
Convergence and robustness
guarantees for numerical
optimization algorithms

Giuseppe Giorgio Colabufo
giuseppe.colabufo@polytechnique.edu

September 6, 2019

Contents
1 About the problem 7

1.1 Link with the Newton’s method . . . . . . . . . . . . . . . . . . . 8
1.2 Conclusion of this section . . . . . . . . . . . . . . . . . . . . . . 11

2 Stability 12
2.1 Comparison functions formalism . . . . . . . . . . . . . . . . . . 12
2.2 Input-output stability . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Calculation of L2 gain . . . . . . . . . . . . . . . . . . . . 19

2.3 Input-to-state stability . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Summary of results. . . . . . . . . . . . . . . . . . . . . . 25

2.4 lp stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Integral Input-to-state stability . . . . . . . . . . . . . . . . . . . 30
2.6 Incremental stability . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Relationships between the different concepts . . . . . . . . . . . . 36
2.8 Summary of implications . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 Conclusion of this section . . . . . . . . . . . . . . . . . . . . . . 40

3 Lyapunov functions and gains 41
3.1 Lyapunov function and ISS bounds . . . . . . . . . . . . . . . . . 41
3.2 Lyapunov function and δISS bounds . . . . . . . . . . . . . . . . 44
3.3 Conclusion of this section . . . . . . . . . . . . . . . . . . . . . . 45

4 Newton’s method 46
4.1 An introduction to Newton’s method in dimension 1 . . . . . . . 46
4.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Importance of the hypothesis . . . . . . . . . . . . . . . . . . . . 48

1

mailto:giuseppe.colabufo@polytechnique.edu


4.3.1 Multiple roots . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 A proof of convergence . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Errors in Functions, Gradients, and Hessians . . . . . . . 56
4.4.2 Error in the evaluation of the gradient . . . . . . . . . . . 57
4.4.3 Error in the evaluation of the gradient and of the inverse

Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 An approximation of Newton’s method . . . . . . . . . . . . . . . 68
4.6 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Conclusion of this section . . . . . . . . . . . . . . . . . . . . . . 78

5 Newton’s method in the ISS formalism 79
5.1 A Lyapunov function for Newton’s method . . . . . . . . . . . . 81

5.1.1 Lyapunov functions for the examples of (subsection 4.3) 83
5.2 An ISS-Lyapunov function for Newton’s method . . . . . . . . . 84

5.2.1 Using comparison functions . . . . . . . . . . . . . . . . . 85
5.2.2 Another form of V . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Incremental stability for NM . . . . . . . . . . . . . . . . . . . . 90
5.4 An iISS-Lyapunov function for Newton’s method . . . . . . . . . 94
5.5 Stability for Quasi Newton Methods . . . . . . . . . . . . . . . . 97
5.6 Updating BBFGS with a Kronecker product . . . . . . . . . . . . 102
5.7 NM and Quasi-NM in continuous time . . . . . . . . . . . . . . . 114

6 CT 122
6.1 Conclusion of this section . . . . . . . . . . . . . . . . . . . . . . 124

A Appendix 125
A.1 List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Matrix inversion formulas . . . . . . . . . . . . . . . . . . . . . . 125

A.2.1 Derivation of the update formula for BBFGS . . . . . . . 126
A.2.2 Estimation on matrix norms . . . . . . . . . . . . . . . . 127

A.3 Examples of ISS systems in discrete time . . . . . . . . . . . . . 128
A.4 Examples of δISS Lyapunov functions . . . . . . . . . . . . . . . 129
A.5 Discrete time systems from continuous time systems . . . . . . . 134

A.5.1 ISS property from CT to DT systems . . . . . . . . . . . 134
A.5.2 δISS property from CT to DT systems . . . . . . . . . . . 136

A.6 Results from numerical simulations on BFGS . . . . . . . . . . . 138
A.6.1 Plot of the test functions . . . . . . . . . . . . . . . . . . 141
A.6.2 Plot of the parameters . . . . . . . . . . . . . . . . . . . . 142

References 145

Index of theorems and definitions 146

2



Notations

Gradient and Hessian matrix

∇f gradient of the function f

H Hessian matrix of the function f

Fk approximation of the Hessian matrix at a point xk (subsection 4.5)

Bk approximation of the inverse Hessian matrix at a
point xk

(subsection 4.6)

Functions

V an (ISS / iISS / δISS ) Lyapunov function Definitions (5.3), (2.11),
(2.23), (2.26)

α a K or K∞ function (subsection 2.1)

β a KL function (Definition 2.5)

ρ a comparison function (subsection 2.1)

σ a K function (Definition 2.2)

Errors

εk or rk error in the evaluation of ∇f(xk) (subsection 4.4)

εH error in the evaluation of H(x) (subsection 4.4)

ζk error in the inversion of the Hessian H (subsection 4.4)

∆H or sk error in the evaluation of H−1(xk) (subsection 4.4)

∆k error in the Newton’s Method step (subsection 1.1)

Vectors and matrices

‖x‖ euclidean norm of a vector x ∈ Rn

‖A‖ induced matrix norm for A ∈ Rn×m

xT or AT denotes the transpose of a vector x or a matrix A

A⊗B Kronecker product between matrices A and B (Definition 5.5)

Other notations

‖u‖∞ `∞ norm of a bounded control u : N→ Rn (Remark 2.5.3)

u[k] truncation of u (Remark 2.5.7)

x(·, ξ, u) trajectory of system (12) with initial state
x(0) = ξ ∈ Rn and input u

(Remark 2.5.3)
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Summary of the work done
What I learnt. I have learnt the formalism of the comparison functions, I’ve
come to know stability definitions and properties like input-to-state-stability,
integral ISS and incremental ISS. I’ve looked at some examples and learnt the
relationships among the different definitions of stability, as well as their char-
acterization via Lyapunov functions. I understood the importance of having
consistent and intuitive notation throughout the document.

About Lyapunov functions. I investigated the changes in gain and tran-
sient bounds after a scaling (linear or nonlinear) of a given ISS and δISS Lya-
punov function.

Results on Newton’s Method. Given some results on convergence of
Newton’s Method, I found some examples to illustrate the value of the different
assumptions required to use the algorithm, implemented it in Matlab and plot
some domains of attraction. I extended the results on convergence, both to the
exact point and relaxing the convergence to a ball, giving sufficient conditions
for the cases in which an error is made in the evaluation of the gradient or the
Hessian matrix.

Results on approximated Newton’s Method. Given a result of con-
vergence for an approximated version of Newton’s Method, I made explicit the
error term to obtain a sufficient condition of practical convergence to a ball.
Studying the Quasi-Newton Method, in particular the BFGS and the DFP, I
compared these algorithm with the original one, trying to find conditions for
incremental stability and input-to-state-stability. Considering that a Lyapunov
function might be easier to find for a continuous time problem, I tried to state
the equivalent dynamics of BFGS and DFP in a continuous time frame.

Results on stability for Newton’s Method. I looked for a Lyapunov
function for the generic iteration step: for the classical Lyapunov definition
there exists an easy one; for the ISS case, I provided sufficient conditions for
the input-to-state-stability of Newton’s Method using comparison functions and
investigated the class of functions that satisfy these conditions; a weak result
on incremental stability (sufficient conditions assuming the Lyapunov function
is the 2-norm) was obtained; two results give sufficient conditions for the incre-
mental input-to-state-stability of Newton’s Method.

Results on stability for Quasi-Newton Method. After having rewrit-
ten the updating step for the matrix BBFGS in a vectorial form using Kronecker
product, I studied the eigenvalues of the iteration matrices for this new linear
dynamic.

In the Appendix besides the many examples, used to clarify the concepts,
I wrote a scheme to switch from CT systems to DT and vice versa.

Plan
• In (section 1) we provide context for the problem of guarantee conver-

gence and robustness guarantees for numerical optimization algorithms.
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• In (section 2) different types of stability are presented (Lyapunov, ISS,
Input-output, incremental stability ...) with the ensemble of definitions
and main results.

• In (section 3) we briefly discuss about the modifications on gains and
transient bounds that occur if the Lyapunov function (ISS or δISS) is
scaled by a linear factor or by a nonlinear K∞ function.

• In (section 4) Newton’s method is described. After a brief overview,
where the role of each assumption is emphasized, and some remarks we
provide a proof for convergence and its generalization when the update is
noisy. A Newton-like method (in which the inverse of the Hessian matrix is
replaced by a local approximation) and Quasi-Newton methods are briefly
described. Finally, we translate the method in the formalism of ISS and
provide a Lyapunov function that guarantees convergence.

• (section 5) makes the link between Newton’s Method, Quasi-Newton
Method and all the stability properties presented in (section 2). Lya-
punov functions and sufficient conditions are provided for input-to-state-
stability, incremental-input-to-state-stability, integral-input-to-state-stability...

• (Appendix A) contains: some tools that might be useful for the proofs of
this document (Appendix A.2); some extra examples of ISS and incremen-
tal ISS systems are presented in (Appendix A.3) and (Appendix A.5); a
link between continuous time systems and discrete time systems sharing
stability properties is made in (Appendix A.5).

References for the different sections
List of the main references used for each section of the document.

(section 2): Stability. [1–6] And, in detail for each subsection:

(subsection 2.1): Khalil [1], Kellett [2]
(subsection 2.2): Khalil [1], Sontag [3]
(subsection 2.3): Sontag [3], Jiang and Wang [4], Tran et al. [5], Jiang et al. [7]
(subsection 2.4): Tran et al. [5]
(subsection 2.5): Sontag [3], Tran et al. [5]
(subsection 2.6): Sontag [3], Angeli [6], Tran et al. [8], Bayer et al. [9], Tran et al.

[10]
(subsection 2.7) and (subsection 2.8): Sontag [3], Tran et al. [5], Angeli [6]

(section 3): Lyapunov functions and gains. Jiang and Wang [4], Grüne and
Kellett [11], Jiang and Wang [12]
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(section 4): Newton’s Method. [13–16] And in detail for each subsection:

(subsection 4.1), (subsection 4.2) and (subsection 4.3): Luenberger and Ye
[13], NMF [14], Bertsekas [15]

(subsection 4.4) and (subsection 4.5): Kelley [17] and notes by Dr Iman Shames
(subsection 4.6): Bertsekas [15], Nocedal and Wright [16]

(section 5): Newton’s Method in the ISS formalism. Jiang and Wang [12]
And in detail for each subsection:

(subsection 5.6): Magnus and Neudecker [18]
(subsection 5.7): Nocedal and Wright [16]

(Appendix A): Appendix. Tran et al. [5], Angeli [6], Li et al. [19], Sontag [20]
And in detail for each subsection:

(Appendix A.3): Tran et al. [5], Li et al. [19]
(Appendix A.5): Angeli [6], Sontag [20]
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1 About the problem
We have a dynamical system ẋ = f(x, u) that we can solve to get the trajectories
x ≡ x(t). These trajectories are used to build a control feedback u = k(x)
that will be injected into the dynamic as input for the following step. Figure
(Figure 1) illustrates this cycle. We might have “disturbances” (i.e. uncertainty
or noise in the calculation of u or in solving for the trajectory) and we want a
guarantee that our dynamic will be stable. In other words we want to prove
some robustness results under hypothesis of "small" perturbations of the input.
We can observe and measure the trajectory given by the solver of the dynamical
system (possibly with some noise). In this report we are interested in discrete
time dynamics, that is system (12): xk+1 = f(xk, uk).

Figure 1: Feedback stabilization, closed-loop system xk+1 = f(xk, k(xk)).

We have essentially 3 cases:

(i) noisy feedback u: û = u+ η1(x);

(ii) noisy dynamic x: x̂ = x+ η2(x);

(iii) noisy feedback u and dynamic x: û = u+ η1(x) and x̂ = x+ η2(x).

Remark 1.0.1. We observe that even if x is given exactly as output of the dy-
namic solver, it will contain some noise due to the noisy input injected in the
function f . J

We can model the noisy results as û = u + η(x) where η(x) is a random
variable with a distribution independent from the point x (and the notation
simply means that we compute a realization of the random variable at any x
when computing û.

Remark 1.0.2. This model also include the case where the noise is multiplicative:

û = u(1 + η̃(x)) = u+ uη̃(x) = u+ η(x).

J
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In order to have a chance of convergence we suppose that the noise η(x) is
bounded.

Remark 1.0.3. The noise can be stochastic or deterministic (i.e. round-off er-
rors), but in this report we will stick to the deterministic case, that is will make
no assumptions on the nature of the errors and we suppose that we don’t know
the explicit form of u, that is k(x), but only the class of functions to which it
belongs. For example, we may suppose that u is bounded in L∞ norm. J

1.1 Link with the Newton’s method
Iterative algorithms can be represented as dynamical systems. Indeed, consider
an iterative algorithm and a dynamical system with state vector xk and dynam-
ics xk+1 = f(xk). This dynamical system represents the algorithm when the
state xk of the dynamical system is equal to the k-th iterate of the algorithm for
all k. In particular we are interested in Newton’s method algorithm for finding
stationary points of a function f , as a discrete time dynamical system. The
iteration step of the Newton’s method (see (section 4)) is given by

xk+1 = xk −H(xk)−1∇f(xk)

where ∇f is the gradient of f and H is its Hessian matrix. This iteration step
is an example of closed loop dynamics, as shown in diagram of figure (Figure 2).

Figure 2: Closed-loop system for Newton’s Method:
xk+1 = xk −H−1(xk)∇f(xk).

In real world application an algorithm has finite precision so we have to add
finite precision errors in the model. This could be done by considering the finite
precision errors as disturbance inputs in the dynamical model. In this case there
are several possibilities in which an error may occur:

i) error in evaluation: this includes the evaluation of ∇f at points xk or
evaluation of H−1 at point xk. In figure (Figure 3) we call the first error
εk and the second one εH . One can suppose that the evaluation error is
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the same in both cases (the two error are of the same nature, so their
size should be comparable). Notice that the same error appears in the
evaluation of f but is not directly seen in this equation, however we should
take it into account because in the evaluation of ∇f we will probably do
an approximation that requires f(xk).

ii) error in the inversion of the Hessian matrix H−1(x) (which is noted ζk in
figure (Figure 3));

In general both types of errors will be present. Even if we have already made
the remark that the form of the noise can be always considered as additive, keep
the structure of errors may actually be important to prove convergence and to
give more accurate bounds on the norm of the error that one should assume
to guarantee convergence. Figure (Figure 3) schematize the general situation:
an error εk in evaluation of ∇f , an error εH in evaluation of H−1 at point xk
and an error ζkin inverting the hessian matrix are combined together. We can
estimate the error due to inversion as follows: we consider the hessian matrix
H(x) but we only know its noisy value H(x)+εH . When the matrix is inverted,
we are actually computing (H(x) + εH)−1. We can use the expansion of the
geometric series to estimate this quantity:

(H(x) + εH)−1 = (H(x)(I +H−1(x)εH))−1

= (I +H−1(x)εH)−1H−1(x)

=
(
I −H−1(x)εH + εTH

(
H−1(x)

)2
εH − . . .

)
H−1(x)

≈ H−1(x)−H−1(x)εHH
−1(x).

When we evaluate this quantity at xk another error εk adds to it. So, the
computed values are

• ∇f(xk) + εk for the gradient of f at xk;

• H−1(xk)−H−1(x)εHH
−1(x) + ζk for the inverse of the Hessian matrix H

at xk;

these two quantities are multiplied together, so that at the end the update
pk = xk+1 − xk for the iteration step becomes:

pk := −
(
H−1(xk)−H−1(x)εHH

−1(x) + ζk
)

(∇f(xk) + εk)

pk = −H−1(xk)∇f(xk)−H−1(xk)εk − ζk∇f(xk)

+H−1(x)εHH
−1(x)∇f(xk) +H−1(x)εHH

−1(x)εk − ζkεk.

Remark 1.0.4. In order to prove the stability of this dynamics, we can arbitrarily
decompose the iteration step, making xk+1 a more general function of xk and
an input uk. Indeed we notice that taking uk = −H(xk)−1∇f(xk) makes the
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Figure 3: A scheme for the general case of noisy Newton’s method.

system not to be ISS1 (with respect to uk). For example a possible (linear)
decomposition would be xk+1 = 0.9xk + (0.1xk − H(xk)−1∇f(xk)). In this
case, the system is ISS with input uk = 0.1xk −H(xk)−1∇f(xk). J

Remark 1.0.5 (Two possible main questions.). In this setting we have two pos-
sible main directions to explore:

I. Assuming that there exists a unique point x∗ stationary point and mini-
mum point for a given function f , what assumptions are needed to guar-
antee the convergence of Newton’s method to that point?

II. What other assumptions one need to make to show that such a point
exists?

These two directions contains each multiple sub-questions. For example, in
the first case a natural generalization would be the case of multiple stationary
points, and in this case one may just be interested in convergence to any point
or one in particular. J

Remark 1.0.6. In the literature there are many results for the convergence of
Newton’s method (and other iterative algorithms) to the exact solution x∗ when
no kind of disturbances are considered in the iteration step. An example of these
results are (Theorem 4.1) or (Theorem 4.2). In (subsection 4.4) and (sub-
section 4.4) are presented similar results that take into account disturbances
in the iteration step and still guarantee a convergence to the exact point. How-
ever, in general, for many difference equations a solution is considered a stable

1See (Definition 2.10).

10



solution if it enters and remains in a sufficiently small set. For example, un-
der the proper conditions all solutions of the Newton’s equation (28) approach
the desired solution as k → ∞. This is what proved for instance in (Fact 1),
(Fact 2), (Proposition 4.4) and (Proposition 4.9). In some cases, if all the so-
lutions become and remain close to the desired solution, then the method is
judged to be satisfactory. This type of stability is called practical stability.
An example of exact definition is (Definition 2.25) of incremental stability in
(subsection 2.6). J

Figure 4: Is it OK? Newton’s Method in the basic control system scheme.

1.2 Conclusion of this section
In this first section we provided an introduction to the general scheme of dy-
namical system with control feedback. In the setting of discrete time systems,
we highlights the way that disturbances can be introduced in the system so
that noise arises when measuring the output. Motivated by the goal of guar-
anteeing convergence and robustness for numerical optimization algorithms, we
translated Newton’s Method in this framework and presented a diagram with
all the errors introduced at each iteration. We concluded the section with some
remarks about the different directions of study and research and a window on
the following sections.
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2 Stability
Various types of stability may be discussed for the solutions of differential equa-
tions or difference equations describing dynamical systems. The most important
type is that concerning the stability of solutions near to a point of equilibrium.
This may be discussed by the theory of Lyapunov.

2.1 Comparison functions formalism
These classes of functions are used in stability theory to characterize the stability
properties of control systems.

Figure 5: Subsets of comparison functions.

Definition 2.1 (Positive definite functions). The class of positive definite func-
tions is the class

P = {γ ∈ C(R+; R+) | γ(0) = 0 and ∀r > 0 γ(r) > 0}.

Definition 2.2 (Class K). A continuous function γ : [0, a) → R+ is said to
belong to class K if it is strictly increasing and γ(0) = 0. In other words

K = {γ ∈ P | γ ↗ (strictly increasing)}.

Definition 2.3 (Class K∞). A continuous function γ : R+ → R+ is said to
belong to class K∞ if it belongs to class K with a =∞ and it is unbounded. In
other words

K∞ = {γ ∈ K | lim
r→∞

γ(r) =∞}.

Definition 2.4 (Class L). A continuous function γ : R+ → R+ is said to belong
to class L if it is strictly decreasing:

L = {γ ∈ C(R+; R+) | γ ↘ and lim
r→∞

γ(r) = 0}.

Definition 2.5 (Class KL). A continuous function β : [0, a)×R+ → R+ is said
to belong to class KL if β(·, t) ∈ K for each fixed t and β(r, ·) ∈ L for each fixed
r:

KL = {β ∈ C([0, a)× R+; R+) | ∀t ≥ 0 β(·, t) ∈ K and ∀r ∈ (0, a) β(r, ·) ∈ L}.

In other words β is strictly increasing in the first variable and decreasing to 0
in the second one and β(0, 0) = 0.

12



Lemma 2.1 (Comparison function properties). [1, Lemma 4.2, p. 145] Let α1

and α2 be class K functions on [0, a), α3 and α4 be class K∞ functions, and β
be a class KL function. Then,

• α−1
1 is defined on [0, α1(a)) and belongs to class K;

• α−1
3 is defined on [0,+∞) and belongs to class K∞;

• α1 ◦ α2 ∈ K;

• α3 ◦ α4 ∈ K∞;

• σ(r, s) = α1(β(α2(r), s)) ∈ KL.

0 1 2 3 4 5
0

5

10

15

20

x

y

Comparison functions: examples in classes P ⊃ K

x |sin(500x)| ∈ P \ K
x ∈ K

ex − 1 ∈ K
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π
2 − tan−1(x)

e−x
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30
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20
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Comparison functions: an example in class KL

x
0.1xy+1

Remark 2.1.1 (Other properties of comparison functions). In addition to the
basic properties listed by the previous (Lemma 2.1), comparison functions have
also other interesting properties:

• If α ∈ K and σ ∈ L then α ◦ σ ∈ L.

• For any σ1, σ2 ∈ L, σ1 ◦ σ2 − σ1(σ2(0)) ∈ K.

• We can always bound comparison functions from above and below by
smooth functions on R+; we may additionally control how close the smooth
function is to the given function. [2, Lemmas 1-4, pp. 345-346]

• (Sontag’s Lemma on KL-Estimates) For any given β ∈ KL and any con-
stant λ > 0

∃ρ1, ρ2 ∈ K∞ β(s, r) ≤ ρ1(ρ2(s)e−λr) ∀s, r ≥ 0 (1)
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• (A lower bound for KL functions) [2, Lemma 19, p. 351] For any β ∈ KL
there exist α1 ∈ K, α2 ∈ K∞ such that

β(s, t) ≥ α1(s)

1 + α2(t)
∀s, t ∈ R+.

• (A triangle inequality) for any function α ∈ K and any a, b ∈ R ≥ 0,

α(a+ b) ≤ α(2a) + α(2b). (2)

This is a special case of a more general inequality involving a K∞ function
ϕ (see [2, Lemma 10, p. 347]):

Lemma 2.2 (Triangle inequality for comparison functions). Given α ∈ K
and any function ϕ ∈ K∞ such that ϕ− id ∈ K∞, then for any a, b ≥ 0:

α(a+ b) ≤ α(ϕ(a)) + α(ϕ ◦ (ϕ− id)−1(b)). (3)

• The integral of a class-K function is convex.

Proof. Let α ∈ K and call ϕ(s) =
∫ s

0
α(τ)dτ . We need to prove that

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y) for every λ ∈ [0, 1]. It is just a
change of variables:

ϕ(λx+ (1− λ)y) =

∫ λx

0

α(τ)dτ +

∫ (1−λ)y

0

α(τ)dτ

= λ

∫ x

0

α(λτ)dτ + (1− λ)

∫ y

0

α(λτ)dτ

≤ λ
∫ x

0

α(τ)dτ + (1− λ)

∫ y

0

α(τ)dτ

= λϕ(x) + (1− λ)ϕ(y).

Where we used that λ ≤ 1 and the fact that α is increasing to obtain the
inequality. �

• There is a comparison principle (or comparison lemma) which makes use
of a scalar differential inequality to make statements about the nature
of solutions to a scalar differential equation (that is give upper or lower
bounds by K or KL function on them).

• Given a K-function, it is possible to find another K function that upper
bounds the given function away from the origin and is linear near the
origin. (see [2, Lemma 26, p. 354])

• For any α ∈ K∞ there is α̂ ∈ K∞ satisfying:

α̂(s) ≤ α(s) ∀s ≥ 0 and id− α̂ ∈ K.

J
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2.2 Input-output stability
An input-output model relates the otput of the system directly to the input
(with no knowledge of the interior structure that is represented by the state
equation, so the system is like a black box).

The input-output stability is useful in studying interconnected systems: the
gain allows us to track how the norm of a signal increases or decreases as it
passes through the system.

We consider y = Hu where u : R+ → Rm is a (piece-wise constant / bounded
/ piece-wise continuous / square integrable ) input. We set, for 1 ≤ p <∞,

Lmp :=

{
u piece-wise continuous with ‖u‖L :=

(∫ ∞
0

‖u(t)‖p dt
)(1/p)

<∞

}
.

We extend this space:

Lme :=
{
u ∈ Lm | uτ := u(t)1[0,τ ](t) ∈ Lm ∀τ ∈ [0,∞)

}
.

We say that H is causal if the value of the output at any time t depends
only on vales of the input up to time t.

Definition 2.6 (L-stable). [1, Definition 5.1, p. 197] H : Lme → Lqe is L-stable
if ∃α ∈ K ∃β ≥ 0 such that

‖(Hu)τ‖L ≤ α (‖uτ‖L) + β ∀u ∈ Lme ∀τ ∈ R+

Definition 2.7 (finite gain L-stable). [1, Definition 5.1, p. 197] H : Lme → Lqe
is finite gain L-stable if ∃γ, β ≥ 0 such that

‖(Hu)τ‖L ≤ γ ‖uτ‖L + β ∀u ∈ Lme ∀τ ∈ R+

Remark 2.2.1. The notion of L∞ stability is the same of BIBO: for every
bounded input the output is bounded. J

Remark 2.2.2. One could give a nonlinear version of this (Definition 2.7), re-
quiring the upper bound to be γ ∈ K∞ a function of ‖uτ‖. J

Definition 2.8 (small-signal L-stable). [1, Definition 5.2, p. 201] H : Lme → Lqe
is small-signal L-stable if ∃r ≥ 0 such that

∀u ∈ Lme sup
[0,τ ]

‖u(t)‖ ≤ r ⇒ ‖(Hu)τ‖L ≤ α (‖uτ‖L) + β

Definition 2.9 (small-signal finite gain L-stable). [1, Definition 5.2, p. 201]
H : Lme → Lqe is small-signal finite gain L-stable if ∃r ≥ 0 such that

∀u ∈ Lme sup
[0,τ ]

‖u(t)‖ ≤ r ⇒ ‖(Hu)τ‖L ≤ γ ‖uτ‖L + β

Lyapunov stability tools can be used to establish L stability of nonlinear
system represented by state models.
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2.2.1 Summary of results

We consider the system {
ẋ = f(t, x, u) x(0) = x0

y = h(t, x, u)
(4)

where f is piece-wise continuous in t and locally Lipschitz in (x, u) and h is
piece-wise continuous in t and continuous in (x, u). Then the following theorems
hold.

Theorem 2.3 (Small-signal finite-gain Lp stable). [1, Theorem 5.1, p. 202]
Consider the system (4) and take r > 0 and ru > 0 such that {‖x‖ ≤ r} ⊂ D ⊂
Rn the x-domain for f and h and {‖u‖ ≤ ru} ⊂ Du ⊂ Rm the u-domain for f
and h. Suppose that

• x = 0 is an exponentially stable equilibrium point for ẋ = f(t, x, 0) with
Lyapunov function V that satisfies

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2 (5a)

∂tV + ∂xV f(t, x, 0) ≤ −c3 ‖x‖2 (5b)
‖∂xV ‖ ≤ c4 ‖x‖ (5c)

for some positive constants ci;

• f L-Lipschitz in u:

‖f(t, x, u)− f(t, x, 0)‖ ≤ L ‖u‖

• h satisfies inequality

‖h(t, x, u)‖ ≤ η1 ‖x‖+ η2 ‖u‖ (6)

then the system (4) is small-signal finite-gain Lp stable for each ‖x0‖ ≤ r
√
c1/c2.

Remark 2.3.1. We can precise the result a bit:

• it holds for each p ∈ [1,∞];

• it holds locally or globally (depending on where the assumptions hold) if
D = Rn and Du = Rm;

• we have an explicit form for the constants γ and β:

γ = η2+
η1c2c4L

c1c3
β = η1 ‖x0‖

√
c2
c1
ρ where ρ =

1 p =∞(
2c2
c3p

)1/p

p ∈ [1,∞)
.
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• As a corollary we can apply the theorem if f is continuously differentiable
in a neighborhood of (x = 0, u = 0) with ∂xf and ∂uf uniformly bounded
in t.

• As a corollary, the linear time-invariant system{
ẋ = Ax+Bu

y = Cx+Du

is finite-gain Lp stable if A is Hurwitz.

J

Theorem 2.4 (small-signal L∞ stable). [1, Theorem 5.2, p. 206] Consider
the system (4) and take r > 0 and ru > 0 such that {‖x‖ ≤ r} ⊂ D ⊂ Rn the
x-domain for f and h. Suppose that

• x = 0 is an uniformly asymptotically stable equilibrium point of ẋ = f(t, x, 0)
with a Lyapunov function V that satisfies

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (7a)
∂tV + ∂xV f(t, x, 0) ≤ −α3(‖x‖) (7b)

‖∂xV ‖ ≤ α4(‖x‖) (7c)

for some K functions αi;

• f and h satisfy inequalities

‖f(t, x, u)− f(t, x, 0)‖ ≤ α5(‖u‖) (8a)
‖h(t, x, u)‖ ≤ α6(‖x‖) + α7(‖u‖) + η (8b)

for some K functions α5, α6, α7 and a constant η ≥ 0.

then the system is small-signal L∞ stable for each ‖x0‖ ≤ α−1
2 (α1(r)).

Remark 2.4.1. In this case we cannot generalize to obtain a global result. J

Theorem 2.5 (L∞ stable). [1, Theorem 5.3, p. 208] Consider the system (4)
with D = Rn and Du = Rm and suppose that ẋ = f(t, x, u) is ISS stable and

‖h(t, x, u)‖ ≤ α1(‖x‖) + α2(‖u‖) + η (9)

for some K functions α1, α2 and a constant η ≥ 0. Then, for each x0 ∈ Rn the
system is L∞ stable.
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2.2.2 Calculation of L2 gain

• [1, Theorem 5.4, p. 210] gives an explicit form for a L2 gain of a linear
time-independent system {

ẋ = Ax+Bu

y = Cx+Du

which is given by supω∈R ‖G(iω)‖ where G(s) = C(sI −A)−1B +D.

• [1, Theorem 5.5, p. 211] If we consider the system{
ẋ = f(x) +G(x)u x(0) = x0

y = h(x)
(10)

where f(0) = 0 = h(0) and f locally Lipschitz, h,G continuous. If V
satisfies the Hamilton-Jacobi inequality

∂xV f(x) +
1

2γ2
∂xV G(x)G(x)T (∂xV )T +

1

2
h(x)Th(x) ≤ 0 (11)

with γ > 0 then the system is finite-gain L2 stable with L2 gain ≤ γ.

– the theorem hold globally or locally as long as that the solution x(t)
of system (10) remains in the same domain;

– we can use asymptotic stability of the origin of ẋ = f(x) when ‖x0‖
and sup[0,τ ] ‖u(t)‖ are sufficiently small to get the same result (see
[1, Lemma 5.1, p. 215]).

– we can check the asymptotic stability of the origin with linearization
or by a Lyapunov function. Under certain conditions we can use
V satisfying Hamilton-Jacobi inequality as a Lyapunov function for
showing asymptotic stability.

• [1, Theorem 5.6, p. 218] If we have also that f ∈ C1 and no solution of
ẋ = f(x) identically stays in {h(x) = 0} other than x ≡ 0 then the origin
is asymptotically stable and ∃k ‖x0‖ ≤ k ⇒ the system is finite-gain L2

stable with L2 gain ≤ γ.

– this is the same result of the previous theorem but the asymptotic
stability is a consequence of stronger hypothesis on the solutions.

Remark 2.5.1 (Hamilton-Jacobi in the linear case.). Suppose that the system
(10) is linear: {

ẋ = Ax+Bu

y = Cx
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and call V (x) = 1
2x

TPx. Then the Hamilton-Jacobi equation becomes

xTPAx+
1

2γ2
xTPBTBPx+

1

2
xTCTCx = 0

which lead to the Riccati equation

ATP + PA+
1

γ2
PBTBP + CTC = 0

for the positive definite matrix P . J

Remark 2.5.2 (Fundamental Relationship Among ISS, IOS, and IOSS). Input-
output stability combined with input-output-to-state stability is equivalent input-
to-state stability. J

2.3 Input-to-state stability
The notion of input to state stability (ISS) (Definition 2.10) plays a central
role in nonlinear systems. In particular this notion has many good properties,
such as: that the states are bounded for bounded inputs, and they tend to the
equilibrium of the systems when the inputs tend to zero.

• ISS applies Lyapunov notions to systems with inputs.

• The property concerns with the continuity of state trajectories on the
initial state and input.

• Every state trajectory corresponding to a bounded control remains bounded
(the trajectory becomes small if the input signal is small no matter what
the initial state is).

• ISS employed the stability analysis and control synthesis of nonlinear sys-
tems with complex structure.

• the discrete time system can be rendered ISS iff it is globally stabilizable
via state-feedback.

• ISS is particularly useful as a tool for the robust stability analysis of
nonlinear system and interconnected systems.

