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Abstract. Let N (G) be the maximal normal definable torsion-free subgroup
of a group G definable in an o-minimal structure M . We prove that the
quotient G/N (G) has a maximal definable definably compact subgroup K,
which is definably connected and unique up to conjugation. Moreover we
show that K has a definable torsion-free complement, i.e. there is a definable
torsion-free subgroup H such that G/N (G) = K · H and K ∩ H = {e}. It
follows that G is definably homeomorphic toK×Ms (with s = dimG−dimK),
and homotopy equivalent to K. This gives a (definably) topological reduction
to the compact case, in analogy with Lie groups.

1. Introduction and preliminaries

Every n-dimensional group G definable in an o-minimal structure M admits a
(unique) topology making it a topological group locally definably homeomorphic to
Mn ([Pi1, 2.5]). It follows that when M is an o-minimal expansion of the reals, G
is a n-dimensional real Lie group. The homotopy type of a real Lie group can be
reduced to the compact case by the following classical theorem due to Iwasawa:

Fact 1.1. ([Iw]). Let L be a connected real Lie group. Then L has a maximal
compact subgroup K, which is connected and unique up to conjugation. Moreover
L is homeomorphic to

K × Rs

where s = dimL− dimK. In particular L is homotopy equivalent to K.

Topological properties of groups definable in o-minimal structures have been
studied in many papers by several authors, in particular in the compact case in
analogy with Lie groups (see [Ba, BaBe, Be1, Be2, BeMa, BeMaOt, BeOtPePi,
EdEl, HrPePi1, HrPePi2, HrPi, Ma, Pi2]). But unlike the real case, definable groups
may not have a maximal definably compact subgroup: one can see for instance the
groups [PeSte, 5.6] or [Str, 5.3]. So it is not clear at first how (or even if) one can
obtain a definable reduction to the compact case.

The main result of this paper is that the quotient of a definably connected
group G by its maximal normal definable torsion-free subgroup N (G) always has
a maximal definably compact subgroup, which is definably connected and unique
up to conjugation (one can see [Co2] for a characterization of definable groups with
maximal definably compact subgroups). Moreover for this canonical quotient we
can show a definable compact·torsion-free decomposition, namely:

Theorem 1.2. Let G be a definably connected group. Set Ḡ := G/N (G). Then
Ḡ has a maximal definably compact subgroup K, which is definably connected and
unique up to conjugation. Moreover, K has a definable torsion-free complement H
in Ḡ, i.e.

Ḡ = K ·H and K ∩H = {e}.
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The subgroup H can be decomposed as a product of definably connected subgroups
H = A ·N , with A abelian and N nilpotent.

The previous theorem and the work on torsion-free definable groups made in
[PeSta], yields a reduction to the compact case in analogy to the real case Fact 1.1:

Theorem 1.3. Every definably connected group G definable in an o-minimal ex-
pansion of a real closed field M is definably homeomorphic to

K ×Ms,

where K is the maximal definably compact subgroup of G/N (G), and s = dimG−
dimK. Therefore G is definably homotopy equivalent to K.

This shows that in the o-minimal context the homotopy type of a definably con-
nected group equals to the homotopy type of a definably compact group, as in the
real case. The difference is that in the Lie case the compact group can be found
within the group, while in the o-minimal context it is found in a canonical quotient.

The paper is organized as follows: the remain part of this section contains defi-
nitions and main results used later on. Section 2 starts with the analysis of defin-
ably simple groups, which is used together with a result about splitting extensions
(Lemma 2.3) to give proofs of Theorem 1.2 and Theorem 1.3. From Theorem 1.2 we
deduce that every group definable in an o-minimal structure has maximal definable
torsion-free subgroups (Corollary 2.4). We conclude with a couple of consequences
on contractibility (Proposition 2.5 and Corollary 2.6).

Preliminaries. We assume M is any o-minimal structure. A basic reference for
o-minimality is [Dr]. See [Ot] for an overview about groups definable in o-minimal
structures. By definable we mean “definable in M with parameters”.

