Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Non elementary methods in combinatorial number theory: Roth's and Sarkozy's theorems

Francesco Di Baldassarre

Relatore: Mauro Di Nasso

Dipartimento di Matematica, Università di Pisa

14 Ottobre 2016

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Introduction

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An area of research in combinatorial number theory deals with finding **arithmetic structure** in **large** enough subsets of natural numbers.

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

An area of research in combinatorial number theory deals with finding **arithmetic structure** in **large** enough subsets of natural numbers.

In our presentation we will consider theorems which aim to find arithmetic progressions like x, x + h, x + 2h and $x, x + h^2$ in sets with positive density.

イロト 不得下 イヨト イヨト

Introduction

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non elementary methods in combinatorial number theory

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

An area of research in combinatorial number theory deals with finding **arithmetic structure** in **large** enough subsets of natural numbers.

In our presentation we will consider theorems which aim to find arithmetic progressions like x, x + h, x + 2h and $x, x + h^2$ in sets with positive density.

Asymptotic density

Let $A \subseteq \mathbb{N}$, the asymptotic (upper) *density* of A is defined as

$$\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap [1, N]|}{N}$$

Francesco Di Baldassarre

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Let $A \subseteq \mathbb{N}$ such that $\overline{d}(A) > 0$. Then $x, x + r, x + 2r \in A$ for some $x, r \in \mathbb{N}$.

Roth's theorem

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

Let $A \subseteq \mathbb{N}$ such that $\overline{d}(A) > 0$. Then $x, x + r, x + 2r \in A$ for some $x, r \in \mathbb{N}$.

Sarkozy's theorem

Let $A \subseteq \mathbb{N}$ such that $\overline{d}(A) > 0$. Then $x, x + r^2 \in A$ for some $x, r \in \mathbb{N}$.

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

We will present two different ways to prove these theorems:

3

イロト イポト イヨト イヨト

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

We will present two different ways to prove these theorems:

• the *density increment* approach

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorer Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

We will present two different ways to prove these theorems:

- the density increment approach
- the energy increment approach

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

We will present two different ways to prove these theorems:

- the density increment approach
- the energy increment approach

We will then use these approaches in a nonstandard setting.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorer Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Fourier analysis

イロト イポト イヨト イヨト

Character

Let $\xi \in \mathbb{Z}_N$, we define

$$e_{\xi}(n) = e^{2\pi i \frac{\xi n}{N}}$$

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Fourier analysis

イロト イポト イヨト イヨト

Character

Let $\xi \in \mathbb{Z}_N$, we define

$$e_{\xi}(n) = e^{2\pi i rac{\xi n}{N}}$$

Let
$$\xi \in \mathbb{Z}_N$$
 and $f : \mathbb{Z}_N \to \mathbb{C}$.
We define

$$\hat{f}(\xi) = \mathbf{E}_{n \in \mathbb{Z}_N} f(n) \overline{e_{\xi}(n)} = \frac{1}{N} \sum_{n \in \mathbb{Z}_N} f(n) \overline{e_{\xi}(n)}$$

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

The *density increment* approach goes through two main steps

• no arithmetic progression \Rightarrow correlation with a character e_{ξ}

Density increment

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• correlation with a character $e_{\xi} \Rightarrow$ density increment

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorer Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

The *density increment* approach goes through two main steps

- no arithmetic progression \Rightarrow correlation with a character e_{ξ}
- correlation with a character $e_{\xi} \Rightarrow$ density increment

By iterating this process enough times we reach a contradiction.

Density increment

イロト 不得下 イヨト イヨト

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

イロト イポト イヨト イヨト

It is convenient to define

1

$$\Lambda_{3}(\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A})=\frac{1}{N^{2}}\sum_{n=0}^{N-1}\sum_{r=0}^{N-1}\mathbb{1}_{A}(n)\mathbb{1}_{A}(n+r)\mathbb{1}_{A}(n+2r)$$

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is convenient to define

$$\Lambda_{3}(\mathbb{1}_{A},\mathbb{1}_{A},\mathbb{1}_{A})=\frac{1}{N^{2}}\sum_{n=0}^{N-1}\sum_{r=0}^{N-1}\mathbb{1}_{A}(n)\mathbb{1}_{A}(n+r)\mathbb{1}_{A}(n+2r)$$

Roth's theorem

For any $N \in \mathbb{N}$ and for any $A \subseteq [1, N]$ such that $|A| = \delta N > 0$ we have

$$\Lambda_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A)=\Omega_\delta(1)$$

i.e. $\Lambda_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) \ge C_{\delta}$ for some positive constant C_{δ} depending only on δ .

