Prova scritta di matematica

3.7	
Nome e cognome:	
MOTHE E COSHOHIE.	

Istruzioni per la consegna

- Presentare con chiarezza la strategia risolutiva adottata, indicando i teoremi e le proprietà utilizzati e motivando ogni passaggio del ragionamento.
- Utilizzare un linguaggio matematico corretto e coerente, rispettando il formalismo e la simbologia propri della disciplina.
- Esporre il procedimento risolutivo in modo ordinato e preciso.

[40 pt] Esercizio 1. Calcolare i seguenti limiti di funzione:

(a)
$$\lim_{x \to 2} \frac{x^2 + 5x - 14}{x^3 - 2x^2 + 3x - 6}$$

(e)
$$\lim_{x \to +\infty} \left(\frac{3x-1}{3x+5} \right)^x$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 4x - 1}}{x + 4}$$

(f)
$$\lim_{x \to +\infty} \frac{e^x + \ln^3 x + \arctan x}{x^2 + e^{2x}}$$

(c)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 + 3x + 2} \right)$$

(g)
$$\lim_{x \to +\infty} 4x \sin \frac{1}{x}$$
 [Esame di Stato, ordinaria 2009-2010]

(d)
$$\lim_{x\to 0} \frac{e^x - 1}{\ln(x^3 + 1)}$$

(h)
$$\lim_{x \to +\infty} \frac{1 - \cos x}{x^2}$$

[15 pt] Esercizio 2. Si consideri la circonferenza $\mathscr C$ di equazione $x^2+y^2=4$.

(a) Scrivere l'equazione della parabola \mathscr{P} con asse verticale, che passa per il punto di coordinate (1,1) e che è tangente a \mathscr{C} nel punto in cui questa interseca il semiasse positivo delle ordinate.

Si consideri ora la retta r di equazione y = k, con $k \in \mathbb{R}$.

- (b) Dopo aver stabilito per quali k la retta interseca sia \mathscr{C} sia \mathscr{P} , determinare le coordinate dei punti A e B in cui r interseca \mathscr{C} e le coordinate dei punti C e D in cui r interseca \mathscr{P} .
- (c) Calcolare il limite del rapporto $\frac{\overline{AB}}{\overline{CD}}$ quando r tende alla posizione nella quale risulta tangente sia a \mathscr{C} sia a \mathscr{P} .
- [5 pt] Esercizio 3. Sia $f: A \to \mathbb{R}$ una funzione, con A illimitato superiormente. Supponiamo inoltre che $\lim_{x\to +\infty} f(x)=1$. Dimostrare che, per x sufficientemente grande, la funzione assume valori maggiori di $\frac{1}{2}$.

[5 pt] Esercizio 4 (M&F). Consideriamo un corpo di massa m che viene lasciato cadere da fermo da un'altezza molto alta. Supponiamo inoltre che l'attrito viscoso con l'aria non sia trascurabile: in buona approssimazione, la forza di attrito viscoso è $\mathbf{F}_{av} = -\beta \mathbf{v}$, con $\beta > 0$ una costante. Posto t = 0 nel momento in cui il corpo viene lasciato, si può dimostrare che la velocità del corpo è data da

 $v(t) = \frac{mg}{\beta} \left(1 - e^{-\frac{\beta}{m}t} \right).$

Calcolare la *velocità limite*, ossia la velocità del corpo dopo che è trascorso un tempo sufficientemente lungo dall'istante di partenza.

- [10 pt] Esercizio 5. Si consideri la funzione $f(x) = \sqrt{x}$.
 - (a) Dimostrare che $\lim_{x\to+\infty} \sqrt{x} = +\infty$.
 - (b) Dimostrare che $\lim_{x\to 0^+} \sqrt{x} = 0$.
 - (c) Dimostrare che per ogni $x_0 > 0$ si ha $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

Es. 1	Es. 2	Es. 3	Es. 4	Es. 5