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1 Abstract iii

1 Abstract
This thesis focuses on the study and, mostly, the numerical computation, of the
basic reproduction number, or R0, a quantity defined in ecology and epidemiology
as a mean to investigate what formally are the properties of stability of the zero
solution of a linear system of equations.

The genesis of R0 can be set in the early years of the twentieth century, when
the concept was used without having been defined and formalized yet (as in [23]);
the basic reproduction number has soon become an important tool for determining
whether a (usually small) population can grow in a certain environment, or it is
doomed to extinction.

In most modern models the population is structured, i.e. individuals’ fertility
and mortality are differentiated by some properties, like age, sex, or dimension; in
those models the basic reproduction number is characterized as the spectral radius
of an operator, called next generation operator.

Despite the importance of this quantity, and the number of works devoted to
its applications in epidemiology, the only attempt to develop an algorithm for its
numerical computation was carried out in [16].

The main contribution of this thesis is the development and implementation of
an algorithm which is more general, and more accurate than the existing one at
parity of computing resources.

A preliminary analysis of the convergence has also been attempted.

2 Sommario
Lo scopo di questa tesi è lo studio, e soprattutto il calcolo numerico, di R0, o “basic
reproduction number”, una quantità definita in ecologia, ed epidemiologia come
un mezzo per studiare quelle che formalmente sono le proprietà di stabilità della
soluzione nulla di un sistema lineare di equazioni differenziali.

La nascita di R0 può essere collocata agli inizi del ventesimo secolo, quando il
concetto è stato usato senza essere definito, e prima che fosse ancora formalizzato
(per esempio in [23]); R0 è velocemente diventato un metodo importante per de-
terminare se una popolazione (generalmente assunta piccola) può crescere in certe
circostanze ambientali o è destinata all’estinzione.

Nonostante l’importanza di questo numero, e la quantità di articoli dedicati alle
sue applicazioni in epidemiologia, l’unico tentativo di sviluppare un algoritmo per il
calcolo numerico è quello presentato in [16].

Il contributo principale di questa tesi è lo sviluppo e l’implementazione di un
algoritmo più generale e, a parità di risorse utilizzate, più accurato di quello esistente.

È anche stata tentata un’analisi di convergenza preliminare.



iv



Contents

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2 Sommario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1
1.1 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 An introduction to R0 and population dynamics 5
2.1 Malthusian parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Malthusian parameter vs basic reproduction number . . . . . . . . . 6
2.3 Basic reproduction number . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 A survey on the genesis of the basic reproduction number . . 7
2.3.2 Basic reproduction number as spectral radius of an operator 9

2.4 Some examples of use of R0 . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Separable mixing rate . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Separable mixing rate with enhanced infection within each group 10
2.4.3 Multigroup separable mixing . . . . . . . . . . . . . . . . . . 11
2.4.4 Sexually transmitted diseases: heterosexual transmission only 12

3 Models 13
3.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Age structured populations . . . . . . . . . . . . . . . . . . . 13
3.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Generic disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Non-compact case . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Explicit solutions . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Numerical approximation 23
4.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Choice of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Spectral method or finite elements method? . . . . . . . . . . 26
4.2.2 Choice of the nodes . . . . . . . . . . . . . . . . . . . . . . . 27

v



vi CONTENTS

4.3 Matrices construction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Proofs of convergence 33
5.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Generic disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Remarks on the missing hypotheses . . . . . . . . . . . . . . . . . . . 39

6 Simulation results 41
6.1 Sample functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Generic disease: test using analytic functions . . . . . . . . . . . . . 45
6.3 Generic disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Implementation 53
A.1 Nodes, interpolation, quadrature and differentiation . . . . . . . . . 53

A.1.1 Polynomial basis . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.1.2 Lagrange polynomials in barycentric form . . . . . . . . . . . 54
A.1.3 Differentiation weights . . . . . . . . . . . . . . . . . . . . . . 55
A.1.4 Nodes and quadrature weights . . . . . . . . . . . . . . . . . 56

A.2 Eigenvalues computation . . . . . . . . . . . . . . . . . . . . . . . . . 57



Chapter 1

Introduction

The traditional approach for the study of asymptotic behavior in population dy-
namics relies on computing the so called Malthusian parameter ([2]).