Remark 2.5.3 (Notations.). 2 If x ∈ Rn then ‖x‖ is its euclidean norm. For a
matrix A ∈ Rn×m ‖A‖ stands for its induced matrix norm. The same notation
for the bounded controls u : N→ Rn stands for their `∞ norm. For each ξ ∈ Rn

and each input u, x(·, ξ, u) denotes the trajectory of system (12) with initial
state x(0) = ξ and input u. J

2I used essentially the same notations used in [4] but for the euclidean norm.
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We consider the system

xk+1 = f(xk, uk). (12)

Remark 2.5.4. The system (12) is an autonomous system since f does not
explicitly depend on time k. One can always turn a system into au-
tonomous: given a non-autonomous system ẋ(t) = f(x, t), one can introduce
a new vector function X(t) = (x(t), t) which satisfies the autonomous system
Ẋ(t) = g(X) := (f(x), 1). Doing this, the dimension of the system goes up.
However, while autonomous systems are often easier to understand by analysis
of their equilibria, the new equivalent system Ẋ(t) = g(X) has no equilibria
(because g never vanishes). J

Definition 2.10 (ISS). The system (12) is (globally) ISS if ∃β ∈ KL ∃γ ∈ K
such that ∀u ∈ lm∞ ∀ξ ∈ Rn

‖x(k, ξ, u)‖ ≤ β(‖ξ‖ , k) + γ(‖u‖) ∀k ∈ N

The function β in this definition describes the decaying effect of the initial
condition ξ, while the function γ describes the effect of the input signal u.

Remark 2.5.5. ISS implies 0-GAS and Converging Input Converging Output
(bounded input ⇒ trajectories in a ball).
However, 0-GAS + CICO don’t imply ISS (see counterexample below). J

Example 2.1: ISS is stronger than 0-GAS + CICO. Consider the system

xk+1 =
1

2
(1 + sin(uk))xk

which is clearly 0-GAS and CICO simply using the definitions. It is not ISS
because when taking input uk ≡ π

2 the dynamic is just xk+1 = xk so that the
trajectories are constant and cannot go to 0 as k →∞). /

Remark 2.5.6. [3] Since, in general, max{a, b} ≤ a + b ≤ max{2a, 2b}, one can
restate the ISS condition in a slightly different manner, namely, asking for the
existence of some β ∈ KL and γ ∈ K∞ (in general different from the ones in the
ISS definition) such that

‖x(t)‖ ≤ max{β(‖x0‖ , t), γ(‖u‖∞)}

holds for all solutions. J
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Remark 2.5.7. The truncation of u is defined as

u[k](j) =

{
uj j ≤ k
0 j > k

.

By causality, the same definition of ISS would result if one would replace ‖u‖
by the norm of the truncation

∥∥u[k]

∥∥. J

Lemma 2.6 (ISS characterization). System (12) is ISS if and only if there
exists α, η, σ ∈ K∞ such that

k∑
j=0

α(‖xj‖) ≤ η(‖x0‖) +
k−1∑
j=0

σ(‖uj‖) ∀x0 ∈ Rn ∀k ≥ 0. (13)

Definition 2.11 (ISS-Lyapunov function). V : Rn → R+ is a ISS-Lyapunov
function for system (12) if it is continuous and

∃α1, α2 ∈ K∞ α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ξ ∈ Rn (14a)
∃α3 ∈ K∞ ∃σ ∈ K V (f(ξ, µ))− V (ξ) ≤ σ(‖µ‖)− α3(‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm

(14b)

Remark 2.6.1. It is obvious by the (Definition 2.11) that, if λ > 0 is a constant
and V an ISS-Lyapunov function, then λV is still an ISS-Lyapunov function,
and all the comparison functions used for bounds are just multiplied by the
same constant λ. J

Remark 2.6.2. Observe that if V is an ISS-Lyapunov function for (12), then
V is a Lyapunov function for the 0-input system xk+1 = f(xk, 0). Indeed the
first condition (14a) gives V (0) = 0 and V (x) > 0 for x 6= 0, while the second
condition (14b) gives V (f(x, 0))− V (x) < 0. J

Remark 2.6.3. The first inequality in (14a) states that V is positive definite and
radially unbounded. The second property (14b) of (Definition 2.11) is equivalent
to

∃α4 ∈ K∞ ∃χ ∈ K ‖ξ‖ ≥ χ(‖µ‖)⇒ V (f(ξ, µ))− V (ξ) ≤ −α4(‖ξ‖). (15)

J

Proof. Clearly (14b) ⇒ (15):

V (f(ξ, µ))− V (ξ) ≤ σ(‖µ‖)− α3(‖ξ‖)

≤ −1

2
α3(‖ξ‖)− 1

2
α3(‖ξ‖) + σ(‖µ‖)

≤ − 1

2
α3(‖ξ‖)︸ ︷︷ ︸

=:α4(‖ξ‖)
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whenever − 1
2α3(‖ξ‖) + σ(‖µ‖) ≤ 0 that is ‖ξ‖ ≥ α−1

3 (2σ(‖µ‖)) =: χ(‖µ‖). For
the implication (15) ⇒ (14b) one can take α3 = α4 and consider

σ̃(r) := max{V (f(ξ, µ))− V (ξ) + α4(χ(‖µ‖)) | ‖µ‖ ≤ r ‖ξ‖ ≤ χ(r)}.

Then define σ(r) := max{0, σ̃(r)}. We can assume σ ∈ K (otherwise we can
always majorize it by a K function) and show that it verifies

σ(r) ≥ sup
‖µ‖=r

V (f(ξ, µ))− V (ξ) + α4(χ(‖µ‖))

Indeed there are two cases: when ‖ξ‖ ≥ χ(‖µ‖) then the RHS is non-positive
and the LHS σ(r) is non-negative by definition. When ‖ξ‖ ≤ χ(‖µ‖) it follows
from the definition of σ̃(r) ≤ σ(r). Then the inequality (14b)

V (f(ξ, µ))− V (ξ) ≤ σ(‖µ‖)− α3(‖ξ‖)

yields. �

Example 2.2: An example of ISS-Lyapunov function. We can illustrate
the notion of ISS-Lyapunov function in the case of a linear discrete system

xk+1 = Axk +Buk

where the matrix A has all its eigenvalues strictly inside the unit disk. We can
then choose two constants c > 0 and 0 ≤ σ < 1 such that

∥∥Ak∥∥ ≤ cσk. Since
the system is linear, we know the exact form of the trajectories:

xk+1 = Ak+1x0 +

k∑
j=0

Ak−jBuj

and the ISS property as defined in (Definition 2.10) follows with

β(r, k) = cσkr γ(r) =

∞∑
j=0

cσj ‖B‖ r =
c ‖B‖ r
1− σ

(it is obvious that β ∈ KL as it is linear in r and exponentially decreasing to 0
in k and γ ∈ K because it is affine and the coefficient is positive since c > 0 and
1−σ > 0). One can show that this linear system has a quadratic ISS-Lyapunov
function given by V (x) = xTPx where P > 0 is the unique solution to the
matrix equation

ATPA− P = −Q

for Q a symmetric positive-definite matrix. Clearly the first property of (Defi-
nition 2.11) is satisfied with:

α1(‖x‖) := λmin(P ) ‖x‖2 ≤ V (x) ≤ λmax(P ) ‖x‖2 =: α2(‖x‖).
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From a direct computation follows

V (xk+1)− V (xk) ≤ −1

2
λmin(Q) ‖xk‖2︸ ︷︷ ︸
=: −α3(‖xk‖)

+

(
2
∥∥ATPB∥∥2

λmin(Q)
+
∥∥BTPB∥∥2

)
‖uk‖2︸ ︷︷ ︸

=: σ(‖uk‖)

that is the second requirement of (Definition 2.11). Therefore the quadratic
function V (x) = xTPx is an ISS-Lyapunov function for the linear system
xk+1 = Axk +Buk. /

Definition 2.12 (K-asymptotic gain). The system xk+1 = f(xk, uk) has a
K-asymptotic gain if ∃γa ∈ K such that

lim sup
k→∞

‖x(k, ξ, u)‖ ≤ γa(lim sup
k→∞

‖uk‖) ∀ξ ∈ Rn.

Definition 2.13 (LIM). The system (12) xk+1 = f(xk, uk) satisfies the limit
property (LIM) if ∃θ ∈ K∞ such that

inf
k≥0
‖xk‖ ≤ θ(‖u‖∞) ∀ξ ∈ Rn.

Definition 2.14 (UBIBS). The system (12) xk+1 = f(xk, uk) is uniformly
bounded input bounded state (UBIBS) if bounded initial states and controls
produce uniformly bounded trajectories:

∃σ1, σ2 ∈ K ∀ξ ∈ Rn ∀u ∈ lm∞ sup
k
‖x(k, ξ, u)‖ ≤ max{σ1(‖ξ‖), σ2(‖u‖)}

Definition 2.15 (Robustly stable). The system (12) xk+1 = f(xk, uk) is ro-
bustly stable if

∃ρ ∈ K∞ xk+1 = f(xk, dkρ(‖xk‖)) =: g(xk, dk) is UGAS.3

Definition 2.16 (continuously stabilizable). The system (12) xk+1 = f(xk, uk)
is continuously stabilizable if ∃w : Rn → Rm continuous, w(0) = 0 such that
under control u = w(x) the system xk+1 = f(xk, w(xk)) is GAS.

Definition 2.17 (continuously ISS stabilizable). The system (12)
xk+1 = f(xk, uk) is continuousy ISS stabilizable if ∃w : Rn → Rm con-
tinuous, w(0) = 0 and ∃Γ n× n matrix of continuous functions invertible such
that under u = w(x) + Γ(x)v, the system xk+1 = f(xk, w(xk) + Γ(xk) + vk) is
ISS.

3Uniformly Globally Asymptotically Stable.
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2.3.1 Summary of results.

Theorem 2.7 (Equivalent formulations of ISS property.). Consider the system
(12). Then the following equivalences yield: ISS ⇐⇒ UBIBS + admits a
K-asymptotic gain ⇐⇒ robustly stable ⇐⇒ smooth ISS-Lyapunov function.

Sketch of the proof. The proof consists in the following implications steps:

• ISS-Lyapunov function ⇒ ISS;

• ISS ⇒ UBIBS + admits a K-asymptotic gain;

• GAS ⇐⇒ UGAS ⇐⇒ smooth ISS-Lyapunov function;

• robustly stable ⇒ smooth ISS-Lyapunov function;

• UBIBS + admits a K-asymptotic gain ⇒ robustly stable.

♦

Theorem 2.8 (Explicit the gain from a Lyapunov function). We can obtain an
ISS gain function from an ISS-Lyapunov function V (if the bounds for V are
explicit). In particular the K-asymptotic gain would be γa(s) := α−1

1 ◦α
−1
3 ◦σ(s)

for an ISS-Lyapunov function V as in (Definition 2.11).

Theorem 2.9 (Explicit the estimate from a Lyapunov function). We can obtain
an explicit estimate (13) for ISS characterization of (Lemma 2.6) gain function
from an ISS-Lyapunov function V (if the bounds for V are explicit). In partic-
ular the functions would be σ(s) := σ(s), η(s) := α2(s) and α(s) := α̃ ◦ α1(s)
where α̃(s) := min{s, α3 ◦ α−1

2 (s)} for an ISS-Lyapunov function V as in (Def-
inition 2.11).

Remark 2.9.1. Using (Theorem 2.8) and (Theorem 2.9), together with (Re-
mark 2.6.1), we can see how the asymptotic gain and the transient bounds
change when scaling an ISS-Lyapunov function V . It is easy to see that if
α̂(s) = λα(s) then α̂−1(s) = α−1

(
s
λ

)
, so that the bounds given by the preced-

ing theorems become:

γ̂a(s) = α̂−1
1 ◦ α̂

−1
3 ◦ σ̂(s) = α−1

1 ◦
1

λ
α−1

3 ◦ σ(s)

α̂(s) = ˆ̄α ◦ α̂1(s) = λᾱ ◦ α1(s)

η̂(s) = α̂2(s) = λα2(s)

σ̂(s) = λσ(s).

Notice that the only nonlinear change appears in the K-asymptotic gain γ̂a. J
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Corollary 2.10 (ISS and lp gain). If in the previous (Theorem 2.9) there exist
two constant cα and cσ so that α(s) ≥ cαs

p and σ(s) ≤ cσs
p then the system

(12) satisfies the linear lp gain property of (Definition 2.20) with transient and

gain bounds κ(s) = 1
cα
η(s) and λ =

(
cσ
cα

)1/p

.

Other results.

• if two subsystems are ISS then the whole interconnected system is ISS
(Theorem 2.11);

• if we have ISS-Lyapunov function for two subsystem, then the whole in-
terconnected system is ISS (Theorem 2.12);

• system (12) is ISS-stabilizable ⇐⇒ continuously stabilizable.

Theorem 2.11 (ISS for interconnected systems). Consider the interconnected
and nonlinear discrete-time systems{

x1(k + 1) = f1(x1(k), v1(k), u1(k))

x2(k + 1) = f2(x2(k), v2(k), u2(k))
(16)

subject to the interconnection constraints

v1(k) = x2(k) v2(k) = x1(k). (17)

Suppose that both subsystems in (16) are ISS:

‖x1(k, ξ, v1, u1)‖ ≤ max{β1(‖ξ1‖ , k) , γx1 (‖v1‖) , γu1 (‖u1‖)}
‖x2(k, ξ, v2, u2)‖ ≤ max{β2(‖ξ2‖ , k) , γx2 (‖v2‖) , γu2 (‖u2‖)}

and γx1 ◦ γx2 (s) < s for all s > 0. Then the interconnected system (16) and (17)
is ISS with input (u1, u2).

Remark 2.11.1. One would like to apply this theorem to the sub-dynamics of
Newton’s method (for xk and for sk), however, as already remarked in (1.0.4)
we need a smarter decomposition since the dynamic xk+1 = xk is unstable and
therefor not ISS. J

Theorem 2.12 (ISS-Lyapunov for interconnected systems). Suppose that both
subsystems in (16) admit ISS-Lyapunov functions V1 and V2 respectively that
satisfy

Vi(fi(ξi, vi, µi))− Vi(ξi) ≤ −σi(Vi(ξi)) + ρxi (Vj(vi)) + ρui (‖µi‖) i 6= j ∈ {1, 2}
(18)

with id− σi ∈ K for i = 1, 2. If there exists ρ ∈ K∞ such that

σ−1
1 ◦ (id+ ρ) ◦ ρx1 ◦ σ−1

2 ◦ (id+ ρ) ◦ ρx2 < id ,

then the interconnected system (16) and (17) is ISS with input (u1, u2).
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ISS concept was modified in many directions, providing different relation-
ships between input, output, and state. Some of the different concepts derived
from ISS will be explored in next sections ((subsection 2.2), integral ISS (iISS)
(subsection 2.5), incremental ISS (subsection 2.6)) but others exist (Input-
to-Output Stability (IOS), Input-Output-to-State Stability (IOSS)).

2.4 lp stability
Most of this section comes from [5].

There exist many other forms of stability for discrete time systems. Here we
list a series of definition that were proved to be qualitatively equivalent to ISS
(see (subsection 2.3) and (Definition 2.10)) or iISS (see (subsection 2.5) and
(Definition 2.22)).

We still consider the system (12): xk+1 = f(xk, uk).

Definition 2.18 (α-summable). System (12) is 0-input α-summable if ∃α, η ∈
K∞ such that for input u ≡ 0

k∑
j=0

α(‖xj‖) ≤ η(‖x0‖) ∀x0 ∈ Rn ∀k ≥ 0.

Remark 2.12.1. It can be proved that ([5, Theorem 1, p.362]) for a system
with no input xk+1 = f(xk) then the origin is α-summable if and only if it is
GAS. J

Definition 2.19 (lp-stable). For a fixed p > 1, system (12) is 0-input lp-stable
if ∃κ ∈ K∞ such that for input u ≡ 0

‖x‖plp[0,k] ≤ κ(‖x0‖) ∀x0 ∈ Rn ∀k ≥ 0.

Example 2.3: A 0-input l2-stable system. Consider the scalar system

xk+1 = f(xk) :=
1

2
xk +

3

2
x2
kuk.

For uk ≡ 0 the solution is simply given by

xk =
x0

2k
,

therefore

‖x‖2l2[0,k] =
k∑
j=0

∣∣∣x0

2j

∣∣∣2 ≤ 2x2
0

so that the system is 0-input l2-stable. /
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Definition 2.20 (linear lp gain). For a fixed p > 1, system (12) has linear lp
gain property with transient bound κ ∈ K∞ sand gain bound γ ≥ 0 if

‖x‖plp[0,k] ≤ κ(‖x0‖) + γp ‖u‖plp[0,k−1] ∀x0 ∈ Rn ∀k ≥ 0.

Definition 2.21 (nonlinear lp gain). For a fixed p > 1, system (12) has non-
linear lp gain property with transient bound κ ∈ K∞ sand gain bound µ ∈ K∞
if

‖x‖plp[0,k] ≤ κ(‖x0‖) + µ
(
‖u‖plp[0,k−1]

)
∀x0 ∈ Rn ∀k ≥ 0.

Example 2.4: A system without l2 gain. The system in the previous
(Example 2.3) does not satisfy the nonlinear l2 property. Indeed, consider the
input uk = 2−k, which has finite l2 norm: ‖u‖2l2 =

∑
k≥0

1
22k <

∑
k≥0

1
2k

= 2.
The solution of the system is then given by xk = 2k And taking the norm, for
every κ, µ ∈ K∞, there exist a time k such that

‖x‖2l2[0,k] > κ(1) + µ(2) ≥ κ(|x0|) + µ(‖u‖2l2[0,k−1]).

This means that the system does not satisfy the nonlinear l2 property. /

Theorem 2.13 (lp stable and α-summable). [5, Theorem 10, p. 363] For any
fixed p ≥ 1, if system xk+1 = f(xk) is lp-stable then it is α-summable. Con-
versely, if system xk+1 = f(xk) is α-summable then there exists a change of
coordinates such that the system in the new coordinates is lp-stable.

Example 2.5: l2 stable and α-summable system. The system

xk+1 =
xk√
x2
k + 1

with x0 = ξ ∈ Rn

has explicit solution

x(k, ξ) =
ξ√

kξ2 + 1
∀k ≥ 0.

Notice that this implies that the origin is GAS. For the Lyapunov function
V (x) = |x|2 and x 6= 0 yields

V (xk+1)− V (xk) = − x4
k

x2
k + 1

< 0

thus, defining α(s) = s4

s2+1 ≤ s2 = V (s) for all s ∈ R+. Summing along any
trajectory:

k−1∑
j=0

V (xj+1)− V (xj) = |xk|2 − |x0|2

= −
k−1∑
j=0

α(|xj |)
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that gives
k∑
j=0

α(|xj |) ≤ |xk|2 +
k−1∑
j=0

α(|xj |) = |x0|2 .

Thus, the system xk+1 = xk√
x2
k+1

is α-summable by (Definition 2.18) with

η(|x0|) = V (x0) = |x0|2. Now, for p = 2:

‖x‖2l2[0,k] =
k∑
j=0

x2
0

jx2
0 + 1

which corresponds to the harmonic series when x0 = 1, so in particular the sys-
tem is not l2-stable. However, as stated by (Theorem 2.13), there exists a change
of coordinates such that the system is l2-stable. This change of coordinates is

z =
x |x|√
x2 + 1

.

Indeed, define κ ∈ KL such that κ−1(s) = s√
s+1

, so that |z0| = κ−1(|x0|2) and

‖z‖l2[0,k] =
k∑
j=0

z2
j =

k∑
j=0

|xj |4

|xj |2 + 1

=

k∑
j=0

α(|xj |) ≤ |x0|2

= κ(|z0|)

therefore by (Definition 2.19) the system in the new coordinates is l2-stable. /

Similar to the (Theorem 2.13) we have the following result (see also (Theo-
rem 2.19)).

Theorem 2.14 (ISS and lp-gain). [5, Theorem 11, p. 364] For a fixed p ≥ 1,
if system (12) satisfies the linear lp-gain property then it is ISS. Conversely, if
system (12) is ISS then there exists a change of coordinates for state and input
such that the system in the new coordinates satisfies the linear lp-gain property.

Example 2.6: ISS and l2-gain. Consider the preceding (Example 2.5) with
a perturbation:

xk+1 =
xk√
x2
k + 1

+ uk with x0 = ξ ∈ Rn.
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The Lyapunov function V (x) = x2 is an ISS-Lyapunov function:

V (xk+1)− V (xk) =

(
xk√
x2
k + 1

+ uk

)2

− x2
k

=
x2
k

x2
k + 1

+ 2
xk√
x2
k + 1

uk + u2
k − x2

k

≤ − x4
k

x2
k + 1

+ 2
|xk|√
x2
k + 1

|uk|+ |uk|2

≤ − x4
k

x2
k + 1

+ (2 |uk|+ u2
k)

so it satisfies (Definition 2.11) with α(s) = s4

s2+1 and σ(s) = 2s + s2. Thus,
the system is ISS by (Theorem 2.7). We already observed that for uk ≡ 0 the
system cannot be l2-stable, neither it can have l2-gain. With the same change
of coordinates for the state z = x|x|√

x2+1
and with v = sign(u)

√
2 |u|+ u2, we

can prove that the system has l2-gain in the new coordinates. Indeed, with the
same kind of manipulations of the preceding example yields

k∑
j=0

|xj |4

|xj |2 + 1
≤ x2

0 +
k−1∑
j=0

(2 |uj |+ |uj |2).

Therefore, with κ ∈ KL such that κ−1(s) = s√
s+1

,

‖z‖l2[0,k] =
k∑
j=0

z2
j ≤ κ(|z0|) +

k−1∑
j=0

v2
j

≤ κ(|z0|) + ‖v‖2l2[0,k−1]

which is the (Definition 2.20) with transient bound κ ∈ K∞ and gain bound
γ = 1. Note that this gain can be arbitrarly chosen, via the change of coordi-
nates: v = 1

q sign(u)
√

2 |u|+ u2 would give a gain bound γ = q. /

2.5 Integral Input-to-state stability
Definition 2.22 (iISS). System (12) is integral input-to-state stable (iISS) if
∃α, σ ∈ K∞ and ∃β ∈ KL such that

α(‖xk‖) ≤ β(‖x0‖ , k) +
k−1∑
j=0

σ(‖uj‖) ∀x0 ∈ Rn ∀k ≥ 0.
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Lemma 2.15 (iISS characterization). System (12) is iISS if and only if there
exists α, η, γ, σ ∈ K∞ such that

k∑
j=0

α(‖xj‖) ≤ η(‖x0‖) + γ

k−1∑
j=0

σ(‖uj‖)

 ∀x0 ∈ Rn ∀k ≥ 0. (19)

As for the ISS property (Definition 2.10) one can define a Lypunov function
(Definition 2.11) to characterize the iISS property (Definition 2.22):

Definition 2.23 (iISS-Lyapunov function). V : Rn → R+ is a iISS-Lyapunov
function for system (12) if it is continuous and

∃α1, α2 ∈ K∞ α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ξ ∈ Rn (20a)
∃ρ ∈ P ∃σ̂ ∈ K∞ V (f(ξ, µ))− V (ξ) ≤ σ̂(‖µ‖)− ρ(‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm

(20b)

Remark 2.15.1. Notice the similarity with an ISS-Lyapunov function (Defini-
tion 2.11). The estimate has the same form but where α3 ∈ K∞ in (14b). Since
K∞ ⊂ P, an ISS-Lyapunov function is also an iISS-Lyapunov function. J

With this definition there is an analogous of (a part of) (Theorem 2.7) that
is the following:

Theorem 2.16 (iISS and iISS Lyapunov function). System (12) is iISS if and
only if there exists an iISS Lyapunov function for the system.

As in (Theorem 2.9), we can obtain an explicit estimate (19) for ISS char-
acterization of (Lemma 2.15) from an ISS-Lyapunov function V (if the bounds
for V are explicit).

Theorem 2.17 (Explicit the estimate from a Lyapunov function). Given an
iISS-Lyapunov function V as in (Definition 2.23), let ρ1 ∈ K∞ and ρ2 ∈ L such
that ρ(s) ≥ ρ1(s)ρ2(s) and ρ ◦ α−1

1 (s) ≤ 1 for all s ≥ 0. Define

χ(s) :=
1

ρ2 ◦ α−1
2

− 1 α̃(s) := min{s, ρ ◦ α−1
1 (s)}

Then the system satisfies the iISS estimation (19) with
α(s) := α̃ ◦ α1(s)

γ(s) := χ(2s)s+ 1
2χ(2s)2 + 1

2s
2 + s

η(s) := γ ◦ α2(s)

σ(s) := σ(s).

Corollary 2.18 (iISS and lp gain). If in the previous (Theorem 2.17) there
exist two constant cα and cσ so that α(s) ≥ cαs

p and σ(s) ≤ cσs
p then the

system (12) satisfies the nonlinear lp gain property (2.21) with transient and
gain bounds κ(s) = 1

cα
η(s) and µ(s) = 1

cα
γ(cσs).
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Similar to the theorems (2.13) and (2.14) we have the following:

Theorem 2.19 (iISS and lp-gain). [5, Theorem 12, p. 364] For a fixed p ≥ 1, if
system (12) satisfies the nonlinear lp-gain property then it is iISS. Conversely,
if system (12) is iISS then there exists a change of coordinates for state and
input such that the system in the new coordinates satisfies the nonlinear lp-gain
property.

Example 2.7: iISS and l2-gain. Consider the (Example 2.6) with an addi-
tional linear term:

xk+1 = f(xk, uk) :=
xk√
x2
k + 1

+ ukxk + uk with x0 = ξ ∈ Rn.

For uk ≡ 1 and initial condition x0 > 0, the solution will always be positive and
strictly increasing since

f(xk, uk)− xk =
xk√
x2
k + 1

+ 1 > 1 ∀k ≥ 0 ∀x0 ∈ R.

This means that the system is not ISS. The Lyapunov function candidate will
be V (x) = V1(x) + V2(x) with

V1(x) = arctan(|x|) V2(x) = log(|x|+ 1).

It is possible to prove that

V1(xk+1)− V1(xk) ≤ |xk+1| − |xk|
x2
k + 1

≤ − |xk|
x2
k + 1

(
1− 1√

x2
k + 1

)
+
|ukxk|
x2
k + 1

+ |uk|

≤ − |xk|
x2
k + 1

(
1− 1√

x2
k + 1

)
+ 2 |uk|

=: −ρ(|xk|) + σ1(|uk|)

where in particular ρ is positive definite and σ1 ∈ K∞. In addition

V2(xk+1)− V2(xk) ≤ log (|xk − |xk| |uk|+ |uk|+ 1|)− log(|xk|+ 1)

≤ log ((|xk|+ 1)(|uk|+ 1))− log(|xk|+ 1)

≤ log(|uk|+ 1)

=: σ2(|uk|).

Define σ(s) := σ1(s) + σ2(s) and hence,

V (xk+1)− V (xk) ≤ −ρ(|xk|) + σ(|uk|)

which guarantee that the system is iISS by (Theorem 2.16). In the same way
as in (Example 2.5), taking uk ≡ 0 the system cannot have nonlinear l2-gain.
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However, (Theorem 2.19) states that there exists a change of coordinates for
which the system has a nonlinear l2-gain. This change of coordinates is given
by

z = sign(x)κ(|x|) = sign(x)
√
α(|x|)

v = sign(u)
√
σ(|u|) = sign(u)

√
2 |u|+ log(|u|+ 1)

where
α(s) := min

{
log(s+ 1), s(

√
s2 + 1− 1)

}
.

Using the following definitions:

ϕ(s) = (es − 1)2 µ(s) = ϕ(2s)4 + 2ϕ(2s)2s+ 2ϕ(2s)s+ ϕ(2s)2 + 2s2 + s

α2(s) = log(s+ 1) + arctan(s) κ̂(s) = µ ◦ α2 ◦ κ−1(s)

one obtains:

‖z‖2l2[0,k] =
k∑
j=0

|zj |2 =
k∑
j=0

α(|xj |)

≤ µ(α2(|x0|)) + µ

k−1∑
j=0

σ(|uj |)


= µ(α2(κ−1(|z0|))) + µ

k−1∑
j=0

|vj |2


= κ̂(|z0|) + µ(‖v‖2l2[0,k−1]).

Thus, in the new coordinates, the system satisfies the nonlinear l2-gain property.
/

2.6 Incremental stability
Incremental stability extends the classical notion of asymptotic stability of an
equilibrium of a nonlinear system to consider the asymptotic behavior of any
solution with respect to any other solution. Specifically, any two solutions must
eventually asymptotically converge to each other regardless of their initial con-
ditions.

Consider the system (12):

xk+1 = f(xk, uk) x(0) = ξ

Definition 2.24 (δGAS). The system (12) is incremental globally asymp-
totically stable (δGAS) if ∃β ∈ KL such that for every sequence of distur-
bances u and every initial states ξ1, ξ2 ∈ Rn

‖x(k, ξ1, u)− x(k, ξ2, u)‖ ≤ β(‖ξ1 − ξ2‖ , k) ∀k ≥ 0.

33



Remark 2.19.1. Incremental stability describes the convergence of trajectories
with respect to themselves, rather than with respect to an equilibrium point or
a particular trajectory. J

Example 2.8: A δGAS system. The system

xk+1 = −k
2
− 1 +

xk
2

with x0 = ξ ∈ Rn

has an explicit solution

x(k, ξ) = −k +
ξ

2k
∀k ≥ 0.

For any two initial conditions ξ1, ξ2 ∈ Rn yields

‖x(k, ξ1)− x(k, ξ2)‖ =
‖ξ1 − ξ2‖

2k
=: β(‖ξ1 − ξ2‖ , k)

and β(s, r) = s
2r is a KL function. Hence, the system xk+1 = −k2 − 1 + xk

2
is globally asymptotically incrementally stable. However, notice that for the
specific initial condition ξ = 0, the solution x(k, ξ) = −k from this initial
condition is unbounded. /

The following theorem is a discrete-time Lyapunov function characterization
of incremental stability.

Theorem 2.20 (δGAS Lyapunov function.). [8, Theorem 9, p. 7] System (12)
is δGAS if and only if there exists a smooth function V : Rn × Rn → R+ which
satisfies

α1(‖x1 − x2‖) ≤ V (x1, x2) ≤ α2(‖x1 − x2‖)
V (f(x1), f(x2))− V (x1, x2) ≤ −α3(‖x1 − x2‖)

for some α1, α2,∈ K∞ and α3 ∈ P for all x1, x2 ∈ Rn and all k ≥ 0.

Incremental ISS is the notion that estimates differences ‖x1(t)− x2(t)‖ in
terms of KL decay of differences of initial states, and differences of norms of
inputs. Consider system (12) where u ∈ U a closed and convex set of Rm. Also
suppose f(0, 0) = 0.

Under these assumptions we define:

Definition 2.25 (δISS). The system (12) is incrementally input-to-state
stable (δISS) if there exists a function β ∈ KL and γ ∈ K∞ such that for any
k ≥ 0, any initial states ξ1, ξ2 ∈ Rn and any couple of disturbances u1, u2 the
following is true

‖x(k, ξ1, u1)− x(k, ξ2, u2)‖ ≤ β(‖ξ1 − ξ2‖ , k) + γ(‖u1 − u2‖∞).
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This kind of stability definition provides a way to formulate notions of sensi-
tivity to initial conditions and controls. Notice that in particular when there are
no inputs one obtains incremental GAS property of (Definition 2.24). Indeed,
note that the difference between the above inequality and the one defining incre-
mental global asymptotic stability is that the latter property holds for arbitrary
identical input signals u1 = u2 = u, and arbitrary pairs of initial states.

Remark 2.20.1. Again, in the previous definition, the summation on the RHS
may be replaced by max{β(‖ξ1 − ξ2‖ , k), γ(‖u1 − u2‖∞)}. J

Remark 2.20.2. Since f(0, 0) = 0 it is easy to check that δISS implies ISS just
comparing an arbitrary trajectory with xk ≡ 0. J

A Lyapunov characterization exists for incremental input-to-state stability
as well. In the following definition, xi is an abbreviation for x(k, ξi, ui).

Definition 2.26 (δISS Lyapunov function). A function V : Rn × Rn → R is
called a δISS Lyapunov function if for any u1, u2 ∈ U and any x1, x2 ∈ Rn

α1(
∥∥x1 − x2

∥∥) ≤ V (x1, x2) ≤ α2(
∥∥x1 − x2

∥∥) (21a)

V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤ −α4(
∥∥x1 − x2

∥∥) + σ(‖u1 − u2‖) (21b)

for some α1, α2, α4 ∈ K∞ and σ ∈ K.

Remark 2.20.3. The second condition (21b) can be restated in an implication
form: there exists κ ∈ K∞ such that for every x1, x2 and u1, u2 ∈ U

‖u1 − u2‖ ≤ κ(
∥∥x1 − x2

∥∥)⇒
V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤− ρ(

∥∥x1 − x2
∥∥) ∀k ≥ 0

(22)

where ρ ∈ K∞ J

Proof. Indeed, if condition (21b) holds and ‖u1 − u2‖ ≤ κ(
∥∥x1 − x2

∥∥) then

V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤ −α4(
∥∥x1 − x2

∥∥) + σ(‖u1 − u2‖)
≤ −α4(

∥∥x1 − x2
∥∥) + σ(κ(

∥∥x1 − x2
∥∥))︸ ︷︷ ︸

−ρ(‖x1−x2‖)

.

