Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the mode

Suslin's Problem and Martin Axiom

23 July 2014

э

イロト イボト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Suslin's Problem

Is there a linearly ordered set which satisfies the countable chain condition (ccc) and is not separable?

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Suslin's Problem

Is there a linearly ordered set which satisfies the countable chain condition (ccc) and is not separable?

Such a set is called a Suslin line. The existence of a Suslin line is equivalent to the existence of a normal Suslin tree.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Tree

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

A *tree* is a poset (P, <) such that $\forall x \in T \{y : y < x\}$ is well ordered by <.

э

(日)

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Tree

A tree is a poset (P, <) such that $\forall x \in T \{y : y < x\}$ is well ordered by <.

Suslin Tree

A tree is called a Suslin tree if:

1 height(T) = ω_1

2 every branch in T is at most countable

 ${\bf 3}$ every antichain in T is at most countable

A Suslin tree is called *normal* if:

1 T has a unique least point

2 each level of T is at most countable

3 x not maximal has infinitely many immediate successors

4 $\forall x \in T$ there is some z > x at each greater level

5 if
$$o(x) = o(y) = \beta$$
 with β limit and $\{z: z < x\} = \{z: z < y\}$ then $x = y$

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

MA_k

If a poset (P, <) satisfies ccc and \mathcal{D} is a collection of at most k dense subsets of P, then there exists a \mathcal{D} -generic filter on P.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

MA_k

If a poset (P, <) satisfies ccc and \mathcal{D} is a collection of at most k dense subsets of P, then there exists a \mathcal{D} -generic filter on P.

Lemma

If MA_{\aleph_1} holds then there is no Suslin tree.

э

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

MA_k

If a poset (P, <) satisfies ccc and \mathcal{D} is a collection of at most k dense subsets of P, then there exists a \mathcal{D} -generic filter on P.

Lemma

If MA_{\aleph_1} holds then there is no Suslin tree.

Solovay-Tennenbaum

There is a model \mathcal{M} of ZFC such that $\mathcal{M} \models MA + 2^{\aleph_0} > \aleph_1$.

イロト 不得 トイヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let P be a forcing notion in \mathcal{M} and $\mathcal{G}_1 \subseteq P$ a \mathcal{M} -generic filter.

э

イロト イボト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let P be a forcing notion in \mathcal{M} and $\mathcal{G}_1 \subseteq P$ a \mathcal{M} -generic filter. Let Q be a poset in $\mathcal{M}[\mathcal{G}_1]$ and $\mathcal{G}_2 \subseteq Q$ a $\mathcal{M}[\mathcal{G}_1]$ -generic filter.

イロト イポト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let P be a forcing notion in \mathcal{M} and $\mathcal{G}_1 \subseteq P$ a \mathcal{M} -generic filter. Let Q be a poset in $\mathcal{M}[\mathcal{G}_1]$ and $\mathcal{G}_2 \subseteq Q$ a $\mathcal{M}[\mathcal{G}_1]$ -generic filter. I want to show that there exists a \mathcal{G} \mathcal{M} -generic filter on R such that:

$$\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$$

We will define this filter using Boolean algebras.

< □ > < □ > < □ > < □ > < □ > < □ >

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the mode

Let *B* be a complete Boolean algebra in \mathcal{M} .

э

イロト イボト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let *B* be a complete Boolean algebra in \mathcal{M} . Let $\mathbf{C} \in \mathcal{M}^B$ such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1.

э

イロト イポト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let *B* be a complete Boolean algebra in \mathcal{M} . Let $\mathbf{C} \in \mathcal{M}^B$ such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1. *D* is a maximal subset in \mathcal{M}^B such that:

 $||c \in \mathbf{C}|| = 1 \ \forall c \in D$

2
$$c_1, c_2 \in D, c_1 \neq c_2 \Rightarrow ||c_1 = c_2|| < 1$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let *B* be a complete Boolean algebra in \mathcal{M} . Let $\mathbf{C} \in \mathcal{M}^B$ such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1. *D* is a maximal subset in \mathcal{M}^B such that: 1 $||c \in \mathbf{C}|| = 1 \ \forall c \in D$ 2 $c_1, c_2 \in D, c_1 \neq c_2 \Rightarrow ||c_1 = c_2|| < 1$ I define $+_D$:

 $orall c_1, c_2 \in D \ \exists c \in D \ {
m such that} \ ||c = c_1 +_C c_2|| = 1$

this c is unique and I define $c = c_1 +_D c_2$. The operations \cdot_D and $-_D$ are defined similarly.

