $H_i(X_n) = 0$ per $0 \le i \le f(n)$, dove f è crescente;

Sia data una famiglia di gruppi e mappe di stabilizzazione:

$$\ldots \longrightarrow G_n \longrightarrow G_{n+1} \longrightarrow \ldots$$

- ad ogni gruppo G_n associamo un G_n -complesso simpliciale X_n ;
- l'azione di G_n sui p-simplessi di X_n è transitiva, per ogni p;
- lo stabilizzatore di un *p*-simplesso di X_n è isomorfo a G_{n-p-1} ;
- alta aciclicità: $H_i(X_n) = 0$ per $0 \le i \le f(n)$, dove f è crescente;
- \Longrightarrow Stabilità omologica per $\{G_n\}_{n\in\mathbb{N}}$

Idea intuitiva

Dagli esempi positivi si possono evincere alcune proprietà:

- i gruppi G_n sono gruppi di automorfismi;
- la famiglia di gruppi è dotata di una "somma": $G_n \oplus G_m \to G_{n+m}$;
- gli elementi su cui agisce sono dotati di "simmetrie".

Idea intuitiva

Dagli esempi positivi si possono evincere alcune proprietà:

- i gruppi G_n sono gruppi di automorfismi;
- la famiglia di gruppi è dotata di una "somma": $G_n \oplus G_m \to G_{n+m}$;
- gli elementi su cui agisce sono dotati di "simmetrie".

Esempio

I gruppi simmetrici Σ_n sono gruppi di automorfismi su un insieme di n elementi.

Esiste una mappa indotta dall'unione disgiunta

$$\Sigma_n \sqcup \Sigma_m \to \Sigma_{n+m}$$
.

Vi è una bigezione tra le unioni disgiunte di insiemi

$$A \sqcup B \cong B \sqcup A$$
.

Approccio categoriale

Come passare alle categorie?

A ogni famiglia di gruppi $\{G_n\}_{n\in\mathbb{N}}$ associamo un gruppoide \mathcal{G} , in cui i gruppi di automorfismi siano esattamente i gruppi G_n :

$$\mathsf{ob}(\mathcal{G}) = \mathbb{N}$$

$$\operatorname{Aut}(n) = G_n$$
.

Definizione

Un gruppoide \mathcal{G} è una categoria piccola in cui ogni morfismo è invertibile.

Braided monoidal categories

Definizione

Una categoria braided monoidale è una tripla $(\mathcal{C}, \oplus, 0)$ in cui:

- \oplus è un bifuntore $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$ che verifica la proprietà associativa;
- 0 è una unità per la somma monoidale:

$$A \oplus 0 \cong A \cong 0 \oplus A$$
;

- un braiding tra gli oggetti: $A \oplus B \cong B \oplus A$; insieme alle relazioni di compatibilità.

Categorie omogenee

Sia $(C, \oplus, 0)$ una categoria monoidale, dove 0 è elemento unità ed elemento iniziale.

Definizione

 $\mathcal C$ è una categoria omogenea se per ogni $A,B\in\mathcal C$ i seguenti assiomi sono soddisfatti:

- (H1) Hom(A, B) è un Aut(B)-insieme, con azione transitiva;
- (H2) la mappa $\operatorname{Aut}(A) \to \operatorname{Aut}(A \oplus B)$, $f \mapsto f \oplus 1_B$, è iniettiva con immagine gli automorfismi che fissano B.

Esistenza di categorie omogenee

Teorema

Sia $(\mathcal{G}, \oplus, 0)$ un gruppoide braided monoidale tale che:

- $Aut(0) = \{id\};$
- $Aut(A) \rightarrow Aut(A \oplus B)$, che manda f in $f \oplus 1_B$ è iniettiva per ogni $A, B \in \mathcal{G}$;

allora esiste una categoria omogenea $(U(\mathcal{G}), \oplus, 0)$ con $(\mathcal{G}, \oplus, 0)$ sotto-gruppoide.