�

Remark 2.20.4. The reverse of the preceding remark requires additional assump-
tions: suppose V : G × G → R with G ⊂ Rn compact and U ⊂ Rm compact.
Then, if system (12) admits an implication form incremental ISS Lyapunov
function (22) it admits a dissipation form incremental ISS-Lyapunov function
(21b). J
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Theorem 2.21 (δISS and δISS Lyapunov function.). If the system (12) admits
a time-invariant δISS Lyapunov function, then it is δISS. Moreover, if the set
U is compact the two conditions are equivalent.

Remark 2.21.1. As stated in [9], the following classes of systems are δISS:

• linear time-invariant systems which are asymptotically stable;

• globally Lipschitz systems with a Lipschitz constant 0 < L < 1;

J

2.7 Relationships between the different concepts
We might be interested in which relationships are (if any) between the different
notions of stability given in (section 2).

We have already remarked the Fundamental Relationship Among ISS, IOS,
and IOSS in (Remark 2.5.2): see figure (Figure 6).

Figure 6: Fundamental Relationship Among ISS, IOS, and IOSS (Remark 2.5.2).

(Example 2.1) shows that ISS property is stronger than Converging Input
Converging Output property combined with 0-Global Asymptotic Stability.

Figure 7: ISS is stronger than 0-GAS + CICO: (Example 2.1).

In (Remark 2.20.2) we observed that a δISS system is clearly ISS when
f(0, 0) = 0. In the continuous case, [6] suggest a counter-example to the impli-
cation ISS ⇒ δISS.

Example 2.9. The system ẋ = −x+ u3 is ISS with respect to the equilibrium
point xu = ū3 and the input signal u − ū for all ū ∈ R. For this, is enough to
choose Vū(x) = (x− ū3)2 as ISS Lyapunov function. Moreover it is GAS (with
respect to the “disturbance” u in any compact subset of R):

d

dt
(x(t, ξ1, u)− x(t, ξ2, u)) = − (x(t, ξ1, u)− x(t, ξ2, u)) .
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Nevertheless, it is not δISS: we pick u1 and u2 as given by the closed-loop
feedback that makes the system into ẋ = 1. That means u3

i = x(t, ξi, ui) + 1
and thus x(t, ξi, ui) = t+ ξi for i = 1, 2 so that

u1(t) = (t+ ξ1 + 1)1/3 u2(t) = (t+ ξ2 + 1)1/3

and in particular x(t, ξ1, u1) − x(t, ξ2, u2) = ξ1 − ξ2 is constant whereas
u1(t)− u2(t)→ 0. This contradicts the converging-inputs–converging-states
property of δISS.

/

Figure 8: A δISS system is ISS but there are ISS systems that are not δISS:
(Example 2.9) and (Example 2.10).

We can transpose the same example in a discrete time setting (see (Ap-
pendix A.5)).

Example 2.10. Consider the discrete time system

xk+1 = (1− δ)x+ δu3.

This is ISS with respect to the equilibrium point xu = ū3 and the input signal
u − ū. Indeed, V (x) = (x − ū3)2 is a ISS Lyapunov function. We show that
the system is not δISS, by contradiction with the converging-inputs-converging-
states properties. Take two different input u, v corresponding to the solutions x
and y respectively. Choose them in order to have u3

k = xk + 1 and v3
k = yk + 1

so that the solutions are

xk = x0 + kδ = ξ1 + kδ yk = y0 + kδ = ξ2 + kδ

and the corresponding inputs become

uk = (kδ + ξ1 + 1)1/3 vk = (kδ + ξ2 + 1)1/3.

Now the difference x− y = ξ1 − ξ2 is constant even though u− v → 0. /

As noticed in (Remark 2.15.1), an ISS-Lyapunov function is an iISS-Lyapunov
function as well, so that ISS ⇒ iISS; the converse is not true, as shown in (Ex-
ample 2.7).

2.8 Summary of implications
In this section we propose some diagrams to summarize the relationship among
all the different stability properties for discrete-time systems.
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Figure 9: An ISS system is iISS - using the characterization via Lyapunov
functions - but an iISS system is not necessarily ISS.

Figure 10: Equivalence from [5, Theorem 1, p. 362]

Figure 11: Implications of ISS property as showed in (subsection 2.3).

Figure 12: Equivalence of ISS property from (Theorem 2.7).
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Figure 13: Implication diagram showing the relationship between stability prop-
erties for discrete-time systems. The gray arrows are for implications that re-
quire f in system (12) to be continuous. Blue arrows are for implications that
require change of coordinates. Where indicated more assumptions are needed
(asymptotic gain (AG) (Definition 2.12), and limit (LIM) (Definition 2.13)).
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2.9 Conclusion of this section
This section contains the definitions and main results of different types of sta-
bility (Lyapunov, ISS, Input-output, incremental stability ...) for discrete-time
systems. In particular, we presented the comparison functions formalism, which
is a powerful and useful tool to prove stability results. For each notion some ba-
sic examples are provided as well as some proofs (which I made as an exercise).
At the end, different diagrams help to understand the different relationships
between the different concepts and the major implications among the several
types of stability. Hereafter, the most important tools will be from (subsec-
tion 2.1) (comparison functions), (subsection 2.3) (input-to-state-stability),
and (subsection 2.5) (integral-input-to-state-stability).
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3 Lyapunov functions and gains
In this section we will investigate how scaling the Lyapunov function affects the
asymptotic gain and the transient bound for a stable system (ISS or δISS).

3.1 Lyapunov function and ISS bounds
Recall (14a) and (14b) from (Definition 2.11):

∃α1, α2 ∈ K∞ α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ξ ∈ Rn (14a)
∃α3 ∈ K∞ ∃σ ∈ K V (f(ξ, µ))− V (ξ) ≤ σ(‖µ‖)− α3(‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm

(14b)

Concerning the ISS property, we already observed in (Remark 2.6.1) that if
V is an ISS-Lyapunov function, then for every positive λ, V̂ = λV is still an
ISS-Lyapunov function. Then using (Theorem 2.8) and the K-asymptotic gain
becomes γ̂a(s) = α−1

1 ◦ 1
λα
−1
3 ◦ σ(s) while from (Theorem 2.9) the K∞ functions

for the characterization (13) of (Lemma 2.6) become
α̂(s) = ˆ̄α ◦ α̂1(s) = λᾱ ◦ α1(s)

η̂(s) = α̂2(s) = λα2(s)

σ̂(s) = λσ(s).

Notice that the only nonlinear change appears in the K-asymptotic gain γ̂a.
From the proof of (Theorem 2.7), we can explicit the KL function β and the
K∞ function γ of the (Definition 2.10) of input-to-state stability. In fact, the
proof is “quasi” constructive and the bounds on V are used to build this functions
as:

β(s, t) = α−1
1 (β̃(α2(s), t))

γ(r) = α−1
1 ◦ α2 ◦ α−1

3 ◦ ρ−1 ◦ σ(r)
(23)

where β̃ is given by the comparison (Lemma 3.1) and ρ ∈ K∞ is such that
id− ρ ∈ K∞. The proof of this construction can be found in [4, Lemma 3.5,
p. 860] and shows that if system (12) admits a continuous ISS-Lyapunov func-
tion, then it is ISS. If we decide to scale V̂ = λV , then all the functions αi and
σ from (Definition 2.11) are also scaled and the previous equations for β and γ
change as follows:

β̂(s, t) = α−1
1

(
1

λ
β̃(λα2(s), t)

)
γ̂(r) = α−1

1 ◦ α2 ◦ α−1
3

(
1

λ
ρ̂−1(λσ(r))

) (24)

where ρ̂ is a K∞ function such that id− ρ is again K∞. According to the choice
of ρ̂ (which may depend on λ) we can decide to simplify a little the expression
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for γ̂:

ρ̂(s) = λρ(s)⇒ γ̂(r) = α−1
1 ◦ α2 ◦ α−1

3

(
1

λ
ρ−1(σ(r))

)
or

ρ̂(s) = ρ
( s
λ

)
⇒ γ̂(r) = α−1

1 ◦ α2 ◦ α−1
3

(
ρ−1(λσ(r))

)
.

Notice that in this way the effect of scaling appears only once. Of course, choices
like ρ̂ = ρ or ρ̂(s) = ρ(λs) are possible as well. Another interesting choice is

ρ̂(s) = λρ
( s
λ

)
so that ρ̂−1(s) = λρ−1

( s
λ

)
and the gain remains unchanged:

γ̂ = α−1
1 ◦ α2 ◦ α−1

3 ◦ ρ−1 ◦ σ(s) = γ.

Remark that this choise is always possible for any λ > 0. Indeed, if ρ ∈ K∞
and such that id− ρ ∈ K∞, such a ρ̂ is still a K∞ function and for every s > 0

s− ρ̂(s) = s− λρ
( s
λ

)
> 0

so that id− ρ̂ is again K∞.

Remark 3.0.1. In the implication form (15) when V is scaled by λ, then α4 is
too, while χ stays unchanged:

∃α4 ∈ K∞ ∃χ ∈ K ‖ξ‖ ≥ χ(‖µ‖)⇒ λV (f(ξ, µ))− λV (ξ) ≤ −λα4(‖ξ‖).

J

Let us state the comparison lemma mentioned before.

Lemma 3.1 (Comparison lemma). [12, Lemma 4.3, p. 55] For each K-function
α there exists a KL-function βα(s, t) with the following property: if y : N→ [0,∞)
is a function satisfying

y(k + 1)− y(k) ≤ −α(y(k)) ∀ 0 ≤ k ≤ k1

for some k1 ≤ ∞, then

y(k) ≤ βα(y(0), k) ∀ k < k1.

In the proof given in [12], the βα is defined from id − α through iteration
and max operations. In the contest of ISS-Lyapunov function, y corresponds to
V and α is defined as being α := (id− ρ) ◦ α3 ◦ α−1

2 , so that with the last men-
tioned choice of ρ̂, the new K function would just be a scaled version: α̂ = λα.

We focused on a linear scaling for the ISS-Lyapunov function, but nonlinear
scaling are possible. Let φ ∈ K∞ and pose W (x) = φ(V (x)). We want to found
the conditions for which, if V is an ISS-Lyapunov function, then W is still an
ISS-Lyapunov function for the same system.
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Proposition 3.2 (Nonlinear scaling of ISS-Lyapunov function). Given an ISS-
Lyapunov function V for the system (12) that satisfies

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ξ ∈ Rn

V (f(ξ, µ))− V (ξ) ≤ σ(‖µ‖)− α3(‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm

and applying a non-linear scaling: W (x) = φ(V (x)) for some smooth φ ∈ K∞
such that φ′ ∈ K. Then W (x) is an ISS-Lyapunov function as it satisfies the
conditions in the implication forms:

α̂1(‖ξ‖) ≤W (ξ) ≤ α̂2(‖ξ‖) ∀ξ ∈ Rn

‖x‖ ≥ χ(‖u‖)⇒ W (f(ξ, µ))−W (ξ) ≤ −α̂4(‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm

Proof. The first condition (14a) is trivially satisfied:

α̂1(‖x‖) = φ(α1(x)) ≤ φ(V (x))︸ ︷︷ ︸
W (x)

≤ φ(α(‖x‖)) = α̂2(‖x‖)

while condition (14b) becomes

W (x+)−W (x) = φ(V (x+))− φ(V (x))

≤ φ(V (x+)− V (x) + V (x))− φ(V (x))

≤ φ(σ(‖u‖)− α4(‖x‖) + V (x))− φ(α1(‖x‖)
≤ φ(σ(‖u‖) + (α2 − α4)(‖x‖))− α̂1(‖x‖)
≤ φ(σ(‖u‖))︸ ︷︷ ︸

σ̂(‖u‖)

−α̂1(‖x‖)

where the last inequality yields if α2 ≤ α4. A better condition on α4 is
‖x‖ ≥ α−1

4 (V (x)):

W (x+)−W (x) ≤ φ(σ(‖u‖)− α4(‖x‖) + V (x))− φ(α1(‖x‖)
≤ φ(σ(‖u‖))︸ ︷︷ ︸

σ̂(‖u‖)

−α̂1(‖x‖)

Supposing φ smooth and φ′ ∈ K:

W (x+)−W (x) = φ(V (x+))− φ(V (x))

= φ′(τ)(V (x+)− V (x))

≤ φ′(V (x+) + V (x))(−α4(‖x‖) + σ(‖u‖))
≤ φ′(−α4(‖x‖) + σ(‖u‖) + 2V (x))(−α4(‖x‖) + σ(‖u‖))
≤ φ′(2α2(‖x‖) + σ(‖u‖))(−α4(‖x‖) + σ(‖u‖))
≤ (φ′(4α2(‖x‖)) + φ′(2σ(‖u‖))) (−α4(‖x‖) + σ(‖u‖))
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and if we use the implication form (15) with ‖x‖ ≥ α−1
4 (2σ(‖u‖)) =: χ(‖u‖):

W (x+)−W (x) ≤ φ′(4α2(‖x‖)) (σ(‖u‖)− α4(‖x‖)) + φ′(2σ(‖u‖)) (σ(‖u‖)− α4(‖x‖))

≤ −1

2
α4(‖x‖) (φ′(4α2(‖x‖)) + φ′(α4(‖x‖)))

≤ −α̂4(‖x‖)

�

Let now λ ∈ (0, 1). If α3 is replace by λV in (14b) of (Definition 2.11), one
obtain a so called exponential ISS-Lyapunov function, for which

∃α1, α2 ∈ K∞ α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ξ ∈ Rn (14a)
∃σ ∈ K V (f(ξ, µ)) ≤ σ(‖µ‖) + λV (‖ξ‖) ∀ξ ∈ Rn ∀µ ∈ Rm (25)

hold. In [11] it is proved that if there exists an ISS-Lyapunov function V ,
then there exists an exponential ISS-Lyapunov function V̂ as well, given by a
nonlinear scaling V̂ = α̂(V ) for some α̂ ∈ K∞. The corresponding implication
form of condition (25) is

∃χ ∈ K ‖ξ‖ ≥ χ(‖µ‖)⇒ V (f(ξ, µ)) ≤ λV (ξ). (26)

3.2 Lyapunov function and δISS bounds
Recall (21a) and (21b) from (Definition 2.26):

α1(
∥∥x1 − x2

∥∥) ≤ V (x1, x2) ≤ α2(
∥∥x1 − x2

∥∥) (21a)

V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤ −α4(
∥∥x1 − x2

∥∥) + σ(‖u1 − u2‖) (21b)

for some α1, α2, α4 ∈ K∞ and σ ∈ K.
In this case as well, if V is a δISS-Lyapunov function, then for every positive

λ, V̂ = λV is still a δISS-Lyapunov function for the system.
The reasoning applied to the ISS property still holds: from the proof of [8,

Theorem 8, p.482], which still uses (Lemma 3.1), the gain and the transient
bound are given by (23)

β(s, t) = α−1
1 (β̃(α2(s), t))

γ(r) = α−1
1 ◦ α2 ◦ α−1

3 ◦ ρ−1 ◦ σ(r) (23)

so that a scaling V̂ = λV produces again (24)

β̂(s, t) = α−1
1

(
1

λ
β̃(λα2(s), t)

)
λ̂(r) = α−1

1 ◦ α2 ◦ α−1
3

(
1

λ
ρ̂−1(λσ(r))

)
. (24)

Again for a nonlinear scaling by a smooth K∞ function, one still has a δISS-
Lyapunov function.
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3.3 Conclusion of this section
In this section some effects after linear and nonlinear scaling of an ISS or δ-ISS
Lyapunov function are depicted. In particular we were interested in the changes
on the asymptotic gain and the transient bound for a stable system.
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4 Newton’s method

4.1 An introduction to Newton’s method in dimension 1
As a method to find the root of a function f : R → R: it uses an approxi-
mation of the function by its tangent line and the x-intercept will be a better
approximation of the root, then we can iterate. We define the Newton transform
Nf (x) = −f ′(x)−1f(x) and we have the iteration step xn+1 = xn+Nf (xn) solv-
ing the equation f ′(xn)(x− xn) + f(xn) = 0 for x. We can justify a quadratic
convergence by a Taylor expansion of the function f around its root α:

0 = f(α) = f(xn) + f ′(xn)(α− xn) +
1

2
f ′′(ξn)(α− xn)2

that leads to a recurrence formula on the error
|εn+1| := |α− xn+1| =

|f ′′(ξn)|
2|f ′(xn)| |εn|

2. In particular we need the following
three hypothesis:

i) f ′(x) 6= 0 in a neighbourhood of the root α;

ii) f ′′ to be continuous on this neighbourhood;

iii) the initial guess x0 close enough to the root so that we can justify the

Taylor expansion and neglect the higher terms: 1
2

|f ′′(ξn)|
|f ′(xn)| ≤ C

|f ′′(α)|
|f ′(α)| <

1
εn

4.2 General case
We can easily generalize this method in dimension k > 1, and in this case one
just need to use the gradient and the Hessian matrix of f instead of its first and
second derivative. The iteration step is then of the form:

xk+1 = xk −∇f−1(xk)f(xk). (27)

Remark 4.0.1. Another generalization of Newton’s method can be done: take f
a functional on Banach space saying Df its Frechet derivative. In this case we
could use a damping strategy aiming to avoid the appearance of possibly large

updates in the iterations:

{
xn+1 = xn + ηδn

Df(xn)δn = −f(xn)
for 0 < η < 1. J

Remark 4.0.2 (Newton’s method for stationary points.). We can see Newton’s
method as a descent method (an iterative algorithm for minimizing a function
g) where the descent direction is dk = −H−1

g (xk)∇g(xk) so that the iteration
takes the form xk+1 = xk−αk−H−1

g (xk)∇g(xk). The idea in Newton’s method
is to minimize at each iteration the quadratic approximation off around the
current point xk. The price for the fast convergence of Newton’s method is
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the overhead required to calculate the Hessian matrix, and to solve the linear
system of equations

Hg(xk)dk = ∇g(xk).

The stationary point of g correspond to the roots of f = ∇g in the previous
form. J

In the rest of this document, we will always consider the Newtons method
in this form, that is with the following iteration step:

xk+1 = xk −H−1(xk)∇f(xk) (28)

Remark 4.0.3. For a special class of function, Newton’s method converge to
the exact solution in only one step! This corresponds to the quadratic case.
Consider

f(x) = xTAx+Bx+ c

where A is symmetric positive definite. Its gradient and Hessian matrix are

∇f(x) = Ax+B H(x) = A

so that an iteration step is

x+ = x−A−1(Ax+B) = −A−1B

which is a stationary point for f : ∇f(x+) = −AA−1B +B = 0. J
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4.3 Importance of the hypothesis
All the simulations and plots in this section have been realized in Matlab.

A few problems may arise if one or more of the hypothesis are not verified:
we can see cycles appearing, divergence or oscillation when the first derivative
is not defined or unbounded at roots...

Remark 4.0.4. Many factor can slow the convergence down: if we cannot calcu-
late f ′ analytically (secant method), if a root has multiplicity bigger than 1, in
case the algorithm encounters stationary points (we could be dividing by 0), if
the second derivative does not exist at the root... J

Table (1) presents different situations that may occur in the case in which
Newton’s method is used to find roots of a real valued function f : R→ R. The
starting point is always x0 = 0 and the number of iteration was chosen to be
N = 10. Here is the explanation of the different examples:

(a) the method works well because f(x) is smooth.

(b) In this case the problem is that during the iteration step one try to divide
by 0 which is the value of the derivative at x0. The problem is only due to
the particular starting point: x0 > 0 would make the algorithm converge
to 1 and x0 < 0 would make the algorithm converge to −1.

(c) Again, starting point enters a cycle and the algorithm does not con-
verge; choosing x0 = 2 would make it converge to the real root
x = − 2

(27−3
√

57)1/3
− (9−

√
57)1/3

32/3 ≈ −1.7693. Figure (Figure 14) is a graph-
ical view of this case.

(d) As in case (b), the problem is that the derivative does not exist at root,
however in this case a different starting point would not avoid the problem
(as choosing a point close to 0 would make the algorithm diverge).

(e) The derivative is discontinuous at 0 and because of the particular starting
point the method fails; with x0 = 0.01 a value of 3.5410e − 06 is found
after 1000 iterations.

(f) In this case the algorithm has no problem in converging to the exact
solution, but the convergence rate is not quadratic since there is no second
derivative at the root.

(g) Function f(x) = x2 + 1 has no real roots, so Newton’s method will chaot-
ically move around the x axis.

Remark 4.0.5 (What is really needed.). In order to guarantee the convergence
of Newton’s method, we need (i) a sufficient regularity of the function (∇f con-
tinuously differentiable with some bounds linking min |∇f(x)| and max |f ′(x)|);
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(ii) we want to be able to inverse the Hessian matrix; (iii) iterations should
start close enough to the stationary point of f . However if we consider New-
ton’s method in the complex field, we can see the convergence to ±i according
to the starting point in the upper or lower semi-plane. J

f(x) f ′(x) exact root found root error
(a) ex + x ex + 1 ≈ −0.56714 −0.5671 1.2537e− 07
(b) 1− x2 −2x ±1 NaN NaN

(c) x3 − 2x+ 2 3x2 − 2 − 2
(27−3

√
57)1/3

− (9−
√

57)1/3

32/3 cycle of 0 and 1 1

(d) x1/3 1
3x
−2/3 0 failed: derivative is 0

(e) x+ x2 sin
(

2
x

)
1 + 2x sin

(
2
x

)
− 2 cos

(
2
x

)
0 failed: x1 is NaN

(f) x+ x4/3 1 + 4
3x

1/3 0 1.6797e− 10 1.0669e− 07
(g) x2 + 1 2x ±i 6∈ R changes slightly ≥ 1

Table 1: Different behaviours of Newton’s method in dimension 1. The starting point was
chosen x0 = 0 (but x0 = 0.1 in case (g)) and the number of iteration fixed to N = 10.

Figure 14: The function f(x) = x3 − 2x+ 2 of example (c) (in blue). The
tangent lines at points corresponding to x = 0 and x = 1 are marked in red.
Following these lines we understand why the method enters a cycle when starting
with x0 = 0.
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Figure 15: The domains of attraction for the three complex roots of
f(x) = x3 − 2x+ 2 of example (c). Roots are marked with a white spot. The
black zones correspond to where NM fails to converge (note that the origin is
in black and the point (1, 0) as well).

Remark 4.0.6 (Interesting questions). what happens if we use pseudo-inverse
H+ or regularize (H + εI); what if we have many near roots (domains of at-
traction); in which cases the algorithm does not converge; where the numerical
computations introduce noises (approximation of ∇f , evaluation, ...); J

4.3.1 Multiple roots

An interesting question is: what happens if the function f(x) has more than
one root? Which of these will Newton’s method converge to? This is actually
asking for the domain of attraction of each root, that is the ensemble of starting
points x0 that will converge to the root. There are two ways to determine the
domain of attraction of a root. The first one is to apply Newton’s method
to each different possible starting point and see which is the root it converges
to. This method gives the entire domain of attraction for each root and it is
used for the simulations below. A second way is to identify the region using
the sufficient conditions given by the theorem that guarantee convergence (like
(Theorem 4.1)). Notice that this approach could leave some points out of the
different domains of attraction. A rough estimation of the domain of attraction
based on (Theorem 4.1) is given in figure (Figure 17), where the corresponding
domains are drawn as circles.Each root has a domain of attraction that contains
a circle of radius 1/3. To estimate the radius, we noticed that (computations...)
L = 6, h = 3 β = 2 for |x| ≤ 1.
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Remark 4.0.7 (Third roots of unity.). A common example is the function
f(x) = x3 − 1, which has a real root α(1) = 1 and two complex roots
α(2) = ei

2π
3 = − 1

2 + i
√

3
2 and α(3) = ei

4π
3 = − 1

2 − i
√

3
2 . We can use Newtons for-

mula on each point on a 2D complex plane. The calculated root is searched
in array of roots (previously calculate with the command roots([1 0 0 -1]).
Each root is associated to a different colour (blue, green or red in figure (Fig-
ure 17)), so that the index of array (that tells to which one of the three roots
the algorithm has converged) is the used to decide the colour for the starting
point.

J

Figure (Figure 18) shows the domain of attraction of the four roots of the
polynomial f(x) = x4 + 1. We can see that it is very similar to the previous
figure (Figure 17). Both this figure are in fact fractal figures, known as Newton
fractals. This web page provides a canvas for the roots of f(x) = x3 − 1 with
the possibility to click anywhere in the canvas to zoom in. A static version is
shown in figure (Figure 16) below (from Wikipedia).

Figure 16: Successive zoom on figure showing the three domains of attraction
for roots of polynomial f(x) = x3 − 1.
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Figure 17: The three domains of attraction for the (complex) roots of the func-
tion f(x) = x3 − 1. To each root is associated a colour: blue for α(1) = 1,
green for α(2) = ei

2π
3 and red for α(3) = ei

4π
3 . Roots are marked by black spots,

the circles correspond to the estimation of the domain of attraction based on
(Theorem 4.1).

Figure 18: The four domains of attraction for the (complex) roots of the function
f(x) = x4 + 1. To each root is associated a colour: blue, green, red and yellow.
Roots are marked by black spots.
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4.4 A proof of convergence
I own the following (Theorem 4.1) and its proof to Dr Iman Shames. The follow-
ing theorem gives sufficient conditions for the convergence of Newton’s method
(as a method for searching stationary points: xk+1 = xk − H−1(xk)∇f(xk)
where H(x) is the Hessian matrix of f(x)).

Theorem 4.1 (Newton’s method convergence). Suppose:

(i) x∗ is a stationary point for f : ∇f(x∗) = 0;

(ii) ∃h > 0
∥∥H−1(x∗)

∥∥ ≤ 1
h

(iii) ∃β, L > 0 ‖x− x∗‖ ≤ β ⇒ ‖H(x)−H(x∗)‖ ≤ L ‖x− x∗‖;

(iv) ‖x0 − x∗‖ < γ := min
(
β, 2h

3L

)
Then the iteration x+ = x−H−1(x)∇f(x) is such that:

1. ‖x+ − x∗‖ ≤ ‖x− x∗‖2 L
2(h−L‖x−x∗‖)

2. ‖x+ − x∗‖ < ‖x− x∗‖ < γ

3. ‖x+ − x∗‖ ≤ ‖x− x∗‖2 3L
2h .

Proof. We will need the two following lemmas: for h > 0

M ∈ Rn×n M = MT ⇒
∥∥M−1

∥∥ ≤ 1

h
⇐⇒ ‖Mv‖ ≥ h ‖v‖ ∀v ∈ Rn (29)

and (for a continually differentiable function)

F (z)− F (x) =

∫ 1

0

∇f(x+ t(z − x))(z − x)dt. (30)

Let’s compute

x+ − x∗ = x− x∗ −H−1(x) (∇f(x∗)−∇f(x))

= x− x∗ −H−1(x)

∫ 1

0

H(x+ t(x∗ − x))(x∗ − x)dt using (30)

= H−1(x)

[∫ 1

0

(H(x+ t(x∗ − x))−H(x)) (x∗ − x)dt

]
.

So, taking norms and using the hypothesis:

‖x+ − x∗‖ ≤
∥∥H−1(x)

∥∥∫ 1

0

‖H(x+ t(x∗ − x))−H(x)‖ ‖x∗ − x‖ dt

≤
∥∥H−1(x)

∥∥L ‖x∗ − x‖2 ∫ 1

0

t dt

≤
∥∥H−1(x)

∥∥ L
2
‖x∗ − x‖2 .
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Now, using (29) and the properties of matrix norm:

‖H(x)v‖ = ‖H(x∗)v + (H(x)v −H(x∗)v)‖ ≥ h ‖v‖ − L ‖x− x∗‖ ‖v‖ ∀v

so that (again by (29))

‖x+ − x∗‖ ≤
L

2(h− L ‖x− x∗‖)
‖x− x∗‖2

holds. The other inequalities follows noticing that L ‖x− x∗‖ < 2h
3 because of

hypothesis (iv). �

Remark 4.1.1. This theorem tells us that if x∗ is a stationary point in which
H−1(x∗) is well defined and H is locally Lipschitz near x∗, if we start sufficiently
close to x∗ then at each iteration we get closer, the convergence rate is quadratic
and the constant mostly depends on H. J

Remark 4.1.2. The second hypothesis (ii) of the (Theorem 4.1) corresponds to
the assumption that H is coercive (see property (29)). J

Remark 4.1.3. In the previous theorem (4.1), the convergence result is obtained
with an argument fixed point-like. Indeed we show that the iteration map is a
contraction. J

Remark 4.1.4 (What if?). One could ask what would happen if one or more
assumptions are not satisfied. Consider the examples in (subsection 4.3).

(a) We saw that the method do not present particular problems in conver-
gence. However, notice that the Lipschitz condition on H(x) = ex + 1
is not satisfied globally, but only in a neighborhood of x∗ (i.e. the β
is a finite constant) when one can for example use the approximation
H(x)−H(x∗) = ex − ex∗ ≈ x− x∗.

(b) Does not present any problem (unless one takes x0 = 0), as H(x) = −2x
is globally 2-Lipschitz. However, condition (ii) in (Theorem 4.1) is not
satisfied:

∥∥H(x∗)−1
∥∥ =

∣∣ 1
2x∗

∣∣ ∣∣∣
x∗=0

is unbounded; moreover, γ = ∞ but
actually the situation is asymmetric: one cannot start farther than 1 on
one side of the root.

(c) In this case H(x) = 3x2 − 2 so that H−1(x∗) ≈ 0.1353 and one can take
h = 7.3. Noticing that

‖H(x)−H(x∗)‖ = 3 |x+ x∗| |x− x∗| ≤ 3(|x|+ |x∗|) |x− x∗|
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the constant L for the Lipschitz condition depends on |x| and so we
can actually fix β big as much as we want and L = 3(β + |x∗|). Then
γ := min

(
β, 2h

3L

)
= 2h

3L ≈
14
9β becomes very small. The theorem suggests a

trade-off to find between the two conditions.

(d) The coercivity (ii) and Lipschitz condition (iii) are not satisfied (as
H(x) = 1

3x
−2/3) and indeed the algorithm does not converge.

(e) H(x) oscillates heavily near the origin (conditions (ii) and (iii) are not
satisfied).

(f) In this case h = 1 satisfies condition (ii) but the Lipschitz condition is not
satisfied as x1/3 > x near the origin. The method converges despite this
fact.

(g) The first condition is not satisfied if we consider only real functions. Oth-
erwise the conditions are satisfied with x∗ = ±i, h = 2 = L and γ = 2

3 .
We can see that the domain of attraction is only a circle of radius 2

3 but
the maximal circle just need the radius to be less than 1 and the whole
domain of attraction is a semiplane.

J

(Theorem 4.1) can be generalized using comparison functions (to replace the
Lipschitz condition (iii)).

Theorem 4.2 (Newton’s method convergence 2). Suppose:

(i) x∗ is a stationary point for f : ∇f(x∗) = 0;

(ii) H is coercive: ∃h > 0
∥∥H−1(x∗)

∥∥ ≤ 1
h

(iii) ∃β ∈ KL ‖H(x)−H(x∗)‖ ≤ β(‖x− x∗‖ , k) ∀k ≥ 0;

(iv) ‖x0 − x∗‖ < 2h
3

Then the iteration x+ = x − H−1(x)∇f(x) is such that
‖x+ − x∗‖ ≤ 2

3
h

h−β( 2h
3 ,k)

β(‖x− x∗‖ , k) ≤ 4
3β( 2h

3 , k).

Proof. As in the previous proof, compute

x+ − x∗ = x− x∗ −H−1(x) (∇f(x∗)−∇f(x))

= x− x∗ −H−1(x)

∫ 1

0

H(x+ t(x∗ − x))(x∗ − x)dt using (30)

= H−1(x)

[∫ 1

0

(H(x+ t(x∗ − x))−H(x)) (x∗ − x)dt

]
.
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So, taking norms and using the hypothesis, (29) and the properties of matrix
norm:

‖x+ − x∗‖ ≤
∥∥H−1(x)

∥∥∫ 1

0

‖H(x+ t(x∗ − x))−H(x)‖ ‖x∗ − x‖ dt

≤
∥∥H−1(x)

∥∥ ‖x∗ − x‖β(‖x∗ − x‖ , k)

∫ 1

0

dt

≤ ‖x− x
∗‖β(‖x− x∗‖ , k)

h− β(‖x− x∗‖ , k)

≤ 2h

3

1

h− β( 2h
3 , k)

β

(
2h

3
, k

)
≤ 4

3
β

(
2h

3
, k

)
.