Since the work of Ross on malaria diffusion [23], a different approach has emerged,
which is based on the basic reproduction number, or R0. It is defined as the expected
number of newborns generated by a single typical individual during its entire life;
in epidemiology, the focus is on the disease, so “newborns” means newly infected
individuals, and “lifetime” is the infectious period; that is, R0 is the number of
secondary cases produced by a “typical” infected individual during its infectious
period, assuming a completely susceptible population.

This approach has particularly grown in importance with the formulation of
epidemic models, and age structured populations, where computing the Malthusian
parameter is often a difficult task.

For age structured population models in epidemiology R0 is characterized as the
spectral radius of a linear operator, called next generation operator, which we will
define in Section 2.3.2, and this characterization is used for the explicit computation,
in the few cases in which this can be done.

Despite the importance of the basic reproduction number for the study of sta-
bility in population models, and its extensive use in literature (see e.g. [6, 11, 12,
13]), the issue of the numerical computation of R0 has only arisen in recent times,
and it is a nearly unexplored area of research.

Given the importance of R0, we investigate a method for its numerical compu-
tation, based on the approximation of the next generation operator, and we apply
it to two biological models; the first is from [16]: in that article the first method for
the computation of R0 has been developed; it has been included because it shows
the approximation of the next generation operator as a method for computing R0,
and this was our starting point for developing a new class of methods for the ap-
proximation of that operator; as a consequence an ongoing collaboration with the
author has started; the second is an extension of the “cell population” example in
[2]; it is examined because a collaboration project on that model has been proposed
by prof. Ripoll.
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2 Introduction

1.1 Approximation
In both models the state space is an infinite-dimensional subspace of L1([ 0, l ]),
so the next generation operator cannot be explicitly represented on a computer in
order to numerically compute R0. Moreover, an explicit representation of the next
generation operator is not available in general; this means that it cannot be directly
approximated using a matrix.

However, for the model to be defined, two operators B and M , called the birth
and mortality operators, must be available; they define the next generation operator
as K := BM−1.

Under some hypothesis on K, which we will make explicit, the spectral radius
of the next generation operator can then be approximated by the spectral radius
of the matrix BnM

−1
n , where Bn and Mn are suitable approximations of B and M

respectively; i.e., one of the following (equivalent) problems has to be solved:

BnM
−1
n Φ = λΦ

BnΨ = λMnΨ;

the largest obtained λ gives then an approximation of R0.
Two main approaches have been used in this work, which actually are based

on the same method, i.e. dividing the domain [ 0, l ] in intervals and approximat-
ing continuous functions on each interval using polynomials; they are nevertheless
expected to yield different results.

If a fixed (small) number of intervals are used we speak of spectral approach,
where convergence is reached increasing the polynomials degree; this method is
expected to yield spectral accuracy for analytic functions, i.e. the error should
decrease as

O

((
n

q

)−n)
,

where q is a constant and n is the polynomial degree [24, Chapter 4].
If a (small) polynomial degree is fixed, and the convergence is obtained increas-

ing the number of intervals, we speak of finite elements approach; this method is
expected to yield an error of order O(n−k) for Ck functions, where k is also the
degree of the polynomials, and n is the number of intervals.

The choice typically depends on the regularity of the eigenvector ϕ corresponding
to the eigenvalue R0: since for functions in Ck the convergence is limited at most
to O(n−k), unless the operator M and B are smoothing, fixing k as the polynomial
degree gives a faster method while maximizing the order of convergence; this is
mostly useful if Mn and Bn are block-diagonal, since the highest computational cost
of this method comes from solving the eigenvalues problem (and inverting Mn, if
solving the standard eigenvalues problem instead of the general eigenvalues problem),
which has cubic complexity in the matrix dimension.

Also, note that it is not necessary that every ϕ ∈ X is regular to obtain an high
order of convergence, only the eigenvector ϕ relative to R0: indeed, if it is regular,
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computing the spectral radius of K or that of its restriction to the functions at least
as regular as ϕ yield the same result.

Since in the models considered in this thesis this eigenvector is usually (piece-
wise) analytic, a small, fixed number of intervals yields faster convergence; we will
not restrict to this choice, however, because our aim is to compare these different
instances of the general method.

The code, written in c++, is available at https://github.com/f-florian/
thesis and https://github.com/f-florian/thesis-differential1.

1.2 Conclusions
The method developed for this thesis produced the expected results on some test
cases in which the exact result was known, using the spectral approach.