イロト イヨト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let *B* be a complete Boolean algebra in \mathcal{M} . Let $\mathbf{C} \in \mathcal{M}^B$ such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1. *D* is a maximal subset in \mathcal{M}^B such that: 1 $||c \in \mathbf{C}|| = 1 \ \forall c \in D$ 2 $c_1, c_2 \in D, c_1 \neq c_2 \Rightarrow ||c_1 = c_2|| < 1$ I define $+_D$:

 $orall c_1, c_2 \in D \ \exists c \in D \ {
m such that} \ ||c = c_1 +_C c_2|| = 1$

this c is unique and I define $c = c_1 +_D c_2$. The operations \cdot_D and $-_D$ are defined similarly. With this operations D is a complete Boolean algebra (in \mathcal{M}). I define $B * \mathbf{C} = D$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let *B* be a complete Boolean algebra in \mathcal{M} , let $\mathbf{C} \in \mathcal{M}^B$ be such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1 and let $D = B * \mathbf{C}$ such that *B* is a complete subalgebra of *D*. Then

If G₁ is an M-generic ultrafilter on B, C = i_{G1}(C) and G₂ is an M[G₁]-generic ultrafilter on C then there is an M-generic ultrafilter G on B * C such that:

 $\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$

2 If G is an M-generic ultrafilter on B * C. G₁ = G ∩ B and C = i_{G1}(C) then there is an M[G₁]-generic ultrafilter G₂ on C such that:

$$\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$$

イロト 不得 トイヨト イヨト

3

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Lemma

B satisfies ccc and $||\mathbf{C}|$ satisfies ccc || = 1 iff $B * \mathbf{C}$ satisfies ccc.

3

(日)

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let α be a limit ordinal.

- Let $\{B_i\}_{i < \alpha}$ a sequence such that
 - B_i is a complete Boolean algebra
 - if $i < j B_i$ is a complete subalgebra of B_j

イロト イポト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let α be a limit ordinal.

- Let $\{B_i\}_{i < \alpha}$ a sequence such that
 - B_i is a complete Boolean algebra
 - if $i < j B_i$ is a complete subalgebra of B_j

Direct limit

The completion *B* of $\bigcup_{i < \alpha} B_i$ is called *direct limit* of $\{B_i\}$. $B = limdir_{i \le \alpha} B_i$.

э

イロト イヨト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let α be a limit ordinal.

- Let $\{B_i\}_{i < \alpha}$ a sequence such that
 - B_i is a complete Boolean algebra
 - if $i < j B_i$ is a complete subalgebra of B_j

Direct limit

The completion *B* of $\bigcup_{i < \alpha} B_i$ is called *direct limit* of $\{B_i\}$. $B = limdir_{i \le \alpha} B_i$.

Lemma

Then if each B_i is k-saturated then B is k-saturated. In particular if each B_i satisfies ccc then B satisfies ccc.

イロト 不得 トイヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{M} be a transitive model of ZFC + GCH. We will construct a complete Boolean algebra B such that if \mathcal{G} is an \mathcal{M} -generic filter on B then

$$\mathcal{M}[\mathcal{G}] \models MA + 2^{\aleph_0} \leq \aleph_2$$

э

イロト イポト イヨト イヨト

 B_{α}

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\{B_{\alpha}\}$ be a sequence such that:

(1) $\alpha < \beta \Rightarrow B_{\alpha}$ is a complete subalgebra of B_{β}

2
$$\gamma$$
 limit \Rightarrow $B_{\gamma} = limdir_{i \leq \gamma} B_{i}$

3 each B_{α} satisfies ccc

 $|B_{\alpha}| \leq \aleph_2$

э

<ロト <回ト < 回ト < 回ト -

 B_{α}

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\{B_{\alpha}\}$ be a sequence such that:

(1) $\alpha < \beta \Rightarrow B_{\alpha}$ is a complete subalgebra of B_{β}

$$2 \gamma \text{ limit} \Rightarrow B_{\gamma} = \textit{limdir}_{i \leq \gamma} B_{i}$$

3 each B_{α} satisfies ccc

 $|B_{\alpha}| \leq \aleph_2$

I define $B = limdir_{i < \omega_2} B_i$.