In the last two lines we used that, by induction, if ‖x− x∗‖ < 2h
3 and β( 2h

3 , 0) < h
2

(β( 2h
3 , 0) < h already needed to use (29)), then ‖x+ − x∗‖ < 2h

3 . The inequality
between β and h also leads to h

h−β( 2h
3 ,k)

< 2. This guarantees convergence as
k →∞. �

4.4.1 Errors in Functions, Gradients, and Hessians

In the presence of errors in functions and gradients, the problem of convergence
becomes a bit more difficult. In this section we discus this briefly and we’ll
study the different cases more in detail in the next sections. A first significant
example in which errors appears is if only functions are available and gradients
and Hessians must be computed with differences. We Let consider a simple
one-dimensional analysis to better understand the size of the this errors. As-
sume that we can only compute the function f approximately, say we compute
f̂ = f + εf rather than f . Then an approximation of the gradient with forward
difference is

Dhf(x) =
f̂(x+ h)− f̂(x)

h
= ∇f(x) +O(h+ εf/h)

and the error on the gradient is at least εg = O(
√
εf ). Doing the same for the

Hessian, its error will be εH = O(
√
εg) = O(ε

1/4
f ).

From a numerical point of view, when εf is larger than machine round-off,
this implies that using a second numerical differentiation of f to compute the
Hessians will not be very accurate, and in addition it will be very expensive to
compute if the Hessian is dense. Alternatively one can obtain better results with
centered differences, but at a cost of twice the number of function evaluations.
An approximation of ∇f(x) will be:

Dhf(x) =
f̂(x+ h)− f̂(x− h)

2h
= ∇f(x) +O(h2 + εf/h)
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so that the error in this case is εg = O(ε
2/3
f ). This leads to an error in the

Hessian matrix of εH = O(ε
4/9
f ).

4.4.2 Error in the evaluation of the gradient

Figure 19: Diagram for the case the error is only in the evaluation of the gra-
dient. As observed in (Remark 1.0.4), in order to prove the stability of this
dynamic, we can arbitrarily decompose the iteration step, making xk+1 a more
general function of xk and an input uk. This means that we can change this
diagram and make it more general.

We try to understand what happens in the case that for every iteration we
have some noise ∆k due to the computation of the step update pk such that
H(xk)pk = −∇f(xk):

xk+1 = xk + pk + ∆k = xk −H−1(xk)∇f(xk) + ∆k. (31)

This corresponds to the case presented in (section 1) where the evaluation
of the gradient is noisy (i.e. ∆k = −H−1(xk)εk where εk is the noise on the
evaluation of ∇f at xk). Using the proof of the previous (Theorem 4.1) one
obtains

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2 + ‖∆k‖ ≤ ck ‖x0 − x∗‖2k +
k∑
i=0

ck−i ‖∆i‖

for a positive constant c < 1. If one requires that the method converges to a
compact set (say a ball), then this result is sufficient whenever the series at the
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RHS converges.
This is true, for example, if the norms ‖∆i‖ are uniformly bounded (since the
constant c < 1): for every i ≥ 0 ‖∆i‖ ≤ M . One can more precisely find the
required bound on the error imposing the radius of the ball, say δ. Then in
order to have ‖x∞ − x∗‖ ≤ δ we need:

lim
k→∞

k∑
i=0

ck−i ‖∆i‖ ≤M lim
k→∞

k∑
i=0

ck−i ≤ δ

that is

lim
k→∞

ck
1− c−k

1− 1/c
= lim
k→∞

ck+1 − c
c− 1

=
c

1− c
≤ δ

M

which gives an upper bound for M :

M ≤ δ 1− c
c

.

We just proved the following fact:

Fact 1. Suppose that the evaluation of the gradient in the iteration step (28)
of the Newton’s method is noisy and call εk the error of this evaluation. The
iteration step becomes then (31) with ∆k = −H−1(xk)εk. Suppose

‖∆k‖ =
∥∥H−1(xk)εk

∥∥ ≤ δ 1− c
c

∀k ≥ 0

where c = 3L
2h < 1 is a constant depending on the Hessian matrix H. Then for

every starting point x0 sufficiently close to the stationary point x∗ of f , 4 the
algorithm convergence to a point that lies in a ball of radius δ. ♦

Remark 4.2.1. Applying the version of (Theorem 4.1) with the comparison func-
tions (Theorem 4.2), the upper bound on the error is just the size of the desired
ball. In other words, the previous fact can be restated as follows:

Fact 2. Suppose that the evaluation of the gradient in the iteration step (28)
of the Newton’s method is noisy and call εk the error of this evaluation. The
iteration step becomes then (31) with ∆k = −H−1(xk)εk. Suppose that the
assumptions of (Theorem 4.2) and

‖∆k‖ =
∥∥H−1(xk)εk

∥∥ ≤ δ ∀k ≥ 0

Then for every starting point x0 sufficiently close to the stationary point x∗ of
f , the algorithm convergence to a point that lies in a ball of radius δ. ♦ J

4such that it satisfies the last hypothesis (iv) of (Theorem 4.1).
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Suppose otherwise that we are interested in the convergence of the method
to the exact point x∗. In this case the previous argument is not enough and
we need to add some additional hypothesis on the norm of the error ‖∆k‖ and
on the Hessian matrix H(x). Again we suppose that the uncertainty is in the
evaluation of the gradient ∇f(xk).

Theorem 4.3 (Convergence of NM with noise in ∇f). Consider the Newton
iteration:

x+ = x−H−1(x)∇f(x) + ∆ = x−H−1(x)∇f(x) +H−1(x)r. (31)

Suppose that there exists a sequence {ηk} with supk ηk < η ≤ c < 1 such that

‖rk‖
‖∇f(xk)‖

≤ ηk < η. (32)

Also suppose that there exists γ > 0 such that

m(1 +Mγ)(Mη + ηγ + 2γ) ≤ c < 1.

Then there exists ε > 0 such that if ‖x0 − x∗‖ ≤ ε the sequence of iterates {xk}
converges to x∗.

Proof. Call
M := ‖H(x∗)‖ m :=

∥∥H−1(x∗)
∥∥ (33)

and observe that, by definition

∀v ∈ Rn
1

m
‖v‖ ≤ ‖H(x∗)v‖ ≤M ‖v‖ . (34)

Now we can choose ε > 0 such that for all ‖x− x∗‖ ≤Mmε the hypothesis

‖H(x)−H(x∗)‖ ≤ γ (35a)∥∥H−1(x)−H−1(x∗)
∥∥ ≤ γ (35b)

‖∇f(x)−∇f(x∗)−H(x∗)(x− x∗)‖ ≤ γ ‖x− x∗‖ (35c)

yield. By induction, if ‖x0 − x∗‖ ≤ ε then the ‖xk − x∗‖ ≤ Mmε and we can
apply (35a), (35b) and (35c). We rewrite the iteration step:

x+ = x−H−1(x)∇f(x) + ∆ = x−H−1(x)∇f(x) +H−1(x)r (36)

Some tricks in rewriting:

x+ − x∗ = (x− x∗)−H−1(x)∇f(x) +H−1(x)r

we put H−1(x∗) in factor

= H−1(x∗)
(
H(x∗)H−1(x)r +H(x∗)H−1(x)H(x)(x− x∗)−H(x∗)H−1(x)∇f(x)

)
we put H(x∗)H−1(x) in factor

= H−1(x∗)
(
H(x∗)H−1(x)(r +H(x)(x− x∗)−∇f(x))

)
since ∇f(x∗) = 0 and a = a+ b− b :

= H−1(x∗)
[
(1 +H(x∗)H−1(x)− 1)·

· (r +H(x)(x− x∗)−∇f(x) +H(x∗)(x− x∗)−H(x∗)(x− x∗) +∇f(x∗))
]
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And in conclusion we obtain

x+ − x∗ = H−1(x∗)
[(

1 +H(x∗)(H−1(x)−H−1(x∗))
)

(A−B)
]

(37)

where

A = r + (H(x)−H(x∗))(x− x∗) B = ∇f(x)−∇f(x∗)−H(x∗)(x− x∗).

Taking the norms:

‖x+ − x∗‖ ≤
∥∥H−1(x∗)

∥∥ [ (1 + ‖H(x∗)‖
∥∥H−1(x)−H−1(x∗)

∥∥)
·
(
‖r‖+ ‖H(x)−H(x∗)‖ ‖x− x∗‖+ ‖∇f(x)−∇f(x∗)−H(x∗)(x− x∗)‖

)]
which gives the inequality

‖x+ − x∗‖ ≤
∥∥H−1(x∗)

∥∥ (1 +Mγ)(‖r‖+ 2γ ‖x− x∗‖). (38)

Now we notice that

‖∇f(x)‖ = ‖H(x∗)(x− x∗) +∇f(x)−∇f(x∗)−H(x∗)(x− x∗)‖
≤ ‖H(x∗)(x− x∗)‖+ ‖∇f(x)−∇f(x∗)−H(x∗)(x− x∗)‖

that is
‖∇f(x)‖ ≤ ‖H(x∗)(x− x∗)‖+ γ ‖x− x∗‖ . (39)

Putting (32) and (39) into (38) one obtains

‖x+ − x∗‖ ≤
∥∥H−1(x∗)

∥∥ (1 +Mγ)(η ‖∇f(x)‖+ 2γ ‖x− x∗‖)
≤
∥∥H−1(x∗)

∥∥ (1 +Mγ)(Mη + ηγ + 2γ) ‖x− x∗‖
≤ m(1 +Mγ)(Mη + ηγ + 2γ) ‖x− x∗‖ . (40)

The result then follows from the choice of γ. �

Remark 4.3.1. As said for (Theorem 4.1), this last result tells us that if x∗ is
a stationary point in which H−1(x∗) is well defined and we start sufficiently
close to x∗ so that H and H−1 have little variations near x∗ (hypothesis (35a)
and (35b)) and we have a Lipschitz-like condition (hypothesis (35c)), if we can
bound the norm of the error as in (32), then the algorithm converges. Notice
that in this case, the convergence rate isn’t quadratic anymore. J

Remark 4.3.2. One could relax the assumptions on γ: choos-
ing three different parameters in (35a), (35b), (35c) so that
m(1 +Mγ2)(Mη + ηγ3 + γ1 + γ2) ≤ c < 1.

J
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A simple generalization of previous (Theorem 4.3) can guarantee the con-
vergence only to a ball of radius δ rather than to the exact point x∗.

Proposition 4.4 (Practical convergence of NM with noise in ∇f). Consider
the Newton iteration:

x+ = x−H−1(x)∇f(x) + ∆ = x−H−1(x)∇f(x) +H−1(x)r. (31)

Suppose that there exists a sequence {ηk} with supk ηk < η ≤ c < 1 such that

‖rk‖ ≤ ηk ‖∇f(xk)‖ < η ‖∇f(xk)‖+ δ̃.

Also suppose that there exists γ > 0 such that

m(1 +Mγ)(Mη + ηγ + 2γ) ≤ c < 1.

Then there exists ε > 0 such that if ‖x0 − x∗‖ ≤ ε the sequence of iterates {xk}
converges to a ball of center x∗ and radius δ = m(1+Mγ)

1−m(1+Mγ)(Mη+ηγ+2γ) δ̃.

Proof. Since the estimation on the norm of the error is

‖rk‖ ≤ ηk ‖∇f(xk)‖ < η ‖∇f(xk)‖+ δ̃,

then from inequality (38) follows

‖x+ − x∗‖ ≤
∥∥H−1(x∗)

∥∥ (1 +Mγ)(‖r‖+ 2γ ‖x− x∗‖)
≤
∥∥H−1(x∗)

∥∥ (1 +Mγ)(η ‖∇f(x)‖+ δ̃ + 2γ ‖x− x∗‖)
≤ m(1 +Mγ)(Mη + ηγ + 2γ) ‖x− x∗‖+m(1 +Mγ)δ̃

=: c1 ‖x− x∗‖+ c2δ̃.

Now taking δ̃ =
1− c1
c2

δ =
1−m(1 +Mγ)(Mη + ηγ + 2γ)

m(1 +Mγ)
δ, when k → ∞,

since c1 < 1:

‖xk+1 − x∗‖ ≤ ck+1
1 ‖x0 − x∗‖+

c2
1− c1

δ̃ ⇒ ‖x∞ − x∗‖ ≤ δ.

�

4.4.3 Error in the evaluation of the gradient and of the inverse Hes-
sian matrix

We will try to do the same thing, that is proving the convergence of
Newton’s method to the stationary point x∗ of f in the case the update
pk = −H−1(xk)∇f(xk) is noisy both because of error in the evaluation of the
gradient ∇f(xk) and in the inversion of the Hessian matrix H. For the sake
of simplicity, we change the notation of (section 1) as follows: we call the
error on the gradient εk and we write the error on the Hessian matrix as
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Figure 20: Diagram for the case the error is in the evaluation of the gradient
and of the inverse of Hessian matrix. As observed in (Remark 1.0.4), in order to
prove the stability of this dynamic, we can arbitrarily decompose the iteration
step, making xk+1 a more general function of xk and an input uk. This means
that we can change this diagram and make it more general

∆H = −H−1(xk)εHH
−1(xk) + ζk. We suppose then that it takes the form

pk = −(H−1(xk) + ∆H)(∇f(xk) + εk).

The idea is again to write

x+ − x∗ = x− x∗ −H−1(x)∇f(x)−H−1(x)ε−∆H∇f(x)−∆Hε

and try to control the mixed terms with stronger hypothesis on H and ∇f .
The term H−1(x)ε should be treated as the term H−1(x)r in the previous
(Theorem 4.3). Using (39) if we suppose ∆H small enough, we should be able
to control ∆H∇f(x) too. Then ‖∆Hε‖ ≤ ‖∆H‖ ‖∇f(x)‖ η and with a smaller
γ the constant should still be < 1. Renaming

r = ε s = ∆H (41)

for the sake of simplicity, we can state the following (Theorem 4.5).

Theorem 4.5 (Convergence of NM with error in ∇f and H). Consider New-
ton’s method iteration step

xk+1 = xk −H−1(xk)∇f(xk)−H−1(xk)rk − sk∇f(xk)− skrk. (42)

Suppose that there exists a sequence {ηk} with supk ηk < η ≤ c < 1 such that

‖rk‖
‖∇f(xk)‖

≤ ηk < η. (32)
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Also suppose that there exists γ > 0 such that

m(1 +Mγ)(Mη + ηγ + 2γ +Mη(1 + η)(M + γ)) ≤ c < 1.

If in addition
‖sk‖ ≤ η ≤ c < 1 (43)

then there exists ε > 0 such that if ‖x0 − x∗‖ ≤ ε the sequence of iterates {xk}
converges to x∗.

Proof. Rewrite the iteration step and obtain something similar to (37):

x+ − x∗ = H−1(x∗)
[(

1 +H(x∗)(H−1(x)−H−1(x∗))
)

(A−B − C)
]

(44)

where

A = (H(x)−H(x∗))(x− x∗)− r
B = ∇f(x)−∇f(x∗)−H(x∗)(x− x∗)
C = H(x)s(∇f(x) + r).

Taking the norms, after some computations one obtains something similar to
(40):

‖x+ − x∗‖ ≤ m(1+Mγ)(η(M+γ)+2γ+M(1+η) ‖s‖ (M+γ)) ‖x− x∗‖ . (45)

Thanks to the hypothesis (43) this becomes

‖x+ − x∗‖ ≤ m(1 +Mγ)(Mη + ηγ + 2γ +Mη(1 + η)(M + γ)) ‖x− x∗‖ . (46)

Now, since η ≤ c < 1, if we can choose γ small enough so that

m(1 +Mγ)(Mη + ηγ + 2γ +Mη(1 + η)(M + γ)) ≤ c < 1

the result follows. �

We can try to find conditions on r and s in order to obtain practical conver-
gence to a ball in the general case. Suppose that

‖r‖ ≤ η1 ‖∇f(x)‖+ δ1 ‖s‖ ≤ η2

∥∥H−1(x)
∥∥+ δ2

and that the point x is close enough to x∗ so that the three conditions

‖H(x)−H(x∗)‖ ≤ γ1∥∥H−1(x)−H−1(x∗)
∥∥ ≤ γ2

‖∇f(x)−∇f(x∗)−H(x∗)(x− x∗)‖ ≤ γ3 ‖x− x∗‖

hold. As above, call

M := ‖H(x∗)‖ m :=
∥∥H−1(x∗)

∥∥
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and notice that
‖∇f(x)‖ ≤ (M + γ3) ‖x− x∗‖ .

Then one can compute:

x+ − x∗ = H−1(x∗)
[(

1 +H(x∗)(H−1(x)−H−1(x∗))
)

(A−B)− C
]

with
A = (H(x)−H(x∗))(x− x∗)− r
B = ∇f(x)−∇f(x∗)−H(x∗)(x− x∗)
C = H(x∗)s(∇f(x) + r).

Taking the norms one obtains

‖x+ − x∗‖ ≤ m(1 +Mγ2)(Mη1 + η1γ3 + γ1 + γ3 +mM2η2 +M2η2γ2 +M2δ2+

+mMη2γ3 +Mη2γ2γ3 +Mγ3δ2 +mM2η1η2 +M2η1η2γ2+

+M2η1δ2 +mMη1η2γ3 +Mη1η2γ2γ3 +Mη1γ3δ2) ‖x− x∗‖
+m(1 +Mγ2)(1 +mMη2 +Mη2γ2 +Mδ2)δ1

=: c ‖x− x∗‖+ d

So that, for η1, η2 < 1 and x close enough to x∗ one can find positive γ1, γ2 and
γ3 such that c < 1 and

‖xk+1 − x∗‖ ≤ ck+1 ‖x0 − x∗‖+ d
k∑
i=0

ci

converges

‖x∞ − x∗‖ ≤
d

1− c

that is practical convergence of the sequence {xk}k to a ball of radius δ :=
d

1− c
.

Remark 4.5.1. In order to look for conditions that yield c < 1, one could study c
as function of γ1, γ2, γ3 under the constraint that the three gammas are positive.
However, writing the Lagrangian and imposing the derivative with respect to
γ1 to vanish, one obtains m(1 + Mγ2) = 0 that means γ2 should be negative,
thus there are not admissible solutions. J

Remark 4.5.2. An easy lower bound c for c is obtained imposing the three
gammas to be 0:

c > c := m(Mη1 +mM2η2 +M2δ2 +mM2η1η2 +M2η1δ2).

This can never happen because of their definition, so the inequality is strict. J
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Remark 4.5.3. If we change the two definitions of γ1 and γ2 to be some sort of
Lipschitz constants:

‖H(x)−H(x∗)‖ ≤ γ1 ‖x− x∗‖∥∥H−1(x)−H−1(x∗)
∥∥ ≤ γ2 ‖x− x∗‖

then in the end we find

‖x+ − x∗‖ ≤ c1 ‖x− x∗‖+ c2 ‖x− x∗‖2 + c3 ‖x− x∗‖3 + d

where

c1 = m (M (M((1 + δ1)(δ2 +mη2) + η1(η2 + δ2)) + γ3(1 + η1)(δ2 +mη2) + η1 + γ2δ1(1 + η2)) + γ3(1 + η1))

c2 = m (γ1 +Mγ2 ((η1 + η2 + η1η2 +Mδ2)(γ3 +M) +mM(η1(1 + δ1) + η2(Mη1 + γ3)) + γ3))

c3 = mMγ2(γ1 +Mη2γ2(1 + η1)(M + γ3)))

d = m(1 +M(mη2 + δ2))δ1

are positive constants. If we rewrite the inequality as

‖x+ − x∗‖ ≤
(
c1 + c2 ‖x− x∗‖+ c3 ‖x− x∗‖2

)
︸ ︷︷ ︸

c

‖x− x∗‖+ d

Sufficient conditions for a convergence to a ball of radius
d

1− c
are

c22 > 4(c1 − 1)c3

max(0, z) < ‖xk − x∗‖ < z ∀k
z > 0

with

z :=
−c2 −

√
c22 − 4(c1 − 1)

2c3
<
−c2 +

√
c22 − 4(c1 − 1)

2c3
=: z.

The first condition guarantees that c < 1 when each step is close enough to
the stationary point x∗ the sequence will converge; the second condition control
how much the steps should be close; the third condition just ensures that the
interval on the second condition is not empty.
Another sufficient condition would be imposing that all the three constants are
smaller than 1:

c1 < 1 c2 < 1 c3 < 1

and the radius of the ball would be δ = δ(c1, c2, c3, d).
A third approach that leads to sufficient conditions makes use of a general
theorem of stability for nonlinear first-order recurrences. Let ek = xk − x∗.
From the theory of nonlinear first-order recurrences, we know that

ek+1 = g(ek) := c1ek + c2e
2
k + c3e

3
k + d
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is locally stable, meaning that it converges to the fixed point e = e (that corre-
sponds to x = x∗) from points sufficiently close to it (thus x sufficiently close to
x∗), if the slope of g in the neighborhood of e is smaller than unity in absolute
value: that is,

|g′(e)| = |3c3e+ 2c2e+ c1| < 1.

This condition leads to three possible cases:

(a)


−c2 −

√
c22 − 3c3(c1 − 1)

3c3
< e <

−c2 +
√
c22 − 3c3(c1 − 1)

3c3∣∣∣ c223c3
− c1

∣∣∣ < 1

(b)


−c2 −

√
c22 − 3c3(c1 − 1)

3c3
< e <

−c2 −
√
c22 − 3c3(c1 + 1)

3c3
c22 ≥ 3c3(c1 + 1)

(c)


−c2 +

√
c22 − 3c3(c1 + 1)

3c3
< e <

−c2 +
√
c22 − 3c3(c1 − 1)

3c3
c22 ≥ 3c3(c1 + 1)

and we recall that a zero of a cubic function can be written as an expression in
its coefficients as:

e = − 1

3c3

(
c2 + C +

∆0

C

)
with

∆0 = c2 − 3c3c1 ∆1 = 2c32 − 9c1c2c3 + 27c21d

C =
3

√
∆1 ±

√
∆2

1 − 4∆3
0

2
.

Condition |g′(e)| < 1 could be satisfied for either one, two or three roots of the
function g. This means that local convergence is guaranteed but not to a specific
root (domains of attraction could be chaotic: see figure (Figure 17)). J

There is another result that guarantees practical convergence of the Newton’s
Method to a ball: in [17, Theorem 2.3.4, p. 18] we find the following theorem.

Theorem 4.6 (Estimation on the error for NM). Let x∗ be a stationary point for
f : ∇f(x∗) = 0. Suppose that the Hessian is γ-Lipschitz and H(x∗) is positive
definite. Then there are K > 0, δ > 0, and δ1 > 0 such that if ‖x− x∗‖ ≤ δ and
‖εH‖ < δ1 then H(x+) + εH is non-singular and after one step

x+ = x− (H(x) + εH)−1(∇f(x) + ε)

the error satisfies

‖x+ − x∗‖ ≤ K
(
‖x− x∗‖2 + ‖εH‖ ‖x− x∗‖+ ‖ε‖

)
(47)
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with

K = (4 + γ)
∥∥H−1(x∗)

∥∥+ 16
∥∥H−1(x∗)

∥∥2 ‖H(x∗)‖
=
(
4 + γ + 16

∥∥H−1(x∗)
∥∥ ‖H(x∗)‖

) ∥∥H−1(x∗)
∥∥ .

As a consequence, one cannot hope to find a minimizer with more accuracy
that one can evaluate ∇f and in most cases the iteration will stagnate once
‖x− x∗‖ is (roughly) the same size as ε. The speed of convergence will be
governed by the accuracy in the Hessian.

Using this theorem we can find sufficient conditions on the coefficient of the
recurrence equation (47) in order to keep the norm of the error smaller than a
fixed value ζ. The equation

ek+1 = g(ek) := Ke2
k +K ‖εH‖ ek +K ‖ε‖ (47)

has two fix points e± =
1−K ‖εH‖ ±

√
(K ‖εH‖ − 1)2 − 4K2 ‖ε‖

2K
. The sta-

bility conditions are given by ‖g′(e)‖ < 1 which is possible if and only if the
discriminant is positive and the fix point is e = e−, that is:{

‖g′(e−)‖ =
∥∥∥1−

√
(K ‖εH‖ − 1)2 − 4K2 ‖ε‖

∥∥∥ < 1

(K ‖εH‖ − 1)2 − 4K2 ‖ε‖ > 0

that means

0 < (K ‖εH‖ − 1)2−4K2 ‖ε‖ < 1

⇒

0 < K < 2‖εH‖+2‖ε‖
‖εH‖2

K <
‖εH‖+2‖ε‖−2

√
‖ε‖(‖ε‖+‖εH‖

‖εH‖2
∨

0 < K < 2‖εH‖+2‖ε‖
‖εH‖2

K >
‖εH‖+2‖ε‖+2

√
‖ε‖(‖ε‖+‖εH‖

‖εH‖2

and since K is always positive the conditions become

K <
‖εH‖+ 2 ‖ε‖ − 2

√
‖ε‖ (‖ε‖+ ‖εH‖

‖εH‖2
(♣1)

or

2
‖εH‖+ 2 ‖ε‖
‖εH‖2

> K >
‖εH‖+ 2 ‖ε‖+ 2

√
‖ε‖ (‖ε‖+ ‖εH‖

‖εH‖2
. (♣2)

The following proposition summarizes the considerations above.

Proposition 4.7 (Practical convergence of NM with noise in∇f &H). Suppose
that the Hessian is γ-Lipschitz and H(x∗) is positive definite. Let δ, δ1 and K
given by (Theorem 4.6). If K satisfies one of the two conditions (♣1) or (♣2)
then for every η > 0 the Newton’s Method with iteration step

xk+1 = xk − (H(xk) + εH)−1(∇f(xk) + εk)

stays in a ball of radius ζ := η + e− for k sufficiently large.
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4.5 An approximation of Newton’s method
The following (Theorem 4.8) and its proof are a reformulation of a theorem
showed me by Dr Iman Shames.
Instead of considering the Newton’s method iteration (28), we consider

xk+1 = xk − F−1
k ∇f(xk) (48)

where F−1
k is a local approximation of the inverse Hessian matrix H−1(xk).

Then the following theorem yields.

Theorem 4.8 (Local convergence of Newton type updates). Let x∗ a stationary
point of f and consider the iteration (48). Suppose there exist bounded positive
scalars ω and δ where δ ≤ 1 and a sequence {δk} where supk{δk} < δ such that
for all x and xk

(i) ‖x0 − x∗‖ ≤ 2(1−δ)
ω ; (proximity of the initial guess)

(ii)
∥∥F−1

k (H(xk)−H(x))
∥∥ ≤ ω ‖xk − x‖; (Lipschitz condition)

(iii)
∥∥F−1

k (H(xk)− Fk)
∥∥ ≤ δk < δ. (quality of approximation)

Then the sequence {xk} converges to x∗.

Proof. Compute

xk+1 − x∗ = xk − x∗ − F−1
k ∇f(xk)

= F−1
k

(
Fk(xk − x∗)−

∫ 1

0

H(x∗ + t(xk − x∗))(xk − x∗)dt
)

= F−1
k

(
(Fk −H(xk))(xk − x∗)−

∫ 1

0

(H(x∗ + t(xk − x∗))−H(xk))(xk − x∗)dt
)
.

In the light of conditions (ii) and (iii), one obtains

‖xk+1 − x∗‖ ≤ δk ‖xk − x∗‖+

∫ 1

0

ω ‖x∗ + t(xk − x∗)− xk‖ ‖xk − x∗‖ dt

≤
(
δk +

ω

2
‖xk − x∗‖

)
‖xk − x∗‖

≤ (δk + 1− δ) ‖xk − x∗‖

Due to (i) and the fact that supk{δk} < δ ≤ 1 this results in convergence. �

Remark 4.8.1. We could “explicit” the approximation, that is write
F−1
k = H−1(xk) + sk. The three assumptions become:

(i) ‖x0 − x∗‖ ≤ 2(1−δ)
ω ; (proximity of the initial guess)
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(ii)
∥∥1−H−1(xk)H(x) + sk(H(xk)−H(x))

∥∥ ≤ ω ‖xk − x‖;
(Lipschitz condition)

(iii) ‖skH(xk)‖ ≤ δk < δ . (quality of approximation)

The iteration step of Newton’s method corresponding to this case is

xk+1 = xk −H−1(xk)∇f(xk)− sk∇f(xk)

which is slightly different to the hypothesis of (Fact 1): there is no error in
the evaluation of the gradient, but there is some error in the evaluation of the
Hessian matrix. In particular this is a special case of (Theorem 4.5) when taking
rk = 0. J

As done before for (Theorem 4.1), the previous (Theorem 4.8) can be easily
generalized to the case of an extra error εk in the iteration step, that is every
iteration step is in the form

xk+1 = xk − F−1
k ∇f(xk) + εk,

in order to guarantee convergence to a ball of radius ζ. This is more precisely
stated in the following propostion.

Proposition 4.9 (Practical convergence of NM approximation). Consider the
approximation (48) of Newton’s method iteration step and suppose that it is
noisy. Call this noise εk so that the iteration step is in the form

xk+1 = xk − F−1
k ∇f(xk) + εk

Suppose there exists bounded positive scalars ω and δ ≤ 1 and a sequence
supk{δk} < δ such that for all x and xk the three assumptions (i), (ii), (iii)
of (Theorem 4.8) are satisfied. Call c := δ− supk{δk} < 1 and suppose also that
the noise is bounded: supk ‖εk‖ ≤ ζ. Then the algorithm converges to a ball of
radius ζ

c when k →∞.

Proof. Compute as in the proof of (Theorem 4.8):

‖xk+1 − x∗‖ ≤ (1− δ + δk) ‖xk − x∗‖+ ‖εk‖

≤ (1− c)k+1 ‖x0 − x∗‖+ ζ
k∑
i=0

(1− c)i

≤ (1− c)k+1 ‖x0 − x∗‖+ ζ
1

1− (1− c)
k→∞−→ ζ

c
.

�
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4.6 Quasi-Newton methods
Quasi-Newton methods are generalizations of the secant method to find the
root of the first derivative for multidimensional problems. In quasi-Newton
methods, the Hessian matrix of second derivatives is not computed. Instead,
only first order information is used and the Hessian matrix is approximated using
updates specified by gradient evaluations (or approximate gradient evaluations).
So, quasi-Newton methods differ in how they update the approximate Hessian.
According to [13] «the earliest, and certainly one of the most clever schemes for
constructing the inverse Hessian, was originally proposed by Davidon and later
developed by Fletcher and Powell.»

The Davidon–Fletcher–Powell (DFP) and the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithms are iterative methods
for solving unconstrained nonlinear optimization problems.

DFP Algorithm. From an initial guess x0 and an approximate inverse of
the Hessian matrix BDFPk the following steps are repeated as xk converges to
the solution:

DFP Algorithm

1. Obtain a direction dk by solving dk = −BDFPk ∇f(xk).

2. Find an acceptable stepsize αk in the direction found in the first step, so
αk = arg min

α
f(xk + αdk).

3. Set pk = αkdk and update xk+1 = xk + pk.

4. qk = ∇f(xk+1)−∇f(xk).

5. BDFPk+1 = BDFPk − BDFPk qkq
T
k B

DFP
k

qTk B
DFP
k qk

+
pkp

T
k

qTk pk
.

BFGS Algorithm. The BFGS formula is the dual or complementary of
the DFP formula (that means one only needs to interchanging the roles of q and
p in the two updating formulas for Hessian approximation). This comes from
the fact that the two equations

H−1(x)∇f(x) = d

and
∇f(x) = H(x)d

have exactly the same form. So one can approximate the Hessian itself rather
than its inverse. The corresponding update to the Hessian approximation
Fk = (BDFPk )−1 is given by

Fk+1 = Fk +
qkq

T
k

qTk pk
− Fkpkp

T
k Fk

pTk Fkpk
(49)
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Figure 21: A diagram summarizing the DFP algorithm.

where again qk = ∇f(xk+1) − ∇f(xk). The BFGS algorithm uses the in-
verse of the matrix Fk, which can be obtained efficiently by applying the Sher-
man–Morrison formula (65d) to the previous updating step (49), giving (with
BBFGSk = F−1

k )

BBFGSk+1 =

(
I − pkq

T
k

qTk pk

)
BBFGSk

(
I − qkp

T
k

qTk pk

)
+
pkp

T
k

qTk pk
. (50)

recognizing that BBFGSk is symmetric, and that qTk B
BFGS
k qk and pTk qk are

scalars, we can expand this update to compute BBFGSk efficiently. The ex-
plicit derivation of (50) from (49) can be found in (Appendix A.2). The entire
algorithm is summarized in the following steps: from an initial guess x0 and an
approximate Hessian matrix B0 the following steps are repeated as xk converges
to the solution:

BFGS Algorithm

1. Obtain a direction dk by dk = −BBFGSk ∇f(xk).

2. Perform a one-dimensional optimization (line search) to find an acceptable step-size
αk in the direction found in the first step, so αk = arg min

α
f(xk + αdk).

3. Set pk = αkdk and update xk+1 = xk + pk.

4. qk = ∇f(xk+1)−∇f(xk).