It was then tested on some data for which the solution was unknown, here it
exhibits the expected convergence order, and produces results that are thus most
probably correct, both with the spectral and the finite elements approach, with the
spectral approach being the most accurate, in accordance with the analysis in the
previous section, at parity of computing time, which is of order O(n3), where n now
is the polynomials degree times the number of intervals.

The convergence could also be proved for some special cases.
As a side effect, we noted that a speedup can be obtained writing the code in

c++ instead of Matlab.

1This part of the work was carried out as an activity of the Computational Dynamics Laboratory
(http://cdlab.uniud.it/).

https://github.com/f-florian/thesis
https://github.com/f-florian/thesis
https://github.com/f-florian/thesis-differential
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Chapter 2

An introduction to R0 and
population dynamics

The first problem regarding population dynamics is probably that of “Fibonacci
rabbits”, appeared in 1228; unlike most modern models, it is a discrete-time problem.
For the second model, we have have to wait for Euler in 1748[8], whose problem is
again a discrete-time one: “If the number of inhabitants of a certain province should
increase by the thirtieth part each year, moreover at start there were 100 000 people
in the province, the number of inhabitants is sought after 100 years.”

2.1 Malthusian parameter
Euler model, however, is most known through the work of Malthus, who in 1978
published an essay claiming that an exponential growth of the population soon be-
comes non sustainable in terms of subsistence means (food) produced [19]. Malthus’s
analysis, like Euler’s, is performed in a discrete-time settings. He assumes, from the
observation of what happened in the colonization of the United States of America,
that when the births of the population are not controlled, the population doubles
every twenty-five years, thus growing in a geometrical ratio; he also states that the
increase in food production is at most arithmetic; also, some chapters later, he con-
cludes that the population growth cannot be estimated by the birth/death ratio,
but rather by the food production increase, which is the real limiting factor.

Besides its social, political and economical implications, Malthus’s essay shows
it the initial part, in which he studies the same problem as Euler, the first use of
what is now called “Malthusian parameter”; though Malthus himself considered that
model unfeasible on long time scales, it can describe quite well the evolution on short
times, and the Malthusian parameter has then become the traditional tool for the
study of continuous-time dynamics.

It was soon used in continuous-time settings with reference to exponential so-
lutions x(t) = exp(rt), where r is a constant, precisely the Malthusian parameter;
since then, its meaning has extended to include non-scalar equations and general

5



6 An introduction to R0 and population dynamics

solutions: it is now defined as the exponent of a positive dominant exponential
solution.

For the simplest case, consider the system

p′(t) = Ap(t)

where p(t) ∈ Rn and A is a n × n matrix; then the Malthusian parameter is the
spectral bound of A:

r = s(A) := max
λ∈σ(A)

<λ.

A similar definition can be given for some classes of non-constant matrices A
(see [13]); in that case the malthusian parameter is the exponential parameter of a
periodic times exponential dominant solution.

2.2 Malthusian parameter vs basic reproduction num-
ber

The basic reproduction number, also called R0, is a parameter arising as an alter-
native to the Malthusian parameter.

A simple example is worth to show how R0 is obtained and how these two
parameters relate: {

x′(t) = βx(t)− µx(t)

x(0) = x0.
(2.1)

Its solution is x(t) = e(β−µ)tx0; the Malthusian parameter is thus r = β − µ.
But Eq. (2.1) can be also solved using the variation of constants formula, taking

β as the non homogeneous part; the result is

x(t) = e−µtx0 +

∫ t

0
e−µ(t−s)βx(s)ds; (2.2)

setting b(t) = βx(t) and τ = t − s this becomes the so called “renewal equation”,
introduced by Lotka in 1925 and then extensively used in epidemiology:

b(t) = βe−µtx0 + β

∫ t

0
e−µτ b(t− τ)dτ. (2.3)

Since we are only interested of in the newborns, we neglect the first term; then let
t→ +∞ and b = 1 in the rhs to get

R0 = β

∫ t

0
e−µτdτ =

β

µ
,

which is, in this simple scalar case, the basic reproduction number.
It should be noted here that R0 depends on the choice of β and µ, which is

not unique, since only β − µ is determined by the model; however in all cases the
extinction threshold is R0 = 1, corresponding to r = 0.
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2.3 Basic reproduction number

2.3.1 A survey on the genesis of the basic reproduction number

The basic reproduction number is now considered an important tool in demography,
and it is the most important quantity in the study of epidemics and in comparing
population dynamical effects of disease control strategies: as is said in [12], the
concept of R0 is very powerful in epidemiology, as it is directly related to the amount
of control effort needed to eliminate an infection from a population.

