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Introduction

An area of research in combinatorial number theory deals with finding some kind
of arithmetic structure in “large” sets. A set A ⊆ N is “large” if it has positive
(upper) density, i.e.

d(A) = lim sup
N→∞

|A ∩ [1,N]|
N

> 0

A fundamental theorem in this field is

Szemeredi’s theorem (1975). Let A ⊆ N such that d(A) > 0. Then A contains
arbitrarily long arithmetic progressions.

In this work we focus on a weaker version of Szemeredi’s theorem:

Roth’s theorem (1953). Let A ⊆ N such that d(A) > 0. Then x, x + r, x + 2r ∈ A
for some x, r ∈ N.

Roth’s theorem can be formulated in a more quantitative manner. Let r3(N)
be the cardinality of the largest subset of [1,N] with no arithmetic progressions of
length 3, then Roth’s theorem is equivalent to having

lim
N→∞

r3(N)
N

= 0

Some of the techniques used to prove Roth’s theorem focus on directly finding
an estimate for r3(N) while others are focused on getting a decomposition of a set
into a “structured” component and a “pseudo-random” component.

In this work we present two different arguments used to prove Roth’s theorem
and we translate them to the framework of nonstandard analysis. We also adapt
the first method to obtain a proof of

Sarkozy’s theorem (1978). Let A ⊆ N such that d(A) > 0. Then A contains two
elements whose difference is a perfect square.

The first approach we present, usually called density increment, takes a set
with no arithmetic progressions of length 3 and aims to find an arithmetic pro-
gression on which the set has a higher density. If the set has positive density we
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Introduction

can iterate this process enough times and obtain a contradiction. As a result, we
obtain a certain estimate of r3(N).

This proof can be translated in the nonstandard setting where we obtain a
slightly easier argument at the cost of losing the estimate. However we will be
able to easily adapt this nonstandard proof to Sarkozy’s theorem.

Another way to prove Roth’s theorem relies on the Furstenberg correspon-
dence principle that translates the problem into an ergodic framework. The er-
godic proof consists in decomposing a set in a weak mixing component and a
compact component and then restricting the problem to these components. The
use of ergodic tools allows for generalizations but does not allow to obtain an
estimate on r3(N).

Terence Tao was able to obtain an estimate using ideas from the ergodic ap-
proach with a method called energy increment. His proof relies on decomposing a
given function in an almost period component plus a small remainder. The almost
periodic component is found using the conditional expectation with respect to a
particular σ-algebra.

The nonstandard version of this proof is interesting because one can directly
use the properties of the integral over a measure space and, at the same time, rely
on the hyperfinite nature of the objects under consideration. This way we can use
both continuous and discrete techniques.

In the last chapter we use an estimate on Weyl sums and a property of quadratic
recurrence to adapt the nonstandard density increment argument to obtain a proof
of Sarkozy’s theorem.
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Notation

Landau asymptotic notation
We introduce here the Landau asymptotic notation which we will be using for the
rest of the paper.

Let n be a positive variable and f , g real valued functions of n.

• g(n) = O( f (n)) means there exists C > 0 such that |g(n)| ≤ C f (n) for every
n

• g(n) = Ω( f (n)) means there exists c > 0 such that g(n) ≥ c f (n) for all
sufficiently large n

• g(n) = Θ( f (n)) means both g(n) = O( f (n)) and g(n) = Ω( f (n))

• g(n) = on→∞( f (n)) means g(n) = O(a(n) f (n)) for some sequence a(n) such
that a(n)→ 0 for n→ ∞

• g(n) = ωn→∞( f (n)) means f (n) = on→∞(g(n))

Parameter dependency is indicated by subscripts, e.g. g(n) = Ok( f (n)) means
|g(n)| ≤ Ck f (n).
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Basic definitions

In this chapter we recall the basic definitions and properties regarding Fourier
transform, linear bias and Bohr sets. For details refer to [TV06].

Definition 0.1 (Bilinear form). A bilinear form on an additive group Z is a map
(ξ, x) 7→ ξ · x from Z × Z → R/Z which is an homomorphism in each of the
variables separately.

The form is called non-degenerate if for every ξ , 0 the map x 7→ ξ · x is not
identically zero and is called symmetric if ξ · x = x · ξ.

Proposition 0.2. Every finite additive group has at least one non-degenerate sym-
metric bilinear form.

In this paper we will often consider the bilinear form (ξ, x) 7→ ξx
N on ZN which

is symmetric and non-degenerate.
Let Z be a finite additive group with a non-degenerate bilinear form ξ · x and

let CZ be the space of all the complex valued functions f : Z → C.

Definition 0.3. Let f ∈ CZ. We define the mean of expectation of f to be the
quantity

EZ( f ) = Ex∈Z f (x) =
1
|Z|

∑
x∈Z

f (x)

Similarly, if A ⊆ Z, we define the density or probability of A as

PZ(A) = Px∈Z(A) = EZ(1A) =
|A|
|Z|

We will rely heavily on the exponential map e : R/Z→ C, defined by

e(θ) = e2πiθ

Definition 0.4 (Character). Let ξ ∈ Z. We define the associated character eξ ∈ CZ

as
eξ(x) = e(ξ · x)

ix



Basic definitions

Proposition 0.5 (Orthogonality properties). For any ξ, ξ′ ∈ Z we have〈
eξ, eξ′

〉
CZ

= Ex∈Z e(ξ · x)e(ξ′ · x) = 1ξ=ξ′

and, for any x, x′ ∈ Z we have∑
ξ∈Z

e(ξ · x)e(ξ · x′) = |Z|1x=x′

We can now define the Fourier transform.

Definition 0.6 (Fourier transform). Let f ∈ CZ. We define its Fourier transform
f̂ ∈ CZ as

f̂ (ξ) def
=

〈
f , eξ

〉
CZ

= Ex∈Z f (x)e(ξ · x)

We call f̂ (ξ) the Fourier coefficient of f at frequency ξ.

Since the characters eξ form a complete orthonormal system we have

• the Parseval identity
EZ(| f |2) =

∑
ξ∈Z

∣∣∣ f̂ (ξ)
∣∣∣2

• the Plancherel theorem

〈 f , g〉CZ =
∑
ξ∈Z

f̂ (ξ)ĝ(ξ)

• the Fourier inversion formula

f =
∑
ξ∈Z

f̂ (ξ)eξ

Definition 0.7 (Linear bias). Let A ⊆ Z. We define the linear bias or Fourier bias
of A the quantity

‖A‖u2 = sup
ξ∈Z

∣∣∣1̂A(ξ)
∣∣∣

Sets with small linear bias are called linearly uniform or pseudo-random.
More generally we define the linear bias of a function f ∈ CZ as

‖ f ‖u2 = sup
ξ∈Z

∣∣∣ f̂ (ξ)
∣∣∣

Remark. The quantity ‖A‖u2 is not monotone, i.e. A ⊆ B does not imply
‖A‖u2 ≤ ‖B‖u2 .
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Basic definitions

We introduce now the norms used in this paper.
The first one is the norm on L2(Z) defined as

‖ f ‖2L2 = Ez∈Z | f (z)|2

The second one is the norm on R/Z defined as

‖θ + Z‖R/Z = |θ| if −
1
2
≤ θ ≤

1
2

We have the well known bounds

4 ‖θ‖R/Z ≤ |e(θ) − 1| ≤ 2π ‖θ‖R/Z (RZ bounds)

Theorem 0.8 (Kronecker approximation theorem). Let 0 < θ ≤ 1
2 and α ∈ R.

Then for any N > 0 we have∣∣∣{n ∈ (−N,N) : ‖nα‖R/Z < θ}
∣∣∣ ≥ Nθ

In particular we have the following corollary

Corollary 0.9. For any N > 0 and α ∈ R if θ ≤ 1
N then there exists an integer

0 < h < N such that ‖hα‖R/Z ≤ θ.

We have a version of this property for quadratic recurrence too [Sch77] [CLR].

Corollary 0.10 (Quadratic recurrence). For all N ∈ Z sufficiently large and α ∈ R
there exists an integer 1 ≤ h ≤ N such that∥∥∥h2α

∥∥∥
R/Z
≤

1

N
1
10

We can now give the definition of Bohr set.

Definition 0.11 (Bohr set). Let S ⊆ Z and ρ > 0. We define the Bohr set with set
of frequencies S and radius ρ as

Bohr(S , ρ) = {x ∈ Z : sup
ξ∈S
‖ξ · x‖R/Z < ρ}

The cardinality of S is called rank of the Bohr set.

Lemma 0.12 (Size bounds). If S ⊆ Z and ρ > 0 then we have the lower bounds

PZ(Bohr(S , ρ)) ≥ ρ|S |

xi



Basic definitions

Nonstandard analysis

In this section we introduce the set of hypernaturals and give some basic proper-
ties. See [Gol98] for a complete introduction.

LetU be a non principal ultrafilter on N. We define

∗N = NN/U and ∗R = RN/U

Let (an)n∈N be a sequence of natural (or real) numbers, we denote with a = [an]
the equivalence class of (an)n∈N.

Definition 0.13 (Internal set). A set A ⊆ ∗N is called internal if

[an] ∈ A ⇐⇒ {n : an ∈ An} ∈ U

for some sequence (An)n∈N in P(N). In that case we write A = [An].

Definition 0.14 (Internal cardinality). The internal cardinality of an internal sub-
set A = [An] is defined as

|A|I = [|An|] ∈ ∗N

Definition 0.15 (Internal function). A function f : ∗N→ ∗R is called internal if

f ([an]) = [ fn(an)]

for some sequence ( fn)n∈N, fn : N→ R. In that case we write f = [ fn].

Let a : N→ R and ∗a = [a] : ∗N→ ∗R. If N = [Nn] we define

N∑
n=1

∗a(n) =

 Nn∑
m=1

a(m)


Definition 0.16 (Infinite and infinitesimal). We say a ∈ ∗R, a > 0 is infinitesimal
if |a| ≤ r for any r ∈ R+. Conversely a number b ∈ ∗R is called infinite if |b| ≥ r
for any r ∈ R. A number is called finite if it is not infinite.

Two hyperreal numbers a, b are infinitely close if a − b is infinitesimal. In that
case we write a ≈ b . Conversely we write a � b if a − b is infinite.

Theorem 0.17. Every finite hyperreal a is infinitely close to exactly one real num-
ber called standard part of a and denoted with st (a).

xii



Basic definitions

Transfer principle
The transfer principle is a tool used to “transfer” properties from R to ∗R and vice
versa.

Let R = (R,P,F ) be the full structure of R with P the set of all relations on R
andF the set of all functions onR and let ∗R = (∗R, ∗P, ∗F ) with ∗P = {∗P : P ∈ P}
and ∗F = {∗ f : f ∈ F }.

Let LR and L∗R be the languages associated with R and ∗R respectively. We
can transform anyLR-sentence φ into aL∗R-sentence ∗φ by replacing each relation
symbol P with ∗P and each function symbol f with ∗ f .

Then we have

Transfer principle. A LR sentence φ is true in R if and only if ∗φ is true in ∗R

For instance we can apply this principle to the Kronecker approximation the-
orem and obtain the following result.

Corollary 0.18 (Kronecker approximation theorem). Let α ∈ ∗R and θ > 0 a
real number. For every N ∈ ∗N such that Nθ ≤ 1 there exists an hypernatural
0 < h < N such that ‖hα‖∗R/∗Z ≤ θ.

Proof. Apply the transfer principle to the formula

∀α ∈ R ∀θ ∈ R+ ∀N ∈ N
(
Nθ ≤ 1 =⇒

∃h ∈ N 0 < h < N ∧ min
n∈N
|hα − n| ≤ θ

)
which follows from the standard Kronecker approximation theorem. �

Similarly we can prove the nonstandard version of the simultaneous quadratic
recurrence.

Corollary 0.19 (Quadratic recurrence). Let N ∈ ∗N infinite and let α ∈ ∗R. Then
there exists an hypernatural 1 ≤ h ≤ N such that∥∥∥h2α

∥∥∥
∗R/∗Z

≤
1

N
1

10
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Basic definitions

Loeb measure

In this section we introduce the Loeb measure and recall some theorems regard-
ing the integration with respect to this measure. For a complete exposition see
[Cut01].

Let N ∈ ∗N be infinite and let PI([N]) be the collection of internal subsets of
[1,N]. We have that PI([N]) is closed under complement and finite unions and
intersections, but it is not closed under countable operations.

Let µ : PI([N])→ ∗[0, 1] be defined as

µ(A) =
|A|I
N

then µ is an internal, finitely additive function onPI([N]). So we have st(µ) finitely
additive on PI([N]).

Using Carathèodory’s theorem we can extend PI([N]) and st(µ) to obtain a
measure space.

Theorem 0.20. There is a unique σ-additive extension of st(µ) to the σ-algebra
σ(PI([N])) generated by PI([N]). The completion of this measure is called Loeb
measure and is denoted with µL. The completion of σ(PI([N])) is called Loeb
σ-algebra and is denoted with L.

A Loeb-measurable function f : [1,N] → R is a function measurable with
respect to L. Loeb-measurable functions are not always internal, however the
following theorem holds.

Theorem 0.21. Let f : [1,N]→ R, then the following are equivalent

1. f is Loeb-measurable

2. there is an internal function F : [1,N]→ ∗R such that

f (n) ≈ F(n)

for almost all n ∈ [1,N] (with respect to µL)

Definition 0.22 (Lifting). Let f : [1,N]→ R be a Loeb-measurable function, then
a function F as given by Theorem 0.21 is called lifting of f .

Remark. If F : [1,N]→ ∗R is an internal function then F is a lifting of st (F) and
in particular st (F) is Loeb measurable.

xiv



Basic definitions

Given a Loeb space ([1,N],L, µL) and its originating space ([1,N],PI([N]), µ)
there are two possible integrals.

There are the internal integral∫
[1,N]

F(n)dµ =

N∑
n=1

F(n)µ(n) =
1
N

N∑
n=1

F(n)

and the classical integral ∫
[1,N]

f (n)dµL

defined for any F internal and f Loeb-measurable.
As expected the integral of a Loeb-measurable function and the internal inte-

gral of a lifting are related.

Theorem 0.23. Let F be an internal measurable function bounded by some finite
real. Then

st
(∫

[1,N]
Fdµ

)
=

∫
st(F)dµL

Theorem 0.24. If F is a lifting of a Loeb measurable function f and F is bounded
by some finite real then∫

[1,N]
f dµL = st

(∫
[1,N]

Fdµ
)

= st

 1
N

N∑
n=1

F(n)
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Chapter 1

Density Increment

In this chapter we will give a proof of Roth’s theorem using a density increment
argument [TV06]. We will prove that any sufficiently large set of natural numbers
with no arithmetic progression of length 3 must have higher density on some sub-
progression and we will iterate this process multiple times to reach an absurdum.
In the first section we deploy standard methods and obtain a certain estimate while
in the second section we use a nonstandard approach which gives a slightly easier
argument at the cost of losing the estimate.

1.1 Density Increment
In this section we will obtain the estimate

r3([1,N]) = O
(

N
log log N

)
where r3([1,N]) is the cardinality of the largest subset of [1,N] with no arithmetic
progressions of length 3.

