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Introduction

The following type of classification problem occurs often in math:

Consider some type of object and a notion of isomorphism which can be defined between them.
We are interested in understanding the behavior of isomorphism classes and how they relate to

each other.

The set or class of isomorphism classes is a tautological answer to the set-theoretic question, but
for an answer to a classification problem to be satisfactory we usually require it to encode some
information on families of isomorphism classes.

Miraculously, many such classification problems turn out to have a natural answer in the form
of some geometric object. In general the object can only be defined as the category of families
together with some geometric structure (this is the realm of the theory of stacks), but in more
special circumstances one can find a more concrete space, usually a scheme, whose points represent
isomorphism classes for our problem and whose geometric structure encodes information on the
families. Such objects are called moduli spaces for the classification problem.

The best result we can hope for is finding a space which completely encodes how families
behave1, but this requirement is usually too strict. In this document we mostly deal with problems
for which such a nice space exists: the Grassmannian, Quot and Hilbert schemes.

Historical background

The history of moduli theory aligns remarkably well with that of the moduli space of smooth curves
of fixed genus. Indeed the word moduli was introduced by Riemann in the article [Rie57] to denote
what we would now call the dimension of Mg, the moduli space of smooth projective algebraic
curves of genus g, which he computed to be 3g − 3.

Although the argument given by Riemann can be made rigorous in modern language, he did
not prove the existence of the space Mg itself. The first general construction of Mg as a space of
some kind can be attributed to Teichmüller, which realized Mg as the quotient of the Teichmüller
space Tg parametrizing complex structures up to isomorphism on a surface of genus g by the action
of the group Γg of diffeomorphisms of the surface up to isotopy. The paper which establishes these
ideas is [Tei39].

The basis for the modern theory were laid by Alexander Grothendieck and his functorial ap-
proach. He first introduced his methods to analytic moduli theory and later on to algebraic geom-
etry in general. Grothendieck was very interested in algebraic moduli theory and contributed to
it greatly by introducing the Hilbert, Quot and Picard functors and showing their representability
by schemes. However, Grothendieck did not end up publishing on Mg.

1what will be formalized as a fine moduli space
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Among the first to study moduli spaces systematically was David Mumford. Inspired by in-
variant theory, Grothendieck’s functorial approach and the existing constructions of moduli spaces
like the one of principally polarized abelian varieties or the Chow varieties, Mumford developed
Geometric Invariant Theory (commonly referred to as GIT), which can be described as a method
to study and construct moduli spaces as quotients of algebraic groups. In the book [MFK94]
Mumford gives two constructions of Mg as a coarse moduli space.

For a more detailed history and more references see section 0.1 in [Alp24].

Why category theory?

As we briefly mentioned, the modern approach to moduli problems if formalized via functors. It
might not be clear why this is the most appropriate tool, and indeed it can seem more complicated
than more concrete treatments in simple cases like the classification of lines through a point via
projective space.

Nevertheless, the functorial approach has proven itself to be effective in many aspects, chief
among them the formalization of the nebulous concept of “family” described above.

Following Grothendieck’s ideas, a moduli problem is expressed as a contravariant functor

F : T 7→ {families of objects over T}⧸∼

where ∼ is the isomorphism relation imposed on families of objects. Since we are mostly concerned
about problems in algebraic geometry, and thus families over schemes, the functor is usually taken
to be a presheaf on Sch/S for some base scheme2 S. To find the set of objects we want to classify
up to isomorphism we can simply evaluate F on a point.

The functorial language allows for families to be pulled back via morphisms: if f : S → T is a
morphism and a ∈ F (T ) is a family over T , then F (f) : F (T )→ F (S) by contravariance and thus
F (f)(a) ≑ f∗a ∈ F (S) is a family over S.

There are several ways in which we can define a moduli space. The two most relevant are fine
and coarse moduli spaces. A scheme M is a fine moduli space if we can recover the whole moduli
functor from it3. M is a coarse moduli space if its K-points are in bijection with F (SpecK), all
families over T induce a morphism T →M which behaves well with pullbacks and M is universal
for these properties.

In both cases we can interpret a family of objects over a scheme T as a morphism from T
to M called classifying map. Intuitively this is the function that to each point of T assigns the
corresponding isomorphism class. The added structure of a scheme morphism serves to define a
“niceness” on families. If M is a fine moduli space, then every family over T can be viewed as the
pullback under a morphism T →M of a specific family u ∈ F (M), called the universal family.

Why Grassmannians?

Grassmannians are among the first nontrivial examples of spaces whose points represent some type
of object one can encounter in their mathematical career. Given two positive integers k and n, the
first definition of a Grassmannian Gr(k, n) one encounters is

Gr′(k, n) = {H ⊆ Kn | H vector subspace, dimKH = k} .
2usually SpecK for an algebraically closed field K or SpecZ.
3formally, when hM and F are naturally isomorphic functors.



Introduction iv

This definition invites us to think about the classification problem of k-dimensional vector subspaces
of n-dimensional space. This classification problem is best formalized in terms vector bundle
quotients as

Gr(k, n) :

(Sch/K)op −→ Set

T 7−→ {α : On
T ↠ Q}⧸∼

f : S → T 7−→ (α : On
T → Q) 7→ (f∗α : On

S → f∗Q)

where q ∼ q′ ⇐⇒ ker q = ker q′, so the definition we will use for Gr(k, n) is actually

Gr(k, n) =

{
φ : Kn → Kk | rnkφ = k

}
⧸∼ where φ ∼ ψ ⇐⇒ kerφ = kerψ,

but the two are related, up to canonical identifications, by Gr(k, n) = Gr′(n− k, n). Showing that
Grassmannians are schemes and that they are fine moduli spaces for this classification problem is
a good introduction to the elementary tools of the theory of fine moduli spaces. Grassmannians
also serve as a warm up and necessary stepping stone in the construction of the Quot schemes,
which generalize Grassmannians and yield important results like the existence of Hilbert schemes.

Description of content

In this document we introduce the concept of moduli spaces in algebraic geometry and explore the
example of the Grassmannian scheme.

The first chapter introduces the basics of the functorial approach to algebraic geometry. After
a brief summary on the Yoneda lemma, we define representable functors, moduli problems, Zariski
sheaves, open subfunctors and open covers of a functor. We conclude by proving a representability
criterion which we will use in the third chapter.

The second chapter provides a quick overview of Grassmannians as defined set theoretically
and then shows how we can endow them with the structure of a projective variety. We define the
Plücker embedding to identify Grassmannians with subsets of an appropriate projective space and
then we prove that these subsets are closed with respect to the Zariski.

In the third chapter we describe the reduced scheme structure on the Grassmannian variety
and the open cover of it given by fixing ordered multiindices. We then go on to formalize the
moduli problem of classifying (n − k)-vector subspaces of an n-dimensional space and prove that
the Grassmannian scheme is a fine moduli space for it. The proof revolves around finding an open
cover for the Grassmannian moduli problem and then applying the criterion from Chapter 1.

We conclude by generalizing the Grassmannian moduli problem to the Quot functors. The
main focus of the chapter is to showcase a construction of the Quot schemes while citing the main
results involved like flat base change and Castelnuovo-Mumford regularity. Along the way we will
show how this construction is related to Hilbert schemes.



Chapter 1
Moduli Spaces

In this chapter we introduce the basic category theory used in the study of moduli spaces. After
a quick review of the Yoneda embedding, we define representability of a functor and give the
definition of fine and coarse moduli space. After that we give a quick overview of Zariski sheaves
and prove representability results that we will need in the third chapter.

We adopt the following conventions:

• All categories considered in this document will be locally small.

• If C is a category, we shall write X ∈ C to mean “X is an object in C”.

• If A,B ∈ C, we denote the set of morphisms from A to B with Hom (A,B) or Hom C(A,B)
for specificity.

• If A and B are R-modules we write HomR(A,B) to denote R-linear maps.

Most definitions given in this chapter follow section 0.3 of [Alp24].

1.1 Yoneda lemma

Definition 1.1 (Presheaf). A contravariant functor F : Cop → Set is called a presheaf on C. If
T ∈ C then we call the elements of F (T ) families over T .

Definition 1.2 (Presheaf category). For any fixed category C, the presheaves on C form a category
Fun(Cop,Set) with morphisms given by natural transformations.

Definition 1.3 (Hom-functor). Let C be a category and X ∈ C. We define the Hom-functor of
X to be

hX :

Cop −→ Set
T 7−→ Hom(T,X)

f : T → S 7−→ hX(f) :
Hom (S,X) −→ Hom(T,X)

g 7−→ g ◦ f

Remark 1.4. The Hom-functor is a presheaf.
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Lemma 1.5 (Yoneda Lemma). Let C be a category and X ∈ C. If F is a presheaf on C then the
following sets are in a natural bijection

Hom(hX , F )←→ F (X).

Proof. Given a natural transformation ζ, we can take its image in F (X) to be ζX(idX). On the
other hand, for any given element u ∈ F (X) we can define an arrow hX(T )→ F (T ) for any T ∈ C
by taking f 7→ F (f)(u). This collection of maps defines a natural transformation from hX to F
because for all g : S → T and for all f ∈ hX(T )

F (g)(F (f)(u)) = (F (g) ◦ F (f))(u) = F (f ◦ g)(u) = F (hX(g)(f))(u).

To conclude it is enough to check that the two assignments are inverses:

F (f)(ζX(idX)) = ζT (hX(f)(idX)) = ζT (f), F (idX)(u) = u.

Definition 1.6 (Yoneda embedding). We define the Yoneda embedding of a category C to be
the following functor

h• :
C −→ Fun(Cop,Set)
X 7−→ hX

f : X → Y 7−→ hf : hX → hY

where if g : T → X then hf (g) = f ◦ g : T → Y .

Proposition 1.7. The functor h• is fully faithful.

Proof. Recall that a functor F : C → D is fully faithful if for any two objects A,B ∈ C we have
Hom C(A,B) ∼= HomD(F (A), F (B)). In our case we want to verify that

Hom (X,Y ) ∼= Hom(hX , hY ),

which is exactly the statement of the Yoneda lemma (1.5) for F = hY .

Proposition 1.8. The Yoneda embedding is injective on isomorphism classes of objects in C.

Proof. A natural isomorphism ζ : hA → hB and its inverse ζ ′ correspond to maps f : A→ B and
f ′ : B → A via the Yoneda lemma. Note that

h•(f ◦ f ′) = hf◦f ′ = hf ◦ hf ′ = hB(·)(f) ◦ hA(·)(f ′)
Yoneda
= ζ ◦ ζ ′ = idhB

,

thus, because h• if fully faithful, we see that f ◦ f ′ = idB . An analogous argument works for
f ′ ◦ f .

Lemma 1.9. The Yoneda embedding preserves limits.