Esistenza di categorie omogenee

Teorema

Sia $(\mathcal{G}, \oplus, 0)$ un gruppoide braided monoidale tale che:

- $Aut(0) = \{id\};$
- $Aut(A) \rightarrow Aut(A \oplus B)$, che manda f in $f \oplus 1_B$ è iniettiva per ogni $A, B \in \mathcal{G}$;

allora esiste una categoria omogenea $(U(\mathcal{G}), \oplus, 0)$ con $(\mathcal{G}, \oplus, 0)$ sotto-gruppoide.

Esempio

Se $(\mathcal{G}, \sqcup, \emptyset)$ è il gruppoide degli insiemi finiti e mappe bigettive, la categoria omogenea associata è (FI, \sqcup, \emptyset) data dagli insiemi finiti e dalle mappe iniettive.

Un esempio particolare

Categoria omogenea di R-moduli liberi

Sia $(\mathcal{FM}, \oplus, 0)$ il gruppoide braided monoidale degli R-moduli liberi finitamente generati. La categoria omogenea $(U(\mathcal{FM}), \oplus, 0)$ ha gli stessi oggetti e come morfismi le mappe split-iniettive.

Più precisamente, un morfismo $R^m \to R^n$ è una coppia (f, M) dove:

- $f: R^m \to R^n$ è iniettiva;
- M è un R-modulo libero finitamente generato;
- $ightharpoonup R^n = M \oplus f(R^m).$

Gruppi di automorfismi

Quali famiglie di gruppi scegliere?

Gruppi di automorfismi

Quali famiglie di gruppi scegliere?

Sia $(\mathcal{C}, \oplus, 0)$ una categoria omogenea. Fissiamo due oggetti $X, A \in \mathcal{C}$. Allora:

$$G_n := \operatorname{Aut}(A \oplus X^{\oplus n})$$

Dall'assioma (H2), la mappa $G_n \to G_{n+1}$ è iniettiva, si ottiene una catena di inclusioni e si può studiare stabilità omologica.

Gruppi di automorfismi

Quali famiglie di gruppi scegliere?

Sia $(\mathcal{C}, \oplus, 0)$ una categoria omogenea. Fissiamo due oggetti $X, A \in \mathcal{C}$. Allora:

$$G_n := \operatorname{Aut}(A \oplus X^{\oplus n})$$

Dall'assioma (H2), la mappa $G_n \to G_{n+1}$ è iniettiva, si ottiene una catena di inclusioni e si può studiare stabilità omologica.

Dall'argomento di Quillen servono dei complessi X_n , con azione transitiva sui p-simplessi.

Insiemi semi-simpliciali

Sia $(\mathcal{C}, \oplus, 0)$ categoria omogenea. Siano X, A due oggetti di \mathcal{C} .

Definizione

Definiamo gli insiemi semi-simpliciali $W_n(X, A)$ con p-simplessi:

$$(W_n(X,A))_p := \operatorname{\mathsf{Hom}}(X^{\oplus (p+1)}, A \oplus X^{\oplus n})$$

e mappe:

$$d_i \colon \mathsf{Hom}(X^{\oplus (p+1)}, A \oplus X^{\oplus n}) \longrightarrow \mathsf{Hom}(X^{\oplus p}, A \oplus X^{\oplus n})$$

definite da
$$d_i(\varphi) := \varphi \circ (1_{X^{\oplus i}} \oplus \iota_X \oplus 1_{X^{\oplus p-i}})$$
:

Assioma di aciclicità

Le categorie omogenee formalizzano completamente i primi tre punti dell'argomento di Quillen. L'ultimo punto però, non si può evincere dalle categorie prese in esame.

Assioma di aciclicità

Le categorie omogenee formalizzano completamente i primi tre punti dell'argomento di Quillen. L'ultimo punto però, non si può evincere dalle categorie prese in esame.

Sia $(\mathcal{C}, \oplus, 0)$ una categoria omogenea. Siano X, A in \mathcal{C} .

Definizione

La tripla (C, X, A) soddisfa l'assioma di aciclicità con indici $k \ge 2$ e $a \ge 2$ se:

(H3)
$$\forall n \geq 1, W_n(X, A) \in ((n-a)/k)$$
-aciclico.