The steps we will follow are

1. We prove that any set with positive density and no arithmetic progression
of length 3 has a strong correlation with some character eξ

2. We show that having large correlation with a character eξ implies a density
increment on some arithmetic progression

If we take N large enough we can iterate the two points enough times and
obtain an absurd since density cannot exceed 1.

Let Z be a finite group. It is convenient to define the trilinear form

Λ3( f , g, h) = Ex,r∈Z f (x)g(x + r)h(x + 2r)

1



1.1. Density Increment Density Increment

for any f , g, h : Z → C. In particular we have

Λ3(1A,1A,1A) = Px,r∈Z(x, x + r, x + 2r ∈ A)

so this form measures the number of arithmetic progressions of length 3 in A.

Lemma 1.1.1. Let Z have odd order. For any function f , g, h : Z → C we have

Λ3( f , g, h) =
∑
ξ∈Z

f̂ (ξ)ĝ(−2ξ)ĥ(ξ)

We can then obtain the estimate

|Λ3( f , g, h)| ≤ ‖ f ‖u2 ‖g‖L2‖h‖L2

Proof. Using the Fourier inversion formula we have

f =
∑
ξ1∈Z

f̂ (ξ1)eξ1 g =
∑
ξ2∈Z

ĝ(ξ2)eξ2 h =
∑
ξ3∈Z

ĥ(ξ3)eξ3

then by linearity

Λ3( f , g, h) =
∑

ξ1,ξ2,ξ3∈Z

f̂ (ξ1)ĝ(ξ2)ĥ(ξ3)Λ3(eξ1 , eξ2 , eξ3)

Using Proposition 0.5 we have

Λ3(eξ1 , eξ2 , eξ3) =
1
|Z|2

∑
x,r∈Z

eξ1(x)eξ2(x + r)eξ3(x + 2r) =

=
1
|Z|2

∑
x∈Z

eξ1(x)eξ2(x)eξ3(x)

 ∑
r∈Z

eξ2(r)eξ3(2r)

 =

=
1
|Z|2

∑
x∈Z

e((ξ1 + ξ2) · x)e(−ξ3 · x)

 ∑
r∈Z

e(ξ2 · r)e(−2ξ3 · r)

 =

= 1ξ1+ξ2=−ξ3 · 1ξ2=−2ξ3 = 1ξ1=ξ3,ξ2=−2ξ3

which gives
Λ3( f , g, h) =

∑
ξ∈Z

f̂ (ξ)ĝ(−2ξ)ĥ(ξ)

Using Cauchy-Schwartz and the Parseval’s identity we obtain the estimate

|Λ3( f , g, h)|2 ≤ sup
ξ∈Z

∣∣∣ f̂ (ξ)
∣∣∣2 ∑

ξ∈Z

ĝ(−2ξ)ĥ(ξ)


2

≤

≤ ‖ f ‖2u2

∑
ξ∈Z

|ĝ(−2ξ)|2
∑
ξ∈Z

∣∣∣ĥ(ξ)
∣∣∣2 =

= ‖ f ‖2u2 ‖g‖2L2‖h‖2L2

�

2



1.1. Density Increment Density Increment

1.1.1 Correlation to a linear phase
We prove that if a sufficiently large set A does not contain any arithmetic progres-
sion of length 3 then it has a strong correlation to a linear phase.

Proposition 1.1.2. Let P ⊂ N be an arithmetic progression and let A ⊆ P
|A| = δ |P| for some 0 < δ ≤ 1. Assume |P| ≥ 100

δ2 and that A does not contain
any arithmetic progression of length 3. Then there exists ξ ∈ R/N such that

|En∈P(1A(n) − δ)e(nξ)| = Ω(δ2)

Proof. By rescaling we can take P = [1,N], N ≥ 100
δ2 . Using Bertrand’s postulate

we can pick a prime p between N and 2N. We can then identify A with a sub-
set of Zp in the usual manner. Then, since in A we only have trivial arithmetic
progressions x, x + r, x + 2r with r = 0, we obtain

Λ3(1A,1A,1A) def
= Px,r∈Zp(x, x + r, x + 2r ∈ A) =

|A|
p2 ≤

δN
N2 =

δ

N
≤

δ3

100

Let 1A = fU + fU⊥ with fU⊥ = δ1[1,N] and fU = 1A − fU⊥ . Then

Λ3( fU⊥ , fU⊥ , fU⊥) = Ex∈Zp Er∈Zp fU⊥(x) fU⊥(x + r) fU⊥(x + 2r) =

= δ3 Ex∈Zp Er∈Zp 1[1,N](x) 1[1,N](x + r) 1[1,N](x + 2r) =

=
δ3

p2

∑
x∈Zp

∑
r∈Zp

1[1,N](x) 1[1,N](x + r) 1[1,N](x + 2r) ≥

≥
δ3

p2

N/3∑
x=1

N/3∑
r=1

1[1,N](x) 1[1,N](x + r) 1[1,N](x + 2r) =

=
δ3

p2

N2

9
≥

δ3N2

(2N)29
=
δ3

36

Putting the two inequalities together we obtain

δ3

25
≤ |Λ3(1A,1A,1A) − Λ3( fU⊥ , fU⊥ , fU⊥)| =

= |Λ3( fU + fU⊥ , fU + fU⊥ , fU + fU⊥) − Λ3( fU⊥ , fU⊥ , fU⊥)| =
= |Λ3( fU , fU , fU) + Λ3( fU , fU , fU⊥) + · · · + Λ3( fU⊥ , fU⊥ , fU)| ≤
≤ |Λ3( fU , fU , fU)| + |Λ3( fU , fU , fU⊥)| + · · · + |Λ3( fU⊥ , fU⊥ , fU)|

So at least one of the seven terms (all of which contain fU) must be Ω(δ3). Assume,
for instance

|Λ3( fU , fU , fU⊥)| = Ω(δ3)

3
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(the other cases are analogous). Using Lemma 1.1.1 we obtain

cδ3 ≤ |Λ3( fU , fU , fU)| ≤ ‖ fU‖u ‖ fU‖L2‖ fU⊥‖L2

for some constant c. We have that

‖ f ‖2L2 =
1
p

p∑
n=1

(
1A(n) − δ1[1,N](n)

)2
=

=
1
p

p∑
n=1

1A(n) +
1
p
δ2

p∑
n=1

1[1,N](n) − 2
δ

p

p∑
n=1

1[1,N](n) =

=
δN
p

+
δ2N

p
−

2δ2N
p

=
δN
p
−
δ2N

p
≤ δ −

δ2

2
= O(δ)

and ‖ fU⊥‖L2 = ‖δ1[1,N]‖L2 = O(δ). Thus we obtain, for some constant k,

cδ3 ≤ ‖ fU‖u kδ

hence ‖ fU‖u = Ω(δ2) and so there exists ξ ∈ Zp such that

∣∣∣ f̂U(ξ)
∣∣∣ =

∣∣∣∣∣∣En∈[1,N](1A(n) − δ)e
(

n
p
ξ

)∣∣∣∣∣∣ = Ω(δ2)

�

1.1.2 Fragmentation
We show that if a set A has a strong correlation to a linear phase then there exists
an arithmetic progression on which A has an higher density. To do so, we need to
fragment the interval [1,N] in arithmetic progressions which are sufficiently large
and on which the linear phase fluctuates only a little.

Lemma 1.1.3 (Linear fragmentation). Let N ≥ 1, 0 < ε ≤ 1, ξ ∈ R/Z a linear
character. Then there exists N′ = N′(N, ε) such that limN→∞ N′ = ∞ for any ε and

a partition [1,N] =

J⊔
j=1

P j t E such that

1. P j arithmetic progression of length N′

2. |E| = O(εN)

3.
∣∣∣eξ(x) − eξ(y)

∣∣∣ = O(ε) for any x, y ∈ P j and j ∈ [1, J]

4



1.1. Density Increment Density Increment

Proof. Let N′ =
√
εN.We can use the Kronecker Approximation Theorem to find

a phase 0 < h < N′ such that ‖ξ · h‖R/Z ≤
ε

N′ . We partition

[1,N] =

h⊔
i=1

Ai

with Ai arithmetic progressions of spacing h, Ai = {i + hx}x∈{1,··· ,si}. We can then
divide each Ai into subprogressions Pi, j of spacing h and length N′

Ai =

 Ji⊔
j=1

Pi, j

 t Ei

Renaming the sets {Pi, j} in {Pk} and defining E =
⊔J

j=1 E j we obtain

[1,N] =

 K⊔
k=1

Pk

 t E

By construction |Ei| < N′ so we have |E| < N′h < (N′)2 = εN.
Let x, y ∈ P j, then x = u + sh, y = u + th. Using the RZ bounds we obtain∣∣∣eξ(x) − eξ(y)

∣∣∣ =
∣∣∣eξ(u + sh) − eξ(u + th)

∣∣∣ =
∣∣∣eξ(u)(eξ(sh) − (eξ(th))

∣∣∣ =

=
∣∣∣eξ((s − t)h) − 1

∣∣∣ ≤ 2π ‖ξ · (s − t)h‖R/Z ≤

≤ 2π |s − t| ‖ξ · h‖R/Z ≤ 2πN′
ε

N′
= O(ε)

�

We can now prove that if a function has a strong correlation with a linear
character then it has an higher density in one of the pieces of the fragmentation.

Proposition 1.1.4. Let P be an arithmetic progression and let f : P → R be such
that | f (n)| ≤ 1 for all n and En∈P f (n) = 0. If En∈P f (n)eξ(n) ≥ σ for some ξ ∈ R/Z
and σ > 0, then there exist P′ ⊆ P arithmetic progression such that

|P′| = Ω(σ2 |P|
1
2 ) and En∈P′ f (n) ≥

σ

4

Proof. Assume P = [1,N] by rescaling. Using the Fragmentation Lemma 1.1.3
we obtain a partition [1,N] =

⊔J
j=1 P j t E. Then we have

σ ≤ En∈P f (n)eξ(n) =
1
N

 J∑
j=1

∑
x∈P j

f (x)eξ(x) +
∑
x∈E

f (x)eξ(x)


5



1.1. Density Increment Density Increment

Since |E| = O(εN) and | f (x)| ≤ 1 we have
∣∣∣∑x∈E f (x)eξ(x)

∣∣∣ = O(εN).
Let h j = min P j, then∣∣∣∣∣∣∣∣

∑
x∈P j

f (x)eξ(x)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)(eξ(x) − eξ(h j) + eξ(h j))

∣∣∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)eξ(h j)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)(eξ(x) − eξ(h j)

∣∣∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)

∣∣∣∣∣∣∣∣ + O(ε)
∣∣∣P j

∣∣∣
since x, h j ∈ P j implies

∣∣∣eξ(x) − eξ(h j)
∣∣∣ = O(ε).

Putting the two estimates together we obtain, for some constant c,

σ ≤
∣∣∣En∈P f (n)eξ(n)

∣∣∣ ≤ 1
N

J∑
j=1

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)

∣∣∣∣∣∣∣∣ +
1
N

O(ε)
J∑

j=1

∣∣∣P j

∣∣∣ +
1
N

O(εN) ≤

≤
1
N

J∑
j=1

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)

∣∣∣∣∣∣∣∣ + cε

Thus
∑J

j=1

∣∣∣∑x∈P j
f (x)

∣∣∣ ≥ N(σ − cε). Moreover, since

0 =

N∑
n=1

f (n) =

J∑
j=1

∑
x∈P j

f (x) +
∑
x∈E

f (x)

we obtain, for some constant c,∣∣∣∣∣∣∣∣
J∑

j=1

∑
x∈P j

f (x)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∑x∈E

f (x)

∣∣∣∣∣∣∣ = O(εN) ≤ cεN

Thus
∑J

j=1
∑

x∈P j
f (x) ≥ −cεN.

Using the formula |x| + x = 2 max(x, 0) we obtain

J∑
j=1

max

∑
x∈P j

f (x), 0

 =
1
2

 J∑
j=1

∣∣∣∣∣∣∣∣
∑
x∈P j

f (x)

∣∣∣∣∣∣∣∣ +

J∑
j=1

∑
x∈P j

f (x)

 ≥
≥

1
2

(N(σ − cε) − cεN) =
1
2

N(σ − (c + c)ε) ≥

≥
σ

4
N ≥

σ

4

J∑
j=1

∣∣∣P j

∣∣∣
6



1.1. Density Increment Density Increment

when ε is sufficiently small.
By the pidgeonhole principle we can find an index j such that

max

∑
x∈P j

f (x), 0

 ≥ σ

4

∣∣∣P j

∣∣∣ > 0

Thus
Ex∈P j f (x) =

1∣∣∣P j

∣∣∣ ∑x∈P j

f (x) ≥
σ

4

�

We have now the following useful corollary.

Corollary 1.1.5. Let A ⊂ P, P arithmetic progression, |A| = δ |P| for some
0 < δ ≤ 1. Assume |P| ≥ 100

δ2 and assume A does not contain an arithmetic pro-
gression of length 3. Then there exists a proper arithmetic progression P′ ⊆ P
with |P′| = Ω(δ4 |P|

1
2 ) such that we have the density increment

PP′(A) ≥ PP(A) + Ω(δ2)

Proof. By Proposition 1.1.2 there exists a linear phase ξ such that

En∈P f (n)eξ(n) ≥ cδ2

with f (n) = 1A(n) − E(1A). Then using Proposition 1.1.4 with σ = cδ2 we can
find P′ ⊆ P such that

|P′| = Ω(δ4 |P|
1
2 )

and

c
δ2

4
≤ EP′ f (n) = PP′(A) − PP(A)

�

1.1.3 Roth’s theorem
We can now prove Roth’s theorem. More specifically we will prove the estimate

r3([1,N]) = O
(

N
log log N

)
Let A ⊆ [1,N] be a non empty set with no arithmetic progression of length 3

and define
δ(N) =

|A ∩ [1,N]|
N

7



1.1. Density Increment Density Increment

We want to prove

δ(N) = O
(

1
log log N

)
Let Z0 = [1,N], δ0(N) = δ(N). Then applying the Corollary 1.1.5 we have the

existence of Z1,Z2, . . . such that

PZ1(A) ≥ PZ0(A) + Ω(δ2
0) ≥ δ(N) + cδ(N)2 = δ1(N)

PZ2(A) ≥ PZ1(A) + Ω(δ2
1) ≥ δ1(N) + cδ1(N)2 ≥ δ(N) + 2cδ(N)2 = δ2(N)

. . .

PZn+1(A) ≥ PZn(A) + Ω(δ2
n) ≥ δ(N) + ncδ(N)2

So, after at most 1
cδ(N) steps we have density at least δ(N) + 1

cδ(N)cδ(N)2 = 2δ(N).
Analogously we go from density 2δ(N) to 4δ(N) in 1

2cδ(N) steps, hence, by induc-
tion, we reach density 2lδ(N) in at most

1
cδ(N)

l∑
i=0

1
2i ≤

2
cδ(N)

=
a

δ(N)
steps.

In particular we reach a density greater than 1 in at most a
δ(N) steps.

