# MAXIMAL COMPACT SUBGROUPS IN THE O-MINIMAL SETTING

## ANNALISA CONVERSANO

ABSTRACT. A characterization of groups definable in o-minimal structures having maximal definable definably compact subgroups is given. This follows from a definable decomposition in analogy with Lie groups, where the role of maximal tori is played by maximal 0-subgroups. Along the way we give structural theorems for solvable groups, linear groups, and extensions of definably compact by torsion-free definable groups.

## 1. INTRODUCTION AND PRELIMINARIES

We consider groups G definable in an o-minimal structure  $\mathcal{M}$  with underlying universe M. If  $M = \mathbb{R}$ , then G is a finite-dimensional real Lie group ([21]). It is well-known that a finite-dimensional real Lie group has maximal compact subgroups (all conjugate) whose homotopy type coincides to the homotopy type of the whole group. Moreover:

## Fact 1.1. ([11]). Let L be a connected real Lie group.

For every maximal torus T of L there is a maximal compact subgroup K of G and 1-dimensional connected torsion-free closed subgroups  $H_1, \ldots, H_s$  such that

$$K = \bigcup_{x \in K} T^x \qquad L = K \cdot H_1 \cdots H_s \qquad K \cap H_i = \{e\}.$$

In the o-minimal context the corresponding notion of compactness is given in [20]: a definable set X is *definably compact* if every definable curve is completable in X. It turns out that a definable group G is definably compact if and only if G does not contain any infinite torsion-free definable subgroup ([8, 9, 16, 20]). As remarked in [19], definable torsion-free groups are definably connected, so one can note the analogy with Lie groups: a Lie group L is compact if and only if L does not contain any infinite connected torsion-free closed subgroup.

In general a definable group does not contain a maximal definable definably compact subgroup. However, if we restrict ourselves to the semisimple case, then we are able to prove the following (see Section 5):

**Proposition 1.2.** Every definable group has a (unique up to conjugation) maximal definable semisimple definably compact subgroup.

Moreover we will show how in the o-minimal setting the notion of "maximal torus" (i.e. maximal abelian connected compact subgroup) of a Lie group finds an analogue in the notion of "maximal 0-subgroups", i.e. 0-Sylow (see Section 2 for the definitions). Like in the Lie context, 0-Sylow are abelian and definably connected ([23]). However a 0-Sylow might not be definably compact, and its maximal definable torsion-free subgroup turns out to be an important invariant of

Date: June 1, 2012

<sup>2010</sup> Mathematics Subject Classification: 03C64, 22E15.

Key words and phrases: O-minimality, definable groups, definably compact subgroups.

### ANNALISA CONVERSANO

the group, and the only obstruction to the existence of maximal definable definably compact subgroups:

**Theorem 1.3.** Let T be a 0-Sylow of a definable group G. Then the maximal definable torsion-free subgroup  $\mathcal{N}(T)$  of T does not depend on T. Moreover it is central and invariant by definable automorphisms of G. We denote it by  $\mathcal{A}(G)$ .

Suppose G is definably connected. Then G has a maximal definable definably compact subgroup if and only if  $\mathcal{A}(G)$  is trivial.

In the proof of Theorem 1.3 (see Proposition 5.5) we will actually show that  $\mathcal{A}(G) = \{e\}$  and the property that G has a maximal definable definably compact subgroup are both equivalent to the fact that G admits a definable compact torsion-free decomposition:

**Definition 1.4.** We say that a definable group G has a *definable compact torsion-free decomposition* if there are definable subgroups K and H of G where

 $G = K \cdot H$  and  $K \cap H = \{e\}$ 

such that K is definably compact and H is torsion-free.

Our main result is the following decomposition:

**Theorem 1.5.** Let G be a definable definably connected group.

For every 0-Sylow T of G there is a maximal definable torsion-free subgroup H and a definable definably connected subgroup P such that

(\*) 
$$P = \bigcup_{x \in P} T^x \qquad G = P \cdot H \qquad P \cap H = \mathcal{A}(G).$$

Moreover for every cofactor C of  $\mathcal{N}(T)$  in T there is an abstract subgroup  $K \subset P$  such that

$$(**) K = \bigcup_{x \in K} C^x G = K \cdot H K \cap H = \{e\}.$$

The canonical projection  $\pi: G \to G/\mathcal{N}(G)$  induces an isomorphism between K and the maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$ .

Also  $P = \mathcal{A}(G) \times K$  is the smallest definable subgroup of G containing K, and [P, P] = [K, K] is a maximal definable semisimple definably compact subgroup of G.

Conversely, for every maximal definable semisimple definably compact subgroup S of G there is a 0-Sylow T of G, a maximal definable torsion-free subgroup H, a definable definably connected subgroup P and an abstract subgroup K satisfying (\*) and (\*\*), and such that S = [P, P] = [K, K].

**Corollary 1.6.** Let G be a definable definably connected group. Then  $G/\mathcal{A}(G)$  has a definable compact torsion-free decomposition, and it is the maximal definable quotient of G with a definable compact torsion-free decomposition.

