Suslin's Problem and Martin Axiom

Francesco Di Baldassarre

July 18, 2014

In this seminar we will prove the coherence of the non-existence of Suslin's Tree building a model of ZFC where the Martin Axiom holds and $2^{\aleph_0} = \aleph_2$.

1 Suslin's Problem

Suslin's Problem. Is there a linearly ordered set which satisfies the countable chain condition (ccc) and is not separable?

Such a set is called a Suslin line. The existence of a Suslin line is equivalent to the existence of a normal Suslin tree.

Definition 1. A *tree* is a poset (P, <) such that $\forall x \in T \{y : y < x\}$ is well ordered by <.

$$\begin{split} o(x) &= \text{ order type of } \{y \colon y < x\} \\ \alpha^{th} \text{ -level } &= \{x \colon o(x) = \alpha\} \\ height(B) &= \sup_{x \in B} \{o(x) + 1\} \\ \text{A branch is a maximal linearly ordered subset of } T. \\ \text{An antichain is a set of pairwise incompatible elements of } T. \end{split}$$

Definition 2. A tree is called a *Suslin tree* if:

- 1. $height(T) = \omega_1$
- 2. every branch in T is at most countable
- 3. every antichain in T is at most countable

A Suslin tree is called *normal* if:

- 1. T has a unique least point
- 2. each level of T is at most countable
- 3. x not maximal $\Rightarrow \{z \colon z > x\}$ is infinite
- 4. $\forall x \in T$ there is some z > x at each greater level
- 5. if $o(x) = o(y) = \beta$ with β limit and $\{z \colon z < x\} = \{z \colon z < y\}$ then x = y

2 Martin Axiom

Let k be an infinite cardinal.

Martin Axiom k (MA-k). If a poset (P, <) satisfies ccc and \mathcal{D} is a collection of at most k dense subsets of P, then there exists a \mathcal{D} -generic filter on P.

Martin Axiom (MA). MA_k holds for every $k < 2^{\aleph_0}$.

 MA_{\aleph_0} is always true while $MA_{2^{\aleph_0}}$ is always false.

Lemma 1. If MA_{\aleph_1} holds then there is no Suslin tree.

Proof. Let (T, <) be a normal Suslin tree, then $P_T = (T, >)$ is a poset that satisfies ccc. $\forall \alpha < \omega_1$ I define $D_{\alpha} = \{x \in T : o(x) > \alpha\}$ which is dense in P_T . Let $\mathcal{D} = \{D_{\alpha} : \alpha < \omega_1\}$, then there exists \mathcal{G} \mathcal{D} -generic filter on P_T . But \mathcal{G} is a branch of T and $|\mathcal{G}| = \omega_1$ which is absurd. \Box

Theorem (Solovay - Tennenbaum). There is a model \mathcal{M} of ZFC such that $\mathcal{M} \models MA + 2^{\aleph_0} > \aleph_1$.

3 Iterated Forcing

Let P be a forcing notion in \mathcal{M} and $\mathcal{G}_1 \subseteq P$ a \mathcal{M} -generic filter. Let Q be a poset in $\mathcal{M}[\mathcal{G}_1]$ and $\mathcal{G}_2 \subseteq Q$ a $\mathcal{M}[\mathcal{G}_1]$ -generic filter. I want to show that there exists a \mathcal{G} \mathcal{M} -generic filter on R such that:

$$\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$$

We will define this filter using Boolean algebras.

3.1 Definition of B * C

Let B be a complete Boolean algebra in \mathcal{M} .

Let $\mathbf{C} \in \mathcal{M}^B$ such that $||\mathbf{C}|$ is a complete Boolean algebra || = 1.

I consider the class of all $\mathbf{c} \in \mathcal{M}^B$ such that $||\mathbf{c} \in \mathbf{C}|| = 1$ and I define the equivalence relationship $\mathbf{c_1} \sim \mathbf{c_2} \iff ||\mathbf{c_1} = \mathbf{c_2}|| = 1$.

Then there is a set D which contains exactly one element for each \sim -equivalence class.

D is a maximal subset in \mathcal{M}^B such that:

- 1. $||c \in \mathbf{C}|| = 1 \ \forall c \in D$
- 2. $c_1, c_2 \in D, c_1 \neq c_2 \Rightarrow ||c_1 = c_2|| < 1$

I define $+_D$:

 $\forall c_1, c_2 \in D \ \exists c \in D \ \text{such that} \ ||c = c_1 +_C c_2|| = 1$

this c is unique and I define $c = c_1 +_D c_2$.

The operations \cdot_D and $-_D$ are defined similarly.

With this operations D is a complete Boolean algebra (in \mathcal{M}). I define $B * \mathbf{C} = D$.

Observation 1. There exists an embedding $B \hookrightarrow B * \mathbf{C}$ given by:

$$b \mapsto c_b \colon ||c_b = 0_C|| = -b$$

 $||c_b = 1_C|| = b$

So we can assume that B is a complete subalgebra of $B * \mathbf{C}$.