5. BBFGSk+1 = BBFGSk +
(pTk qk + qTk B

BFGS
k qk)(pkp

T
k )

(pTk qk)2
− BBFGSk qkp

T
k + pkq

T
k B

BFGS
k

pTk qk
.
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Figure 22: A diagram summarizing the BFGS algorithm.

Remark 4.9.1. The last step of (BFGS Algorithm) - which is the expansion of
(50) - can be also rewritten as

BBFGSk+1 = BBFGSk +

(
1 +

qTk B
BFGS
k qk
pTk qk

)
pkp

T
k

pTk qk
− BBFGSk qkp

T
k + pkq

T
k B

BFGS
k

pTk qk

J

One of the advantages of the BFGS algorithm is that the matrix Bk does
not appear in the denominator of its updating step. A proof of the convergence
in a finite number of step for the DFP method can be find in [13, p. 292]. This
proof is given assuming f quadratic with positive definite Hessian and seeing
the DFP as a particular conjugate direction method. The same proof holds for
BFGS under the same assumptions.

However, even for general nonquadratic functions, these two methods offer
several advantages: (i) they require only that first-order information be avail-
able (the Hessian matrix does not need to be computed); (ii) the directions
generated can always be guaranteed to be directions of descent by arranging for
BDFPk to be positive definite throughout the process; (iii) since for a quadratic
problem the matrices BDFPk converge to the inverse Hessian in at most n steps,
convergence will be superlinear.

Remark 4.9.2. The (Theorem 4.8) can also be applied to both DFP and BFGS
method to prove their convergence. Indeed, if we suppose αk = 1 in the prevoius
algorithms, their iteration steps become

xDFPk+1 = xDFPk −BDFPk ∇f(xDFPk )
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and
xBFGSk+1 = xBFGSk −BBFGSk ∇f(xBFGSk ).

Bk (for both DFP and BFGS algorithms) plays the role of F−1
k in (Theorem 4.8),

so if it satisfies the assumptions (some Lipschitz condition and a good quality of
approximation) the theorem can be directly applied. However, the assumption
αk = 1 is quite strong and one should then find the neighborhood of trajectories
where this stays true. J

Attempt to apply (Theorem 4.8) to DFP algorithm. In this case,
Bk ≡ BDFPk plays the role of F−1

k , so we do not need to express the inverse
in a clever way from the update step. To make things simpler: suppose that
H(x) ≡ H is constant. Then the Lipschitz condition (ii) is always satisfied,
since it becomes∥∥F−1

k (H(xk)−H(x))
∥∥ =

∥∥F−1
k (H −H)

∥∥ = 0 ≤ ω ‖xk − x‖ .

Now, try to use induction to see if Bk satisfies condition (iii). Suppose that
‖BkH − I‖ ≤ δk. Using the updating step, the condition to prove becomes

‖Bk+1H − I‖ =

∥∥∥∥BkH − 1

ak
Bkqkq

T
k BkH +

1

bk
pkp

T
kH − I

∥∥∥∥
=

∥∥∥∥ 1

akbk

(
akbk − bkBkqkqTk − akBk∇f(xk)∇f(xk)T

)
BkH − I

∥∥∥∥
≤ δk+1

where we supposed αk = 1 so that pk = dk = −Bk∇f(xk) and we have set

ak = qTk qk and bk = −qTk Bk∇f(xk).

The inequality is true as long as BkH gets closer to the identity matrix, i.e. if
the quality of the approximation doesn’t get worse.

Remark 4.9.3. As emphasized in figure (Figure 22), the BFGS algorithm is
composed by two different dynamics, one involving the sequence xk and the
other involving Bk. This two dynamics are interconnected so one may think
about proving the ISS property for each dynamic (with respect to an input
and respectively) and then apply (Theorem 2.11) to obtain ISS property for
the whole system. However, it is clear than the dynamic

xk+1 = xk + pk

is not ISS with input pk (because if we take a vanishing input the dynamic is
unstable). So to have a chance of applying a result like (Theorem 2.11) one
need to split out the system in a different and less obvious way. J

We can summarize the two algorithms in a more general frame of plant, con-
troller and estimator. This is precisely done in the following figure (Figure 23):
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• the plant corresponds to the integrator that establish the dynamic of xk
plus a static map that computes ∇f(xk);

• the estimator uses this two information to build a matrix Bk that approx-
imate the inverse of the Hessian matrix, thus it contains the dynamic for
Bk and the memory of ∇f(xk−1);

• the controller uses all the information from the plant and the estimator to
compute αk (with an exact or inexact line search) and multiplies it by the
direction obtained by the gradient to provide a feedback pk to the plant
and the estimator.

Figure 23: A general diagram to summarize DFP and BFGS algorithms.

Explicit error analysis of BFGS. In all that follows the bars indicate the
exact value, that is the value that the variables would have theoretically without
any error. Suppose in a first approximation thatBk ≡ BBFGSk = H(xk)−1 + εH .
Then following the steps of the (BFGS Algorithm) and considering the evalua-
tion errors we have that

d = −(H(xk) + εH)−1(∇f(xk) + εg)

= −H−1(xk)∇f(xk)︸ ︷︷ ︸
dk

− (H−1(xk)εg + εH∇f(xk) + εHεg)︸ ︷︷ ︸
εd
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and so
αk = arg min f(xk + αdk) = αk + εα

and

pk = αkdk = (αk + εα)(dk + εd)

= αkdk︸ ︷︷ ︸
pk

+αkεd + εαdk︸ ︷︷ ︸
εp

.

The main equation on x is then given by

xk+1 = xk + pk = xk + pk︸ ︷︷ ︸
xk+1

+εp.

When computing the gradient direction:

qk = ∇f(xk+1)−∇f(xk) = ∇f(xk+1 + εp)−∇f(xk)

≈ ∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
qk

+Hεp︸︷︷︸
εq

That leads, after some computations, to the equation on B:

Bk+1 = Bk
(pTk qk + qTk Bkqk)(pkp

T
k )

(pTk qk)2
− Bkqkp

T
k + pkq

T
k Bk

pTk qk

= Bk+1 + εB .

This should be re-injected into the equation for dk (the computation is the
same with εH that becomes ε̂H = εH + εB at the next step). Similarly to
(Proposition 5.2), we can provide sufficient condition for the two dynamics on
x and B to be input-to-state-stability, with inputs ux = εp and uB = εB . The
problem is to explicit the construction of the K∞ functions (or at least prove
their existence) that guarantees the stability.

Figure 24: Error diagram for (BFGS Algorithm).
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Figure 25: The three main loops of (BFGS Algorithm).
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Figure 26: Diagram for (BFGS Algorithm) in the general form of (Figure 23).
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4.7 Conclusion of this section
This was the first "big section" of this report. It began with the introduction
and the description of Newton’s method as a tool to compute zeros or a function
(or equivalently stationary points) in (subsection 4.1) and (subsection 4.2).
The role of each assumption was emphasized in (subsection 4.3). In (sub-
section 4.4) we stated and gave a proof for a usual theorem of convergence
(Theorem 4.1), together with extensive comments on the use of its assumptions
and its application to the examples of the preceding section. The same result
is then restated using comparison functions (Theorem 4.2). Follows a general a
brief presentation about the presence of errors in the evaluations of function, gra-
dient and hessian matrix (subsection 4.4). Additional assumptions on the size
of the error let us apply the previous theorems even when some noise is added
at each step (Fact 1) and (Fact 2). After fixing the notations, corresponding
theorems for both exact (Theorem 4.3) and practical (Proposition 4.4) conver-
gence are enunciated and proved in the case of noisy gradient. The same was
done for the general case in which the hessian is also noisy: (Theorem 4.5) and
(Proposition 4.7). In this more complicated context, a long discussion follows
(Theorem 4.5) on how modifying the sufficient conditions in order to guarantee
practical stability. Different solutions are proposed, but none of them seems to
be easy to check.

Quasi-Newton methods - in which the inverse of the Hessian matrix is re-
placed by a local approximation - are subject of (subsection 4.5) and (sub-
section 4.6). After a brief description, two general result for local convergence
- again exact (Theorem 4.8) and practical (Proposition 4.9) - are stated and
proved. The principal Quasi-Newton methods we dealt with were (DFP Algo-
rithm) and (BFGS Algorithm). Since it appears difficult to directly apply the
local result (its requirements are quite strong), we tried different way of looking
at them as dynamical systems (see diagrams in (Figure 25) and (Figure 26)).
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5 Newton’s method in the ISS formalism
Recall the result of (Theorem 4.1): ‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖ for some constant
c < 1, then

‖xk+1 − x∗‖ ≤ ck+1 ‖x0 − x∗‖ ∀k ∀x0 ∀u

that is Newton’s method has asymptotic stability.
Having in mind the (Definition 2.10), we would like to prove that the ISS

property holds for Newton’s method. As already observed, if we consider the
iteration step xk+1 = xk −H−1(xk)∇f(xk) = xk + uk then the ISS property
does not hold: if one takes uk = 0 the dynamic is unstable. Consider instead
the decomposition

xk+1 = xk −H−1(xk)∇f(xk) =
1

2
xk +

1

2
xk −H−1(xk)∇f(xk) =

1

2
xk + uk.

It is easy to estimate

‖xk+1‖ =

∥∥∥∥1

2
xk + uk

∥∥∥∥
≤ 1

2
‖xk‖+ ‖uk‖

≤ 1

2k+1
‖x0‖︸ ︷︷ ︸

=:β(‖x0‖,k)

+
k∑
i=0

1

2i
‖uk−i‖

≤ β(‖x0‖ , k) + 2 ‖u‖∞︸ ︷︷ ︸
=:γ(‖u‖∞)

.

That means that the dynamic is ISS with input uk = 1
2xk−H

−1(xk)∇f(xk). No-
tice that the this stays true with any other decomposition xk = λxk + (1−λ)xk

for 0 < λ < 1, as one would obtain a term in λk
k→∞
−→ 0 and a convergent

series
∑
i≥0(1 − λ)i = 1

λ . We are now interested in introducing an error
in the iteration step and try to obtain the ISS property with input contain-
ing the error term. For this purpose, consider the dynamic corresponds to
xk+1 = g(xk, uk) = xk −H−1(xk)∇f(xk) + uk.

Remark 5.0.1. Recall that if the perturbation is in the form uk = H−1(xk)ηk,
from (Theorem 4.3) ensure asymptotic stability when starting close enough to
x∗, and from the discussion and the fact stated after the same (Theorem 4.3)
practical stability to a ball of radius δ is ensured with weaker and slightly
different assumptions. J

Let us define the solution error as ek := xk − x∗, where xk is the approxi-
mate solution at iteration k and x∗ is the exact solution of a numerical prob-
lem. Given a dynamical system representation of an algorithm in state space
form, xk+1 = g(xk, uk), we can find the dynamics for the solution error as
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ek+1 = ge(ek, uk) := g(ek + x∗, uk) + x∗. Note that this dynamical system for
the solution error has an equilibrium at the origin for wk = 0.

Proposition 5.1 (Error bound for an ISS system). Assume that x∗ is an equi-
librium point of the dynamical system when there is no disturbance, i.e. uk = 0.
If the dynamical system for the solution error, ek+1 = ge(ek, uk) is ISS, then
the norm of the error, is bounded:

‖ek‖ ≤ β(‖e0‖ , k) + γ(‖u‖∞)

for each k ≥ 0, where β ∈ KL and γ ∈ K.

Proof. It is exactly the (Definition 2.10) of the ISS property for a dynamical
system. �

Remark 5.1.1. As a corollary from (Proposition 5.1) we have the following
bound:

lim
k→∞

‖ek‖ ≤ γ(‖u‖∞).

Also remark that (Proposition 5.1) is true for a general dynamical system, i.e. g
does not have to correspond to Newton’s method, since the proof only is based
on the assumption of the system for the error being ISS. J

We recall the definitions of a GAS and UGAS system (as given in [12]).

Definition 5.1 (GAS). A discrete time system

xk+1 = f(xk, uk)

is said to be globally asymptotically stable (GAS) if

• for each ε > 0 there is a δ > 0 so that for every k ≥ 0 and u tak-
ing values in a compact set Ω ⊂ Rm, if ‖ξ‖ < δ then ‖x(k, ξ, u)‖ < ε;

(local uniform stability) 5

• lim
k→∞

‖x(k, ξ, u)‖ = 0 for each ξ ∈ Rn and u taking values in a compact set

Ω ⊂ Rm. (global attraction)

Alternatively, we can say that the origin is GAS if ∃β ∈ KL such that

‖xk‖ ≤ β(‖x0‖ , k) ∀x0 ∈ Rn ∀k ≥ 0. (51)

If u ≡ 0 and the previous condition (51) holds, we say that the origin is 0-GAS.

Example 5.1. The system (without disturbances)

xk+1 = xk

(
1− 1

k + 2

)
5 We can state this as “the trajectory is a map from Rn 3 ξ 7→ x(·, ξ) ∈ C(R+;Rn)

continuous at 0”.

80



is GAS. Indeed, the solution in terms of x0 = ξ is given by

xk =
1

k + 1
ξ,

which clearly satisfies the global attraction property from (Definition 5.1). Local
uniform stability also holds: for every ε, we can choose δ = ε and whenever
‖ξ‖ < δ, then ‖x(k, ξ, u)‖ =

∥∥∥ 1
k+1ξ

∥∥∥ < δ = ε. /

Definition 5.2 (UGAS). The system xk+1 = g(k, xk, uk) is called uniformly
globally asymptotically stable (UGAS) if

• ∃δ ∈ K∞ such that for each ε > 0 and ‖ξ‖ < δ(ε) yields ‖x(k, k0, ξ, u)‖ ≤ ε
for each u taking values in a compact set Ω ⊂ Rm; (uniform stability)

• for all r, ε > 0 there is a time T ∈ N so that for every k ≥ T+k0 and ‖ξ‖ ≤
r the norm of the trajectory is ‖x(k, k0, ξ, u)‖ ≤ ε for every k0 ∈ N and for
each u taking values in a compact set Ω ⊂ Rm. (uniform global attraction)

Remark 5.1.2. In fact, we know that a system is UGAS if and only if there exists
a KL function β which is an upper bound for the norm of the trajectory:

‖x(k, k0, ξ, u)‖ ≤ β(‖ξ‖ , k − k0) ∀ξ ∈ Rn ∀k, k0 ∈ N s.t. k ≥ k0.

J

It is clear that UGAS implies GAS, but the converse is not generally true
(it is for periodic systems, see [12, Proposition 3.2, p. 52])..

5.1 A Lyapunov function for Newton’s method
We can apply the different characterizations of ISS (Theorem 2.7) and try to
give an ISS-Lyapunov function for the Newton’s method. In the following we
suppose that a stationary point x∗ exists.

Recall the definition of a classical Lyapunov function for a dynamical system:

Definition 5.3 (Lyapunov function). A Lyapunov function for an autonomous
dynamical system ẋ = f(x) with an equilibrium point x∗ is a continuous func-
tion V which is locally positive definite in a neighborhood of the point and for
which ∇V · f is negative definite. In other words we require:

• V (x∗) = 0 and V (x) > 0 for x 6= x∗;

• ∇V (x) · f(x) =
∂

∂x1
V (x)f1(x) + · · ·+ ∂

∂xn
V (x)fn(x) ≤ 0.
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Example 5.2: A Lyapunov function. Suppose that x∗ is a stationary
point for f , i.e. ∇f(x∗) = 0 which is a minimum for f . We look for a function
V such that V̇ (x) = ∇V (x)T (x−H(x)−1∇f(x)) is negative definite. Since we
need V̇ (x∗) = 0 one must have ∇V (x∗) = 0. Let

V (x) = f(x)− f(x∗)

and let us prove that V is a Lyapunov function for the system

xk+1 = g(xk) = xk − (∇2f(xk))−1∇f(xk).

It is clear that V (x∗) = 0 and locally V (x) > 0 for x 6= x∗. The derivative of V
is ∇V (x) = ∇f(x) and −∇V · g(x) = −∇f(x)Tx + ∇f(x)T (∇2f(x))−1∇f(x)
vanishes in x = x∗ and is otherwise strictly positive in any point x = xk of the
sequence of the algorithm. To see this, we consider Taylor’s expansion of f :

f(x+ h) = f(x) +∇f(x)Th+
1

2
hTH(x)h+O(‖h‖3)

that can be rewritten as (using y = x+ h):

f(y) = f(x) +∇f(x)T (x− y) +
1

2
(y − x)TH(x)(y − x) +O(‖y − x‖3)

= constants+ (∇f(x)−H(x)x)T y +
1

2
yTH(x)y +O(‖y − x‖3).

Now,

dV (y)T (x+ − x) = (∇f(x)−H(x)x+H(x)y)T (−H−1(x)∇f(x))

= −∇f(x)TH(x)∇f(x) + xTH(x)− yTH(x)

which in y = x becomes dV (x)T (x+ − x) = −∇f(x)TH(x)∇f(x) that is
quadratic and thus always negative. So, V is a continuously differentiable func-
tion that vanishes in x∗, is locally positive-definite, and for which the differential
is negative-definite. This means that V is a Lyapunov function for the system.

/

Example 5.3: An easier attempt. Another possible Lyapunov function for
Newton’s method may be

V (xk) = min
i≤k
{f(xi)} − f(x∗).

Indeed, if x∗ is a minimum for the function f , then V (x∗) = 0 and for each
k is clear that V (xk) ≥ 0. Moreover, the sequence {V (xk)}k is non-increasing
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because for each k holds

V (xk+1)− V (xk) = min
i≤k+1

{f(xi)} − f(x∗)−min
i≤k
{f(xi)}+ f(x∗)

=

{
0 if f(xk+1) ≥ f(xk)

f(xk+1)−min
i≤k
{f(xi)} < 0

≤ 0.

Notice that this function V looks very similar to the previous one but it was
easier to prove that is a Lyapunov function for the Newton’s method. /

5.1.1 Lyapunov functions for the examples of (subsection 4.3)

Let’s take for example the dynamic ẋ = f(x) with f(x) = 1− x3.

−2 −1 1 2

−5

5

x

f(x) = 1− x3

It is really easy to find a Lyapunov function for this dynamic: just take
V (x) = 1

2 (x − 1)2 which is obviously positive definite and vanishes only for
x = 1; in addiction V ′(x)f(x) = (x− 1)(1−x3) ≤ 0 and the equality holds only
for x = 1. That means that such a function V is a Lyapunov function for the
dynamical system ẋ = 1− x3.

Remark 5.1.3. In general, if f(x) is a decreasing function with a simple root
in x = x∗, then V (x) = 1

2 (x − x∗)2 is a Lyapunov function for the dynamic
ẋ = f(x), as V ′(x)f(x) ≤ 0 and V (x) ≥ 0 with equalities only at point x∗. J

In case of multiple roots, one can only obtain local Lyapunov function. For
example, consider f(x) = 1−x2 which has two roots x1 = −1 and x2 = 1. Then
the two functions

V1(x) =
1

2
(x+ 1)2 for x < 0 V2(x) =

1

2
(x− 1)2 for x > 0
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−1 1

−1

1

x

f(x) = 1− x2

V1(x) = 1
2 (x+ 1)2

V2(x) = 1
2 (x− 1)2

Figure 27: Left : f(x) = 1 − x2 and the two Lyapunov functions for the roots.
Right : The domains of attraction for the two roots x1 = −1 and x2 = 1 of f(x).

are Lyapunov function for the two roots respectively. The domains of attraction
are simply {x < 0} and {x > 0} (as observed in subsection (subsection 4.3)
the point x = 0 lead to a division by zero in the first step) as shown in figure
(Figure 27).

5.2 An ISS-Lyapunov function for Newton’s method

Example 5.4: An ISS-Lyapunov function. We found a “classical” Lya-
punov function, but we are now interested in an ISS-Lyapunov function for
Newton’s method. Using (Theorem 2.8) we look for an ISS-Lyapunov function
V (x) that satisfies (Definition 2.11) with σ ≡ 0. Since x∗ is a stationary point
for

g(x, u) = x−H−1(x)∇f(x) + u

as g(x∗, u) = x∗ + u, from the second property in (Definition 2.11) one obtain
that α3(‖x∗‖) must be 0.

We try again with the same function V (xk) = mini≤k{f(xi)} − f(x∗). If we
use Taylor expansion on f(x) we obtain:

V (x+)− V (x) = f(x+)− f(x)

= f
(
x−H−1(x)∇f(x) + u

)
− f(x)

= −∇f(x)T
(
H−1(x)∇f(x) + u

)
+

1

2

(
∇f(x)TH−1(x) + uT

)
H(x)

(
H−1(x)∇f(x) + u

)
+ . . .

= −∇f(x)TH−1(x)∇f(x)−∇f(x)u

+
1

2

[
∇f(x)TH−1(x)∇f(x) +∇f(x)u+ uT∇f(x) + uTH(x)u

]
+ . . .

= −1

2
∇f(x)TH−1(x)∇f(x) +

1

2
uTH(x)u+O(

∥∥H−1(x)∇f(x) + u
∥∥3

)

?
≤ −α3(‖x‖) + σ(‖u‖)
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It is not obvious that one can always find a K∞ function α3(‖x‖) which
is smaller than the quadratic function in ∇f(x). Moreover because of the
first property (14a) of (Definition 2.11), V (x) should be unbounded in ev-
ery direction, but is not the case for our choice. The same thing is true for
V (xk) = mini≤k{f(xi)} − f(x∗). This is an example showing that a “classical”
Lyapunov function is not necessarily an ISS-Lyapunov function for the same
system. On the other hand, observe that if V is an ISS-Lyapunov function for
the system ẋ = f(x, u), then V is a Lyapunov function, in the usual sense, for
the autonomous system ẋ = f(x, 0) obtained when no controls are applied. The
inequality can still be true for some functions. One condition on f to satisfy
the inequality is

−1

2
∇f(x)TH−1(x)∇f(x) ≤ −1

2
xTH−1x⇒ ‖∇f(x)‖ ≥ ‖x‖ .

This condition implies that the function growth is at least superlinear.
/

In order to find an ISS-Lyapunov function, I tried to retrace the steps of the
proof of (Theorem 2.7). So, we know that NM is ISS, which implies UBIBS and
AG with 0-gain (as we remarked the result of (Theorem 2.8)). Next step is to
see that is robustly stable, and finally that this gives us a smooth ISS-function.
The main idea is to recall the following property:

∀β ∈ KL ∃ρ1, ρ2 ∈ K∞ β(s, r) ≤ ρ1(ρ2(s)e−r) ∀s, r ≥ 0

Then we can use the characterization of a UGAS system, so that NM is UGAS
if and only if

∃ρ1, ρ2 ∈ K∞ ‖x(k, ξ, u)‖ ≤ ρ1(ρ2(‖ξ‖)e−k)

Once we have found such a K∞ function ρ1 the work is done since, as in the proof
of [12, Theorem 1] we can define ω = ρ−1

1 and V (ξ) := supd
∑
k≥0 ω(‖x(k, ξ, d)‖)

which is shown to be an ISS-Lyapunov function that satisfies the property (14a)
and (14b) of (Definition 2.11) with:

ω(‖ξ‖) ≤ V (ξ) ≤ e

e− 1
ρ2(‖ξ‖)

V (f(ξ, µ))− V (ξ) ≤ −ω(‖ξ‖)

5.2.1 Using comparison functions

One obtains better results using comparison functions. The following statement
gives sufficient conditions for the Newton’s method to be input-to-state stable.

Proposition 5.2 (Sufficient condition for ISS of NM). Suppose there exist
ψ ∈ K∞ such that ψ − id ∈ K∞ and ϕ ∈ K∞ such that the following condi-
tions hold:
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(i) ϕ(λ ‖x‖) ≤ λϕ(‖x‖) for all 0 < λ < 1 and x ∈ Rn;

(ii) there exists 0 < c < 1 such that ψ
(∥∥x−H−1(x)∇f(x)

∥∥) ≤ c ‖x‖ for all
x ∈ Rn.

Then V (x) = ϕ(‖x‖) is an ISS-Lyapunov function for the system :

xk+1 = xk −H−1(xk)∇f(xk)−H−1(xk)rk − sk∇f(xk)− skrk︸ ︷︷ ︸
uk

. (42)

Proof. Applying the hypothesis we obtain that

V (xk+1)− V (xk) = ϕ
(∥∥xk −H−1(xk)∇f(xk) + uk

∥∥)− ϕ(‖xk‖)
≤ ϕ

(
ψ
(∥∥x−H−1(x)∇f(x)

∥∥))+ ϕ
(
ψ ◦ (ψ − id)−1(‖uk‖)

)︸ ︷︷ ︸
σ(‖uk‖)

−ϕ(‖xk‖)

≤ ϕ
(
ψ
(∥∥x−H−1(x)∇f(x)

∥∥))− ϕ(‖xk‖) + σ(‖uk‖)
≤ (c− 1)ϕ(‖xk‖)︸ ︷︷ ︸

−α(‖xk‖)

+σ(‖uk‖)

�

Remark 5.2.1. The same result with the same computations yields for
V (x) = ϕ(‖x‖2) (or other powers of ‖x‖), as we only use the fact that ‖x‖
is positive.

J

Remark 5.2.2. If we change the definition of the disturbance uk
in the iteration step (42). In (Proposition 5.2) we assumed
uk = −H−1(xk)rk − sk∇f(xk)− skrk. Considering instead

uk = −H−1(xk)rk − skrk

the result still holds replacing condition (ii) by

(ii ′) ψ
(∥∥x− (H−1(x) + sk

)
∇f(x)

∥∥) ≤ c ‖x‖ for all x ∈ Rn.

J

Remark 5.2.3. There are specific conditions that f must satisfy in order to be
“eligible” to the application of this result. Since ψ − id ∈ K∞, ψ > id and we
must have ∥∥x−H−1(x)∇f(x)

∥∥ < ψ
(∥∥x−H−1(x)∇f(x)

∥∥) ≤ c ‖x‖ (52)

for all x ∈ Rn. This is a necessary condition on f required to apply (Propo-
sition 5.2). A natural question is then to characterize the classes of functions
that satisfies this condition. J
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Let us start with a few simple examples to answer to the preceding remark.
Consider the monomial f(x) = kxa. The condition (52) is written as∥∥∥∥x− x

a− 1

∥∥∥∥ =

∥∥∥∥a− 2

a− 1
x

∥∥∥∥ ≤ ∥∥∥∥a− 2

a− 1

∥∥∥∥︸ ︷︷ ︸
c∈[0,1)

‖x‖

which is satisfied for a 6= 1 (for a = 1 there’s no point in applying Newton’s
Method because we know there are no stationary points). For a general poly-
nomial the condition does not hold: if f(x) =

∑n
i=0 aix

i then

c ‖x‖ >
∥∥∥∥x− ∑n

i=1 iaix
i−1∑n

i=2 i(i− 1)aixi−2

∥∥∥∥ =

∥∥∥∥∑n
i=1 i(i− 2)aix

i−1∑n
i=2 i(i− 1)aixi−2

∥∥∥∥
is not satisfied in x = 0 unless a1 = 0 (the condition gives 0 > ‖a1/2a2‖), and
in this case∥∥∥∥x− ∑n

i=1 iaix
i−1∑n

i=2 i(i− 1)aixi−2

∥∥∥∥ =

∥∥∥∥x(1−
∑n
i=2 iaix

i−2∑n
i=2 i(i− 1)aixi−2

)∥∥∥∥
< c ‖x‖

for some c ∈ (0, 1), whenever

−1 < 1−
∑n
i=2 iaix

i−2∑n
i=2 i(i− 1)aixi−2

=

∑n
i=2 i(i− 2)aix

i−2∑n
i=2 i(i− 1)aixi−2

< 1.

This can be rewritten as{∑n
i=2 iaix

i−2 > 0∑n
i=2 i(2i− 3)aix

i−2 > 0
.

The summations are positive in particular if each term is positive, and that
leads to {

ai > 0 if i is even
ai = 0 if i is odd

. (53)

Remark 5.2.4. Since the condition is on the gradient and Hessian matrix of
f , adding a constant to the function f do not change the truth value of the
condition. J

Example 5.5. We can apply the preceding result of (Proposition 5.2) to the
polynomial

f(x) = x4 + x2 + 3

with the ISS-Lyapunov function V (x) = |x|2 and theK∞ function ψ(s) = 11
10s > s.

Such a ψ satisfies the condition (ψ − id)(s) = s/10 ∈ K∞ and

ψ
(∣∣x−H−1(x)∇f(x)

∣∣) =
11

10

∣∣∣∣(1− 2x2 + 1

6x2 + 1

)
x

∣∣∣∣ < 11

15︸︷︷︸
c<1

|x| .
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Indeed, the iteration step of Newton’s Method for this function

xk+1 =

(
1− 2x2

k + 1

6x2
k + 1

)
xk + uk

is ISS with respect to a disturbance uk:

V (xk+1)− V (xk) =

∣∣∣∣(1− 2x2
k + 1

6x2
k + 1

)
xk + uk

∣∣∣∣2 − |xk|2
≤
∣∣∣∣11

10

(
1− 2x2

k + 1

6x2
k + 1

)
xk

∣∣∣∣2 + |11uk|2 − |xk|2

≤
(

484

900
− 1

)
|xk|2 + 11 |uk|2︸ ︷︷ ︸

σ(|uk|)

≤ −0.46 |xk|2︸ ︷︷ ︸
−α(|xk|)

+σ(|uk|)

/

The following example shows that the condition (53) on the coefficients of a
polynomial is not a necessary condition.

Example 5.6. Consider the polynomial

f(x) = x4 + 4x3 + 9x2 + 1

and observe that a3 = 4 6= 0 so that (53) does not hold. However, take
V (x) = |x|2 and ψ(s) = 11

10s as in the previous example. Since

ψ
(∣∣x−H−1(x)∇f(x)

∣∣) =
11

10

∣∣∣∣(1− 2x2 + 6x+ 9

6x2 + 12x+ 9

)
x

∣∣∣∣ < 88

100︸︷︷︸
c<1

|x|

the (Proposition 5.2) can be applied, thus V (x) is an ISS-Lyapunov function for
the Newton’s Method dynamic

xk+1 =

(
1− 2x2

k + 6xk + 9

6x2
k + 12xk + 9

)
xk + uk

satisfying the inequality

V (xk+1)− V (xk) ≤ −0.2256 |xk|2︸ ︷︷ ︸
−α(|xk|)

+ 11 |uk|︸ ︷︷ ︸
σ(|uk|)

.

/
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5.2.2 Another form of V

Suppose ϕ ∈ K∞ and define

V (x) =

∫ ‖x‖
0

ϕ(s)ds.

Two cases are possible: ‖x‖ ≤ ‖x+‖ and in this case

0 ≤ V (x+)− V (x) =

∫ ‖x+‖

‖x‖
ϕ(s)ds ≤ −α(‖x‖) + σ(‖u‖) ∀x, u

leads to an impossible condition (take u = 0 and a “big” x); then ‖x‖ > ‖x+‖
and

V (x+)− V (x) = −
∫ ‖x‖
‖x+‖

ϕ(s)ds = −ϕ(τ)(‖x‖ − ‖x+‖) < 0

for some τ = ‖x+‖ + t ‖x‖ with t ∈ (0, 1). If for every x the difference∥∥x−H−1(x)∇f(x)
∥∥− ‖x‖ is negative, the condition (14b) is satisfied:

−ϕ(τ)(‖x‖ − ‖x+‖) ≤ ϕ(τ) ‖u‖︸ ︷︷ ︸
σ‖u‖

+ϕ(τ)
(∥∥x−H−1(x)∇f(x)

∥∥− ‖x‖)︸ ︷︷ ︸
≤−α(‖x‖)

.

However, the condition ‖x‖ > ‖x+‖ =
∥∥x−H−1(x)∇f(x) + u

∥∥ for all x, u
is inconsistent (take u = H−1(x)∇f(x)). So this form for an ISS-Lyapunov
function is possible only within a certain class of functions f and disturbances
u, as for the case V (x) = ϕ(‖x‖).

Recap. Different form for a Lyapunov function were tested.

(a) V (x) = ‖x‖;

(b) V (x) = ‖x‖2;

(c) V (x) = ‖x‖r;

(d) V (x) = ϕ(‖x‖) for some ϕ ∈ K∞;

(e) V (x) =
∫ ‖x‖

0
ϕ(s)ds for some ϕ ∈ K∞;

For the form (a) the condition

∃α ∈ K∞
∥∥x−H−1(x)∇f(x)

∥∥− ‖x‖ ≤ −α(‖x‖) ∀x

is needed in order to let V satisfy the (Definition 2.11). For the function of the
form (d) we obtained the result of (Proposition 5.2). Form (e) is possible only
for some specific class of functions f and disturbances u.
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5.3 Incremental stability for NM
Proposition 5.3 (NM (without noise) is δISS). Suppose that the function x 7→
H−1(x)∇f(x) is 1-Lipschitz. Then, Newton’s Method is incrementally ISS with
input u = H−1(x)∇f(x).