Let G be a definable group.
G is definably connected if it has no proper definable subgroup of finite index.
G is definably compact if every definable curve is completable in G. When the

group topology on G agrees with the induced topology from the ambient space, G
is definably compact if and only if it is closed and bounded ([PeSte, 1.1 and 2.1]).
G is definably simple if it is definably connected, non-abelian and with no proper

non-trivial normal definable subgroup.
G is semisimple if it is definably connected and does not contain any infinite

abelian normal (definable) subgroup. A fundamental theorem due to Peterzil, Pillay
and Starchenko about semisimple definable groups is the following:

Fact 1.4. ([PePiSta1, 4.1], [PePiSta3, 5.1]). Let G be an infinite semisimple de-
finable group. Then there are definable real closed fields Ri such that G/Z(G) is
definably isomorphic to a direct product H1×· · ·×Hs, where for every i = 1, . . . , s,
Hi is a semialgebraic (over Ri) definably simple subgroup of GL(ni,Ri).
Corollary 1.5. An infinite definable group is semisimple if and only if it has no
infinite solvable normal definable subgroup.

With the corollary above and an easy induction argument, one can prove the
following well-known fact:

Fact 1.6. Every definably connected group G has a unique normal solvable definably
connected subgroup R such that G/R is semisimple. The subgroup R contains every
normal solvable definably connected subgroup of G, so it is the unique maximal
normal solvable definably connected subgroup of G. It is said to be the solvable
radical of G.
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An important definably characteristic definable subgroup contained in the solv-
able radical is the maximal normal definable torsion-free subgroup:

Fact 1.7. ([CoPi]). In every definable group G there is a normal definable torsion-
free subgroup which contains every normal definable torsion-free subgroup of G. It
is the unique normal definable torsion-free subgroup of G of maximal dimension.
We will refer to it as the maximal normal definable torsion-free subgroup
of G and we will denote it by N (G).

We notice an interesting duality between definable torsion-free groups and de-
finably compact groups:

Fact 1.8.
(a) Every definable group which is not definably compact contains a definable

1-dimensional torsion-free subgroup ([PeSte, 1.2]).
(b) Every definably compact group has torsion ([EdOt, HrPePi1, PePiSta1]).

Remark 1.9. It follows from 1.8(b) that a definable torsion-free group is not de-
finably compact, and so definably compact groups have no definable torsion-free
subgroup. This is because definable subgroups are closed by [Pi1, 2.8], so definable
subgroups of definably compact groups are definably compact.

Therefore if K,H < G are definable subgroups where K is definably compact
and H is torsion-free, then K ∩ H = {e}. If in addition G = K · H, then K is
a maximal definably compact subgroup and H is a maximal torsion-free definable
subgroup.

Fact 1.10. (Iwasawa decomposition of semisimple Lie algebras and Lie groups)
([Iw], [Kn, Chapter 6]). For every semisimple Lie algebra g over C there esists a
basis {Xi} of g and subspaces k, a, n such that g is a direct sum g = k⊕ a⊕ n, and
the matrices representing ad(g) with respect to {Xi} have the following properties:

- the matrices of ad(k) are skew-symmetric,
- the matrices of ad(a) are diagonal with real entries,
- the matrices of ad(n) are upper triangular with 0’s on the diagonal.

Let G be a semisimple connected Lie group with finite center and Lie algebra g =
k⊕ a⊕ n as above. If K, A and N are connected analytic subgroups of G with Lie
algebras k, a and n respectively, then:

(a) the multiplication map

K ×A×N −→ G

( k , a , n ) 7→ kan

is a surjective diffeomorphism;
(b) the group K is a maximal compact subgroup of G and any maximal compact

subgroup of G is a conjugate of K;
(c) A ·N = N ·A, i.e. A ·N is a subgroup.

Notation 1.11. Let m ∈ N.
- Om(R) = {[xij ] ∈ GLm(R) : [xij ][xji] = I} is the orthogonal group,
- T+

m(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i < j and xii > 0 ∀ i} is the group
of upper triangular matrices with positive elements on the diagonal,

- UTm(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i < j and xii = 1 ∀ i} is the group
of unipotent upper triangular matrices,

- D+
m(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i 6= j, xii > 0 ∀ i} is the group of

diagonal matrices with positive elements on the diagonal.



4 ANNALISA CONVERSANO

2. Reducing to definably compact groups

Definably simple groups. Peterzil, Pillay and Starchenko thoroughly analyse
definably simple groups in several papers: [PePiSta1, PePiSta2, PePiSta3]. The
following theorem (which builds on their work) clarifies the structure of a definably
simple group in terms of definably compact and definable torsion-free subgroups,
and is the first step to prove Theorem 1.2. We refer to the notation given in 1.11.