Lemma 2. Let B be a complete Boolean algebra in \mathcal{M} , let $\mathbf{C} \in \mathcal{M}^B$ be such that $||\mathbf{C}|$ is a complete Boolean algebra|| = 1 and let $D = B * \mathbf{C}$ such that B is a complete subalgebra of D. Then

1. If \mathcal{G}_1 is an \mathcal{M} -generic ultrafilter on B, $C = i_{\mathcal{G}_1}(\mathbf{C})$ and \mathcal{G}_2 is an $\mathcal{M}[\mathcal{G}_1]$ generic ultrafilter on C then there is an \mathcal{M} -generic ultrafilter \mathcal{G} on $B * \mathbf{C}$ such that:

$$\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$$

2. If \mathcal{G} is an \mathcal{M} -generic ultrafilter on $B * \mathbb{C}$. $\mathcal{G}_1 = \mathcal{G} \cap B$ and $C = i_{\mathcal{G}_1}(\mathbb{C})$ then there is an $\mathcal{M}[\mathcal{G}_1]$ -generic ultrafilter \mathcal{G}_2 on C such that:

$$\mathcal{M}[\mathcal{G}_1][\mathcal{G}_2] = \mathcal{M}[\mathcal{G}]$$

Proof. (Idea) I define $\forall c \in B * \mathbf{C} \ c \in \mathcal{G} \iff i_{\mathcal{G}_1}(c) \in \mathcal{G}_2$ and prove that the resulting set (either \mathcal{G} or \mathcal{G}_2) is the wanted generic set.

Lemma 3. B satisfies ccc and $||\mathbf{C}|$ satisfies ccc || = 1 iff $B * \mathbf{C}$ satisfies ccc.

4 Direct Limit

Let α be a limit ordinal and $\forall i \in \alpha$ let B_i be a complete Boolean algebra such that $\forall j > i \ B_i$ is a complete subalgebra of B_j . Let $C = \bigcup_{i < \alpha} B_i$, then we call the completion B of C the *direct limit* of $\{B_i\}, B = limdir_{i \leq \alpha}B_i$.

Lemma 4. Let k be a regular cardinal, $k > \aleph_0$. Let α be a limit ordinal and $\{B_i\}$ a sequence of complete Boolean algebras such that $\forall j > i \ B_i$ is a complete subalgebra of B_j and for each limit $\gamma < \alpha$ we have $B_{\gamma} = limdir_{i \leq \gamma} B_i$. Let $B = limdir_{i \leq \alpha} B_i$. Then if each B_i is k-saturated then B is k-saturated.

In particular if each B_i satisfies ccc then B satisfies ccc.

5 Construction of the model

Let \mathcal{M} be a transitive model of ZFC + GCH. We will construct a complete Boolean algebra B such that if \mathcal{G} is an \mathcal{M} -generic filter on B then

$$\mathcal{M}[\mathcal{G}] \models MA + 2^{\aleph_0} \le \aleph_2$$

We will have $|B| = \aleph_2$ so $[2^{\aleph_0}]^{\mathcal{M}[\mathcal{G}]} \leq [|B|^{\aleph_0}]^{\mathcal{M}} = [\aleph_2^{\aleph_0}]^{\mathcal{M}} = [\aleph_2]^{\mathcal{M}}$ ([1], lemma 19.4) and B will satisfy ccc and so cardinals will be preserved.

5.1 Definition of B

Let $\{B_{\alpha}\}$ be a sequence such that:

- 1. $\alpha < \beta \Rightarrow B_{\alpha}$ is a complete subalgebra of B_{β}
- 2. $\gamma \text{ limit} \Rightarrow B_{\gamma} = limdir_{i \leq \gamma} B_i$
- 3. each B_{α} satisfies ccc
- 4. $|B_{\alpha}| \leq \aleph_2$

I define $B = limdir_{i < \omega_2} B_i$.

Using lemma 3 we have that B satisfies ccc and, since $C = \bigcap_{\alpha < \omega_2} B_{\alpha}$ is dense in B and $|C| = \aleph_2$, we have $|B| \leq \aleph_2^{\aleph_0} = \aleph_2$.

5.2 Construction of B_{α}

Observation 2. If D is a complete Boolean algebra such that $|D| \leq \aleph_2$ that satisfies ccc then the number of D-valued binary relationships on $\check{\omega}_1$ is \aleph_2 . So $\mathcal{R} = \{\mathbf{R}^D_{\alpha} \ D - valued relationship on \check{\omega}_1\}$ can be indexed with ω_2 .

Let $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha})$ be a mapping of ω_2 onto $\omega_2 \times \omega_2$ such that $\alpha \leq \beta_{\alpha}$. I define B_{α} by induction.