Francesco Di Baldassarre

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Step 1. No AP implies correlation

We want to show that if A does not contain an arithmetic progression of length 3 then A is correlated with some character e_{ξ} .

Proposition

Let $A \subseteq [1, N]$ with $|A| = \delta N$ for some $0 < \delta \le 1$. Assume $N \ge \frac{100}{\delta^2}$ and that A does not contain any arithmetic progression of length 3. Then there exists ξ such that

$$\left|\mathsf{E}_{n\in[1,N]}(\mathbb{1}_{A}(n)-\delta)e_{\xi}(n)
ight|=\Omega(\delta^{2})$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theoren Nonstandard setting

Conclusions

Step 2. Correlation implies density increment

We want a partition

$$[1, N] = \bigsqcup_{j=1}^m P_j \sqcup E$$

such that

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Step 2. Correlation implies density increment

We want a partition

$$[1,N] = \bigsqcup_{j=1}^m P_j \sqcup E$$

such that

• $P_j = \{s_j + hn\}_{n \le c\sqrt{N}}$ are arithmetic progressions

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Step 2. Correlation implies density increment

We want a partition

$$[1,N] = \bigsqcup_{j=1}^m P_j \sqcup E$$

such that

- $P_j = \{s_j + hn\}_{n \le c\sqrt{N}}$ are arithmetic progressions
- e_{ξ} fluctuates only little on each P_j , i.e.

$$|e_{\xi}(x)-e_{\xi}(y)|\leq\epsilon$$
 for $x,y\in P_{j}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Francesco Di Baldassarre

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Step 2. Correlation implies density increment

We want a partition

$$[1,N] = \bigsqcup_{j=1}^m P_j \sqcup E$$

such that

- $P_j = \{s_j + hn\}_{n \le c\sqrt{N}}$ are arithmetic progressions
- e_{ξ} fluctuates only little on each P_j , i.e.

$$|e_{\xi}(x) - e_{\xi}(y)| \leq \epsilon ext{ for } x, y \in P_j$$

• E is small

- 4 同 6 4 日 6 4 日 6

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To find the spacing h we use the

Kronecker approximation theorem

For any M > 0 and $\xi \in \mathbb{R}$ there exists an integer 0 < h < M such that

$$\|h\cdot\xi\|_{\mathbb{R}/\mathbb{Z}}\leq\frac{1}{M}$$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Correlation implies density increment

Let $A \subseteq [1, N]$ with density $\delta > 0$. If

$$\mathsf{E}_{n\in[1,N]}(\mathbb{1}_{\mathcal{A}}(n)-\delta)e_{\xi}(n)\geq\sigma$$

for some ξ and $\sigma > 0$ then there exist $P \subseteq [1, N]$ arithmetic progression such that

$$|P| = \Omega(\sigma^2 N^{rac{1}{2}})$$
 and $rac{|A \cap P|}{|P|} \ge \delta + rac{\sigma}{4}$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen[®]

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (周) (三) (三)

If a set A with density $\delta > 0$ has no arithmetic progression of length 3 then

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (周) (三) (三)

If a set A with density $\delta > 0$ has no arithmetic progression of length 3 then

• A has high correlation with a character e_{ξ}

$$\left|\mathsf{E}_{n\in [1,N]}(\mathbb{1}_{\mathcal{A}}(n)-\delta)e_{\xi}(n)
ight|\geq c\delta^{2}$$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (同) (三) (三)

If a set A with density $\delta > 0$ has no arithmetic progression of length 3 then

• A has high correlation with a character e_{ξ}

$$\left|\mathsf{E}_{n\in [1,N]}(\mathbb{1}_{\mathcal{A}}(n)-\delta)e_{\xi}(n)
ight|\geq c\delta^{2}$$

• A has increased density $\delta + c \delta^2$ on a subprogression P of length $\Omega(\sqrt{N})$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (同) (三) (三)

If a set A with density $\delta > 0$ has no arithmetic progression of length 3 then