Theorem 2.1. Let G be a definably simple group. Then there is a definable real
closed field R and some m ∈ N such that G is definably isomorphic to a group
G1 < GLm(R) definable in R, such that:

- G1 = K ·H, with K = G1 ∩Om(R) and H = G1 ∩ T+
m(R),

- H = A ·N , with A = G1 ∩D+
m(R) and N = G1 ∩ UTm(R).

Moreover K,H,A,N are all definably connected, and K is not trivial (so infinite).

Proof. By [PePiSta1, 4.1], there is a definable real closed field R, such that we can
suppose G definable in R and contained in GLn(R), for some n ∈ N.

Let g be the Lie algebra of G. By Theorem 2.36 of [PePiSta1], g is a simple Lie
algebra over R. As noticed in the proof of Theorem 5.1 in [PePiSta3], there is a
first order formula ϕ which says that there are finitely many simple Lie subalgebras
g1, . . . , gr of Mn(R), such that any simple subalgebra of Mn(R) is isomorphic to
one of the gi (we suppose to know r). In addition in ϕ we can require that for every
i = 1, . . . , r there are subspaces ki, ai, ni of gi, with gi = ki ⊕ ai ⊕ ni, such that the
matrices representing ad(gi) have the following properties:

- the matrices of ad(ki) are skew-symmetric,
- the matrices of ad(ai) are diagonal,
- the matrices of ad(ni) are upper triangular with 0’s on the diagonal.

All these properties are first order (see [PePiSta1, PePiSta3]).
By the Iwasawa decomposition of semisimple Lie algebras (1.10), ϕ is true in

R̄ := 〈R, <,+, ·〉 and therefore it is true in R as well. Hence g is isomorphic to a
Lie algebra gi ∈ {g1, . . . , gr} with the above mentioned properties. Say gi = g1.

By the proof of Theorem 2.37 in [PePiSta1], G is definably isomorphic to AutR(g)0,
the definably connected component of the identity in AutR(g). Therefore G is defin-
ably isomorphic also to AutR(g1)0 = G1(R), a semialgebraic linear group defined
over Ralg, the subfield of algebraic numbers. So it makes sense to consider the
group G1(R) defined in R̄ by the same formula over Ralg defining G1(R) in R. It
is a simple Lie group equal to AutR(g1)0. If K, A, N are connected subgroups of
G1(R) corresponding to the Lie subalgebras k1, a1 and n1, then by 1.10 we have
A ·N = N ·A and G1(R) = K ·A ·N . Moreover if m = n2,

- the matrices of ad(k1) are skew-symmetric ⇒ K ⊆ Om(R),
- the matrices of ad(a1) are diagonal ⇒ A ⊆ D+

m(R),
- the matrices of ad(n1) are upper triangular with 0’s on the diagonal ⇒
N ⊆ UTm(R).

Since D+
m(R) ∩ UTm(R) = {I} = Om(R) ∩ T+

m(R), we get that

- K = G1(R) ∩Om(R),
- A = G1(R) ∩D+

m(R),
- N = G1(R) ∩ UTm(R).

Thus the first order formula in the language of ordered fields which says that
every element g ∈ G1 can be written in a unique way as a product g = kan, with
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k ∈ G1 ∩ Om, a ∈ G1 ∩ D+
m, n ∈ G1 ∩ UTm and an = na ∀ a ∈ G1 ∩ D+

m,∀n ∈
G1 ∩ UTm is true in R̄ and therefore it is true in R as well.

Since H, A, N are definable torsion-free groups, they are solvable and definably
connected ([PeSta]). It follows that K cannot be trivial (because G is definably
simple, so it is not solvable) and it is definably connected as well (because G and
H are definably connected). �

Corollary 2.2. Any definably simple group G has a maximal definably compact
subgroup K, which is infinite, definably connected and unique up to conjugation.
Moreover K has a definable torsion-free complement H (i.e. G = K · H and
K ∩H = {e}).

Proof. Let G1 < GLm(R) be a definable group definably isomorphic to G, as in
Theorem 2.1. As we noticed in Remark 1.9, K = G1∩Om(R) is a maximal definably
compact subgroup of G1.