It follows that every definable definably connected group is a central extension of a group with a definable compact torsion-free decomposition by a definable definably characteristic torsion-free subgroup.

The paper is organized as follows: the remain part of Section 1 contains basic definitions and results. In Section 2 we introduce  $\mathcal{A}(G)$ . Section 3 is devoted to the analysis of solvable groups. In Section 4 it is proved that every definable linear group admits a definable compact-torsion-free decomposition. In Section 5 we give the proof of the main results in the general case.

We assume  $\mathcal{M}$  is an o-minimal expansion of an ordered group. A basic reference for o-minimality is [5]. By "*definable*" we mean "definable in  $\mathcal{M}$  with parameters". Many results about groups definable in o-minimal structures and some theorems about Lie groups are used. One can see [13] for an overview about groups definable in o-minimal structures, and [12] for an overview about Lie groups.

Let G, N, Q be definable groups. A *definable extension of* Q by N is a definable group G containing N, together with a definable homomorphism  $\pi: G \to Q$  such that the sequence

$$1 \longrightarrow N \xrightarrow{i} G \xrightarrow{\pi} Q \longrightarrow 1$$

is exact, i.e.  $\pi$  is a surjective definable homomorphism and i(N) = N is the kernel of  $\pi$  (where  $i: N \to G$  is the inclusion map). We say that a definable extension  $\pi: G \to Q$  splits abstractly, if there is a surjective homomorphism  $s: Q \to G$  such that  $\pi \circ s = id_Q$ . We say that it splits definably if there is such a s which is moreover definable. Thus if N is a normal definable subgroup of a definable group G, we can always see G like a definable extension of G/N by N. The exact sequence

$$1 \longrightarrow N \xrightarrow{i} G \xrightarrow{\pi} G/N \longrightarrow 1$$

splits abstractly if and only if G contains a subgroup K isomorphic to G/N such that  $N \cap K = \{e\}$  and  $N \cdot K = G$ , i.e. if and only if G is a *semidirect product* of N and K. In this case we will write  $G = N \rtimes K$  or  $G = K \ltimes N$  and we will say that K is a *cofactor* of N. The exact sequence above splits definably if and only if there is a *definable cofactor* K of N in G.

If H, K < G are groups (no normality assumption here), we say that H is a *complement* of K in G whenever  $G = K \cdot H$  and  $K \cap H = \{e\}$ . If all groups involved are definable we say that H is a *definable complement* of K in G.

We denote by  $G^0$  the definably connected component of the identity in a definable group G. It is the smallest definable subgroup of finite index in G ([21]). We say that a group G is *definably connected* if it is definable and  $G = G^0$ , so if G has no proper definable subgroup of finite index.

A definably connected group G is said to be *semisimple* if does not contain any infinite abelian normal (definable) subgroup. It is *definably simple* if does not contain any proper non-trivial normal definable subgroup.

We summarize the main results which we will be using here:

Fact 1.7. Let G be a definable group.

- (1) G has maximal definable torsion-free subgroups ([2]).
- (2) G has a maximal normal definable torsion-free subgroup  $\mathcal{N}(G)$  ([3]).
- (3) If G is solvable then  $G/\mathcal{N}(G)$  is definably compact ([6]), and  $G^0/\mathcal{N}(G)$  is abelian ([18]).
- (4)  $G^0/\mathcal{N}(G) = K \cdot H$ , where K is a maximal definable definably compact subgroup (and is definably connected and unique up to conjugation) and H is a maximal definable torsion-free subgroup ([2]).
- (5) If  $G/\mathcal{N}(G)$  is definably compact, then  $G^0$  has a (unique up to conjugation) definable Levi subgroup, i.e. a maximal definable semisimple subgroup S such that  $G = \mathcal{N}(G) \cdot S$  ([4]).
- (6) G/Z(G) is a definable linear group ([14]).
- (7) Suppose G is definably compact and definably connected. Then the commutator subgroup [G, G] is a definable semisimple group, and  $G = Z(G)^0 \cdot [G, G]$ ([10]).

(8) Suppose G is definably compact and definably connected. Then

$$G = \bigcup_{x \in G} T^x$$

for every maximal definable torus T (i.e. T is a 0-Sylow) of G ([1], [7]).

## 2. 0-groups and 0-Sylow

In analogy with finite groups, Strzebonski develops in [23] a theory of definable p-groups, proving corresponding "Sylow's theorems", where the cardinality of finite p-groups is replaced by the o-minimal Euler characteristic of definable p-groups.

If  $\mathcal{P}$  is a cell decomposition of a definable set X, the o-minimal Euler characteristic E(X) is the integer defined as the number of even-dimensional cells in  $\mathcal{P}$ minus the number of odd-dimensional cells in  $\mathcal{P}$ . This does not depend on  $\mathcal{P}$  (see [5, Chapter 4]). When X is finite then  $E(X) = \operatorname{card}(X)$ . Since for every A, Bdefinable sets,  $E(A \times B) = E(A)E(B)$ , the following holds:

Fact 2.1 ([23]). Let K < H < G be definable groups. Then

(a) E(G) = E(H)E(G/H).