It is defined as the expected number of newborns generated by a single “typi-
cal” individual during its entire life, or, in epidemiology, the number of secondary
cases produced by an infected individual during its infectious period, assuming a
completely susceptible population.

The basic reproduction number was first used in demography: it is first men-
tioned in 1886, by the Director of the Statistical Office of Berlin, Richard Böckh, who
talks about the number of females born to one female during her entire reproductive
period (see [11, 12]).

As already said, the first person to practically use and popularize this concept
was Ross, a medical doctor and a colonel in the British Army in India [12, 23].
He discovered in 1898 that (bird) malaria was transmitted by mosquitoes and that
malaria was not caused by bad air from marshes as was previously believed. He
received the Nobel Prize for this discovery in 1902.

In 1911 Ross argued that local eradication of malaria was possible by decreasing
the density of mosquitoes in the area [23]; this was in contrast to the general opinion
at the time that fighting mosquitoes was a difficult route to eradicate malaria, be-
cause it would be practically impossible to kill all mosquitoes locally and therefore
impossible to stop transmission of malaria.

Ross identified the main factors in malaria transmission and calculated the num-
ber of new infections arising per month as the product of these factors. He then
showed that a critical mosquito density exists, such that malaria will eventually
extinct if the density is below the threshold, therefore with no need to kill every
mosquito. Ross referred to his discovery as his “Mosquito Theorem”. This state-
ment was later empirically verified in India, with the discovery of neighboring areas
with malaria, where the mosquito density was above the threshold, and without
malaria where the mosquito density was below the critical value.

Ross himself did not interpret his statement as the number of secondary cases
arising from one infected individual being greater or smaller than 1. It was then
Lotka who in 1919, replying to the work of Ross, interpreted the threshold that way
(see [12]): if

F (a) := exp(−
∫ a

0
µ(α)dα)

is the survival probability to age a (where µ is the mortality rate), Lotka wrote

r > 0 ⇐⇒
∫ ∞
0

b(a)F (a)da > 1,
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where r is “the rate of natural increase per head”, i.e. the Malthusian parameter.
The same Lotka in 1925, together with Dublin, and then Kuczynski alone in

1928, formalized the concept in the demographic context, showed how to calculate
it and introduced the notation R0, always for the case of a single scalar equation:
in this case, R0 is obtained as

R0 :=

∫ ∞
0

b(a)F (a)da,

where b(a) is the average number of offspring that an individual will produce per
unit of time at age a.

A greater generation comes from the work of Kermack and McKendrick, in 1927,
which generalizes that of Ross’s, since it does not assume that the infectivity of an
individual is constant over time. The Kermack and McKendrick model uses the
following hypotheses [14]:

• One (or more) infected person is introduced into a community of individuals,
more or less susceptible to the disease in question.

• The disease spreads from the affected to the unaffected by contact infection.

• Each infected person runs through the course of his illness, and finally is re-
moved from the number of those who are sick, from recovery or death.

• The chances of recovery or death vary from day to day during the course of
the illness.

• The chances that the affected can send infection to the unaffected are likewise
dependent on the stage of the disease.

• As the epidemic spreads, the number of unaffected members of the community
becomes reduced.

• Since the course of an epidemic is short in relation to the life of an individual,
the population can be considered as remaining constant, except in as far as it
is modified by deaths due to the epidemic disease itself.

Finally, in 1952 Mcdonald publishes the paper “The analysis of equilibrium in
malaria” in the Tropical Diseases Bulletin, which focuses on malaria; in one para-
graph of his appendix, however, he takes a more general view of epidemic phenomena,
in which he defines what he calls “basic reproduction rate” (of malaria), as “The
number of infections distributed in a community as the direct result of the presence
in it of a single primary non-immune case” [12].
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2.3.2 Basic reproduction number as spectral radius of an operator

We have to wait for recent times and age structured population models in epidemi-
ology, to see this concept applied to non-scalar equations (e.g. [6]); by non-scalar we
here mean that the state space is either infinite-dimensional, or finite-dimensional
with dimension greater that 1.