From the corollary we have the following estimates on the size of the sub
progressions

|Z1| = Ω(δ4
0 |Z0|

1
2 ) ≥ kδ(N)4N

1
2 = N1

|Z2| = Ω(δ4
1 |Z1|

1
2 ) ≥ kδ(N)4δ(N)2N

1
4 ≥ kδ(N)8N

1
4 = N2

|Z3| = Ω(δ4
2 |Z2|

1
2 ) ≥ kδ(N)4δ(N)4N

1
8 = kδ(N)8N

1
8 = N3

. . .

|Zn+1| = Ω(δ4
n |Zn|

1
2 ) ≥ kδ(N)8N

1
2n = Nn

Now let n such that PZn(A) = δn(N) ≥ 1. Using the estimate above we can take
n ≤ a

δ(N) . Since A does not contain an arithmetic progression of length 3 we have

|Zn+1| <
100
δn(N)2

otherwise we could apply the corollary and reach a contradiction. Using the esti-
mates we obtain

kδ(N)8N
1

2n ≤ |Zn+1| ≤ 100

8



1.1. Density Increment Density Increment

Hence
N

1
2n ≤

b
δ(N)8

We can then apply the logarithmic function to both terms and obtain

1
2n ≤

log b − 8 log δN
log N

Using the inequality for n we have

2
a

δ(N) ≥ 2n ≥
ε log N
−α log δ(N)

We can apply again the logarithmic function and obtain

a
δ(N)

≥ ε log log N − log(−α log δ(N))

Thus

ε log log N ≤
a + δ(N) log(−α log δ(N))

δ(N)
≤

k
δ(N)

and so we can conclude

δ(N) ≤
k

log log N

9
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1.2 Nonstandard Density Increment

The density increment proof can be easily translated in the nonstandard setting:
the strategy adopted is the same as in the standard case with the advantage that we
can take an infinite subprogression on which we obtain an increased density. The
statement we will prove is the following.

Theorem 1.2.1 (Roth’s theorem). Let N ∈ ∗N infinite and A ⊆ [1,N] be an inter-
nal subset such that |A|N 0 0. Then A contains an arithmetic progression of length
3.

Let us show that this statement implies the usual version of Roth’s theorem.
Let A ⊆ N be such that d(A) = δ > 0. Then there exists a progression Nn → ∞

such that
|A ∩ [1,Nn]|

Nn
≥ δ −

1
n

Let N = [Nn] ∈ ∗N and ∗A = [A]. Then, by construction, N is infinite and
st

(
|A|
N

)
≥ δ. Hence a, a + r, a + 2r ∈ ∗A for some a, r ∈ ∗N using nonstandard

Roth. If we take a = [an] and r = [rn] we obtain an, an + rn, an + 2rn ∈ AU-almost
everywhere and in particular A contains an arithmetic progression of length 3.

We define Λ3 in the nonstandard context the same way we have done in the
standard case

Λ3( f , g, h) = Ex,r∈[1,N] f (x)g(x + r)h(x + 2r) =
1

N2

N−1∑
n=0

N−1∑
r=0

f (x)g(x + r)h(x + 2r)

1.2.1 Correlation and fragmentation

We can use the transfer principle to prove the correlation in the same way we have
done for the standard case.

Proposition 1.2.2. Let N ∈ ∗N be infinite and A ⊆ [1,N] an internal set with
|A|
N = δ > 0 non infinitesimal. If A does not contain any arithmetic progression of
length 3 then there exists α ∈ ∗R such that

En∈[1,N] |(1A(n) − δ)e(αn)|
δ2 0 0

To fragment the interval [1,N] we can proceed the same way we have done
for the standard case with the advantage that we can take the subprogression of
infinite length.

10
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Lemma 1.2.3 (Linear fragmentation). Let N be an infinite hypernatural and
ξ ∈ ∗R/∗Z. Then there exists ν < N infinite and a partition

[1,N] =

J⊔
j=1

P j t E

with

1. P j internal arithmetic progression of length at least ν

2. E internal and |E|N infinitesimal

3. |e(ξ · x) − e(ξ · y)| is finite for any x, y ∈ P j and j ∈ [1, J]

Proof. Let ν �
√

N. Using the Kronecher’s approximation in the nonstandard
context (Theorem 0.18) we can find a phase h < ν such that ‖ξ · h‖∗R/∗N ≤

1
ν
. Sim-

ilarly to the standard case we partition

[1,N] =

h⊔
i=1

Ai

with Ni subprogressions of spacing h and then partition each Ai in subprogressions
of length at least ν

Ai =

Ji⊔
j=1

Pi, j t Ei and [1,N] =

h⊔
j=1

P j t E

By construction |E| ≤ hν ≤ ν2 � N. Using the same inequality as in the standard
case we obtain

|e(ξ · x) − e(ξ · y)| ≤ 2π

�

We can now apply this lemma to obtain the density increment on an infinite
subprogression.

Proposition 1.2.4. Let f : [1,N]→ ∗R such that

st
(
En∈[1,N] | f (n)e(ξ · n)|

)
≥ σ > 0

Then there exists P ⊆ [1,N] arithmetic progression of infinite length such that

st (En∈P f (n)) = st

 1
|P|

∑
n∈P

f (n)

 ≥ σ

4

Again, the proof is the same as in the standard case.

11
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1.2.2 Roth’s theorem
We can now prove Roth’s theorem.

Theorem 1.2.5 (Roth’s theorem). Let N ∈ ∗N infinite and A ⊆ [1,N] internal
subset with |A|N 0 0. Then A contains an arithmetic progression of length 3.

Proof. Assume, ad absurdum, that A does not contain any arithmetic progression
of length 3. Pick δ ∈ R+ such that δ ≥ st

(
|A|
N

)
and let f (n) = 1A(n)− δ. Then using

Proposition 1.2.2 there exists ξ such that

En∈[1,N] | f (n)e(ξ · n)| ≥ cδ2 > 0

Using Proposition 1.2.4 there exists P ⊆ [1,N] arithmetic progression of length ν
infinite such that

1
|P|

∑
x∈P

(1A(x) − δ1[1,N](x)) ≥
cδ2

4

hence
1
|P|

∑
n∈P

1A(n) ≥ δ + cδ2

Since ν is infinite and δ is not infinitesimal we can repeat the process enough times
and obtain and absurdum since the density of a set cannot exceed one. �

12



Chapter 2

Ergodic Proof

The aim of this chapter is to prove Roth’s theorem using tools from the Ergodic
theory [McC99]. We give now all the basic definitions and theorems used in the
rest of the chapter. See [Pet89] for a more in depth exposition.

Definition 2.0.1 (Measure preserving system). A measure preserving system (mps
for short) is a tuple (X,B, µ,T ) where (X,B, µ) is a complete probability space
and T : X → X is bijective, T,T−1 are measurable and µ(A) = µ(T (A)) for every
A ∈ B.

We can consider T n as an operator L2(X)→ L2(X) defined as

T n( f ) = f ◦ T−n

This convention is chosen so that we have T n(1A) = 1T n(A).

Definition 2.0.2 (Ergodic system). A measure preserving system (X,B, µ,T ) is
ergodic if every T -invariant set has measure 0 or 1.

Example. Let X = ZN . Then the system (X, 2X, µ,T ) with µ uniform measure and
T (x) = x + 1 is an ergodic measure preserving system.

Definition 2.0.3. Let v1, v2, . . . , vn ∈ V normed vector space. We define

1. (convergence in norm) lim
n→∞

vn = v if lim
n→∞
‖vn − v‖ = 0

2. (convergence in density) D-lim
n→∞

vn = v if d{n ∈ N : ‖vn − v‖ < ε} > 0 for
any ε > 0

3. (Cesàro convergence) C-lim
n→∞

vn = v if lim
N→∞

1
N

N−1∑
n=0

vn = v

13



Ergodic Proof

Remark. Convergence in norm⇒ convergence in density⇒ Cesàro convergence

Proposition 2.0.4. Let v, v0, v1, . . . be a bounded sequence in a normed vector
space V. Then the following are equivalent:

1. C-lim
n→∞

‖vn − v‖ = 0

2. C-lim
n→∞

‖vn − v‖2 = 0

3. D-lim
n→∞

‖vn − v‖ = 0

Furthermore, any of these statements implies that C-lim n→∞ vn = v.

We introduce now an in important lemma regarding Cesàro limits.

Definition 2.0.5 (Cesàro supremum). C-sup
n→∞

vn = lim sup
N→∞

∥∥∥∥∥∥∥ 1
N

N−1∑
n=0

vn

∥∥∥∥∥∥∥
van der Corput lemma. Let v0, v1, · · · be a bounded sequence of vectors in a
Hilbert space. If

C-lim
h→∞

C-sup
n→∞

〈vn, vn+h〉 = 0

then C-lim
n→∞

vn = 0.

Another important convergence theorem is the Von Neumann mean ergodic
theorem.

Definition 2.0.6 (Conditional expectation). Let (X,B, µ,T ) be a measure preserv-
ing system and let B′ ⊆ B be a subalgebra. The conditional expectation E( ·|B′)
is the orthogonal projection map

E( ·|B′) : L2(X,B, µ)→ L2(X,B′, µ)

von Neumann mean ergodic theorem. Let (X,B, µ,T ) be a measure preserving
system. Let BT = {E ∈ B : T (E) = E}. If f ∈ L2(X) then

E0≤n<N(T n f ) =
1
N

N−1∑
n=0

T n f −→ E( f |BT ) in L2(X)

In particular, if the system is ergodic, the limit is E( f ).

In later sections we will often assume the systems to be ergodic. We remark
that one can always decompose a generic system into ergodic components thanks
to the following theorem.

Ergodic decomposition. Let (X,B, µ,T ) be a measure preserving system. Let
E(X) be the set of ergodic measures on X. Then there exists a map β : X → E(X)
such that the map ΠA : x 7→ βx(A) is measurable for any A ∈ B and

µ(A) =

∫
X

ΠA(x)dµ(x)

14
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Furstenberg’s correspondence principle

In order to translate combinatorial problems to the ergodic setting we will make
use of the following principle [Fur77].

Furstenberg’s correspondence principle. Let A ⊆ N, d(A) > 0. Then there
exist a measure preserving system (X,B, µ,T ) and an element E ∈ B such that
µ(E) = d(A) and for any n1, . . . , nk ∈ N

µ(E ∩ T−n1(E) ∩ · · · ∩ T−nk(E)) ≤ d(A ∩ (A − n1) ∩ · · · ∩ (A − nk))

2.1 General strategy
We have that Roth’s theorem is a particular case of

Szemeredi’s theorem. Let A ⊆ N be a set with positive density. Then A contains
arbitrarily long arithmetic progressions.

Using Furstenberg’s correspondence principle [Zha11] it is proved that Sze-
meredi’s theorem is equivalent to

Furstenberg multiple recurrence theorem. Let (X,B, µ,T ) be a measure pre-
serving system. For any integer k and any E ∈ B with µ(E) > 0 there exists some
n > 0 such that

µ(E ∩ T nE ∩ T 2nE ∩ · · · ∩ T (k−1)nE) > 0

We consider now the (seemingly) stronger statement

lim inf
N→∞

1
N

N−1∑
n=0

µ(E ∩ T nE ∩ · · · ∩ T (k−1)nE) > 0 (2.1)

and consider the problem in terms of functions.

Definition 2.1.1 (SZ system). We say that a measure preserving system is SZ
(Szemeredi) of level k if

lim inf
N→∞

1
N

N−1∑
n=0

∫
f T n f · · · T (k−1)n f dµ > 0 (2.2)

for every f ∈ L∞(X), f positive and E( f ) > 0.
We call the system S Z if it is S Z of every level.
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Conditions (2.1) and (2.2) for all f are equivalent since we can take f = 1E

in one direction and we can approximate f with simple functions in the other
direction.

We can now state Roth’s theorem in ergodic terms.

Roth ergodic. Every measure preserving system is SZ of level 3.

We show that this statement implies the usual version of Roth’s theorem.
Let A ⊆ N such that d(A) = δ > 0. Using Furstenberg’s correspondence

principle there exists a measure preserving system (X,B, µ,T ) and a set E ∈ B
such that

µ(E ∩ T−n1(E) ∩ · · · ∩ T−nk(E)) ≤ d(A ∩ (A − n1) ∩ · · · ∩ (A − nk))

for any n1, . . . , nk ∈ N. Using the ergodic version of Roth’s theorem we have that
there exists an integer n such that

µ(E ∩ T nE ∩ T 2nE) > 0

hence
d(A ∩ (A − n) ∩ (A − 2n)) > 0

and in particular there exists x ∈ A∩ (A−n)∩ (A−2n) and thus x, x+n, x+2n ∈ A.
To prove Roth’s ergodic theorem we will go through three main steps:

1. We prove that a system that is either compact or weak mixing is SZ

2. We partition a generic system in a compact component and a weak mixing
one

3. We show that one can always restrict the problem to only one of the two
components

Essentially we will prove that every function can be decomposed in a “pseudo-
random” component (weak mixing) and a “structured” one (almost periodic).

2.2 Weak mixing systems
The weak mixing component represents the pseudo-random part of our decompo-
sition.

Definition 2.2.1 (Weak mixing system). A measure preserving system (X,B, µ,T )
is weak mixing if

D-lim
n→∞

µ(T nA ∩ B) = µ(A)µ(B)

16
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for every A, B ∈ B. Or, equivalently, if

D-lim
n→∞

〈T n f , g〉 = E( f ) E(g)

for any f , g ∈ L2(X).

Proposition 2.2.2. Every weak mixing system is ergodic.

Proof. Let A be such that T (A) = A, then µ(A) = µ(T nA ∩ A) = µ(A)2 by weak
mixing. Hence µ(A) is either 0 or 1. �

We can give the notion of being weak mixing for a single function.

Definition 2.2.3 (Weak mixing function). A function f ∈ L2(X) is weak mixing if
D-lim n→∞ 〈T n f , f 〉 = 0.

We have the following characterisation (see e.g. [Tao09]).

Theorem 2.2.4. A system is weak mixing if and only if every function f ∈ L2(X)
with mean zero is weak mixing.

We introduce now a useful property of weak mixing functions.

Proposition 2.2.5. Let f ∈ L2(X) be a weak mixing function. Then for any
g ∈ L2(X) we have

D-lim
n→∞

〈T n f , g〉 = 0 and D-lim
n→∞

〈 f ,T ng〉 = 0

Proof. Since 〈 f ,T ng〉 = 〈T−n f , g〉 by T -invariance it is sufficient to prove that
D-lim n→∞ 〈T n f , g〉 = 0. We will prove that C-lim n→∞ |〈T n f , g〉|2 = 0 and the
claim will follow thanks to Proposition 2.0.4.

We have
1
N

N−1∑
n=0

|〈T n f , g〉|2 =

〈
1
N

N−1∑
n=0

〈T n f , g〉T n f , g
〉

We prove that C-lim n→∞ 〈T n f , g〉T n f = 0 (the claims then follow by Cauchy-
Schwartz).

