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Abstract

We give examples of definable groups G (in a saturated model,
sometimes o-minimal) such that G00 6= G000, yielding also new exam-
ples of “non G-compact” theories. We also prove that for G definable
in a (saturated) o-minimal structure, G has a “bounded orbit” (i.e.
there is a type of G whose stabilizer has bounded index) if and only
if G is definably amenable, giving a positive answer to a conjecture of
Newelski and Petrykowski in this special case of groups definable in
o-minimal structures.
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1 Introduction and preliminaries

In this paper groups definable in o-minimal and closely related structures are
studied, partly for their own sake and partly as a “testing ground” for general
conjectures. Given a ∅-definable group G in a saturated structure M , G00

∅ is
the smallest subgroup of G of bounded index which is type-definable over ∅,
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and G000
∅ is the smallest subgroup of G of bounded index which is Aut(M)-

invariant. In o-minimal structures and more generally theories with NIP ,
these “connected components” remain unchanged after naming parameters
and so are just referred to as G00 and G000. In any case G00

∅ and G000
∅ are

“definable group” analogues of the groups of KP -strong automorphisms and
Lascar strong automorphisms, respectively, of a saturated structure. The re-
lationship between these definable group and automorphism group notions is
explored in [10]. Although examples were given in [2] where the strong auto-
morphism groups differ, until now no example was known where G000

∅ 6= G00
∅ .

In this paper (Section 3) we give a “natural” example: G is simply a satu-

rated elementary extension of S̃L2(R) (the universal cover of SL2(R)) in the
language of groups. G is not actually definable in an o-minimal structure, but
we give another closely related example which is. In any case the two-sorted
structure consisting of G and a principal homogeneous space for G is now a
(natural) example of a “non G-compact” structure (or theory) i.e. where the
group of Lascar strong automorphisms is a properly contained in the group
of KP -strong automorphisms.

Another fruitful theme in recent years has been the generalization of sta-
ble group theory outside the stable context. The o-minimal case has been
important and there is now a good understanding of “definably compact”
groups from this point of view; for example they are definably amenable,
“generically stable for measure”, and G is dominated by G/G00. It should
be remarked that for any group G definable in a (saturated) o-minimal struc-
ture, G/G00, equipped with the logic topology, is a compact Lie group [1].
In the current paper we try to go beyond the definably compact setting, mo-
tivated partly by questions of Newelski and Petrykowski. In [11], definable
groups G with “finitely satisfiable generics” (which include definably com-
pact groups in o-minimal structures) were shown to be definably amenable
by lifting the Haar measure on G/G00 to a left invariant Keisler measure on
G, making use of a global generic type p, whose stabilizer is G00. We guess
this encouraged Petrykowski to suggest that if a definable group G (in any
structure) has a global type whose stabilizer has “bounded index” then G
is definably amenable. Note that a left invariant type is a special case of a
left invariant Keisler measure, so trivially if there is a global type with sta-
bilizer G then G is definably amenable. In any case, in Section 4 we confirm
Petrykowski’s conjecture when G is definable in an o-minimal structure, as
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well as raise questions about the nature of types with bounded orbit in the
o-minimal and more generally NIP environment.

In Section 2 of the paper we give a rather basic decomposition theorem
(implicit in the literature) for groups in o-minimal structures, which is use-
ful for understanding the issues around definable amenability and bounded
orbits, as well as G00 and G000 (although Section 3 can be more or less read
independently of Section 2). We introduce and discuss the notion of G hav-
ing a “good decomposition” (Definition 2.7). The o-minimal examples where
G00 6= G000 will be also examples where good decomposition fails, although
good decomposition does hold for algebraic groups.

In a sequel [5] to the current paper we will give a systematic account
of G00, G000 as well as the quotient G00/G000, for groups G definable in o-
minimal structures. The decomposition theorem (2.6), refinements of it, as
well as the notion of good decomposition, will play major roles.

In general T will denote a complete theory, M an arbitrary model of T ,
and G a group definable in M . We sometimes work in a sufficiently satu-
rated and homogeneous model M of T , in which case “small” or “bounded”
essentially means of cardinality strictly less than the degree of saturation
of M , but we will make the meaning more precise later in the paper. De-
finability usually means with parameters, and we say A-definable to mean
definable with parameters from A for A a subset of M . When we talk about
o-minimal theories we will mean o-minimal expansions of the theory RCF
of real closed fields (and we leave it for later or to others to consider more
general o-minimal contexts). In the o-minimal context, the important notion
of definable compactness was introduced by Peterzil and Steinhorn in [22].
For X a definable subset of Mn, definable compactness of X amounts to
X being closed and bounded in Mn. In the more general case of X being
a definable manifold, it means that for any definable function f from [0, 1)
to X, limx→1−f(x) exists in X. When G is a definable group, G can be
equipped with a definable manifold structure such that multiplication and
inversion are continuous [23]. Definable compactness of a definable group G
is then meant with respect to this definable manifold structure. But, as we
are working in an o-minimal expansion of a real closed field, any definable
group manifold G can be assumed to be a definable submanifold of some Mn,
and so definable compactness of G reduces to G being closed and bounded.
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Definable connectedness of G is meant with respect to its definable manifold
structure mentioned above. But it turns out that G is definably connected
in this sense if and only if G has no proper definable subgroup of finite index
(i.e. G = G0). Any definable group G is definably connected by finite, and
so (in this o-minimal context) we will often assume that our definable groups
are definably connected. We will often use the well-known fact that any de-
finably compact, definably connected, solvable normal definable subgroup N
of a definably connected group is central. This follows from Corollaries 5.3
and 5.4 of [20]. We will also use the fact that if N is normal and definable
in G, then G is definably compact if and only if N and G/N are definably
compact. (This can be seen to follow from [11] and [12], but has direct proofs
too.)

In Section 4 of this paper we will make some references to “stability-type”
notions, NIP theories, forking, etc. We generally refer the reader to [12] for
the definitions, but will make a few explanatory comments here as well as
in section 4. For M a saturated model of arbitrary theory T and G a group
definable in M , recall that SG(M) denotes the space of complete types p(x)
over M such that “x ∈ G” ∈ p. G (namely G(M)) acts on SG(M) on the left
by gp = tp(ga/M) where a realizes p in a bigger model. Slightly modifying
Definition 5.1 from [12], we will say that p(x) ∈ SG(M) is left f -generic if
there is a small model M0 such that for any g ∈ G(M̄), gp does not fork over
M0.

The second author was partly motivated by some e-mail discussions with
Hrushovski and Newelski in the late summer of 2010. Thanks to both of
them for the inspiration, and in particular to Hrushovski for allowing us to
include (in Section 4) some observations that he made on definable amenabil-
ity. Thanks also to Gopal Prasad for pointing out some references.