• A has high correlation with a character e_{ξ}

$$\left|\mathsf{E}_{n\in [1,N]}(\mathbb{1}_{\mathcal{A}}(n)-\delta)e_{\xi}(n)
ight|\geq c\delta^{2}$$

• A has increased density $\delta + c\delta^2$ on a subprogression P of length $\Omega(\sqrt{N})$ Since

> A does not contain a 3 AP \Downarrow A restricted to P does not contain a 3 AP

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

If a set A with density $\delta > 0$ has no arithmetic progression of length 3 then

• A has high correlation with a character e_{ξ}

$$\left|\mathsf{E}_{n\in[1,N]}(\mathbbm{1}_{\mathcal{A}}(n)-\delta)e_{\xi}(n)\right|\geq c\delta^{2}$$

• A has increased density $\delta + c\delta^2$ on a subprogression P of length $\Omega(\sqrt{N})$ Since

> A does not contain a 3 AP \Downarrow A restricted to P does not contain a 3 AP

we can repeat the process until we obtain an absurdum since the density cannot exceed 1.

Francesco Di Baldassarre

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard

setting Sarkozy's

Energy

Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard analysis

(日) (周) (三) (三)

The nonstandard analysis deals with the nonstandard extensions of mathematical objects. Here we focus on ${}^*\mathbb{N}$ and ${}^*\mathbb{R}.$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

setting Sarkozy's

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard analysis

(日) (同) (三) (三)

The nonstandard analysis deals with the nonstandard extensions of mathematical objects. Here we focus on $*\mathbb{N}$ and $*\mathbb{R}$. The main properties of $*\mathbb{R}$ are:

- Is an ordered field and contains $\ensuremath{\mathbb{R}}$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard

setting Sarkozy's

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

The nonstandard analysis deals with the nonstandard extensions of mathematical objects. Here we focus on \mathbb{N} and \mathbb{R} . The main properties of \mathbb{R} are:

Nonstandard analysis

(日) (同) (三) (三)

- Is an ordered field and contains $\ensuremath{\mathbb{R}}$
- Contains both infinite and infinitesimal numbers

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard

setting Sarkozy's

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

The nonstandard analysis deals with the nonstandard

Nonstandard analysis

The nonstandard analysis deals with the nonstandard extensions of mathematical objects. Here we focus on \mathbb{N} and \mathbb{R} . The main properties of \mathbb{R} are:

- Is an ordered field and contains $\ensuremath{\mathbb{R}}$
- Contains both infinite and infinitesimal numbers
- Every finite hyperreal *r* is infinitely close to exactly one real number called *standard part* of *r* and denoted with *st*(*r*)

A B F A B F

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard

setting Sarkozy's

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard analysis

The nonstandard analysis deals with the nonstandard extensions of mathematical objects. Here we focus on $*\mathbb{N}$ and $*\mathbb{R}$. The main properties of $*\mathbb{R}$ are:

- Is an ordered field and contains $\ensuremath{\mathbb{R}}$
- Contains both infinite and infinitesimal numbers
- Every finite hyperreal *r* is infinitely close to exactly one real number called *standard part* of *r* and denoted with *st*(*r*)
- Has the same "elementary" properties of ℝ if we consider only **internal** sets and functions (**Transfer principle**)

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's

Energy

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard setting

(日) (周) (三) (三)

Roth's theorem

Let $N \in {}^*\mathbb{N}$ infinite and let $A \subseteq [1, N]$ be an internal subset such that $\frac{|A|}{N} \not\approx 0$. Then A contains an arithmetic progression of length 3.

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard setting

(日) (周) (三) (三)

Roth's theorem

Let $N \in {}^*\mathbb{N}$ infinite and let $A \subseteq [1, N]$ be an internal subset such that $\frac{|A|}{N} \not\approx 0$. Then A contains an arithmetic progression of length 3.

With slight alterations to the standard proof we obtain the result in nonstandard setting.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem

Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Nonstandard setting

(日) (周) (三) (三)

Roth's theorem

Let $N \in {}^*\mathbb{N}$ infinite and let $A \subseteq [1, N]$ be an internal subset such that $\frac{|A|}{N} \not\approx 0$. Then A contains an arithmetic progression of length 3.

With slight alterations to the standard proof we obtain the result in nonstandard setting.