Using the van der Corput lemma on the sequence vn = 〈T n f , g〉T n f it suffices
to show

C-lim
h→∞

C-sup
n→∞

〈vn, vn+h〉 = C-lim
h→∞

C-sup
n→∞

〈
〈T n f , g〉T n f ,

〈
T n+h f , g

〉
T n+h f

〉
= C-lim

h→∞
C-sup

n→∞
〈T n f , g〉

〈
T n+h f , g

〉 〈
T n f ,T n+h f

〉
= 0

17



2.2. Weak mixing systems Ergodic Proof

Now 〈T n f , g〉 and
〈
T n+h f , g

〉
are bounded (since ‖T n f ‖L2 = ‖T n+h f ‖L2 = ‖ f ‖L2)

and
〈
T n f ,T n+h f

〉
=

〈
f ,T h f

〉
and thus we obtain

C-lim
h→∞

C-sup
n→∞

〈T n f , g〉
〈
T n+h f , g

〉 〈
T n f ,T n+h f

〉
≤ K · C-lim

h→∞

∣∣∣∣〈 f ,T h f
〉∣∣∣∣ = 0

since f is weak mixing.
�

Proof of Theorem 2.2.4. If (X,B, µ,T ) is weak mixing and f has mean zero then
D-lim n→∞ 〈T n f , f 〉 = E( f )2 = 0 by definition. Conversely, if f , g ∈ L2(X), then
from Proposition 2.2.5 we have

D-lim
n→∞

〈T n( f − E( f )), g〉 = 0

since f − E( f ) has mean zero and henceD-lim n→∞ 〈T n f , g〉 = E( f ) E(g). �

We can now prove that a weak mixing system is S Z.

Proposition 2.2.6. Let (X,B, µ,T ) be a weak mixing system and k an integer,
k ≥ 1. Let f1, f2, · · · , fk ∈ L∞(X) and let a1, a2, · · · , ak be a sequence of distinct
non-zero integers. Then

C-lim
n→∞

T a1n f1 T a2n f2 · · · T akn fk = E( f1) E( f2) · · ·E( fk)

in L2(X).

Proof. By induction on k.
Case k = 1. (X,B, µ,T ) weak mixing ⇒ (X,B, µ,T a1) weak mixing ⇒ er-

godic. The thesis then follows from the von Neumann mean ergodic theorem.
Inductive step.
By replacing f1 with f1 − E( f1) and by using the inductive hypothesis on

f2, · · · , fk it suffices to prove C-lim n→∞ T a1n f1 T a2n f2 · · · T akn fk = 0.
We apply the van der Corput lemma on the sequence

vr = T a1r f1 T a2r f2 · · · T akr fk

so it is sufficient to show C-lim h→∞ C-sup n→∞ 〈vn, vn+h〉 = 0.
By definition we have

〈vn, vn+h〉 =
〈
T a1n f1 · · · T akn fk, T a1(n+h) f1 · · · T ak(n+h) fk

〉
=

=
〈
T−akn

(
T a1n f1 · · · T akn fk

)
, T−akn

(
T a1(n+h) f1 · · · T ak(n+h) fk

)〉
=

=
〈
T (a1−ak)n f1 · · · T (ak−1−ak)n fk−1 fk, T (a1−ak)nT a1h f1 · · · T (ak−1−ak)nT ak−1h fk−1 T akh fk

〉
=

∫
X

T (a1−ak)n f1,h · · · T (ak−1−ak)n fk−1,h fk,h dµ

18



2.2. Weak mixing systems Ergodic Proof

where f j,h = f j T a jh f j.
Using Cauchy-Schwartz and the fact that f bounded implies fh,k bounded it

suffices to show

C-lim
h→∞

C-sup
n→∞

T (a1−ak)n f1,h · · · T (ak−1−ak)n fk−1,h = 0

Applying the induction hypothesis we obtain

C-lim
n→∞

T (a1−ak)n f1,h · · · T (ak−1−ak)n fk−1,h = E( f1,h) · · ·E( fk−1,h)

Since f j,h are all bounded and f1 is weak mixing we obtain

C-lim
h→∞

E( f1,h) = C-sup
h→∞

E( f1T a1h f1) = C-sup
h→∞

〈
f1, T a1h f1

〉
= 0

Hence, putting the last two equations together, we conclude

C-lim
h→∞

C-sup
n→∞

T (a1−ak)n f1,h · · · T (ak−1−ak)n fk−1,h =

= C-lim
h→∞

E( f1,h) · · ·E( fk−1,h) = 0

�

Corollary 2.2.7. With the same assumptions of proposition 2.2.6 we have

C-lim
n→∞

∫
X

T a1n f1 T a2n f2 · · · T akn fk dµ = E( f1) E( f2) · · ·E( fk)

Theorem 2.2.8. A weak mixing system is SZ.

Proof. Let X be a weak mixing system and f ∈ L∞(X), f ≥ 0, E( f ) > 0.
Then, using the corollary above, we obtain

lim inf
N→∞

1
N

∫
X

N−1∑
n=0

f T n f · · · T kn f dµ = E( f ) E(T n f ) · · ·E(T kn f ) = E( f )k+1 > 0

�
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2.3. Compact systems Ergodic Proof

2.3 Compact systems
The compact component represents the structured part of our decomposition. A
system is compact if its functions are almost periodic.

Definition 2.3.1 (Precompact). Let W ⊆ X with X metric space.
W is called precompact if W is compact.
W is called totally bounded if, for any ε > 0, W can be covered with a finite

collection of ε-balls.
Those two definitions are equivalent if X is complete.

Definition 2.3.2 (Almost periodic). Let (X,B, µ,T ) be a measure preserving sys-
tem. We say f ∈ L2(X) is almost periodic if its orbit {T n f : n ∈ Z} is precompact
in L2(X) with the norm topology.

Equivalently, f is almost periodic if the set {n ∈ Z : ‖ f − T n f ‖ < ε} is syndetic
for every ε > 0.

Definition 2.3.3. A set A ⊆ N is called syndetic if there exists N ∈ N such that

N =

N⋃
n=1

(A − n)

or, equivalently, A has bounded gaps.

Definition 2.3.4 (Compact system). The system (X,B, µ,T ) is compact if every
function f ∈ L2(X) is almost periodic.

Theorem 2.3.5. Every compact system is SZ.

With the given definitions the above theorem is equivalent to the following
proposition.

Proposition 2.3.6. Let (X,B, µ,T ) be a measure preserving system and k an in-
teger, k > 1. Let f ∈ L2(X) be an almost periodic function such that f ∈ L∞(X),
f > 0 and E( f ) > 0. Then

lim inf
n→∞

1
N

N−1∑
n=0

∫
X

f T n f · · · T (k−1)n f dµ > 0

Proof. We can assume, without loss of generality, f < 1.
Let ε > 0. Since f is almost periodic, the set

Nε =

{
n ∈ N : ‖ f − T n f ‖ <

ε

k2k

}
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2.3. Compact systems Ergodic Proof

is syndetic. Let n ∈ Nε .
Since T is isometric we have

‖ f − T n f ‖L2 <
ε

k2k ⇒ ‖T
in f − T inT n f ‖L2 = ‖T in f − T (i+1)n f ‖L2 <

ε

k2k

Hence for any j ∈ {1, . . . , k − 1} we have

‖ f − T jn f ‖L2 ≤ ‖ f − T n f ‖L2 + ‖T n f − T 2n f ‖L2 + · · · + ‖T ( j−1)n f − T jn f ‖L2 <

< j ·
ε

k2k ≤
ε

2k

So we can write T jn f = f + g j with ‖g j‖L2 < ε
2k .

Then ∫
X

f T n f · · · T (k−1)n f dµ =

∫
X

f ( f + g1) · · · ( f + gk−1) dµ =

=

∫
X

f k dµ +
∑

i

∫
X

f si
∏
j∈Ti

g j =

∫
X

f k dµ +
∑

i

〈
Fi, gsi

〉
where Fi is a product of f and some g j thus

‖Fi‖L2 ≤ ‖ f r‖L∞
∏
‖gs j‖L2 ≤ 1

since ‖ f ‖L∞ ≤ 1 and ‖gs j‖L2 ≤ ε
2k ≤ 1.

So |
〈
Fi, gsi

〉
| ≤ ‖Fi‖L2‖gsi‖L2 ≤ ε

2k .
Since we have at most 2k such products we obtain∫

X
f T n f · · · T (k−1)n f dµ ≥

∫
X

f k dµ − 2k ε

2k =

∫
X

f k dµ − ε

Let dε be the maximum gap in Nε (which is syndedic).
Since the above equation holds holds for n ∈ Nε and |[1,N] ∩ Nε | ≥

N
dε

, we
have

lim inf
N→∞

1
N

N−1∑
n=0

∫
X

f T n f · · · T (k−1)n f dµ ≥ lim inf
N→∞

1
N
·

N
dε

(∫
X

f k dµ − ε
)

=

=
1
dε

(∫
X

f k dµ − ε
)
> 0

for ε sufficiently small.
�
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2.4. Compact operators Ergodic Proof

2.4 Compact operators
In this section we introduce a tool used to find almost periodic functions (see
[Tao09]).

Definition 2.4.1 (Hilbert-Schmidt norm). Let H,H′ be separable Hilbert spaces
with orthonormal basis (ea)a∈A and ( fb)b∈B respectively. The Hilbert-Schmidt norm
of a bounded linear operator Φ : H → H′ is the quantity ‖Φ‖HS defined as

‖Φ‖2HS =
∑
a∈A

‖Φ(ea)‖2H′ =
∑
a∈A

∑
b∈B

|〈Φ(ea), fb〉|
2 =

=
∑
a∈A

∑
b∈B

|〈ea, Φ∗( fb)〉|2 =
∑
b∈B

‖Φ( fb)‖2H

where Φ∗ is the adjoint of Φ.

Definition 2.4.2 (Hilbert-Schmidt operator). Let H,H′ be separable Hilbert spaces
with orthonormal basis (ea)a∈A and ( fb)b∈B respectively. A linear bounded operator
Φ : H → H′ is a Hilbert-Schmidt operator (HS for short) if its Hilbert-Schmidt
norm ‖Φ‖HS is finite.

Proposition 2.4.3 (Characterisation of HS operators). An operator

Φ : L2(X)→ L2(Y)

is a Hilbert-Schmidt operator if and only if there exists some kernel K in L2(X×Y)
such that

Φ( f ) = Φk( f ) = K ∗ f def
=

∫
X

K(·, y) f (y)dy

We have that Hilbert-Schmidt operators are compact.

Proposition 2.4.4. A Hilbert-Schmidt operator between two separable Hilbert
spaces is compact, i.e. the image of any bounded set is precompact.

Proof. Let ε > 0 and let (en)n∈N orthogonal basis of H. Since ‖Φ‖HS is finite there
exist e1, . . . , eN such that

N∑
n=1

‖Φ(en)‖2H′ ≥ ‖Φ‖
2
HS − ε

2

and in particular
∥∥∥Φ(e j)

∥∥∥2

H′
< ε2 for any e j orthogonal to Span(e1, . . . , eN) = V .

Since we can write any vector x in the unit ball as x = v+v′ with v ∈ V , v ∈ V⊥

and ‖v‖H ≤ 1, ‖v′‖H ≤ 1 we have that

‖Φ(x)‖2H′ ≤ ‖Φ(v)‖2H′ + ‖Φ(v′)‖2H′ ≤ ‖Φ(v)‖2H′ + ε2
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2.5. Decomposing L2(X) Ergodic Proof

Since V is finite dimensional we have that {Φ(v) : ‖v‖ ≤ 1}v∈V is precompact.
Hence, from the inequality above, we can conclude that the image of the unit ball
under Φ is precompact.

�

We can use compact operators to find almost periodic functions.

Proposition 2.4.5. Let (X,B, µ,T ) be a measure preserving system.
If Φ : L2(X) → L2(X) is a compact operator which commutes with T then Φ f

is an almost periodic function for any f ∈ L2(X).

Proof. The orbit of f is bounded in L2(X) so the image set

Φ({T n f }n∈Z) = {Φ(T n f )}n∈Z = {T n(Φ f )}n∈Z

is precompact which means Φ f almost periodic. �

Since HS operators are compact we have the following corollary.

Corollary 2.4.6. Let (X,B, µ,T ) be a measure preserving system.
If Φ : L2(X) → L2(X) is a HS operator which commutes with T then Φ f is an

almost periodic function for any f ∈ L2(X).

2.5 Decomposing L2(X)

We now prove that we can decompose L2(X) in an almost periodic component plus
a compact one. Let AP(X) be the set of the almost periodic functions in L2(X) and
WM(X) the set of the weak mixing functions in L2(X).

Theorem 2.5.1. L2(X) = AP(X) ⊕WM(X)

We divide the proof in three parts:

• (Lemma 2.5.2) WM(X) ⊆ AP(X)⊥

• (Lemma 2.5.3) AP(X)⊥ ⊆ WM(X)

• (Lemma 2.5.4) AP(X) is a closed subspace of L2(X)

Lemma 2.5.2. Let f ∈ WM(X). Then 〈 f , g〉 = 0 for any g ∈ AP(X).
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2.5. Decomposing L2(X) Ergodic Proof

Proof. By T -invariance 〈T n f ,T ng〉 = 〈 f , g〉 so it suffices to show

C-lim
n→∞

|〈T n f ,T ng〉| = 0

Let ε > 0. Since g is almost periodic there exist g1, . . . , gk ∈ L2(X) such that for
any n we have ‖T ngi − g‖L2 < ε for some i. Then we have

|〈T n f ,T ng〉| ≤ |〈T n f , gi〉| + ε‖ f ‖L2 ≤

k∑
i=1

|〈T n f , gi〉| + ε‖ f ‖L2

Since f is weak mixing we have D-lim n→∞ |〈T n f , g〉| = 0 for any g ∈ L2(X) (see
Proposition 2.2.5), and so

C-lim
n→∞

|〈T n f ,T ng〉| ≤ ε‖ f ‖L2

Since ε is arbitrary we obtain

|〈 f , g〉| = C-lim
n→∞

|〈T n f ,T ng〉| = 0

�

Lemma 2.5.3. Let f ∈ AP(X)⊥. Then f ∈ WM(X).

Proof. We prove that, if f is not weak mixing, then there exists g ∈ AP(X) such
that 〈 f , g〉 , 0.

Let Φ f : L2(X)→ L2(X), Φ f (g) = 〈 f , g〉 f . This is a HS operator since∥∥∥Φ f

∥∥∥2

HS
=

∑
n∈N

∥∥∥Φ f (en)
∥∥∥2

=
∑
n∈N

|〈 f , en〉|
2
‖ f ‖2L2 = ‖ f ‖4L2 is finite.

Let U be the unitary operator on the space HS (L2(X) → L2(X)) of the HS opera-
tors on L2(X) given by U(S ) = T ◦ S ◦ T−1. So we have U(Φ f ) = ΦT f .

By the von Neumann mean ergodic theorem we obtain that

1
N

N−1∑
n=0

Un f −→ Ψ f in norm

with Ψ f element of the U-invariant subspace of HS (L2(X)→ L2(X)).
Since Ψ f is U-invariant we have that Ψ f = UΨ f = T ◦ Ψ f ◦ T−1 so Ψ f

commutes with T .
Using the Corollary 2.4.6 we obtain that Ψ f (g) is almost periodic for any g ∈

L2(X) and in particular Ψ f ( f ) is almost periodic.
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2.5. Decomposing L2(X) Ergodic Proof

Now we have

〈
Ψ f f , f

〉
= lim

N→∞

1
N

N−1∑
n=0

〈
UnΦ f f , f

〉
= lim

N→∞

1
N

N−1∑
n=0

〈
ΦT n f f , f

〉
=

= lim
N→∞

1
N

N−1∑
n=0

〈〈T n f , f 〉T n f , f 〉 = lim
N→∞

1
N

N−1∑
n=0

|〈T n f , f 〉|2 =

= C-lim
n→∞

|〈T n f , f 〉|2 , 0

( f is not weak mixing⇒D-lim n→∞ 〈T n f , f 〉 , 0).
So we obtain

〈
Ψ f f , f

〉
, 0 and Ψ f f ∈ AP(X). �

Lemma 2.5.4. AP(X) is a closed T-invariant subspace of L2(X).

