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Abstract. A characterization of groups definable in o-minimal structures
having maximal definable definably compact subgroups is given. This follows
from a definable decomposition in analogy with Lie groups, where the role of
maximal tori is played by maximal 0-subgroups. Along the way we give struc-
tural theorems for solvable groups, linear groups, and extensions of definably
compact by torsion-free definable groups.

1. Introduction and Preliminaries

We consider groups G definable in an o-minimal structure M with underlying
universe M . If M = R, then G is a finite-dimensional real Lie group ([21]). It is
well-known that a finite-dimensional real Lie group has maximal compact subgroups
(all conjugate) whose homotopy type coincides to the homotopy type of the whole
group. Moreover:

Fact 1.1. ([11]). Let L be a connected real Lie group.
For every maximal torus T of L there is a maximal compact subgroup K of G

and 1-dimensional connected torsion-free closed subgroups H1, . . . ,Hs such that

K =
⋃
x∈K

T x L = K ·H1 · · ·Hs K ∩Hi = {e}.

In the o-minimal context the corresponding notion of compactness is given in
[20]: a definable set X is definably compact if every definable curve is completable
in X. It turns out that a definable group G is definably compact if and only if
G does not contain any infinite torsion-free definable subgroup ([8, 9, 16, 20]). As
remarked in [19], definable torsion-free groups are definably connected, so one can
note the analogy with Lie groups: a Lie group L is compact if and only if L does
not contain any infinite connected torsion-free closed subgroup.

In general a definable group does not contain a maximal definable definably
compact subgroup. However, if we restrict ourselves to the semisimple case, then
we are able to prove the following (see Section 5):

Proposition 1.2. Every definable group has a (unique up to conjugation) maximal
definable semisimple definably compact subgroup.

Moreover we will show how in the o-minimal setting the notion of "maximal
torus" (i.e. maximal abelian connected compact subgroup) of a Lie group finds
an analogue in the notion of "maximal 0-subgroups", i.e. 0-Sylow (see Section 2
for the definitions). Like in the Lie context, 0-Sylow are abelian and definably
connected ([23]). However a 0-Sylow might not be definably compact, and its
maximal definable torsion-free subgroup turns out to be an important invariant of
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the group, and the only obstruction to the existence of maximal definable definably
compact subgroups:

Theorem 1.3. Let T be a 0-Sylow of a definable group G. Then the maximal
definable torsion-free subgroup N (T ) of T does not depend on T . Moreover it is
central and invariant by definable automorphisms of G. We denote it by A(G).

Suppose G is definably connected. Then G has a maximal definable definably
compact subgroup if and only if A(G) is trivial.

In the proof of Theorem 1.3 (see Proposition 5.5) we will actually show that
A(G) = {e} and the property that G has a maximal definable definably compact
subgroup are both equivalent to the fact that G admits a definable compact·torsion-
free decomposition:

Definition 1.4. We say that a definable group G has a definable compact·torsion-
free decomposition if there are definable subgroups K and H of G where

G = K ·H and K ∩H = {e}
such that K is definably compact and H is torsion-free.

Our main result is the following decomposition:

Theorem 1.5. Let G be a definable definably connected group.
For every 0-Sylow T of G there is a maximal definable torsion-free subgroup H

and a definable definably connected subgroup P such that

(∗) P =
⋃
x∈P

T x G = P ·H P ∩H = A(G).

Moreover for every cofactor C of N (T ) in T there is an abstract subgroup K ⊂ P
such that

(∗∗) K =
⋃
x∈K

Cx G = K ·H K ∩H = {e}.

The canonical projection π : G→ G/N (G) induces an isomorphism between K and
the maximal definable definably compact subgroup of G/N (G).

Also P = A(G) ×K is the smallest definable subgroup of G containing K, and
[P, P ] = [K,K] is a maximal definable semisimple definably compact subgroup of G.

Conversely, for every maximal definable semisimple definably compact subgroup
S of G there is a 0-Sylow T of G, a maximal definable torsion-free subgroup H, a
definable definably connected subgroup P and an abstract subgroup K satisfying (∗)
and (∗∗), and such that S = [P, P ] = [K,K].

Corollary 1.6. Let G be a definable definably connected group. Then G/A(G)
has a definable compact·torsion-free decomposition, and it is the maximal definable
quotient of G with a definable compact·torsion-free decomposition.