In these models R0 maintains the same definition, but is characterized as the
spectral radius of a linear operator, called “next generation operator”, first intro-
duced by Dublin and Lotka (they called it “ratio in successive generations”, see
[12]); this means that in the scalar case the next generation operator K is given
by Kx = R0x, so we only used implicitly: since a stationary solution produces a
constant birth rate, setting b = 1 in Eq. (2.3) means precisely taking th spectral
radius of K.

For the non-scalar case, a stationary population still leads to constant birth and
mortality rates; but they are expressed in terms of linear operators B and M ; then,
if {e−Mt}t≥0 is the semigroup generated by −M ,

x(t) = e−Mtx0 +

∫ t

0
e−M(t−s)Bx(s)ds;

setting b(t) = Bx(t), τ = t − s, neglecting the contribute of the initial population
(i.e. x0 = 0)

b(t) = B

∫ t

0
e−Mτ b(t− τ)dτ,

then, considering b constant:

b = B

∫ t

0
e−Mτdτ b = BM−1

(
1− e−Mt

)
b,

and letting t→ ∞ we obtain
b = BM−1b;

the next generation operator is then defined as BM−1.
In both the scalar and non-scalar cases, thanks to the definition of the basic

reproduction number, the following criterion holds: R0 < 1 leads to extinction; on
the contrary R0 > 1 means that population can grow (or the disease can spread
through the population), as long as the linear model is a good approximation1.

2.4 Some examples of use of R0

The models in this section are taken from [6]; they involve various “structuring
variables” such as age, disposition and sexual activity, which we collective call state,
elements of a state space Ω.

Computing the spectral radius of a linear operator is, in general, a difficult task;
nevertheless, some special cases exist, in which that task is simple.

1See [6] for the proof in the case of a disease.
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2.4.1 Separable mixing rate

The first case is that of an operator of one dimensional range; this has an ecologic
interpretation, namely that the state distribution of the newborns (or the infected)
does not depend on the parent state. In epidemiology this case is called “separable
mixing rate” or “separable infectivity and susceptibility”, or “(separably) weighted
homogeneous mixing”.

The calculation is as follows: assume that the next generation operator is defined
by

Kφ(ξ) =

∫
Ω
A(ξ, η)φ(η)dη,

where
A(ξ, η) = a(ξ)b(η),

with a and b positive and ξ, η are the state of the child and the parent respectively;
then in the definition of K, a can be taken outside the integral, so

Kφ(ξ) = S(ξ)a(ξ)

∫
Ω
b(η)φ(η)dη.

Indeed, the dimension range of K is one, and there is thus only one (eigenvalue,
eigenvector) pair with a nonzero eigenvalue, which is

(

∫
Ω
b(η)S(η)a(η)dη, Sa).

So the spectral radius is that eigenvalue,

R0 =

∫
Ω
b(η)S(η)a(η)

because the rhs is positive.

2.4.2 Separable mixing rate with enhanced infection within each
group

In this case R0 cannot be explicitly calculated, but the threshold related to R0 = 1
can.

The individuals are characterized by a “group”, they preferentially mix with
other individuals in the same group, and the mixing with other groups is weighted,
with the weights only depending on the groups. If the state variables are constant
over time (at least in the time scale of the infection), then we can write K as

Kφ(ξ) = S(ξ)

(
c(ξ)φ(ξ) + a(ξ)

∫
Ω
b(η)φ(η)dη

)
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where c(ξ)φ(ξ) is the initial offspring produced within the same group; so we can
state the eigenvalue problem as

(λ− S(ξ)c(ξ))φ(ξ) = S(ξ)a(ξ)

∫
Ω
b(η)φ(η)dη

or
φ(ξ) =

S(ξ)a(ξ)

λ− c(ξ)S(ξ)

∫
Ω
β(η)φ(η)dη

multiplying both sides by b(ξ) and integrating over Ω yields the characteristic equa-
tion ∫

Ω

S(ξ)a(ξ)

λ− c(ξ)S(ξ)
= 1. (2.4)

Thus the criterion for R0 states: R0 > 1 if c(ξ)S(ξ) > 1 for some ξ ∈ Ω, that is,
the disease can be maintained due to one single group; or, since the lhs in Eq. (2.4)
is a decreasing function of λ, the largest value for λ is greater than one if∫

Ω

S(ξ)a(ξ)

1− c(ξ)S(ξ)
> 1,

that is, the disease is maintained by all the groups collectively.