(b) E(G/K) = E(G/H)E(H/K).

Fact 2.2 ([23]). Let G be a definable group. Then

 $|E(G)| = 1 \iff G \text{ is torsion-free.}$ 

In [23] Strzebonski also introduces 0-groups, which are further investigated by Berarducci in [1]:

# **Definition 2.3.** ([23]).

- A 0-group is a definable group G such that for every proper definable subgroup H, E(G/H) = 0 (in particular, E(G) = 0).
- A 0-subgroup is a definable subgroup which is a 0-group.
- A 0-Sylow is a maximal 0-subgroup.
- A **definable torus** is a 0-group such that every definably connected subgroup of it is a 0-group.

**Fact 2.4.** ([1], [23]).

- (a) Every definable group G with E(G) = 0 contains a 0-subgroup.
- (b) Every 0-group is abelian and definably connected.
- (c) Every 0-subgroup is contained in a 0-Sylow.
- (d) Any two 0-Sylow are conjugate.
- (e) If H is a 0-subgroup of a definable group G, then

$$H \text{ is a } 0\text{-}Sylow \Leftrightarrow E(G/H) \neq 0.$$

(f) A definable group is a definable torus if and only if it is abelian definably connected and definably compact.

**Remark 2.5.** If A is an abelian definable definably connected group and H < A is a torsion-free definable subgroup, then they are both divisible ([23]) and therefore A contains a (possibly non-definable) direct cofactor of H (see for instance [22, 10.24]). Thus

$$A \cong H \times A/H.$$

In particular, if A is a 0-Sylow of a definable group G and  $H = \mathcal{N}(A)$  is infinite, then every cofactor K of  $\mathcal{N}(A)$  in A is not definable, but is abstractly isomorphic by the canonical projection  $\pi: A \to A/\mathcal{N}(A)$  to a definable definably compact group. **Proposition 2.6.** Let T be a 0-Sylow of a definable group G. Then the maximal definable torsion-free subgroup  $\mathcal{N}(T)$  of T does not depend on T. Moreover it is central and invariant by definable automorphisms of G. We denote it by  $\mathcal{A}(G)$ .

Lemma 2.7. Every linear 0-group is definably compact.

*Proof.* Let G be a linear 0-group. By [17], every definable definably connected linear abelian group splits into the product of definable 1-dimensional subgroups. So G can be written as a product of definable groups  $G = N \times K$  where N is torsion-free and K is definably compact. Since  $E(G/K) = E(N) = \pm 1$  and G is a 0-group, it follows that G = K.

# **Lemma 2.8.** Let T be a 0-Sylow of a definable group G. Then $\mathcal{N}(T) \subseteq Z(G)$ .

Proof. Since the quotient G/Z(G) is a definable linear group, it follows that the group  $T/(T \cap Z(G))$  is a linear 0-group, so it is definably compact (Lemma 2.7). It follows that  $\mathcal{N}(T) \subseteq Z(G)$ , otherwise  $T/(T \cap Z(G))$  would contain an infinite definable torsion-free subgroup, in contradiction with the fact that is definably compact.

**Lemma 2.9.** If  $T_1$  and  $T_2$  are 0-Sylow of a definable group G, then  $\mathcal{N}(T_1) = \mathcal{N}(T_2)$ .

Proof. Let  $g \in G$  such that  $T_1 = T_2^g$ . As we observed in Remark 2.5, for  $i = 1, 2, T_i = \mathcal{N}(T_i) \times K_i$ , for some subgroups  $K_i$  which are abstractly isomorphic to definable definably compact groups. Thus  $T_1 = \mathcal{N}(T_2)^g \times K_2^g$ , and therefore  $\mathcal{N}(T_1) = \mathcal{N}(T_2)^g$ . Since  $\mathcal{N}(T_2)$  is central in G (Lemma 2.8), the thesis follows.  $\Box$ 

Proof of Proposition 2.6. By Lemma 2.8 and Lemma 2.9. Since a definable automorphism of G permutes its 0-Sylow, it follows that  $\mathcal{A}(G)$  is definably characteristic, in particular it is a normal subgroup. Therefore  $\mathcal{A}(G) \subseteq \mathcal{N}(G)$ .

## 3. Solvable definable groups

In this section we show structure results for solvable definably connected groups, giving the proof of Theorem 1.3 and Theorem 1.5 in the solvable case.

**Proposition 3.1.** Let T be a 0-Sylow of a definable solvable definably connected group G. Then

 $G = T \cdot \mathcal{N}(G)$  and  $T \cap \mathcal{N}(G) = \mathcal{A}(G)$ .

Moreover if  $T_1 < G$  is a 0-subgroup such that  $G = T_1 \cdot \mathcal{N}(G)$ , then  $T_1$  is a conjugate of T.