Proof. f and T f have the same orbit so f ∈ AP(X) if and only if T f ∈ AP(X)
hence AP(X) is T -invariant.

We prove than AP(X) is closed.
Let ( fn) ⊆ AP(X), fn −→ f in L2(X). We prove that the orbit of f is totally

bounded.
Let ε > 0. Choose m ∈ N such that ‖ fm − f ‖ < ε

2 .
Since fm ∈ AP(X) there exist g1, . . . , gk ∈ L2(X) such that for any n ∈ N we

have ‖T n fm − gi‖ <
ε
2 for some i.

So we obtain

‖T n f − gi‖L2 ≤ ‖T n f − T n fm‖L2 + ‖T n fm − gi‖L2 =

= ‖ f − fm‖L2 + ‖T n fm − gi‖L2 ≤
ε

2
+
ε

2

Hence the orbit of f it totally bounded and so f ∈ AP(X). �

We can now prove the main theorem.

Proof of Theorem 2.5.1. Since AP(X) is a closed subspace of L2(X) and
AP⊥(X) = WM(X) we have

L2(X) = AP(X) ⊕ AP⊥(X) = AP(X) ⊕WM(X)

�

Using this decomposition we can prove the following characterisation of weak
mixing systems.

Corollary 2.5.5. A measure preserving system is weak mixing if and only if the
almost periodic functions are constant almost everywhere.
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2.6. Decomposing functions Ergodic Proof

Proof. Let f ∈ L2(X) be an almost periodic function. Then f − E( f ) is almost
periodic and has mean zero. Since X is weak mixing we have that f −E( f ) is also
weak mixing. Hence, using the decomposition, we obtain f − E( f ) = 0 almost
everywhere. �

We give now a property of closure of AP(X) which will be used in the next
section.

Proposition 2.5.6. AP(X) is closed under the following pointwise operations

( f , g) 7→ max{ f , g} and ( f , g) 7→ min{ f , g}

Proof. Let φ : L2(X) × L2(X)→ L2(X) be a uniformly continuous function which
commutes with T . We prove AP(X) closed under φ. Let f , g ∈ L2(X). We prove
that the orbit of φ( f , g) is totally bounded. Let ε > 0. Since φ is uniformly
continuous we can find δ > 0 such that ‖φ( f1, g1) − φ( f2, g2)‖L2 ≤ ε for any
‖ f1 − f2‖L2 < δ and ‖g1 − g2‖L2 < δ. Since f , g are almost periodic we can find
f1, . . . , fk, g1, . . . , gl ∈ L2(X) such that for any n there exist indexes i, j such that
‖T n f − fi‖L2 < δ

2 and ‖T ng − g j‖L2 < δ
2 hence ‖φ(T n f ,T ng) − φ( fi, g j)‖L2 < ε.

Thus the orbit can be covered with ε-balls centred at φ( fi, g j). The thesis follows
since pointwise max{ f , g} and min{ f , g} are uniformly continuous functions which
commute with T . �

2.6 Decomposing functions
We now give an explicit decomposition of a function in L2(X) using a Kronecker
factor and the conditional expectation.

Definition 2.6.1 (Factor). A factor in (X,B, µ,T ) is a T -invariant subalgebra
B′ ⊆ B.

A factor is called trivial if its elements have all measure 0 or 1.
A factor is called compact if (X,B′, µ,T ) is a compact system.

Definition 2.6.2 (Kronecker factor). Let BAP = {A ∈ B : 1A ∈ AP(X)}. Then BAP

is a factor (since AP(X) is closed and T -invariant) and is called Kronecker factor.

We can now write a function in L2(X) as the sum of a structured part and a
pseudo-random one.

Proposition 2.6.3. Let (X,B, µ,T ) be a measure preserving system and f ∈ L2(X).
Then

1. f ∈ AP(X) if and only if f is BAP-measurable
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2.7. Roth’s theorem Ergodic Proof

2. f ∈ WM(X) if and only if E( f |BAP) = 0

3. f = fAP + fWM where fAP = E( f |BAP) and fWM = f − fAP

Proof. (1) If f is BAP-measurable then f can be approximated by linear combina-
tions of functions {1A} ⊆ AP(X) and thus f ∈ AP(X) (since AP(X) is closed).

Conversely let f ∈ AP(X). We prove {x : f (x) < a} ∈ BAP.
We have that

lim
n→∞

min{1,max{n( f − a), 0}} −→ 1{ f (x)<a} in L2(X)

Since AP(X) is closed under pointwise min and max operations, we have
1{ f (x)<a} ∈ AP(X) and so { f (x) < a} ∈ BAP.

(2) f ∈ WM(X) if and only if f ∈ AP⊥(X) hence E( f |BAP) = 0
(3) Follows from L2(X) = AP(X) ⊕WM(X)

�

Corollary 2.6.4. BAP is the maximal compact factor of (X,B, µ,T ) and is not
trivial if and only if there exists an almost periodic function which is not almost
everywhere constant.

This decomposition induces an interesting dichotomy:

A system is either pseudo-random or contains some structured piece

Proposition 2.6.5. Let (X,B, µ,T ) be a measure preserving system.
Then exactly one of the following holds:

1. (Pseudo-random) X is weak mixing

2. (Structure) X has a non trivial factor

Proof. If X is not weak mixing then, by Corollary 2.6.4, there exists f ∈ AP(X)
which is not constant a.e., hence BAP is a non trivial factor. �

2.7 Roth’s theorem
We can now prove Roth’s theorem. The idea of the proof is that the system is
either compact (hence SZ) or contains a non trivial Kronecker factor on which we
can “project” the problem.

We begin with an estimate on the distance between two functions and their
almost periodic part.
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2.7. Roth’s theorem Ergodic Proof

Proposition 2.7.1. Let (X,B, µ,T ) be an ergodic measure preserving system.
Then for any f1, f2 ∈ L2(X) we have

C-lim
n→∞

(
T n f1 T 2n f2 − T n E( f1|BAP) T 2n E( f2|BAP)

)
= 0 in L2(X)

Proof. Since we can decompose f1 and f2 in their weak mixing and almost peri-
odic components it is sufficient to prove

C-lim
n→∞

T n f1 T 2n f2 = 0

if either f1 or f2 is weak mixing.
Let vn = T n f1 T 2n f2.
Using the van der Corput lemma it suffices to show

C-sup
h→∞

C-sup
n→∞

〈vn, vn+h〉 = 0

Since T : L2(X)→ L2(X) is linear and µ-invariant we have

〈vn, vn+h〉 =

∫
X

T n f1 T 2n f2 T n+h f1 T 2(n+h) f2 dµ =

=

∫
X

f1 T n f2 T h f1 T n+2h f2 dµ =

∫
X

f1 T h f1 T n( f2 T 2h f2) dµ

Since X is ergodic by the mean ergodic theorem we obtain

C-lim
n→∞

∫
X

f1 T h f1 T n( f2 T 2h f2) dµ =

∫
X

f1 T h f1

(
C-lim

n→∞
T n( f2 T 2h f2)

)
dµ =

=

∫
X

f1 T h f1 E( f2 T 2h f2) dµ =
〈

f1,T h f1

〉 〈
f2,T 2h f2

〉
Since either f1 or f2 is weak mixing at least one of the two inner products is

zero, hence

C-sup
h→∞

C-sup
n→∞

〈vn, vn+h〉 = C-sup
h→∞

〈
f1,T h f1

〉 〈
f2,T 2h f2

〉
= 0

�

We can now prove Roth’s theorem.

Theorem 2.7.2 (Roth’s theorem). Let (X,B, µ,T ) be a measure preserving system.
Then for any f ∈ L∞(X), f ≥ 0, E( f ) > 0 we have

lim inf
N→∞

1
N

N−1∑
n=0

∫
X

f T n f T 2n f dµ > 0
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Proof. Via ergodic decomposition we may assume that the system is ergodic.
Using the Proposition 2.7.1 we obtain

lim inf
N→∞

1
N

N−1∑
n=0

∫
X

f T n f T 2n f dµ =

∫
X

f C-lim
n→∞

T n f T 2n f dµ =

=

∫
X

f C-lim
n→∞

T n E( f |BAP) T 2n E( f |BAP) dµ =

= lim inf
N→∞

1
N

N−1∑
n=0

∫
X

f T n E( f |BAP) T 2n E( f |BAP) dµ =

= lim inf
N→∞

1
N

N−1∑
n=0

∫
X

E
(

f T n E( f |BAP) T 2n E( f |BAP)
∣∣∣BAP

)
dµ =

= lim inf
N→∞

1
N

N−1∑
n=0

∫
X

E( f |BAP) T n E( f |BAP) T 2n E( f |BAP) dµ > 0

since E( f |BAP) > 0, is almost periodic and has positive mean.
�
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Chapter 3

Energy Increment

In this chapter we present a proof of the finitary version of Roth’s theorem us-
ing an energy increment argument [TV06]. Similarly to the ergodic proof we
will decompose a given function in a periodic component and a pseudo-random
remainder. To obtain the periodic component we will use the conditional expecta-
tion with respect to a particular algebra in such a way that the remainder will have
small Fourier coefficients.

3.1 Energy Increment
The statement we will prove in this section is the following

Roth’s theorem. For all finite groups Z and for all f : Z → R+ with 0 ≤ f (x) ≤ 1
and EZ( f ) ≥ δ > 0 we have

Λ3( f , f , f ) = Ωδ(1)

Let us show that this statement implies Roth’s theorem in its usual form. Let
d(A) = δ > 0, let f = 1A and let N ∈ Z large enough so that |A∩[1,N]|

N ≥ δ.
Let Z = Z3N and A = A ∩ [1,N] ⊂ Z. Then we have

0 < cδ ≤ Λ3(1A,1A,1A) =
1

9N2

N−1∑
k=0

N−1∑
n=0

1A(n)1A(n + r)1A(n + 2r) ≤

≤
1

9N2 |{(x, r) : x, x + r, x + 2r ∈ A ∩ [1,N]}| =

=
1

9N2
(|A ∩ [1,N]| + |{(x, r), r , 0: x, x + r, x + 2r ∈ A ∩ [1,N]}|) =

=
1

9N2

(
|A ∩ [1,N]| +

∣∣∣set of non trivial AP of length 3 in A ∩ [1,N]
∣∣∣)
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Therefore,∣∣∣set of non trivial AP of length 3 in A
∣∣∣ ≥ 9N2cδ − |A ∩ [1,N]|

≥ N(9Ncδ − 1) > 1

if N is large enough.
In general terms the steps we will follow in the proof are:

1. We define quasi periodic and almost periodic functions

2. We show that functions which are measurable with respect to compact al-
gebras are almost periodic

3. We define the energy of an algebra and prove that the lack of structure
causes an increment in energy

4. We use the energy increment to prove we can decompose a function in an
almost-periodic component and a “negligible” remainder

3.1.1 Almost periodicity
In this section we define the quasi periodic and almost periodic functions and
show that almost periodic functions are recurrent.

Definition 3.1.1 (Quasi periodicity). Let k > 1 be an integer. We say f : Z → C
is k-quasiperiodic if there exist frequencies ξ1, . . . , ξk ∈ Z (possibly repeated) and
c1, . . . , ck ∈ C with |c1| , . . . , |ck| ≤ 1 such that

f (x) =

k∑
j=1

c j e(x · ξ j)

Definition 3.1.2 (Almost periodicity). Let k ≥ 1 be an integer and σ > 0. A func-
tion f : Z → C is (k, σ)-almost periodic if there exists a k-quasiperiodic function
g such that

‖g − f ‖L2 ≤ σ

We have a lower bound on Λ3( f , f , f ) if f is (k, σ)-almost periodic with σ
sufficiently small.

Theorem 3.1.3 (Almost periodicity implies recurrency). Let f : Z → R+, 0 ≤ f ≤ 1
and E( f ) ≥ δ. If f is (k, σ)-almost periodic for some k ≥ 1 and 0 < σ < δ3

8 then

Λ3( f , f , f ) = Ω

((
δ

k

)k

δ3
)
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Proof. We assume 3 claims which are proved afterwards.
Since f is (k, σ)-almost periodic we have

f (x) =

k∑
j=1

c je(x · ξ j) + g(x)

with ‖g‖L2 ≤ σ. Let S = {ξ1, . . . , ξk} and ρ > 0.
If h ∈ Bohr(S , ρ), then e(h · ξ j) = 1 + O(ρ) for every ξ j ∈ S .
Let (T f )(n) = f (n + 1) be the shift operator. Then we have, for u = 1, 2,

‖T uh f − f ‖L2 ≤ O(kρ) + 2σ (Claim 1)

Since f is bounded we have ‖T uh f ‖L∞ ≤ 1 and then∥∥∥ f T h f T 2h f − f 3
∥∥∥

L1 ≤ O(kρ) + 4σ (Claim 2)

So we obtain

−O(kρ) − 4σ ≤ EZ( f T h f T 2h f ) − EZ( f 3) ≤ O(kρ) + 4σ

and hence
EZ( f 3) − O(kρ) − 4σ ≤ EZ( f T h f T 2h f )

Using Hölder’s inequality we have EZ( f 3) ≥ (EZ( f ))3 ≥ δ3 and so

EZ( f T h f T 2h f ) ≥ δ3 − O(kρ) − 4σ ≥

≥ δ3 − O(kρ) − 4
δ3

8
=
δ3

2
− O(kρ)

Since this inequality holds for any h ∈ Bohr(S , ρ) we can prove

Λ3( f , f , f ) = Ex,h∈Z( f T h f T 2h f ) ≥ ρk

(
δ3

2
− O(kρ)

)
(Claim 3)

We can now take ρ = cδ
k with c > 0 sufficiently small and obtain

Λ3( f , f , f ) ≥ ck
(
δ

k

)k (δ3

2
− O(cδ)

)
≥ ck

(
δ

k

)k δ3

4

and hence

Λ3( f , f , f ) = Ω

((
δ

k

)k

δ3
)

�
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Proof of claim 1.

T uh f (x) =

k∑
j=1

c je((x + uh) · ξ j) + g(x + uh) =

=

k∑
j=1

c je(x · ξ j)e(uh · ξ j) + g(x + uh)

If u = 1 we have e(h · ξ j) = e(h · ξ j) = 1 + O(ρ)
If u = 2 we have e(2h · ξ j) = e(h · ξ j)e(h · ξ j) = (1 + O(ρ))(1 + O(ρ)) = 1 + O(ρ)
Then we have

T uh f (x) =

k∑
j=1

c je(x · ξ j)e( jh · ξ j) + g(x + uh) =

=

k∑
j=1

c je(x · ξ j)(1 + O(ρ)) + T uhg(x) =

=

k∑
j=1

c je(x · ξ j) +

k∑
j=1

c jO(ρ) + T uhg(x) =

= f (x) − g(x) +

k∑
j=1

c jO(ρ) + T uhg(x)

Hence

‖T uh f − f ‖L2 = ‖O(ρ)
k∑

j=1

c j + T uhg(x) − g(x)‖L2 ≤

≤ O(ρk) + ‖T uhg‖L2 + ‖g‖L2 ≤ O(ρk) + 2σ

�

Proof of claim 2.