Proof. Suppose X is the limit of the diagram {fij : Xj → Xi}. If we apply the Yoneda embedding
to the diagram we obtain {

hfij : hXj
→ hXi

}
Let F be any presheaf on C and suppose that we have morphisms F → hXi

which make the
diagrams commute, then for all T ∈ C we have compatible and natural F (T ) → Hom(T,Xi). If
f ∈ F (T ) then these arrows define several fi ∈ Hom(T,Xi) which compose with the fij respecting
the diagram. By the universal property of limits this defines uniquely a morphism fℓ ∈ Hom(T,X)
and we see that the assignment f 7→ fℓ is the unique map from F (T ) to Hom (T,X) which makes
the diagram in Set commute. Since all that we have done is natural in T , we have effectively
constructed a morphism F → hX as we desired.
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1.2 Moduli problems

Definition 1.10 (Representable functor). A presheaf F on C is representable if there exists
a natural isomorphism ζ : F → hX for some X ∈ C. In this case we say that the pair1 (X, ζ)
represents F . If a ∈ F (T ) we call ζT (a) : T → X the classifying map of the family a.

Definition 1.11 (Universal family). Given a functor F and an object X ∈ C that represents it
via the isomorphism ζ : F → hX , the universal family of X is

ζ−1
X (idX) ∈ F (X).

Remark 1.12. The universal family is the element of F (X) which corresponds to ζ−1 under the
Yoneda lemma (1.5).

We now specify our study to the category of schemes:

Definition 1.13 (Moduli problem). Let S be a scheme. A presheaf on Sch/S is called a moduli
problem or moduli functor.

A classical example of moduli problem is

Example 1.14 (Moduli problem of smooth curves of fixed genus). A family of smooth curves of
genus g over a scheme S is a smooth, proper and finitely presented scheme morphism C → S such
that for all s ∈ S the fiber Cs is a connected, smooth and proper curve of genus g. The moduli
problem of smooth curves of genus g is the functor

FMg
:

Sch/Cop −→ Set

S 7−→ {families of smooth curves of genus g over S}⧸∼
T → S 7−→ (C → S) 7→ (C ×S T → T )

where two families C → S and C ′ → S are equivalent if there exists an isomorphism between C
and C ′ which is compatible with the structure maps over S.

Definition 1.15 (Fine moduli space). Let F be a moduli functor. A scheme X ∈ Sch/S is a fine
moduli space for F if X represents F .

Remark 1.16. Because of proposition (1.8), fine moduli spaces are unique up to isomorphism.

Example 1.17 (Projective space). Consider the functor Pn given by

Schop −→ Set

S 7−→

{
(L, s0, · · · , sn) |

L line bundle on S,s0, · · · , sn ∈ L(S),
∀x ∈ S, ⟨(s0)x, · · · , (sn)x⟩OS,x

= Lx

}
⧸∼

f 7−→ pullback of sheaves and sections via f

where (L, (si)) ∼ (L′, (s′i)) is there exists a sheaf isomorphism α : L → L′ such that si = α∗s′i for
all i ∈ {0, · · · , n}.

It is a well known property of projective spaces (see Proposition 5.1.31 in [Liu06]) that Pn(S) ∼=
Hom(S,Pn

Z) and that pullbacks behave as expected, thus Pn
Z is a fine moduli space for Pn. From

the statement of Proposition 5.1.31 in [Liu06] it is also clear that OPn
Z
(1) is a universal family.

Fine moduli spaces do not always exist. The simplest obstructions to having a fine moduli
spaces are

1usually we just say that X represents F
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• the functor is not a Zariski sheaf (see proposition (1.26))

• existence of non trivial automorphisms.

To get an idea for why the second condition is an obstruction we cite the following

Proposition 1.18. Let F ∈ (Sch/C)op → Set be a moduli functor. If there exists a variety
S ∈ Sch/C such that E ∈ F (S) is an isotrivial family, i.e.

• for all s, t ∈ S(C), the fiber F (s)(E) = Es = Et and

• the family E is not the pullback of an object E ∈ F (SpecC) along the structural morphism
S → SpecC,

then there exists no fine moduli space for F .

Proof. This is Proposition 0.3.28 in [Alp24].

Remark 1.19. This proposition can be used to show that FMg
is not representable.

A weaker notion of moduli space is that of coarse moduli space:

Definition 1.20 (Coarse moduli space). Let F be a moduli problem. A pair (X, ζ) for X ∈ Sch/S
and ζ : F → hX natural transformation is a coarse moduli space for F if

• ζSpecK : F (SpecK)→ Hom(SpecK, X) is a bijection for all algebraically closed fields K

• for any scheme Y and η : F → hY natural transformation there exists a unique morphism
α : X → Y such that η = hα ◦ ζ.

Proposition 1.21. A fine moduli space is also a coarse moduli space.

Proof. The first condition is trivially verified. For the second condition, if (Y, η) is defined as above
and (X,u) is the fine moduli space with universal family u then we can take α = ηX(u).

Remark 1.22. There exists a coarse moduli spaceMg for the moduli problem FMg . This is a classic
result in geometric invariant theory, see [MFK94].

1.3 Zariski sheaves and gluing of fine moduli spaces

One approach to show representability of a moduli problem is emulating the gluing properties of
sheaves. Indeed it is possible to show that representable functors are sheaves of some kind. This
realization will lead to some results that aid in showing representability.

1.3.1 Zariski sheaves

First, let us formalize a way in which a functor can be a sheaf. First we recall the definition of
equalizer:

Definition 1.23 (Equalizer). Let C be a category, A,B,C ∈ C and f, g : B → C. We say that the
the diagram

A B Ch
f

g
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is an equalizer if h : A→ B is such that f ◦h = g ◦h and if (Q, q) is another such pair then there
exists a unique morphism Q→ A which makes the diagram commute

A B C

Q

h
f

g

q

Definition 1.24 (Zariski sheaf). A moduli problem F ∈ (Sch/S)
op → Set is a Zariski sheaf if

for any S-scheme X and any Zariski open cover {Ui → X} the following diagram is an equalizer

F (X)
∏
k

F (Uk)
∏
i,j

F (Ui ∩ Uj)

where the arrows are induced by the inclusions.

Remark 1.25. Using the Yoneda lemma (1.5), we may equivalently consider

Hom (hX , F )
∏
k

Hom(hUk
, F )

∏
i,j

Hom(hUi∩Uj , F )

Proposition 1.26 (Representable moduli functors are Zariski sheaves). Let F be a moduli problem,
then if there exists a fine moduli space M for F it must be the case that F is a Zariski sheaf.

Proof. Up to composing with the natural isomorphism, we may assume F = hM . Let X be an
S-scheme and {Ui → X} a Zariski open cover for it. We want to show that the following diagram
is an equalizer

Hom (U,M)
∏
i

Hom(Ui,M)
∏
i,j

Hom(Ui ∩ Uj ,M)Res
pr∗1

pr∗2

The arrows correspond to restriction of morphisms, so what we need to verify is that

• resUi

Ui∩Uj
◦ resXUi

= res
Uj

Ui∩Uj
◦ resXUj

and that

• a collection of maps {fi : Ui →M} such that fi|Ui∩Uj
= fj |Ui∩Uj

glues uniquely to a map

f : X →M .

Both propositions are well known properties of scheme morphisms.

1.3.2 Open cover of a moduli problem

Definition 1.27 (Subfunctor). A functor G : C → Set is a subfunctor of F : C → Set if for all
X,A,B ∈ C and for all f ∈ Hom(A,B)

G(X) ⊆ F (X), and G(f) = F (f)|G(A)
.

In this case we write G ⊆ F .

Remark 1.28. If F and G are presheaves and f : A→ B then G(f) = F (f)|G(B)
.
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Definition 1.29 (Fibered product of presheaves). Let F,G,H : Cop → Set be presheaves together
with two natural transformations η : F → H and ζ : G → H. We define their fibered product as
the following functor

F ×H G :
Cop −→ Set
X 7−→ F (X)×H(X) G(X)

f : A→ B 7−→ (b1, b2) 7→ (F (f)(b1), G(f)(b2))

where the fibered product F (X)×H(X) G(X) in defined through the maps ηX and ζX . The map
(F ×H G)(f) is well defined because if (b1, b2) ∈ F (B)×H(B) G(B) then

ηA(F (f)(b1)) = H(f)(ηB(b1))
ηB(b1)=ζB(b2)

= H(f)(ζB(b2)) = ζA(G(f)(b2)).

Definition 1.30 (Functor immersions). Let ζ : G → F be a natural transformation of moduli
problems. ζ is an open immersion if ζT is injective for every scheme T ∈ Sch/S and for every
natural transformation hT → F there is an open subscheme U ⊆ T such that

U hU G

T hT F

h•

⊆ ⌜

h•

We define closed immersions and locally closed immersions analogously.

Because of the Yoneda lemma, giving a natural transformation like in the above definition is
equivalent to choosing a family ξ ∈ F (T ). We can thus rephrase the definition as follows

Definition 1.31 (Functor immersions v.2). Let ζ : G→ F be a natural transformation of moduli
problems. ζ is an open immersion if ζT is injective for every scheme T ∈ Sch/S and for every
ξ ∈ F (T ) there exists an open subscheme ι : U ↪→ T such that the following diagram is natural in
R for all R ∈ Sch/S, commutes and is cartesian2

Hom(R,U) G(R)

Hom (R, T ) F (R)

G◦hι(·)(ξ)

hι ζR

F (·)(ξ)

⌜

Closed immersions and locally closed immersions of moduli problems are defined in the same
way.

Definition 1.32 (Open subfunctor). Let F : (Sch/S)
op → Set be a moduli problem. We say

that a subfunctor G ⊆ F is open if the natural transformation given by the inclusion is an open
immersion.

Definition 1.33 (Open cover of a functor). Let F : (Sch/S)
op → Set be a moduli problem. A

collection of open subfunctors {Fi → F} is an open cover of F if for any S-scheme T and any
natural transformation hT → F , the open subschemes Ui of T determined by the Fi form an open
cover of T .

2for any map f : R → U there exists a g : R → U such that f = ι ◦ g if and only if F (f)(ξ) ∈ G(R).
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Definition 1.34 (Restriction of a family). If U is a subscheme of T and ι : U → T is the inclusion
morphism, then if ξ ∈ F (T ) we define its restriction to U to be

ξ|U = F (ι)(ξ).

Remark 1.35. If {Fi → F} is an open cover of the functor F then for any S-scheme T and any
family ξ ∈ F (T ) there exists an open cover {Ui → T} of T such that ξ|Ui

∈ Fi(Ui) for all i.

1.3.3 Representability criterion

Finally, we come to the main results of this chapter

Proposition 1.36. Let F and G be Zariski sheaves, {Fi → F} and {Gi → G} be open covers with
the same indexation and fi : Fi → Gi be natural transformations such that3 fi|Fi∩Fj

= fj |Fi∩Fj
.

Then there exists a natural transformation f : F → G which restricts to fi on Fi.

Proof. Let T be a scheme and ζ : hT → F a natural transformation. Let {ιi : Ui → T} be the
open cover induced by {Fi → F} through ζ by the definition of open subfunctor cover.

hUi
Fi Gi

hT F G

ηi

hιi

⌜

fi

⊆ ⊆

ζ

where ηi is the map ζ ◦ hιi with its codomain restricted. This map is well defined because the
square is cartesian. Let gi = fi ◦ ηi and note that

gi|hUi∩Uj

= fi|Fi∩Fj
◦ ηi|hUi∩Uj

= fj |Fi∩Fj
◦ ηj |hUi∩Uj

= gj |hUi∩Uj

.