э

イロト イポト イヨト イヨト

 B_{α}

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\{B_{\alpha}\}$ be a sequence such that:

1) $\alpha < \beta \Rightarrow B_{\alpha}$ is a complete subalgebra of B_{β}

$$2 \ \gamma \ \mathsf{limit} \Rightarrow B_{\gamma} = \mathit{limdir}_{i \leq \gamma} B_{i}$$

3 each B_{α} satisfies ccc

 $|B_{\alpha}| \leq \aleph_2$

I define $B = limdir_{i < \omega_2} B_i$. So we have:

1 B satisfies ccc

 $|B| = \aleph_2$

3

(日)

 B_{α}

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\{B_{\alpha}\}$ be a sequence such that:

1) $\alpha < \beta \Rightarrow B_{\alpha}$ is a complete subalgebra of B_{β}

$$2 \gamma \text{ limit} \Rightarrow B_{\gamma} = \textit{limdir}_{i \leq \gamma} B_{i}$$

3 each B_{α} satisfies ccc

 $|B_{\alpha}| \leq \aleph_2$

I define $B = limdir_{i < \omega_2} B_i$. So we have:

1 B satisfies ccc

 $|B| = \aleph_2$

 $\mathcal{M}[\mathcal{G}]$ perserves cardinals and $\mathcal{M}[\mathcal{G}]\models 2^{\aleph_0}\leq\aleph_2$ (Jech, lemma 19.4).

3

イロト 不得 トイヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$.

3

イロト イポト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = limdir_{i < \gamma}B_i$ for γ limit.

э

イロト イボト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = \textit{limdir}_{i < \gamma} B_i$ for γ limit. I construct $B_{\alpha+1}$.

э

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = limdir_{i < \gamma}B_i$ for γ limit. I construct $B_{\alpha+1}$. $D = B_{\beta_{\alpha}}$ and $\mathbf{R} = \mathbf{R}^D_{\gamma_{\alpha}} \gamma_{\alpha}$ -th relationship on $\check{\omega}_1, \mathbf{R} \in \mathcal{M}^{B_{\alpha}}$.

э

イロト 不得 ト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = limdir_{i < \gamma}B_i$ for γ limit. I construct $B_{\alpha+1}$.

 $D = B_{\beta_{\alpha}}$ and $\mathbf{R} = \mathbf{R}^{D}_{\gamma_{\alpha}} \gamma_{\alpha}$ -th relationship on $\check{\omega}_{1}$, $\mathbf{R} \in \mathcal{M}^{B_{\alpha}}$.

 $b = ||\mathbf{R}|$ is a partial ordering of $\check{\omega}_1$ and $(\check{\omega}_1, \mathbf{R})$ satisfies ccc||.

э

イロト イヨト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = limdir_{i < \gamma}B_i$ for γ limit. I construct $B_{\alpha+1}$. $D = B_{\beta_{\alpha}}$ and $\mathbf{R} = \mathbf{R}^D_{\gamma_{\alpha}} \gamma_{\alpha}$ -th relationship on $\check{\omega}_1, \mathbf{R} \in \mathcal{M}^{B_{\alpha}}$. $b = ||\mathbf{R}$ is a partial ordering of $\check{\omega}_1$ and $(\check{\omega}_1, \mathbf{R})$ satisfies ccc||. Let $\mathbf{C} \in \mathcal{M}^{B_{\alpha}}$ be the complete Boolean algebra such that:

-
$$||{f C}$$
 is the trivial algebra $||=-b$

-
$$||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ canonical mapping of ω_2 onto $\omega_2 \times \omega_2$. $B_0 = \{0, 1\}$ and $B_{\gamma} = limdir_{i < \gamma}B_i$ for γ limit. I construct $B_{\alpha+1}$. $D = B_{\beta_{\alpha}}$ and $\mathbf{R} = \mathbf{R}_{\gamma_{\alpha}}^D \gamma_{\alpha}$ -th relationship on $\check{\omega}_1$, $\mathbf{R} \in \mathcal{M}^{B_{\alpha}}$. $b = ||\mathbf{R}|$ is a partial ordering of $\check{\omega}_1$ and $(\check{\omega}_1, \mathbf{R})$ satisfies ccc||. Let $\mathbf{C} \in \mathcal{M}^{B_{\alpha}}$ be the complete Boolean algebra such that: $- ||\mathbf{C}|$ is the trivial algebra || = -b

$$- ||\mathbf{C} = r.o.(\dot{\omega}_1, \mathbf{R})|| = k$$

I define $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$.

3

(日)

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$.

э

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$.

Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of ω_1 .

э

イロト 不得 ト イヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$. Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of

Lemma

 ω_1 .

If $X \in \mathcal{M}[\mathcal{G}]$ is a subset of ω_1 then exists $\alpha < \omega_2$ such that $X \in \mathcal{M}[\mathcal{G}_{\alpha}]$.