It follows that every definable definably connected group is a central extension
of a group with a definable compact·torsion-free decomposition by a definable de-
finably characteristic torsion-free subgroup.

The paper is organized as follows: the remain part of Section 1 contains basic
definitions and results. In Section 2 we introduce A(G). Section 3 is devoted to
the analysis of solvable groups. In Section 4 it is proved that every definable linear
group admits a definable compact·torsion-free decomposition. In Section 5 we give
the proof of the main results in the general case.
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We assumeM is an o-minimal expansion of an ordered group. A basic reference
for o-minimality is [5]. By “definable” we mean “definable inM with parameters”.
Many results about groups definable in o-minimal structures and some theorems
about Lie groups are used. One can see [13] for an overview about groups definable
in o-minimal structures, and [12] for an overview about Lie groups.

Let G, N , Q be definable groups. A definable extension of Q by N is a definable
group G containing N , together with a definable homomorphism π : G → Q such
that the sequence

1 −→ N
i−→ G

π−→ Q −→ 1

is exact, i.e. π is a surjective definable homomorphism and i(N) = N is the kernel
of π (where i : N → G is the inclusion map). We say that a definable extension
π : G → Q splits abstractly, if there is a surjective homomorphism s : Q → G such
that π◦s = idQ. We say that it splits definably if there is such a s which is moreover
definable. Thus if N is a normal definable subgroup of a definable group G, we can
always see G like a definable extension of G/N by N . The exact sequence

1 −→ N
i−→ G

π−→ G/N −→ 1

splits abstractly if and only if G contains a subgroup K isomorphic to G/N such
that N ∩K = {e} and N ·K = G, i.e. if and only if G is a semidirect product of
N and K. In this case we will write G = N oK or G = K n N and we will say
that K is a cofactor of N . The exact sequence above splits definably if and only if
there is a definable cofactor K of N in G.

If H,K < G are groups (no normality assumption here), we say that H is a
complement of K in G whenever G = K · H and K ∩ H = {e}. If all groups
involved are definable we say that H is a definable complement of K in G.

We denote byG0 the definably connected component of the identity in a definable
group G. It is the smallest definable subgroup of finite index in G ([21]). We say
that a group G is definably connected if it is definable and G = G0, so if G has no
proper definable subgroup of finite index.

A definably connected group G is said to be semisimple if does not contain
any infinite abelian normal (definable) subgroup. It is definably simple if does not
contain any proper non-trivial normal definable subgroup.

We summarize the main results which we will be using here:

Fact 1.7. Let G be a definable group.

(1) G has maximal definable torsion-free subgroups ([2]).
(2) G has a maximal normal definable torsion-free subgroup N (G) ([3]).
(3) If G is solvable then G/N (G) is definably compact ([6]), and G0/N (G) is

abelian ([18]).
(4) G0/N (G) = K · H, where K is a maximal definable definably compact

subgroup (and is definably connected and unique up to conjugation) and H
is a maximal definable torsion-free subgroup ([2]).

(5) If G/N (G) is definably compact, then G0 has a (unique up to conjugation)
definable Levi subgroup, i.e. a maximal definable semisimple subgroup S
such that G = N (G) · S ([4]).

(6) G/Z(G) is a definable linear group ([14]).
(7) Suppose G is definably compact and definably connected. Then the commu-

tator subgroup [G,G] is a definable semisimple group, and G = Z(G)0·[G,G]
([10]).
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(8) Suppose G is definably compact and definably connected. Then

G =
⋃
x∈G

T x

for every maximal definable torus T (i.e. T is a 0-Sylow) of G ([1], [7]).

2. 0-groups and 0-Sylow

In analogy with finite groups, Strzebonski develops in [23] a theory of definable
p-groups, proving corresponding “Sylow’s theorems”, where the cardinality of finite
p-groups is replaced by the o-minimal Euler characteristic of definable p-groups.

If P is a cell decomposition of a definable set X, the o-minimal Euler charac-
teristic E(X) is the integer defined as the number of even-dimensional cells in P
minus the number of odd-dimensional cells in P. This does not depend on P (see
[5, Chapter 4]). When X is finite then E(X) = card(X). Since for every A,B
definable sets, E(A×B) = E(A)E(B), the following holds:

Fact 2.1 ([23]). Let K < H < G be definable groups. Then
(a) E(G) = E(H)E(G/H).
(b) E(G/K) = E(G/H)E(H/K).