Many of the themes and results of this paper and the sequel appear in
one form or another in the first author’s doctoral thesis [4], which is devoted
to structural properties of groups definable in o-minimal structures, but does
not explicitly discuss G000. In particular the o-minimal example where G00 6=
G000 (Example 2.10/Theorem 3.3) appears in her thesis as an example of a
definable group without a definable “Levi decomposition”. In any case the
first author would like to thank her advisor Alessandro Berarducci, as well
as Ya’acov Peterzil for useful conversations.
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2 Decomposition theorems

In this section T is a complete o-minimal expansion of RCF , and we work in a
modelM of T . G will typically denote a definable, definably connected group,
although we usually explicitly state definable connectedness. K will denote
the underlying real closed field of M . We first aim towards a useful “basic
decomposition theorem”, Proposition 2.6 below (which is easily extracted
from results in the literature). We begin by pointing out the existence, in
every definable group, of a (unique) maximal normal definable torsion-free
subgroup. As usual, for a positive integer n, an n-torsion element of G is
an element x ∈ G such that xn = 1, 1 being the identity of the group (note
that we are not assuming G is commutative). We make use of results from
[27] connecting the existence of n-torsion elements with the o-minimal Euler
characteristic of G. Recall that if P is a cell decomposition of a definable
set X, then the o-minimal Euler characteristic E(X) is the number of even-
dimensional cells in P minus the number of odd-dimensional cells in P . This
does not depend on P , and when X is finite then E(X) = |X|. A definable
torsion-free group will be definably connected (Corollary 2.4 of [21] but also
follows from the proof of (ii) below). The reader should also bear in mind
that any definably compact group G contains nontrivial torsion [8].

Proposition 2.1. (i) G is torsion-free if and only if G is “solvable with
no definably compact parts” in the sense of [7], namely there are definable
subgroups {1} = G0 < ... < Gn = G of G such that for each i < n, Gi is nor-
mal in Gi+1 and Gi+1/Gi is 1-dimensional and torsion-free. (In particular a
torsion-free definable group is solvable.)
(ii) In every definable group G there is a normal definable torsion-free sub-
group which contains every normal definable torsion-free subgroup of G. It is
the unique normal definable torsion-free subgroup of G of maximal dimension.
We will refer to it as the maximal normal definable torsion-free subgroup of
G, and note that it is invariant under all automorphisms of (G, ·) which are
definable in the ambient structure.

Proof. (i) Right to left is obvious. Left to right follows (using induction) from
Corollary 2.12 of [21] which states that if G is torsion-free (and nontrivial)
then there is a normal definable subgroup H of G such that G/H is 1-
dimensional and torsion-free.
(ii) We recall that for definable groups K < G,

E(K)E(G/K) = E(G),
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and G is torsion-free if and only if E(G) = ±1 ([27]). It follows that
a quotient of torsion-free definable groups is still torsion-free (and hence
torsion-free definable groups are definably connected).

Let N be a normal definable torsion-free subgroup of G of maximal di-
mension, and H any normal definable torsion-free subgroup of G. We want
to show that H ⊆ N .

We claim that HN is a normal definable torsion-free subgroup of G: the
definable group H/(H ∩ N) is torsion-free and it is definably isomorphic to
HN/N . Thus E(HN) = E(N)E(HN/N) = ±1 and HN is torsion-free.

But N is of maximal dimension among the normal definable torsion-free
subgroups of G, so dim(HN) = dim(N). Since definable torsion-free groups
are definably connected, it follows that HN = N , H ⊆ N and dimH <
dimN , unless H = N .

Bearing in mind Proposition 2.1, the following proposition is easily de-
duced from Theorem 5.8 of [7], together with the fact that definably compact,
definably connected, solvable definable groups are commutative:

Proposition 2.2. Let G be a definable, solvable, definably connected group,
and let W be its maximal normal definable torsion-free subgroup. Then G/W
is definably compact and commutative.

Recall that a definable group G is said to be semisimple if G has no de-
finable, normal, definably connected, solvable (or commutative), nontrivial
subgroups. Then, clearly, for an arbitrary definable group G, we have the
exact sequence

1→ R→ G→ G/R→ 1

where R, the solvable radical of G is the maximal definable, normal, solvable,
definably connected subgroup of G, and G/R is semisimple. If R is definably
compact then it is central in G.

Definition 2.3. We call a definable group G, definably almost simple, if
G is noncommutative, definably connected, and has no infinite (equivalently
nontrivial, definably connected) proper definable normal subgroup.

Note that if G is definably almost simple, then Z(G) is finite and G/Z(G)
is definably simple, and moreover G is definably compact if and only if
G/Z(G) is definably compact.

6



Lemma 2.4. Let the definable group be semisimple and definably connected.
Then there are definable, definably almost simple subgroups H1, .., Ht of G
such that G is the almost direct product of the Hi, namely there is a definable
surjective homomorphism from H1 × ...×Ht to G with finite kernel.

Proof. Well known. By [17], G/Z(G) is the direct product of definably sim-
ple groups B1, .., Bt. Let Hi be the definably connected component of the
preimage of Bi under the quotient map G→ G/Z(G).

Definition 2.5. Let G be semisimple and definably connected. We say that
G has no definably compact part if in Lemma 2.4, no Hi is definably compact.

We can now observe:

Proposition 2.6. Let G be a definable (definably connected) group. Then
there is a definable, definably connected normal, subgroup W of G, and a
definable, definably connected normal subgroup C of G/W , such that
(i) W is torsion-free,
(ii) C is definably compact, and
(iii) (G/W )/C is semisimple with no definably compact part.
W is the maximal normal definable torsion-free subgroup of G, and C is the
maximal normal definable, definably compact, definably connected subgroup
of G/W .

Proof. Let R be the solvable radical of G, and let W be the maximal normal
definable torsion-free subgroup of R (given by Proposition 2.1). So R/W is
definably compact and commutative by 2.2. But let us note for now that
since any definable torsion-free group is definably connected and solvable
([21, 2.11]), then W coincides with the maximal normal definable torsion-
free subgroup of G.

Now R/W is the solvable radical of G/W (and is also connected, definably
compact, so in fact central in G/W ), and G/R is semisimple. Let us denote
G/R by H for now, and π the surjective homomorphism from G/W to H.
Let H1, .., Ht be given for H by Lemma 2.4, namely the Hi are definable,
definably almost simple and H is their (almost direct) product. Let C1 be
the product of those Hi which are definably compact, and D1 the product of
the rest. SoG/R = H is the almost direct product of the semisimple definable
groups C1 and D1. Let C = (π−1(C1)). So C is an extension of the definably
compact connected group C1 by the definably compact definably connected
group R/W , hence is also definably compact and definably connected. Note
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that C is normal in G/W , and the quotient (G/W )/C is an image of D1

(with finite kernel) so is semisimple with no definably compact parts.