For instance, in the fragmentation step, we can take the length ν of the subprogression to be **infinite but infinitely smaller** than N.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Sarkozy's theorem

(日) (周) (三) (三)

Sarkozy's theorem

Let $N \in {}^*\mathbb{N}$ infinite and let $A \subseteq [1, N]$ be an internal subset such that $\frac{|A|}{N} \not\approx 0$. Then A contains two elements whose difference is a perfect square.

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Sarkozy's theorem

イロト 不得下 イヨト イヨト

Sarkozy's theorem

Let $N \in {}^*\mathbb{N}$ infinite and let $A \subseteq [1, N]$ be an internal subset such that $\frac{|A|}{N} \not\approx 0$. Then A contains two elements whose difference is a perfect square.

Similarly to what we have done for Roth's theorem we define

$$\Lambda_{2}(\mathbb{1}_{A},\mathbb{1}_{A}) = \frac{1}{N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbb{1}_{A}(n) \mathbb{1}_{A}(m) \mathbb{1}_{S}(n-m)$$

where
$$S = \{ d^2 \colon 1 \le d \le \sqrt{N} \}.$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To adapt the steps used for Roth we need:

Strategy

イロト イポト イヨト イヨト

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To adapt the steps used for Roth we need:

• An estimate on $\|\hat{\mathbb{1}}_{S}\|_{L^{2}}$

Strategy

(日) (周) (三) (三)

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To adapt the steps used for Roth we need:

- An estimate on $\|\hat{\mathbb{1}}_{S}\|_{L^{2}}$
- A "quadratic fragmentation" of [1, N], i.e. $P_j = \{s_j + h^2 n\}_{n \leq \nu}$

э

Strategy

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To obtain the estimate we use a bound on

Weyl sum

We define Weyl sum the quantity

$$S_M(\xi) = \sum_{m=1}^M e_{\xi}(m^2)$$

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting

Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

To obtain the estimate we use a bound on

Weyl sum

We define Weyl sum the quantity

$$S_M(\xi) = \sum_{m=1}^M e_{\xi}(m^2)$$

To obtain the fragmentation we use the

Quadratic recurrence

For all $N \in \mathbb{Z}$ sufficiently large and $\xi \in \mathbb{R}$ there exists an integer $1 \le h \le N$ such that

$$\left\|h^2\cdot\xi\right\|_{\mathbb{R}/\mathbb{Z}}\leq rac{1}{N^{rac{1}{10}}}$$

A D > A A P >

- E > - E >

Francesco Di Baldassarre

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

The energy increment approach aims to find a decomposition of $\mathbb{1}_A$ in:

- A "periodic" component
- A "pseudo-random" component

18 / 35

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof

Roth's theorer Nonstandard setting

Conclusions

Ergodic proof

(日) (周) (三) (三)

Using **Furstenberg correspondence principle** we have that Roth's theorem is equivalent to

Ergodic Roth

Let (X, \mathcal{B}, μ, T) be a measure preserving system. For any $E \in \mathcal{B}$ with $\mu(E) > 0$ there exists some n > 0 such that

 $\mu(E\cap T^nE\cap T^{2n}E)>0$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof

Roth's theorem Nonstandard setting

Conclusions

To prove this theorem we use the decomposition

$$L^2(X) = AP(X) \oplus WM(X)$$

where:

3

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

To prove this theorem we use the decomposition

$$L^2(X) = AP(X) \oplus WM(X)$$

where:

$$\begin{split} f \in AP(X) & \text{if } \{n \colon \|T^n f - f\| < \epsilon\} \text{ is syndetic for any } \epsilon \\ f \in WM(X) & \text{if } \mathcal{D}\text{-lim } \langle f, \ T^n f \rangle = \mathbf{E}(f)^2 \end{split}$$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorer Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorer Nonstandard

Conclusions

To prove this theorem we use the decomposition

1

$$L^2(X) = AP(X) \oplus WM(X)$$

where:

$$\begin{split} f \in AP(X) & \text{if } \{n: \|T^n f - f\| < \epsilon\} \text{ is syndetic for any } \epsilon \\ f \in WM(X) & \text{if } \mathcal{D}\text{-lim } \langle f, \ T^n f \rangle = \mathbf{E}(f)^2 \end{split}$$