Fact 2.2 ([23]). Let G be a definable group. Then

|E(G)| = 1 ⇔ G is torsion-free.

In [23] Strzebonski also introduces 0-groups, which are further investigated by
Berarducci in [1]:

Definition 2.3. ([23]).
- A 0-group is a definable group G such that for every proper definable
subgroup H, E(G/H) = 0 (in particular, E(G) = 0).

- A 0-subgroup is a definable subgroup which is a 0-group.
- A 0-Sylow is a maximal 0-subgroup.
- A definable torus is a 0-group such that every definably connected sub-
group of it is a 0-group.

Fact 2.4. ([1], [23]).
(a) Every definable group G with E(G) = 0 contains a 0-subgroup.
(b) Every 0-group is abelian and definably connected.
(c) Every 0-subgroup is contained in a 0-Sylow.
(d) Any two 0-Sylow are conjugate.
(e) If H is a 0-subgroup of a definable group G, then

H is a 0-Sylow ⇔ E(G/H) 6= 0.

(f) A definable group is a definable torus if and only if it is abelian definably
connected and definably compact.

Remark 2.5. If A is an abelian definable definably connected group and H < A is
a torsion-free definable subgroup, then they are both divisible ([23]) and therefore
A contains a (possibly non-definable) direct cofactor of H (see for instance [22,
10.24]). Thus

A ∼= H × A/H.

In particular, if A is a 0-Sylow of a definable group G and H = N (A) is infinite,
then every cofactor K of N (A) in A is not definable, but is abstractly isomorphic by
the canonical projection π : A→ A/N (A) to a definable definably compact group.
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Proposition 2.6. Let T be a 0-Sylow of a definable group G. Then the maximal
definable torsion-free subgroup N (T ) of T does not depend on T . Moreover it is
central and invariant by definable automorphisms of G. We denote it by A(G).

Lemma 2.7. Every linear 0-group is definably compact.

Proof. Let G be a linear 0-group. By [17], every definable definably connected
linear abelian group splits into the product of definable 1-dimensional subgroups.
So G can be written as a product of definable groups G = N × K where N is
torsion-free and K is definably compact. Since E(G/K) = E(N) = ±1 and G is a
0-group, it follows that G = K. �

Lemma 2.8. Let T be a 0-Sylow of a definable group G. Then N (T ) ⊆ Z(G).

Proof. Since the quotient G/Z(G) is a definable linear group, it follows that the
group T/(T ∩ Z(G)) is a linear 0-group, so it is definably compact (Lemma 2.7).
It follows that N (T ) ⊆ Z(G), otherwise T/(T ∩ Z(G)) would contain an infinite
definable torsion-free subgroup, in contradiction with the fact that is definably
compact. �

Lemma 2.9. If T1 and T2 are 0-Sylow of a definable group G, then N (T1) = N (T2).

Proof. Let g ∈ G such that T1 = T g2 . As we observed in Remark 2.5, for i =
1, 2, Ti = N (Ti) × Ki, for some subgroups Ki which are abstractly isomorphic
to definable definably compact groups. Thus T1 = N (T2)g × Kg

2 , and therefore
N (T1) = N (T2)g. Since N (T2) is central in G (Lemma 2.8), the thesis follows. �

Proof of Proposition 2.6. By Lemma 2.8 and Lemma 2.9. Since a definable auto-
morphism ofG permutes its 0-Sylow, it follows thatA(G) is definably characteristic,
in particular it is a normal subgroup. Therefore A(G) ⊆ N (G). �

3. Solvable definable groups

In this section we show structure results for solvable definably connected groups,
giving the proof of Theorem 1.3 and Theorem 1.5 in the solvable case.

Proposition 3.1. Let T be a 0-Sylow of a definable solvable definably connected
group G. Then

G = T · N (G) and T ∩N (G) = A(G).

Moreover if T1 < G is a 0-subgroup such that G = T1 ·N (G), then T1 is a conjugate
of T .

Proof. Set N = N (G). If G is torsion-free then G = N and there is nothing to
prove. So suppose E(G) = 0 and let T be a 0-Sylow of G. Set G1 = T · N and
consider the following diagram:

G

E 6=0

E=0E 6=0

0-group
G1

T N

Since E(G/G1)E(G1/T ) = E(G/T ) 6= 0 (because T is a 0-Sylow: see Fact 2.4), it
follows that E(G/G1) 6= 0. On the other hand, G1/N is a definable subgroup of
the definable abelian, definably connected, definably compact group G/N , which
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is in particular a 0-group. Therefore E(G/G1) = E((G/N)/(G1/N)) = 0, unless
G/N = G1/N . It follows that G = G1, as claimed.