 $B_{0} = \{0, 1\} \text{ and } B_{\gamma} = limdir_{i < \gamma} B_{i} \text{ for } \gamma \text{ limit.}$ I construct $B_{\alpha+1}$ given $\{B_{i}\}_{i \leq \alpha}$. Let $D = B_{\beta_{\alpha}}$ and $\mathbf{R} = \mathbf{R}_{\gamma_{\alpha}}^{D} \gamma_{\alpha}$ -th relationship on $\check{\omega}_{1}, \mathbf{R} \in \mathcal{M}^{B_{\alpha}}$. Let $b = ||\mathbf{R}$ is a partial ordering of $\check{\omega}_{1}$ and $(\check{\omega}_{1}, \mathbf{R})$ satisfies ccc||. Let $\mathbf{C} \in \mathcal{M}^{B_{\alpha}}$ be the complete Boolean algebra such that:

- $||\mathbf{C}|$ is the trivial algebra || = -b

-
$$||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$$

I define $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$.

I show $B_{\alpha+1}$ has the required properties. By definition

||**C** is a complete Boolean algebra, satisfies ccc

and has a dense subset of size $\leq \aleph_1 || = 1$

So by lemma 3 $B_{\alpha+1}$ satisfies ccc.

To show that $|B_{\alpha+1}| \leq \aleph_2$ we take a subset $\mathbf{Q} \subseteq \mathbf{C}$ of size $\leq \aleph_1$ such that $|B_{\alpha} * \mathbf{Q}| \leq \aleph_2$ and $B_{\alpha} * \mathbf{Q}$ is dense in $B_{\alpha+1}$.

5.3 $\mathcal{M}[\mathcal{G}] \models MA_{\aleph_1}$

Let \mathcal{G} be a generic ultrafilter on B (see Observation 3). We define $\mathcal{G}_{\alpha} = \mathcal{G} \cap B_{\alpha}$.

Lemma 5. If $X \in \mathcal{M}[\mathcal{G}]$ is a subset of ω_1 then exists $\alpha < \omega_2$ such that $X \in \mathcal{M}[\mathcal{G}_{\alpha}]$.

Let (P, <) be a poset in $\mathcal{M}[\mathcal{G}]$ that satisfies ccc. We can assume $|P| \leq \aleph_1$ (see [1], lemma 23.2), so there is a binary relationship \mathcal{R} on $\check{\omega}_1$ such that $(P, <) \cong (\omega_1, \mathcal{R})$.

So we can assume $(P, <) = (\omega_1, \mathcal{R})$.

Let $\mathcal{D} \in \mathcal{M}[\mathcal{G}]$ be a collection of at most \aleph_1 dense subsets of ω_1 .

Using the previous lemma, since \mathcal{D} can be encoded in $\omega_1 \times \omega_1$, there is $\beta < \omega_2$ such that $\mathcal{D}, \mathcal{R} \in \mathcal{M}[\mathcal{G}_\beta]$.

Let $\mathbf{R} \in \mathcal{M}^{B_{\beta}}$ be a name for \mathcal{R} , then $\mathbf{R} = \mathbf{R}_{\gamma}^{B_{\beta}}$ for some $\gamma < \omega_2$. Let $\alpha < \omega_2$ be such that $\alpha \mapsto (\beta_{\alpha}, \gamma_{\alpha}) = (\beta, \gamma), \alpha \ge \beta$. Now, since $\mathcal{M}[\mathcal{G}_{\alpha}]$ is a submodel of $\mathcal{M}[\mathcal{G}]$, we have

 $\mathcal{M}[\mathcal{G}] \models (\omega_1, \mathcal{R})$ satisfies ccc $\Rightarrow \mathcal{M}[\mathcal{G}_\alpha] \models (\omega_1, \mathcal{R})$ satisfies ccc

So we have $b = ||(\check{\omega}_1, \mathbf{R})$ satisfies $\operatorname{ccc} || \in \mathcal{G}_{\alpha}$. By construction $B_{\alpha+1} = B_{\alpha} * \mathbf{C}$ and $||\mathbf{C} = r.o.(\check{\omega}_1, \mathbf{R})|| = b$ so

$$\mathcal{M}[\mathcal{G}_{\alpha}] \models C = r.o.(\omega_1, R)$$

Using lemma 2 exists $\mathcal{H} \mathcal{M}[\mathcal{G}_{\alpha}]$ -generic ultrafilter on C and filter on (ω_1, R) such that

$$\mathcal{M}[\mathcal{G}_{\alpha+1}] = \mathcal{M}[\mathcal{G}_{\alpha}][\mathcal{H}]$$

Since $\mathcal{D} \in \mathcal{M}[\mathcal{G}_{\alpha}]$ and $\forall D \in \mathcal{D} \ D$ is dense in (ω_1, R) we have $\mathcal{H} \cap D \neq \emptyset$ so \mathcal{H} is \mathcal{D} -generic on (ω_1, R) .

We can now conclude that $\mathcal{M}[\mathcal{G}] \models MA_{\aleph_1}$.

Observation 3. We can assume an \mathcal{M} -generic set over B exists because the following sentences are absolute between transitive models:

- the definition of ω_2
- the definition of $B * \mathbf{C}$
- the definition of $limdir B_i$

So the definition of B is absolute between transitive models and we can use the same argument as in [1], pag. 175.

References

[1] Thomas Jech. Set Theory. Springer Berlin Heidelberg, 1997.