
Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Non elementary methods in combinatorial
number theory: Roth’s and Sarkozy’s theorems

Francesco Di Baldassarre

Relatore: Mauro Di Nasso

Dipartimento di Matematica, Università di Pisa

14 Ottobre 2016

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 1 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Introduction

An area of research in combinatorial number theory deals with
finding arithmetic structure in large enough subsets of
natural numbers.

In our presentation we will consider theorems which aim to find
arithmetic progressions like x , x + h, x + 2h and x , x + h2 in
sets with positive density.

Asymptotic density

Let A ⊆ N, the asymptotic (upper) density of A is defined as

d(A) = lim sup
N→∞

|A ∩ [1,N]|
N
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Roth’s theorem

Let A ⊆ N such that d(A) > 0.
Then x , x + r , x + 2r ∈ A for some x , r ∈ N.

Sarkozy’s theorem

Let A ⊆ N such that d(A) > 0.
Then x , x + r2 ∈ A for some x , r ∈ N.
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We will present two different ways to prove these theorems:

• the density increment approach

• the energy increment approach

We will then use these approaches in a nonstandard setting.
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Fourier analysis

Character

Let ξ ∈ ZN , we define

eξ(n) = e2πi ξn
N

Let ξ ∈ ZN and f : ZN → C.
We define

f̂ (ξ) = En∈ZN
f (n)eξ(n) =

1

N

∑
n∈ZN

f (n)eξ(n)
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Density increment

The density increment approach goes through two main steps

• no arithmetic progression⇒ correlation with a character eξ

• correlation with a character eξ ⇒ density increment

By iterating this process enough times we reach a contradiction.
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Roth’s theorem

It is convenient to define

Λ3(1A,1A,1A) =
1

N2

N−1∑
n=0

N−1∑
r=0

1A(n)1A(n + r)1A(n + 2r)

Roth’s theorem

For any N ∈ N and for any A ⊆ [1,N] such that |A| = δN > 0
we have

Λ3(1A,1A,1A) = Ωδ(1)

i.e. Λ3(1A,1A,1A) ≥ Cδ for some positive constant Cδ
depending only on δ.
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Step 1. No AP implies correlation

We want to show that if A does not contain an arithmetic
progression of length 3 then A is correlated with some
character eξ.

Proposition

Let A ⊆ [1,N] with |A| = δN for some 0 < δ ≤ 1.
Assume N ≥ 100

δ2 and that A does not contain any arithmetic
progression of length 3.
Then there exists ξ such that∣∣En∈[1,N](1A(n)− δ)eξ(n)

∣∣ = Ω(δ2)
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Step 2. Correlation implies density
increment

We want a partition

[1,N] =
m⊔
j=1

Pj t E

such that

• Pj = {sj + hn}n≤c√N are arithmetic progressions

• eξ fluctuates only little on each Pj , i.e.

|eξ(x)− eξ(y)| ≤ ε for x , y ∈ Pj

• E is small

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Step 2. Correlation implies density
increment

We want a partition

[1,N] =
m⊔
j=1

Pj t E

such that

• Pj = {sj + hn}n≤c√N are arithmetic progressions

• eξ fluctuates only little on each Pj , i.e.

|eξ(x)− eξ(y)| ≤ ε for x , y ∈ Pj

• E is small

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Step 2. Correlation implies density
increment

We want a partition

[1,N] =
m⊔
j=1

Pj t E

such that

• Pj = {sj + hn}n≤c√N are arithmetic progressions

• eξ fluctuates only little on each Pj , i.e.

|eξ(x)− eξ(y)| ≤ ε for x , y ∈ Pj

• E is small

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Step 2. Correlation implies density
increment

We want a partition

[1,N] =
m⊔
j=1

Pj t E

such that

• Pj = {sj + hn}n≤c√N are arithmetic progressions

• eξ fluctuates only little on each Pj , i.e.