Because G is a Zariski sheaf, there exists ζ ′ : hT → G such that ζ ′ ◦ hιi = gi. We have thus
constructed a map Hom (hT , F )→ Hom(hT , G) which is functorial in T by naturality of the maps
involved. Applying the Yoneda lemma (1.5) gives a map F (T ) → G(T ) which is functorial in T ,
i.e. f : F → G. By construction it is also clear that f |Fi

= fi.

Corollary 1.37. With the same setup as above, if each fi is an isomorphism then f too is an
isomorphism.

Proof. Let f be the morphism F → G obtained as above and let g : G → F be the morphism
obtained the same way but by gluing the f−1

i : Gi → Fi. It is easy to see that f and g are inverses
with a local argument.

Theorem 1.38 (Representability by open cover). Let F : (Sch/S)
op → Set be a Zariski sheaf and

let {Fi → F} be an open cover of it by representable subfunctors, then F is representable.

Sketch. We fix schemes Xi and families ξi ∈ Fi(Xi) such that (Xi, ξi) is a fine moduli space for
Fi. For all S-schemes T we have

(Fi ×F Fj)(T ) = Fi(T )×F (T ) Fj(T ) = Fi(T ) ∩ Fj(T ) ⊆ F (T ),
3for a natural transformation ζ : F → H and a subfunctor G ⊆ F , we define ζ|G as the natural transformation

G → H given by (ζ|G)T = ζT |G(T )
. Naturality follows from the naturality of f and the definition of subfunctor.
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thus Fi ×F Fj = Fj ×F Fi ≑ Fi,j .
Using the openness of Fj we find Uij ⊆ Xi which represents hXi

×F Fj
∼= Fi,j . By uniqueness

of moduli spaces we see that there exists an isomorphism φji : Uij → Uji, which we can choose to
correspond to the identity Fi,j = Fj,i.

Our choice for the maps φji makes the cocycle condition φki = φkj ◦ φji hold trivially. We
can thus glue the Xi to a scheme X. Since ξi|Uij

= ξj |Uij
by construction of φji, we find a family

ξ ∈ F (X) by the sheaf property of F . It follows easily that (X, ξ) represents F .



Chapter 2
Grassmannians as projective
varieties

In this chapter we introduce Grassmannians from the point of view of classical algebraic geometry.
We are interested in Grassmannians in the context of classification problems because given their
definition, we can expect them to be moduli spaces for families of quotient vector spaces. In the
next chapter we will indeed find that they are fine moduli spaces for a functor that formalizes
families of fixed rank vector subspaces of Kn.

We first define Grassmannians set-theoretically, then we will find a bijection between this set
and a Zariski-closed subset of some projective space. This bijection will allow us to endow the
Grassmannians with the structure of projective algebraic varieties.

2.1 First definitions and conventions

Notation 2.1. In this chapter we use V and W to denote a fixed n-dimensional and a fixed k-
dimensional K-vector space respectively. Unless otherwise stated, we understand B = {v1, · · · , vn}
to be a basis of V and D = {w1, · · · , wk} to be a basis of W . We use ui and qi to indicate general
elements of V and W respectively.

When a basis F for a vector space U of dimension ℓ is fixed, we denote the isomorphism which
sends F to the canonical basis of Kℓ by [·]F : U → Kℓ. We denote the canonical basis of Kℓ by
Canℓ = {e1, · · · , eℓ}.

Definition 2.2 (Grassmannian). Let k ≤ n be a pair of positive integers. We define the (n, k)-
Grassmannian to be the following set

Gr(k, V ) = {φ ∈ Hom K(V,W ) | φ surjective}⧸∼

where φ ∼ ψ if and only if kerφ = kerψ. To simplify notation we will usually write Gr(k, n).

Remark 2.3. We may equivalently define Gr(k, n) to be the following set:

{kerφ | φ ∈ Hom K(V,W ), rnkφ = k} = {H ⊆ V | dimH = n− k} .

It is common in the literature to give this set the notation Gr(n− k, n) instead, but fixing a basis
for V yields a bijection between Gr(k, n) and Gr(n− k, n), namely H 7→ H⊥.
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Lemma 2.4. Let φ,ψ ∈ Hom K(V,W ) be linear maps of full rank. The following conditions are
equivalent:

1. kerφ = kerψ,

2. there exists θ ∈ GL(W ) such that φ = θ ◦ ψ.

Proof. The implication 2. =⇒ 1. is a straight forward computation, the other can be derived by
completing a basis of the kernels to a basis B of V and defining θ to be the change of basis between
the images of B under φ and ψ.

We conclude this introductory section with some notation and conventions.

Definition 2.5 (Multiindicies). We define a (k, n)-multiindex as an element of the set {1, · · · , n}k.
Our notation for a multiindex I will usually be I = (i1, · · · , ik). We denote the set of ordered
(k, n)-multiindicies by

ω(k, n) =
{
(i1, · · · , ik) ∈ {1, · · · , n}k | i1 < · · · < ik

}
.

If I ∈ ω(k, n), we write

• Î for the element of ω(n− k, n) whose entries are the elements of {1, · · · , n} missing from I
and

• σI for the permutation that sends the concatenation Î ∗ I to (1, · · · , n).

Remark 2.6. If I = (i1, · · · , ik) is a (k, n)-multiindex and u1, · · · , un are n vectors of V , we define

uI = ui1 ∧ · · · ∧ uik .

Note also that if B is a basis of V then

{vI | I ∈ ω(k, n)}

yields a basis of
∧k

V , which we call the basis induced by B and denote by ∧kB.

Notation 2.7. For F and G bases of U and Z respectively, we define

ηF = [·]∧dimUF :

dimU∧
U → K, ηFG = η−1

G ◦ ηF :

dimZ∧
Z →

dimU∧
U.

2.2 The Plücker embedding

In this section we define an injection from the Grassmannian to a projective space. Our approach
differs slightly from the usual one1 because we consider equivalence classes of maps rather than
equivalence classes of bases of subspaces.

Definition 2.8 (Plücker map). Let k ≤ n be a pair of positive integers. We define the Plücker
map as2

∧k :
Hom K(V,W ) −→ Hom K(

∧k
V,
∧k

W )
φ 7−→ ∧kφ ,

where (∧kφ)(u1 ∧ · · · ∧ uk) = φ(u1) ∧ · · · ∧ φ(uk).
1briefly illustrated in [Bjö99], pages 79 and 80
2the map ∧kφ is well defined because if we view it as a map ∧kφ : V ×k →

∧kW then it is multilinear and
alternating.
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Remark 2.9. The codomain of the Plücker map is isomorphic to
∧k

V , indeed

Hom K

(∧k
V,
∧k

W
)
∼=
(∧k

V
)∨ ∼= ∧k

V.

For fixed bases of V and W we can write one such isomorphism concretely as

ζB,D :
Hom K(

∧k
V,
∧k

W ) −→
∧k

V

ψ 7−→
∑

I∈ω(k,n)

ηD(ψ(vI))vI .

When the bases are clear from context we simply write ζ.

Notation 2.10. We define ϕB,D ≑ ζB,D ◦ ∧k : Hom K(V,W )→
∧k

V

Proposition 2.11. The image of the Plücker map is a cone.

Proof. We have λ ∧k φ = ∧k(α ◦ φ) for any α ∈ GL(W ) with determinant λ.

Lemma 2.12. If φ ∈ Hom K(V,W ) then rnkφ < k if and only if ∧k(φ) = 0.

Proof. ∧k(φ) is the zero map if an only if the set {φ(u1), · · · , φ(uk)} is linearly dependent for any
choice of u1, · · · , uk, i.e. φ is not of full rank.

Lemma 2.13. Let φ : V →W be a full rank linear map, then

kerφ =
{
z ∈ V | ∀u2, · · · , uk ∈ V, ∧k(φ)(z ∧ u2 ∧ · · · ∧ uk) = 0

}
.

Proof. The inclusion ⊆ is trivial. If φ(z) ̸= 0 we can find k − 1 vectors of the desired form by
completing φ(z) to a basis φ(z), q2, · · · , qk of W and then taking ui to be any element of φ−1(qi).
This preimage is not empty by surjectivity of φ.

Proposition 2.14 (Injectivity of the Plücker map up to scalars). Let ∼ be the equivalence relation
on Hom K(V,W ) which defines Gr(k, n), then for any two full rank linear maps φ,ψ : V →W

φ ∼ ψ ⇐⇒ ∃λ ∈ K∗ s.t. ∧k (φ) = λ ∧k (ψ).

Proof. We prove both implications:

=⇒ By lemma (2.4), if φ ∼ ψ then there exists θ ∈ GL(W ) such that φ = θ ◦ ψ, thus

∧k(φ) = ∧k(θ ◦ ψ) = (det θ) ∧k (ψ).

⇐= It is enough to apply lemma (2.13) as follows:

kerφ =
{
z ∈ V | ∀u2, · · · , uk ∈ V, ∧k(φ)(z ∧ u2 ∧ · · · ∧ uk) = 0

}
=

=
{
z ∈ V | ∀u2, · · · , uk ∈ V, λ ∧k (ψ)(z ∧ u2 ∧ · · · ∧ uk) = 0

}
=

=
{
z ∈ V | ∀u2, · · · , uk ∈ V, ∧k(ψ)(z ∧ u2 ∧ · · · ∧ uk) = 0

}
= kerψ.
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Definition 2.15 (Plücker embedding). Let us fix bases B and D of V and W . We define the
Plücker embedding as follows

PlB :

Gr(k, n) −→ P(
∧k

V )

[φ] 7−→

 ∑
I∈ω(k,n)

ηD(∧kφ(vI))vI


The entries of the

(
n
k

)
-tuple

[{
ηD(∧k(φ(vI)))

}
I∈ω(k,n)

]
are called the Plücker coordinates of

[φ]. We will give a cleaner form of the Plücker coordinates once we express this map in terms of
matricies.

Remark 2.16. If the Plücker embedding is well defined, it does not depend on the choice of basis
for W . Indeed changing the basis of W simply multiplies all Plücker coordinates by the same
nonzero scalar3, so the resulting point in P(

∧k
V ) is left unchanged.

Proposition 2.17. The Plücker embedding is well defined and injective.

Proof. Because of proposition (2.14) and lemma (2.12), there exists a unique map p such that the
diagram commutes

{φ ∈ Hom K(V,W ) | rnkφ = k}
∧k

Hom K(V,W ) \ {0}

Gr(k, n) P(
∧k

Hom K(V,W ))

∧k

π∼ P

p

It follows that PlB is well defined because PlB = P(ζB,D) ◦ p.
By proposition (2.14) we have that p is injective, so PlB must also be injective because ζB,D is

an isomorphism.

Remark 2.18. PlB ◦ π∼ = P(ζB,D ◦ ∧k) = P(ϕB,D).

2.2.1 Matrix form

Notation 2.19. If A is a k× n matrix and I is a (k, n)-multiindex, we denote the I-minor of A
by AI , i.e.

AI =

a1,i1 · · · a1,ik
...

. . .
...

ak,i1 · · · ak,ik

 .

If B is an α× β matrix, i ∈ {1, · · · , α} and j ∈ {1, · · · , β}, we denote the (α− 1)× (β − 1) matrix
obtained from B by deleting the i-th row and the j-th column with B×i,×j .

