Gara di Gruppi 2021, Proposte di Soluzione

Dato che l'azione di G induce un omomorfismo iniettivo $G \to S_{11}$, possiamo assumere che G sia un sottogruppo di S_{11} . Notiamo ora che $7920 = 11 \cdot 5 \cdot 144$, per cui un 11-Sylow P di G è generato da un 11-ciclo σ e inoltre $P = \langle \sigma \rangle \in Syl_{11}(S_{11})$. Ora, il normalizzatore $N = N_{S_{11}}(P)$ ha cardinalità $11 \cdot 10$, dato che $[S_{11}:N]$ è il numero di 11-Sylow di S_{11} , che coincide col numero di 11-cicli in S_{11} diviso il numero di 11-cicli in uno dei Sylow, e vale pertanto

$$[S_{11}:N] = \frac{10!}{10} = 9!.$$

Di conseguenza, $|N_G(P)| = |N \cap G|$ divide $11 \cdot 10$. D'altro canto, $P < N_G(P)$, e pertanto le possibilità per $|N_G(P)|$ sono $11, 2 \cdot 11, 5 \cdot 11, 2 \cdot 5 \cdot 11$. Usando il fatto che $[G:N_G(P)]$ è congruo a 1 modulo 11, si ottiene subito che l'unica possibilità è $|N_G(P)| = 55$, il che conclude il punto 1.

Per provare il punto 2., osserviamo intanto che G è un sottogruppo transitivo di S_{11} , dato che contiene un 11-ciclo. Se H è normale in G, notiamo le orbite dell'azione di H devono essere equipotenti, dato che gli stabilizzatori H_i dei punti $\{1,\ldots,11\}$ sono coniugati in G, e quindi hanno la stessa cadinalità; infatti, se $\sigma(1)=i$ per un certo $\sigma\in G$, lo stabilizzatore G_i del punto i ha la forma ${}^{\sigma}G_1$, e quindi

$$H_i = G_i \cap H = {}^{\sigma}G_1 \cap H = {}^{\sigma}(G_1 \cap H) = {}^{\sigma}H_1$$

dato che H è normale. D'altra parte, 11 è primo, e pertanto l'azione di H è banale (il che può succedere solo se H = 1) oppure transitiva.

Il fatto che H sia transitivo implica tuttavia che contiene un 11-ciclo $\sigma \in G$: infatti, per l'equazione delle orbite si ha che 11 divide |H|, e l'affermazione segue dal teorema di Cauchy. D'altra parte, $\langle \sigma \rangle$ è un p-Sylow di G, e la normalità di H implica che ogni p-Sylow di G è contenuto in H; quindi, $[H:N_H(P)]=[G:N_G(P)]$. Ora, però,

$$|H| = [H : N_H(P)] \cdot [N_H(P) : P] \cdot |P| = [G : N_G(P)] \cdot [N_H(P) : P] \cdot |P| \le |G|$$

da cui

$$\frac{|G|}{|H|} = \frac{[N_G(P):P]}{[N_H(P):P]}$$

è 1 o 5 per il punto 1.. Resta quindi da escludere il caso [G:H]=5, che si verifica se e solo se $P=N_H(P)$. In tal caso, però, il numero di 11-elementi di H è

$$10/11 \cdot |H| = |H| - [H : P]$$

dato che P è ciclico. Tuttavia, questo implica che gli elementi a carattere non nullo

di H sono al più [H : P]; notando però che, per $\tau \in H$, $\chi(\tau) = 11$ se e solo se $\tau = 1$, si ottiene l'assurdo

$$|H| = \sum_{\tau \in H} \chi(\tau) \leqslant 11 + 10([H:P]-1) < |P| \cdot [H:P],$$

per il lemma di Burnside, e il punto 3. risulta dimostrato.

Be $H \in \mathcal{C}$, tutti i suoi sottogruppi propri sono normali in G. In particolare, $H_G = \bigcap_{g \in G} H^g$ contiene tutti i sottogruppi propri di H, ed è quindi l'unico sottogruppo massimale di H. Da ciò segue subito che H è ciclico: se infatti $x \in H \setminus H_G$, il sottogruppo $\langle x \rangle$ non è contenuto in H_G , ed è pertanto l'intero H. D'altra parte, è evidente che un gruppo ciclico ha un unico sottogruppo massimale se e solo se il suo ordine è la potenza di un primo: in conclusione, è necessario che H sia ciclico di ordine p^n , per qualche p primo e $n \in \mathbb{N}$.