|eξ(x)− eξ(y)| ≤ ε for x , y ∈ Pj

• E is small

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 9 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

To find the spacing h we use the

Kronecker approximation theorem

For any M > 0 and ξ ∈ R there exists an integer 0 < h < M
such that

‖h · ξ‖R/Z ≤
1

M
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Correlation implies density increment

Let A ⊆ [1,N] with density δ > 0. If

En∈[1,N](1A(n)− δ)eξ(n) ≥ σ

for some ξ and σ > 0 then there exist P ⊆ [1,N] arithmetic
progression such that

|P| = Ω(σ2N
1
2 ) and

|A ∩ P|
|P|

≥ δ +
σ

4
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Roth’s theorem
If a set A with density δ > 0 has no arithmetic progression of
length 3 then

• A has high correlation with a character eξ∣∣En∈[1,N](1A(n)− δ)eξ(n)
∣∣ ≥ cδ2

• A has increased density δ + cδ2 on a subprogression P of
length Ω(

√
N)

Since

A does not contain a 3 AP
⇓

A restricted to P does not contain a 3 AP

we can repeat the process until we obtain an absurdum since
the density cannot exceed 1.
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Nonstandard analysis

The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on ∗N
and ∗R.

The main properties of ∗R are:

• Is an ordered field and contains R
• Contains both infinite and infinitesimal numbers

• Every finite hyperreal r is infinitely close to exactly one real
number called standard part of r and denoted with st (r)

• Has the same “elementary” properties of R if we consider
only internal sets and functions (Transfer principle)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 13 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Nonstandard analysis

The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on ∗N
and ∗R. The main properties of ∗R are:

• Is an ordered field and contains R

• Contains both infinite and infinitesimal numbers

• Every finite hyperreal r is infinitely close to exactly one real
number called standard part of r and denoted with st (r)

• Has the same “elementary” properties of R if we consider
only internal sets and functions (Transfer principle)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 13 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Nonstandard analysis

The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on ∗N
and ∗R. The main properties of ∗R are:

• Is an ordered field and contains R
• Contains both infinite and infinitesimal numbers

• Every finite hyperreal r is infinitely close to exactly one real
number called standard part of r and denoted with st (r)

• Has the same “elementary” properties of R if we consider
only internal sets and functions (Transfer principle)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 13 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Nonstandard analysis

The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on ∗N
and ∗R. The main properties of ∗R are:

• Is an ordered field and contains R
• Contains both infinite and infinitesimal numbers

• Every finite hyperreal r is infinitely close to exactly one real
number called standard part of r and denoted with st (r)

• Has the same “elementary” properties of R if we consider
only internal sets and functions (Transfer principle)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 13 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Nonstandard analysis

The nonstandard analysis deals with the nonstandard
extensions of mathematical objects. Here we focus on ∗N
and ∗R. The main properties of ∗R are:

• Is an ordered field and contains R
• Contains both infinite and infinitesimal numbers

• Every finite hyperreal r is infinitely close to exactly one real
number called standard part of r and denoted with st (r)

• Has the same “elementary” properties of R if we consider
only internal sets and functions (Transfer principle)

Francesco Di Baldassarre Non elementary methods in combinatorial number theory 13 / 35



Non
elementary
methods in

combinatorial
number theory

Francesco Di
Baldassarre

Introduction

Density
increment

Roth’s theorem

Nonstandard
setting

Sarkozy’s
theorem

Energy
Increment

Ergodic Proof

Roth’s theorem

Nonstandard
setting

Conclusions

Nonstandard setting

Roth’s theorem

Let N ∈ ∗N infinite and let A ⊆ [1,N] be an internal subset

such that |A|N 6≈ 0. Then A contains an arithmetic progression
of length 3.

