## TD L1 AES (GROUPE 3) - 14/10/2025 (Après-midi)

- 3. On considère l'ensemble  $A = \{(x, y) \in \mathbb{R}^2_+ \mid y = 2x + 1\}.$ 
  - (a) Parmi les couples suivants, le(s)quel(s) appartien(nen)t à A? (0,0), (0,1), (-1,-1), (7,3), (3,7).
  - (b) Dans le plan (x, y) tracez la fonction y = f(x) = 2x + 1, puis identifiez où se trouve l'ensemble A sur le graphique.

A = 
$$\{(x,y) \in \mathbb{R} + \times \mathbb{R} + | y = 2x + 1\}$$
  
 $\times \in \mathbb{R}, x \ge 0$   
 $y \in \mathbb{R}, y \ge 0$   
 $y \in \mathbb{R}, x \in \mathbb{R}, x \in \mathbb{R}, x \in \mathbb{R}$   
 $(x,y) \in \mathbb{R} \times \mathbb{R}, x \in \mathbb{R}$   
 $(x,y) \in \mathbb{R} \times \mathbb{R}, x \in \mathbb{R}$ 

$$(0,0) \notin A$$
 pence que  $y = 2x + 1$  mais  $0 \neq 2 \cdot 0 + 1$   
 $(0,1) \notin A$   $y = 2x + 1$  mais  $0 \neq 2 \cdot 0 + 1$   
 $(0,1) \notin A$   $y = 2 \cdot 0 + 1$   
 $(-1,-1) \notin A$   $y = -1 < 0$   
 $(3,7) \notin A$   $y = -1 < 0$   
 $(7,3) \notin A$   $y = -1 < 0$   
 $(7,3) \notin A$   $y = -1 < 0$ 

Inégalitées linéaire sur le plan (x, y).

$$y = 2x + 1$$

$$y = (1,3)$$

$$(-5,2) (0,2)$$

$$(0,0) \notin D$$

up la drâte y = 2x+1 doit être continue dons D

$$(0,0) \notin D$$
 parce que  $9 \ge 2x+1$  mais  $0 < 2.0+1=1$   
 $(0,2) \in D$  parce que  $2 \ge 2.0+1=1$   
 $(-5,2) \in D$  parce que  $2 \ge 2.(-5)+1=-10+1=-9$ 

- 4. On considère l'ensemble  $A = \{(x, y) \in \mathbb{R}^2_+ \mid \frac{1}{2}x < y\}.$ 
  - (a) Donnez 2 couples (x, y) qui appartiennent à A et 2 couples qui n'appartiennent pas à A.
  - (b) Dans le plan (x, y) tracez la fonction  $y = f(x) = \frac{1}{2}x$ , puis identifiez où se trouve l'ensemble A sur le graphique.

$$(0,1) \in A$$
 perce que  $\frac{1}{2} \cdot 0 = 0 < 1$   
 $(2,1) \notin A$  perce que  $\frac{1}{2} \cdot 2 = 1 = 1$   
 $(2,6) \in A$  "" "  $\frac{1}{2} \cdot 2 = 1 < 6$   
 $(0,0) \notin A$  " " "  $\frac{1}{2} \cdot 0 = 0 = 0$ 

(b) Graphe de 
$$y = \frac{1}{2}x$$

Rappel. Si on a une Equatione de la forme

y = mx + 9

indique

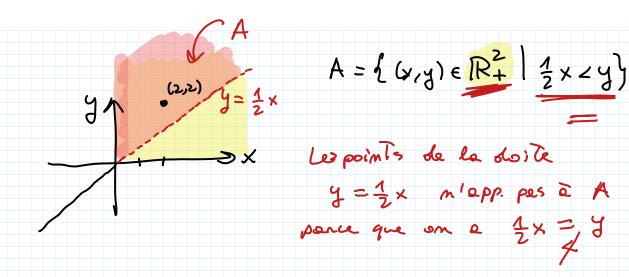
indique

l'inclination

de la droite

de la droite

Ex. y = 2x + 1


y = 3x y = 2x y = 1/2x y = 1/3x

Graphe de  $y=\frac{1}{2}x$  rub q=0

x=2 mb  $y=\frac{1}{2}.2=1$ 

On movre que (2,1) est sur la divite

(0,0) est sur la obsite



Psint Test (2,2) e A ou!  $\frac{1}{2} \cdot 2 = 1 < 2$ .