Prima di mostrare la sufficienza, esaminiamo il punto 2.: nell'ipotesi in cui $\mathcal{C} = \operatorname{Syl}_p(G)$, e P è un p-Sylow di G, possiamo supporre $P \simeq C_{p^n}$ per un opportuno n. D'altra parte, preso Q_i un q_i -Sylow di G per ogni divisore primo q_1, \ldots, q_k di |G| diverso da p, abbiamo che Q_i è normale in G, e pertanto lo è anche $Q = \prod_i Q_i$. Di conseguenza, dato che $G = \langle Q_1, \ldots, Q_k, P \rangle = \langle Q, P \rangle$, G si scrive come prodotto semidiretto $Q \times P$. Mostriamo allora che Q deve essere ciclico di ordine primo q_1 : fissiamo $x \in Q_1$, e consideriamo $H = \langle x \rangle P$ (che è un sottogruppo di G in quanto $\langle x \rangle$ è normale in G). Dato che H è normale in G per ipotesi, e $H \supset P$, H contiene i coniugati di P, e pertanto $\langle x \rangle$ agisce transitivamente su $\operatorname{Syl}_p(G)$: di conseguenza, per ogni $g \in G$ esiste $h \in H$ tale che $P^g = P^x$. Questo implica che $gx^{-1} \in N_G(P)$, che è tuttavia uguale a P dato che per ogni elemento $g \in Q$ l'azione di $g \in Q$ su $g \in Q$ l'azione di $g \in Q$ su $g \in Q$ l'azione di $g \in Q$ l'azione

Per concludere, vediamo il fatto seguente: se $G = C_q \rtimes_{\varphi} C_{p^n}$ per certi primi p,q e $n \in \mathbb{N}$ e un omomorfismo $\varphi : C_{p^n} \to \operatorname{Aut}(C_q) = C_{q-1}$, G ha la proprietà voluta se e solo se $\varphi(1)$ ha ordine p. Sia infatti M l'unico sottogruppo massimale di C_{p^n} : se l'ordine di $\varphi(1)$ è maggiore di p, $\ker(\varphi)$ è strettamente contenuto in M, e pertanto l'azione di M per coniugio su C_q è non banale; quindi, C_qM non è abeliano e in particolare M non è normale in G. Viceversa, se l'ordine di $\varphi(1)$ è esattamente p, $\ker(\varphi) = M$ e pertanto $Z(G) \supset C_q \times M$ è proprio uguale a C_qM e ha indice p in G; inoltre, M coincide con l'intersezione dei p-Sylow di G. Se quindi H < G, abbiamo due casi:

- 1. o H è un p-sottogruppo di G, e in tal caso $H \in Syl_p(G)$ oppure H < Z(G) e quindi è normale in G;
- 2. o H \supset C $_q$, e in tal caso è normale in G in quanto H/C $_q$ è normale in G/C $_q \simeq$ C $_p$ n .

Pertanto, gli unici sottogruppi di G non normali sono i p-Sylow, come voluto. In conclusione, G ha la proprietà richiesta se e solo se $G \simeq C_q \rtimes_{\phi} C_{p^n}$ con ϕ di ordine

p, e ciò mostra contestualmente la sufficienza nel punto 1.

Per mostrare il punto 6., osserviamo che se M < G è massimale, allora $G/M \simeq C_p$ per qualche primo p. Di conseguenza, $M > pG = \{px \mid x \in G\}$ e, in generale, $\Phi(G) \supset \bigcap_q qG$ dove q varia tra i divisori di |G|. D'altra parte, se A_p è l'unico p-Sylow di G, si ha $G = \prod_p A_p$ e quindi $qG = qA_q \times \prod_{p \neq q} A_p$, da cui

$$\Phi(\mathsf{G})\supset \prod_{\mathfrak{p}} \mathfrak{p} \mathsf{A}_{\mathfrak{p}}.$$

Se quindi $\Phi(G) = 1$, anche $\prod_p pA_p = 1$, per cui ogni A_p è abeliano elementare (cioè isomorfo a $C_p^{\oplus n}$ per qualche n) e la tesi segue.

Notiamo ora che un gruppo finito G è NC se e solo se $\Phi(G)=1$: infatti, è chiaro che un sottogruppo normale N di G ammette un complemento se e solo se esiste M < G massimale tale che NM = G, e ciò equivale al fatto che $N \not \leq M$. Pertanto, $N \neq 1$ ammette un complemento se e solo se $N \not \in \Phi(G)$, e questo forza $\Phi(G)$ (che è certamente normale) a essere 1.

Dal punto 6. segue quindi che tutti i gruppi abeliani finiti i cui Sylow sono abeliani elementari sono centri di gruppi NC (essi stessi); vediamo che sono anche gli unici.

Per verificarlo, è sufficiente mostrare che, per un gruppo finito G, la condizione $\Phi(G) = 1$ implica $\Phi(Z(G)) = 1$. Se infatti $\Phi(Z(G))$ fosse non banale, ammetterebbe un complemento H in G per quanto detto sopra; tuttavia, è facile vedere che $H \cap Z(G)$ sarebbe allora un complemento in Z(G) per $\Phi(Z(G))$: dato $z \in Z(G)$, si ha z = fh per certi $f \in \Phi(Z(G))$, $h \in H$, e ciò implica che $h = zf^{-1} \in Z(G)$. Dato che la condizione tovata è assurda, dev'essere $\Phi(Z(G)) = 1$.