Let us fix notation for the data obtained in the proof above, so as to be
able to refer to them in the future. R denotes the solvable radical of G and
W the maximal normal definable torsion-free subgroup of G (equivalently of
R).
G/R is the semisimple part of G which can be written uniquely as C1 · D1

(almost direct product) where C1 is semisimple and definably compact and
D1 is semisimple with no definably compact parts (and everybody is definably
connected).
We have the exact sequence

1→ R/W → G/W
π→ G/R = C1 ·D1 → 1

and C denotes π−1(C1) which is the maximal normal definable, definably
connected, definably compact subgroup of G/W , and we call it the normal
definably compact part of G.

Finally (G/W )/C is denoted D and called the semisimple with no defin-
ably compact parts part of G.

Note that R/W is the connected component of the centre of C and

1→ R/W → C → C1 → 1

definably almost splits by results from [13].

One natural question is whether there is a better decomposition theorem.

Definition 2.7. We will say that G has a good decomposition, if, with
above notation, the exact sequence 1 → C → G/W → D → 1 definably
almost splits, namely G/W can be written as C ·D2 for some definable, de-
finably connected, subgroup D2 of G/W which is semisimple with no definably
compact parts (i.e. the map D2 → D is surjective with finite kernel).

The second author mistakenly claimed in an early draft of this paper that
G always has a good decomposition. The first author pointed out counterex-
amples from her thesis (see Example 2.10 below) which led us to the examples
where G00 6= G000. Anyway this is partly the reason for giving Definition 2.7.
The connection between the general decomposition above and the quotients
G/G00, G/G000 and G00/G000 features prominently in the sequel [5].
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Lemma 2.8. The following are equivalent:
(i) G has a good decomposition.
(ii) G/W has a “definable Levi decomposition”, i.e. is an almost semidirect
product of its solvable radical (R/W ) and a definable, definably connected
semisimple group S.
(iii) π−1(D1) is an almost direct product of R/W (the connected component
of its centre) and a definable semisimple group (again necessarily without
definably compact parts).

Proof. First the equivalence of (i) and (ii) is immediate from the fact that

1→ R/W → C → C1 → 1

definably almost splits, remarked above.
The rest is clear, because G/W will be the almost direct product of C and
some D2 if and only if π−1(D1) is the almost direct product of R/W and
D2.

Hence the existence of good decompositions depends on the definable
almost splitting of central extensions of semisimple groups without definably
compact parts by definable compact groups. Note that if G itself has a
definable Levi decomposition then G has a good decomposition (see 2.12 for
a counterexample to the converse).

Lemma 2.9. G has a definable Levi decomposition (and hence a good de-
composition) in either of the cases:
(i) G is linear, namely a definable, in M , subgroup of some GL(n,K), or
(ii) G is algebraic, namely of the form H(K)0 for some algebraic group H
defined over K.

Proof. When G is linear this is Theorem 4.5 of [19].
Suppose now that H is a connected algebraic group defined over K, and
G = H(K)0. We have Chevalley’s theorem for H yielding the following ex-
act sequence of connected algebraic groups defined over K:

1→ L→ H
f→ A→ 1

where L is linear and A is an abelian variety. Then f(G) is a connected
semialgebraic subgroup of A(K) so is definably compact and commutative,
and the semialgebraic connected component of the group of K-points of L is
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a definably connected definable subgroup of GL(n,K) for some n. Namely
at the level now of definable, definably connected, groups in M , we have an
exact sequence

1→ R→ G
f→ B → 1

where R is linear, and B is commutative (and definably compact). Again
by [18], R is an almost semidirect product of a definably connected solvable
group R1 and a definable semisimple group S. Let R be the solvable radical
of G (as a definable group). As G/R is semisimple, R must map onto B
under f , whereby G is the almost direct product of R and S.

Finally in this section we give:

Example 2.10. There is a (Nash) group G without a good decomposition.
The theory T will be RCF , M the standard model (R,+,×), and G a certain
amalgamated central product of SO2(R) with the universal cover of SL2(R).

The model-theoretic setting is the structure M = (R,+,×). Let H be the
definable group SL2(R) consisting of 2-by-2 matrices over R of determinant

1. Let H̃ = S̃L2(R) be the universal cover of H. H̃ is a connected, simply
connected Lie group and we have the exact sequence (of Lie groups)

1→ Z→ H̃
π→ H → 1

where Z is the discrete group (Z,+). H̃ is not definable in M , but we will
make use of a certain description from section 8.1 of [13] (see Theorem 8.5
there) of H̃ as a group definable in the 2-sorted structure ((Z,+),M), and
this will be used again in the next section:

Fact 2.11. There is a 2-cocycle h : H ×H → Z with finite image which is
moreover definable in M (in the sense that for each n ∈ Im(h), {(x, y) ∈
H × H, h(x, y) = n} is definable in M), and such that the set Z × H with
group structure (t1, x1) ∗ (t2, x2) = (t1 + t2 + h(x1, x2), x1x2) and projection
to the second coordinate, is isomorphic to the group H̃ with its projection π
to H.

Although not needed, let us say a few words of where the cocycle h
comes from, referring to [13] for more details. The group H̃ is naturally
ind-definable in M , namely as an increasing union

⋃
iXi of definable sets
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with group operation and projection π to H piecewise definable. For some
i, the restriction of π to Xi is surjective and as M has Skolem functions
there is a definable section s : H → Xi of π|Xi. Define h on H × H by
h(x, y) = s(x)s(y)s(xy)−1. Then h is as required.

Let now consider the circle group SO2(R) and we use additive notation for
it. Let g ∈ SO2(R) be an element of infinite order. Define a group operation
∗ on SO2(R)×H by (t1, x1) ∗ (t2, x2) = (t1 + t2 +h(x1, x2)g, x1x2). Let G be
the resulting group, and note that G is now definable (without parameters,
taking g algebraic) in M . As h(g, 1) = h(1, g) = 0 for all g ∈ G, SO2(R) is
naturally embedded in G by the map taking t to (t, 1). Note that {(ng, x) :
n ∈ Z, x ∈ H} is a subgroup of (G, ∗) isomorphic to H̃ (with again projection
on second coordinate corresponding to π : H̃ → H). So identifying 〈g〉 with
Z, we have that
(i) SO2(R) is central in (G, ∗),
(ii) G = SO2(R) · H̃,
(iii) SO2(R) ∩ H̃ = Z,
and we have the exact sequence of definable, definably connected, groups in
M ,

1→ SO2(R)→ G→ H → 1

(where remember H = SL2(R)).
H is of course definably almost simple and not (definably) compact, whereas
SO2(R) is (definably) compact and central in G. To show that G does not
have a good decomposition it suffices to show that the exact sequence above
does not definably almost split in M (because of Lemma 2.8, as W is trivial).
In fact there is no (even abstract) subgroup H1 of G such that SO2(R)∩H1

is finite and SO2(R) · H1 = G, for otherwise (as SO2(R) is central in G),
the commutator subgroup [G,G] is contained in H1 so has finite intersection

with SO2(R). But, using (ii) above and the fact that S̃L2(R) is perfect,
[G,G] = H̃ and so has infinite intersection with SO2(R), a contradiction.
We have completed the exposition of Example 2.10.