We claim that K is unique up to conjugation. Therefore, if C is any definably
compact subgroup of G1, we want to show that C is contained in a conjugate of K.
Since every definably compact subgroup of GLm(R) is semialgebraic ([PePiSta3,
4.6]), the fact that C is a definably compact (i.e. closed and bounded by [PeSte])
definable subgroup of GLm(R) can be expressed by a first order formula in the
language of ordered fields. Suppose that now C = C(y) is defined over a set of
parameters y = (y1, . . . , yn). Since every compact (again closed and bounded)
subgroup of G1(R) is contained in a conjugate of K(R) = G1(R) ∩ Om(R), the
following formula

∀y [C(y) is a closed and bounded subgroup of G1 ⇒ ∃x ∈ G1 (C(y) ⊂ Kx)]

is true in R̄, so it is true in R as well.

By Theorem 2.1, H = G1∩T+
m(R) is a definable torsion-free complement of K. �

A structure theorem. In order to prove Theorem 1.2, we need the following
Lemma:

Lemma 2.3. Let π : G → Q be a definable extension of a definable torsion-free
group Q by a definably compact group K �G. Then the definable exact sequence

1 −→ K
i−→ G

π−→ Q −→ 1

splits definably in a direct product. Therefore N (G) is definably isomorphic to Q
and

G = N (G)×K.

Proof. We proceed by induction on n = dimQ. For n = 1, see [Ed, 5.1]. If n > 1,
let Q1 ⊂ Q be a normal definable subgroup of Q of codimension 1 ([PeSta]) and let
G1 = π−1(Q1). By induction, the definable exact sequence

1 −→ K
i−→ G1

π−→ Q1 −→ 1

splits definably in a direct product. So there is a definable torsion-free subgroup
H which is normal in G1 and such that G1 = K × H. Since G1/H ∼= K which
is definably compact, it follows that H = N (G1) and H is normal in G as well
(because N (G1) is definably characteristic in G1, which is normal in G). Consider
now the definable exact sequence

1 −→ G1/H −→ G/H −→ (G/H)/(G1/H) −→ 1
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with the obvious maps. Because G1/H ∼= K which is definably compact and
(G/H)/(G1/H) ∼= G/G1

∼= Q/Q1 which is torsion-free, we can apply induction
again and find a definable torsion-free subgroup S normal in G/H such that G/H =
G1/H × S. Therefore the preimage of S in G is a normal definable torsion-free
subgroup which is a direct complement to K in G. �

Proof of Theorem 1.2. We want to show that the definable group G/N (G) has a
maximal definably compact subgroup K, and K has a definable torsion-free com-
plement H. Denoted by R the solvable radical of G, note that the solvable radical
of G/N (G) is R/N (G), which is definably compact by [Ed] (see also [Co1, 2.5.1]
for an alternative proof).

So we assume G is a definably connected group with definably compact solvable
radical R, and we prove our claim for G.

Moreover we suppose that the definably connected semisimple group G/R is
centerless. Even if it is not, the center of G/R is finite, so its preimage in G is
a normal solvable definably compact subgroup, which is the only assumption we
will make on R. By [PePiSta1, 4.1], G/R is a direct product of definably simple
groups Gi, i = 1, . . . , s. By the definably simple case (2.1), for every i = 1, . . . , s,
Gi = Ki · Hi, where Ki is definably compact and Hi is torsion-free, and every
definably compact subgroup of Gi is contained in a conjugate (in Gi) of Ki (2.2).
Let K̄ = {(k1, . . . , ks) : ki ∈ Ki} and H̄ = {(hi, . . . , hs) : hi ∈ Hi} in G/R. Again
by the simple case, for every i = 1, . . . , s, Hi = Ai · Ni, with Ai abelian and Ni
nilpotent definable subgroups. Thus H̄ = Ā · N̄ , with Ā the product of the Ai’s
and N̄ the product of the Ni’s. Note that K̄ is definably compact, H̄ is torsion-free
and G/R = K̄ · H̄.

Let π : G → G/R be the canonical projection. Since R is definably compact,
K = π−1(K̄) ⊆ G is definably compact. Define H̄1 = π−1(H̄) ⊂ G. The group
H̄1 is a definable extension of the definable torsion-free group H̄ by the solvable
definably compact group R. Hence by 2.3, the definable exact sequence

1 −→ R
i−→ H̄1

π−→ H̄ −→ 1

splits definably in a direct product H̄1 = R × H, for some definable torsion-free
subgroup H < G definably isomorphic to H̄. It is immediate that G = K ·H.