2.4.3 Multigroup separable mixing

A natural generalization of Section 2.4.1 is to assume that the dimension of the
range of K is finite.

We limit to the cases in which this has a biological interpretation.
Let Ω =

∪
0≤i≤n{i} × Ωi for some n ∈ N, and ξ := (i, ξi), where ξi ∈ Ωi.

Now assume, similarly to what we did in Section 2.4.1, that∫ ∞
0

A(τ, (i, ξi), (j, ξj))dτ = ai(ξi)bi,j(ξj).

Then

Kφ(i, ξi) = S(i, ξi)ai(ξi)
n∑

j=0

∫
Ωj

bi,j(ξj)φ(j, ξj)dξj .

For φ to be an eigenvector is thus necessary that φ(i, ξi) = σiS(i, ξi)ai(ξi), where
σ is an eigenvector of the matrix M = (mi,j) such that

mi,j =

∫
Ωj

bi,j(ξj)φ(j, ξj)dξj

As a consequence, R0 is the dominant eigenvalue of M .



12 An introduction to R0 and population dynamics

2.4.4 Sexually transmitted diseases: heterosexual transmission only

The state is now sex; that is Ω = {0} ×Ω0 ∪ {1} ×Ω1, where we conventionally set
0 for males and 1 for females. Adopting the separable mixing rate assumption (i.e.,
the state of the infected does only depend on the sex variable, recall Section 2.4.3),
and neglecting homosexual transmission we get the matrix

M =

(
0 m1,2

m2,1 0

)
where

m1,2 =

∫
Ω2

b1,2(ξ2)S2(ξ2)a2(ξ2)dξ2,

m2,1 =

∫
Ω1

b2,1(ξ1)S1(ξ1)a1(ξ1)dξ1.

thus R0 =
√
m1,2m2,1, the spectral radius of M .



Chapter 3

Models

Here we consider two biological models, as said in the introduction, for which we
want to compute R0.

The first is taken from [16] and describes the evolution of a generic “influenza-
like” disease in the Japanese population; the second is taken from [2] and describes
a population of bacteria living in the intestine of an animal.

Both models can be seen as instances of a more general problem which describes
a type I structured population model as defined in [2].

3.1 General framework

3.1.1 Age structured populations

We study age structured population models: at any time an individual is charac-
terized by a state, i.e. a value s ∈ Z where Z is a subset of Rq for some q. The
population at time t is thus described by p(s, t), which is actually a population
density, unless Z is a discrete set; s is called structuring variable.

The key point here is that the evolution processes can also depend on s; these
processes include birth and death rates as usual, plus the description of when an
individual’s state changes, which is called transition process.

Typical structuring variables are age (which may be related to body size) and
space, which are both continuous. Examples of discrete variables would be a sim-
plified epidemic model, in which the individuals are divided in healthy, infected and
recovered (it is simplified because the properties of the infected individuals usually
depend on the time since the infection began); and a population whose properties
depends not on the exact position of each individual, but rather on which region
they are in; since individuals can move between regions, these cannot be treated
as independent problems. The famous problem of “Fibonacci rabbits” can also be
seen as a structured model, even if it would make the treatment harder instead of
simpler; the structuring variable depends on age and is one of 0, i.e. age is 0 and 1,
i.e. age is at least 1: pairs with age greater or equal to 1 generate a new pair of age

13
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0, while pairs of age 0 don’t; the evolution is then described by{
p(0, t+ 1) = p(1, t)

p(1, t+ 1) = p(1, t) + p(0, t)

or also
p(t+ 1) =

(
0 1
1 1

)
p(t).

3.1.2 Definitions

We now define a few concepts that we will use in what follows; these definitions are
taken from [7], [18] and [1]

Definition 3.1 (Banach Lattice). Let lattice denote a partial order where every
two elements have a common supremum.

Let X be a Riesz space, i.e. a partially ordered vector space whose order is a
lattice. A norm ‖·‖ on a Riesz space is a lattice norm if

|x| ≥ |y| =⇒ ‖x‖ ≤ ‖y‖.

A complete Riesz space equipped with a lattice norm is known as a Banach
lattice.

Definition 3.2 (Strongly continuous semigroup). Consider a family F := (T (t))t≥0
of bounded linear operators on a Banach space X. We say that F is a strongly con-
tinuous semigroup (or C0-semigroup) if

• it is a semigroup w.r.t. the composition operation, i.e.