*Proof.* Set  $N = \mathcal{N}(G)$ . If G is torsion-free then G = N and there is nothing to prove. So suppose E(G) = 0 and let T be a 0-Sylow of G. Set  $G_1 = T \cdot N$  and consider the following diagram:



Since  $E(G/G_1)E(G_1/T) = E(G/T) \neq 0$  (because T is a 0-Sylow: see Fact 2.4), it follows that  $E(G/G_1) \neq 0$ . On the other hand,  $G_1/N$  is a definable subgroup of the definable abelian, definably connected, definably compact group G/N, which

is in particular a 0-group. Therefore  $E(G/G_1) = E((G/N)/(G_1/N)) = 0$ , unless  $G/N = G_1/N$ . It follows that  $G = G_1$ , as claimed.

Since G/N is definably compact, it follows that  $T/(T \cap N)$  is definably compact as well, so  $T \cap N = \mathcal{N}(T) = \mathcal{A}(G)$ .

Let  $T_1$  be a 0-subgroup of G such that  $G = T_1 \cdot N$ , and let  $S_1$  be a 0-Sylow containing  $T_1$ . Thus  $S_1/T_1$  is definably isomorphic to  $(S_1 \cap N)/(T_1 \cap N)$ , and then  $E(S_1/T_1) = \pm 1$ . But  $S_1$  is a 0-group, so  $S_1 = T_1$ . It follows that  $T_1$  is a 0-Sylow, and therefore a conjugate of T.

**Corollary 3.2.** Every definable solvable definably connected group G is abstractly isomorphic to a semidirect product  $\mathcal{N}(G) \rtimes G/\mathcal{N}(G)$ .

Proof. Let T be a 0-Sylow of G. Then by 3.1  $G = T \cdot \mathcal{N}(G)$ . If T is definably compact, then  $T \cap \mathcal{N}(G) = \{e\}$  and T is a definable cofactor of  $\mathcal{N}(G)$  in G. Otherwise,  $T \cap \mathcal{N}(G) = \mathcal{N}(T)$  and it is infinite. If K is a cofactor of  $\mathcal{N}(T)$  in T (see Remark 2.5), i.e.  $T = \mathcal{N}(T) \times K$ , then K is a cofactor of  $\mathcal{N}(G)$  in G.

**Proposition 3.3.** Let G be a definable solvable definably connected group. Then the following are equivalent:

- (i) G has maximal definable definably compact subgroups.
- (ii)  $G = K \cdot \mathcal{N}(G)$ , for some definable definably compact subgroup K < G.
- $(iii) \ \mathcal{A}(G) = \{e\}.$

Proof.  $(i) \Rightarrow (iii)$ : Take K to be a maximal definable definably compact subgroup, and T a 0-Sylow of G. Suppose, for a contradiction, that  $\mathcal{A}(G)$  is infinite. Then  $T = \mathcal{A}(G) \times C$ , for some abstract group C (see Remark 2.5). Note that K embeds in C because  $K \cap \mathcal{N}(G) = \{e\}$  and C is abstractly isomorphic to  $G/\mathcal{N}(G)$ . Since C is not definable, it follows that dim  $K < \dim(G/\mathcal{N}(G))$ , so there are arbitrarly large finite subgroups  $F \subset C$  which are not in K (see [8] and [15] for the structure of the torsion subgroup of a definable definably compact abelian group). It follows that for any such an F, the definable group  $F \cdot K$  is definably compact and contains K properly, contradiction.

 $(iii) \Rightarrow (ii)$ : By Proposition 3.1.

 $(ii) \Rightarrow (i)$ : Suppose  $G = K \cdot \mathcal{N}(G)$ , for some definable definably compact K < G. Then K is a maximal definable definably compact subgroup of G.

## 4. Definable linear groups

**Theorem 4.1.** Every definable definably connected linear group admits a definable compact torsion-free decomposition.

*Proof.* We refer to Definition 2.6. Suppose G is a definable definably connected linear group, set  $N = \mathcal{N}(G)$  and let  $\pi: G \to G/N$  be the canonical projection. Suppose  $G/N = K_1 \cdot H_1$  is a definable compact-torsion-free decomposition (see Fact 1.7). Set  $G_1 = \pi^{-1}(K_1)$ . Note that  $G_1$  is definably connected because N and  $K_1$  are definably connected.

We claim that the following definable exact sequence

 $1 \longrightarrow N \stackrel{i}{\longrightarrow} G_1 \stackrel{\pi}{\longrightarrow} K_1 \longrightarrow 1$ 

splits definably, i.e. N has a definable cofactor in  $G_1$ . Let us consider the possible cases for  $K_1$ :

If  $K_1$  is abelian, then  $G_1$  is solvable. Applying Proposition 3.1 and Lemma 2.7, we obtain that every 0-Sylow of  $G_1$  is a definable cofactor of N.

If  $K_1$  is semisimple, then N is the solvable radical of  $G_1$  and by [17]  $G_1$  contains a definable semisimple definably connected subgroup S such that  $G_1 = N \cdot S$  and  $N \cap S$  is finite. Since N is torsion-free, it follows that  $N \cap S = \{e\}$  and therefore S is a definable cofactor of N in  $G_1$ .