In the next section an elaboration of the above analysis will show that passing
to a saturated elementary extension, G00 6= G000.

Remark 2.12. A definably connected group G with a good decomposition
does not have necessarily a definable Levi decomposition.
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Proof. If one replaces SO2(R) with (R,+) in Example 2.10, then one ob-
tains a group with a good decomposition (G/W = SL2(R)), but without a
definable Levi decomposition (for the same reason as in Example 2.10).

3 G00, G000 and the examples

We will first repeat the definitions and geneses of the various notions of “con-
nected components” of a definable group. To begin with let T be an arbitrary
complete theory. We can identify a definable set with the formula φ(x) which
defines it, or rather the functor taking M to φ(M) from the category Mod(T )
(of models of T with elementary embeddings) to Set given by that formula.
If the formula has parameters from a set A in a given model of T , then
the functor is from Mod(Th(M,a)a∈A) to Set. Likewise for type-definable
sets, and also hyperdefinable sets (a type-definable set quotiented by a type-
definable equivalence relation). If X is a type-definable set over A ⊆M , then
we sometimes identify X with its interpretation in an |A|+-saturated model
M containing M . If X is a type-definable (over A) set, defined by partial
type Φ(x) and E a type-definable (over A) equivalence relation on X given
by partial type Ψ(x, y) then we say that X/E is “bounded” if |Φ(N)/Ψ(N)|
is bounded as the model N (containing A) varies. If X/E is bounded it is not
hard to see that |Φ(N)/Ψ(N)| ≤ 2|T |+|A| for all N , and if N1 < N2 are |A|+-
saturated models containing A then the natural embedding of Φ(N1)/Ψ(N1)
in Φ(N2)/Ψ(N2) is a bijection. In fact, assuming X/E bounded, for a fixed
model M containing A, and N a saturated model containing M , the E-class
of some b ∈ X depends only on tp(b/M), hence the map X → X/E factors
through the space SΦ(M) of complete types over M extending Φ(x). We give
X/E the quotient topology (considering it as a quotient, not of X which has
no topology, but of the type-space SΦ(M)) which we call the logic topology.
It does not depend on the choice of M . In any case equipped with this logic
topology X/E is is a compact Hausdorff space.

Now suppose that the equivalence relation E on X is given instead by
a possibly infinite disjunction

∨
i Ψi(x, y) of partial types over A (i.e. work-

ing in a saturated model M̄ , is Aut(M/A)-invariant, or as we often just say
A-invariant). The whole discussion above regarding boundedness of E goes
through in this more general case, including the fact that the map X → X/E
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factors through the type space SΦ(M) (for M any model containing A). How-
ever the “logic topology” on X/E is no longer Hausdorff, and it is not really
clear how to view X/E as a mathematical object. In [2] it was suggested
that the descriptive set theoretic point of view might be useful.

Let us first consider the case where X is a sort of T . Work again in
a saturated model M . Given any (small) set A of parameters, there is a
finest bounded type-definable over A equivalence relation on X which we
call EX,A,KP . Likewise there is finest bounded A-invariant equivalence rela-
tion on X which we call EX,A,L. For a ∈ X, the KP -strong type of a over A
is precisely the EX,A,KP -class of a, and the Lascar strong type of a over A is
precisely the EX,A,L-class of a. There is also of course the usual strong type
of a over A, which is the EX,A,Sh-class of a where EX,A,Sh is the intersection
of all A-definable equivalence relations on X with finitely many classes. In
stable theories all these strong types coincide. In [2] an example was given
where KP -strong types differ from Lascar strong types. More (natural) ex-
amples will be given later.

We now consider the case where X = G is a definable group, and E comes
from an appropriate subgroup of G. So we assume G to be a group definable
in a saturated model M , and we fix a small set A of parameters over which G
is defined. G0

A denotes the intersection of all A-definable subgroups of G of
finite index. It is clearly a type-definable (normal) subgroup of G of bounded
index, and equipped with the logic topology the quotient G/G0

A is a profinite
group. We let G00

A denote the smallest type-definable over A subgroup of G of
bounded index. It is also normal, the quotientG/G00

A , equipped with the logic
topology is a compact (Hausdorff) topological group, and G/G0

A is its maxi-
mal profinite quotient. Finally G000

A is the smallest A-invariant subgroup of
G, of bounded index, which is again normal. We have that G000

A ≤ G00
A ≤ G0

A.

A well-known construction links these different “connected components”
of definable groups with the various strong types. We refer the reader to [10]
for the details, although it would not be hard to work it out for oneself. Let
T be a complete theory and let G be a ∅-definable group in T . Adjoin a new
sort S together with a regular action of G on S. Call the new theory T ′. An
argument by automorphisms for example shows that no “new structure” is
imposed on T . Work in a saturated model of T ′. Then
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Fact 3.1. (i) ES,∅,Sh is the orbit equivalence relation on S induced by G0
∅,

namely for a, b ∈ S, ES,∅,Sh(a, b) iff there is g ∈ G0
∅ such that g · a = b.

(ii) Likewise ES,∅,KP is the orbit equivalence relation on S induced by G00
∅ ,

and
(iii) ES,∅,L is the orbit equivalence relation on S induced by G000

∅ .

Hence, if for example G00 6= G000, then we obtain in this way examples
where KP -strong type differs from Lascar strong type.

There are plenty of examples where G0
∅ 6= G00

∅ (such as definably compact
groups definable in o-minimal structures). However, until now no examples
had been worked out where G00

∅ 6= G000
∅ . We give a brief description of the

current state of knowledge regarding this objects.
We say, for example, that “G0 exists” if for some set A of parameters, for
all B ⊇ A, G0

A = G0
B. If G0 exists, then, assuming G is ∅-definable, we can

take A to be ∅ and we define G0 to be G0
∅. Likewise for G00 and G000. If

G000 exists then so do G00 and G0. Shelah [25] was the first to prove that
G00 exists when T has NIP . Moreover, following this and related work of
Shelah, Gismatullin [9] proves that G000 exists when T has NIP . When T
is stable, G0 = G00 = G000. For T simple, G0 may not exist, but it is known
that for any A, G00

A = G000
A . It is conjectured (for T simple) that G0

A = G00
A

and this is known in the supersimple case ([28]). Lemmas 5.6 and 5.9 in [12]
yield that if G is definable in an NIP theory and G is definably amenable
then G00 = G000. (See the beginning of section 4 for the precise definition of
definable amenability.) In [11] it is shown that definably compact groups in
o-minimal structures are definably amenable. Hence for definably compact
groups G, G00 = G000, and this will be used below.

When we are working with either o-minimal theories, or closely related
NIP theories, we just say G0, G00, G000.

