Lexicographic shellability

Alessio Di Prisa

15/07/2021

Shelling

Definition

A **shelling** of simplicial complex Δ is a well ordering of its facets $F_1, F_2, \ldots, F_n, \ldots$ such that:

Shelling

Definition

A **shelling** of simplicial complex Δ is a well ordering of its facets $F_1, F_2, \ldots, F_n, \ldots$ such that:

• for every i < j exists k < j and $e \in F_j$ such that $F_i \cap F_j \subseteq F_k \cap F_j = F_j \setminus \{e\}.$

Shelling

Definition

A **shelling** of simplicial complex Δ is a well ordering of its facets $F_1, F_2, \ldots, F_n, \ldots$ such that:

• for every i < j exists k < j and $e \in F_j$ such that $F_i \cap F_j \subseteq F_k \cap F_j = F_j \setminus \{e\}.$

The facets F_k such that $\left(\bigcup_{j=1}^{k-1} F_j\right) \cap F_k = \partial F_k$ are called **critical**.

Shellability

Theorem

Let Δ be a shellable simplicial complex and let Σ be the set of its critical facets. Then Δ is homotopy equivalent to a wedge of spheres

$$\Delta \sim \bigvee_{\sigma \in \Sigma} S^{\dim \sigma}$$

Poset shellability

From now on P will be a countable, chain-finite poset and we set $\widehat{P}=P\cup\{\widehat{0},\widehat{1}\}.$

Poset shellability

From now on P will be a countable, chain-finite poset and we set $\widehat{P} = P \cup \{\widehat{0}, \widehat{1}\}$. Notice that there is a bijection

{facets in $\Delta(P)$ } \longleftrightarrow {maximal chains in \widehat{P} .}

Therefore our goal is to order the maximal chains of \widehat{P} .

Edge-labeling

Definition

An edge labeling on \widehat{P} with alphabeth Λ is a choice of $\lambda(x \lt y) \in \Lambda$ for each $x \lt y$ in \widehat{P} .

Edge-labeling

Definition

An **edge labeling** on \widehat{P} with alphabeth Λ is a choice of $\lambda(x \leq y) \in \Lambda$ for each $x \leq y$ in \widehat{P} .

To any non refinable chain in \widehat{P}

$$\gamma: x_0 \lt x_1 \lt \cdots \lt x_k$$

we associate

$$\lambda(\gamma) = (\lambda(x_0 \lt x_1), \ldots, \lambda(x_{k-1} \lt x_k))$$

as a word with letters in Λ .

Edge labeling

Definition

We consider on $\Gamma_{x,y} = \{ \text{maximal chains in } [x, y] \}$ the induced **lexicographic order**: given $\gamma, \delta \in \Gamma_{x,y}$ with $\lambda(\gamma) = a_1 \dots a_k$, $\lambda(\delta) = b_1, \dots, b_h$, set

$$\gamma \prec \delta \iff \begin{cases} a_i = b_i \text{ for } i < r \text{ and} \\ a_r < b_r \text{ for some } r \leq \min(h, k). \end{cases}$$

Edge labeling

We require some additional conditions:

1 for any $\gamma_1 \neq \gamma_2 \in \Gamma_{x,y}$, $\lambda(\gamma_1)$ is not a prefix of $\lambda(\gamma_2)$,

Edge labeling

We require some additional conditions:

1) for any $\gamma_1 \neq \gamma_2 \in \Gamma_{x,y}$, $\lambda(\gamma_1)$ is not a prefix of $\lambda(\gamma_2)$,

2
$$\left(\Gamma_{\widehat{0},\widehat{1}},\prec \right)$$
 is a well ordered set.

Under mildly stronger assumptions, we can require easily verifiable conditions that imply the second one:

- if P is ranked, we can require that Λ_j = {λ(x < y) | ρ(x) = j} is a well ordered set;
- if all edges leaving x ∈ P have different labels, we can require that Λ_x = {λ(x < y)} is a well ordered set.

Definition

An edge labeling on \widehat{P} is called a **LEX-labeling** if it satisfies the:

 SBS-condition: if γ ∈ Γ_{x,t} is not lexicographically least then there are y < q < z ∈ γ such that γ|_[y,z] is not least in Γ_{y,z}.

Definition

An edge labeling on \widehat{P} is called a **LEX-labeling** if it satisfies the:

 SBS-condition: if γ ∈ Γ_{x,t} is not lexicographically least then there are y < q < z ∈ γ such that γ|_[y,z] is not least in Γ_{y,z}.