With slight alterations to the standard proof we obtain the
result in nonstandard setting.
For instance, in the fragmentation step, we can take the length
ν of the subprogression to be infinite but infinitely smaller
than N.
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Sarkozy’s theorem

Sarkozy’s theorem

Let N ∈ ∗N infinite and let A ⊆ [1,N] be an internal subset

such that |A|N 6≈ 0. Then A contains two elements whose
difference is a perfect square.

Similarly to what we have done for Roth’s theorem we define

Λ2(1A,1A) =
1

N2

N∑
n=1

N∑
m=1

1A(n)1A(m)1S(n −m)

where S = {d2 : 1 ≤ d ≤
√
N}.
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Strategy

To adapt the steps used for Roth we need:

• An estimate on ‖1̂S‖L2

• A “quadratic fragmentation” of [1,N], i.e.
Pj = {sj + h2n}n≤ν
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To obtain the estimate we use a bound on

Weyl sum

We define Weyl sum the quantity

SM(ξ) =
M∑

m=1

eξ(m
2)

To obtain the fragmentation we use the

Quadratic recurrence

For all N ∈ Z sufficiently large and ξ ∈ R there exists an
integer 1 ≤ h ≤ N such that∥∥h2 · ξ

∥∥
R/Z ≤

1

N
1

10
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Energy increment

The energy increment approach aims to find a decomposition
of 1A in:

• A “periodic” component

• A “pseudo-random” component
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Ergodic proof

Using Furstenberg correspondence principle we have that
Roth’s theorem is equivalent to

Ergodic Roth

Let (X ,B, µ,T ) be a measure preserving system. For any
E ∈ B with µ(E ) > 0 there exists some n > 0 such that

µ(E ∩ T nE ∩ T 2nE ) > 0
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To prove this theorem we use the decomposition

L2(X ) = AP(X )⊕WM(X )

where:

f ∈ AP(X ) if {n : ‖T nf − f ‖ < ε} is syndetic for any ε

f ∈WM(X ) if D-lim 〈f , T nf 〉 = E(f )2

The almost periodic component represents the structured part
of our set and the weak mixing component represents the
pseudo-random factor.
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Roth’s theorem

To use this idea in the discrete setting [1,N] we aim to
decompose a function in:

f = fU + fU⊥ with

{
fU⊥ almost periodic
fU negligible
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Almost periodicity

Almost periodicity

Let k > 1 be an integer and σ > 0. A function f : [1,N]→ C
is (k, σ)-almost periodic if there exist frequencies ξ1, . . . , ξk
and c1, . . . , ck ∈ C, |c1| , . . . , |ck | ≤ 1 such that

‖f −
k∑

j=1

cjeξj‖L2 ≤ σ
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Almost periodic functions are recurrent

Let f : [1,N]→ R+, 0 ≤ f ≤ 1 and E(f ) ≥ δ. If f is

(k, σ)-almost periodic for some k ≥ 1 and 0 < σ < δ3

8 then

Λ3(f , f , f ) = Ω

((
δ

k

)k

δ3

)
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Negligible component

Let f : ZN → C, we define

‖f ‖u2 = max
ξ∈ZN

∣∣∣f̂ (ξ)
∣∣∣

Estimate on Λ3

Let f , g , h : ZN → C. Then we have the estimate

|Λ3(f , g , h)| ≤ ‖f ‖L2‖g‖L2 ‖h‖u2
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Energy Increment

We define the energy of an algebra B on [1,N] with respect to
f to be

Ef (B) = ‖E(f |B)‖2
L2 = Ex∈Z |E(f |B)(x)|2

with

E(f |B)(x) =
1

|B(x)|
∑

y∈B(x)

f (y)

where B(x) is the unique atom of B which contains x .