We now give examples of G (including o-minimal examples) where G00 6=
G000. In the sequel to this paper we will make a systematic analysis of G00

and G000 in the o-minimal case, showing that the behaviour in Theorem 3.3
for example is typical.

Theorem 3.2. Let T = Th(S̃L2(R), ·). Then T has NIP , and if (G, ·)
denotes a saturated model, then G00 6= G000. In fact G = G00 and G/G000 is

isomorphic to Ẑ/Z where Ẑ is the profinite completion of (Z,+).

14



Proof. From Fact 2.11 and the discussion following it (taken from [13]) the

group (S̃L2(R), ·) is interpretable (with parameters) in the 2-sorted structure

((Z,+), (R,+,×))

(where there are no additional basic relations between the sorts). As Th(Z,+)
is stable (in fact superstable of U -rank 1) and RCF has NIP clearly the 2-

sorted structure has NIP too, and hence the interpretable group (S̃L2(R), ·)
has NIP .
In fact we will work with the theory T = Th((Z,+), (R,+,×)) and will point

out how the results are also valid for the “reduct” Th(S̃L2(R), ·), namely the
statement of the theorem holds.
LetM denote (R,+,×), andN denote the 2-sorted structure ((Z,+), (R,+,×)).
Then a saturated model N of T will be of the form ((Γ,+),M) where M is
a saturated real closed field (K,+,×) say, and (Γ,+) is a saturated elemen-
tary extension of (Z,+). (We hope this notation is not confusing.) Let now
G denote the interpretation in the big model N of the formula(s) defining

the group S̃L2(R) in N , as described in 2.11. So clearly G has universe the
definable set Γ × SL2(K) and group operation given by (t1, x1) ∗ (t2, x2) =
(t1 + t2 +h(x1, x2), x1x2). Here h(x1, x2) ∈ Z < Γ so everything makes sense.
We write the group G as (G, ·) hopefully without ambiguity. We identify
the group Γ with the subgroup ({(t, 1) : t ∈ Γ}, ∗) of G via the (definable)
isomorphism ι which takes t ∈ Γ to (t, 1) ∈ G. As such Γ is central in G and
we have the exact sequence

1→ Γ→ G→ SL2(K)→ 1 (1)

We again identify Z < Γ with the subgroup ({(t, 1) : t ∈ Z}, ∗) of G via ι.
Note that ({(t, x) : t ∈ Z, x ∈ SL2(K)}, ∗) is a (non definable) subgroup of G,

which we will take the liberty to call ˜SL2(K). (In fact the latter will identify
with the so-called o-minimal universal cover of SL2(K), an ind-definable
group in M , but this fact will not be needed.). From (1) we obtain:

1→ Z→ ˜SL2(K)→ SL2(K)→ 1 (2)

(where only SL2(K) is definable).
So with the above identifications we write
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G = Γ · ˜SL2(K) (3)

where the subgroup Γ of G is definable and central, the subgroup ˜SL2(K) of

G is not definable and Z = Γ ∩ ˜SL2(K).

We now aim to understand G000 in terms of this decomposition (even though
˜SL2(K) is not definable).

Claim 1. Γ000 = Γ00 = Γ0 =
⋂
n nΓ, and is contained in G000.

Proof of Claim 1. Γ (as a group definable in N) is simply a model of Th(Z,+)
which is stable, so we have equality of the various connected components and
Γ0 is the intersection of all definable subgroups of finite index which is as
described. Also G000 ∩ Γ clearly contains Γ000.
End of proof.

Claim 2. ˜SL2(K) is perfect, namely equals its own commutator subgroup.
Proof of Claim 2. Because of the exact sequence (2) above and the well-
known fact that SL2(K) is perfect, it is enough to show that the subgroup Z
of ˜SL2(K) is contained in [ ˜SL2(K), ˜SL2(K)]. But this follows immediately

because Z is contained in the (naturally embedded) subgroup S̃L2(R) of
˜SL2(K), and again S̃L2(R) is known to be perfect.

End of proof.

Claim 3. ˜SL2(K) ⊆ G000.

Proof of Claim 3. Let H = ˜SL2(K) ∩ G000. H is then a normal subgroup

of ˜SL2(K) of index at most the continuum. Hence π(H) the image of H

under π : ˜SL2(K)→ SL2(K) is an infinite normal subgroup of SL2(K). As
SL2(K) is simple as an abstract group modulo its finite centre, it follows that

π(H) = SL2(K). Hence ˜SL2(K) = Z·H, and as Z is central, the commutator

subgroup of ˜SL2(K) is contained in H. By Claim 2, H = ˜SL2(K), as
required.
End of proof.

(Note that we have shown that every proper normal subgroup of ˜SL2(K) is
central.)

Claim 4. [G,G] = ˜SL2(K)
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Proof of Claim 4. By the description of G in (3), [G,G] is a subgroup of
˜SL2(K). By Claim 2, we get equality.

End of proof.

Claim 5. G000 = Γ0 · ˜SL2(K)

Proof of Claim 5. By Claims 1 and 3, G000 contains Γ0 · ˜SL2(K). On the

other hand Γ0 · ˜SL2(K) is clearly of bounded index in G, and using Claim 4
is also clearly invariant under automorphisms of N which fix the parameters

defining G. So we get equality. In fact note at this point that Γ0 · ˜SL2(K) is
also invariant under automorphisms of the structure (G, ·), so coincides with
G000 in the reduct (G, ·) of N .
End of proof.

Claim 6. G = G00.
Proof of claim 6. By Claim 5 and (3), G000 ∩ Γ = Γ0 · Z. So as G000 ⊆ G00,
(*) G00 ∩ Γ contains Γ0 · Z and must type-definable.
We will argue that this implies that G00 ∩Γ = Γ, namely Γ ≤ G00. Consider
the surjective homomorphism f say taking Γ to Γ/Γ0 = Ẑ (profinite comple-
tion of Z). As Γ0 ∩ Z = 0, the subgroup Z of Γ is sent isomorphically under

f to the dense subgroup Z of Ẑ. Now (bearing in mind the logic topology
on Γ/Γ0), and as G00 ∩ Γ is type-definable, by (*) we see that f(G00 ∩ Γ) is

a closed subgroup of Ẑ containing the dense subgroup Z, hence equals Ẑ. So
G00 ∩ Γ = Γ as required. As G00 maps onto SL2(K) we see that G00 = G.
End of proof.

Bearing in mind that G000 maps onto SL2(K), we have by Claim 6 and its
proof, that G/G000 = G00/G000 is isomorphic to Γ/Γ∩G000 = Γ/Γ0 ·Z which

is isomorphic to Ẑ/Z. We have been in working in the structure N . However
G000 in the sense of N coincides with G000 in the sense of the structure (G, ·)
as pointed out at the end of the proof of Claim 5. And clearly G = G00 in
the structure (G, ·) too. So we have proved Theorem 3.2.