Donc A est donné par la partie SUPERIEURE à la disite MAIS DANS LE CADRE X20 Y20

Ensuil, la dusite n'apportir pos à l'ensomble A parce que  $\frac{1}{2}x = y$  et non  $\frac{1}{2}x < y$ 

## 5 Applications - Théories du consommateur et du producteur

## 5.1 L'ensemble de production (extrait du rattrapage du CC 2024-2025)

Soit une entreprise qui produit un bien à partir de deux facteurs de production, le facteur X et le facteur Y. On s'intéresse au coût total associé à l'utilisation de ces facteurs de production. On note x la quantité de facteur X utilisée et y la quantité de facteur Y utilisée.

Le coût unitaire du facteur X est  $p_X = 12$  euros et celui du facteur Y est  $p_Y = 3$  euros.

On s'intéresse à l'ensemble  $C_0 = \{(x, y) \in \mathbb{R}^2 \mid y = 20 - 4x\}$ 

$$P_{x} = 12$$
 emos est la quontité associée à  $x = 1$   
 $P_{y} = 3$  emos " " "  $y = 1$ 

1. Après avoir rappelé la formule du coût total de production en fonction de x et de y, montrez que toutes les combinaisons de facteurs (x, y) qui génèrent un coût total égal à 60 appartiennent à l'ensemble  $C_0$ .

On est interest our complex (x,y) t.g. 12x + 3y = 60 $C_0 = \frac{1}{2}(x,y) \in \mathbb{R}^2 \mid y = 20 - 4x^2$ 

On vo verifier que si 
$$(x,y) \in (0, \text{ dons})$$
  
 $12x + 3y = 60$ 

$$12 \times + 3y = 12 \times + 3(20 - 4x) = 12 \times + 60 - 3.4 \times$$
  
=  $12 \times + 60 - 12 \times = 60$ 

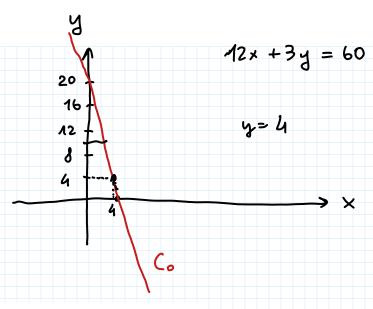
Ou: 
$$12x + 3y = 60$$
  
 $\frac{12x + 3y}{3} = \frac{60}{3} = 20$ 

2. Tracez l'ensemble  $C_0$  dans le plan (x, y). Est-ce que  $C_0$  est une droite ou une surface?

$$C_0 = \{(x,y) \in \mathbb{R}^2 \mid y = 20 - 4x\}$$

$$y = mx + q$$

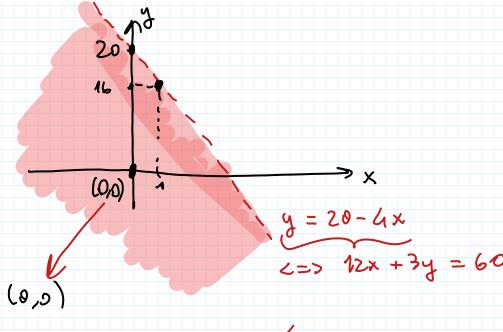
$$y = 20$$


$$y = mx + q$$

$$y = 20$$

- 3. Supposons que l'on contraigne l'entreprise à <u>utiliser au plus 2 unités de facteur X.</u> On note  $C_1$  l'ensemble des paniers de  $C_0$  qui respectent cette contrainte.
  - (a) Notez, à l'aide de la notation des ensembles, l'expression de l'ensemble  $C_1$ .

$$C_{1} = \{(x,y) \in C_{0} \mid x \leq 2\}$$


$$= \{(x,y) \in \mathbb{R}^{2} \mid x \leq 2\} \quad \text{if } y = 20 - 4x\}$$



- (b) A quoi correspond concrètement l'ensemble  $C_1$ ?
- Représentez sur le graphique l'ensemble des combinaisons de facteurs qui génèrent une dépense inférieure à 60.

$$12x + 3y = 60$$
 $12x + 3y < 60$ 

Représentation su le plan (x, y)



12.0 + 3.0 = 0 < 60

Paint Cest