Such poset P is called **lexshellable**.

Proposition

Let P be a poset and fix an edge labeling of \widehat{P} . The following condition is equivalent to the SBS-condition:

• (LEX-condition): for any $\gamma \in \Gamma_{x,t}$ and $y, z \in \gamma$ such that x < y < z < t, we have

$$\left. \begin{array}{l} \gamma|_{[x,z]} = \min \Gamma_{x,z} \\ \gamma|_{[y,t]} = \min \Gamma_{y,t} \end{array} \right\} \Longrightarrow \gamma = \min \Gamma_{x,t}.$$

SBS \Rightarrow LEX: Let $\gamma \in \Gamma_{x,t}$ and $y < z \in \gamma$ with $\gamma|_{[v,t]}$ and $\gamma|_{[x,z]}$ lexicographically least in their intervals. By contradiction suppose γ is not minimal, then by (SBS) there are $p \lt q \lt r \in \gamma$ such that $\gamma|_{[p,r]}$ is not minimal. WLOG $p \ge y$, then we can take $\delta \in \Gamma_{p,q}$ such that $\delta \prec \gamma|_{[p,r]}$. Now the chain $\gamma|_{[\mathbf{v},\mathbf{p}]} \circ \delta \circ \gamma|_{[\mathbf{r},\mathbf{t}]}$ contradicts the minimality of $\gamma|_{[y,t]}$.

$\textbf{LEX}{\Rightarrow}\textbf{SBS:}$

We prove it by induction on the length *n* of a maximal chain $\gamma \in \Gamma_{x,t}$. If n = 0, 1, 2 is immediate. Let n > 2 and take $x < y < z \in \gamma$. Then (LEX) implies that at least one between $\gamma|_{[x,z]}$ and $\gamma_{[y,t]}$ is not lexicographically least and we conclude by inductive hypothesis.

Mediocre chains

Definition

Let *P* be a poset with an edge labeling. A non-refinable chain γ is called **mediocre** if for any $x \lt y \lt z \in \gamma$, the subchain $\gamma|_{[x,z]}$ is never lexicographically least.

Theorem

Let P be a poset, then the following are equivalent:

- the simplicial complex Δ(P) is shellable via a shelling order induced by an edge labeling
- 2 P is lexshellable.

Moreover the critical cells of a shelling induced by a LEX-labeling are exactly the mediocre maximal chains.

(1) \Rightarrow (2) Take $\alpha \prec \beta \in \Gamma_{x,t}$ and extend them to maximal chains $\gamma_1 \prec \gamma_2$, different only on [x, t]. By the shelling condition there exists $\delta \prec \gamma_2$ maximal s.t. $\gamma_1 \cap \gamma_2 \subseteq \delta \cap \gamma_2 = \gamma_2 \setminus \{q\},\$ with $q \in \gamma|_{[x,t]}$, x < q < t. Therefore we have $p < q < r \in \beta$. $p, r \in \delta$ s.t. $\delta_{[p,r]} \prec \beta_{[p,r]}$, which is exactly the SBS-condition.

(2) \Rightarrow (1) Take $\gamma_1 \prec \gamma_2$ maximal and let [x, t] be the first interval on which they differ. Set $\alpha = \gamma_1|_{[x,t]}$ and $\beta = \gamma_2|_{[x,t]}$. Since $\alpha \prec \beta$ by (SBS) there are $p \lt q \lt r \in \beta$ and $\delta \in \Gamma_{p,r}$ s.t. $\delta \prec \beta|_{[p,r]}$. Define $\widetilde{\delta} = \gamma_2|_{[\widehat{0},p]} \circ \delta \circ \gamma_2|_{[r,\widehat{1}]}$. by construction we have $\delta \prec \gamma_2$ and $\gamma_1 \cap \gamma_2 \subset \gamma_2 \cap \delta = \gamma_2 \setminus \{q\},\$ that is the shelling condition is verified.