Since G/N is definably compact, it follows that T/(T ∩N) is definably compact
as well, so T ∩N = N (T ) = A(G).

Let T1 be a 0-subgroup of G such that G = T1 · N , and let S1 be a 0-Sylow
containing T1. Thus S1/T1 is definably isomorphic to (S1 ∩N)/(T1 ∩N), and then
E(S1/T1) = ±1. But S1 is a 0-group, so S1 = T1. It follows that T1 is a 0-Sylow,
and therefore a conjugate of T . �

Corollary 3.2. Every definable solvable definably connected group G is abstractly
isomorphic to a semidirect product N (G) oG/N (G).

Proof. Let T be a 0-Sylow of G. Then by 3.1 G = T · N (G). If T is definably com-
pact, then T ∩N (G) = {e} and T is a definable cofactor of N (G) in G. Otherwise,
T ∩ N (G) = N (T ) and it is infinite. If K is a cofactor of N (T ) in T (see Remark
2.5), i.e. T = N (T )×K, then K is a cofactor of N (G) in G. �

Proposition 3.3. Let G be a definable solvable definably connected group. Then
the following are equivalent:

(i) G has maximal definable definably compact subgroups.
(ii) G = K · N (G), for some definable definably compact subgroup K < G.

(iii) A(G) = {e}.

Proof. (i)⇒ (iii): Take K to be a maximal definable definably compact subgroup,
and T a 0-Sylow of G. Suppose, for a contradiction, that A(G) is infinite. Then
T = A(G)×C, for some abstract group C (see Remark 2.5). Note that K embeds
in C because K ∩ N (G) = {e} and C is abstractly isomorphic to G/N (G). Since
C is not definable, it follows that dimK < dim(G/N (G)), so there are arbitrarly
large finite subgroups F ⊂ C which are not in K (see [8] and [15] for the structure
of the torsion subgroup of a definable definably compact abelian group). It follows
that for any such an F , the definable group F ·K is definably compact and contains
K properly, contradiction.

(iii)⇒ (ii): By Proposition 3.1.

(ii)⇒ (i): Suppose G = K ·N (G), for some definable definably compact K < G.
Then K is a maximal definable definably compact subgroup of G. �

4. Definable linear groups

Theorem 4.1. Every definable definably connected linear group admits a definable
compact·torsion-free decomposition.

Proof. We refer to Definition 2.6. Suppose G is a definable definably connected
linear group, set N = N (G) and let π : G → G/N be the canonical projection.
Suppose G/N = K1 · H1 is a definable compact·torsion-free decomposition (see
Fact 1.7). Set G1 = π−1(K1). Note that G1 is definably connected because N and
K1 are definably connected.

We claim that the following definable exact sequence

1 −→ N
i−→ G1

π−→ K1 −→ 1

splits definably, i.e. N has a definable cofactor in G1. Let us consider the possible
cases for K1:

If K1 is abelian, then G1 is solvable. Applying Proposition 3.1 and Lemma 2.7,
we obtain that every 0-Sylow of G1 is a definable cofactor of N .
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If K1 is semisimple, then N is the solvable radical of G1 and by [17] G1 contains
a definable semisimple definably connected subgroup S such that G1 = N · S and
N ∩ S is finite. Since N is torsion-free, it follows that N ∩ S = {e} and therefore
S is a definable cofactor of N in G1.

Finally supposeK1 is neither abelian nor semisimple, and setG2 = π−1([K1,K1]).
Note that G2 is definably connected because [K1,K1] and N are definably con-
nected. By the semisimple case, the definable exact sequence

1 −→ N
i−→ G2

π−→ [K1,K1] −→ 1

splits definably. Let S be a definable cofactor of N in G2, i.e. a definable subgroup
of G2 definably isomorphic to [K1,K1].

Claim. There is a 0-Sylow T of G1 which is contained in NG1
(S), the normalizer

of S in G1.