Finally suppose  $K_1$  is neither abelian nor semisimple, and set  $G_2 = \pi^{-1}([K_1, K_1])$ . Note that  $G_2$  is definably connected because  $[K_1, K_1]$  and N are definably connected. By the semisimple case, the definable exact sequence

$$1 \longrightarrow N \stackrel{i}{\longrightarrow} G_2 \stackrel{\pi}{\longrightarrow} [K_1, K_1] \longrightarrow 1$$

splits definably. Let S be a definable cofactor of N in  $G_2$ , i.e. a definable subgroup of  $G_2$  definably isomorphic to  $[K_1, K_1]$ .

**Claim.** There is a 0-Sylow T of  $G_1$  which is contained in  $N_{G_1}(S)$ , the normalizer of S in  $G_1$ .

Proof of the Claim. Suppose T is a 0-Sylow of  $N_{G_1}(S)$ . We want to show that T is a 0-Sylow of G as well. Take  $g \in G_1$  and consider  $S^g$ . Since  $G_2$  is a normal subgroup of  $G_1$  (because  $[K_1, K_1]$  is normal in  $K_1$ ), it follows that  $S^g \subset G_2$ , and it is a definable Levi subgroup of  $G_2$ . Therefore there is some  $x \in N$  such that  $S^g = S^x$ . This gives a well-defined bijective definable map

$$G/N_{G_1}(S) \iff N/N_N(S).$$

Since N is torsion-free, it follows that  $E(N/N_N(K)) = \pm 1 = E(G/N_{G_1}(S))$ . Then  $E(G_1/T) = E(G_1/N_{G_1}(S))E(N_{G_1}(S)/T) \neq 0$ , and T is a 0-Sylow of G as well (Fact 2.4).

Since  $T \subset N_{G_1}(S)$ , it follows that  $T \cdot S$  is a subgroup. Call it K. The fact that T and S are definably compact (Lemma 2.7) implies that K is definably compact as well. We know that  $\pi(S) = [K_1, K_1]$ , so in order to conclude that K is a definable cofactor of N in  $G_1$ , it is enough to show that  $\pi(T)$  contains  $Z(K_1)^0$ .

Because T is definably compact (Lemma 2.7), the restriction of  $\pi$  to T is a definable isomorphism between T and a maximal definable torus  $T_1$  of  $K_1$ . Since  $Z(K_1)^0$  is a normal definable torus and all maximal tori are conjugate, it follows that  $T_1$  (and any other maximal torus) contains  $Z(K_1)^0$ .

We proved that  $G_1 = K \ltimes N$ , for some definable definably compact K.

Define  $H = \pi^{-1}(H_1) < G$ . Then H is torsion-free and  $G = K \cdot H$  is a definable compact-torsion-free decomposition of G.

## 5. The general case

The maximal definable semisimple definably compact subgroup. We show now that every definable group G has a maximal definable semisimple definably compact subgroup S, and it is unique up to conjugation. It turns out that S is definably isomorphic by the canonical projection  $\pi: G \to G/\mathcal{N}(G)$  to the commutator subgroup of the maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$ .

Proof of Proposition 1.2. Let G be a definable group. Since semisimple definable groups are definably connected by definition, we can suppose G is definably connected. Let  $K_1$  be the maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$ , and note that  $[K_1, K_1]$  is the unique maximal definable semisimple definably compact subgroup of  $K_1$ .

Let  $\pi: G \to G/\mathcal{N}(G)$  be the canonical projection and define  $G_1 = \pi^{-1}([K_1, K_1])$ . By [4] (see Fact 1.7),  $G_1$  has a definable Levi subgroup  $S_1$ , and it is unique up to conjugation. We claim that  $S_1$  is a maximal definable semisimple definably compact subgroup of G. If not, let S be a definable semisimple definably compact subgroup containing  $S_1$  properly. Since  $S \cap \mathcal{N}(G) = \{e\}$ , it follows that  $\pi(S)$  is a definable semisimple definably compact subgroup containing  $[K_1, K_1]$  properly, contradiction.

Let  $S_2$  be another maximal definable semisimple definably compact subgroup of G. We want to show that  $S_2$  is a conjugate of  $S_1$ . Again, since  $S_2 \cap \mathcal{N}(G) = \{e\}$  it follows that  $\pi(S_2)$  is a maximal definable semisimple definably compact subgroup of  $G/\mathcal{N}(G)$ . Let  $K_2$  be a maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$  containing  $\pi(S_2)$ . Then  $\pi(S_2) = [K_2, K_2]$ . Define  $G_2 = \pi^{-1}([K_2, K_2])$ .

Since  $K_2$  is a conjugate of  $K_1$ , let  $\bar{g} \in G/\mathcal{N}(G)$  such that  $[K_2, K_2] = [K_1, K_1]^{\bar{g}}$ . Set  $G_2 = \mathcal{N}(G) \rtimes S_2$ . Then for every  $g \in \pi^{-1}(\bar{g})$ , denoted by a(g) the conjugation map given by  $x \mapsto gxg^{-1}$ , the following diagram commutes:



Thus  $S_1^g$  is a Levi subgroup of  $G_2$  and therefore a conjugate of  $S_2$  in  $G_2$ . This proves that  $S_1$  and  $S_2$  are conjugate in G.