We now give a similar o-minimal example. We will use the fact, pointed out
above, that for a definably compact group H (such as SO2) in a saturated
o-minimal structure, H00 = H000.

Theorem 3.3. Let T be RCF , and G the group from Example 2.10. Let
G1 be G(M) for M = (K,+,×) a saturated model. Then G1 = G00

1 , but
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G1 6= G000
1 and in fact G1/G

000
1 is naturally isomorphic to the quotient of the

circle group SO2(R) by a dense cyclic subgroup.

Proof. The proof is more or less identical to that of Theorem 3.2, so we just
give a sketch. In analogy with (3) from the proof of 3.2 and with the same
notation we have:
(*) G1 is a central product of its subgroups SO2(K) (which is definable) and
˜SL2(K) which is not definable, and with intersection “Z ” (an infinite cyclic

subgroup 〈g〉 of SO2(R) < SO2(K)).

As in Claims 3 and 4 in the proof of 3.2, G000
1 contains ˜SL2(K), and (using

(*)) [G1, G1] = ˜SL2(K). Also G000 ∩ SO2(K) contains SO2(K)000 which we
know to be equal to SO2(K)00. Hence we conclude that

(**) G000
1 = SO2(K)00 · ˜SL2(K).

Now the quotient map SO2(K) → SO2(K)/SO2(K)00 identifies with the
standard part map SO2(K)→ SO2(R) which is the identity on SO2(R) and
in particular on 〈g〉 (so 〈g〉 ∩ SO2(K)00 is trivial).
By (**) G00

1 ∩ SO2(K) is type-definable and contains SO2(K)00 · 〈g〉, so its
image under the standard part map SO2(K)→ SO2(R) is a closed subgroup
which contains the dense subgroup 〈g〉, hence has to be SO2(R). So G00

1

contains SO2(K) hence by (*) G00
1 = G1.

We conclude this section with a few comments on the examples. Note that
in the context of 3.2, G000 is the group product of a type-definable subgroup
with the commutator subgroup [G,G]. As G000 is not type-definable, [G,G]
is not definable. Likewise in 3.3. The isomorphisms in 3.2 and 3.3 (e.g. in 3.2

between G/G000 and Ẑ/Z) are on the face of it just isomorphisms of abstract
groups. In the sequel to this paper we will show for arbitrary definable groups
G in a saturated o-minimal expansion of a real closed field, G00/G000 is either
trivial or isomorphic to the quotient of a connected commutative compact
Lie group by a finitely generated dense subgroup. One can ask whether there
is a finer notion of isomorphism which holds in all these cases, and this will
be treated in future work. As remarked earlier the above theorems provide
new examples of non G-compact theories, i.e. where Lascar strong types
differ from KP -strong types. A natural problem at this point is to find G
such that G00

∅ /G
000
∅ is noncommutative. Also we see, via the examples above,

some relationships between universal covers and fundamental groups on the

18



one hand, and Lascar groups on the other, and maybe the connection is more
than just accidental.

4 Definable amenability and bounded orbits

We begin with an arbitrary theory T . We recall that if M is a model, and X
a definable set in M , then a Keisler measure µ on X (over M) is a finitely
additive probability measure on the family of subsets of X which are defin-
able (with parameters) in M . As explained in the introduction to section 4 of
[12], a Keisler measure µ on X over M induces and is induced by a (unique)
regular Borel probability measure on the space SX(M) of complete types over
M containing the formula defining X. Sometimes we identify this measure
on the type space with µ. Of course a special case of a Keisler measure is a
complete type (a Dirac measure on the type space).

When X = G is a definable group, namely is equipped with a definable
group structure, then G(M) acts (on both the left and right) on the set (in
fact space) of Keisler measures µ on G over M : if Y is an M -definable subset
of G then, (g · µ)(Y ) = µ(g−1 · Y ). In particular it makes sense for a Keisler
measure µ on G over M to be left (or right) G(M)-invariant. If G has such a
left G(M)-invariant Keisler measure over M then we say that G(M) is defin-
ably amenable. Let us note for the record (assuming G is definable without
parameters), that is a property of Th(M), in the sense that if N is another
model of T and G(N) is the interpretation in N of the formulas defining G,
then G(M) is definably amenable iff G(N) is. This follows from Proposition
5.4 of [11].

In the above context we also have the (left and right) actions of G(M)
on the space SG(M) (of completes types over M concentrating on G). When
M is a “big” model, and p(x) ∈ SG(M), we have the notion “p has bounded
orbit” from [15] for example. We will take our working definition as the
following rather crude one, which on the face of it depends on set theory.

Definition 4.1. Suppose κ̄ is an inaccessible cardinal, and M a saturated
model of cardinality κ̄.
(i) We will say that p(x) ∈ SG(M) has bounded orbit if the orbit of p under
the (left) action of G(M) is of cardinality < κ̄, equivalently if Stab(p) = {g ∈
G(M) : gp = p} is a subgroup of G(M) of index < κ̄.
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(ii) We say that G has a bounded orbit if some p(x) ∈ SG(M̄) has bounded
orbit.

In [15] some more careful definitions (see Definition 1.1 there) are given
of “bounded orbit” avoiding the dependence on set theory (and some prob-
lems are mentioned concerning the possible sizes of bounded orbits), and our
results in this section hold with these more refined definitions. The same
paper [15] states a conjecture attributed to Petrykowski:

Conjecture 4.2. If G has a bounded orbit then G is definably amenable.

As discussed in the introduction the motivation for this conjecture seems
to be also closely connected to G00 and G000, in the sense that one may
hope, given a global type p with bounded orbit, to be able to show that
G00 = G000 = Stab(p) and then to lift the Haar measure on G/G00 to a
translation invariant Keisler measure on G. Note that a special case of a type
p(x) ∈ SG(M) with bounded orbit, is a type p(x) which is G(M)-invariant.
And in this case p itself witnesses definable amenability of G. The aim of
this section is to prove Conjecture 4.2 in the o-minimal context (although
we have not yet “identified” those types with bounded orbit). We do this by
characterizing each of the properties “definable amenability” and “having a
bounded orbit” in terms of the decomposition given in Proposition 2.6 and
concluding that they coincide. So in a sense it is a proof by inspection.

We first describe when a definable group in an o-minimal structure is
definably amenable. The proof is basically due to Hrushovski.

We begin with some preparatory lemmas, the first two of which are in a
general context.

Lemma 4.3. Suppose T has definable Skolem functions and elimination of
imaginaries. Let G be definable and definably amenable. Then any definable
subgroup H of G is also definably amenable.