If we fix bases B for V and D for W we can identify V with Kn, W with Kk and Hom K(V,W )
withM(k, n). Under these identifications we have

Gr(k, n) = {A ∈M(k, n) | rnkA = k}⧸∼,

where A ∼ B ⇐⇒ ∃P ∈ GLk such that A = PB.

3the determinant of the change of basis
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Because ∧kφ(u1 ∧ · · · ∧ uk) = det
(
[φ(u1)]D| · · · |[φ(uk)]D

)
w(1,··· ,k) we have

ϕ :
M(k, n) −→

∧kKn

A 7−→
∑

I∈ω(k,n)

detAIeI

Pl :

Gr(k, n) −→ P(
∧kKn) = P(

n
k)−1

[A]∼ 7−→

 ∑
I∈ω(k,n)

detAIeI


K∗

=
[
{detAI}I∈ω(k,n)

]
K∗

2.3 The image of the Plücker embedding is closed

Thus far we have identified Gr(k, n) with a subset of some projective space. We seek to show that
this subset is closed in the Zariski topology.

2.3.1 Some linear algebra results

Definition 2.20 (Divisibility). We say that ω ∈
∧k

V is divisible by v ∈ V if there exists

ε ∈
∧k−1

V such that ω = ε ∧ v.

Lemma 2.21. ω ∈
∧k

V is divisible by v ∈ V \ {0} if and only if ω ∧ v = 0.

Proof. If ω = ε∧ v then ω ∧ v = ε∧ v ∧ v = 0. If ω ∧ v = 0 then by writing ω in a basis containing
v we can see that the simple multivectors with nonzero coefficients must contain v as a factor, so
we can factor out v by multilinearity and get a decomposition of the form ω = ε ∧ v.

Corollary 2.22 (Total decomposability criterion). Let ω ∈
∧k

V and define

Dω = {v ∈ V | ω ∧ v = 0} .

If dimDω ≥ k then ω = λv1 ∧ · · · ∧ vk for any set of linearly independent vectors {v1, · · · , vk} in
Dω and some scalar λ. Moreover λ ̸= 0 if and only if dimDω = k.

Proof. For the first part of the result we may just iterate the above lemma. If λ = 0 then
Dω = V , so its dimension is not k. If the dimension is greater than k then we may subtract two
total decompositions differing only by one vector and use linear independence to check that the
coefficients must have been zero.

Proposition 2.23. There is a canonical isomorphism between Hom K(
∧k

V,
∧n

V ) and
∧n−k

V
given by

Ξ :

∧n−k
V −→ Hom K(

∧k
V,
∧n

V )
ω 7−→ ω ∧ ·

For any basis B of V , the inverse of Ξ is given by

ΓB :
Hom K(

∧k
V,
∧n

V ) −→
∧n−k

V

ψ 7−→
∑

I∈ω(n−k,n)

sgnσIηB(ψ(vÎ))vI

Proof. Ξ is clearly base independent and linear. Concluding from here is simply a matter of
computing ΓB(Ξ(ω)) by writing ω in terms of its coordinates in ∧kB and verifying that Ξ(ΓB(ψ))
and ψ agree on ∧kB.
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Corollary 2.24. Let ψ ∈ Hom K(
∧k

V,
∧k

W ). If B = {v1, · · · , vn} and B′ = {v′1, · · · , v′n} are
bases for V and D = {w1, · · · , wk} and D′ = {w′

1, · · · , w′
k} are bases for W , there exists µ ∈ K∗

such that ∑
I∈ω(n−k,n)

sgnσIηD(ψ(vÎ))vI = µ
∑

I∈ω(n−k,n)

sgnσIηD′(ψ(v′
Î
))v′I .

Proof. Note that ∑
I∈ω(n−k,n)

sgnσIηD(ψ(vÎ))vI = Ξ−1(ηDB ◦ ψ)

and similarly the other expression is Ξ−1(ηD
′

B′ ◦ ψ). It is therefore enough to show that ηBD = µηB
′

D′

for some µ ∈ K∗, which is true because

dimK Hom K

(
n∧
V,

k∧
W

)
= 1

and both ηBD and ηB
′

D′ are not the zero map.

2.3.2 Rank condition for the image

Lemma 2.25. Fix bases B and D of V and W respectively. A multilinear alternating form
ψ ∈ Hom K(

∧k
V,
∧k

W ) is in the image of the Plücker map ∧k if and only if there exists λ ∈ K
and linearly independent vectors z1, · · · , zn−k such that∑

I∈ω(n−k,n)

sgnσIηD(ψ(vÎ))vI = λz(1,··· ,n−k).

Proof. We show both implications

=⇒ If ψ = ∧kφ, the equality follows by choosing z1, · · · , zn−k to be a basis of kerφ. Completing
this set to a basis of V and using corollary (2.24) gives the result after a simple calculation.

⇐= Let Z = {z1, · · · , zn} be a basis of V which extends the given z1, · · · , zn−k. We can take
φ to be

φ(zi) =


0 if 1 ≤ i ≤ n− k(
µλsgnσ(1,··· ,n−k)

)
w1 if i = n− k + 1

wi−n+k if i > n− k + 1

where µ ∈ K∗ is such that ηBD = µηZD .

Definition 2.26. Let B be a basis of V . If ω =
∑

J∈ω(k,n) pJvJ we define

ΦB(ω) :
V −→

∧n−k+1
V

v 7−→
∑

I∈ω(n−k,n)

sgnσIpÎvI ∧ v .

Remark 2.27. For any basis D of W we have ΦB(ω)(v) = Ξ−1(ηDB ◦ ζ
−1
B,D(ω)) ∧ v.

Proposition 2.28. A k-multivector ω ∈
∧k

V is in the image of ϕB,D if and only if ΦB(ω) has
rank at most k.
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Proof. ω ∈ ImmϕB,D if and only if ζ−1
B,D(ω) ∈ Imm∧k by definition, so what we want to show is

that ψ ∈ Imm∧k if and only if the rank of the map

ΥB,D(ψ) : v 7→ Ξ−1(ηDB ◦ ψ) ∧ v =
∑

I∈ω(n−k,n)

sgnσIηD(ψ(vÎ))vI ∧ v

is at most k.
For the =⇒ arrow, let ψ = ∧kφ and choose a basis Z = {z1, · · · , zn} for V which ex-

tends a basis of kerφ. Because of how we proved lemma (2.25), we see that if v ∈ kerφ then
ΥB,D(∧kφ)(v) = λz(1,··· ,n−k)∧v, which is zero by linear dependence. Thus the nullity of ΥB,D(∧kφ)
is at least dimkerφ = n− k.

Given z1, · · · , zn−k linearly independent vectors in kerΥB,D(ψ), by the total decomposability
criterion (2.22) there exists λ ∈ K such that∑

I∈ω(n−k,n)

sgnσIηD(ψ(vÎ))vI = λz1 ∧ · · · ∧ zn−k.

This concludes by lemma (2.25).

Theorem 2.29. The image of ϕB,D is a Zariski closed subset of
∧k

V .

Proof. We seek to translate the rank condition (2.28) into equations on the coordinates of
∧k

V .

Let K[zI | I ∈ ω(k, n)] be the coordinate ring of
∧kKn. If BI ∈ M

((
n

n−k+1

)
, n,K

)
is the matrix

which represents ΦB(vI) in the bases induced by B and D then we define

MB,D =
∑

I,ω(k,n)

BIzI =

 ∑
I∈ω(k,n)

(BI)i,jzI


i,j

.

This matrix represents ΦB in the following way: if ω =
∑

I∈ω(k,n) pIvI ,

ΦB(ω)(v) =
∑

I∈ω(k,n)

pIΦB(vI)(v) =
∑

I∈ω(k,n)

pIB
Iv = MB|zI=pI

v.

It follows that the coordinates of the k-multivectors in the image of ϕB,Dc are exactly those that
satisfy the determinantal criterion for the rank being at most k, i.e.

ImmϕB,D =

 ∑
I∈ω(k,n)

pIvI | rnk MB,D|zI=pI
< k + 1

 =

=V ({detm | m is a (k + 1)× (k + 1) minor of M}).

Corollary 2.30. PlB endows Gr(k, n) with the structure of a projective variety.

Proof. Since ImmϕB,D is a cone (2.11) and Zariski closed we see that

P(ImmϕB,D) = ImmPlB

is Zariski closed. We conclude by recalling that ImmPlB is in bijection with Gr(k, n) by injectivity
of PlB (2.17).

Remark 2.31. The determinants we used to show that the image of the Plücker embedding is closed
do not generate the ideal of that variety. The most well known set of generators for that ideal are
the Plücker relations (Theorem 2.4.3 in [Bjö99], page 80).



Chapter 3
Representability of the
Grassmannian functor

In this chapter we will work with Kn and Kk instead of abstract vector spaces. This means
that we have canonical bases Cann = {e1, · · · , en} and Cank = {e1, · · · , ek} and that we identify
Hom K(Kn,Kk) withM(k, n).

To distinguish the scheme morphisms we define in this chapter from the morphisms of varieties
defined previously we use a superscript s (for “set-theoretic”) for the latter, i.e.

ϕs :
M(k, n) −→

∧k Kn

A 7−→
∑

I∈ω(k,n)

detAIeI , Pls :
Gr(k, n) −→ P(

∧k Kn)
[A]∼ 7−→ [ϕs(A)]K∗

Notation 3.1. Let I be an ideal of the ring A and J be a homogeneous ideal of the graded ring
B. We adopt the following notation

V (I) = {p ∈ SpecA | I ⊆ p} , V+(J) = {p ∈ ProjB | I ⊆ p} .

3.1 Grassmannians as projective schemes

Definition 3.2 (Bracket ring). We define the bracket ring (see page 79 of [Bjö99]) as the ring

of polynomial functions on
∧k Kn, i.e.

Bk,n ≑
K[zI | I ∈ {1, · · · , n}k]

(
{
zI − sgn (σ)zσ(I)

}
σ∈Sk

)
∼= K[zI | I ∈ ω(k, n)].

We define B+k,n to be the ideal generated by the indeterminates zI .

Definition 3.3 (Ring of generic matrices). Let K[Xk,n] ≑ K[x1,1, · · · , xk,n] denote the polynomial
ring with k · n variables. We define the generic matrix as

X =

x1,1 · · · x1,n
...

. . .
...

xk,1 · · · xk,n

 .



Representability of the Grassmannian functor 17

By the same token we use XI to denote the generic k × k minor determined by the multiindex I
and detXI to write the formal determinant of this minor.

Remark 3.4. The ring K[Xk,n] is the coordinate ring ofM(k, n).

Remark 3.5. The familiar M(k, n) and
∧k Kn can be identified with the K-points of the affine

schemes SpecK[Xk,n] and SpecBk,n respectively (Example 2.3.32 of [Liu06]). We will use this
identification for the rest of the chapter.

Definition 3.6 (Plücker ring homomorphism). We define the Plücker ring homomorphism or
simply Plücker homomorphism as

ϕ# :
Bk,n −→ K[Xk,n]
zI 7−→ detXI

For brevity we will denote Specϕ# by ϕ.

Remark 3.7. It is clear by construction that

ϕ|M(k,n)
(A) =

∑
I∈ω(k,n)

detAIeI = ϕs(A).

Proposition 3.8. kerϕ# is a homogeneous prime ideal and B+k,n ̸⊆ kerϕ#.