Stabilità omologica per gruppi di automorfismi

Teorema

Sia $(C, \oplus, 0)$ una categoria omogenea. Siano $X, A \in \mathcal{C}$ per cui l'assioma (H3) sia soddisfatto. Allora, le mappe

$$H_i(Aut(A \oplus X^{\oplus n}); \mathbb{Z}) \to H_i(Aut(A \oplus X^{\oplus (n+1)}); \mathbb{Z})$$

sono degli isomorfismi per $i \leq (n - a + 1)/k$.

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

② $GL_n(R)$ si può vedere come gruppo di automorfismi di R^n ;

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

- ② $GL_n(R)$ si può vedere come gruppo di automorfismi di R^n ;
- consideriamo il gruppoide braided monoidale $(\mathcal{FM}, \oplus, 0)$ degli R-moduli liberi finitamente generati;

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

- ② $GL_n(R)$ si può vedere come gruppo di automorfismi di R^n ;
- ② consideriamo il gruppoide braided monoidale $(\mathcal{FM}, \oplus, 0)$ degli R-moduli liberi finitamente generati;
- lacktriangledown si costruisce la categoria omogenea $(U(\mathcal{FM}),\oplus,0)$;

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

- ② $GL_n(R)$ si può vedere come gruppo di automorfismi di R^n ;
- ullet consideriamo il gruppoide braided monoidale $(\mathcal{FM},\oplus,0)$ degli R-moduli liberi finitamente generati;
- **4** si costruisce la categoria omogenea $(U(\mathcal{FM}), \oplus, 0)$;
- **⑤** scegliamo la coppia (X, A) = (R, 0), quindi $G_n = GL_n(R)$;

Sia R un anello.

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$$

- ② $GL_n(R)$ si può vedere come gruppo di automorfismi di R^n ;
- \bigcirc consideriamo il gruppoide braided monoidale $(\mathcal{FM}, \oplus, 0)$ degli R-moduli liberi finitamente generati;
- **4** si costruisce la categoria omogenea $(U(\mathcal{FM}), \oplus, 0)$;
- scegliamo la coppia (X, A) = (R, 0), quindi $G_n = GL_n(R)$;
- $W_n(R,0)$ soddisfa l'assioma (H3)?

Sequenze unimodulari

Analizziamo delle proprietà sull'anello R.

Sequenze unimodulari

Analizziamo delle proprietà sull'anello R.

Sia R un anello con unità.

Definizione

Una sequenza (a_1, \ldots, a_n) di elementi $a_i \in R$ è detta unimodulare se esistono elementi $r_1, \ldots, r_n \in R$ tali che

$$\sum_{i=1}^n r_i a_i = 1$$

Stable range condition

Definizione

Sia n > 1. Una sequenza unimodulare (a_1, \ldots, a_n) è stabile se esistono $b_1, \ldots, b_{n-1} \in R$ tali che la sequenza

$$(a_1 + b_1 a_n, \ldots, a_{n-1} + b_{n-1} a_n)$$

risulta unimodulare.

Stable range condition

Definizione

Sia n > 1. Una sequenza unimodulare (a_1, \ldots, a_n) è stabile se esistono $b_1, \ldots, b_{n-1} \in R$ tali che la sequenza

$$(a_1 + b_1 a_n, \ldots, a_{n-1} + b_{n-1} a_n)$$

risulta unimodulare.

Definizione

Un anello R soddisfa la stable range condition con indice m se, per ogni $n \ge m$, ogni sequenza unimodulare lunga n è stabile.

Primi anelli

Campi

Un campo soddisfa la stable range condition con indice 2. Infatti, ogni sequenza (a_1, a_2) ha un elemento non nullo, quindi un elemento invertibile. La sequenza risulta stabile perché posso eliminare anche l'altro elemento.

Primi anelli

Campi

Un campo soddisfa la stable range condition con indice 2. Infatti, ogni sequenza (a_1, a_2) ha un elemento non nullo, quindi un elemento invertibile. La sequenza risulta stabile perché posso eliminare anche l'altro elemento.