‖ f T h f T 2h f − f 3‖L1 = ‖ f T h f T 2h f − f f T 2h f + f f T 2h f − f 3‖L1 ≤

≤ ‖ f T 2h f ‖L∞ · ‖T h f − f ‖L1 + ‖ f 2‖L∞ · ‖T 2h f − f ‖L1 ≤

≤ ‖T h f − f ‖L1 + ‖T 2h f − f ‖L1 ≤ ‖T h f − f ‖L2 + ‖T 2h f − f ‖L2 ≤

≤ O(kρ) + 4σ

�
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Proof of claim 3. Using the positivity of f and Lemma 0.12 we obtain

Λ3( f , f , f ) = Eh∈Z Ex∈Z( f T h f T 2h f ) ≥
1
|Z|

∑
h∈Bohr(S ,ρ)

Ex∈Z( f T h f T 2h f ) ≥

≥
1
|Z|

∑
h∈Bohr(S ,ρ)

(
δ3

2
− O(kρ)

)
= P(Bohr(S , ρ)) ·

(
δ3

2
− O(kρ)

)
≥

≥ ρ|S |
(
δ3

2
− O(kρ)

)
= ρk

(
δ3

2
− O(kρ)

)
The claim follows using the positivity of f . �

3.1.2 Compact algebras

In this section we prove that the characters eξ generate compact algebras Bσ,ε and
that, similarly to the ergodic case, functions which are Bσ,ε-measurable are al-
most periodic. To identify the almost periodic components we use the conditional
expectation.

Definition 3.1.4 (Conditional expectation). Let Z be a finite group, let B be an al-
gebra of Z and let f : Z → C. We define the conditional expectation E( f |B) : Z → C
to be the function

E( f |B)(x) = EB(x) f =
1
|B(x)|

∑
y∈B(x)

f (y)

where B(x) is the unique atom of B which contains x.

Remark. The algebras on Z can be identified with the possible partitions of Z.

There exist certain algebras B which are “compact” in the sense that the pro-
jections E( f |B) are almost periodic.

Theorem 3.1.5 (Characters generate compact algebras). Let ξ ∈ Z and 0 < ε < 1.
Then there exists an algebra Bε,ξ such that:

1. Bε,ξ contains Oε(1) atoms

2. Bε,ξ contains “approximatively” eξ, i.e. ‖eξ − E(eξ |Bε,ξ)‖L∞ ≤ ε
√

2

3. every Bε,ξ-measurable function f with ‖ f ‖L∞ ≤ 1 is (Oε,σ(1),O(σ))-almost
periodic for every σ > 0
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Proof. Pick α in the unit square (see the remark at the end of the proof)

Q = {z ∈ C : 0 ≤ Re(z), Im(z) < 1}

We define, for a, b ∈ Z,

ε(Q + a + ib + α) =

{
z ∈ C :

z
ε
∈ Q + a + ib + α

}
and

Aa,b,ε,α =
{
x ∈ Z : e(x · ξ) = eξ(x) ∈ ε(Q + a + ib + α)

}
The sets ε(Q + a + ib + α) form a partition of C in squares of side ε and thus
{Aa,b,ε,α : a, b ∈ Z} is a partition of Z. Let Bε,ξ be the algebra generated by
{Aa,b,ε,α}a,b∈Z.

(1) We prove Bε,ξ contains at most O
(

1
ε

)
atoms.

Let Aa,b,ε,α , ∅ and x ∈ Aa,b,ε,α. Then we have

eξ(x)
ε
∈ Q + a + ib + α

Since eξ(x) ∈ ∂B(0, 1) we obtain

∂B
(
0,

1
ε

)
∩ Q + a + ib + α , ∅

By construction ∂B
(
0, 1

ε

)
is covered with at most, say 10

ε
= O

(
1
ε

)
squares

Q + a + ib + α so we have at most O
(

1
ε

)
non empty atoms Aa,b,ε,α ∈ Bε,ξ.

(2) We prove ‖eξ − E(eξ |Bε,ξ)‖L∞ = O(ε)∣∣∣∣∣∣∣eξ(x) −
1
|B(x)|

∑
y∈B(x)

eξ(y)

∣∣∣∣∣∣∣ ≤ 1
|B(x)|

∑
y∈B(x)

∣∣∣eξ(x) − eξ(y)
∣∣∣

If x, y ∈ B(x) = Aa,b,ε,α then eξ(x)
ε
,

eξ(y)
ε
∈ Q + a + ib + α hence

∣∣∣eξ(x) − eξ(y)
∣∣∣ = ε

∣∣∣∣∣eξ(x)
ε
−

eξ(y)
ε

∣∣∣∣∣ ≤ ε √2

Then
1
|B(x)|

∑
y∈B(x)

∣∣∣eξ(x) − eξ(y)
∣∣∣ ≤ 1
|B(x)|

|B(x)| ε
√

2 ≤ ε
√

2

and so
‖eξ − E(eξ |Bε,ξ)‖L∞ = O(ε)
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(3) We prove the last property
Let f be Bε,ξ-measurable, then f =

∑
a,b ca,b1Aa,b,ε,α . Since the number of atoms

inBε,ξ is O
(

1
ε

)
we have that f is the linear combination of at most O

(
1
ε

)
non trivial

characteristic functions so it suffices to prove the claim for the functions 1Aa,b,ε,α .
If σ ≥ 1 the claim is immediate since we have ‖ f ‖L2 ≤ 1 so let us suppose

0 < σ < 1. By approximating it suffices to show the claim when σ = 1
2n for some

n. Assume we have

P(An) = P
(
1Aa,b,ε,α is (Oε,n(1),O(2−n))-almost periodic

)
= 1 − O(ε2−n) (3.1)

Then we obtain P(Ac
n) = O(ε2−n) and

∑
n∈N P(Ac

n) < +∞. Hence, using the Borel-
Cantelli lemma, we obtain

P
(
lim sup

n→∞
Ac

n

)
= 0

where lim supn→∞ Ac
n = ∩n∈N ∪k≥n Ac

k and the claim follows.
Let us prove equation (3.1).
By definition of Aa,b,ε,α we have

1Aa,b,ε,α(x) = 1Q

(
e(x · ξ)
ε

− a − ib − α
)

Let Bn be the ε2−3n neighbourhood of ∂Q

Bn =

{
z ∈ C : ∃q ∈ ∂Q |z − q| ≤

ε

23n

}
Using the Weierstrass approximation theorem we obtain

1Q(z) − Pn,ε(z) = O(1Bn(z)) + O
(

1
2n

)
for a suitable polynomial Pn,ε and so we have

1Aa,b,ε,α(x) = Pn,ε

(
e(x · ξ)
ε

− a − ib − α
)
+

+ O
(
I
(
e(x · ξ)
ε

− a − ib − α ∈ Bn

))
+

+ O
(

1
2n

)
where I

(
e(x·ξ)
ε
− a − ib − α ∈ Bn

)
is the characteristic function of the set{

x ∈ Z :
e(x · ξ)
ε

− a − ib − α ∈ Bn

}
.
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The first term is On,ε(1)-quasi periodic since it is a polynomial of degree depending
on n, ε only.

Let us consider the second term. Let I = I
(

e(x·ξ)
ε
− a − ib − α ∈ Bn

)
, then

E (I) =
∑
x∈Z

P
(
e(x · ξ)
ε

∈ a + ib + α + Bn

)
= O

(
ε

23n

)
Hence

E(‖I‖2L2) = O
(
ε

23n

)
By Markov’s inequality (Proposition 3.1.6) we obtain

P
(
‖I‖2L2 ≥

2n

ε
E(‖I‖2L2)

)
≤
ε

2n

Since we know that, with probability 1 − O
(
ε
2n

)
,

‖I‖2L2 ≤
2n

ε
E(‖I‖2L2) =

2n

ε
· O

(
ε

23n

)
= O

(
1

22n

)
we obtain

‖I‖L2 = O
(

1
2n

)
.

Hence ∥∥∥∥∥∥1Aa,b,ε,α − Pn,ε

(
e(x · ξ)
ε

− a − ib − α
)∥∥∥∥∥∥

L2

= O
(

1
2n

)
which implies

1Aa,b,ε,α is (Oε,n(1),O(2−n))-almost periodic

with probability 1 − O
(
ε
2n

)
. This proves (3.1) and the thesis is reached. �

Remark. Given ε and ξ we can construct several (possibly different) algebras Bε,ξ
by taking every time a different α in the unit square.

We recall Markov’s inequality.

Proposition 3.1.6 (Markov’s inequality). Let X be a non negative random vari-
able. Then for any positive real λ > 0

P(X ≥ λ) ≤
E(X)
λ
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One can extend the result to an algebra generated by multiple characters.

Corollary 3.1.7. Let ξ1, . . . , ξn ∈ Z and ε1, . . . , εn > 0. Let

B = Bε1,ξ1 ∨ · · · ∨ Bεn,ξn

with Bεi,ξi defined in the previous theorem. Then every B-measurable function f
with ‖ f ‖L∞ ≤ 1 is (Oε1,...,εn,n,σ(1),On(σ))-almost periodic for every σ > 0.

Proof. As for the main theorem, sinceB has at most Oε1,...,εn,n,σ(1) atoms, it suffices
to show the claim for f = 1A with A atom of B. Since 1A is the product of 1A j

with A j atom ofBεi,ξi the claim follows from the previous theorem and the fact that
product of bounded almost periodic functions is bounded and almost periodic. �

3.1.3 Energy increment
In this section we define the energy in respect to a function and show that lack of
uniformity implies an energy increment.

Definition 3.1.8 (Energy). We define the energy of B with respect to f to be

E f (B) = ‖E( f |B)‖2L2 = Ex∈Z |E( f |B)(x)|2

We show that if f − E( f |B) has one large Fourier coefficient then we can find
a new algebra with more energy with respect to f . More precisely

Theorem 3.1.9 (Lack of uniformity implies energy increment). Let ε, µ > 0, ε ≤ µ

4
and f : Z → R, 0 ≤ f ≤ 1. Let B be such that ‖ f − E( f |B)‖u2 ≥ µ. Then there
exists a frequency ξ ∈ Z such that

E f (B ∨ Bε,ξ) ≥ E f (B) +
µ2

4
Proof. By definition

sup
ξ∈Z

∣∣∣∣〈 f − E( f |B), eξ
〉

L2

∣∣∣∣ = ‖ f − E( f |B)‖u2 ≥ µ

Using the second point of Theorem 3.1.5 we obtain

‖eξ − E(eξ |B ∨ Bε,ξ)‖L∞ ≤ ‖eξ − E(eξ |Bε,ξ)‖L∞ ≤ 2ε

Since ‖ f − E( f |B)‖L∞ ≤ 1 we have
µ

2
≥ 2ε ≥

∣∣∣∣〈 f − E( f |B), eξ − E(eξ |B ∨ Bε,ξ)
〉∣∣∣∣ =

=
∣∣∣∣〈 f − E( f |B), eξ

〉
−

〈
f − E( f |B),E(eξ |B ∨ Bε,ξ)

〉∣∣∣∣ ≥
≥

∣∣∣∣〈 f − E( f |B), eξ
〉∣∣∣∣ − ∣∣∣∣〈 f − E( f |B),E(eξ |B ∨ Bε,ξ)

〉∣∣∣∣ ≥
≥ µ −

∣∣∣∣〈 f − E( f |B),E(eξ |B ∨ Bε,ξ)
〉∣∣∣∣
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Hence ∣∣∣∣〈 f − E( f |B),E(eξ |B ∨ Bε,ξ)
〉∣∣∣∣ ≥ µ

2
Since E( f |B) is the projection on the subspace ofB-measurable functions we have

〈 f − E( f |B), g〉 = 0 for every g B-measurable

In particular, if we consider the algebra B ∨ Bε,ξ,〈
f − E( f |B ∨ Bε,ξ),E(eξ |B ∨ Bε,ξ)

〉
= 0

and so
µ

2
≤

∣∣∣∣〈 f − E( f |B),E(eξ |B ∨ Bε,ξ)
〉∣∣∣∣ =

= |
〈

f − E( f |B ∨ Bε,ξ),E(eξ |B ∨ Bε,ξ)
〉

+

+
〈
E( f |B ∨ Bε,ξ) − E( f |B),E(eξ |B ∨ Bε,ξ)

〉
| =

=
∣∣∣∣〈E( f |B ∨ Bε,ξ) − E( f |B),E(eξ |B ∨ Bε,ξ)

〉∣∣∣∣ ≤ ‖E( f |B ∨ Bε,ξ) − E( f |B)‖L2

Hence, using Pythagoras’ theorem, we obtain

E f (B ∨ Bε,ξ) = ‖E( f |B ∨ Bε,ξ)‖2L2 =

= ‖E( f |B ∨ Bε,ξ) − E( f |B)‖2L2 + ‖E( f |B)‖2L2 ≥

≥
µ2

4
+ E f (B)

�

3.1.4 Koopman-von Neumann decomposition
In this section we use the energy increment argument developed in the previous
section to prove the Koopman-von Neumann decomposition.

Theorem 3.1.10 (Koopman-von Neumann decomposition). Let f : Z → R such
that 0 ≤ f ≤ 1 and let σ > 0. Let F : R+ × R+ → R+ be an arbitrary function.
Then there exists k = Oσ,F(1) and a decomposition f = fU⊥ + fU such that

1. 0 ≤ fU⊥ ≤ 1, EZ( fU⊥) = EZ( f ) and fU⊥ is (k, σ)-almost periodic

2. ‖ fU‖u2 ≤
1

F(σ, k)

Proof. We construct B′, B and k ≥ 1 from the following algorithm.
Let us start with B = {∅,Z}.

40



3.1. Energy Increment Energy Increment

Step 1 Let k be the smallest integer such that E( f |B) is (k, σ2 )-almost periodic
(such k exists always thanks to the Fourier inversion formula). Set B′ = B.
Then we have (trivially)

E f (B′) ≤ E f (B) +
σ2

4

Step 2 If ‖ f − E( f |B′)‖u2 ≤
1

F(σ,k) then terminate.

Else define µ = 1
F(σ,k) and ε =

µ

4 . Then, using the Theorem 3.1.9, we can
find a frequency ξ and an algebra Bε,ξ such that

E f (B′ ∨ Bε,ξ) ≥ E f (B′) +
1

4F(σ, k)2

We define B′′ = B ∨ Bε,ξ and go to step 3.

Step 3 If E f (B′′) ≤ E f (B) + σ2

4 then define B′ = B′′ and go to step 2.

Else define B = B′′ and go to step 1.

We prove the algorithm terminates.
We can go from step 3 to step 2 at most 4F(σ, k)2 many times since at every

step the energy E f (B′) increases by at least 1
4F(σ,k)2 and E f (B′) ≤ 1 (since ‖ f ‖L∞ ≤

1).
We can go from step 3 to step 1 at most 4

σ2 many times since at every step the
energy E f (B) increases of at least σ2

4 . Hence the algorithm terminates.
We now define fU⊥ = E( f |B′) and fU = f − fU⊥ . By construction we have

1. ‖ fU‖u2 = ‖ f − fU⊥‖u2 = ‖ f − E( f |B′)‖u2 ≤
1

F(σ,k)

2. 0 ≤ fU⊥ ≤ 1

3. EZ( fU⊥) = EZ( f )

Since we have E f (B′) ≤ E f (B) + σ2

4 we obtain, by Pythagoras’ theorem,

‖ fU⊥ − E( f |B)‖2L2 = ‖E( f |B′)‖2L2 − ‖E( f |B)‖2L2 =

= E f (B′) − E f (B) ≤
σ2

4

hence ‖ fU⊥ − E( f |B)‖L2 ≤ σ
2 .