Proof. Consider Newton’s method iteration step

xk+1 = xk −H−1(xk)∇f(xk) = xk + uk (28)

and V (x, y) = ‖x− y‖2. Then the δISS Lyapunov condition (22) is given by

V (xk + uk, yk + vk)− V (xk, yk) = ‖xk + uk − yk − vk‖2 − ‖xk − yk‖2

≤ ‖uk − vk‖2 − 2 ‖xk − yk‖ ‖uk − vk‖

≤ ‖xk − vk‖2 − 2 ‖xk − yk‖ ‖xk − vk‖

= −‖xk − yk‖2︸ ︷︷ ︸
−ρ(‖xk−yk‖)

whenever ‖uk − vk‖ ≤ ‖xk − yk‖ = κ(‖xk − yk‖). This correspond to the con-
dition ∥∥H−1(x)∇f(x)−H−1(y)∇f(y)

∥∥ ≤ ‖x− y‖ ∀x, y (54)

which is a Lipschitz condition for the function H−1(·)∇f(·). �

Remark 5.3.1. The preceding (Proposition 5.3) means that Newton’s method
without noise is δISS with input u = H−1(x)∇f(x). Notice that the same
reasoning would apply to the more general case (42) in which

xk+1 = xk −H−1(xk)∇f(xk)−H−1(xk)rk − sk∇f(xk)− skrk︸ ︷︷ ︸
uk

but with a stronger condition∥∥H−1(x)∇f(x)−H−1(x)r1 − s1∇f(x)− s1r1+

−H−1(y)∇f(y) +H−1(y)r2 + s2∇f(y) + s2r2

∥∥ ≤ ‖x− y‖ ∀x, y.

J

Remark 5.3.2. If

sup
x

∥∥H−1(x)
∥∥ ≤MH <∞ sup

x
‖∇f(x)‖ ≤M∇ <∞

then if we requireH−1 to be LH -Lipschitz and∇f to be L∇-Lipschitz, the previ-
ous 1-Lipschitz condition onH−1.∇f is satisfied wheneverMHL∇ +M∇LH ≤ 1.

J
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Remark 5.3.3. If we prove that some stability holds for the general dynamical
system (42), then it is proved for the Quasi Newton Methods (DFP Algorithm)
and (BFGS Algorithm) which are particular cases (rk = 0 in iteration step
(42)). J

Proposition 5.4 (NM is δISS). Let f : Rn → R a function of class C3. Consider
two different trajectories given by Newton’s Method iteration{

xk+1 = xk −H−1(xk)∇f(xk)−H−1(xk)rxk − sxk∇f(xk)− sxkrxk
yk+1 = yk −H−1(yk)∇f(yk)−H−1(yk)ryk − s

y
k∇f(yk)− sykr

y
k

(55)

where we can suppose that the error in the evaluation of gradient and hessian
for the trajectories x and y are linked by the following relationships:

ryk = rxk + δr syk = sxk + δs.

Suppose to have the following uniform bounds:

‖H(z)‖ ≤M
∥∥H−1(z)

∥∥ ≤ m ‖∇f(z)‖ ≤ g

for all z ∈ Rn. Also suppose that H is locally L-Lipschitz, i.e.

∃ζ > 0 ‖x− y‖ ≤ ζ ⇒ ‖H(x)−H(y)‖ ≤ L ‖x− y‖ .

If the initial points are close, namely

‖x0 − y0‖ ≤
c−m2Lg

mL(1 +mM)

for some positive constant 1 > c > m2Lg, then the system (55) is δISS with
inputs

uk = −H−1(xk)rxk − sxk∇f(xk)− sxkrxk
vk = −H−1(yk)ryk − s

y
k∇f(yk)− sykr

y
k .

Proof. For the sake of clarity we write simply sk ≡ sxk. Then we can write the
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second equation as function of the difference ∆k = yk − xk:

yk+1 = xk + ∆k −H−1(xk + ∆k)∇f(xk + ∆k)−H−1(xk + ∆k)rk − sk∇f(xk + ∆k)

−H−1(xk + ∆k)δr − δs∇f(xk + ∆k)− (sk + δs)(rk + δr)

= xk + ∆k −
(
H−1(xk)−H−1(τ)(DH(τ)∆k)H−1(τ)

)
(∇f(xk) +H(ζ)∆k)

−
(
H−1(xk)−H−1(τ)(DH(τ)∆k)H−1(τ)

)
rk − sk (∇f(xk) +H(ζ)∆k)

−
(
H−1(xk)−H−1(τ)(DH(τ)∆k)H−1(τ)

)
δr − δs (∇f(xk) +H(ζ)∆k)

− (sk + δs)(rk + δr)

= xk −H−1(xk)∇f(xk)−H−1(xk)rk − sk∇f(xk)− skrk
+
(
I −H−1(xk)H(ζ) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)− (sk + δs)H(ζ)

)
∆k

+
(
H−1(τ)(DH(τ)∆k)H−1(τ)

)
(∇f(xk) + rk + δr)

−H−1(xk)δr − δs∇f(xk)− sδr − δsr − δsδr
= xk+1 +

(
I −H−1(xk)H(ζ) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)− (sk + δs)H(ζ)

)
∆k

+
(
H−1(τ)(DH(τ)∆k)H−1(τ)

)
(∇f(xk) + rk + δr)

−H−1(xk)δr − δs∇f(xk)− sδr − δsrk − δsδr

that is

∆k+1 =
(
I −H−1(xk)H(ζ) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)− (sk + δs)H(ζ)

)
∆k

+
(
H−1(τ)(DH(τ)∆k)H−1(τ)

)
(∇f(xk) + rk + δr)

−H−1(xk)δr − δs∇f(xk)− sδr − δsrk − δsδr.

Above we called τ and ζ two points between xk and yk. Call

uk = −H−1(xk)rxk − sxk∇f(xk)− sxkrxk
vk = −H−1(yk)ryk − s

y
k∇f(yk)− sykr

y
k

so that we can write

∆k+1 =
(
H−1(xk) (H(xk)−H(ζ)) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)

)
∆k

+
(
H−1(τ)(DH(τ)∆k)H−1(τ)

)
∇f(xk) + vk − uk
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and taking the norms

‖∆k+1‖ ≤
∥∥H−1(xk) (H(xk)−H(ζ)) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)

∥∥ ‖∆k‖
+
∥∥H−1(τ)(DH(τ)∆k)H−1(τ)

∥∥ ‖∇f(xk)‖+ ‖uk − vk‖

≤ mL(1 +mM) ‖∆k‖2 +m2Lg ‖∆k‖+ ‖uk − vk‖
≤ c ‖∆k‖+ ‖uk − vk‖

≤ ck ‖∆0‖+ ‖uk − vk‖
k∑
j=0

cj

≤ ck ‖∆0‖︸ ︷︷ ︸
β(‖∆0‖,k)

+
‖u− v‖∞

1− c︸ ︷︷ ︸
γ(‖u−v‖∞)

.

We used the uniform bounds for the second inequality and the hypothesis of
closeness in the third one (by induction). The resulting inequality

‖∆k+1‖ ≤ β (‖∆0‖ , k) + γ (‖u− v‖∞)

corresponds to (Definition 2.25) of incremental-input-to-state-stability. �

We also supposed that for each k the norms
∥∥I −H−1(xk)H(ζ) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)− (sk + δs)H(ζ)

∥∥ ≤ c∥∥H−1(τ)(DH(τ)∆k)H−1(τ)
∥∥ ‖∇f(xk) + rk + δr‖

+
∥∥(H−1(xk) + s)δr

∥∥+ ‖δs(∇f(xk) + rk + δr)‖ ≤ d

are uniformly bounded by two constants c, d > 0. This is reasonable because:

• when the Newton’s Method converges, the gradient ∇f(xk)→ 0;

• when xk and yk are close to each other, ζ and τ are both close to xk and
to each other; we expect the first coefficient to be uniformly bounded by
supk ‖sk + δs‖ ‖H(xk)‖.

Now, if we can say that c < 1, the previous inequality proves the incremen-
tal input-to-state-stability of noisy Newton’s Method. We remark that, for a
quadratic function f , the two conditions are easily restated as{

‖sykH‖ ≤ c < 1∥∥(H−1 + s)δr + δs(∇f(xk) + rk + δr)
∥∥ ≤ d

that is, the first one simply relates the norm of the error ‖s‖∞ to the norm of
the hessian matrix ‖H‖. If instead, we consider the case in which the two errors
r = s = 0, then{∥∥I −H−1(xk)H(ζ) +H−1(τ)(DH(τ)∆k)H−1(τ)H(ζ)

∥∥ ≤ c∥∥H−1(τ)(DH(τ)∆k)H−1(τ)
∥∥ ‖∇f(xk)‖ ≤ d
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the second condition is reasonable when the Newton’s Method converges to a
stationary points and H is locally Lipschitz (the LHS is a product of something
bounded and something that goes to 0). For the first condition, we can observe
that, when s = 0 the inequality becomes

‖yk+1 − xk+1‖ ≤
∥∥H−1(τ)

∥∥2 ‖DH(τ)‖ ‖H(ζ)‖ ‖yk − xk‖2

+
(∥∥H−1(xk) (H(xk)−H(ζ))

∥∥+
∥∥H−1(τ)

∥∥2 ‖DH(τ)‖ ‖∇f(xk)‖
)
‖yk − xk‖ .

and the stability condition for this latter is obtained imposing the RHS ≤
κ ‖yk − xk‖ for some κ < 1:

∥∥H−1(xk) (H(xk)−H(ζ))
∥∥+

∥∥H−1(τ)
∥∥2 ‖DH(τ)‖ ‖∇f(xk)‖ ≤ κ

‖yk − xk‖ ≤
κ−‖H−1(xk)(H(xk)−H(ζ))‖+‖H−1(τ)‖2‖DH(τ)‖‖∇f(xk)‖

‖H−1(τ)‖2‖DH(τ)‖‖H(ζ)‖

which, again, seems reasonable because the first term is close to 0 and the second
one is bounded (same as for the other condition).

As for (Proposition 5.2), we can try a more general approach with compari-
son functions.

Recap. Different form for a Lyapunov function were tested.

(a) V (x, y) = ‖x− y‖;

(b) V (x, y) = ‖x− y‖2;

For the form (a) the condition

∃α ∈ K∞
∥∥x− y +H−1(y)∇f(y)−H−1(x)∇f(x)

∥∥−‖x− y‖ ≤ −α(‖x− y‖) ∀x y

is needed in order to let V satisfy the (Definition 2.11). For the case (b), a
sufficient condition is the Lipschitz continuity (54).

5.4 An iISS-Lyapunov function for Newton’s method
We consider the iteration step

x+ = x−H−1(x)∇f(x) + u (42)

and try to find an iISS-Lyapunov function for this system. The following result
holds:

Proposition 5.5 (Newton’s Method iISS: sufficient condition). The Newton’s
Method

x+ = x−H−1(x)∇f(x) + u (42)

is iISS with respect to an input u under the assumption∥∥x−H−1(x)∇f(x)
∥∥ ≤ 1

2
‖x‖ ∀x ∈ Rn.
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Proof. V (x) = log (‖x‖+ 1) ∈ K∞ is an iISS-Lyapunov function for the system
according to (Definition 2.23) with{

α1(s) = V (s) = α2(s)

ρ(s) = 1
2 log(s+ 1) σ̂(s) = 1

2 log(2s+ 1)
.

Indeed one can compute

V (x+)− V (x) = log (‖x+‖+ 1)− log (‖x‖+ 1)

≤ log
(∥∥x−H−1(x)∇f(x)

∥∥+ ‖u‖+ 1
)
− log (‖x‖+ 1)

≤ log

(∥∥x−H−1(x)∇f(x)
∥∥+

1

2
+ ‖u‖+

1

2

)
− log (‖x‖+ 1)

≤ 1

2
log
(
2
∥∥x−H−1(x)∇f(x)

∥∥+ 1
)

+
1

2
log (2 ‖u‖+ 1)︸ ︷︷ ︸

σ(‖u‖)

− log (‖x‖+ 1)

(†)

and the condition 2
∥∥x−H−1(x)∇f(x)

∥∥ ≤ ‖x‖ gives:
V (x+)− V (x) ≤ −1

2
log (‖x‖+ 1)︸ ︷︷ ︸
−ρ(‖x‖)

+σ(‖u‖) (†)

= −ρ(‖x‖) + σ(‖u‖).

The result follows by (Theorem 2.16). Since ρ ∈ K∞ the system is also ISS. �

Example 5.7. Consider the function f(x) = 3
5x

5/3. The assumption of (Propo-
sition 5.5) is satisfied:∥∥x−H−1(x)∇f(x)

∥∥ =

∥∥∥∥x− 1

2

3

2
x1/3x2/3

∥∥∥∥ =
1

4
‖x‖ ≤ 1

2
‖x‖

and then the system

xk+1 = xk −H−1(xk)∇f(xk) + uk =
1

4
xk + uk

is (i)ISS with input uk. Notice that this was clear already from the explicit
writing of the function that rules the dynamic. /

Another multidimensional example:

Example 5.8. Consider f(x) = 3
5x

5/3
1 + 1

2x
2
2 + 4

7x
7/4
3 . The gradient and hessian

matrix are given by

∇f(x) =

x2/3
1

x2

x
3/4
3

 and H(x) =

 2
3x
−1/3
1 0 0
0 1 0

0 0 3
4x
−1/4
3
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We can verify the condition

∥∥x−H−1(x)∇f(x)
∥∥ =

∥∥∥∥∥∥
− 1

2x1

0
− 1

3x3

∥∥∥∥∥∥
2

=

√
1

4
x2

1 +
1

9
x2

3

≤ 1

2

√
x2

1 + x2
3 =

1

2
‖x‖2

that guarantees that the system is (i)ISS. /

The condition from previous (Proposition 5.5) can be relaxed:

Proposition 5.6 (Newton’s Method iISS: another sufficient condition). If there
exists ρ ∈ P such that

‖x‖ −
∥∥x−H−1(x)∇f(x)

∥∥ ≥ ρ(‖x‖) ∀x ∈ Rn.

then, the Newton’s Method

x+ = x−H−1(x)∇f(x) + u (42)

is iISS with respect to an input u.

Proof. Consider V (x) = ‖x‖ + arctan(‖x‖). From the assumption we can
deduce (ρ(s) ≥ 0)

‖x+‖ − ‖x‖ ≤ ‖u‖+
∥∥x−H−1(x)∇f(x)

∥∥− ‖x‖ ≤ ‖u‖
and therefore

‖x‖ =: α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) := ‖x‖+ arctan(‖x‖).

Moreover, for τx = ‖x+‖+ t(‖x+‖ − ‖x‖) with t ∈ (0, 1)

V (x+)− V (x) = ‖x+‖ − ‖x‖+ arctan(‖x+‖)− arctan(‖x‖)

≤ ‖u‖+
1

1 + τ2
x

(‖x+‖ − ‖x‖)

≤ 2 ‖u‖+ ‖x‖ −
∥∥x−H−1(x)∇f(x)

∥∥
≤ −ρ(‖x‖) + σ̂(‖u‖).

�

Remark 5.6.1. The condition in (Proposition 5.5) is a particular case of (Propo-
sition 5.6). Indeed, it corresponds to ρ(‖x‖) = 1

2 ‖x‖:

‖x‖−
∥∥x−H−1(x)∇f(x)

∥∥ ≥ ρ(‖x‖) =
1

2
‖x‖ ⇐⇒

∥∥x−H−1(x)∇f(x)
∥∥ ≤ 1

2
‖x‖ .

The particular form of ρ(‖x‖) = 1
2 ‖x‖, makes it not only positive definite, but

also K∞ so that one obtain the stronger result of the system being ISS (not only
integral ISS). J
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Example 5.9. Suppose to have a function f such that its gradient is given by

∇f(x) = exp

(
−
√
x2 + 1− 3x2 log(x) + x2 log(

√
x2 + 1 + 1) + 1)

2x2

)

so that the hessian is

H(x) =

(
(
− x√

x2+1
− 2x log(

√
x2 + 1 + 1)− x3

√
x2+1(

√
x2+1+1)

+ 3x+ 6x log(x)

2x2
−

−
√
x2 + 1 + 3x2 log(x)− x2 log(

√
x2 + 1 + 1)− 1)

x3

)

exp

(
−
√
x2 + 1− 3x2 log(x) + x2 log(

√
x2 + 1 + 1) + 1)

2x2

)
.

It easy to compute

‖x‖ −
∥∥x−H−1(x)∇f(x)

∥∥ = ‖x‖ −
∥∥∥∥x− x+

x√
x2 + 1

∥∥∥∥
≥ ‖x‖
x2 + 1

(
1− 1√

x2 + 1

)
︸ ︷︷ ︸

ρ(‖x‖)

which is the condition of (5.6) that guarantees that the corresponding dynamics
for Newton’s Method

x+ = x−H−1(x)∇f(x) + u

is iISS with input u. Notice that ρ ∈ P \ K so that this system is not ISS. A
plot of the function ρ is given in the following (Figure 28).

/

5.5 Stability for Quasi Newton Methods
ISS-Lyapunov function. We can try to apply the same ideas of (Proposi-
tion 5.2) to the (DFP Algorithm). Call B ≡ BDFPk and B+ ≡ BDFPk+1 . Suppose
V (x) = ϕ(‖x‖) and compute

V (B+)− V (B) = ϕ(‖B+‖)− ϕ(‖B‖)

≤ ϕ
(∥∥∥∥B − BqqTB

qTBq

∥∥∥∥+ ‖u‖
)
− ϕ(‖B‖)

≤ ϕ ◦ ψ
(
‖B‖

∥∥∥∥I − qqTB

qTBq

∥∥∥∥)− ϕ(‖B‖) + σ(‖u‖) (F)
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Figure 28: The function ρ(x) ∈ P \ K.

Now consider
λ := min

k
λmin(Bk) > 0

and define ψ(‖x‖) = 1
2

√
λ‖x‖

2 for ‖x‖ ≤ λ
8 (ψ must be > id). Now we have

ψ

(
‖B‖

∥∥∥∥I − qqTB

qTBq

∥∥∥∥) =
1

2

√√√√λ ‖B‖
∥∥∥I − qqTB

qTBq

∥∥∥
2

≤ 1

2
‖B‖

because

‖B‖ =
‖x‖∥∥∥I − qqTB
qTBq

∥∥∥ ≥ ‖x‖
1 + ‖qqTB‖

qTBq

≥
‖x‖

∥∥qTBq∥∥
2 ‖B‖ ‖q‖2

≥ ‖x‖ λmin(B)

2 ‖B‖

⇒ ‖B‖2 ≥ λ

2
‖x‖

⇒ 1

2
‖B‖ ≥ 1

2

√
λ ‖x‖

2
.
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Then we have

V (B+)− V (B) ≤ ϕ ◦ ψ
(
‖B‖

∥∥∥∥I − qqTB

qTBq

∥∥∥∥)− ϕ(‖B‖) + σ(‖u‖) (F)

≤ ϕ
(

1

2
‖B‖

)
− ϕ(‖B‖) + σ(‖u‖)

≤ −α(‖B‖) + σ(‖u‖).

Comparing Newton’s Method and BFGS. Since trying to look for
incremental stability leads to many variables to handle, we can try to compare
a Quasi Newton’s Method with the original Newton’s Method. In other words,
consider a first system which follows the (BFGS Algorithm) and a second one
who consists in the classical iteration step with an additional scaling:

y+ = y − α2H
−1(y)∇f(y)

(one can think of it as a BFGS method in which the hessian is computed exactly
at each step, so that the updating of matrix Bk is just the evaluation of H−1

at the point yk). In this case, the differences between trajectories in the two
systems depends on the quality of the approximation in the update of Bk. The
idea is to measure how the BFGS mimic the dynamic of the original Newton’s
Method. Fix the notation for the first system:

d1 = −B∇f(x) α1 = arg min
α

f(x+ αd1)

p = α1d1 x+ = x+ p

q = ∇f(x+)−∇f(x) B+ = B +
(

1 + qTBq
pT q

)
ppT

pT q
− BqpT+pqTB

pT q

(♠1)

and for the second system:
d2 = −H−1(y)∇f(y)

α2 = arg min
α

f(x+ αd2)

y+ = y − α2H
−1(y)∇f(y)

. (♠2)

There are two different dynamics to compare:

‖x+ − y+‖ = ‖x+ α1d1 − y − α2d2‖
=
∥∥x− y + α2H

−1(y)∇f(y)− α1B
−1∇f(x)

∥∥ (56)∥∥B+ −H−1
+

∥∥ =

∥∥∥∥B +

(
1 +

qTBq

pT q

)
ppT

pT q
− BqpT + pqTB

pT q
−H−1(y+)

∥∥∥∥ (57)

and we can write H(y+) in function of H(y) to compare it with the matrix B:

H−1(y+) = H−1(y) + α2∇H−1(τy)d2

for some τy = y + t(y+ − y) with t ∈ (0, 1) and ∇H−1 a rank 3 tensor, so that∥∥B+ −H−1
+

∥∥ =

∥∥∥∥B −H−1(y) +

(
1 +

qTBq

pT q

)
ppT

pT q
− BqpT + pqTB

pT q
− α2∇H−1(y)H−1(y)∇f(y)

∥∥∥∥
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We can use mean value theorem to express q as a function of H:

q = ∇f(x+ α1d1)−∇f(x) = α1H(τx)d1

for some τx = x + t(x+ − x) with t ∈ (0, 1). In this way we can express the
difference∥∥B+ −H−1

+

∥∥ =
∥∥∥B −H−1(y)− α2∇H−1(τy)H−1(y)∇f(y)

+

(
1 +

α2
1∇f(x)T (BH(τx))2B∇f(x)

α2
1∇f(x)TBH(τx)B∇f(x)

)
α2

1B∇f(x)∇f(x)TB

α2
1∇f(x)TBH(τx)B∇f(x)

− α2
1BH(τx)B∇f(x)∇f(x)TB + α2

1B∇f(x)∇f(x)TBH(τx)B

α2
1∇f(x)TBH(τx)B∇f(x)

∥∥∥
=
∥∥∥B −H−1(y)− α2∇H−1(τy)H−1(y)∇f(y)

+

(
1 +
∇f(x)T (BH(τx))2B∇f(x)

∇f(x)TBH(τx)B∇f(x)

)
B∇f(x)∇f(x)TB

∇f(x)TBH(τx)B∇f(x)

− BH(τx)B∇f(x)∇f(x)TB +B∇f(x)∇f(x)TBH(τx)B

∇f(x)TBH(τx)B∇f(x)

∥∥∥.
Supposing α1 = α2 ≡ 1, the equation (56) can be rewritten

‖x+ − y+‖ =
∥∥x− y + (H−1(y)−B−1)∇f(y) +B−1(∇f(y)−∇f(x))

∥∥
=
∥∥x− y + (H−1(y)−B−1)∇f(y) +B−1H(τyx )(y − x)

∥∥
=
∥∥(H−1(y)−B−1)∇f(y) + (I −B−1H(τyx ))(x− y)

∥∥
where τyx = x+t(y−x) for some t ∈ (0, 1). Or, using∇f(y)−∇f(x) ≈ H(y)(x− y),

‖x+ − y+‖ =
∥∥x− y + (H−1(y)−B−1)∇f(x) +H−1(y)(∇f(y)−∇f(x))

∥∥
≈
∥∥x− y + (H−1(y)−B−1)∇f(x) +H−1(y)H(y)(x− y)

∥∥
=
∥∥(H−1(y)−B−1)∇f(x) + 2(x− y)

∥∥ .
We could try to express H−1(y) − B−1 as function of H−1(y) − B and inject
(57) in (56). It can be verified that

H−1(y)−B−1 = (H−1(y)−B)−1(I −H−1(y)B−1 −BH−1(y) +H−2)

= (H−1(y)−B)−1[(H−1(y)−B)H−1(y)−H−1(y)B−1 + I].

Instead of comparing Bk andH−1(y) we could compare Fk = B−1
k andH(y),

knowing that the updating step for Fk is

F+ = F +
qqT

qT p
− FppTF

pTFp
(49)
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An easy computation shows that, if FB = I = BF , then F+B+ = I = B+F+.

‖H+ − F+‖ =

∥∥∥∥H − F + η − qqT

qT p
+
FppTF

pTFp

∥∥∥∥
=

∥∥∥∥H − F + η − H(τx)B∇f(x)∇f(x)TBH(τx)

∇f(x)TBH(τx)B∇f(x)
+
∇f(x)∇f(x)T

∇f(x)TB∇f(x)

∥∥∥∥
=

∥∥∥∥H − F + η − (1 + ε)2 ∇f(x)∇f(x)T

(1 + ε)∇f(x)TB∇f(x)
+
∇f(x)∇f(x)T

∇f(x)TB∇f(x)

∥∥∥∥
=

∥∥∥∥H − F + η − ε ∇f(x)∇f(x)T

∇f(x)TB∇f(x)

∥∥∥∥
where we used

H+ = H+η, τx = x+t(x+−x) for some t ∈ (0, 1) and H(τx)B = BH(τx) = I+ε.

Comparing the dynamics on x and y:

‖x+ − y+‖ = ‖x+ α1d1 − y − α2d2‖
=
∥∥x− y + α2H

−1(y)∇f(y)− α1B∇f(x)
∥∥ .

Supposing α1 = α2 ≡ 1, this equation can be rewritten

‖x+ − y+‖ =
∥∥x− y + (H−1(y)−B)∇f(y) +B(∇f(y)−∇f(x))

∥∥
=
∥∥x− y + (H−1(y)−B)∇f(y) +BH(τyx )(y − x)

∥∥
=
∥∥(H−1(y)−B)∇f(y) + (I −H(τyx ))(x− y)

∥∥
where τyx = x+t(y−x) for some t ∈ (0, 1). Or, using∇f(y)−∇f(x) ≈ H(y)(x− y),

‖x+ − y+‖ =
∥∥x− y + (H−1(y)−B)∇f(x) +H−1(y)(∇f(y)−∇f(x))

∥∥
≈
∥∥x− y + (H−1(y)−B)∇f(x) +H−1(y)H(y)(x− y)

∥∥
=
∥∥(H−1(y)−B)∇f(x) + 2(x− y)

∥∥ .
We could try to express H−1(y)−B as function of H(y)− F and combine the
two dynamics...

Trying with SR1. SR1 is a Quasi Newton’s Method that uses a rank one
approximation of the Hessian matrix. The updating matrix step is given by

B+ = B +
(p−Bq)(p−Bq)T

qT (p−Bq)

using the same notations of BFGS and DFP. This update maintains the sym-
metry of the matrix but does not guarantee that the update be positive definite.
Similar computations...
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5.6 Updating BBFGS with a Kronecker product
The vectorization of a matrix is a linear transformation which converts the
matrix into a column vector.

Definition 5.4 (Vectorization). The vectorization of an m × n matrix A, de-
noted vec(A), is the mn× 1 column vector obtained by stacking the columns of
the matrix A on top of one another:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]T .

A brief recap of the definition and some properties of a Kronecker product:

Definition 5.5 (Kronecker product). If A ∈ Rm×n and B ∈ Rp×q, then the
Kronecker product A⊗B is the mp× nq block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (58)

Proposition 5.7 (Properties of the Kronecker product). The Kronecker prod-
uct has the following properties:

• Bilinearity and associativity:

A⊗ (B + C) = A⊗B +A⊗ C,
(A+B)⊗ C = A⊗ C +B ⊗ C,

(kB)⊗B = A⊗ (kB) = k(A⊗B),

(A⊗B)⊗ C = A⊗ (B ⊗ C);

• it is non-commutative, however, A⊗B and B⊗A are permutation equiv-
alent, meaning that there exist permutation matrices P and Q (so called
commutation matrices) such that

A⊗B = P (B ⊗A)Q;

• mixed-product property:

(A⊗B)(C ⊗D) = (AC)⊗ (BD);

• inverse of a Kronecker product:

(A⊗B)−1 = A−1 ⊗B−1;

• transposition and conjugate transposition are distributive over the Kro-
necker product:

(A⊗B)T = AT ⊗BT and (A⊗B)∗ = A∗ ⊗B∗;
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• trace and determinant behave as follows for A and B square matrices of
size n and m respectively:

tr(A⊗B) = trA trB and det(A⊗B) = (detA)m(detB)n;

• the rank of the Kronecker product is the product of the ranks:

rank(A⊗B) = rankA rankB.

The following result link the Kronecker product with the vectorization of a
matrix:

Proposition 5.8 (Kronecker product and vectorization). For matrices of cor-
rect sizes yields

vec(AXB) = (BT ⊗A) vec(X)

As a consequence of (Proposition 5.8), one has:

Corollary 5.9 (Kronecker product and vectorization). If X = I in (Proposi-
tion 5.8), then

vec(AB) = (I ⊗A) vec(B) = (BT ⊗ I) vec(A).

Moreover, for a vector a ∈ Rn

vec(aaT ) = a⊗ a.

Now we have all the instruments to write the updating step for theB ≡ BBFGSk

matrix

B+ = B +
(pT q + qTBkq)(pp

T )

(pT q)2
− BqpT + pqTB

pT q

in a vectorization form:

vec(B+) = vec(B)− 1

pT q

(
vec(BqpT ) + vec(pqTB)

)
+

(
1 +

qTBq

pT q

)
1

pT q
vec(ppT )

= vec(B)− 1

pT q

(
vec(BqpT ) +K(n,n) vec(BqpT )

)
+

(
1 +

qTBq

pT q

)
1

pT q
p⊗ p

=

(
In2 − 1

pT q
(In2 +K(n,n))(pqT ⊗ In)

)
vec(B) +

(
1 +

qTBq

pT q

)
1

pT q
p⊗ p

=: M̂p,q,n vec(B) +Np,q,B .

Where K(n,n) is the commutation matrix such that K(n,n) vec(A) = vec(AT )
(in this case A = BqpT ). In the second line we used (Corollary 5.9) and in the
third one (Proposition 5.8). In this way the dynamic on B can be studied in this
linear system, and sufficient conditions for its stability will lead to conditions
on vectors p and q. The problem in this formulation is that B appears in the
drift term Np,q,B . This can be solved writing qTBqppT in a clevver way:

qTBqppT = pqTBqpT ⇒ vec(qTBqppT ) = vec(pqTBqpT ) = (pqT ⊗ pqT ) vec(B)

thus
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vec(B+) =

(
In2 − 1

pT q
(In2 +K(n,n))(pqT ⊗ In) +

1

(pT q)2
(pqT ⊗ pqT )

)
vec(B) +

1

pT q
p⊗ p

=: Mp,q,n vec(B) +Np,q. (59)

Notice that the matricesMp,q,n andNp,q, depending on p and q, are not constant
at each step. Since p and q depend on k and in order to simplify the notation
we rename them Mk and Nk respectively. Thus, the general term vec(Bk+1) is
written as a function of the initial guess vec(B0) as

vec(Bk+1) =

 k∏
j=0

Mj

 vec(B0) +
k∑
i=0

 k∏
j=i+i

Mj

Ni (60)

where the notation
∏k
j=0Mj stands for the matrix productMkMk−1 . . .M0 and

the product
∏k
j=i+1Mj is the identity matrix (empty product) if i+ 1 ≥ k. For

a more compact notation, we could include the first term in the summation,
defining N−1 := vec(B0):

vec(Bk+1) =
k∑

i=−1

 k∏
j=i+i

Mj

Ni. (61)

Remark 5.9.1. Starting from the alternative equation (50) to update Bk, one
obtains an alternative form for the matrix Mk:

Mk =

(
I − pkq

T
k

pTk qk

)
⊗
(
I − pkq

T
k

pTk qk

)
as

Bk+1 =

(
I − pkq

T
k

pTk qk

)
Bk

(
I − pkq

T
k

pTk qk

)T
+
pkp

T
k

pTk qk

⇒ vec(Bk+1) =

[(
I − pkq

T
k

pTk qk

)
⊗
(
I − pkq

T
k

pTk qk

)]
︸ ︷︷ ︸

Mk

vec(Bk) +
1

pTk qk
vec(pkp

T
k )︸ ︷︷ ︸

Nk

.

J

We want to study the convergece of Bk to β := vec(H−1(x∗)).

Fact 1. Suppose that there is an uniform bound on the matrices Mk and the
sequence Nk is bounded by a summable sequence, that is:

• ‖Mk‖ ≤ m < 1 ∀k;

• ∀k ∃nk ‖Nk‖ ≤ nk;
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•
∑∞
k=0 nk < +∞

Then the sequence Bk converges to a ball of center β = vec(H−1(x∗)) and radius
‖β‖. ♦

Proof. The equation (60) becomes

‖vec(Bk+1)− β‖ = ‖Mk(vec(Bk)− β) +Nk +Mkβ − β‖

=

∥∥∥∥∥∥
 k∏
j=0

Mj

 (vec(B0)− β) +
k∑
i=0

 k∏
j=i+i

Mj

Ni +

 k∏
j=0

Mj

β − β

∥∥∥∥∥∥
≤ mk+1 ‖vec(B0)− β‖+

k∑
i=0

mk−i−1ni + (mk+1 + 1) ‖β‖ .