Proof. kerϕ# is prime because K[Xk,n] is an integral domain and zI /∈ kerϕ# because deg ϕ#(zI) =
deg(detXI) = k > 0. To show homogeneity let us note that if g is homogeneous of degree d then
ϕ#(g) is homogeneous of degree kd. If follows that if fd is the homogeneous component of f of
degree d and 0 = ϕ#(f) =

∑
d∈N ϕ

#(fd) then ϕ
#(fd) = 0 for all d ∈ N.

Proposition 3.9. Let t : Var/K → Sch/K be the fully faithful functor defined as in Proposition
2.6 of [Har77]. Then V+(kerϕ

#) ∼= t(ImmPls).

Proof. Because t is fully faithful, we only need to show that V+(ker(ϕ
#))(K) ∼= ImmPls. Passing

to the corresponding cones, this is equivalent to

Immϕs ∼= V (kerϕ#)(K) = Immϕ|M(k,n)
= Immϕs,

which is true because Immϕs
(2.29)
= Immϕs.

From now on Gr(k, n) will also have the scheme structure of V+(kerϕ
#). What we used to

write Gr(k, n) corresponds to Gr(k, n)(K).

3.1.1 Standard affine cover of the Grassmannian scheme

Recall that projective space admits a standard affine cover given by the loci where one indetermi-
nate does not vanish. In our case we see that

ProjBk,n =
⋃

I∈ω(k,n)

Spec
(
(Bk,n)0zI

)
=

⋃
I∈ω(k,n)

Spec

(
K
[
zJ
zI
| J ∈ ω(k, n)

])
,

where the subscript denotes localization with multiplicative part
{
1, zI , z

2
I , · · ·

}
and the superscript

0 denotes the fact that we are only considering terms of degree 0 in this ring (this is the notation
used in [Liu06]).
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This open affine cover of ProjBk,n induces an open cover on Gr(k, n) as follows:

Gr(k, n) = V+(kerϕ
#) =

⋃
I∈ω(k,n)

Spec

((
Bk,n
kerϕ#

)0

zI

)
.

Notation 3.10. Let us fix I ∈ ω(k, n), then we denote the restriction of ϕ# as

ϕ#I :
K
[
zJ
zI
| J ∈ ω(k, n)

]
−→ K[Xk,n]

0
detXI

zJ
zI

7−→ detXJ

detXI

Remark 3.11. By the first isomorphism theorem we have

(Bk,n)0zI
kerϕ#I

∼= Immϕ#I = K
[
detXJ

detXI
| J ∈ ω(k, n)

]
≑ K

[
detXJ

detXI

]
.

Remark 3.12. Applying a property of localization we have(
Bk,n
kerϕ#

)
zI

=
(Bk,n)zI
(kerϕ#)zI

,

thus (
Bk,n
kerϕ#

)0

zI

=

(
(Bk,n)zI
(kerϕ#)zI

)0

=
(Bk,n)0zI
kerϕ#I

∼= K
[
detXJ

detXI

]
In summary we have shown that, up to some canonical identifications,

Gr(k, n) =
⋃

I∈ω(k,n)

Spec

(
K
[
detXJ

detXI

])
≑

⋃
I∈ω(k,n)

GrI(k, n).

Notation 3.13. Let I be a (k, n)-multiindex, i ∈ {1, · · · , k} and j ∈ {1, · · · , n}. We define Iij to
be the multiindex which is the same as I but with the i-th entry replaced with j.

Lemma 3.14. If I ∈ ω(k, n) then the following equality holds in K[Xk,n]detXI

X−1
I X =

wI1
1
· · · wI1

n

...
. . .

...
wIk

1
· · · wIk

n

 , where wJ =
detXJ

detXI

Proof. Recall that if Adj (XI) is the adjugate matrix of XI then

(XI)
−1

=
1

detXI
Adj (XI) =

1

detXI

(
(−1)i+j det(XI)×j×i

)
1≤i≤k
1≤j≤k

.

We can verify the identity for each element:

(Adj (XI)X)i,j
detXI

=
1

detXI

k∑
ℓ=1

(
(−1)i+ℓ det (XI)×ℓ,×i

)
xℓ,j =

detXIi
j

detXI
= wIi

j
.
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Remark 3.15. (X−1
I X)J = X−1

I XJ , in particular (X−1
I X)I is the identity matrix.

Proposition 3.16. GrI(k, n) is isomorphic to Ak(n−k)
K as a scheme.

Proof. Since both schemes are affine, it is enough to show that their coordinate rings are isomorphic.
Without loss of generality we may assume that I = (1, · · · , k). For brevity we set wJ = detXJ

detXI
.

Let M be the formal matrix whose (i, j)-entry is wIi
j
. Lemma (3.14) shows that M = X−1

I X,

so detMJ = detX−1
I detXJ = wJ . This shows that

K
[
detXJ

detXI
| J ∈ ω(k, n)

]
= K

[
detXJ

detXI
| J = Ijℓj , j ∈ {1, · · · , k} , ℓj /∈ I

]
.

Let R denote this ring. To conclude we want to show that it is isomorphic to K[Yk,n−k] =
K[y1,1, · · · , yk,n−k].

Let us consider the following ring homomorphism

χ :
K[Yk,n−k] −→ R

yi,j 7−→ wIi
j+k

.

It is surjective by construction, so we just need to show that it is injective to find the desired
isomorphism.

Suppose that there exists a nonzero polynomial p ∈ K[Yk,n−k] which maps to 0. If K is an
algebraic closure1 of K we can consider the lift

χ̃ :
K[Yk,n−k] −→ R̃ = K[wIi

j
]

yi,j 7−→ wIi
j+k

Note that if χ(p) = 0 then χ̃(p) = 0 because R ⊆ R̃ and χ̃|K[Yk,n−k]
= χ. Consider now any matrix

of the form
A =

(
Ik | Ã

)
= (ai,j)i,j

where Ik is the k × k identity matrix and Ã ∈ M(k, n − k,K). From what we have said above it
follows that detAIi

j
= ai,j , so

p(Ã) = p

((
detAIi

j

)
i∈{1,··· ,k},
j∈{k+1,··· ,n}

)
= χ̃(p)(A) = 0.

This shows that p has infinitely many roots inK, so if we fix the value of k(n−k)−1 indeterminates
the resulting polynomial is the 0 polynomial. If we reiterate this reasoning we eventually prove
that p = 0 in K[Yk,n−k], but 0 ∈ K[Yk,n−k] ⊆ K[Yk,n−k], so p is the zero polynomial in the original
ring, contradicting our hypothesis.

Remark 3.17. Since GrI(k, n) and GrJ(k, n) are affine and Gr(k, n) is projective and thus separated,
GrI(k, n) ∩GrJ(k, n) is affine for any choice of multiindices.

1we can take any field extension K ⊆ F where F is an infinite field.
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3.2 Grassmannian moduli problem

Let us consider the following moduli problem

Gr(k, n) :

(Sch/K)op −→ Set

T 7−→ {α : On
T ↠ Q}⧸∼

f : S → T 7−→ (α : On
T → Q) 7→ (f∗α : On

S → f∗Q)

where Q is a locally free sheaf of rank k on T and two surjections α : On
T ↠ Q, β : On

T ↠ V are
equivalent if and only if there exist an isomorphism of sheaves θ : Q → V such that the diagram
commutes

On
T Q

V

α

β
θ

We have functoriality because of the composition properties of pullbacks.

Remark 3.18. This functor formalizes the classification problem of (n− k)-dimensional subspaces
of an n-dimensional space. Indeed

Gr(k, n)(SpecK) =
{
α : On

SpecK ↠ Q
}
⧸∼ ∼=

{
φ : Kn ↠ Kk

}
⧸∼ = Gr(k, n)(K).

For the middle isomorphism we used the fact that sheaves over a point are skyscrapers and that
OSpecK,SpecK = K. The last equality is our first definition for the Grassmannian up to the choice
of a basis.

Remark 3.19. We could have defined the moduli problem equivalently as follows:

Gr′(k, n) :

(Sch/K)op −→ Set

T 7−→
{
F | F vector subbundle of On

T of
rank k s.t. On

T /F is locally free

}
f : S → T 7−→ F 7→ f∗F

,

indeed the following is the data of a natural isomorphism

Gr(k, n)(T ) ←→ Gr′(n− k, n)(T )
[q : On

T ↠ Q] 7−→ ker q
[On

T → On
T /F ] ←− [ F

We chose to adopt the first definition because it is easier to verify whether a map is a valid quotient
(as in, we do not need to compute a quotient sheaf) and because the first definition generalizes
well to objects like the functor of quotients, which we will introduce in the next chapter.

In this section we prove that the Grassmann scheme is a fine moduli space for the Grassmannian
moduli problem.

3.2.1 Open subfunctor cover of the Grassmannian

Notation 3.20. For any multiindex I ∈ ω(k, n) and any scheme T we define the following mor-
phism of sheaves

sTI :
Ok

T −→ On
T

ej 7−→ eij
.

If there is no ambiguity we write sI .
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Definition 3.21 (Principal subfunctors of the Grassmannian). Fixed a multiindex I ∈ ω(k, n) we
define the following functor

GrI(k, n) :

(Sch/K)op −→ Set

T 7−→
{
On

T

α
↠ Q | α ◦ sI surjective

}
⧸∼

f 7−→ α 7→ f∗α

where the equivalence relation is the same as the one defined for Gr(k, n).

Proposition 3.22. The functor GrI(k, n) is well defined.

Proof. First we observe that GrI(k, n)(T ) is well defined because if ψ = θ ◦ α with θ isomorphism
of sheaves then on each stalk we have

ψx ◦ (sI)x = θx ◦ φx ◦ (sI)x,

which is surjective if and only if φx ◦ (sI)x is surjective.
Consider now a morphism f : S → T , then

f∗α ◦ sSI = f∗α ◦ f∗sTI = f∗(α ◦ sTI )

is surjective if and only if it is surjective on all stalks, i.e. if and only if for all s ∈ S we have that
the following map is surjective

f∗(α ◦ sTI )s = (α ◦ sTI )f(s) ⊗OT,f(s)
idOS,s

,

which is true because the tensor product is right-exact.

Proposition 3.23. The GrI(k, n) are open subfunctors of Gr(k, n).

Proof. The inclusion GrI(k, n)(T ) ⊆ Gr(k, n)(T ) is apparent, so we just need to show that if we fix
a quotient [α : On

T ↠ Q] in Gr(k, n)(T ) then we can find an open subscheme of T which represents
hT ×Gr(k,n) GrI(k, n).

Let us fix a representative α for the given quotient. The locus where α ◦ sI : Ok
T → Q is

surjective is the complement of the support of its cokernel sheaf K, i.e.

(α ◦ sI)x surjective⇐⇒ x /∈ SuppK.

Note that by the definition of ∼ and properties of isomorphisms of sheaves, the first condition does
not depend of the choice of representative for [α], so SuppK only depends on [α]. Note that K is
of finite type because the codomains are locally free of finite rank, so SuppK is closed2 and hence
UI = T \ SuppK is open.

We now want to show that UI represents the functor hT ×Gr(k,n) GrI(k, n), that is we want
to show that if f : S → T is a morphism of K-schemes then f factors through UI if and only if
[f∗α : On

S → f∗Q] ∈ GrI(S).