T (t+ s) = T (t)T (s) ∀s, t ≥ 0

and
T (0) = I

• the maps ξx : t 7→ ξx(t) := T (t)x are continuous, as maps from R+ into X for
any x ∈ X.

Definition 3.3 (Positive function). Let X := Lp(Ω) a Banach space, f ∈ X;
then f is said to be a positive function if 0 ≤ f(s) a.e. on Ω.

Definition 3.4 (Positive strongly continuous semigroup). A strongly contin-
uous semigroup F := (T (t))t≥0 of bonded operators on a Banach lattice X is called
positive if any operator T (t) ∈ F is positive, i.e.

0 ≤ f ∈ X =⇒ 0 ≤ T (t)f ∀t ≥ 0.
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3.1.3 Problem statement

We consider a single species evolving according to linear birth, death and transition
processes. So let X be a Banach lattice; let the following functions be linear oper-
ators: the birth operator B : X → X, the mortality operator M : D(M) ⊆ X → X
(it also includes the transition process); let

D(M) = {u ∈ X : Cu = 0}, (3.1)

where C : X → Rp for some p ∈ N is linear.
Following [2] we ask that −M generates a positive, strongly continuous semi-

group, whose spectral bound is strictly negative, so that the solution of{
v′(t) = −Mv(t)

v(0) = v0

tends to zero for any initial condition v0 ∈ D(M); the biological interpretation of
this condition is that any population with no births should tend to extinction.

Moreover we ask that B is positive, since the population cannot decrease due
to births, and bounded, because any individual must have a bounded newborns
production rate.

Consider now the problem

U ′ = BU −MU (3.2)

with the initial condition given implicitly by the domain of M .
The next generation operator, as defined in Section 2.3.2 is then

K = BM−1,

and R0 is its spectral radius.
We assume that K is a compact operator; in this situation, thanks to the Krein-

Rutman theorem (see [15]), the basic reproduction number is an eigenvalue; that
is R0 is the largest value λ for which a nonzero solution of one of the following
(equivalent) problems exists:

BM−1φ = λφ (3.3)
Bψ = λMψ. (3.4)

Note that if B and M are matrices, like in the case of a discrete structuring
variable, these are standard numerical problems, in the sense that some reliable
tools to solve the problem already exist; this does not mean that numerically solving
them always yields accurate results: in particular, Eq. (3.4) can be solved using some
factorization of B and M , which is usually more accurate than computing the inverse
of a matrix.

We mention for completeness that type II models, as defined in [2], differ from
those of type I described so far because the codomain of B is a space different from
X. In this case we cannot write Eq. (3.3); since we are only interested in models
which are of type I, we will not investigate further this class of models.

In what follows we define X := L1([ 0, l ]) for some l > 0.
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3.2 Generic disease
We analyze the model described by the following equations, resulting from the lin-
earization of the equations of a nonlinear model [16]. Since l is here the maximum
age of individuals of the population, it is often called a†:

(∂t + ∂a)I(t, a) = S0(a)

∫ a†

0
β(a, σ)I(t, σ)dσ − (µ+ γ)(a)I(t, a)

I(t, 0) = 0

I(0, a) = I0(a)

(3.5)

for t > 0, a ∈ ] 0, a† [, where:

• I(t, a) is the infective population of age a at time t;

• S0 is the total population, i.e. the susceptible population in the disease free
state; we assume that for each age a, S+ > S0(a) > 0, for some S+ > 0 (this
is coherent with the usual structure of a human population);

• β is the transmission coefficient, which we assume strictly positive, because we
want nobody to be immune to the disease;

• µ is the human mortality, which is strictly positive (from a statistical view-
point);

• γ is the recovery rate; we want to model an influenza-like disease, so we assume
that anybody recovers; therefore we assume it is strictly positive;

• I0 is the initial density of infective individuals.

The second condition in Eq. (3.5) comes from the fact that we assumed there is
no vertical transmission.

Following [16] we also assume that S0, β, γ, µ are continuous and uniformly
bounded1.