**Remark 5.1.** Suppose G is a definable group and  $\pi: G \to G/\mathcal{N}(G)$  is the canonical projection. The proof above shows that:

- (a) if S is a maximal definable semisimple definably compact subgroup of G, then  $\pi(S) = [K, K]$ , where K is a maximal definable definably compact subgroup of  $G^0/\mathcal{N}(G)$  containing  $\pi(S)$ ;
- (b) conversely, for every maximal definable definably compact subgroup K of  $G^0/\mathcal{N}(G)$  there is a maximal definable semisimple definably compact subgroup S of G such that  $\pi(S) = [K, K]$ .

**Extensions of a definably compact group by a torsion-free group.** In [2] it is shown that every definable extension of a definable torsion-free group by a definable definably compact group splits definably in a direct product. We consider here the specular case of a definable extension of a definably compact group by a torsion-free definable group, and we will make use of the following:

**Lemma 5.2.** Let G be a definable group. Then:

- (i) for every maximal definable semisimple definably compact subgroup S of G, there is a 0-Sylow T of G such that  $T \subset N_G(S)$ ;
- (ii) for every 0-Sylow T of G there is a maximal definable semisimple definably compact subgroup S of G such that  $T \subset N_G(S)$ .

*Proof.* We can suppose G is definably connected.

Note that  $(i) \Leftrightarrow (ii)$  since all 0-Sylow are conjugate (Fact 2.4) and all maximal definable semisimple definably compact subgroups are conjugate as well (Proposition 1.2). Indeed for every  $g \in G$ ,

$$T \subset N_G(S) \Leftrightarrow T^g \subset N_G(S^g).$$

We show (i). Let S be a maximal definable semisimple definably compact subgroup of G and consider the canonical projection  $\pi: G \to G/\mathcal{N}(G)$ . Suppose K is a maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$  containing  $\pi(S)$ . Define  $G_1 := \pi^{-1}(K)$  and  $G_2 := [K, K]$ . Note that S is a definable cofactor of  $\mathcal{N}(G)$  in  $G_2$ , so we can apply the same argument used in the proof of Claim I of Theorem 4.1 to find a 0-Sylow T of  $G_1$  in  $N_G(S)$ . Note that  $E(G/G_1) = E(H) = \pm 1$  (where H is a torsion-free definable complement of K in  $G/\mathcal{N}(G)$ ), so T is a 0-Sylow of G as well.

**Proposition 5.3.** Let G be a definable extension of a definable definably connected definably compact group K by a definable torsion-free group N. Then the exact sequence

$$1 \longrightarrow N \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} K \longrightarrow 1$$

splits abstractly, and it splits definably if and only if  $\mathcal{A}(G)$  is trivial.

Moreover for every direct complement C of  $\mathcal{A}(G)$  in a 0-Sylow T of G (see Remark 2.5), there is a cofactor  $K_C$  of N in G such that

$$K_C = \bigcup_{x \in K} C^x.$$

The commutator subgroup  $[K_C, K_C]$  is definable, and is a maximal definable semisimple definably compact subgroup of G.

*Proof.* Note that  $N = \mathcal{N}(G)$ . Let us consider the possible cases for K:

If K is abelian, then G is solvable and the thesis follows by Corollary 3.2 and Proposition 3.3. In this case  $K_C = C$  and  $[K_C, K_C]$  is trivial.

If K is semisimple, then every definable Levi subgroup S of G (see Fact 1.7) is a definable cofactor of N and the extension above splits definably. Every definable maximal torus T of S is a 0-Sylow of G (Fact 2.4) and then  $\mathcal{A}(G) = \{e\}$ . Note that definable Levi subgroups of G are also maximal definable definably compact subgroups.

Suppose finally K is neither abelian nor semisimple. Let T be a 0-Sylow of G, and C a direct complement of  $\mathcal{N}(T) = \mathcal{A}(G)$  in T. By 1.2, 5.1 and 5.2 there is a maximal definable semisimple definably compact subgroup S of G which is definably isomorphic to [K, K] by  $\pi_{|_S} \colon S \to [K, K]$ , and such that  $T \subset N_G(S)$ . In particular  $C \subset N_G(S)$  and therefore  $K_C := C \cdot S$  is a subgroup. The map  $\pi_{|_{K_C}} \colon K_C \to K$  is an isomorphism,  $[K_C, K_C] = S$ , and  $\pi(T) = \pi(C)$  is a maximal definable torus of K. It follows that

$$K = \bigcup_{x \in K} \pi(C)^x,$$

and therefore

$$K_C = \bigcup_{x \in K_C} C^x.$$

If T is definably compact (and therefore  $\mathcal{A}(G)$  is trivial), then  $K_C$  is definable.

Otherwise, suppose for a contradiction that there is a definable cofactor  $K_1$  of N in G. Then every definable maximal torus of  $K_1$  would be a definably compact 0-Sylow of G, in contradiction with the fact that T is not.

A definable Lie-like decomposition. We give now the proof of Theorem 1.5.

**Lemma 5.4.** Let A be a 0-group. Suppose C is a cofactor of  $\mathcal{N}(A)$  in A. Then there are no proper definable subgroup of A containing C.