Note that f(s) ∈ UI if and only if (α◦sTI )f(s) is surjective which, by Nakayama’s lemma applied
to the cokernels, is equivalent to the surjectivity of

(α ◦ sTI )|f(s) : k(f(s))
n → Qf(s) ⊗OT,f(s)

k(f(s)).

2For more detail see Section 01B4 in [Sta24]

https://stacks.math.columbia.edu/tag/01B4
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Observe that, up to standard identifications,

f∗(α ◦ sTI )|s =f
∗(α ◦ sTI )s ⊗OS,s

idk(s) =

=((α ◦ sTI )f(s) ⊗OT,f(s)
idOS,s

)⊗OS,s
idk(s) =

=(α ◦ sTI )f(s) ⊗OT,f(s)
idk(s) =

=((α ◦ sTI )f(s) ⊗OT,f(s)
idk(f(s)))⊗k(f(s)) idk(s) =

=(α ◦ sTI )|f(s) ⊗k(f(s)) idk(s).

Note that we used the fact that OT,f(s) → OS,s → k(s) = OT,f(s) → k(f(s)) → k(s). Since field
extensions do not change the rank of linear maps, this shows that

f∗(α ◦ sTI )|s is surjective ⇐⇒ (α ◦ sTI )|f(s) is surjective.

By Nakayama’s lemma we can again consider equivalently f∗(α ◦ sTI )s = (f∗α)s ◦ (sSI )s.
We have thus shown that f(s) ∈ UI if and only if (f∗α)s ◦ (sSI )s is surjective, i.e. f factors

through UI if and only if (f∗α) ◦ sSI is surjective, i.e. f∗α ∈ GrI(k, n)(S).

Proposition 3.24. The collection {GrI(k, n)} is an open cover of Gr(k, n).

Proof. For any K-scheme S and any quotient [α] ∈ Gr(k, n)(S) (without loss of generality we
choose a representative α) we need to show that for any s ∈ S there exists a multiindex I such
that s ∈ UI defined as in the previous proposition.

We are therefore looking for a multiindex I such that (α ◦ sI)s is surjective. By Nakayama’s
lemma this is equivalent to showing that there exists an I such that

k(s)k
sI→ k(s)n

αs→ Qs ⊗OS,s
k(s)

is surjective, which is trivially true since rnkαs = k.

3.2.2 Representability of the Grassmannian functor

Lemma 3.25. Let T be a scheme and [α : On
T ↠ Q], [β : On

T ↠ Q′] ∈ Gr(k, n). If [α] = [β] then
the isomorphism θ : Q→ Q′ such that β = θ ◦ α is unique.

Proof. First, observe that if α = β then by surjectivity and commutativity θ = idQ. Let θ, η : Q→
Q′ be isomorphisms such that β = θ ◦ α and β = η ◦ α. Then θ−1 ◦ η : Q→ Q is an isomorphism
such that θ−1 ◦ η ◦ α = θ−1 ◦ β = α, so θ−1 ◦ η = idQ and thus θ = η.

Proposition 3.26. The Grassmannian functor Gr(k, n) is a Zariski sheaf.

Proof. Consider a K-scheme T and an open cover {Ui → T}. Let αi : On
Ui

↠ Qi be representatives
of quotients such that

αi|Ui∩Uj
∼ αj |Ui∩Uj

.

Because of lemma (3.25), the isomorphism giving the equivalence above is unique. Let φji :
Qi|Ui∩Uj

→ Qj |Ui∩Uj
be this isomorphism. Because of the uniqueness φii = idQi

and φki =

φkj ◦ φji, so we have the data to glue the Qi to a locally free sheaf of rank k over T , which we
denote by Q.
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By construction αi : On
Ui

↠ Q|Ui
for all i. Let V ⊆ T be an open subset. For any section

s ∈ On
T (V ) we can define αV (s) by gluing the (αi)V (s|Ui

), which we can do by construction3 of Q.

It is well known that a sheaf morphism is determined by its restrictions to open sets.

Proposition 3.27. The affine scheme GrI(k, n) represents GrI(k, n).

Proof. First we prove that for any K-scheme T , Hom Sch/K(T,GrI(k, n)) ∼= GrI(T ), then we need
to check naturality.

By definition GrI(k, n) = Spec
(
K
[
detXJ

detXI

])
, so

Hom Sch/K(T,GrI(k, n)) ∼= Hom K-alg

(
K
[
detXJ

detXI

]
,OT (T )

)
.

For a map α : On
T → Ok

T , we define M(U) as the matrix which represents αU : On
T (U) → Ok

T (U)
in the canonical bases. We define the following maps

Hom K-alg

(
K
[
detXJ

detXI

]
,OT (T )

)
←→

{
α : On

T → Ok
T | α ◦ sI = idOk

T

}
φ 7−→ η(φ)

ρ(α) : detXJ

detXI
7→ det(M(T ))J

det(M(T ))I
←− [ α

where η(φ) is defined on an open subset V of T by

η(φ)V (ej) =

k∑
i=1

(resTV ◦ φ)

(
detXIi

j

detXI

)
er

(3.14)
= (resTV ◦ φ)

(
X−1

I X
)
ej .

The maps are well defined because α ◦ sI = idOk
T
⇐⇒M(T )I = Ik and

detXIr
is

detXI
= δr,s =⇒ η(φ) ◦ sI = idOk

T
.

We can see that η and ρ are inverses via the following computations:

resTV ◦ ρ(α)(X−1
I X) = resTV (M(T )I

−1
M(T )) = resTV (I

−1
k M(T )) =M(V ),

ρ(η(φ))

(
detXJ

detXI

)
=
det((resTT ◦ φ)

(
X−1

I X
)
J
)

1
=

=φ(det((X−1
I X)J)) = φ

(
detXJ

detXI

)
.

Observe now that{
α : On

T → Ok
T | α ◦ sI = idOk

T

}
←→ {α : On

T ↠ Q | α ◦ sI isomorphism}⧸∼
α 7−→ [α]

(β ◦ sI)−1 ◦ β ←− [ [β]

3More precisely, the φji are the gluing functions on Q and

αj(s|Uj
)|Ui∩Uj

= αj(s|Ui∩Uj
) = φji ◦ αi(s|Ui∩Uj

) = φji(αj(s|Uj
)|Ui∩Uj

).
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is a bijection. The second map is well defined because if β = θ ◦ β′ then

(β ◦ sI)−1 ◦ β = (β′ ◦ sI)−1 ◦ θ−1 ◦ θ ◦ β′ = (β′ ◦ sI)−1 ◦ β′

and they are inverses because β ∼ (β ◦ sI)−1 ◦ β by definition of ∼ and if α ◦ sI = idOk
T

then

(α ◦ sI)−1 ◦ α = α. We conclude by noticing that

{α : On
T ↠ Q | α ◦ sI isomorphism}⧸∼ = {α : On

T ↠ Q | α ◦ sI surjective}⧸∼

because on all stalks α ◦ sI is an endomorphism of finitely generated modules.

To prove naturality we consider a morphism f : S → T of K-schemes. Recall that

GrI(k, n)(T ) −→ GrI(k, n)(S)
[α] 7−→ [f∗α]

.

Under the bijection above, imposing naturality gives{
α : On

T → Ok
T | α ◦ sI = idOk

T

}
−→

{
β : On

S → Ok
S | β ◦ sI = idOk

S

}
α 7−→ f∗α

since f∗α ◦ sSI = f∗(α ◦ sTI ) = f∗(idOk
T
) = idOk

S
. If we impose naturality again we get

Hom K-alg

(
K
[
detXJ

detXI

]
,OT (T )

)
−→ Hom K-alg

(
K
[
detXJ

detXI

]
,OS(S)

)
φ 7−→ ρ(f∗η(φ))

We claim that ρ(f∗(η(φ))) = f#(T ) ◦ φ. Since η is the inverse of ρ, it is enough to prove that
f∗(η(φ)) = η(f#(T ) ◦φ). Equality holds because for all s ∈ S both of the maps induced on stalks
are represented by the matrix

f#s

((
φ(X−1

I X)
)
f(s)

)
.

We conclude by recalling that the following diagram commutes

Hom Sch/K(T,GrI(k, n)) Hom K-alg

(
K
[
detXJ

detXI

]
,OT (T )

)

Hom Sch/K(S,GrI(k, n)) Hom K-alg

(
K
[
detXJ

detXI

]
,OS(S)

)
Spec

hGrI (k,n)(f) Hom
(
K
[

detXJ
detXI

]
,f#(T )

)
Spec

Theorem 3.28. The Grassmann scheme Gr(k, n) is a fine moduli space for the Grassmann functor
Gr(k, n).

Proof. We know that {GrI(k, n)→ Gr(k, n)} is an open cover (3.24), that the functor Gr(k, n) is a
Zariski sheaf (3.26) and that hGrI(k,n)

∼= GrI(k, n) (3.27). If we can show that these isomorphisms
restrict well to double intersections we have the desired result by proposition (1.36).

Let T be a scheme and let us consider a morphism

f ∈ Hom Sch/K (T,GrI(k, n) ∩GrJ(k, n)) = Hom Sch/K (T,Gr(k, n)zIzJ ) .
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Applying a standard result for morphisms towards an affine scheme4 we get

f#(T ) ∈ Hom K-alg

((
K [detXL]detXI detXJ

)0
,OT (T )

)
.

By the universal property of localization, we may identify this set with{
β ∈ Hom K-alg

(
K
[
detXL

detXI

]
,OT (T )

)
| β
(
detXJ

detXI

)
∈ OT (T )

∗
}
.

Applying the functor η defined during the proof of proposition (3.27), which we will denote ηI to
emphasize which determinant we consider at the denominator, we obtain5

ηI(f#(T )) ∈
{
α : On

T → Ok
T | α ◦ sI = idOk

T
, α ◦ sJ isomorphism

}
.

Observe that we can identify this set with

{α : On
T → Q | α ◦ sI , α ◦ sJ surjective}/∼ = (GrI(k, n)×Gr(k,n) GrJ(k, n))(T ),

so to conclude the proof we just need to verify that ηI(f#(T )) ∼ ηJ(f#(T )) in Gr(k, n). By lemma

(3.14), the matrix X−1
J XI can be described only using elements in the ring K [detXL]

0
detXI detXJ

.

We can thus define θ by setting θV (ej) = f#(V )(X−1
J XI)ej . It is clear by construction that

θ ◦ ηI(f#(T )) = ηJ(f#(T )). Defining δ from X−1
I XJ analogously yields an inverse of θ, realizing

the sought out equivalence.

4see remark (3.17).
5the condition on the image of detXJ

detXI
corresponds to det(α ◦ sJ ) being invertible, and thus to α ◦ sJ being an

isomorphism.



Chapter 4
Quot and Hilbert schemes

In the definition of the Grassmannian moduli problem the concept of quotient sheaves turned out
to be instrumental. Since we have only considered quotients that are vector bundles of a fixed
rank k, a natural next step might be to generalize the construction to general coherent sheaves.
This generalization has proven itself to be vital in the construction of many fine moduli spaces,
the most important example being the Hilbert schemes. The representability of both the functor
of quotients and the Hilbert moduli problem were proven by Grothendieck in [Gro61].