Proof of the Claim. Suppose T is a 0-Sylow of NG1
(S). We want to show that T

is a 0-Sylow of G as well. Take g ∈ G1 and consider Sg. Since G2 is a normal
subgroup of G1 (because [K1,K1] is normal in K1), it follows that Sg ⊂ G2, and
it is a definable Levi subgroup of G2. Therefore there is some x ∈ N such that
Sg = Sx. This gives a well-defined bijective definable map

G/NG1
(S) ←→ N/NN (S).

Since N is torsion-free, it follows that E(N/NN (K)) = ±1 = E(G/NG1(S)). Then
E(G1/T ) = E(G1/NG1

(S))E(NG1
(S)/T ) 6= 0, and T is a 0-Sylow of G as well

(Fact 2.4). �

Since T ⊂ NG1
(S), it follows that T ·S is a subgroup. Call it K. The fact that T

and S are definably compact (Lemma 2.7) implies that K is definably compact as
well. We know that π(S) = [K1,K1], so in order to conclude that K is a definable
cofactor of N in G1, it is enough to show that π(T ) contains Z(K1)0.

Because T is definably compact (Lemma 2.7), the restriction of π to T is a
definable isomorphism between T and a maximal definable torus T1 of K1. Since
Z(K1)0 is a normal definable torus and all maximal tori are conjugate, it follows
that T1 (and any other maximal torus) contains Z(K1)0.

We proved that G1 = K nN , for some definable definably compact K.
Define H = π−1(H1) < G. Then H is torsion-free and G = K ·H is a definable

compact·torsion-free decomposition of G. �

5. The general case

The maximal definable semisimple definably compact subgroup. We show
now that every definable group G has a maximal definable semisimple definably
compact subgroup S, and it is unique up to conjugation. It turns out that S is de-
finably isomorphic by the canonical projection π : G→ G/N (G) to the commutator
subgroup of the maximal definable definably compact subgroup of G/N (G).

Proof of Proposition 1.2. Let G be a definable group. Since semisimple definable
groups are definably connected by definition, we can suppose G is definably con-
nected. Let K1 be the maximal definable definably compact subgroup of G/N (G),
and note that [K1,K1] is the unique maximal definable semisimple definably com-
pact subgroup of K1.

Let π : G→ G/N (G) be the canonical projection and define G1 = π−1([K1,K1]).
By [4] (see Fact 1.7), G1 has a definable Levi subgroup S1, and it is unique up to
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conjugation. We claim that S1 is a maximal definable semisimple definably compact
subgroup of G. If not, let S be a definable semisimple definably compact subgroup
containing S1 properly. Since S ∩ N (G) = {e}, it follows that π(S) is a definable
semisimple definably compact subgroup containing [K1,K1] properly, contradiction.

Let S2 be another maximal definable semisimple definably compact subgroup of
G. We want to show that S2 is a conjugate of S1. Again, since S2 ∩N (G) = {e} it
follows that π(S2) is a maximal definable semisimple definably compact subgroup of
G/N (G). Let K2 be a maximal definable definably compact subgroup of G/N (G)
containing π(S2). Then π(S2) = [K2,K2]. Define G2 = π−1([K2,K2]).

Since K2 is a conjugate of K1, let ḡ ∈ G/N (G) such that [K2,K2] = [K1,K1]ḡ.
Set G2 = N (G) o S2. Then for every g ∈ π−1(ḡ), denoted by a(g) the conjugation
map given by x 7→ gxg−1, the following diagram commutes:

S1

π|S1

��

a(g) // Sg1

π|
S
g
1

��

i // G2

π|G2

��
[K1,K1]

a(ḡ) // [K1,K1]ḡ oo
id // [K2,K2]

Thus Sg1 is a Levi subgroup of G2 and therefore a conjugate of S2 in G2. This
proves that S1 and S2 are conjugate in G. �

Remark 5.1. Suppose G is a definable group and π : G→ G/N (G) is the canonical
projection. The proof above shows that:

(a) if S is a maximal definable semisimple definably compact subgroup of G,
then π(S) = [K,K], where K is a maximal definable definably compact
subgroup of G0/N (G) containing π(S);

(b) conversely, for every maximal definable definably compact subgroup K of
G0/N (G) there is a maximal definable semisimple definably compact sub-
group S of G such that π(S) = [K,K].