Proof. Let µ be a left G-invariant Keisler measure on G. By the assumptions
there is a definable subset S of G which meets each coset of H in G in exactly
one point. Define λ on definable subsets of H by: for Y a definable subset
of H, λ(Y ) = µ(Y · S) where Y · S = {a · b : a ∈ Y, b ∈ S}.
It is easy to see that λ is a Keisler measure on H. Left H-invariance, is
because, for Y ⊆ H definable and h ∈ H, λ(h · Y ) = µ((h · Y ) · S) =
µ(h · (Y · S)) = (by left invariance of µ) µ(Y · S) = λ(Y ).
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Before the next lemma we recall the notion of “definability” of a Keisler
measure (from [11] for example). So let µ(x) be a Keisler measure over
M . Let A be a small set of parameters. µ is said to be definable over
A if for each closed C ⊆ [0, 1], and formula φ(x, y) in the language L of
T , {b ∈ M : µ(φ(x, b)) ∈ C} is type-definable over A, i.e. is the set of
realizations of some partial type Σ(y) over A. We will make use below of
Lemma 5.8 from [12]. This lemma states that (assuming T has NIP ) if G
is a definable group, µ is a left G-invariant Keisler measure over M , and M0

is a small model over which G is defined, THEN there is a left G-invariant
Keisler measure µ′ over M which agrees with µ on formulas over M0, and is
definable (over some small subset of M).

Lemma 4.4. Suppose G is definable and H is a definable normal subgroup.
(i) If G is definably amenable, so is G/H.
(ii) (Assume T has NIP .) If both H and G/H are definably amenable, so
is G.

Proof. (i) Let π : G→ G/H be the canonical surjective homomorphism. If µ
is a left G-invariant Keisler measure on G, then the “pushforward measure”
on G/H defined by λ(Y ) = µ(π−1(Y )) is a left invariant Keisler measure on
G/H.
(ii) We work in a saturated model M . Let µ, λ be translation-invariant
Keisler measures on H and G/H respectively over M (i.e. “global” Keisler
measures). By remarks above we may assume that µ is definable. We define
a global Keisler measure χ on G by integration: namely, let X a definable
subset of G, and we may assume that both X and µ are definable over a
small model M . For g/H ∈ G/H, let f(g/H) = µ((g−1X) ∩ H), noting
by translation invariance of µ, that this is well-defined. By definability of µ
over M , f(g/H) depends on tp((g/H)/M) and the corresponding map from
the relevant space of complete types SG/H(M) to [0, 1] is continuous. So
considering λ as inducing a Borel measure on SG/H(M) we can form

∫
fdλ,

which we define to be χ(X). It is easily checked that χ is a global translation
invariant Keisler measure on G.

Lemma 4.5. Suppose G is a definably almost simple, non definably compact
group, definable in an o-minimal expansion M of a real closed field K say.
Then G is not definably amenable.

Proof. The main point is to observe that,
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(*) working up to definable isogeny, G contains a definable subgroup definably
isomorphic to PSL2(K).

Granting this observation, the lemma follows from Lemma 4.4 together with
Remark 5.2(iv) of [11] (which states that PSL2(K) is not definably amenable).

Let us sketch a proof of (*), using some basic language and notions from
algebraic groups. First of all by [17] we may assume that G = H(K)0 for
some K-simple linear algebraic group, defined over K. By Remark 6.2 of
[19], H is K-isotropic (meaning that H has a nontrivial K-split torus). This
implies that H(K) contains nontrivial unipotent elements and thus its Lie
algebra L(H(K)) = L(G) contains nontrivial unipotent elements. From this
we conclude by the Jacobson-Morozov lemma [14] which says that L(G)
contains an “sl2-triple”, in particular a subalgebra L isomorphic to sl2(K).
L will be the Lie algebra of an algebraic subgroup of H(K), isogeneous to
SL2(K), and we finish.

We can now conclude, where notation comes from the paragraph following
the proof of Proposition 2.6.

Proposition 4.6. Let G be a definable, definably connected, group in an o-
minimal expansion M of a real closed field. Then G is definably amenable if
and only if D (the semisimple with no definably compact parts, part of G) is
trivial, i.e. G is (definably) an extension of a definably compact group by a
solvable group.

Proof. First suppose that D is trivial, so we have a short exact sequence

1→ W → G→ C → 1

where W is solvable and C is definably compact. Now W is amenable as
an abstract group, so in particular definably amenable, and by [11], C is
definable amenable. As Th(M) has NIP , by Lemma 4.4(ii) G is definably
amenable.

Conversely, if G is definably amenable, then by Lemma 4.4(i), D is too,
as it is a quotient of G. If D is nontrivial then it contains a definably almost
simple (non definably compact) definable subgroup, which by Lemma 4.3 is
definably amenable. This contradicts Lemma 4.5.

We give a little more information around definable amenability by noting:
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Proposition 4.7. (T an o-minimal expansion of RCF .) Suppose G is de-
finable, definably connected, and torsion-free. Then G has a (left) invariant,
definable, global complete type.

Proof. We again argue by induction on dim(G). By Proposition 2.1 (i), G
contains a normal definable subgroup H such that G/H is 1-dimensional.
From results in [24] we may assume that G/H is an open interval in 1-
space with continuous group operation. The global type at “+∞”, p say, is
both definable and translation invariant. On the other hand the induction
hypothesis gives a definable translation invariant global complete type q of
H. The argument (by integration) in the proof of Lemma 4.4(ii) produces a
global complete type of G which is both translation invariant and definable.
We give a few details (as requested by the referee). We will give an explicit
description of the complete type r ∈ SG(M) obtained by integration. Let
φ(x) be a formula (where x ranges over G), possibly with parameters. As q is
H-invariant we see that whether or not g−1φ(x)∩H is in q depends only on
the coset of g mod H. Moreover {g ∈ G : g−1φ(x) ∩H ∈ p} is definable, by
a formula χ(x), say. Let ψ(z) be the image of χ under the map G → G/H.
Then we put φ(x) in r just if ψ(z) is in p. Invariance under G and definability
of r are routine to check.

We now focus on Conjecture 4.2. From now on M denotes a saturated model
of (arbitrary complete countable) T , of cardinality κ̄ where κ̄ is inaccessible,
and G an ∅-definable group. Let us first remark that the converse to Con-
jecture 4.2 holds for NIP theories.

Remark 4.8. (Assume T has NIP .) Suppose G is definably amenable.
Then G has a bounded orbit.

Proof. By Proposition 5.12 of [12], G has a global f -generic type p. Fix a
small model M0 which witnesses this. There will then be a bounded number
of global complete types which do not fork over M0, as there are a bounded
number of complete types over M0, and by NIP any complete type over
M0 has a bounded number of global nonforking extensions (Proposition 2.1
of [12]). As every G(M)-translate of p does not fork over M0 there are a
bounded number of such translates so p has bounded orbit.

Lemma 4.9. Suppose G = G(M) is almost simple as an abstract group,
in the sense that G has no infinite proper normal subgroups. Then G has
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no proper subgroup of index < κ̄. In particular any bounded orbit of G is a
singleton (namely a translation invariant type).