Now, the sum can be seen as the term from Cauchy product of the two series
of ni and mk−i−1. Indeed, define bj := mj+1 so that( ∞∑

i=0

ni

)
·

 ∞∑
j=0

bj

 =
∞∑
k=0

ck where ck =
k∑
i=0

nibk−i =
k∑
i=0

nim
k−i−1.

This product is well defined because we supposed
∑∞
k=0 nk < +∞ and m < 1

so that
(∑∞

j=0 bj

)
= 1

1−m . That means that the product series is convergent,
which implies ck → 0. In other words

‖vec(Bk+1)− β‖ ≤ mk+1 ‖vec(B0)− β‖︸ ︷︷ ︸
↘ 0

+
k∑
i=0

mk−i−1ni︸ ︷︷ ︸
↘ 0

+ (mk+1 + 1) ‖β‖︸ ︷︷ ︸
↘ ‖β‖

−→ ‖β‖ .

�

We study the eigenvalues of Mk to study the stability of this system. There
are a few remarks that can be stated:

Remark 5.9.2. • The spectral radius of 1
(pT q)2

(pqT ⊗ pqT ) verifies

ρ

(
1

(pT q)2
(pqT ⊗ pqT )

)
= 1.

Proof. Unless p = 0,6 it is an eigenvector for the rank one matrix pqT
with eigenvalue qT p:

(pqT )p = p(qT p) = (qT p)p

6If p = 0 at some step, then the gradient ∇f(x) would be zero and the algorithm has found
a stationary point. So while the algorithm is running one can assume p 6= 0.
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and therefore, from (Proposition 5.7) we know that (pqT ⊗ pqT ) has rank
1 and the only eigenvalue which is non-zero is given by

tr(pqT ⊗ pqT ) = tr(pqT )2 = (qT p)2.

This means that 1
(pT q)2

(pqT ⊗ pqT ) has eigenvalues 0 with multiplicity
n2 − 1 and 1

(qT p)2
(qT p)2 = 1 with multiplicity 1. �

• The eigenvector of 1
(pT q)2

(pqT ⊗ pqT ) associated with the non-zero eigen-
value 1 is given by vec(ppT ):[

1

(pT q)2
(pqT ⊗ pqT )

]
vec(ppT ) =

1

(pT q)2
vec((pqT )(ppT )qpT )

=
1

(pT q)2
(qT p)2 vec(ppT )

= vec(ppT ).

• The commutation matrix K(n,n) has eigenvalues 1 and −1 with multiplic-
ities 1

2n(n+1) and 1
2n(n−1). In particular this means that ρ(K(n,n)) = 1.

Proof. The proof is given in [18, Theorem 3.1 (vi), p. 383]. �

• The spectral radius of 1
pT q

(In2 +K(n,n)) verifies

ρ

(
1

pT q
(In2 +K(n,n))

)
≤ 2

|pT q|
.

Proof. It is straightforward from the previous bullet point. �

• The spectral radius of pqT ⊗ In verifies

ρ
(
pqT ⊗ In

)
=
∣∣pT q∣∣ .

Proof. From (Proposition 5.7) we know that pqT ⊗ In has rank n and
trace (qT p)n. Its eigenvalues are thus 0 with multiplicity n2 − n and we
show that qT p is eigenvalue with multiplicity n. Let v ∈ Rn

2 \ {0} an
eigenvector of pqT ⊗ In with eigenvalue λ. We claim that v is of the form

v ∈





p1

0n−1

p2

0n−1

...
pn

0n−1


,



0
p1

0n−1

p2

0n−1

...
pn

0n−2


, . . . ,



0n−1

p1

0n−1

p2

...
0n−1

pn
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and a simple computation shows that

((pqT ⊗ In)v)i =

{
(qT p)pk vi = pk

0 vi = 0
= (qT p)vi

that is v is an eigenvector with eigenvalue qT p. �

• The two preceding bullet points imply that

ρ

(
1

pT q
(In2 +K(n,n))(pqT ⊗ In)

)
≤ 2

|pT q|
∣∣pT q∣∣ = 2.

J

From all that precedes the eigenvalues of Mk are between

0 ≤ λ(Mk) ≤ 2.

Moreover, we cannot bound the spectral radius ofMk with some constantm < 1:
let w ∈ Rn \ {0} such that pqTw = 0. Using w, one can construct v ∈ Rn

2 \ {0}
such that (pqT ⊗I)v = 0 in a similar way as done above for the eigenvector. But
then (pqT ⊗ pqT )v = 0 as well and Mkv = v, that is ρ(Mk) ≥ 1. This means in
particular that ‖Mk‖ ≥ ρ(Mk) ≥ 1 for every induced matrix norm ‖·‖.

Remark 5.9.3. We have the following useful implications:

• (pqT ⊗ In)v = 0 ⇒ (pqT ⊗ pqT )v = 0 and the converse implication is not
true: take p 6= 0, q = (0 1)T and v = (0 1 1 0)T .

• (pqT ⊗ In)v = 0 ⇐⇒ q ∈ Ker(V ) and v = vec(V ).

• (pqT ⊗ pqT )v = 0 ⇐⇒ qTV q = 0 and v = vec(V ).

J

Remark 5.9.4. In the (BFGS Algorithm) we suppose to initialize B0 with a
positive definite matrix. It can be shown that this property is preserved by the
updating step. Unfortunately, this means that xTBx > 0 for every x ∈ Rn \{0}
and in particularly qTBq > 0, meaning that the third term that compose the
matrix Mk is not vanishing:

1

(pT q)2
(pqT ⊗ pqT ) vec(B) = qTBq vec(ppT ) 6= 0.

Using the equivalence (pqT ⊗ In)v = 0 ⇐⇒ q ∈ Ker(V ) and v = vec(V ) from
the remark above, B being positive definite means that

(pqT ⊗ In) vec(B) 6= 0.
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Thus, the second term composing the matrix Mk can be zero if and only if

(pqT ⊗ In) vec(B) ∈ Ker(In2 +K(n,n)).

If this is the case, one cannot have Mk vec(B) < vec(B). Otherwise, if we may
prove that for the sequence {Bk}k holds (In2 + K(n,n))(pqT ⊗ In) vec(B) 6= 0,
then there may be a chance that

‖Mk vec(B)‖ < ‖vec(B)‖

whereas p and q satisfy some conditions, and this ensures the stability of the
dynamical system given by equation (60). J

Lemma 5.10 (Kernel of identity + commutation matrix ). vec(A) ∈ Ker(In2 +
K(n,n)) if and only if A is skew-symmetric, i.e. AT = −A.

Proof. It is a simple computation:

(In2 +K(n,n)) vec(A) = 0 ⇐⇒ K(n,n) vec(A) = − vec(A)

⇐⇒ vec(AT ) = − vec(A)

⇐⇒ AT = −A

�

The (Lemma 5.10) above is good news in the light of preceding (Remark 5.9.4).
Indeed Bk is a symmetric matrix at every step k so that (pqT ⊗ In) vec(B)
is not a vectorization of a skew-symmetric matrix and therefore it is not in
Ker(In2 +K(n,n)):

(p 6= 0 and Bq 6= 0)⇒ (pqT ⊗ In) vec(B) = vec(BqpT ) 6= 0

so that there exists some index i, j for which (BqpT )ij 6= 0, which means

(BqpT )ij 6= −(BqpT )ij = −(pqTB)Tji

⇒ BqpT 6= −(pqTB)T

⇒ (pqT ⊗ In) vec(B) 6∈ Ker(In2 +K(n,n)).

Now, we consider v1 = vec(ppT ) and complete it to a basis of Rn
2

. Then we can
decompose vec(B) = γv1 + w where w ∈ Span(v1)⊥ so that (pqT ⊗ pqT )w = 0.
An explicit form for γ is given by

γ =
vec(ppT )T vec(B)

pT p
=

tr(ppTB)

pT p
=
pTBp

pT p
.

Then we can compute
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Mk vec(B) = vec(B)− 1

pT q
(In2 +K(n,n))(pqT ⊗ In) vec(B) +

1

(pT q)2
(pqT ⊗ pqT ) vec(B)

= vec(B)− γ

pT q
(In2 +K(n,n))(pqT ⊗ In) vec(ppT )− 1

pT q
(In2 +K(n,n))(pqT ⊗ In)w

+ γ vec(ppT )

= vec(B)− γ

pT q
(In2 +K(n,n)) vec(ppT qpT )− 1

pT q
(In2 +K(n,n)) vec(WqpT )

+ γ vec(ppT )

= vec(B)− γ vec(ppT )− γK(n,n) vec(ppT )− 1

pT q
vec(WqpT )− 1

pT q
K(n,n) vec(WqpT )

+ γ vec(ppT )

= vec(B)− 2γ vec(ppT )− 1

pT q
vec(WqpT )− 1

pT q
vec(pqTW ) + γ vec(ppT )

= w − 1

pT q
vec(WqpT )− 1

pT q
vec(pqTW )

where W is a symmetric matrix such that w = vec(W ). This also shows that
v1 = vec(ppT ) ∈ Ker(Mk). Recall that for any real matrix A and p ≥ 1 the
entrywise p-norm of A is equal to the p-norm of vec(A), so that in the particular
case of p = 2 (i.e. the Frobenius norm) one has

‖A‖F = ‖A‖2 = ‖vec(A)‖2 =
√

tr(AAT ).

A (too) rough estimation on ‖Mk vec(B)‖2 is then (Frobenius norm is not in-
duced but it is submultiplicative)

‖Mk vec(B)‖2 ≤ ‖w‖2

(
1 +

2

|pT q|
‖p‖2 ‖q‖2

)
so that the condition we wish for is

‖w‖2 <
∣∣pT q∣∣

|pT q|+ 2 ‖p‖2 ‖q‖2
.

What we know about W :

• qTWq = 0 because of previous remark and (pqT ⊗ pqT )w = 0;

• pTWp = 0 because

w⊥ vec(ppT ) ⇐⇒ wT vec(ppT ) = tr(WT ppT ) = pTWp = 0.

We can try to estimate the distance of the sequence from the desired limit
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β = vec(H−1(x∗)):

‖vec(Bk+1)− β‖ = ‖Mk vec(Bk) +Nk − β‖
= ‖(vec(Bk)− β) +Nk + (Mk − In2) vec(Bk)‖

=

∥∥∥∥∥(vec(Bk)− β) +
1

pTk qk
vec(pkp

T
k )−

(pTkBkpk) vec(pkp
T
K)− 1

pTk qk
(vec(Wkqkp

T
k + pkq

T
kWk))

∥∥∥∥∥
and decomposing

vec(Wkqkp
T
k ) = (pTk pk)(qTkWkpk) vec(pkp

T
k ) + z1

and
vec(pkq

T
kWk) = (pTk pk)(qTkWkpk) vec(pkp

T
k ) + z2

with z1, z2 ∈ Span(vec(pkp
T
k ))⊥:

‖vec(Bk+1)− β‖ =

∥∥∥∥∥(vec(Bk)− β) +

(
1− 2(pTk pk)(qTkWkpk)

pTk qk
− (pTkBkpk)

)
vec(pkp

T
k )−

1

pTk qk
(z1 + z2)

∥∥∥∥∥.
Notice that z1 and z2 are relied by the following relation:

z2 = vec(ZT ) = K(n,n) vec(Z) = K(n,n)z1.

For numerical simulations, see (Appendix A.6).
We can simplify the computations with the following observations. Call

Mk = In2− 1

pT q
(In2 +K(n,n))(pqT ⊗In)+

1

(pT q)2
(pqT ⊗pqT ) = In2−A1A2︸ ︷︷ ︸

A

+C

and remark that:

• If v is an eigenvector for A2, there are only two possibilities:

1. v ∈ Ker(A2) and Av = 0;
2. v 6∈ Ker(A2) and A2v = v. In this case, the matrix V ∈ Rn×n is

not skew-symmetric (we know an explicit form for v from previous
(Remark 5.9.2)) and Av = A1v = 2v.

• AC = CA, so there exists a common basis of eigenvectors for A and C.

Proof. Indeed C commutes with both A1 and A2:

AC = A1A2C = A1CA2 = CA1A2 = CA

�
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• In the common basis of eigenvectors the two matrices A and C are written
as

A =



0
. . .

0
2

. . .
2


C =


0

. . .
0

1



where the block of zeros for A has size (n2−n)× (n2−n) and the block of
twos has size n×n, while C is vanishing everywhere but for the coefficient
in Cn2,n2 = 1.

Proof. Once the form for A is fixed, there are only two possibilities for C,
that is the non-zero coefficient in the last entry of the diagonal or in the
first one (corresponding to a 2 or a 0 for the matrix A). But the latter case
is not possible: the eigenvector corresponding to the eigenvalue 1 for C is
given by vec(ppT ): C vec(ppT ) = vec(ppT ) and A vec(ppT ) = 2 vec(ppT )
so that C is written as above in this basis. �

• In this new basis the matrix Mk is diagonal

M =



1
. . .

1
−1

. . .
−1

0


where the ones are n2−n, the −1s are n− 1 and the last entry is zero. In
particular the spectrum is given by Spec(Mk) = {−1, 0, 1}, the spectral
radius is ρ(Mk) = 1 and the rank is rk(Mk) = n2 − 1.

• We can explicit the basis of eigenvectors.

– The first n2 − n vectors are such that

{
Av = 0

Cv = 0
.

Let then w1, . . . , wn−1 ∈ Span(q)⊥ be linearly independent and con-
sider

Wi,j =

 0
wTi
0

 ∈ Rn×n

where wTi is the j-th row. In this way we built n(n − 1) = n2 − n
matrices such that Wi,jq = 0, i.e. wi,j = vec(Wi,j) is such that
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Awi,j = 0 = Cwi,j . Moreover this vector are linearly independent by
construction.

– The next n− 1 vectors are such that

{
Av = 2v

Cv = 0
.

Note this vectors u1, . . . , un−1.

– The last one is a vector v such that

{
Av = 2v

Cv = v
and we already

know that v = vec(ppT ).

• In this new basis we can write

vec(B) = α1w1,1 + · · ·+ αn−1w1,n−1 + αnw2,1 · · ·+ αn2−nwn,n−1

+ β1u1 + · · ·+ βn−1un−1 + γ vec(ppT )

Mk vec(B) = α1w1,1 + · · ·+ αn−1w1,n−1 + αnw2,1 · · ·+ αn2−nwn,n−1

− β1u1 − · · · − βn−1un−1

vec(B+) = α1w1,1 + · · ·+ αn−1w1,n−1 + αnw2,1 · · ·+ αn2−nwn,n−1

− β1u1 − · · · − βn−1un−1 + γ̃ vec(ppT )

where γ = pTBp
pT p

and γ̃ = 1/(pT q). It is easy to see that the coefficient αk
corresponding to the vector wi,j is given by αk = BTj wi, that is the scalar
product between the j-th row of the matrix B and the vector wi. This
allows to explicitly compute the norms of vec(B) and vec(B+) in terms of
the coefficients αi, βi and γ, γ̃.

• Since the coefficient γ depends on B, we have the identity

vec(B)− γ vec(ppT ) = vec(B)− pTBp

pT p
vec(ppT )

= vec(B)− 1

pT p
vec(ppTBppT )

=

(
In2 − 1

pT p
ppT ⊗ ppT

)
vec(B)

and since the norm of a vector only depends on the absolute values of its
coefficients:∥∥∥∥(In2 − 1

pT p
ppT ⊗ ppT

)
vec(B)

∥∥∥∥2

2

=
n2−n∑
j=1

|αj |2+
n−1∑
j=1

|βj |2 =
∥∥vec(B+)− γ̃ vec(ppT )

∥∥2

2

and using the sub-multiplicative property and the triangular inequality

‖vec(B+)‖2−|γ̃|
∥∥vec(ppT )

∥∥
2
≤
∥∥vec(B+)− γ̃ vec(ppT )

∥∥
2
≤
∥∥∥∥(In2 − 1

pT p
ppT ⊗ ppT )

∥∥∥∥
2

‖vec(B)‖2
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which gives an upper bound on the norm of vec(B+):

‖vec(B+)‖2 ≤
∥∥∥∥(In2 − 1

pT p
ppT ⊗ ppT

)∥∥∥∥
2

‖vec(B)‖2 + |γ̃|
∥∥vec(ppT )

∥∥
2
.

Now, the matrix ppT⊗ppT has rank 1, i.e. n2−1 vanishing eigenvalues and
the eigenvalue left is ‖p‖42 with corresponding eigenvector v = vec(ppT ):

(ppT ⊗ ppT ) vec(ppT ) = vec(ppT ppT ppT ) = (pT p)2 vec(ppT ) = ‖p‖42 vec(ppT ).

This tells us that

∥∥∥∥(In2 − 1

pT p
ppT ⊗ ppT

)∥∥∥∥2

F

= ‖p‖42−2 ‖p‖22+n2 and
∥∥∥∥(In2 − 1

pT p
ppT ⊗ ppT

)∥∥∥∥
2

= 1

and ∥∥vec(ppT )
∥∥2

2
= vec(ppT )T vec(ppT ) = tr(ppT ppT ) = ‖p‖42 .

In particular, using the sharpest bound of the 2-norm, the upper bound
on ‖vec(B+)‖ becomes

‖vec(B+)‖2 ≤ ‖vec(B)‖2 + |γ̃| ‖p‖22︸ ︷︷ ︸
|u|

. (62)

– The problem is that γ̃ depends on k and it blows up when k → +∞.
However, assuming that qk → 0 slower than pk → 0, the drift term
uk is bounded.

This implies

‖vec(Bk+1)‖2 ≤ ‖vec(B0)‖2 +
k∑
j=0

|uj | . (63)

Summing on each side of (62) this gives

k∑
j=0

‖vec(Bj+1)‖2 ≤ (k+1) ‖vec(B0)‖2+
k∑
j=0

(k+1−j) |uj | for each k ≥ 0.

Proof. This can be proved by induction:

– for k = 0 there’s nothing to prove;
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– suppose that the inequality holds for k, adding ‖vec(Bk+2)‖2 to both
sides and using the upper bound (63), we have

k+1∑
j=0

‖vec(Bj+1)‖2 = ‖vec(Bk+2)‖2 +
k∑
j=0

‖vec(Bj+1)‖2

≤ ‖vec(Bk+2)‖2 + (k + 1) ‖vec(B0)‖2 +
k∑
j=0

(k + 1− j) |uj |

≤ (k + 2) ‖vec(B0)‖2 +
k∑
j=0

(k + 2− j) |uj |

which proves the inequality.

�

• Starting from the inequality for squares

‖vec(Bk+1)‖22 ≤ ‖vec(Bk)‖22 + ‖uk‖2 + 2 ‖vec(Bk)‖ ‖uk‖

one obtains

‖vec(Bk+1)‖22 ≤ ‖vec(B0)‖22 + 2 ‖vec(B0)‖
k∑
j=0

‖uj‖+

 k∑
j=0

‖uj‖

2

.

Unfortunately, none of these inequalities corresponds to the characteriza-
tion (13) of ISS from (Lemma 2.6).

5.7 NM and Quasi-NM in continuous time
Newton’s Method in continuous time. Inspired by the reasoning of (Ap-
pendix A.5.2), we try to link Newton’s iteration step, seen as a discrete time
system, to a continuous time system which is hopefully easier to prove δISS via
Lyapunov characterization. Then the same Lyapunov function should work in
a neighborhood of the trajectories. The iteration step without noise is (28):

xk+1 = xk −H(xk)−1∇f(xk)

which we can rewrite as

x(t+ δ)− x(t) = −δH(x(t))−1∇f(x(t))

by replacing xk = x(t), so that the continuous time system should be written

ẋ = −H(x)−1∇f(x).
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More precisely, suppose f : R→ R, we can consider the discretizations:

∇f(x) ≈ f(x+ h)− f(x)

h
H(x) ≈ f(x+ 2h)− 2f(x+ h)− f(x)

h2

and

x(t+ h)− x(t)

h
= − 1

h

h2

f(x+ 2h)− 2f(x+ h)− f(x)

f(x+ h)− f(x)

h

= − f(x+ h)− f(x)

f(x+ 2h)− 2f(x+ h)− f(x)

so that, for h→ 0 one has

ẋ = −H(x)−1∇f(x).

The most general case corresponds to (42):

xk+1 = xk −H−1(xk)∇f(xk)−H−1(xk)rk − sk∇f(xk)− skrk

which leads to the continuous time system

ẋ = −H−1(x)∇f(x) +H−1(x)r + s∇f(x) + sr.

The same idea could be applied to (DFP Algorithm) or (BFGS Algorithm),
constructing a specific continuous dynamic for the matrices. In this case, how-
ever, one should consider the consistency of numerical method with respect to
the continuous model. Let us consider the (DFP Algorithm).

BFGS in CT. The dynamics corresponding to x is given by

xk+1 − xk
δ

=
pk
δ

= uk

⇒ ẋ(t) = u(t)

From the definition of qk:

q̂k =
qk
δ

=
∇f(xk+1)−∇f(xk)

δ
= H(xk + τδuk)uk

⇒ q̂(t) = H(x(t))u(t) = H(x(t))ẋ(t)

So the equation for B is

B+ −B
δ

=
1

δ

ppT

pT q
+

1

δ

qTBq

(pT q)2
ppT − 1

δ

BqpT + pqTB

pT q

=
1

δ

uuT

uT q̂
+

1

δ

q̂TBq̂

(uT q̂)2
uuT − 1

δ

Bq̂uT + uq̂TB

uT q̂
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Unfortunately the first term blows up as δ → 0. Using the expression for u we
may be able to avoid this: u(t) = −α(t)B(t)∇f(x(t))

δ so that this last expression
can be rewritten as

B+ −B
δ

= − α
δ2

B∇f(x)∇f(x)TB

∇f(x)TBq̂
+

1

δ

q̂TBq̂

(uT q̂)2
uuT − 1

δ

Bq̂uT + uq̂TB

uT q̂

We can try to re-scale the hessian matrix. Call B̂ = ηB and the equation
becomes:

B̂+ − B̂
ηδ

= − α

ηδ2

B∇f(x)∇f(x)TB

∇f(x)TBq̂
+

1

ηδ

q̂TBq̂

(uT q̂)2
uuT − 1

ηδ

Bq̂uT + uq̂TB

uT q̂

... the problem is that p and q have the same scale size.

In order to realize a time-scale separation and make the transition to con-
tinuous time easier, one may use the following characterization of the matrix
BBFGSk+1 :

BBFGSk+1 = arg min
B s.t. Bpk=qk

∥∥∥W 1/2(B −BBFGSk )W 1/2
∥∥∥
F

where W is the average Hessian matrix

W =

∫ 1

0

H(xk + τpk)dτ

and ‖·‖F is the Frobenius norm:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace (ATA) =

√√√√min{m,n}∑
i=1

σ2
i (A).

Using the notation
‖A‖W =

∥∥∥W 1/2AW 1/2
∥∥∥
F

we can write shortly

BBFGSk+1 = arg min
B s.t. Bqk=pk

∥∥B −BBFGSk

∥∥
W
.

In this case the diagram summarizing the (BFGS Algorithm) becomes (Fig-
ure 29).

We show that the solution to this problem is given by the matrix (50).

Proposition 5.11. The solution of the problem

min
B s.t. Bqk=pk

∥∥B −BBFGSk

∥∥
W
.

is given by the BFGS matrix

BBFGSk+1 =

(
I − pkq

T
k

qTk pk

)
BBFGSk

(
I − qkp

T
k

qTk pk

)
+
pkp

T
k

qTk pk
. (50)
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Proof. Call

B̂ = W 1/2BW 1/2, B̂k = W 1/2BkW
1/2, p̂k = W 1/2pk, q̂k = W−1/2qk.

Notice that since Wpk = qk then q̂k = p̂k. The problem becomes

min
∥∥∥B̂ − B̂k∥∥∥

F
.

Let
u =

p̂k
‖p̂k‖

=
q̂k
‖q̂k‖

and U =
[
u|u⊥

]
. Now

UT B̂kU − UT B̂U =

[
uT

uT⊥

]
B̂k
[
u u⊥

]
−
[
uT

uT⊥

]
B̂
[
u u⊥

]
=

[
uT B̂ku uT B̂ku⊥
uT⊥B̂ku uT⊥B̂ku⊥

]
−
[
1 0

0 uT⊥B̂u⊥

]
.

and the minimum for the Frobenius norm is obtained for uT⊥B̂u⊥ = uT⊥B̂ku⊥,
that is

B̂ =
[
u u⊥

] [1 0

0 uT⊥B̂ku⊥

] [
uT

uT⊥

]
= uuT + u⊥u

T
⊥B̂ku⊥u

T
⊥

= uuT + (I − uuT )B̂k(I − uuT )

using that

I = UUT =
[
u u⊥

] [uT
uT⊥

]
= uuT + u⊥u

T
⊥ ⇔ u⊥u

T
⊥ = I − uuT .

At this point, changing variables back to the original ones gives the wished
result. In fact, observe that

W−1/2u =
pk
‖p̂k‖

W 1/2u =
qk
‖q̂k‖

‖q̂k‖2 = pTk qk

and compute

Bk+1 = W−1/2B̂kW
−1/2 =

pkp
T
k

pTk qk
+Bk −

pkq
T
k Bk +Bkqkp

T
k

pTk qk
+
pkq

T
k Bkqkp

T
k

(pTk qk)2
.

�

The idea is to speed up the dynamic on B with respect to the dynamic on
x. Suppose to apply the following algorithm.
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BFGS Algorithm with Time Scale Separation

1. Obtain a direction dk by dk = −Bk∇f(xk).

2. Perform a one-dimensional optimization (line search) to find an acceptable step-size
αk in the direction found in the first step, so αk = arg min

α
f(xk + αdk).

3. Set pk = αkdk and update xk+1 = xk + pk.

4. qk = ∇f(xk+1)−∇f(xk).

5. B(1)
k+1 = arg min

B s.t. Bpk=qk

‖B −Bk‖W

6. for m = 1 : M

(a) d(m)
k+1 = −B(m)

k+1∇f(xk);

(b) α(m)
k+1 = arg min

α
f(xk + αd

(m)
k+1);

(c) Set p(m)
k+1 = α

(m)
k+1d

(m)
k+1;

(d) B(m+1)
k+1 arg min

B s.t. Bp
(m)
k+1=qk

∥∥∥B −B(m)
k

∥∥∥
W

and set


Bk+1 = B

(M)
k+1

dk+1 = d
(M)
k+1

αk+1 = α
(M)
k+1

pk+1 = p
(M)
k+1

.

In this case we can see that for each k yields the following recurrence:

B
(m+2)
k =

α
(m)
k

α
(m+1)
k

B
(m)
k so that in the end (wlog M is even)

Bk+1 = B
(M)
k+1 =

∏M/2−2
i=0 α

(2i)
k∏M/2−1

i=0 α
(2i+1)
k

Bk.

This means that we are only scaling Bk by a factor, and the approximation of
the inverse of the Hessian is not improved.

What if, instead, we consider a variant of BFGS, namely L-BFGS 7? This is
equivalent to BFGS, when m is not fixed (m = k at step k) and consists in the
following:

7that stands for Limited-memory BFGS
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Limited-Memory BFGS Algorithm (L-BFGS)

Fix m > 0 and choose a starting point x0 and a matrix B0
k. At iteration k:

1. g = ∇f(xk)

2. for i = k − 1, . . . , k −m
(a) αi = 1

qTi pi
pTi g

(b) g ← g − αiqi
3. r = B0

kg

4. for i = k −m, . . . , k − 1

(a) β ← 1
qTi pi

qTi r

(b) r ← r + (αi − β)pi

now Bk∇f(xk) = rk.

5. dk = −rk(= −Bk∇f(xk))

6. αk = arg min
α

f(xk + αdk).

7. Set pk = αkdk and update xk+1 = xk + pk.

8. qk = ∇f(xk+1)−∇f(xk).

9. If k > m discard pk−m and qk−m from storage.

Its diagram is given in (Figure 30). In this scheme, time scale separation
seems clearer and easy to operate. The idea is then: passing L-BFGS to CT,
prove stability for it, obtain stability for L-BFGS, this is equivalent (with varying
m) to stability for BFGS.
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Figure 29: A diagram summarizing the BFGS algorithm, with implicit update
on Bk.
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Figure 30: Diagram for L-BFGS algorithm.
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6 CT
Suppose α depends on time: α = α(s). The other parameters are defined by{

d(s) = −B(s)∇f(x(s))

p(s) = α(s)d(s)

Getting rid of the arg min: Assuming enough regularity on f , from
α = arg min f(x+ αd) one derives

α̇(s) = −

〈
∇f(x(s) + α(s)d(s)), ḋ(s)

〉
〈∇f(x(s) + α(s)d(s)), d(s)〉

α(s)− 〈∇f(x(s) + α(s)d(s)), ẋ(s)〉
〈∇f(x(s) + α(s)d(s)), d(s)〉

Exact inverse of Hessian. Suppose B(s) = [D∇f(x(s))]
−1, then

Ḃ(s) = − [D∇f(x(s))]
−1
D2∇f(x(s))ẋ(s) [D∇f(x(s))]

−1

ḋ(s) = −Ḃ(s)∇f(x(s))− α(s)d(s)

= [D∇f(x(s))]
−1
D2∇f(x(s))ẋ(s) [D∇f(x(s))]

−1∇f(x(s))− α(s)d(s)

ṗ(s) = α̇(s)d(s) + α(s)ḋ(s)

ẋ(s) = p(s) = α(s)d(s)

After some manipulations, one arrives to the form

ẋ(s) = α(s)d(s)

ḋ(s) = α(s)
[
(D∇f(x(s)))−1D2∇f(x(s))d(s)(D∇f(x(s)))−1∇f(x(s))− d(s)

]
ṗ(s) = α(s)2

[
(D∇f(x(s)))−1D2∇f(x(s))d(s)(D∇f(x(s)))−1∇f(x(s))

− 〈∇f(x(s)+α(s)d(s)),(D∇f(x(s)))−1D2∇f(x(s))d(s)(D∇f(x(s)))−1∇f(x(s))〉
〈∇f(x(s)+α(s)d(s)),d(s)〉 d(s)

]
− α(s)d(s)

α̇(s) = α(s)2

(
1− 〈∇f(x(s)+α(s)d(s)),(D∇f(x(s)))−1D2∇f(x(s))d(s)(D∇f(x(s)))−1∇f(x(s))〉

〈∇f(x(s)+α(s)d(s)),d(s)〉

)
− α(s)

Ḃ(s) = −α(s)(D∇f(x(s)))−1D2∇f(x(s))d(s)(D∇f(x(s)))−1

(64)

Example 6.1: System (64) for a quadratic form. Let us explicit the
system when

f(x) =
1

2
xTHxT + qTx.

Since the Hessian is constant, B does not varies and all becomes simple:

ẋ(s) = α(s)d(s)

ḋ(s) = −α(s)d(s)

ṗ(s) = −α(s)d(s)

α̇(s) = α(s)2 − α(s)

Ḃ(s) = 0
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and the explicit solution is given by:

x(s) = −e−s

d(s) = 1 + e−s

p(s) = e−s

α(s) = 1
es+1

B(s) = H−1

.

/
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6.1 Conclusion of this section
In this section we made the link between Newton’s Method, Quasi-Newton
Method and all the stability properties presented in (section 2). First, we
provide "classical" Lyapunov functions for Newton’s Method in general and for
some specific functions presented as examples in (subsection 4.3). We tried
to build ISS-Lyapunov functions, making use of the structure of the iteration
step and of comparison functions. Sufficient conditions for the existence of ISS-
Lyapunov functions are given (Proposition 5.2) and we remarked that these
conditions are verified for some specific classes of functions. We tried to obtain
similar conditions for incremental stability in (subsection 5.3), but without
succes. In (subsection 5.4.0) two propositions guarantee integral input-to-
state-stability of Newton’s Method under mild assumptions. The research for
stability for Quasi-Newton methods was more complex. No explicit conclu-
sions were found for incremental stability - even after long computations. (sub-
section 5.6) was an attempt to prove stability for the dynamic given by the
update on the matrix that approximates the inverse of the hessian in (BFGS
Algorithm). In this section, we used vectorization and Kronecker product to
rewrite the update equation in a linear form. We proved some results on the
eigenvalues and the structures of the matrices that are present in the formula,
then we proposed some numerical simulations (Appendix A.6) to better un-
derstand the behaviour of the dynamical system. Driven by the observation
that it is usually easier to prove stability by Lyapunov functions for a contin-
uous time system (Appendix A.5), in (subsection 5.7) and (section 6) we
tried to derive and solve the corresponding equations for Newton’s Method and
Quasi-Newton Method in continuous time.
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A Appendix

A.1 List of Acronyms

BIBO Bounded Input Bounded Output
BFGS (algorithm) Broyden–Fletcher–Goldfarb–Shanno (algorithm) (BFGS Algorithm)

CICO Converging Input Converging Output
CT Continuous Time (Appendix A.5)

DFP (algorithm) Davidon–Fletcher–Powel (algorithm) (DFP Algorithm)
DT Discrete Time
δGAS Incremental Globally Asymptotically Stable (Definition 2.24)
δISS Incremental Input to State Stability (Definition 2.25)
GAS Globally Asymptotically Stable (Definition 5.1)
iISS integral Input to State Stability (Definition 2.22)
IOS Input Output Stability (subsection 2.2)
IOSS Input Output to State Stability (subsection 2.2)
ISS Input to State Stability (Definition 2.10)
K-AG K-symptotic gain (Definition 2.12)

L-BFGS (algorithm) Limited-memory BFGS (algorithm) (L-BFGS Algorithm)
LIM Limit property (Definition 2.13)
NM Newton’s Method (section 4)

UBIBS Uniformly Bounded Input Bounded State (Definition 2.14)
UGAS Uniformly Globally Asymptotically Stable (Definition 5.2)

Table 2: All the acronyms used in the text with a reference to their definition.