Extensions of a definably compact group by a torsion-free group. In [2]
it is shown that every definable extension of a definable torsion-free group by a
definable definably compact group splits definably in a direct product. We consider
here the specular case of a definable extension of a definably compact group by a
torsion-free definable group, and we will make use of the following:

Lemma 5.2. Let G be a definable group. Then:
(i) for every maximal definable semisimple definably compact subgroup S of G,

there is a 0-Sylow T of G such that T ⊂ NG(S);
(ii) for every 0-Sylow T of G there is a maximal definable semisimple definably

compact subgroup S of G such that T ⊂ NG(S).

Proof. We can suppose G is definably connected.
Note that (i) ⇔ (ii) since all 0-Sylow are conjugate (Fact 2.4) and all maximal

definable semisimple definably compact subgroups are conjugate as well (Proposi-
tion 1.2). Indeed for every g ∈ G,

T ⊂ NG(S) ⇔ T g ⊂ NG(Sg).

We show (i). Let S be a maximal definable semisimple definably compact sub-
group of G and consider the canonical projection π : G→ G/N (G). Suppose K is a
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maximal definable definably compact subgroup of G/N (G) containing π(S). Define
G1 := π−1(K) and G2 := [K,K]. Note that S is a definable cofactor of N (G) in
G2, so we can apply the same argument used in the proof of Claim I of Theorem
4.1 to find a 0-Sylow T of G1 in NG(S). Note that E(G/G1) = E(H) = ±1 (where
H is a torsion-free definable complement of K in G/N (G)), so T is a 0-Sylow of G
as well. �

Proposition 5.3. Let G be a definable extension of a definable definably connected
definably compact group K by a definable torsion-free group N . Then the exact
sequence

1 −→ N
i−→ G

π−→ K −→ 1

splits abstractly, and it splits definably if and only if A(G) is trivial.
Moreover for every direct complement C of A(G) in a 0-Sylow T of G (see

Remark 2.5), there is a cofactor KC of N in G such that

KC =
⋃
x∈K

Cx.

The commutator subgroup [KC ,KC ] is definable, and is a maximal definable semisim-
ple definably compact subgroup of G.

Proof. Note that N = N (G). Let us consider the possible cases for K:
If K is abelian, then G is solvable and the thesis follows by Corollary 3.2 and

Proposition 3.3. In this case KC = C and [KC ,KC ] is trivial.
If K is semisimple, then every definable Levi subgroup S of G (see Fact 1.7) is

a definable cofactor of N and the extension above splits definably. Every definable
maximal torus T of S is a 0-Sylow of G (Fact 2.4) and then A(G) = {e}. Note
that definable Levi subgroups of G are also maximal definable definably compact
subgroups.

Suppose finally K is neither abelian nor semisimple. Let T be a 0-Sylow of G,
and C a direct complement of N (T ) = A(G) in T . By 1.2, 5.1 and 5.2 there is a
maximal definable semisimple definably compact subgroup S ofG which is definably
isomorphic to [K,K] by π|S : S → [K,K], and such that T ⊂ NG(S). In particular
C ⊂ NG(S) and therefore KC := C · S is a subgroup. The map π|KC

: KC → K is
an isomorphism, [KC ,KC ] = S, and π(T ) = π(C) is a maximal definable torus of
K. It follows that

K =
⋃
x∈K

π(C)x,

and therefore
KC =

⋃
x∈KC

Cx.

If T is definably compact (and therefore A(G) is trivial), then KC is definable.
Otherwise, suppose for a contradiction that there is a definable cofactor K1 of

N in G. Then every definable maximal torus of K1 would be a definably compact
0-Sylow of G, in contradiction with the fact that T is not. �

A definable Lie-like decomposition. We give now the proof of Theorem 1.5.

Lemma 5.4. Let A be a 0-group. Suppose C is a cofactor of N (A) in A. Then
there are no proper definable subgroup of A containing C.

Proof. If not, suppose B is a proper definable subgroup of A containing C. Set
N = N (A). Since A/B is definably isomorphic to (A∩N)/(B ∩N), it follows that
E(A/B) = E((A ∩ N)/(B ∩ N)) = ±1 (Fact 2.2), in contradiction with the fact
that A is a 0-group. �
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Proof of Theorem 1.5. If N (G) is trivial, then A(G) is trivial too and the thesis fol-
lows by Fact 1.7. So suppose N (G) is infinite and consider the canonical projection
π : G→ G/N (G).