Proof. Suppose H were a proper subgroup of G of bounded index. Then G
acts transitively on the homogeneous space X = G/H. Let N = {g ∈ G :
gx = x for all x ∈ X}. Then N is a proper normal subgroup of G. As G/N
acts faithfully on X and |X| < κ̄, also |G/N | < κ̄, in particular N is an
infinite proper normal subgroup of G, contradiction.
For the “in particular” clause: if p ∈ SG(M̄) has bounded orbit, then Stab(p)
is a subgroup of G of bounded index. By what has just been shown Stab(p) =
G so p is left G-invariant.

Lemma 4.10. Let f : G → H be a definable surjective homomorphism. If
G has a bounded orbit, so does H.

Proof. Let p ∈ SG(M) have bounded orbit. Then q = f(p) ∈ SH(M), and if
g ∈ StabG(p) then q = f(p) = f(gp) = f(g)q hence f(StabG(p)) ⊆ StabH(q).
As StabG(p) has bounded index in G, also StabH(q) has bounded index in
H.

Proposition 4.11. Assume T is an o-minimal expansion of RCF and G is
definably connected. Suppose G has a bounded orbit. Then D (the semisimple
with no definably compact parts, part of G) from Proposition 2.6 is trivial.

Proof. Suppose for a contradiction that D is nontrivial. Then D is an almost
direct product of definable, definably almost simple non definably compact
groups Di. But then for i = 0 say there is a definable surjective homo-
morphism f from G to D0. By Lemma 4.10, D0 has a bounded orbit. As
remarked earlier (Corollary 6.3 of [19]) D0 is almost simple as an abstract
group, so by Lemma 4.9, D0 has an invariant (global) type. This contradicts
non definable amenability of D0 (Lemma 4.5).

Corollary 4.12. (T an o-minimal expansion of RCF ). G has a bounded
orbit if and only if G is definably amenable.

Proof. If G has a bounded orbit, then by Proposition 4.11 and Proposition
4.6, G is definably amenable. The converse is Remark 4.8.

Finally we discuss a strengthening of Conjecture 4.2 in which we try to
describe bounded orbits themselves. As we are not completely sure which
way it will go we state the new conjecture as a question (with notation as
above).
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Problem 4.13. (Assume T has NIP .) Is it the case that p ∈ SG(M̄) has
bounded orbit (equivalently stabilizer of bounded index) if and only if p is
f -generic?

Again the right to left direction holds with proof contained in the proof
of Remark 4.8. In the o-minimal case we hope to give an explicit description
of global types with bounded orbit from which a positive answer to Problem
4.13 can be just read off. By Corollary 4.12 and Proposition 4.6 we may
restrict ourselves to definable groups G for which D (from the discussion
after Proposition 2.6) is trivial, hence G is built up from a definably compact
group, and 1-dimensional torsion-free groups. Here we just point out that
Problem 4.13 has a positive answer for these constituents, and leave the
general (o-minimal case) to later work. For the next lemma we recall that
a definable subset of G (or the formula defining it) is said to be left generic
if finitely many left translates of X cover G. Likewise for right generic.
Definably compact groups G in o-minimal expansions of real closed fields
have the so-called “finitely satisfiable generics” property (see [11]) which
says that there is a global type of G every left translate of which is finitely
satisfied in some given small model. The fsg property implies among other
things that left genericity coincides with right genericity for definable subsets
of G, so we just say generic. A generic type p ∈ SG(M) is one all of whose
formulas are generic, and again such global types exist when G is definably
compact in o-minimal T .

Lemma 4.14. (T o-minimal.) Suppose G is definably compact, and p(x) ∈
SG(M). Then the following are equivalent:
(i) p has bounded G-orbit,
(ii) p is generic,
(iii) p is f -generic.

Proof. In fact the implications (ii) → (iii) → (i) hold for fsg groups in
arbitrary NIP theories and the proof will be at this level of generality.
(iii) implies (i) is given by the proof of Remark 4.8.
(ii) implies (iii): By [11] (see also Fact 5.2 of [12]), any generic formula φ(x)
over M is satisfied in any small model M0 (over which G is defined). So if
p ∈ SG(M) is generic, then every left translate of p is finitely satisfied in M0

(where M0 is any small model over which G is defined), so in particular every
left translate of p does not fork over M0, hence p is left generic.
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(i) implies (ii): Here we give the proof assuming o-minimality of T and
definable compactness of G. Suppose p is not generic. Let X be a definable
set (or formula) in p which is not generic. Note that we may assume G to be
a closed bounded definable subset of some M

n
. The closure of X in G equals

X ∪ Y where dim(Y ) < dim(G). So Y is not generic in G. Hence as the set
of non generic definable sets is an ideal, the closure of X is also non generic
(and of course in p). The upshot is that we may assume X to be closed. Let
M0 be a small model over which G and X are defined. If for every g ∈ G,
the left translate g ·X meets G(M0), then by compactness X is right generic,
so generic, a contradiction. Hence for some g ∈ G, (g · X) ∩ G(M0) = ∅.
Now g · X is also closed in G. So by results in [6] and [16] (see also [26]),
g · X forks over M0. By the main result of [3] (which is maybe implicit in
other papers in the o-minimal case), g ·X divides over M0. As X is defined
over M0 this means that for some M0-indiscernible sequence (gi : i < ω) and
some k < ω, {gi · X : i < ω} is k-inconsistent, in the sense that for every
(some) i1 < .. < ik, (gi1 · X) ∩ .... ∩ (gik · X) = ∅. We can stretch the M0

-indiscernible sequence (gi : i < ω) to (gi : i < κ̄). So {(gi ·X) : i < κ̄} is also
k-inconsistent. It follows easily that among the set {gip : i < κ̄} of complete
global types there are κ̄ many distinct types. So p does not have bounded
orbit.

Let us note that various ingredients of the proof of (i) implies (ii) above also
appear in earlier papers such as [12]. In fact there is a proof of (i) implies
(ii) (so of the whole lemma) in the more general context of fsg groups in
NIP theories, but depending on some additional machinery. It will appear
in a subsequent paper.

Lemma 4.15. Suppose G is 1-dimensional and torsion-free (divisible), and
p ∈ SG(M). Then the following are equivalent:
(i) p has bounded G-orbit,
(ii) p is G-invariant,
(iii) p is the type at +∞ or the type at −∞ (so definable and G-invariant,
hence f -generic).

Proof. As remarked earlier we can and will identify G with an open interval
on which the group operation is continuous, and write G additively (it is
commutative). We know (or it is clear) that the types at +∞ and −∞ are
G invariant hence have bounded orbit. So it suffices to prove that any other
type q(x) ∈ SG(M) has unbounded G-orbit. This is really obvious but we go
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through details. So q defines a cut in G with nonempty left hand side L and
right hand side R. Let a ∈ L, b ∈ R and c = b− a > 0. By compactness and
saturation we can clearly find an increasing sequence (di : i < κ̄) in G, such
that i < j implies (dj − di) ≥ c. Hence {di + q : i < κ̄} witnesses that q has
unbounded orbit.
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