Energy increment

If f − E(f |B) has one large Fourier coefficient then we can find
a new σ-algebra B′ with more energy with respect to f .
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Koopman-von Neumann
decomposition

Let σ > 0 and let F : R+ × R+ → R+ be an arbitrary function.
Then there exists k such that for any f : [1,N]→ [0, 1] there
exists a decomposition f = fU⊥ + fU with:

• fU⊥ is (k, σ)-almost periodic

• ‖fU‖u2 ≤
1

F (σ, k)
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Proof

Decomposing

1A = fU + fU⊥ with

{
fU⊥ almost periodic
‖fU‖u2 small

using the inequality

|Λ3(f , g , h)| ≤ ‖f ‖L2‖g‖L2 ‖h‖u2

we obtain

Λ3(1A,1A,1A) = Λ3(fU , fU , fU) + Λ3(fU , fU , fU⊥)+

+ · · ·+ Λ3(fU⊥ , fU⊥ , fU) + Λ3(fU⊥ , fU⊥ , fU⊥) =

= Λ3(fU⊥ , fU⊥ , fU⊥) + ε = Ωδ(1)
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Nonstandard setting

Let A ⊆ [1,N] be an internal set and define

µ(A) = st

(
|A|I
N

)

Loeb measure

There is a unique σ-additive extension of µ to the σ-algebra L
generated by the internal sets. The completion of this measure
is called Loeb measure and is denoted with µL.
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Nonstandard Roth

We define

Λ3(f , g , h) =

∫
[1,N]

∫
[−N,N]

f (n)g(n+ r)h(n+2r) dµL(r)dµL(n)

for any f , g , h : [1,N]→ C Loeb measurable.

Roth’s theorem

Let N ∈ ∗N be infinite and let f ∈ L∞(µ), f : [1,N]→ R
bounded, non negative, with En∈[1,N] f (n) > 0. Then

Λ3(f , f , f ) > 0
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Loeb integral

Let F ,G ,H : [1,N]→ ∗C be internal functions bounded by a
finite number, then

Λ3(st (F ),st (G ), st (H)) =

st

(
1

N(2N + 1)

N∑
n=1

N∑
r=−N

F (n)G (n + r)H(n + 2r)

)
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Almost periodicity

Using the properties of the Loeb integral we have that

Almost periodic functions are recurrent

Let f ∈ L∞(µ), 0 ≤ f ≤ 1, E[N](f ) = δ > 0.

If f is (k , σ)-almost periodic with σ ≤ δ3

8 then

Λ3(f , f , f ) > 0
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Compact factor

We define Z1 to be the σ-algebra generated by the characters
{eξ : ξ ∈ [1,N]}.

Theorem

Let f : [1,N]→ C be Z1-measurable and f ∈ L∞(µ). Then for
any σ > 0 there exists k such that f is (k , σ)-almost periodic.
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Roth’s theorem

We can then decompose

1A = fU + fU⊥ with

{
fU⊥ = E(1A|Z1)
fU = 1A − fU

Lemma

Let f , g , h : [1,N]→ C, f , g , h ∈ L∞(µ).
If E(f |Z1) = 0 then Λ3(f , g , h) = 0.

Thus

Λ3(1A,1A,1A) = Λ3(fU , fU , fU) + Λ3(fU , fU , fU⊥)+

+ · · ·+ Λ3(fU⊥ , fU⊥ , fU) + Λ3(fU⊥ , fU⊥ , fU⊥) =

= Λ3(fU⊥ , fU⊥ , fU⊥) > 0
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Final remarks

• The density increment proof of Roth’s theorem in a
nonstandard settings is easier to obtain, reduces a bit the
length of computations and is easily adapted to prove
Sarkozy’s theorem but does not give any estimate.

• The energy increment proof of Roth’s theorem in a
nonstandard settings provides an easy way to obtain the
decomposition by using both hyperfinite (discrete) and
continuous techniques.
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Conclusions

Possible developments

• Extend the density increment proof of Sarkozy’s theorem
to patterns of the form x , x + P(n) with P(n) polynomial,
P(0) = 0.

• Find a “pure” nonstandard proof of Roth’s theorem via
energy increment by replacing the characters eξ with a
suitable subspace of CN with N ∈ ∗N infinite.
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