*Proof.* If not, suppose B is a proper definable subgroup of A containing C. Set  $N = \mathcal{N}(A)$ . Since A/B is definably isomorphic to  $(A \cap N)/(B \cap N)$ , it follows that  $E(A/B) = E((A \cap N)/(B \cap N)) = \pm 1$  (Fact 2.2), in contradiction with the fact that A is a 0-group.

Proof of Theorem 1.5. If  $\mathcal{N}(G)$  is trivial, then  $\mathcal{A}(G)$  is trivial too and the thesis follows by Fact 1.7. So suppose  $\mathcal{N}(G)$  is infinite and consider the canonical projection  $\pi: G \to G/\mathcal{N}(G)$ .

Fix T a 0-Sylow of G and C a cofactor of  $\mathcal{N}(T) = \mathcal{A}(G)$  in T. Set  $T_1 := \pi(T)$  and let  $K_1$  be a maximal definable definably compact subgroup of  $G/\mathcal{N}(G)$  containing  $T_1$ . Let  $H_1$  be a definable torsion-free complement of  $K_1$  in  $G/\mathcal{N}(G)$ . Define  $G_1 := \pi^{-1}(K_1)$  and  $H = \pi^{-1}(H_1)$ . By Proposition 5.3 applied to  $G_1$  there is a subgroup  $K = K_C$  of  $G_1$  such that K and H satisfy (\*\*). Moreover [K, K] is definable and is a maximal definable semisimple definably compact subgroup of  $G_1$ (and therefore of G) and  $K = C \cdot [K, K]$ .

Let P be the smallest definable subgroup of G containing K. In order to show (\*) we prove now some claims:

Claim I.  $P = T \cdot [K, K]$ .

Proof of Claim I. Define S := [K, K]. Since  $S \triangleleft K$  and  $C \subset K$ , of course  $C \subset N_G(S)$ . Moreover  $T = \mathcal{A}(G) \times C$  and  $\mathcal{A}(G)$  is central in G, so  $T \subset N_G(S)$ . It follows that  $T \cdot S$  is a definable subgroup containing K, so  $P \subseteq T \cdot S$ . On the other hand, by Lemma 5.4,  $T \subset P$ , so  $T \cdot S \subseteq P$ , and Claim I is proved.

Since  $T = \mathcal{A}(G) \times C$ ,  $K = C \cdot [K, K]$  and  $\mathcal{A}(G) \subseteq Z(G)$  (Proposition 2.6), it follows that  $P = \mathcal{A}(G) \times K$ .

Claim II.  $(T \cap S)^0$  is a 0-Sylow of S.

Proof of Claim II. Being abelian (because T is abelian), definably connected and definably compact (because S is definably compact),  $(T \cap S)^0$  is a 0-group (Fact 2.4). Moreover by Claim I the definable set  $S/(T \cap S)$  is in definable bijection with P/T, therefore

$$E(S/(T \cap S)^{0}) = E(P/T)E((T \cap S)/(T \cap S)^{0}) \neq 0,$$

and by Fact 2.4, Claim II is proved.

By Claim II and Fact 1.7, it follows that  $S = \bigcup_{x \in S} (T \cap S)^x$  and  $S \subset \bigcup_{x \in P} T^x$ . For the other inclusion, note that

$$T \subset N_G(S) \Rightarrow T^y \subseteq T \cdot S = P \quad \forall y \in S \Rightarrow T^x \subseteq P \quad \forall x \in P.$$

Therefore  $P = \bigcup_{x \in P} T^x$ .

Conversely, assume S is a maximal definable semisimple definably compact subgroup of G, and take T to be a 0-Sylow of G such that  $T \subset N_G(S)$  (Lemma 5.2). Define  $P := T \cdot S$  and apply Proposition 5.3 to P to find K. Given  $K_1 = \pi(K) \subset G/\mathcal{N}(G)$ , take  $H_1$  to be a definable torsion-free complement of  $K_1$  and set  $H = \pi^{-1}(H_1)$ .

Maximal definably compact subgroups and  $\mathcal{A}(G)$ . In this last subsection we complete the proof of Theorem 1.3.

**Proposition 5.5.** Let G be a definable definably connected group. The following are equivalent:

- (i) G has a maximal definable definably compact subgroup.
- (ii) G admits a definable compact torsion-free decomposition.
- (iii) Every 0-subgroup of G is definably compact (i.e.  $\mathcal{A}(G) = \{e\}$ ).

*Proof.* If G is solvable, then see Proposition 3.3. Assume G is not solvable.

Suppose  $G = K \cdot H$  is a definable compact-torsion-free decomposition. Then by Theorem 1.5,  $\mathcal{A}(G) = \{e\}$ . Note that K is a maximal definable definably compact subgroup of G. If not, let  $K_1$  be a maximal definable definable definably compact subgroup of G containing K. Then  $K_1 \cap H$  is torsion-free (because H is torsionfree) and definably compact (because every definable subgroup is closed by [21]). So  $K_1 \cap H = \{e\}$  and  $K_1 = K$ .