In this chapter we will present a proof of the representability of a particular class of functors
of quotients while taking most technical results about Castelnuovo-Mumford regularity, flat base
change and flattening stratifications as a given. Along the way we will show some examples of
how this problem is related to the one of Hilbert schemes and Grassmannians. Our approach will
follow closely the one given in [Alp24] and [FGI+06].

We will usually consider our base scheme to be SpecK for consistency with our work from the
previous chapters. For simplicity we will sometimes write K instead of SpecK.

Notation 4.1. If T is a scheme we use πT to denote the structure map Pn
T → T . When T = SpecK

we omit the subscript.

Notation 4.2. If X and T are S-schemes we write the base change of X as XT = X ×S T . With
this notation we imply that we are considering XT as a T -scheme.

4.1 Functor of quotients

Definition 4.3 (Functor of quotients). Let S be a noetherian scheme and let X → S be a
morphism of finite type. Let E be a coherent sheaf on X. If T ∈ Sch/S, a family of quotients
of E parameterized by T (or over T ) is a surjective sheaf morphism1 q : ET → Q where ET is
the pullback of E under XT → X and Q is a quasi-coherent locally finitely presented sheaf on XT

which is flat over T and whose support is proper over T .
Two families of quotients q and q′ are said to be equivalent, written q ∼ q′, if ker q = ker q′.

We denote the equivalence class [q] or more explicitly [q : ET → Q]. We define the functor of

1we will usually simply state “q : ET → Q is a quasi-coherent locally finitely presented quotient sheaf flat over T
with proper support”.
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quotients of E over the base S as

QuotE/X/S :
Sch/Sop −→ Set

T 7−→ {[q] | q family of quotients of E over T}
f : T ′ → T 7−→ [q : ET → Q] 7→ f∗[q] = [f∗q : ET ′ → f∗Q]

Remark 4.4. The functor is well defined because properness, flatness, quasi-coherence and finite
local presentation are preserved under base change (so f∗Q is a valid output) and the tensor
product is right exact, so surjectivity of the maps is also preserved.

Remark 4.5. A family of quotients over a locally noetherian scheme q : ET → Q is such that Q is
coherent. We can restrict to considering this case for local considerations in the following way:

• all commutative rings are the colimit of their subrings which are finitely generated Z-algebras,
i.e. they are the colimit of noetherian rings

• it follows that affine schemes are the limit of noetherian affine schemes

• all schemes are locally affine by definition

• the locally finitely presented sheaves over an affine scheme SpecA = limSpecAi can be
obtained as the colimit of the locally finitely presented sheaves over each SpecAi.

Because of this we will implicitly consider the schemes in the following sections to be locally
noetherian when checking for local conditions.

4.1.1 Stratification by Hilbert polynomials

Notation 4.6. If a line bundle L on X is fixed and F is a quasi-coherent sheaf on X we denote
the r-twist F ⊗OX

L⊗r as F(r) for all integers r.

Definition 4.7 (Euler characteristic of a sheaf). Let X be a closed subscheme of Pn
K. If F is a

coherent sheaf on X with proper support over K we define the Euler characteristic of F as

χ(F) =
∑
i≥0

(−1)i dimKH
i(X,F).

It is a well known result that, given our hypotheses, this sum is finite. See Theorem III.2.7 from
[Har77].

Theorem 4.8 (Snapper’s lemma). If we fix a line bundle L, the map r 7→ χ(F(r)) defines a
polynomial Φ(λ) ∈ Q[λ], which is called the Hilbert polynomial of the sheaf F .

Proof. See Theorem B.7, page 314 of [FGI+06].

Remark 4.9. If L is ample and r is sufficiently large, Φ(r) = dimKH
0(X,F(r)). This follows from

Serre’s vanishing theorem (proposition III.5.3 in [Har77]).

We are interested in Hilbert polynomials because of the following property

Theorem 4.10. Let X → S be a proper morphism of noetherian schemes, L a line bundle on X
and F a coherent sheaf on X with proper support and flat over S. For all s ∈ S let Xs be the fiber
of s. We define Φs to be the Hilbert polynomial of F|Xs

calculated with respect to the line bundle

L|Xs
. The function

S −→ Z
s 7−→ Φs(r)

is locally constant for all r ∈ Z.
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Proof. This is Theorem A.6.4 in [Alp24].

Because of this, we can decompose the functor of quotients as the following coproduct

QuotE/X/S =
∐

Φ∈Q[λ]

QuotΦ,L
E/X/S , where

QuotΦ,L
E/X/S(T ) =

{families of quotients over T such that ∀t ∈ T, Φt = Φ}⧸∼.

4.1.2 Special cases of the functor of quotients

This finer decomposition allows us to formalize how the Grassmannian moduli problem is a special
case of the functor of quotients.

Proposition 4.11. We have the equality

Gr(k, n) = Quotk,OK
On

K /K/K

Proof. The pullbacks and equivalence relations are defined in the same way, so it is enough to show
that they agree when evaluated on a K-scheme T . It is clear that (On

K)T = On
T so we just need to

show that F has Hilbert polynomial k with respect to the line bundle OT and is flat over T if and
only if F if a vector bundle or rank k over (SpecK)T .

=⇒ If F is coherent and flat over T then2 it is locally free over T and since T ∼= (SpecK)T , F
is locally free over (SpecK)T . Because T ∼= (SpecK)T , the fibers (SpecK)t are points and
so F|(SpecK)t

= Ft. By assumption, the Hilbert polynomial of this sheaf is k for all t ∈ T ,
so

k = dimKH
0(Spec k(t),Ft(r)) = rnkFt(r) for large r.

Since LT = OT we have Ft(r) ∼= Ft, so rnkFt = k for all t ∈ T , i.e. F is a locally free
sheaf of rank k.

⇐= A locally free sheaf of rank k on T is obviously coherent and flat over T . Since L in our

case is the trivial line bundle, Ft⊗O⊗r
k(t)
∼= Ft, so Φt(r) cannot depend on r and is therefore

a constant polynomial. Let dt be the value of Φt. Since rnkFt = rnkFt(r), for large r we
have

dt = Φt(r) = dimKH
0(Spec k(t),Ft(r)) = rnkFt = k,

so for all fibers, Φt is the constant polynomial k.

Now we define the Hilbert moduli problem and show how it relates to the functor of quotients:

Definition 4.12 (Hilbert functor). Let X be a closed subscheme of Pn
K. If T is a scheme, a family

of subschemes of X is a closed subscheme Y ⊆ X × T such that Y is flat and finitely presented
over T . We can define the Hilbert functor of X as

HilbX :
(Sch/K)op −→ Set

T 7−→ {Y ⊆ X × T | Y flat and finitely presented over T}
f : T → S 7−→ Y ⊆ X × S 7→ f∗Y = (idX × f)−1(Y ) ⊆ X × T

2implication (1) =⇒ (6) from Lemma 00NX in [Sta24]

https://stacks.math.columbia.edu/tag/00NX
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Proposition 4.13. We have a canonical identification

HilbX = QuotOX/X/K.

In particular, we can also define a decomposition of the Hilbert moduli problem in terms of Hilbert
polynomials3

HilbΦ,L
X :

(Sch/K)op −→ Set

T 7−→

Y ⊆ X × T
∣∣∣∣∣∣

Y flat and finitely presented
over T such that the fiber Yt has
Hilbert polynomial Φ for all t ∈ T


Proof. There is a well known bijection between closed subschemes of a given scheme and quasi-
coherent sheaves of ideals on the scheme (Proposition 5.1.15 in [Liu06]). By construction the
structure sheaf of Y is finitely presented and flat over T , so the ideal sheaf which defines Y can
be expressed as the kernel of the quotient of coherent sheaves q : OXT

→ OY . Given how the
equivalence of quotients is defined this shows that a class of quotients of OXT

corresponds exactly
to a family Y , giving us the identification we wanted.

4.2 Castelnuovo-Mumford regularity and Flattening strati-
fication

We now introduce the concept of regularity. The original proof of the representability of Quot by
Grothendieck in [Gro61] did not make use of this definition. Nevertheless, Castelnuovo-Mumford
regularity proved to be the easier method to employ to reach the result and is now the more popular
approach.

Definition 4.14 (m-regular sheaves). A coherent sheaf F on Pn
K is m-regular for an integer m if

for all i ≥ 1 we have
Hi(Pn

K,F(m− i)) = 0.

Lemma 4.15. Let 0 → K → E → Q → 0 be a short exact sequence of coherent sheaves on Pn
K,

then if K is (m+ 1)-regular and E is m-regular then Q is m-regular.

Proof. Let us fix an integer i ≥ 1. By tensoring with OPn
K
(m− i) we get an exact sequence

0 K(m− i) E(m− i) Q(m− i) 0

We can conclude by studying the following chunk of the long exact sequence associated to the
short one above

Hi(Pn
K, E(m− i)) Hi(Pn

K,Q(m− i)) Hi+1(Pn
K,K(m− i))

0 0

= =

We used the identity m− i = m+ 1− (i+ 1) to show that the third term is zero.

The following result was attributed to Castelnuovo by Mumford in [Mum66]

3the Hilbert polynomial of a closed subscheme is the Hilbert polynomial of its sheaf of ideals.
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Lemma 4.16 (Castelnuovo). Let F be an m-regular coherent sheaf on Pn
K, then the following

results hold:

(a) If r ≥ m then the map

H0(Pn
K,OPn

K
(1))⊗H0(Pn

K,F(r))→ H0(Pn
K,F(r + 1))

given by the product of sections is surjective.

(b) If r ≥ m− i for i ≥ 1 then Hi(Pn
K,F(r)) = 0.

(c) If r ≥ m then F(r) is globally generated and Hi(Pn
K,F(r)) = 0 for all i ≥ 1.

Proof. This is Lemma 5.1 from [FGI+06].

Corollary 4.17. If F is m-regular then it is also m′-regular for all m′ ≥ m.

Proof. This is statement (b) from the lemma where we choose r = m′ − i ≥ m− i.

Theorem 4.18 (Mumford). Let p and n be non-negative integers, then there exists a polynomial
Fp,n ∈ Z[x0, · · · , xn] such that, if F is a coherent sheaf on Pn

K which is isomorphic to a subsheaf
of Op

Pn
K
with Hilbert polynomial4

χ(F(r)) =
n∑

i=0

ai

(
r

i

)
, ai ∈ Z,

then F is m-regular for m = Fp,n(a0, · · · , an).
Proof. This is Theorem 5.3 in [FGI+06].

Proposition 4.19 (Regularity in Families). Let S be a noetherian scheme and let Q be a coherent
sheaf on Pn

S which is flat over S. Suppose that there exists m > 0 such that for all s ∈ S, Q|Pn
k(s)

is m-regular, then for r ≥ m
1. πS∗Q(r) is a vector bundle and, if f : T → S is an S-scheme, then we have

f∗πS∗Q(r) ∼= πT ∗QT (r).

2. If i ≥ 1 the higher direct images RiπS∗Q(d) vanish.

3. The morphism πS
∗πS∗Q(d)→ Q(d) is surjective.

Proof. This is Proposition 1.3.18 in [Alp24].

Theorem 4.20 (Existence of flattening stratifications). Let S be a noetherian scheme and let F
be a coherent sheaf on Pn

S.