Dato che K è normale in P e Q, si ha P, Q \subset N = N_G(K), e in particolare P è un p-Sylow di N_G(K). Dato che S \cap N è un p-sottogruppo di N e i p-Sylow di N sono tutti coniugati, esiste $y \in$ N tale che S \cap N \subset P^y, da cui

$$S \cap Q^y \subset P^y \cap Q^y = (P \cap Q)^y$$

il che implica $P \cap Q \supset S^{y^{-1}} \cap Q$, come voluto al punto 8..

Se G ha un p-Sylow abeliano, scegliamo P, Q in modo che P \cap Q abbia ordine minimo e fissiamo K = P \cap Q, il che è possibile perché l'abelianità di P e Q implica che K è normale in entrambi: per minimalità, il contenimento P \cap Q \supset S^x \cap Q è un'uguaglianza. Pertanto, per ogni S \in Syl_p(G) esiste $x \in N_G(P \cap Q)$ tale che $(P \cap Q)^{x^{-1}} \subset S$, e vale $(P \cap Q)^{x^{-1}} = P \cap Q$. In conclusione, l'intersezione P \cap Q è contenuta in ogni S \in Syl_p(G), che è quanto cercato al punto 9...

Supponiamo ora, come al punto 10., che G sia semplice e $\mathfrak{n}=\mathfrak{n}_p(G)<\mathfrak{p}^2$. Vediamo intanto che i p-Sylow di G sono abeliani: se $P\in Syl_p(G)$, l'azione di G sui laterali di $N_G(P)$ induce un omomorfismo iniettivo (perché G è semplice) $G\to S_n$,

che mappa gli elementi di P in elementi di ordine p, dato che $n < p^2$: pertanto, P è abeliano elementare.

Rimane da escludere che |P| > p: per il punto precedente, è sufficiente mostrare che in tal caso $P \cap Q \neq 1$ per ogni coppia $P, Q \in Syl_p(G)$. In effetti, $P \cap Q = P \cap N_G(Q)$ per il secondo teorema di Sylow, e pertanto $[P:P \cap Q]$ è il numero di coniugati di Q tramite elementi di P, ed è quindi $< p^2$, da cui si ottiene $P \cap Q \neq 1$.

Notiamo intanto che un gruppo X quasiciclico ha tutti elementi di ordine finito, dato che un gruppo isomorfo a **Z** contiene sottogruppi non confrontabili rispetto all'inclusione. Per lo stesso motivo, tutti i suoi elementi sono p-elementi per uno stesso primo p: se X avesse un elemento di ordine p e uno di ordine q per p, q primi distinti, $\langle p \rangle$ e $\langle q \rangle$ non sarebbero confrontabili.

E' quindi chiaro che, se X è finito, è quasiciclico se e solo se è un p-gruppo ciclico, in quanto possiede un unico sottogruppo massimale. D'altra parte, se X è infinito, per quanto detto sopra possiede esattamente un sottogruppo X_n isomorfo a C_{p^n} per ogni $n \in \mathbb{N}$, dove p è un primo fissato, e inoltre $X = X_p := \bigcup_n X_n$.

Se ora $\overline{X} = \mathbb{C}^*$, i suoi elementi di ordine finito sono esattamente le radici nesime dell'unità, al variare di n, e per un primo p fissato il suo unico p-Sylow P è il sottogruppo delle radici p^k-esime di 1, al variare di k: è immediato notare che $P \simeq X_p$. Alternativamente, è possibile prendere $\overline{X} = \mathbb{Q}/\mathbb{Z}$ e osservare che un p-Sylow di \overline{X} è ancora isomorfo a X_p .

Sia invece G come nel punto 12., e supponiamo che abbia centro infinito: dato che G è di torsione, Z(G) contiene p-sottogruppi di ordine arbitrariamente alto, che tuttavia sono normali in G. Ne segue che tutti i sottogruppi di G di ordine finito sono normali, e pertanto unici fissato l'ordine.

Se invece G' è finito, è l'unico sottogruppo del suo ordine; inoltre, per ipotesi, tutti i suoi massimali sono coniugati. Ma questo implica facilmente che G' è ciclico, dato che è un p-gruppo e pertanto i suoi massimali sono normali (in effetti, un *qualsiasi* gruppo finito i cui massimali sono tutti coniugati deve essere un p-gruppo, dato che altrimenti un massimale di G dovrebbe contenere un p-Sylow di G per ogni divisore primo p di |G|). D'altra parte, G/G' è abeliano e quindi quasiciclico: per corrispondenza, G possiede un unico sottogruppo di ordine p^n per ogni n tale che $p^n \ge |G'|$, e dato che G' è ciclico lo stesso vale per $p^n < |G'|$. In conclusione, G stesso è ciclico (e G' = 1).