Gara di Gruppi 2022, 9 dicembre

Per un gruppo finito G, la *misura di Chermak-Delgado* di un suo sottogruppo H è data da $m_G(H) = |H| \cdot |C_G(H)|$.

1. Per H, K < G, mostrate che valgono

$$m_G(H)\leqslant m_G(C_G(H)),\quad m_G(H)\,m_G(K)\leqslant m_G(H\cap K)\,m_G(\langle H,K\rangle),$$

e dite quando vale l'uguaglianza.

- **2.** Provate che esiste N < G abeliano e caratteristico tale che $[G:N] \geqslant [G:A]^2$ per ogni A < G abeliano.
- 3. Supponiamo che, al variare di H < G, m_G assuma esattamente due valori. Dimostrate che G è un p-gruppo, e caratterizzate Z(G).

B 4. Mostrate che un gruppo di ordine $3^2 \cdot 5 \cdot 7 = 315$ ha un unico 7-Sylow. Sia G un gruppo tale che $n_7(G) = 15$.

- 5. Se G ha ordine minimo tra i gruppi con $n_7(G) = 15$, provate che G si immerge in A_{15} .
- 6. Dimostrate inoltre che un 7-Sylow di G ha ordine 7.
- 7. Concludete che nessun gruppo finito G ha esattamente 15 7-Sylow.

8. Per x, y in un gruppo G, definiamo $[x,y] = x^{-1}y^{-1}xy$. Dati $x,y,z \in G$ tali che y commuta con [x,z], mostrate che

$$[xy, z] = [x, z][y, z].$$

Se inoltre $x, y \in G$ commutano con [x, y], provate che per ogni $n \in \mathbb{N}$

$$[x,y]^n = [x^n,y] = [x,y^n], \quad (xy)^n = x^n y^n [y,x]^{\binom{n}{2}}.$$

Data una proprietà **P** di un gruppo, diciamo che G è *non* **P** *minimale* se G è l'unico dei suoi sottogruppi che non verifica **P**.

- 9. Sia G un p-gruppo finito non abeliano minimale. Calcolate $[G : Z(G)] \in |G'|$.
- 10. Classificate i p-gruppi finiti non ciclici minimali.

11. Sia **Q** il gruppo additivo dei razionali. Se A, $B < \mathbf{Q}$, dimostrate che ogni isomorfismo tra A e B è della forma $x \mapsto qx$ per qualche $q \in \mathbf{Q}$.

12. Mostrate che esistono infiniti gruppi G non isomorfi tali che $Aut(G) \simeq C_2$.

 $\mbox{\bf E} \mbox{ Sia } G=G_0$ un gruppo finito tale che Z(G)=1 e, per ogni i>0, poniamo $G_i=Aut(G_{i-1}).$

13. Mostrate che $C_{Aut(G)}(Inn(G)) = 1$ e provate che, per ogni i, G_i si identifica con un sottogruppo normale di G_{i+1} .

Per G e G_i come sopra, sia $\tau(G)$ il minimo n, se esiste, tale che $G_n = G_{n+1}$.

14. Trovate il minimo valore N_s tale che $\tau(S) \leqslant N_s$ per ogni gruppo semplice S non abeliano.