Assume now G does not admit a definable compact torsion-free decomposition. Then by Theorem 1.5,  $\mathcal{A}(G)$  is infinite. Suppose, for a contradiction,  $K_1$  is a maximal definable definably compact subgroup of G. We can assume  $K_1$  is definably connected. Let  $T_1$  be a 0-Sylow of  $K_1$ , and T be a 0-Sylow of G containing  $T_1$ . Note that  $K_1 = \bigcup_{x \in K_1} T_1^x$  (Fact 1.7), and  $T = \mathcal{A}(G) \times T_1 \times C_1$  for some infinite abelian (abstract) group  $C_1$  (see Remark 2.5). Define  $C = T_1 \times C_1$ , and apply Theorem 1.5 to find an abstract subgroup K satisfying (\*\*). Then for every finite subgroup  $F \subset C_1$ , we get  $K_1 \subsetneq F \cdot K_1 \subsetneq K$ , in contradiction with the fact that K is a maximal definable definably compact subgroup of G.

*Proof of Theorem 1.3.* The first part is Proposition 2.6. The second part follows by Proposition 5.5.  $\hfill \Box$ 

Acknowledgments. I thank Margarita Otero for suggesting me the problem to find an o-minimal analogue to the existence of maximal compact subgroups of Lie groups, and Alessandro Berarducci for useful remarks.

## References

- A. BERARDUCCI, Zero-groups and maximal tori, in Logic Colloquium 2004. Editors: A. Andretta, K. Kearnes, D. Zambella, ASL Lecture Notes in Logic, Vol. 29 (2006), pp. 33–45.
- [2] A. CONVERSANO, A reduction to the compact case for groups definable in o-minimal structures, preprint 2012.
- [3] A. CONVERSANO AND A. PILLAY, Connected components of definable groups, and ominimality I, Advances in Mathematics, to be published.
- [4] A. CONVERSANO AND A. PILLAY, On Levi subgroups and the Levi decomposition for groups definable in o-minimal structures, preprint 2011.
- [5] L. VAN DEN DRIES, Tame Topology and o-minimal Structures, LMS Lecture Notes Series, 248, Cambridge University Press, 1998.
- [6] M. EDMUNDO, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra, 185 (2003), pp. 103–145.
- [7] M. EDMUNDO, A remark on divisibility of definable groups, Math. Logic Quart., 51(6) (2005), pp. 639–641.
- [8] M. EDMUNDO AND M. OTERO, Definably compact abelian groups, J. of Math. Logic, 4 (2004), pp. 163–180.
- [9] E. HRUSHOVSKI, Y. PETERZIL AND A. PILLAY, Groups, measures, and the NIP, J. Amer. Math. Soc., 21 (2008), pp. 563–596.
- [10] E. HRUSHOVSKI, Y. PETERZIL AND A. PILLAY, On central extensions and definably compact groups in o-minimal structures, J. Algebra, 327 (2011), pp. 71–106.
- [11] K. Iwasawa, On some types of topological groups, Ann. Math., 50(3) (1949), pp. 507–558.
- [12] A.W. KNAPP, Lie Groups: Beyond an Introduction, Birkhäuser, 2002.

#### ANNALISA CONVERSANO

- [13] M. OTERO, A survey on groups definable in o-minimal structures, in Model Theory with Applications to Algebra and Analysis, vol. 2, Editors: Z. Chatzidakis, D. Macpherson, A. Pillay and A. Wilkie, LMS LNS 350, Cambridge University Press, 2008, pp. 177–206.
- [14] M. OTERO, Y. PETERZIL AND A. PILLAY, Groups and rings definable in o-minimal expansions of real closed fields, *Bull. London Math. Soc.*, 28 (1996), pp. 7–14.
- [15] Y. PETERZIL, Returning to semi-bounded sets, J. Symbolic Logic, 74 No. 2 (2009), pp. 597–617.
- [16] Y. PETERZIL, A. PILLAY AND S. STARCHENKO, Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc., 352 (2000), pp. 4397–4419.
- [17] Y. PETERZIL, A. PILLAY AND S. STARCHENKO, Linear groups definable in o-minimal structures, J. Algebra, 247 (2002), pp. 1–23.
- [18] Y. PETERZIL AND S. STARCHENKO, Definable homomorphisms of abelian groups in ominimal structures, Ann. Pure Appl. Logic, 59 (2000), pp. 769–786.
- [19] Y. PETERZIL AND S. STARCHENKO, On torsion-free groups in o-minimal structures, *Illinnois J. Math.*, 49(4) (2005), pp. 1299–1321.
- [20] Y. PETERZIL AND C. STEINHORN, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc., 59 (1999), pp. 769–786.
- [21] A. PILLAY, On groups and fields definable in o-minimal structures, J. Pure and Appl. Algebra, 53 (1988), pp. 239–255.
- [22] J.J. ROTMAN, An Introduction to the Theory of Groups, GTM 148, Fourth edition, Springer-Verlag, 1995.
- [23] A. STRZEBONSKI, Euler characteristic in semialgebric and other o-minimal groups, J. Pure Appl. Algebra, 86 (1994), pp. 173–201.