Domini a ideali principali, e anelli di Dedekind soddisfano la stable range condition con indice 3.

Anelli Noetheriani

Teorema

Sia R un anello commutativo Noetheriano di dimensione di Krull d. Allora R soddisfa la stable range condition con indice d+2.

Anelli Noetheriani

Teorema

Sia R un anello commutativo Noetheriano di dimensione di Krull d. Allora R soddisfa la stable range condition con indice d+2.

La classe di anelli considerati contiene propriamente la classe dei Noetheriani di dimensione finita. Infatti:

Lemma

Un anello locale soddisfa la stable range condition con indice 2.

Posets

Data la condizione tecnica sugli anelli, resta da analizzare gli insiemi semi-simpliciali $W_n(R,0)$, e calcolarne l'omologia.

Posets

Data la condizione tecnica sugli anelli, resta da analizzare gli insiemi semi-simpliciali $W_n(R,0)$, e calcolarne l'omologia.

Sia X un insieme. Si può associare ad X un insieme parzialmente ordinato:

Definizione

 $\mathcal{O}(X)$ è il poset delle sequenze ordinate $v = (v_1, \dots, v_k)$ dove v_1, \dots, v_k sono elementi distinti di X; inoltre

 $v \le w \iff v$ è una sottosequenza di w

Sequenze (split) unimodulari in R^n

Definizione

Una sequenza di vettori (v_1, \ldots, v_k) , con $v_i \in R^n$, è detta unimodulare in R^n se gli elementi formano una base di un addendo diretto di R^n .

Sequenze (split) unimodulari in R^n

Definizione

Una sequenza di vettori (v_1, \ldots, v_k) , con $v_i \in R^n$, è detta unimodulare in R^n se gli elementi formano una base di un addendo diretto di R^n .

Definizione

Il poset delle sequenze split unimodulari, $SU(R^n)$, è definito come poset delle sequenze ordinate $((v_1, w_1), \ldots, (v_k, w_k))$ tali che

- ① la sequenza (v_1, \ldots, v_k) è unimodulare in \mathbb{R}^n ;
- ② $v_i \cdot w_j = \delta_{ij}$ per ogni i, j, dove · è il prodotto standard $w_i^T v_i$.

Aciclicità

Definizione

Un poset X è q-aciclico se la sua realizzazione geometrica gruppi di omologia nulli per $0 \le i \le q$.

Aciclicità

Definizione

Un poset X è q-aciclico se la sua realizzazione geometrica gruppi di omologia nulli per $0 \le i \le q$.

Supponiamo che R soddisfi la stable range condition con indice (s + 2). Allora:

Teorema

Se $q \le (n-s-3)/2$, il poset delle sequenze split unimodulari $SU(R^n)$ è q-aciclico.

Stabilità omologica per gruppi generali lineari

Proposizione

Le realizzazioni geometriche di $W_n(R,0)$ e di $SU(R^n)$ sono omeomorfe.

Stabilità omologica per gruppi generali lineari

Proposizione

Le realizzazioni geometriche di $W_n(R,0)$ e di $SU(R^n)$ sono omeomorfe.

Teorema

Sia R un anello con identità che soddisfi la stable range condition con indice s+2. Allora, la mappa indotta in omologia:

$$H_i(GL_n(R); \mathbb{Z}) \to H_i(GL_{n+1}(R); \mathbb{Z})$$

è un isomorfismo per i $\leq (n-s-2)/2$

Applicazioni

Corollario

La famiglia di gruppi $\{GL_n(R)\}_{n\in\mathbb{N}}$ soddisfa stabilità omologica quando R è un anello Noetheriano di dimensione finita.

Proposizione

Sia R un anello commutativo Noetheriano di dimensione finita. Sia G un gruppo finito, oppure supponiamo che esista un gruppo abeliano finitamente generato $A \leq G$ di indice finito. Allora la famiglia $\{GL_n(R[G])\}_{n\in\mathbb{N}}$ soddisfa stabilità omologica.