Recall now that

$$\partial(\Delta(\gamma)) = igcup_{q\in\gamma} \Delta(\gamma\setminus\{q\}).$$

Recall now that

$$\partial(\Delta(\gamma)) = igcup_{q\in\gamma} \Delta(\gamma\setminus\{q\}).$$

Therefore

 $\begin{array}{c} \gamma \in \mathsf{\Gamma}_{\widehat{0},\widehat{1}} \text{ is critical} \\ & \\ & \\ \uparrow \\ \text{for all } p \lessdot q \lessdot r \in \gamma \text{ exists } \delta \prec \gamma \text{ s.t. } \delta \cap \gamma = \gamma \setminus \{q\} \\ & \\ & \\ & \\ & \\ \gamma \text{ is mediocre.} \end{array}$

Corollary

Given a LEX-labeling on \widehat{P} , the facets corresponding to the mediocre chains give a basis for the cohomology $H^*(\Delta(P); \mathbb{Z})$.

Boolean poset

Example

Take $\overline{\mathcal{B}_n} = \mathcal{B}_n \setminus \{\emptyset, [n]\}$. For a covering relation $A \leq B \in \mathcal{B}_n$ we have $B \setminus A = \{x\}$, with $1 \leq x \leq n$. Set $\lambda(A \leq B) = x$. It is easy to check that this is an EL-labeling (\mathcal{B}_n is a geometric lattice).

Lexshellability of rank selections

Definition

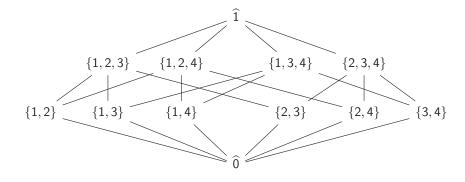
Let *P* be a poset with a rank function ρ and chain length *n*. For any $S \subseteq [n]$ we define the **rank selection**

$$P_S = \{x \in P \mid \rho(x) \in S\}.$$

Rank selection of Boolean poset

Example

Rank selection of \mathcal{B}_4 with $S = \{2, 3\}$.



Lexshellability of rank selections

Proposition

Any rank selection P_S of a lexshellable poset P is lexshellable.

Lexshellability of rank selections

Proposition

Any rank selection P_S of a lexshellable poset P is lexshellable.

Fix a LEX-labeling λ on \widehat{P} and label the covering relations in $\widehat{P_S}$ as follows:

$$\lambda_{\mathcal{S}}(x \lessdot_{\mathcal{S}} y) = \lambda(\gamma_{x,y}) \quad \text{ where } \gamma_{x,y} = \min \Gamma_{x,y}.$$

For every $\gamma \in \Gamma_{x,t}^{S}$ let $\tilde{\gamma} \in \Gamma_{x,t}$ be its lexicographically least refinement. Observe that $\lambda_{S}(\gamma) = \lambda(\tilde{\gamma})$, therefore

$$\gamma \prec_{\mathcal{S}} \delta \iff \widetilde{\gamma} \prec \widetilde{\delta}.$$

Lexshellability of rank selections

Now take $\gamma \in \Gamma_{x,t}^{S}$ not lexicographically least. By (SBS) for \widehat{P} there are $p \lt q \lt r \in \widetilde{\gamma}$ with $\widetilde{\gamma}|_{[p,r]}$ not least. Let

•
$$z = \min\{u \in \gamma \mid u \ge r\},\$$

•
$$y = \max\{u \in \gamma \mid u \le p\}.$$

We have two cases to consider:

•
$$q \notin \widehat{P_S} \Longrightarrow \lambda_S(y \lt s z) = \lambda(\widetilde{\gamma}|_{[y,z]}),$$

•
$$q \in \widehat{P_S} \Longrightarrow y \lessdot_S q \lessdot_S z$$
 is a SBS.

Rank selection of Boolean poset

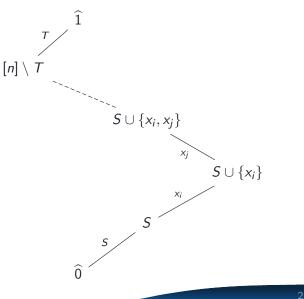
Example

Consider now the rank selection P of \mathcal{B}_n given by $S = \{j \in [n] \mid k \leq j \leq m\}$, where $1 \leq k \leq m \leq n$. Since P is ranked of length m - k, we know that

$$\Delta(P) \sim \bigvee_{i=1}^{\mu(P)} S^{m-k}.$$

We try to compute $\mu(P)$.

Rank selection of Boolean poset



Rank selection of Boolean poset

$$\mu(P) = \sum_{s=m}^{n} \sum_{t=1}^{k} {s-t-1 \choose k-t, s-m-1, m-k}.$$

Bibliography

Bibliography

Combinatorial Algebraic Topology D. Kozlov, 2008