As we noticed in 1.9, K is a maximal definably compact subgroup of G and H
is a maximal definable torsion-free subgroup of G. Therefore for every g ∈ G, Kg

is a maximal definably compact subgroup of G = Kg ·Hg. We want to show that
these are the only ones, which is equivalent to say that for every definably compact
subgroup C of G, there is some g ∈ G such that C ⊂ Kg.

For every i = 1, . . . , s, let πi : G → Gi be the composition of the canonical
projections, first on G/R and then from G/R to Gi. By the simple case (2.1) we
know that πi(C) ⊆ Kgi

i for some gi ∈ Gi and so π(C) ⊆ K̄ ḡ with ḡ = (g1, . . . , gs) ∈
G/R. Therefore C ⊆ Kg, for every g ∈ π−1(ḡ).

Finally, because G and H are definably connected, also K (and every conjugate
of it) is definably connected. �

Corollary 2.4. Every definable group has maximal definable torsion-free subgroups.

Proof. Let G be a definable group. We can assume G is definably connected.
Set N = N (G) and let G/N = K · H be a definable compact·torsion-free de-

composition given by Theorem 1.2. Let P be the pre-image of H in G by the
canonical projection π : G → G/N . We claim that P is a maximal definable
torsion-free subgroup of G. Note that H is definably isomorphic to P/N , so
|E(H)| = |E(P/N)| = |E(N)| = 1, where E(X) denotes the o-minimal Euler
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characteristic of a definable set X. It follows that |E(P )| = |E(N)E(P/N)| = 1 as
well, and by [Str] P is torsion-free. Maximality of P follows by maximality of H
(see Remark 1.9). �

The homotopy type of a definable group. In this last subsection we assume
M is an o-minimal expansion of a real closed field.

We recall from [Dr] the basics definitions about definable homotopy:
Let X,Y be definable sets and f, g : X → Y definable continuous maps. A

definable homotopy between f and g is a definable continuous mapH : X×[ 0, 1]→ Y
such that f(x) = H(x, 0) and g(x) = H(x, 1) for every x ∈ X.
A definable set X is called definably contractible if there is a point x̄ ∈ X and a
definable homotopy H : X × [ 0, 1] → X between the identity map on X and the
map X → X taking the constant value x̄.

Two definable sets X and Y are definably homotopy equivalent if there are de-
finable continuous maps f : X → Y , g : Y → X such that there exist definable
homotopies HX between (f ◦ g) : X → X and the identical map on X, and HY
between (g ◦ f) : Y → Y and the identical map on Y .

Proof of Theorem 1.3. Suppose H is a n-dimensional definable torsion-free group.
Peterzil and Starchenko proved in [PeSta] that H is definably homeomorphic to
Mn (and so is definably contractible). Moreover they show that there is a definable
continuous section s : G/H → G (we recall that by definition of a section, after
composing the canonical projection π : G → G/H with s : G/H → G one obtains
the identity on G). Therefore if dimN (G) = n, it follows that G is definably
homeomorphic to G/N (G)×Mn.

By 1.2, G/N (G) = K ·H, withK definably compact andH definable torsion-free
subgroups. Thus G/N (G) is definably homeomorphic to K×H and G is definably
homeomorphic to K ×Ms, with s = dimN (G) + dimH. �

We conclude with a couple of results about contractibility:

Proposition 2.5. A definably connected group is definably contractible if and only
if it is torsion-free.

Proof. Suppose G is a definably connected group which is definably contractible.
By Theorem 1.3, G is definably homotopy equivalent to the maximal definably
compact subgroup K of G/N (G). By Theorem 3.7 in [BeMaOt], the o-minimal
homotopy groups of K are isomorphic to the homotopy groups of the connected
compact Lie group K/K00. Therefore K/K00 must be trivial, otherwise some of
its homotopy groups are not trivial ([GoOnVi]). By [HrPePi1], the dimension of
K/K00 equals the dimension of K, which must be trivial too. Therefore G is
torsion-free by Theorem 1.2.

The other implication is [PeSta, 5.7]. �

Corollary 2.6. Let G be a definably connected group, definable in an o-minimal
expansion of 〈R, <,+, ·〉. Then G is contractible (as a topological group) if and only
if G is definably contractible.

Proof. Assume G is contractible. Then G is diffeomorphic to Rn and has only the
trivial compact subgroup (see [GoOnVi, 3.2] for a reference). Therefore G is torsion-
free, and the above proposition applies. The other implication is obvious. �
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