A.2 Matrix inversion formulas
Trying to apply (Theorem 4.8) to DFP and BFGS algorithms in (subsec-
tion 4.6) an idea was to verify the assumptions by induction, thus expressing
H−1
k+1 and B−1

k+1 as function of H−1
k and B−1

k respectively should help. Here’s a
collection of formulas for inverting sum of matrices:
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Woodbury matrix identity: A, C invertible:

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (65a)

when U = V = I

(A+ C)
−1

= A−1 −A−1
(
C−1 +A−1

)−1
A−1 (65b)

when C = V = I

(A+ U)−1 = A−1 −A−1U(A+ U)−1 (65c)
Sherman–Morrison formula: A invertible:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(65d)

No requirements on P or Q :

(I + P )−1 = I − (I + P )−1P (65e)

(I + PQ)−1P = P (I +QP )−1 (65f)
If A is invertible:

(A+BCD)−1 = A−1 − (I +A−1BCD)−1A−1BCDA−1 (65g)

= A−1 −A−1(I +BCDA−1)−1BCDA−1 (65h)

= A−1 −A−1B(I + CDA−1B)−1CDA−1 (65i)

= A−1 −A−1BC(I +DA−1BC)−1DA−1 (65j)

= A−1 −A−1BCD(I +A−1BCD)−1A−1 (65k)

= A−1 −A−1BCDA−1(I +BCDA−1)−1 (65l)
If C is also invertible we find Woodbury formula (65a) again:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

A.2.1 Derivation of the update formula for BBFGS

Applying (65d) twice to (49), we can derive the update formula (50) for the
matrix B ≡ BBFGSk = F−1

k . First, apply (65d) with A = F ≡ Fk, u = q and
v = q/pT q and obtain(

F +
qqT

pT q

)−1

= F−1 − F−1qqTF−1

pT q + qTF−1q
=: Â−1.
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Then with A = Â = F + qqT

pT q
and u = −Fp, v = Fp/(pTFp):

(
F +

qqT

pT q
− FppTF

pTFp

)−1

︸ ︷︷ ︸
F−1

+ =B+

= Â−1 +
1

pTFp

pTFp

pTFp− pTFÂ−1Fp
Â−1FppTFÂ−1

= F−1 − F−1qqTF−1

pT q + qTF−1q
+

ppT

pTFp− pTFÂ−1Fp

− ppT qqTF−1

(pTFp− pTFÂ−1Fp)(pT q + qTF−1q)

− pT qF−1qpT

(pTFp− pTFÂ−1Fp)(pT q + qTF−1q)

− F−1qqTF−1(pT q)2

(pTFp− pTFÂ−1Fp)(pT q + qTF−1q)

= F−1 − F−1qqTF−1

pT q + qTF−1q
+

(pT q + qTF−1q)

(pT q)2
ppT

− pqTF−1 + F−1qpT

pT q
+

F−1qqTF−1

pT q + qTF−1q

= B +
(pT q + qTBq)

(pT q)2
ppT − pqTB +BqpT

pT q

=

(
I − pqT

qT p

)
B

(
I − qpT

qT p

)
+
ppT

qT p
. (50)

A.2.2 Estimation on matrix norms

It is easy to see that, if ‖A‖ < 1 for some induced matrix norm ‖·‖, then I −A
is invertible and, from (65e),∥∥(I −A)−1

∥∥ ≤ 1

1− ‖A‖
.

This can be generalized as follows: suppose ‖A‖ < m. Then I− 1
mA is invertible

and ∥∥∥∥∥
(
I − 1

m
A

)−1
∥∥∥∥∥ ≤ 1

1− ‖A‖m
=

m

m− ‖A‖

and this can be rewritten∥∥(mI −A)−1
∥∥ ≤ 1

m− ‖A‖
.

From this estimation we can also derive a lower bound for the inverse matrix:

1 + ‖A‖ ≥ ‖I −A‖ ≥ 1

‖(I −A)−1‖
≥ 1− ‖A‖ .
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Proposition A.1 (Matrix norm and spectral radius). For every matrix A and
ε > 0 there exists a induced matrix norm such that, call ρ(A) the spectral radius,

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε

Moreover, if all the eigenvalues µ of A such that |µ| = ρ(A) have corresponding
Jordan blocks of dimension 1, then there exists an induced matrix norm such
that ‖A‖ = ρ(A).

Remark A.1.1. For every induced matrix norm, if ρ(A) is the spectral radius of
a matrix A,

ρ(A) ≤ ‖A‖ .
In fact if x is an eigenvector of A with eigenvalue λ:

‖A‖ ‖x‖ ≥ ‖Ax‖ = ‖λx‖ = |λ| ‖x‖

wich implies ‖A‖ ≥ |λ| for all eigenvalue λ and so ‖A‖ ≥ ρ(A). J

A.3 Examples of ISS systems in discrete time
• As showed in (Example 2.6) by the mean of the ISS-Lyapunov function
V (x) = x2, the following system is ISS:

xk+1 = f(xk, uk) :=
xk√
x2
k + 1

+ uk with x0 = ξ ∈ Rn.

• The system
xk+1 =

xk
2

+ uk

is clearly ISS. In fact using the definition:

‖x(k, ξ, u)‖ =

∥∥∥∥∥ ξ2k +
k−1∑
i=0

uk−i
2i

∥∥∥∥∥ ≤ ‖ξ‖
2k︸︷︷︸

β(‖ξ‖,k)

+ 2 ‖u‖︸ ︷︷ ︸
γ(‖u‖)

.

• There exist other criteria to show that a discrete time system is ISS. Using
sufficient criteria for ISS of discrete-time systems obtained with the help
of indefinite difference Lyapunov functions as in [19], we can prove that
the following system is also ISS:

xk+1 =

(
1

8
+ sin2

(
kπ

4

))
xk + uk.

In order to show this, is enough to consider the indefinite Lyapunov func-
tion V (x) = |x|:

V (xk+1) ≤
(

1

8
+ sin2

(
kπ

4

))
|xk|+ |uk|

which satisfies the assumptions of [19, Theorem 2, p. 73] with M = 9
8 ,

T = 4, n = 1, ξ = 255
84 .
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A.4 Examples of δISS Lyapunov functions

Example A.1: Quadratic case. This is the trivial case: as observed in
(Remark 4.0.3), in the quadratic case, Newton’s method converges in only one
step. So we can simply choose V (x, y) = |x− y| as δISS Lyapunov function: if
f(x) = ax2 + bx+ c the iteration step gives

x+ = x− 1

2a
(2ax+ b) + u = − b

2a
+ u

and V (x+, y+) = |u1 − u2| so that the condition (21b) is verified with

V (x+, y+)− V (x, y) = |u1 − u2|︸ ︷︷ ︸
σ(|u1−u2|)

− |x− y|︸ ︷︷ ︸
α(|x−y|)

and α ∈ K∞ and σ ∈ K. /

Example A.2: Quadratic + logarithmic case. Consider f(x) = x2 + log(x2 + 1).
Easy computations show:

∇f(x) = 2x

(
x2 + 2

x2 + 1

)
H(x) = 2

x4 + x2 + 2

(x2 + 1)2

x+ = x−H(x)−1∇f(x) = − 2x3

x4 + x2 + 2
.

Try V (x, y) = |x− y| as a δISS Lyapunov function. Take any x, y:

V (x+, y+)− V (x, y) =

∣∣∣∣ 2x3

x4 + x2 + 2
− 2y3

y4 + y2 + 2

∣∣∣∣− |x− y|
≤
∣∣∣∣−2x3y3(x− y) + 4(x2 + xy + y2)(x− y) + 2x2y2(x− y)

(x4 + x2 + 2)(y4 + y2 + 2)

∣∣∣∣− |x− y|
≤
(

2

∣∣∣∣−x3y3 + 2x2 + 2xy + 2y2 − x2y2

(x4 + x2 + 2)(y4 + y2 + 2)

∣∣∣∣− 1

)
|x− y|

≤ −0.1 |x− y|

because

max

{∣∣∣∣ (xy)3 − 2x2 − 2xy − 2y2 − (xy)2

(x4 + x2 + 2)(y4 + y2 + 2)

∣∣∣∣} ≈ 0.428792

at (x, y) ≈ (−0.804747,−0.804747)8. This means that when adding distur-
8computed with WolframAlpha.
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bances u1 and u2,

V (x+, y+)− V (x, y) =

∣∣∣∣ 2x3

x4 + x2 + 2
+ u1 −

2y3

y4 + y2 + 2
− u2

∣∣∣∣− |x− y|
≤
∣∣∣∣ 2x3

x4 + x2 + 2
− 2y3

y4 + y2 + 2

∣∣∣∣− |x− y|+ |u1 − u2|

≤ −0.1 |x− y|︸ ︷︷ ︸
−α4(|x−y|)

+ |u1 − u2|︸ ︷︷ ︸
σ(|u1−u2|)

such a V satisfies the (Definition 2.26) of δISS Lyapunov function. /

Remark A.1.2. In the previous example, one could have obtained a different
constant, simply using the triangular inequality in a different way (e.g. apply-
ing (Lemma 2.2) to some comparison function). This underlies the following
(Example A.3). J

In the following, we present some results that might be useful when looking
for a Lyapunov function of the form V (x, y) = |x− y|β .

Lemma A.2 (Hölder continuity of xα). For any 0 < α ≤ 1 the function
h(x) = xα is α-Hölder continuous:

∃c > 0 |xα − yα| ≤ c |x− y|α . (66)

Moreover, h is β-Hölder continuous for all 0 < β ≤ α (and it is not for α < β):

∃c > 0 |xα − yα| ≤ c |x− y|β for 0 < β ≤ α ≤ 1.

Proof. Fix α ∈ (0, 1]. The function h(x) = xα is concave, so for any a, b > 0(
a
a+b

)α
≥ 1 and (

a

a+ b

)α
+

(
b

a+ b

)α
≥ 1

⇒ aα + bα ≥ (a+ b)α.

Now, wlog x > y and we can set a = x− y, b = y to obtain

(x− y)α + yα ≥ xα

⇒ xα − yα ≤ (x− y)α

which is exactly the Hölder continuity condition (66) with c = 1. To establish
the second inequality it is enough to observe that for x > 0

0 < β ≤ α ≤ 1 ⇒ xα ≤ xβ .

�
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Suppose x+ ∼ xα for some 0 < α ≤ 1. Then choosing V (x, y) = |x− y|β for
a strictly positive β:

V (x+, y+)− V (x, y) = |x+ − y+|β − |x− y|β

∼ |xα − yα|β − |x− y|β

≤ cβ |x− y|αβ − |x− y|β .

Now, if α = 1, if c < 1 the RHS is smaller than − |x− y|β =: −α(|x− y|). If
instead 0 < α < 1 the inequality becomes

V (x+, y+)− V (x, y) ≤ cβ |x− y|αβ − |x− y|β

≤ |x− y|αβ (cβ − |x− y|β(1−α)
)

and this is not always negative.

Example A.3: Quadratic + perturbation. Consider the function f(x) = x2 + x2
√
x.

Then we can compute

∇f(x) = 2x+
5

2

√
x3 H(x) = 2 +

15

4

√
x

and the iteration step is

x+ = x
4 + 10

√
x

8 + 15
√
x

+ u = x̄+ u

where u is a disturbance. After computation, we observe that

|x̄− ȳ| ≤ c1 |x− y|+ c2
√
|x− y|

with c1 = 2
3 and c2 = 4

45 :

|x̄− ȳ| =
∣∣∣∣x4 + 10

√
x

8 + 15
√
x
− y

4 + 10
√
y

8 + 15
√
y

∣∣∣∣
=

∣∣(4x+ 10x
√
x)(8 + 15

√
y)− (4y + 10y

√
y)(8 + 15

√
x)
∣∣∣∣(8 + 15

√
y)(8 + 15

√
x)
∣∣

=

∣∣32(x− y)− 60
√
xy(
√
x−√y) + 80(x

√
x− y√y) + 150

√
xy(x− y)

∣∣∣∣(8 + 15
√
y)(8 + 15

√
x)
∣∣

=

∣∣(32 + 150
√
xy + 60

√
x+ 60

√
y)(x− y)− 20(y

√
y − x

√
x)
∣∣∣∣(8 + 15

√
y)(8 + 15

√
x)
∣∣

≤
∣∣(32 + 150

√
xy + 80(

√
x+
√
y))(x− y)

∣∣∣∣(8 + 15
√
y)(8 + 15

√
x)
∣∣ +

∣∣20
√
xy(
√
x−√y)

∣∣∣∣(8 + 15
√
y)(8 + 15

√
x)
∣∣

≤ c1 |x− y|+ c2 |x− y|1/2
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with

c1 = max

∣∣32 + 150
√
xy + 60

√
x+ 60

√
y
∣∣∣∣(8 + 15

√
y)(8 + 15

√
x)
∣∣ ≤ 2

3

c2 = max
20
√
xy∣∣(8 + 15

√
y)(8 + 15

√
x)
∣∣ ≤ 20

225
=

4

45
≈ 0.0888888889

−10 −5
0

5
10−10

0

10

0

5

10

x
y

z

2
3 |x− y|+

4
45

√
|x− y|

0 2 4
0

1

2

3

x− y

z

2
3 |x− y|+

4
45

√
|x− y|

This inequality implies that there exist a K∞ function ϕ, such that ϕ−id ∈ K∞
and

|x̄− ȳ| ≤ c1 |x− y|+ c2
√
|x− y| ≤ ϕ−1

(
1

2
|x− y|

)
.

This means that

|x̄− ȳ| ≤ ϕ−1

(
1

2
|x− y|

)
ϕ (|x̄− ȳ|) ≤ 1

2
|x− y|

α̂ (ϕ (x̄− ȳ)) ≤ α̂
(

1

2
|x− y|

)
≤ 1

2
α̂(|x− y|)

for any α̂ ∈ K∞ such that α̂(λs) ≤ λα̂(s) for all s ≥ 0 and 0 < λ ≤ 1. Now,
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take V (x, y) = α̂(|x− y|) as a Lyapunov function. Then

V (x+, y+)− V (x, y) = α̂(|x̄+ u− ȳ − v|)− α̂(|x− y|)
≤ α̂(|x̄− ȳ|+ |u− v|)− α̂(|x− y|)
≤ α̂(ϕ(|x̄− ȳ|)) + α̂(ϕ ◦ (ϕ− id)−1(|u− v|))︸ ︷︷ ︸

σ(|u−v|)

−α̂(|x− y|)

≤ α̂
(

1

2
|x− y|

)
− α̂(|x− y|) + σ(|u− v|)

≤ −1

2
α̂ (|x− y|)︸ ︷︷ ︸
−α(|x−y|)

+σ(|u− v|)

where we applied the triangle inequality for comparison functions (Lemma 2.2):

α̂(a+ b) ≤ α̂(ϕ(a)) + α̂(ϕ ◦ (ϕ− id)−1(b)).

This shows that V is a δISS Lyapunov function for the system given by the
Newton’s method applied to the function f(x) = x2 + x2

√
x with additive

disturbance u. The system is incrementally input to state stable thanks to the
(Theorem 2.21). /

Remark A.2.1. Notice that the crucial step in the previous example was the in-
equality |x̄− ȳ| ≤ ϕ−1

(
1
2 |x− y|

)
. If this inequality holds, with a Lyapunov

function of the form α̂(|x− y|) for a K∞ function satisfying the condition
α̂(λs) ≤ λα̂(s) for all s ≥ 0 and 0 < λ ≤ 19 and applying the triangle in-
equality, the last steps guarantee the incremental stability. The same reasoning
can be applied to other functions as shown in the next examples. J

Example A.4: Variation on the previous example. Consider the function
f(x) = x2 + x

√
x, so that

∇f(x) = 2x+
3

2

√
x H(x) = 2 +

3

4
√
x

=
8
√
x+ 3

4
√
x

and the iteration step is

x+ = − 3

8
√
x+ 3

+ u = x̄+ u

where u is a disturbance. It is easy to see that

|x̄− ȳ| =
∣∣∣∣ 24(

√
y −
√
x)

64
√
xy + 24(

√
x+
√
y) + 9

∣∣∣∣
≤ 8

3

∣∣√y −√x∣∣ ≤ 8

3

√
|x− y|

≤ ϕ−1

(
1

2
|x− y|

)
9For example α̂(s) = s2 satisfies the condition.
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for some ϕ ∈ K∞. The Newton’s method applied to this system is then δISS as
observed in the preceding example and remark. /

A.5 Discrete time systems from continuous time systems
All the stability properties given in (section 2) were originally for continuous
time system, and (almost) all the results stated in the same section admit anal-
ogous formulations for continuous time systems. In the next subsections we will
make a link between a stable (in the sense of ISS, iISS, δ ISS ...) continuous
time system and its discrete time version.

A.5.1 ISS property from continuous time to discrete time systems

The ISS notion was originally proposed for continuous time systems in [20].
Similarly to (Definition 2.10), for a continuous time system

ẋ = f(x, u) (67)

we have the following definition of the ISS property:

Definition A.1 (ISS - CT). System (67) is called input-to-state stable (ISS) if
for any essentially bounded input u and x0 ∈ Rn there exist functions β ∈ KL
and γ ∈ K such that

‖x(t, x0, u)‖ ≤ β(‖x0‖ , t) + γ(‖u‖).

Remark A.2.2. As in the discrete time case, an equivalent formulation of ISS is

‖x(t, x0, u)‖ ≤ max {β(‖x0‖ , t), γ(‖u‖)} .

J

Lyapunov method gives the possibility to analyze behavior of the system
solutions without calculating the solutions proper as time function and the initial
conditions which is a hard problem for the nonlinear systems. The analogous
of (Definition 2.11) is:

Definition A.2 (ISS Lyapunov function - CT). A smooth function V : Rn →
R+ is called ISS Lyapunov function if for it there are the functions α1, α2, α3, σ ∈
K∞ such that the conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ Rn (68a)
∇V (x) · f(x, u) ≤ σ(‖u‖)− α3(‖x‖) ∀x ∈ Rn ∀u ∈ Rm (68b)
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Remark A.2.3. An equivalent definition by implication form is obtained replac-
ing the second property (68b) by:

∃α3, χ ∈ K ‖x‖ ≥ χ(‖u‖)⇒ ∇V (x) · f(x, u) ≤ −α3(‖x‖). (69)

J

Similar to (Theorem 2.7), in the continuous case the following statement
yields.

Theorem A.3 (ISS Lyapunov characterization - CT). System (67) is ISS if
and only if there exists for it an ISS Lyapunov function.

Example A.5. Consider the nonlinear system

ẋ = −x3 + u x, u ∈ R.

By taking V (x) = 1
2x

2, we obtain that

V̇ = x(−x3 + u) = −x4 + xu < −x
4

2
=: −α3(‖x‖)

if ‖x‖2 >
(

1√
2
‖u‖
)2/3

=: χ(‖u‖). This means that V (x) = 1
2x

2 can be used as
a ISS Lyapunov function and the system is ISS by (Theorem A.3). /

We can link the continuous and the discrete time case as follows. Suppose
we have a nonlinear system in continuous time (67)

ẋ = f(x, u)

which is proven to be ISS via a Lyapunov function V (x) and (Theorem A.3). If
we approximate the derivative ẋ ≈ xk+1−xk

δt , we obtain a discrete time system

xk+1 − xk
δt

= f(xk, uk) ⇒ xk+1 = xk + δtf(xk, uk).

Now, using Taylor expansion on V :

V (xk+1) = V (xk+δtf(xk, uk)) = V (xk)+δtf(xk, uk)∇V (xk)+O(‖δtf(xk, uk)‖)

and the condition (68b) ∇V (x) ·f(x, u) ≤ σ(‖u‖)−α3(‖x‖) can be rewritten as

V (xk+1)− V (xk)

δt
+O(‖f(xk, uk)‖) ≤ σ(‖uk‖)− α3(‖xk‖)

which becomes the condition (14b)

V (xk+1)− V (xk) ≤ σ̂(‖uk‖)− α̂3(‖xk‖)
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for the discrete time system. In conclusion, when δt is small enough, if the
continuous time system is ISS, the discretized system is still ISS.

Example A.6. Consider the nonlinear system of (Example A.5) and the cor-
responding discrete time system:

xk+1 = xk − δt x3
k + δtuk.

Take V (xk) = 1
2x

2
k (which was a ISS Lyapunov function for the continuous time

system) and compute

V (xk+1)− V (xk) =
1

2

(
x2
k + (δt)2x6

k + (δt)2u2
k − 2δt x4

k + 2δt xkuk − 2(δt)2x3
kuk − x2

k

)
≤ 1

2

(
(δt)2x6

k + (δt)2u2
k − 2δt x4

k + 2δt x4
k − 2(δt)2x6

k

)
≤ (δt)2

2
(−x6

k + u2
k)

≤ −α̂3(‖xk‖) + σ̂(uk)

for ‖xk‖2 > χ(‖uk‖) =
(

1√
2
‖uk‖

)2/3

. /

A.5.2 δISS property from continuous time to discrete time systems

A similar reasoning can be done for the incremental stability property. For
completeness we give the analogous of (Definition 2.25) and (Definition 2.26)
definitions.

Consider system (67) where u ∈ U a closed and convex set of Rm containing
the origin. Suppose also f locally Lipschitz and such that f(0, 0) = 0.

Under these assumptions we define:

Definition A.3 (δISS - CT). The system (67) is incrementally input-to-
state stable (δISS) if there exists a function β ∈ KL and γ ∈ K∞ such that for
any t ≥ 0, any ξ1, ξ2 ∈ Rn and any couple of input signals u1, u2 the following
is true

‖x(t, ξ1, u1)− x(t, ξ2, u2)‖ ≤ β(‖ξ1 − ξ2‖ , t) + γ(‖u1 − u2‖∞).

Remark A.3.1. Again, in the previous definition, the summation on the RHS
may be replaced by max{β(‖ξ1 − ξ2‖ , t), γ(‖u1 − u2‖∞)}. J

Remark A.3.2. Since f(0, 0) = 0 it is easy to check that δISS implies ISS just
comparing an arbitrary trajectory with x(t) ≡ 0 (if one chooses u2 = 0 and
ξ2 = 0 then ẋ = f(0, 0) = 0 and x(t) ≡ 0). J

A necessary condition for ISS is the following: ∀u ∈ U ∃!xu sucht that
f(xu, u) = 0. This follows from the following proposition.
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Proposition A.4 (Necessary condition for δISS - CT). Suppose the system
(67) δISS. Then, for all constant input signals there exists a unique, globally
asymptotically stable, equilibrium point.

Remark A.4.1. Trajectories of ISS systems all converge to one another. J

Definition A.4 (δISS Lyapunov function - CT ). A smooth function V : Rn × Rn → R+

is called a δISS Lyapunov function if for any u1, u2 ∈ U and any x1, x2 ∈ Rn

α1(‖x1 − x2‖) ≤ V (x1, x2) ≤ α2(‖x1 − x2‖) (70a)
‖u1 − u2‖ ≤ κ(‖x1 − x2‖)⇒ ∂x1

V f(x1, u1) + ∂x2
V f(x2, u2) < −ρ(‖x1 − x2‖)

(70b)

where α1, α2, κ ∈ K∞ and ρ is positive definite.

Theorem A.5 (δISS and δISS Lyapunov function - CT ). If the system (67)
admits a δISS Lyapunov function, then it is δISS. Moreover, if the set U is
compact the two conditions are equivalent.

Example A.7. Consider the nonlinear system

ẋ = −x+ u

with two different solution x1, x2 corresponding to inputs u1, u2 respectively.
Take the Lyapunov function V (x1, x2) = 1

2 (x1−x2)2 for ‖u1 − u2‖ ≤ 1
2 ‖x1 − x2‖ =

κ(‖x1 − x2‖). Then

∂x1
V f(x1, u1) + ∂x2

V f(x2, u2) = (x1 − x2)(−x1 + u1) + (x2 − x1)(−x2 + u2)

= −x2
1 − x2

2 + 2x1x2 + x1u1 − x2u1 − x1u2 + x2u2

= −(x1 − x2)2 + (x1 − x2)(u1 − u2)

≤ −1

2
(x1 − x2)2 =: −ρ(‖x1 − x2‖)

So the system is δISS thanks to (Theorem A.5). /

Now we can link the continuous and discrete time cases. Consider system

ẋ = f(x, u) (67)

and suppose it δISS with δISS Lyapunov function V (x, y). Using Taylor’s ex-
pansion on V :

V (x+ h, y + k) = V (x, y) + ∂xV (x, y)h+ ∂yV (x, y)k +O(‖h+ k‖2)

in a neighborhood of (x, y). Consider now the discretization of the system:

xk+1 − xk
δt

= f(xk, uk) ⇒ xk+1 = xk + δtf(xk, uk).
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As in (subsection 2.6), abbreviate x(k, ξi, ui) in xi for the sake of simplicity.
The condition (70b) gives, for ‖u1 − u2‖ ≤ κ(

∥∥x1 − x2
∥∥)

V (f(x1, u1), f(x2, u2))− V (x1, x2) ≤ ∂x1
V δt f(x1, u1) + ∂x2

V δt f(x2, u2)

< −δt ρ(
∥∥x1 − x2

∥∥) = ρ̂(
∥∥x1 − x2

∥∥)

which guarantees the δISS property for the discrete time system thanks to (The-
orem 2.21).

Example A.8. Apply the preceding reasoning to (Example A.7), one obtains:

xk+1 = xk + δ(−xk + uk) = (1− δ)xk + δuk

and taking two different solutions x = x(k, ξ1, u) and y = x(k, ξ2, v), for the Lyapunov
function V (x, y) = 1

2 (x− y)2 and ‖u− v‖ ≤ 1
2 ‖x− y‖, yields

V (xk+1, yk+1)− V (xk, yk) =
1

2

(
(1− δ)2x2

k + δ2uk + 2(1− δ)δxkuk+

(1− δ)2y2
k + δ2vk + 2(1− δ)δykvk

− 2(1− δ)2xkyk − 2δ(1− δ)xkvk − 2δ(1− δ)ykuk

− 2δ2ukvk − x2
k − y2

k + 2xkyk

)
=

1

2

(
(1− δ)2 − 1)(xk − yk)2 + δ2(uk − vk)2

+ 2δ(1− δ)(xk − yk)(uk − vk)
)

≤ 1

2

(
(1− δ)2 − 1 +

δ2

2
+ δ(1− δ)

)
(xk − yk)2

=
1

2
δ

(
δ

2
− 1

)
(xk − yk)2 =: −ρ(‖x− y‖)

with ρ(s) = δ
(
1− δ

2

)
s2 for δ < 2. /

A.6 Results from numerical simulations on BFGS
Remind the updating formula for Bk:

BBFGSk+1 =

(
I − pkq

T
k

qTk pk

)
BBFGSk

(
I − qkp

T
k

qTk pk

)
+
pkp

T
k

qTk pk
. (50)

And its vectorization:

vec(Bk+1) =

(
I − pkq

T
k

pTk qk

)
⊗
(
I − pkq

T
k

pTk qk

)
vec(Bk) +

1

pT q
p⊗ p

=

(
In2 − 1

pT q
(In2 +K(n,n))(pqT ⊗ In) +

1

(pT q)2
(pqT ⊗ pqT )

)
vec(Bk) +

1

pT q
p⊗ p

=: Mk vec(Bk) +Nk. (59)
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The idea is to prove that {vec(Bk)}k is convergent, so we try to prove that
it is a Cauchy sequence

∀ε > 0 ∃K > 0 s.t. ∀k ≥ K ∀m > 0 ‖vec(Bk+m)− vec(Bk)‖ ≤ ε

for some small constant c < 1. Now, since

‖vec(Bk+m)− vec(Bk)‖ ≤
m−1∑
i=0

‖vec(Bk+i+1)− vec(Bk+i)‖

and
‖vec(Bk+1)− vec(Bk)‖ ≤ ‖Nk‖+ ‖Mk − In2‖ ‖vec(Bk)‖

we would study the behaviour of ‖Nk‖, Mk → In2 and ‖vec(Bk)‖ by numerical
simulations.

Test functions I used the following test functions:

f (1)(x) =
1

2
xT
(

6 −2
−2 6

)
x+

(
10 5

)
x

f (2)(x) =
1

2
xT
(

5 −3
−3 5

)
x+

(
10 5

)
x

f (3)(x) =
1

2
xT
(

101 −99
−99 101

)
x+

(
10 5

)
x

f (4)(x, y) = 100(y − x2)2 + (x− 1)2

f (5)(x, y) = |3x+ 2y − 2|2 + 10(|x|+ |y|)

Remark that f (2) and f (3) are quadratic functions with less nicely conditioned
Hessian than f (1); f (4) is Rosenbrock’s valley-shaped function; f (5) is a non-
differentiable lasso function. A plot of these functions can be found in (Ap-
pendix A.6).

After 1000 steps we have the parameters as in (Table 3).10

f
∥∥∥M (i)
∞ − I4

∥∥∥
F
‖vec(B∞)‖ ‖vec(B∞+1)− vec(B∞)‖ ‖N∞‖ ‖B∞ − β‖F

f (1) 1.8671 0.0027 1.7618e-07 0.0020 0.2768
f (2) 2.3534 0.0051 2.9116e-05 0.0031 0.5102
f (3) 4.2152 0.0022 6.3568e-06 0.0021 0.4979
f (4) 12.2826 0.0227 1.0166e-05 0.0226 2.4813
f (5) 3.7745e+68 3.2324e+16 5.3924e+15 2.6962e+16 3.2324e+16

Table 3: Numerical values at the 1000th step of a BFGS simulation for the test functions.

10For the function f (5) the values are taken after 900 iterations, they tend to blow up after
k = 470 and everything will be NaN.
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From (Table 3), we remark that the term ‖vec(Bk+1)− vec(Bk)‖F seems to
converge to 0. The norm of Nk seems always to converge to a constant, which
seems to be 0 as well. The norm of vec(Bk) appears to be always bounded. The
only problem is that the matrix Mk is not as close to the identity matrix as we
were expecting. The last column shows that we have convergence of the matrices
Bk to the actual inverse of the Hessian at the minimum point β for the three
quadratic functions. We do not expect this to be small as we keep on iterate after
convergence of the algorithm to the stationary point, re-scaling the gradient to
make him always bigger than 10−8 (the machine epsilon is 10−16). The last test
function f (5) shows a different behaviour.11It needs more investigations.

In (Appendix A.6) there are some plots that shows the behaviour of the
parameters in the table as a function of the iteration k.

In the first four cases, the algorithm converges exactly to the minimum,
while in the last one, due to non-differentiability there’s an error. I estimated
the theoretical minimum by hand and find a smaller value of f (5) in (1/9, 0).
The results are summarized in (Table 4).

f minimum found x̄ theoretical point of minimum x∗ f(x̄) |f(x∗)− f(x̄)|
f (1) (-2.1875, -1.5625) (-2.1875, -1.5625) -14.8438 0
f (2) (-4.0625, -3.4375) (-4.0625, -3.4375) -28.9062 0
f (3) (-3.7625, -3.7375) (-3.7625, -3.7375) -28.1562 0
f (4) (1,1) (1,1) 0 0
f (5) (0.0433,-0.0001) f(x)|x=(1/9,0) = 3.8̄ 3.9328 ≤ 3.9328

Table 4: Points of minimum for the test functions: computed values and theoretical
values.

11See note (10).
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A.6.1 Plot of the test functions
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A.6.2 Plot of the parameters

The following (Figure 31) shows the variations of the parameters during the
time the algorithm runs. For each test function we can see the variation on
‖vec(Bk+1)− vec(Bk)‖, ‖vec(Bk)‖ and ‖Nk‖. The behaviour of the last pa-
rameter, ‖Bk − β‖ is shown in (Figure 32).
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Figure 31: Variation of the parameters as function of the step k.
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Figure 32: Variation of
∥∥∥B(i)

k − β
∥∥∥ as function of the step k for the five test

functions.

Figure 33: Behaviour of the parameter ‖vec(Bk+1)− vec(Bk)‖ for the test function f (5)(x, y) = |3x+ 2y − 2|2 +

10(|x|+ |y|) and its smooth version f̂ (5)(x, y) = |3x+ 2y − 2|2 + 10(x+ y).
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