Fix T a 0-Sylow of G and C a cofactor of N (T ) = A(G) in T . Set T1 := π(T ) and
let K1 be a maximal definable definably compact subgroup of G/N (G) containing
T1. Let H1 be a definable torsion-free complement of K1 in G/N (G). Define
G1 := π−1(K1) and H = π−1(H1). By Proposition 5.3 applied to G1 there is a
subgroup K = KC of G1 such that K and H satisfy (∗∗). Moreover [K,K] is
definable and is a maximal definable semisimple definably compact subgroup of G1

(and therefore of G) and K = C · [K,K].
Let P be the smallest definable subgroup of G containing K. In order to show

(∗) we prove now some claims:

Claim I. P = T · [K,K].

Proof of Claim I. Define S := [K,K]. Since S � K and C ⊂ K, of course C ⊂
NG(S). Moreover T = A(G) × C and A(G) is central in G, so T ⊂ NG(S). It
follows that T ·S is a definable subgroup containing K, so P ⊆ T ·S. On the other
hand, by Lemma 5.4, T ⊂ P , so T · S ⊆ P , and Claim I is proved. �

Since T = A(G) × C, K = C · [K,K] and A(G) ⊆ Z(G) (Proposition 2.6), it
follows that P = A(G)×K.

Claim II. (T ∩ S)0 is a 0-Sylow of S.

Proof of Claim II. Being abelian (because T is abelian), definably connected and
definably compact (because S is definably compact), (T ∩ S)0 is a 0-group (Fact
2.4). Moreover by Claim I the definable set S/(T ∩S) is in definable bijection with
P/T , therefore

E(S/(T ∩ S)0) = E(P/T )E((T ∩ S)/(T ∩ S)0) 6= 0,

and by Fact 2.4, Claim II is proved. �

By Claim II and Fact 1.7, it follows that S =
⋃
x∈S(T ∩ S)x and S ⊂

⋃
x∈P T

x.
For the other inclusion, note that

T ⊂ NG(S) ⇒ T y ⊆ T · S = P ∀ y ∈ S ⇒ T x ⊆ P ∀x ∈ P.

Therefore P =
⋃
x∈P T

x.

Conversely, assume S is a maximal definable semisimple definably compact sub-
group of G, and take T to be a 0-Sylow of G such that T ⊂ NG(S) (Lemma
5.2). Define P := T · S and apply Proposition 5.3 to P to find K. Given
K1 = π(K) ⊂ G/N (G), take H1 to be a definable torsion-free complement of
K1 and set H = π−1(H1). �

Maximal definably compact subgroups and A(G). In this last subsection we
complete the proof of Theorem 1.3.

Proposition 5.5. Let G be a definable definably connected group. The following
are equivalent:

(i) G has a maximal definable definably compact subgroup.
(ii) G admits a definable compact·torsion-free decomposition.

(iii) Every 0-subgroup of G is definably compact (i.e. A(G) = {e}).
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Proof. If G is solvable, then see Proposition 3.3. Assume G is not solvable.
Suppose G = K ·H is a definable compact·torsion-free decomposition. Then by

Theorem 1.5, A(G) = {e}. Note that K is a maximal definable definably compact
subgroup of G. If not, let K1 be a maximal definable definable definably compact
subgroup of G containing K. Then K1 ∩ H is torsion-free (because H is torsion-
free) and definably compact (because every definable subgroup is closed by [21]).
So K1 ∩H = {e} and K1 = K.

Assume now G does not admit a definable compact·torsion-free decomposition.
Then by Theorem 1.5, A(G) is infinite. Suppose, for a contradiction, K1 is a
maximal definable definably compact subgroup ofG. We can assumeK1 is definably
connected. Let T1 be a 0-Sylow of K1, and T be a 0-Sylow of G containing T1.
Note that K1 =

⋃
x∈K1

T x1 (Fact 1.7), and T = A(G) × T1 × C1 for some infinite
abelian (abstract) group C1 (see Remark 2.5). Define C = T1 × C1, and apply
Theorem 1.5 to find an abstract subgroup K satisfying (∗∗). Then for every finite
subgroup F ⊂ C1, we get K1 ( F ·K1 ( K, in contradiction with the fact that K
is a maximal definable definably compact subgroup of G. �

Proof of Theorem 1.3. The first part is Proposition 2.6. The second part follows
by Proposition 5.5. �

Acknowledgments. I thank Margarita Otero for suggesting me the problem
to find an o-minimal analogue to the existence of maximal compact subgroups of
Lie groups, and Alessandro Berarducci for useful remarks.
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