3

イロン イヨン イヨン

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$. Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of

 ω_1 .

Lemma

If $X \in \mathcal{M}[\mathcal{G}]$ is a subset of ω_1 then exists $\alpha < \omega_2$ such that $X \in \mathcal{M}[\mathcal{G}_{\alpha}]$.

Let $\beta < \omega_2$ such that $\mathcal{D}, \mathcal{R} \in \mathcal{M}[\mathcal{G}_\beta]$.

3

イロト 不得 トイヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$. Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of

 ω_1 .

Lemma

If $X \in \mathcal{M}[\mathcal{G}]$ is a subset of ω_1 then exists $\alpha < \omega_2$ such that $X \in \mathcal{M}[\mathcal{G}_{\alpha}]$.

Let $\beta < \omega_2$ such that $\mathcal{D}, \mathcal{R} \in \mathcal{M}[\mathcal{G}_{\beta}]$. Let $\mathbf{R}_{\gamma}^{B_{\beta}} \in \mathcal{M}^{B_{\beta}}$ be a name for \mathcal{R} .

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Let \mathcal{G} be a generic ultrafilter on B and $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$. Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc, we assume $(P, <) = (\omega_1, \mathcal{R})$. Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of

Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of ω_1 .

Lemma

If $X \in \mathcal{M}[\mathcal{G}]$ is a subset of ω_1 then exists $\alpha < \omega_2$ such that $X \in \mathcal{M}[\mathcal{G}_{\alpha}]$.

Let $\beta < \omega_2$ such that $\mathcal{D}, \mathcal{R} \in \mathcal{M}[\mathcal{G}_\beta]$. Let $\mathbf{R}_{\gamma}^{\mathcal{B}_\beta} \in \mathcal{M}^{\mathcal{B}_\beta}$ be a name for \mathcal{R} . Let $\alpha < \omega_2$ be such that $\alpha \mapsto (\beta_\alpha, \gamma_\alpha) = (\beta, \gamma)$.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Now, since $\mathcal{M}[\mathcal{G}_{lpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}]$, we have

 $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_{\alpha}] \models (\omega_1, \mathcal{R})$ satisfies ccc

э

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Now, since $\mathcal{M}[\mathcal{G}_{\alpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}]$, we have $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_{\alpha}] \models (\omega_1, \mathcal{R})$ satisfies ccc So we have $b = ||(\check{\omega}_1, \mathbf{R})$ satisfies ccc $|| \in \mathcal{G}_{\alpha}$.

э

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Now, since $\mathcal{M}[\mathcal{G}_{\alpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}]$, we have $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_{\alpha}] \models (\omega_1, \mathcal{R})$ satisfies ccc

So we have $b = ||(\check{\omega}_1, \mathbf{R})$ satisfies $\operatorname{ccc} || \in \mathcal{G}_{\alpha}$. By construction $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$ and $||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$

э

イロト 不得 トイヨト イヨト

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Now, since $\mathcal{M}[\mathcal{G}_{\alpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}]$, we have

 $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_{\alpha}] \models (\omega_1, \mathcal{R})$ satisfies ccc

So we have $b = ||(\check{\omega}_1, \mathbf{R})$ satisfies $\operatorname{ccc} || \in \mathcal{G}_{\alpha}$. By construction $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$ and $||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$ Using a previous Theorem exists $\mathcal{H} \ \mathcal{M}[\mathcal{G}_{\alpha}]$ -generic filter on (ω_1, R) such that

$$\mathcal{M}[\mathcal{G}_{\alpha+1}] = \mathcal{M}[\mathcal{G}_{\alpha}][\mathcal{H}]$$

э

イロト イヨト イヨト ・

Suslin's Problem

Martin Axiom

Iterated Forcing

Direct Limit

Construction of the model

Now, since $\mathcal{M}[\mathcal{G}_{\alpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}],$ we have

 $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_{\alpha}] \models (\omega_1, \mathcal{R})$ satisfies ccc

So we have $b = ||(\check{\omega}_1, \mathbf{R})$ satisfies $\operatorname{ccc} || \in \mathcal{G}_{\alpha}$. By construction $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$ and $||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$ Using a previous Theorem exists $\mathcal{H} \ \mathcal{M}[\mathcal{G}_{\alpha}]$ -generic filter on (ω_1, R) such that

$$\mathcal{M}[\mathcal{G}_{\alpha+1}] = \mathcal{M}[\mathcal{G}_{\alpha}][\mathcal{H}]$$

So \mathcal{H} is \mathcal{D} -generic on (ω_1, R) and we conclude.

(日)