The almost periodic component represents the structured part of our set and the weak mixing component represents the pseudo-random factor.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (周) (三) (三)

To use this idea in the discrete setting [1, N] we aim to decompose a function in:

$$f = f_U + f_{U^{\perp}}$$
 with $\left\{ egin{array}{c} f_{U^{\perp}} & {
m almost periodic} \\ f_U & {
m negligible} \end{array}
ight.$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Almost periodicity

(日) (周) (三) (三)

Almost periodicity

Let k > 1 be an integer and $\sigma > 0$. A function $f: [1, N] \to \mathbb{C}$ is (k, σ) -almost periodic if there exist frequencies ξ_1, \ldots, ξ_k and $c_1, \ldots, c_k \in \mathbb{C}$, $|c_1|, \ldots, |c_k| \le 1$ such that

$$\|f-\sum_{j=1}^k c_j e_{\xi_j}\|_{L^2} \le \sigma$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Almost periodic functions are recurrent

Let $f: [1, N] \to \mathbb{R}^+$, $0 \le f \le 1$ and $\mathbf{E}(f) \ge \delta$. If f is (k, σ) -almost periodic for some $k \ge 1$ and $0 < \sigma < \frac{\delta^3}{8}$ then

$$\Lambda_3(f,f,f) = \Omega\left(\left(\frac{\delta}{k}\right)^k \delta^3\right)$$

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Negligible component

イロト イポト イヨト イヨト

Let $f: \mathbb{Z}_N \to \mathbb{C}$, we define

$$\left\|f\right\|_{u^2} = \max_{\xi \in \mathbb{Z}_N} \left|\hat{f}(\xi)\right|$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Negligible component

(日) (周) (三) (三)

Let $f: \mathbb{Z}_N \to \mathbb{C}$, we define

$$\left\|f\right\|_{u^2} = \max_{\xi \in \mathbb{Z}_N} \left|\hat{f}(\xi)\right|$$

Estimate on Λ_3

Let $f, g, h: \mathbb{Z}_N \to \mathbb{C}$. Then we have the estimate

 $|\Lambda_3(f,g,h)| \le \|f\|_{L^2} \|g\|_{L^2} \|h\|_{u^2}$

Francesco Di Baldassarre

Non elementary methods in combinatorial number theory

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Energy Increment

(日) (周) (三) (三)

We define the energy of an algebra $\mathcal B$ on [1,N] with respect to f to be

$$\mathcal{E}_f(\mathcal{B}) = \| \mathbf{E}(f|\mathcal{B}) \|_{L^2}^2 = \mathbf{E}_{x \in Z} \left| \mathbf{E}(f|\mathcal{B})(x) \right|^2$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Energy Increment

(日) (周) (三) (三)

We define the energy of an algebra $\mathcal B$ on [1,N] with respect to f to be

$$\mathcal{E}_{f}(\mathcal{B}) = \| \mathbf{E}(f|\mathcal{B}) \|_{L^{2}}^{2} = \mathbf{E}_{x \in \mathbb{Z}} \left| \mathbf{E}(f|\mathcal{B})(x) \right|^{2}$$

with

$$\mathbf{E}(f|\mathcal{B})(x) = \frac{1}{|\mathcal{B}(x)|} \sum_{y \in \mathcal{B}(x)} f(y)$$

where $\mathcal{B}(x)$ is the unique atom of \mathcal{B} which contains x.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Energy Increment

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We define the energy of an algebra $\mathcal B$ on [1,N] with respect to f to be

$$\mathcal{E}_{f}(\mathcal{B}) = \| \mathbf{E}(f|\mathcal{B}) \|_{L^{2}}^{2} = \mathbf{E}_{x \in \mathbb{Z}} \left| \mathbf{E}(f|\mathcal{B})(x) \right|^{2}$$

with

$$\mathbf{E}(f|\mathcal{B})(x) = \frac{1}{|\mathcal{B}(x)|} \sum_{y \in \mathcal{B}(x)} f(y)$$

where $\mathcal{B}(x)$ is the unique atom of \mathcal{B} which contains x.