• For all polynomials Φ ∈ Q[λ] there exists a locally closed subscheme SΦ ⊆ S such that a
morphism T → S factors through SΦ if and only if the pullback FT of F to Pn

T is flat over T
and for all t ∈ T , Fk(t) has Hilbert polynomial Φ.

• There exists a finite subset I ⊆ Q[λ] such that set-theoretically

S =
∐
Φ∈I

SΦ

• The closure of SΦ in S is a subset of the union
⋃

P≤Q SQ, where P ≤ Q⇐⇒ P (m) ≤ Q(m)
for m≫ 0.

Proof. This is Theorem 5.13 in [FGI+06].
4Recall that every polynomial with rational coefficients can be written in this form uniquely.
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4.3 The existence theorem

Note that Quot is not always representable5. The result that we will show is

Theorem 4.21. Let X be a closed subscheme of Pn
K for some n, L = OPn

K
(1)|X , E a coherent

quotient of OX(ν)p for some integers p and ν and Φ ∈ Q[λ]. Then the functor of quotients

QuotΦ,L
E/X/K is representable by a scheme QuotΦ,L

E/X/K.

This is a specific case of the version showcased in [AK80]. For more historical background see
subsection 5.5.2 of [FGI+06].

Remark 4.22. If the theorem holds, we can define the Hilbert schemes as

HilbΦ,L
X = QuotΦ,L

OX/X/K HilbX =
∐

Φ∈Q[λ]

HilbΦ,L
X .

Proposition 4.23. It is enough to prove theorem (4.21) in the case where X = Pn
K and E = Op

Pn
K
.

Lemma 4.24. If ν is an integer then

QuotΦ,L
E/X/K

∼= Quot
Φ(λ+ν),L
E(ν)/X/K.

Proof. The isomorphism is given by tensoring everything with L⊗ν . Indeed E⊗L⊗ν is the definition
of E(ν), χ(F ⊗ L⊗m+ν) = χ((F ⊗ L⊗ν)⊗ L⊗m) and tensoring with a line bundle does nothing to
surjectivity, flatness or properness of support.

Lemma 4.25. Let ϕ : E → G be a surjective morphism of coherent sheaves on X, then this
morphism induces a natural transformation

QuotΦ,L
G/X/K → QuotΦ,L

E/X/K

which is a closed immersion.

Proof. This is part of lemma 5.17, page 127 in [FGI+06].

Proof of Proposition (4.23). By applying lemma (4.24) we have

QuotΦ,L
OPnK

(ν)p/Pn
K/K
∼= Quot

Φ(λ−ν),L
Op

PnK
/Pn

K/K
.

Observe now that, since X ⊆ Pn
K is a closed subscheme, OX is a quotient of OPn

K
. We thus obtain

a surjective morphism of coherent sheaves

OPn
K
(ν)p → OX(ν)p → E ,

which by lemma (4.25) yields a chain of closed immersions

QuotΦ,L
E/X/K ⊆ QuotΦ,L

OX(ν)p/X/K ⊆ QuotΦ,L
OPnK

(ν)p/Pn
K/K

.

Therefore, if we can construct Quot
Φ(λ−ν),L
Op

PnK
/Pn

K/K
, we can take QuotΦ,L

E/X/K to be an appropriate closed

subscheme of it.

5A case where representability fails is given in chapter 5, section 5.1.5, example (8) of [FGI+06].
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4.3.1 Embedding into a Grassmannian

For simplicity of notation we set E = Op
Pn
K
. Recall that π : Pn

K → SpecK and πT : Pn
T → T are the

structural morphisms.

Lemma 4.26. The pushforward π∗E(r) is a skyscraper sheaf with stalk Kp ⊗ SymrKn+1.

Proof. Since SpecK consists of a single point, π∗E(r) must be a skyscraper sheaf with stalk
π∗E(r)(SpecK) = E(r)(Pn

K) = Γ(Pn
K, E(r)). Since L = OPn

K
(1) we see that E(r) = Op

Pn
K
⊗OPnK

OPn
K
(r),

so
π∗E(r)(SpecK) = Γ(Pn

K,OPn
K
(r)p) = (SymrKn+1)p ∼= Kp ⊗ SymrKn+1.

Lemma 4.27. The Hilbert polynomial of Op
Pn
K
is the one determined by

r 7→ p

(
r + n

n

)
,

in particular it depends only on p and n.

Proof. For sufficiently large r we have

χ(OPn
K
(r)p) =pχ(OPn

K
(r)) = p dimKH

0(Pn
K,OPn

K
(r)) =

=pdimK SymrKn+1 = p

(
r + n

n

)
.

Let T be a noetherian6 K-scheme. The main idea for the proof of the representability of Quot
is building a natural transformation of the form

QuotΦ,L
E/Pn

K/K
(T ) −→ Gr(Φ(r),dimK π∗E(r))(T )

[ET ↠ Q] 7−→ [πT ∗ET (r)→ πT ∗Q(r)]

for an appropriate integer r. We are identifying π∗E(r) with the vector space Kp ⊗ SymrKn+1 as
in the above lemma. We separate the proof into three steps:

Step 1. Find m0 ∈ Z such that if r ≥ m0 then the above map is well defined and natural.

Step 2. Show that if r ≥ m0 the map above is injective for all T .

Step 3. Show that if r ≥ m0 the natural transformation above is a locally closed immersion.

Since the Grassmannian functor is representable (3.28), the last step shows that a locally closed

subscheme of Gr (Φ(r),dimK π∗E(r)) is a fine moduli space for QuotΦ,L
Op

PnK
/Pn

K/K
.

Proof.(Step 1). We want to use the first claim of proposition (4.19) to show that πT ∗ET (r) and
πT ∗Q(r) are vector bundles which behave well with respect to pullbacks for r greater then some
positive integer m0. So what we seek to show is that there exists a number m0 > 0 such that for
all t ∈ T , ET |Pn

k(t)

and Q|Pn
k(t)

are m0-regular.

6we can suppose T to be noetherian because all properties that we want to verify are local.
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By the nature of proposition (4.19) and given that T is a K-scheme, the desired result for ET
follows if we prove it for T = SpecK. Since SpecK consists of only one point, there is only one fiber
to consider for the restrictions of E : the whole of Pn

K. Let m be the integer given by Mumford’s
theorem (4.18) applied to E . The proposition shows that if r ≥ m then π∗E(r) = Op

K⊗ SymrOn+1
K

is a vector bundle which commutes with base change. Changing the basis to T yields the result
we wanted on πT ∗ET (r).

Let q : ET ↠ Q be a quotient on Pn
T with Hilbert polynomial Φ on each fiber. If we denote

by qt its restriction to the fiber of t ∈ T and define K = ker qt, we see that K is a subsheaf of
Ek(t) = Op

Pn
k(t)

whose Hilbert polynomial is determined7 by Φ and the Hilbert polynomial of Op
Pn
k(t)

,

which by lemma (4.27) does not depend on t. By Mumford’s theorem (4.18) there exists an integer
m0 which depends only on n, p and Φ such that K is m0-regular. Without loss of generality we
may take m0 ≥ m by applying corollary (4.17). Because of lemma (4.15), we see that Q too is
m0-regular on each fiber. Since ET and Q are flat over T , K is also flat over T by properties of
short exact sequences.

Putting all of this together, we may apply proposition (4.19) to see that πT ∗Q(r) and πT ∗K
are vector bundles which behave well with pullbacks and that R1πT ∗K(r) = 0. By looking at the
long exact sequence of higher direct images induced by

0→ K(r)→ ET (r)→ Q(r)→ 0

together with the fact that R1πT ∗K(r) = 0, we see that πT ∗ET (r) → πT ∗Q(r) is surjective.
To conclude the proof we just need to observe that πT ∗Q(r) is of fixed rank Φ(r). Note that
πT ∗Q(r)t = Q|Pn

k(t)

(r), which has Hilbert polynomial Φ, so the desired result follows easily from

the definition of Hilbert polynomial and statement (c) of lemma (4.16).

Proof. (Step 2). Let q : ET → Q be a quotient sheaf which is flat over T and let K = ker q.
Note that K too is flat over T . If we choose m0 like in the proof of Step 1 we get the following
commutative diagram

0 πT
∗πT ∗(K(r)) πT

∗πT ∗(ET (r)) πT
∗πT ∗(Q(r)) 0

0 K(r) ET (r) Q(r) 0

where the rows are exact and the vertical maps are surjective by the last statement in proposition
(4.19). Let α be given by the composition

πT
∗πT ∗(K(r))→ K(r)→ ET (r).

Because of the surjectivity of the vertical map, Immα = K(r) ⊆ ET (r), so Q(r) = cokerα.
By commutativity, α can also be written as the composition

πT
∗πT ∗(K(r))→ πT

∗πT ∗(ET (r))→ ET (r)

and in this form it is clear that πT ∗(ET (r)) → πT ∗(Q(r)) uniquely determines α and thus the
cokernel ET (r) → Q(r). This construction behaves well with changing representatives for the
quotients.

7This is a consequence of the additivity of the Euler characteristic on exact sequences.
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Proof.(Step 3). Let hτ : hT → Gr(Φ(r), π∗E(r)) be the natural transformation which corresponds
to the quotient [q : πT ∗ET (r) ↠ V ] via the Yoneda lemma (1.5) and let K = ker q. Let us consider
the fiber product

Hq hT

QuotΦ,L
E/Pn

K/K
Gr(Φ(r),dimK π∗E(r))

hτ
⌜

We seek to show that Hq is representable by a locally closed subscheme of T in such a way as to
make the upper horizontal map of the cartesian square the one induced by inclusion. Note that
because of the injectivity of the bottom morphism of presheaves we have that the upper horizontal
map is always injective.

Let us consider this version of the diagram from the previous proof

0 πT
∗K πT

∗πT ∗(ET (r)) πT
∗V 0

ET (r) Q(r) 0

α

where Q = (coker (α))(−r). Since the objects on the top row are pullbacks of vector bundles we
see that πT ∗α corresponds to the inclusion K ⊆ πT ∗ET (r) up to identifying πT ∗πT

∗K and K. It
follows by the definition of K then that πT ∗Q(r) can be identified with V .

Observe that, if Q if flat over T with Hilbert polynomial Φ, then [ET → Q] ∈ QuotΦ,L
E/Pn

K/K
(T ).

By Yoneda’s lemma (1.5), this yields a natural transformation η which provides a lift of hτ , i.e.

QuotΦ,L
E/Pn

K/K

hT Gr(Φ(r),dimK π∗E(r))

η

hτ

Since Hq → hT is injective and we have a morphism η : hT → QuotΦ,L
E/Pn

K/K
which commutes with

the maps to the Grassmannian, it easy to check set-theoretically by evaluating the functors on an
arbitrary scheme that Hq → hT is an isomorphism.

Conversely, if Q does not have Hilbert polynomial Φ or is not flat over T we cannot have
factorization by definition of the functor of quotients. We have thus identified Hq with the following
subfunctor of hT

Sch/T −→ Set

f : T ′ → T 7−→

{
{f} if QT ′ is flat over T ′ and has Hilbert polynomial Φ

∅ otherwise

By the theorem on flattening stratifications (4.20) this shows that Hq
∼= hTΦ

via an isomorphism
which is compatible with the inclusion map.
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