Since by construction E( f |B) is (k, σ2 )-almost periodic there exists
a k-quasiperiodic function g such that ‖E( f |B) − g‖L2 ≤ σ

2 , so

‖ fU⊥ − g‖L2 ≤
σ

2
+
σ

2
= σ
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which means fU⊥ is (k, σ)-almost periodic.
We are left to verify k = Oσ,F(1).
Let kn be the value of k at the n-th step of the algorithm, i.e. the n-th time we

are in step 1. We prove kn = Oσ,F,n(1) by induction.
In the first step we have k1 = 1 trivially (since E( f |B) is constant) so let us

consider the inductive step n + 1. Let Bn be the algebra B obtained at then n-th
step. Then

Bn+1 = Bn ∨ Bε1,ξ1 ∨ · · · ∨ Bεr ,ξr = Bε1,ξ1 ∨ · · · ∨ Bεm,ξm

where r is the number of times we went from step 3 to step 2 plus one.
Then r ≤ 4F(σ, kn)2 = Oσ,F,n(1) since kn = Oσ,F,n(1) by inductive hypothesis.
By inductive hypothesis we also have m = Oσ,F,n(1).
By Corollary 3.1.7 we can find two constants Cε1,...,εm,m,σ′ and Dm such that

E( f |Bn+1) is (Cε1,...,εm,m,σ′ ,Dmσ
′)-almost periodic for any σ′. If we take σ′ such

that Dmσ
′ ≤ σ

2 we obtain kn ≤ Cε1,...,εm,m,σ′ .
Since m = Oσ,F,n(1) we have σ′ = Oσ,F,n(1) and since ε1, . . . , εr = 1

4F(σ,kn) =

Ωσ,F,n(1) we obtain kn = OF,σ,n(1).
We can now conclude that, since the algorithm can go from step 3 to step 1 at

most 4
δ2 many times, we have k ≤ maxn≤ 4

δ2
kn, hence k = Oσ,F(1). �

3.1.5 Roth’s theorem
We can now prove the main theorem.

Theorem 3.1.11 (Roth’s theorem). For all finite groups Z and for all f : Z → R
with 0 ≤ f (x) ≤ 1 and EZ( f ) ≥ δ > 0 we have

Λ3( f , f , f ) = Ωδ(1)

Proof. Define σ = δ3

8 and decompose f = fU + fU⊥ (we fix F later).
Using the Theorem 3.1.3 we obtain

Λ3( fU⊥ , fU⊥ , fU⊥) = Ω

((
δ

k

)k

δ3
)

Using the linearity of Λ3 we obtain

|Λ3( f , f , f ) − Λ3( fU⊥ , fU⊥ , fU⊥)| =
= |Λ3( fU + fU⊥ , fU + fU⊥ , fU + fU⊥) − Λ3( fU⊥ , fU⊥ , fU⊥)| =
= |Λ3( fU , fU , fU) + Λ3( fU , fU , fU⊥) + · · · + Λ3( fU⊥ , fU⊥ , fU)| ≤
≤ |Λ3( fU , fU , fU)| + |Λ3( fU , fU , fU⊥)| + · · · |Λ3( fU⊥ , fU⊥ , fU)|

42



3.1. Energy Increment Energy Increment

Using Lemma 1.1.1 and the fact that 0 ≤ fU , fU⊥ ≤ 1 we obtain

|Λ3( fU⊥ , fU , fU)| ≤ ‖ fU‖L2‖ fU⊥‖L2 ‖ fU‖u2 ≤ ‖ fU‖u2

and similarly for the other terms. Thus

|Λ3( f , f , f ) − Λ3( fU⊥ , fU⊥ , fU⊥)| ≤ 7 ‖ fU‖u2 ≤
7

F(σ, k)

Then, for F sufficiently quickly growing, we have

Λ3( f , f , f ) =
(
Λ3( f , f , f ) − Λ3( fU⊥ , fU⊥ , fU⊥)

)
+ Λ3( fU⊥ , fU⊥ , fU⊥) ≥

≥ −
7

F(σ, k)
+ C

(
δ

k

)k

δ3 = Ω

((
δ

k

)k

δ3
)

Since k = Oσ,F(1) = Oδ(1) (F is now fixed) the claim follows.
�
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3.2 Nonstandard Energy Increment
In this section we translate Roth’s theorem in the nonstandard setting and outline
the main steps of the nonstandard proof.

We define a trilinear form Λ3 : L∞(µ) × L∞(µ) × L∞(µ)→ C

Λ3( f , g, h) =

∫
[1,N]

∫
[−N,N]

f (n)g(n + r)h(n + 2r) dµL(r)dµL(n) =

= En∈[N] Er∈[−N,N] f (n)g(n + r)h(n + 2r)

with f , g, h : [1,N]→ C extended to 0 outside [1,N]. When dealing with internal
functions we can write this linear form as a hyperfinite sum.

Proposition 3.2.1. Let F,G,H : [1,N] → ∗C be internal functions bounded by a
finite number, then

Λ3(st (F), st (G), st (H)) = st

 1
N(2N + 1)

N∑
n=1

N∑
r=−N

F(n)G(n + r)H(n + 2r)


Proof. Let

A(n) =
1

2N + 1

N∑
r=−N

F(n)H(n + r)H(n + 2r)

Since F,G,H are liftings of st(F), st(G), st(H) respectively we have

a(n) =

∫
[−N,N]

F(n)G(n + r)H(n + 2r) dµL(r) = st (A(n))

Since A(n) is a lifting of a(n) we have

Λ3(st (F), st (G), st (H)) =

∫
[1,N]

a(n) dµL = st

 1
N

N∑
n=1

A(n)

 =

= st

 1
N(2N + 1)

N∑
n=1

N∑
r=−N

F(n)G(n + r)H(n + 2r)


�

The statement we will prove is the following

Roth’s theorem. Let f ∈ L∞(µ), f : [1,N] → R bounded, non negative, with
E[N]( f ) > 0. Then Λ3( f , f , f ) > 0.
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One can prove that this statement implies the usual formulation in the same
way we have done for the density increment case.

The main steps of the proof of the nonstandard version of Roth’s theorem are

1. We show that Λ3( f , f , f ) > 0 for any f almost-periodic

2. We show that there exists a σ-algebra Z1 such that Z1-measurable func-
tions are almost periodic

3. We use the conditional expectation to decompose a generic function in a
Z1-measurable component plus an orthogonal component f ⊥

4. We show that f ⊥ does not influence the value of Λ3

3.2.1 Almost periodicity

A character eξ : [1,N]→ C for ξ ∈ ∗R is defined as eξ(n) = st
(
e2πi ξnN

)
.

Definition 3.2.2 (Quasiperiodic function). Let k be a positive integer. A function
f : [1,N] → C is k-quasiperiodic if there exist c1, . . . , ck ∈ C and ξ1, . . . , ξk ∈

∗R
such that

f (n) =

k∑
i=1

cieξi(n)

Definition 3.2.3 (Almost periodic function). Let k be a positive integer and let
σ be a positive real. A function g : [1,N] → C is (k, σ)-almost periodic if there
exists a k-quasiperiodic function f such that

‖ f − g‖L1(µ) ≤ σ

In analogy with the proof via energy increment we have that almost periodic
functions are recurrent.

Theorem 3.2.4. Let f ∈ L∞(µ), 0 ≤ f ≤ 1, E[1,N]( f ) = δ > 0. If f is (k, σ)-almost
periodic with σ ≤ δ3

8 then
Λ3( f , f , f ) > 0

Proof. We can write f (n) =
∑k

i=1 cieξi(n) + h(n) with ‖h‖L1(µ) ≤ σ.
Let T (n) = n + 1 be the shift function. It is easily proved that µ is T -invariant.
Let ε > 0. We prove there exists an internal set Rε ⊆ [−εN, εN] with “large”

internal cardinality such that

‖ f − T r f ‖L1(µ) ≤ ε + 2σ for any r ∈ Rε
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‖ f − T r f ‖L1(µ) =

∥∥∥∥∥∥∥
k∑

i=1

cieξi(n) + h(n) −
k∑

i=1

cieξi(n + r) − h(n + r)

∥∥∥∥∥∥∥
L1(µ)

≤

≤

k∑
i=1

|ci|
∥∥∥eξi(n)(1 − eξi(r))

∥∥∥
L1(µ)

+ 2 ‖h‖L1(µ) ≤

≤

k∑
i=1

|ci|
∣∣∣1 − eξi(r)

∣∣∣ + 2σ ≤ kC max
i=1,...,k

∣∣∣1 − eξi(r)
∣∣∣ + 2σ

where C = max{|ci|}i∈{1,...,k}.
Using the properties of the Bohr sets and the transfer principle we obtain that

there exists an internal set Rε such that

|Rε |I ≥ ωN and Rε ⊆ [−εN, εN]

for some ω positive real number.
Now let r ∈ Rε . Since µ is T -invariant and 0 ≤ f ≤ 1 we can use the Claim 2

in Proposition 3.1.3 to obtain∥∥∥ f T r f T 2r f − f 3
∥∥∥

L1(µ)
≤ 2Ckε + 4σ

Hence

E[1,N]( f T r f T 2r f ) ≥ −2Akε − 4σ + E[1,N]( f 3) ≥

≥ −2Akε − 4σ + δ3 ≥ −2Akε +
δ3

2
≥
δ3

4

for ε sufficiently small and for any r ∈ Rε .
Since f is positive we obtain

Λ3( f , f , f ) = En∈[1,N] Er∈[−N,N]

(
f (n) T r f (n) T 2r f (n)

)
≥
δ3

4
µ(Rε) =

=
δ3

4
st

(
|Rε |I

N

)
≥
δ3

4
st

(
ωN
N

)
=
δ3

4
ω > 0

�

3.2.2 Compact factor
Similarly to the energy increment case we defineZ1

N to be theσ-algebra generated
by the characters {eξ : ξ ∈ [1,N]}. We have that Z1

N-measurable functions are
almost periodic. More precisely the following theorem holds.
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Theorem 3.2.5. Let f : [1,N] → C be Z1
N-measurable and f ∈ L∞(µ). Then for

any σ > 0 there exists k such that f is (k, σ)-almost periodic

Proof. Case A. Let f = 1A with A ∈ Z1
N .

Case A.1. Let A = {n ∈ [1,N] : eξ(n) ∈ B(x0,R)} for some ξ ∈ [1,N] and
R ∈ R.

We have f (n) = 1A(n) = 1B(x0,R)(eξ(n)). Analogously to the energy increment
case we can use the Urysohn’s Lemma and the Stone-Weierstrass approximation
theorem to find a polynomial P which is bounded (for instance P ≤ 2) and such
that

‖ f (n) − Pσ(eξ(n))‖L1 ≤ σ

hence f is (k, σ)-almost periodic with k degree of Pσ.
Case A.2 Let A = A1 ∩ A2.
Let PAi,

σ
4

such that ‖PAi,
σ
4
− 1Ai‖L1 ≤ σ

4 . Then

‖1A − PA1,
σ
4
PA2,

σ
4
‖L1 = ‖1A11A2 − 1A1 PA2,

σ
4

+ 1A1 PA2,
σ
4
− PA1,

σ
4
PA2,

σ
4
‖L1 ≤

≤ ‖PA1,
σ
4
− 1A1‖L1 + 2‖PA2,

σ
4
− 1A2‖L1 ≤

σ

4
+
σ

2
≤ σ

The thesis follows since product of trigonometric polynomials is trigonomet-
ric.

Case A.3. Let A = BC.
We have

‖1A − (1 − PB,σ)‖L1 = ‖1B − PB,σ‖L1 ≤ σ

Case A.4. Let A = ∩n∈NAn where we assume An ↓.
Let m be such that ‖1A − 1Am‖L1 ≤ σ

2 . Then

‖1A − PAm,
σ
2
‖L1 ≤ ‖1A − 1Am‖L1 + ‖1Am − PAm,

σ
2
‖L1 ≤

σ

2
+
σ

2
= σ

Thus we have the thesis for any f = 1A with A ∈ Z1
N .

Case B. Let f be simple, f =
∑k

i=1 ai1Ai .
Pick M such that |ai| ≤ M. Then we have

‖ f −
k∑

i=1

aiPAi,
σ

kM
‖L1 ≤ ‖

k∑
i=1

ai(1Ai − PAi,
σ

kM
)‖L1 ≤

≤

k∑
i=1

|ai| ‖1Ai − PAi,
σ

kM
‖L1 ≤ Mk

σ

Mk
= σ

Case C. Let f be Loeb measurable.

47



3.2. Nonstandard Energy Increment Energy Increment

We can find fn → f with fn simple functions. Since fn, f ∈ L∞(µ) we have
fn → f in L1(µ) using Lebesgue dominated convergence.

Let N be such that ‖ fN − f ‖L1 ≤ σ
2 and PN be such that ‖ fN − PN‖L1 ≤ σ

2 . Then

‖ f − PN‖L1 ≤ ‖ f − fN‖L1 + ‖ fN − PN‖L1 ≤
σ

2
+
σ

2
= σ

�

3.2.3 Roth’s theorem
Using the σ-algebraZ1

N defined in the previous section we can decompose a Loeb
measurable function f as f = fU + fU⊥ with fU⊥ = E( f |Z1

N) and fU = f − fU⊥ .
Before proving Roth’s theorem we need to show that fU does not impact the value
of Λ3.

Lemma 3.2.6. Let f , g, h : [1,N] → C, f , g, h ∈ L∞(µ). If E( f |Z1
N) = 0 then

Λ3( f , g, h) = 0.

Proof. We can take f , g, h : Z → C with

Z = ∗Z/N∗Z

N = 3N and f , g, h extended to 0 outside [1,N].
Without loss of generality we can assume that f , g, h are bounded by 1.
Let F,G,H : Z → ∗C be liftings of f , g, h respectively.
Then, similarly to the energy increment case, we obtain

Λ3( f , g, h) = En∈Z Er∈Z f (n)g(n + r)h(n + 2r) =

= st

 1

N
2

N∑
n=1

N∑
r=1

F(n)G(n + r)H(n + 2r)

 =

= st

 1

N
2

N∑
n=1

N∑
r=1

∑
ξ∈Z

F̂(ξ)eξn
∑
ξ∈Z

Ĝ(ξ)eξ(n+r)
∑
ξ∈Z

Ĥ(ξ)eξ(n+2r)

 =

= st

 ∑
ξ1,ξ2,ξ3∈Z

F̂(ξ1)Ĝ(ξ2)Ĥ(ξ3) En∈Z Er∈Z

(
eξ1n+ξ2(n+r)+ξ3(n+2r)

) =

= st

∑
ξ∈Z

F̂(ξ)Ĝ(−2ξ)Ĥ(ξ)

 ≤ st (‖G‖L2‖H‖L2 ‖F‖u2) ≤ st
(

max
ξ∈[1,N]

∣∣∣F̂(ξ)
∣∣∣)

Since E( f |Z1
N) = 0 and F lifting of f we obtain that for every ξ ∈ [1,N]

0 = En∈Z

(
f (n)eξ(n)

)
= st

 1
|Z|

∑
n∈Z

F(n)e(ξ · n)

 = st
(
F̂(ξ)

)

48



3.2. Nonstandard Energy Increment Energy Increment

Hence F̂(ξ) infinitesimal and

|Λ3( f , g, h)| ≤ st
(

max
ξ∈[1,N]

∣∣∣F̂(ξ)
∣∣∣) = 0

�

Remark. This lemma holds if at least one among f , g, h has conditional expecta-
tion zero with respect toZ1

N .