Energy increment

If $f - \mathbf{E}(f|\mathcal{B})$ has one large Fourier coefficient then we can find a new σ -algebra \mathcal{B}' with more energy with respect to f.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Koopman-von Neumann decomposition

Let $\sigma > 0$ and let $F : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be an arbitrary function. Then there exists k such that for any $f : [1, N] \to [0, 1]$ there exists a decomposition $f = f_{U^{\perp}} + f_U$ with:

• $f_{U^{\perp}}$ is (k, σ) -almost periodic

•
$$\|f_U\|_{u^2} \leq \frac{1}{F(\sigma,k)}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Francesco Di Baldassarre

Decomposing

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}} \text{ with } \begin{cases} f_{U^{\perp}} \text{ almost periodic} \\ \|f_{U}\|_{u^{2}} \text{ small} \end{cases}$

Francesco Di Baldassarre

Non elementary methods in combinatorial number theory

3

Proof

イロト イポト イヨト イヨト

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Proof

イロト イポト イヨト イヨト

Decomposing

$$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}} \text{ with } \begin{cases} f_{U^{\perp}} \text{ almost periodic} \\ \|f_{U}\|_{u^{2}} \text{ small} \end{cases}$$

using the inequality

$$|\Lambda_3(f,g,h)| \le ||f||_{L^2} ||g||_{L^2} ||h||_{u^2}$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Decomposing

$$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}}$$
 with $\left\{ \begin{array}{c} f_{U^{\perp}} \text{ almost periodic} \\ \|f_{U}\|_{u^{2}} \text{ small} \end{array} \right.$

Proof

イロト イポト イヨト イヨト

using the inequality

$$|\Lambda_3(f,g,h)| \le \|f\|_{L^2} \|g\|_{L^2} \|h\|_{u^2}$$

we obtain

$$\begin{split} \Lambda_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A) &= \Lambda_3(f_U,f_U,f_U) + \Lambda_3(f_U,f_U,f_{U^{\perp}}) + \\ &+ \dots + \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_U) + \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_{U^{\perp}}) = \\ &= \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_{U^{\perp}}) + \epsilon = \Omega_\delta(1) \end{split}$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Nonstandard setting

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $A \subseteq [1, N]$ be an internal set and define

$$\mu(A) = st\left(\frac{|A|_I}{N}\right)$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

setting

Conclusions

Nonstandard setting

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $A \subseteq [1, N]$ be an internal set and define

$$\mu(A) = st\left(\frac{|A|_I}{N}\right)$$

Loeb measure

There is a unique σ -additive extension of μ to the σ -algebra \mathcal{L} generated by the internal sets. The completion of this measure is called *Loeb measure* and is denoted with μ_L .

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Nonstandard Roth

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We define

$$\Lambda_3(f,g,h) = \int_{[1,N]} \int_{[-N,N]} f(n)g(n+r)h(n+2r) \, d\mu_L(r)d\mu_L(n)$$

for any $f, g, h: [1, N] \rightarrow \mathbb{C}$ Loeb measurable.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorer Nonstandard setting Sarkozy's theorem

Energy Increment

Roth's theorem Nonstandard setting

Conclusions

Nonstandard Roth

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We define

$$\Lambda_3(f,g,h) = \int_{[1,N]} \int_{[-N,N]} f(n)g(n+r)h(n+2r) \ d\mu_L(r)d\mu_L(n)$$

for any $f,g,h\colon [1,N]\to \mathbb{C}$ Loeb measurable.

Roth's theorem

Let $N \in {}^*\mathbb{N}$ be infinite and let $f \in L^{\infty}(\mu)$, $f : [1, N] \to \mathbb{R}$ bounded, non negative, with $\mathbf{E}_{n \in [1,N]} f(n) > 0$. Then

 $\Lambda_3(f,f,f)>0$

Francesco Di Baldassarre

Loeb integral

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non elementary methods in combinatorial number theory

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Let $F, G, H \colon [1, N] \to {}^*\mathbb{C}$ be internal functions bounded by a finite number, then

$$\Lambda_3(st(F),st(G),st(H)) = st\left(\frac{1}{N(2N+1)}\sum_{n=1}^N\sum_{r=-N}^N F(n)G(n+r)H(n+2r)\right)$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Almost periodicity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using the properties of the Loeb integral we have that Almost periodic functions are recurrent

Let
$$f \in L^{\infty}(\mu)$$
, $0 \le f \le 1$, $\mathbf{E}_{[N]}(f) = \delta > 0$.
If f is (k, σ) -almost periodic with $\sigma \le \frac{\delta^3}{8}$ then

 $\Lambda_3(f,f,f)>0$

э

Compact factor

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theoren Nonstandard

setting

Conclusions

We define Z^1 to be the σ -algebra generated by the characters $\{e_{\xi}: \xi \in [1, N]\}.$

Theorem

Let $f: [1, N] \to \mathbb{C}$ be \mathcal{Z}^1 -measurable and $f \in L^{\infty}(\mu)$. Then for any $\sigma > 0$ there exists k such that f is (k, σ) -almost periodic.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Roth's theorem

イロト イポト イヨト イヨト

We can then decompose

$$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}} \text{ with } \begin{cases} f_{U^{\perp}} = \mathbf{E}(\mathbb{1}_{A} | \mathcal{Z}^{1}) \\ f_{U} = \mathbb{1}_{A} - f_{U} \end{cases}$$

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem

Nonstandard setting

Conclusions

Roth's theorem

(日) (同) (日) (日) (日)

We can then decompose

$$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}} \text{ with } \begin{cases} f_{U^{\perp}} = \mathbf{E}(\mathbb{1}_{A} | \mathcal{Z}^{1}) \\ f_{U} = \mathbb{1}_{A} - f_{U} \end{cases}$$

Lemma

Let
$$f, g, h: [1, N] \rightarrow \mathbb{C}$$
, $f, g, h \in L^{\infty}(\mu)$.
If $\mathbf{E}(f|\mathcal{Z}^1) = 0$ then $\Lambda_3(f, g, h) = 0$.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Increment

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Roth's theorem

(日) (同) (日) (日) (日)

We can then decompose

$$\mathbb{1}_{A} = f_{U} + f_{U^{\perp}} \text{ with } \begin{cases} f_{U^{\perp}} = \mathbf{E}(\mathbb{1}_{A} | \mathcal{Z}^{1}) \\ f_{U} = \mathbb{1}_{A} - f_{U} \end{cases}$$

Lemma

Let
$$f, g, h: [1, N] \rightarrow \mathbb{C}, f, g, h \in L^{\infty}(\mu)$$
.
If $\mathbf{E}(f|\mathcal{Z}^1) = 0$ then $\Lambda_3(f, g, h) = 0$.

Thus

$$\begin{split} \Lambda_3(\mathbb{1}_A,\mathbb{1}_A,\mathbb{1}_A) &= \Lambda_3(f_U,f_U,f_U) + \Lambda_3(f_U,f_U,f_{U^{\perp}}) + \\ &+ \dots + \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_U) + \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_{U^{\perp}}) = \\ &= \Lambda_3(f_{U^{\perp}},f_{U^{\perp}},f_{U^{\perp}}) > 0 \end{split}$$

Final remarks

(日) (周) (三) (三)

methods in combinatorial number theory Francesco Di

Non elementary

Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen⁻

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

• The density increment proof of Roth's theorem in a nonstandard settings is easier to obtain, reduces a bit the length of computations and is easily adapted to prove Sarkozy's theorem but does not give any estimate.

Final remarks

イロト 不得下 イヨト イヨト

elementary methods in combinatorial number theory

Non

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

- The density increment proof of Roth's theorem in a nonstandard settings is easier to obtain, reduces a bit the length of computations and is easily adapted to prove Sarkozy's theorem but does not give any estimate.
- The energy increment proof of Roth's theorem in a nonstandard settings provides an easy way to obtain the decomposition by using both hyperfinite (discrete) and continuous techniques.

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Possible developments

• Extend the density increment proof of Sarkozy's theorem to patterns of the form x, x + P(n) with P(n) polynomial, P(0) = 0.

э

Francesco Di Baldassarre

Introduction

Density increment

Roth's theorem Nonstandard setting Sarkozy's theorem

Energy Incremen

Ergodic Proof Roth's theorem Nonstandard setting

Conclusions

Possible developments

- Extend the density increment proof of Sarkozy's theorem to patterns of the form x, x + P(n) with P(n) polynomial, P(0) = 0.
- Find a "pure" nonstandard proof of Roth's theorem via energy increment by replacing the characters e_ξ with a suitable subspace of C^N with N ∈ *N infinite.

イロト 不得下 イヨト イヨト