We can now prove Roth’s theorem.

Theorem 3.2.7 (Roth’s theorem). Let f ∈ L∞(µ), f : [1,N] → R bounded, non
negative, with E[1,N]( f ) > 0. Then Λ3( f , f , f ) > 0.

Proof. Let f = fU + fU⊥ with fU⊥ = E( f |Z1
N) and fU = f − fU⊥ . Then

Λ3( f , f , f ) =Λ3( fU , fU , fU) + Λ3( fU , fU , fU⊥)+
· · · + Λ3( fU⊥ , fU⊥ , fU) + Λ3( fU⊥ , fU⊥ , fU⊥) =

= Λ3( fU⊥ , fU⊥ , fU⊥) > 0

using Lemma 3.2.6 and Theorem 3.2.4.
�
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Chapter 4

Sarkozy’s Theorem

In this chapter we prove Sarkozy’s theorem using a density increment argument
[Lya] [Gre].

Sarkozy’s theorem. Let A ⊆ N, d(A) > 0. Then A contains two elements whose
difference is a perfect square.

We will prove the equivalent nonstandard version.

Sarkozy’s theorem. Let N ∈ ∗N be infinite and let A ⊆ [1,N] be an internal
subset such that its internal cardinality |A|I ≥ δN with δ > 0. Then A contains two
elements whose difference is a perfect square.

4.1 General strategy
Similarly to what we have done with Roth’s theorem we will prove that if A does
not contain two element whose difference is a perfect square then A has a strong
correlation to a linear phase. We will then use this correlation to prove that A
has higher density on a subprogression P whose spacing is a perfect square, i.e.
P = {a + nh2}n∈∗N. To do so we introduce the bilinear form

Λ2( f , g) =
1

N2

N∑
n=1

N∑
m=1

f (n)g(m)1S (m − n)

where S = {d2 : 1 ≤ d ≤
√

N}.

51



4.2. Weyl sums Sarkozy’s Theorem

4.2 Weyl sums
In this section we give some estimates regarding Weyl sums [Lya].

Definition 4.2.1 (Weyl sum). Let M ∈ N, α ∈ ZN . We define Weyl sum the
quantity

S M(α) =

M∑
m=1

e2πiα·m2
=

M∑
m=1

e(α · m2)

For k,M natural numbers we define

R2k(M) =
∣∣∣{(m1, . . . ,mk, n1, . . . , nk) ∈ [1,M]2k : m2

1 + · · · + m2
k = n2

1 + · · · + n2
k}
∣∣∣

We have the following estimate on the size of R2k(M).

Theorem 4.2.2. If k ≥ 3 then there exists a constant c0 > 0 such that

R2k(M) ≤ c0M2k−2

For the proof of this theorem see [Lya].
Using the facts that

|S M(n)|2 =
∑

1≤m,r≤M

e(n · (m2 − r2))

and

En∈ZN e(n · m) =

1 if m = 0
0 otherwise

we obtain

R2k(M) =
∑

1≤m j,r j≤M

En∈ZN e(n · (m2
1 + · · · + m2

k − r2
1 − · · · − r2

k )) =

= En∈ZN

∑
1≤m j,r j≤M

e(n · (m2
1 − r2

1)) · · · e(n · (m2
k − r2

k )) =

= En∈ZN

 ∑
1≤m,r≤M

e(n · (m2 − r2))


k

= En∈ZN |S M(n)|2k

Let S = {d2 : 1 ≤ d ≤
√

N}. Since∥∥∥1̂S

∥∥∥k

Lk =
1
N

∑
r∈ZN

∣∣∣1̂S (r)
∣∣∣k
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and

1̂S (r) =
1
N

∑
n∈ZN

1S (n)e(r · n) =
1
N

∑
1≤1≤

√
N

e(−r · n2) =
S √N(−r)

N

we obtain

∥∥∥1̂S

∥∥∥2k

L2k =
1
N

∑
r∈ZN

S √N(−r)2k

N2k =
1

N2k En∈ZN

∣∣∣S √N(r)
∣∣∣2k

=
R2k(
√

N)
N2k

Thus we have the following corollary.

Corollary 4.2.3. If k ≥ 3 then there exists a constant c0 > 0 such that∥∥∥1̂S

∥∥∥
L2k ≤

c0

N
k+1
2k

4.3 Correlation to a linear phase
We can prove the correlation to a linear phase in the same way as we have done in
the proof of Roth’s theorem.

Proposition 4.3.1. Let P be an arithmetic progression with quadratic spacing,
A ⊆ P with |A| ≥ δ |P|, δ > 0. If A does not contain two elements whose difference
is a perfect square then there exists ξ ∈ ∗R such that

|En∈P(1A(n) − δ)e(ξn)| = Ω(δ2)

Proof. By rescaling we can assume P = [1,N]. Assume A ⊆ Zp for a prime p
with N ≤ p ≤ 2N and let S = {d2 : 1 ≤ d ≤

√
N}. Then, by hypothesis, we have

Λ2(1A,1A) = 0

We can decompose 1A = fU + fU⊥ with fU⊥ = δ1[1,N], fU = 1A − fU⊥ . Then

Λ2( fU⊥ , fU⊥) =
δ2

p2

∑
m,r∈Zp

1[1,N](m)1[1,N](r)1S (m − r) ≥

≥
δ2

4N

√
N =

δ2

4
√

N

Thus, since

Λ2(1A,1A) = Λ2( fU , fU) + Λ2( fU , fU⊥) + Λ2( fU⊥ , fU) + Λ2( fU⊥ , fU⊥)
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we have

δ2

4
√

N
≤ |Λ2(1A,1A) − Λ2( fU⊥ , fU⊥)| ≤ |Λ2( fU , fU) + Λ2( fU , fU⊥) + Λ2( fU⊥ , fU)|

Since

Λ2( f , g) =
1
p2

p∑
n=1

p∑
m=1

f (n)g(m)1S (m − n) =
∑
ξ∈Zp

f̂ (−ξ)ĝ(ξ)1̂S (ξ) =

= p Eξ∈Zp f̂ (−ξ)ĝ(ξ)1̂S (ξ)

we obtain, using Hölder’s inequality, the Parseval identity and the estimate from
Corollary 4.2.3, the inequality

|Λ2( fU , fU⊥)| ≤ 2N ‖ fU‖u2 ‖ f̂U⊥‖L2‖1̂S ‖L2 ≤

≤ 2N ‖ fU‖u2
δ

1
2

N
1
2

c0

N
≤

2c0 ‖ fU‖u2
√

N

Since we can obtain the same estimate for the other two terms we obtain

cδ2

√
N
≤

2c0 ‖ fU‖u2
√

N

for some c > 0. Hence

cδ2

2c0
≤ ‖ fU‖u2 =

∣∣∣En∈Zp(1A(n) − δ)e(ξ · n)
∣∣∣ ≤ ∣∣∣∣∣∣En∈[1,N](1A(n) − δ)e

(
ξn
p

)∣∣∣∣∣∣
for some ξ ∈ ∗N.

�

4.4 Quadratic fragmentation
To obtain a partition of [1,N] in subprogressions with square spacing on which
eξ has little fluctuation we need to use the nonstandard version of the quadratic
recurrence theorem.

Lemma 4.4.1 (Quadratic fragmentation). Let N ∈ ∗N infinite, ξ ∈ ∗R/∗Z. Then
there exists ν ≤ N infinite and a partition

[1,N] =

J⊔
i=1

Pi t E

such that
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1. P j = {a + nh2}n∈A j arithmetic progression of length at least ν

2. P j, E internal and |E|N infinitesimal

3.
∣∣∣eξ(x) − eξ(y)

∣∣∣ = O(1) for any x, y ∈ P j and j ∈ [1, J]

Proof. Let µ =
6√N. By quadratic recurrence (theorem 0.19) we can find 1 ≤ h ≤ µ

such that ∥∥∥ξ · h2
∥∥∥
R/Z
≤

k
10
√
µ

Let ν = 10
√
µ. We have the partition

[1,N] =

h2⊔
i=1

Ni

with Ni subprogressions of spacing h2. We can then partition each Ni in subpro-
gressions of length at most ν

Ni =

Ji⊔
j=1

Pi, j t Ei and [1,N] =

h⊔
j=1

P j t E

By construction |E| ≤ h2ν ≤ µ2ν ≤ µ3 ≤
√

N = o(N).
We prove

∣∣∣eξ(x) − eξ(y)
∣∣∣ = O(1).

Let x, y ∈ P j. Then x = i + sh2, y = i + th2 and∣∣∣eξ(x) − eξ(y)
∣∣∣ =

∣∣∣eξ(i + sh2) − eξ(i + th2)
∣∣∣ =

∣∣∣eξ(i)(eξ(sh2) − (eξ(th2))
∣∣∣ =

=
∣∣∣eξ((s − t)h2) − 1

∣∣∣ ≤ 2π
∥∥∥ξ · (s − t)h2

∥∥∥
R/Z
≤

≤ 2π |s − t|
∥∥∥ξ · h2

∥∥∥
R/Z
≤ 2πν

k
ν

= O(1)

�

We can apply this lemma to obtain the density increment on an infinite sub-
progression.

Proposition 4.4.2. Let f : [1,N]→ ∗R such that

st (En∈N | f (n)e(ξ · n)|) ≥ σ > 0

Then there exists P ⊆ [1,N] arithmetic progression of infinite length and square
spacing such that

st (En∈P f (n)) = st

 1
|P|

∑
n∈P

f (n)

 ≥ σ

4

The proof is the same of Proposition 1.2.4 except that this one uses the Quadratic
fragmentation Lemma 4.4.1 instead of the Linear fragmentation Lemma to obtain
the subprogression.
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4.5 Sarkozy’s theorem
We can now prove Sarkozy’s theorem.

Sarkozy’s theorem. Let N ∈ ∗N infinite and let A ⊆ [1,N] internal subset such
that |A|I = δN with δ > 0. Then A contains two elements whose difference is a
perfect square.

Proof. Assume ad absurdum that A does not contain two elements whose differ-
ence is a perfect square. By using Proposition 4.3.1 we can find a phase ξ such
that ∣∣∣En∈[1,N](1A(n) − δ)e(ξn)

∣∣∣ ≥ cδ2

Using Proposition 4.4.2 we can find a subprogression with spacing h2, h ≥ 1 and
infinite length ν such that

1
|P|

∑
n∈P

(1A(n) − δ1[1,N](n)) ≥
cδ2

4

hence
1
|P|

∑
n∈P

1A(n) ≥ δ +
cδ2

4

Let P = {a + nh2}n∈[1,ν], then we define

B =
(A ∩ P) − a

h2

We prove B does not contain two elements whose difference is a perfect square.
Let x, y ∈ B such that x − y = r2, then x = h2x + a and y = h2y + a are in A and
x − y = h2r2 = (rh)2 = 0 since A does not contain two elements whose difference
is a perfect square. Since h ≤ 1 we have r = 0 and thus x = y.

We can then repeat this process enough times until we obtain an absurdum
since the density of B increases by at least kδ2 each step and the density cannot
exceed one. �
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Conclusions

We now give some final remarks and indicate some possible developments.
The proof of Roth’s theorem in the nonstandard setting using the density in-

crement approach is easy to obtain and reduces the length of computations but
does not give any estimate on r3(N).

The proof of Roth’s theorem in the nonstandard setting using the energy in-
crement approach is more interesting since it provides an easy way to obtain the
decomposition. On the other hand, the introduction of the Loeb measure prevents
one from using nonstandard tools in several steps of the proof. One could obtain
a “pure” nonstandard proof by providing a subspace of CN (whose dimension is
hyperfinite) which contains all the almost periodic functions. For instance, one
could consider the subspace generated by the eigenvectors in CN with respect to
the shift function and adapt the process used in the standard case by replacing the
characters eξ with said eigenvectors.

To prove Sarkozy’s theorem we have used the nonstandard version of the den-
sity increment argument, however it is possible to prove it with the standard den-
sity increment in a similar way. The standard proof requires slightly longer com-
putations, but at least it gives an estimate (albeit poor).

Using an approximation of polynomial Weyl sums and a theorem of polyno-
mial recurrence, one should be able to extend both proofs to patterns of the form
x, x + P(n) with P(n) polynomial such that P(0) = 0.

57



Conclusions

58



Bibliography

[CLR] Ernie Croot, Neil Lyall, and Alex Rice. A purely combinatorial ap-
proach to simultaneous polynomial recurrence modulo 1. Proc. Amer.
Math. Soc. 143 (2015), no. 8, 3231–3238.

[Cut01] Nigel J. Cutland. Loeb Measures in Practice: Recent Advances.
Springer, 2001.

[Fur77] Harry Furstenberg. Ergodic behavior of diagonal measures and a theo-
rem of Szemerédi on arithmetic progressions. Journal d’Analyse Math-
ématique, 1977.

[Gol98] Robert Goldblatt. Lectures on the Hyperreals. Springer, 1998.

[Gre] Ben Green. On arithmetic structures in dense sets of integers. Duke
Math. Jour. 114 (2002), no. 2, 215-238.

[Lya] Neil Lyall. The Weil inequality and Sarkozy’s theorem. Lecture notes.

[McC99] Randall McCutcheon. Elemental Methods in Ergodic Ramsey Theory.
Springer, 1999.

[Pet89] Karl Petersen. Ergodic Theory. Cambridge University Press, 1989.

[Sch77] Wolfgang M. Schmidt. Small Fractional Parts of Polynomials. Ameri-
can Mathematical Society, 1977.

[Tao09] Terence Tao. Poincaré’s Legacies, Part I: pages from year two of a
mathematical blog. American Mathematical Society, 2009.

[TV06] Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge Uni-
versity Press, 2006.

[Zha11] Yufei Zhao. Szemerédi’s theorem via ergodic theory, 2011. Unpub-
lished notes.

59


	Introduction
	Basic definitions
	Nonstandard analysis
	Loeb measure

	Density Increment
	Density Increment
	Correlation to a linear phase
	Fragmentation
	Roth's theorem

	Nonstandard Density Increment
	Correlation and fragmentation
	Roth's theorem


	Ergodic Proof
	General strategy
	Weak mixing systems
	Compact systems
	Compact operators
	Decomposing L2(X)
	Decomposing functions
	Roth's theorem

	Energy Increment
	Energy Increment
	Almost periodicity
	Compact algebras
	Energy increment
	Koopman-von Neumann decomposition
	Roth's theorem

	Nonstandard Energy Increment
	Almost periodicity
	Compact factor
	Roth's theorem


	Sarkozy's Theorem
	General strategy
	Weyl sums
	Correlation to a linear phase
	Quadratic fragmentation
	Sarkozy's theorem

	Conclusions
	Bibliography