We recall that X := L1([ 0, a† ]) and define the operators M : D(M) ⊆ X → X,
B : X → X as follows:

Mϕ(a) := ϕ′(a) + (µ+ γ)(a)ϕ(a) (3.6a)

Bϕ(a) := S0(a)

∫ a†

0
β(a, σ)ϕ(σ)dσ (3.6b)

with
D(M) :=

{
ϕ ∈ X : ϕ′ ∈ X and ϕ(0) = 0

}
(3.7)

1A more precise model should actually require that limx→a† µ(x) = +∞, since otherwise some
of the individual may survive the maximum age; in this work we will however not try to improve
the models, since our focus is on R0 and its computation.
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Following [16] we can write the inverse of M .
If ζ(a) :=Mϕ(a), from Eq. (3.6a), which becomes

ζ(a) = ϕ′(a) + (µ+ γ)(a)ϕ(a),

and the boundary condition Eq. (3.7) we obtain{
ϕ′(a) = ζ(a)− (µ+ γ)(a)ϕ(a)

ϕ(0) = 0

Using now the variation of constants formula we can write

ϕ(σ) = e−
∫ σ
0 (µ+γ)(η)dηϕ(0) +

∫ σ

0
e−

∫ σ
ρ (µ+γ)(η)dηζ(ρ)dρ

=

∫ σ

0
e−

∫ σ
ρ (µ+γ)(η)dηζ(ρ)dρ.

Hence
M−1ζ(σ) =

∫ σ

0
e−

∫ σ
ρ (µ+γ)(η)dηζ(ρ)dρ, (3.8)

and the next generation operator K is thus given by

Kζ(a) := BM−1ζ(a) = S0(a)

∫ a†

0
β(a, σ)

∫ σ

0
e−

∫ σ
ρ (µ+γ)(η)dηζ(ρ)dρdσ. (3.9)

We want now to show that K is compact. We need the following theorem (see
[4, Theorem 4.26]):

Theorem 3.5 (Kolmogorov-Riesz-Fréchet). Let F be a bounded subset of Lp(R,Rd),
with 1 ≤ p <∞. Assume that

lim
h→0

‖τhf − f‖p = 0

uniformly in f ∈ F , i.e., for each ε > 0 there exists δ > 0 such that ‖τhf − f‖p < ε

for all f ∈ F and all h ∈ R such that |h| < δ. Then the closure of F|Ω in Lp(Ω,Rd)
is compact for any measurable set Ω ⊂ R with finite measure. Here τh denotes the
translation by h defined by (τhf)(t) := f(t+ h) and F|Ω denotes the restrictions to
Ω of the functions in F .

Theorem 3.6. The next generation operator K defined by Eq. (3.9) is compact.

Proof. By the definition of compact operator we need to show that K maps any
bounded subset Lp([ 0, a† ] ,R) in a relatively compact set of Lp([ 0, a† ] ,R).

Since K is linear, this statement is equivalent to the following: K maps B0,1 in a
relatively compact set of Lp([ 0, a† ] ,R). Here B0,1 is the unit ball in L1([ 0, a† ] ,R),
i.e.

ϕ ∈ B0,1 ⇐⇒ ‖ϕ‖L1 =

∫ a†

0
|ϕ(a)|da ≤ 1.
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So we apply Theorem 3.5 for Ω := [ 0, a† ] and

F :=
{
ϕ : ϕ|[ 0, a† ] ∈ KB0,1, ϕ(a) = 0 for a /∈ [ 0, a† ]

}
,

i.e., we have extended the functions of Lp([ 0, a† ] ,R) by zero outside the domain to
match the hypotheses of the theorem.

We thus need to show that

lim
h→0

∫ a†

0
|f(a+ h)− f(a)|da = 0

uniformly for f ∈ F ; the integral is performed only in [ 0, a† ] because the functions
in F are extended by 0 outside this interval.

Let ζ ∈ B0,1; then Kζ(a) is given by Eq. (3.9). Setting

g(ρ) := e−
∫ σ
ρ (µ+γ)(η)dηζ(ρ)

we can write

f(a) := Kϕ(a) :=

∫ a†

0
S0(a)β(a, σ)

∫ σ

0
g(ρ)dρdσ.

and∫ a†

0
|f(a+ h)− f(a)|da =

=

∫ a†

0

∣∣∣∣∫ a†

0
S0(a+ h)β(a+ h, σ)

∫ σ

0
g(ρ)dρdσ −

∫ a†

0
S0(a)β(a, σ)

∫ σ

0
g(ρ)dρdσ

∣∣∣∣da =

=

∫ a†

0

∣∣∣∣∫ a†

0

(
S0(a+ h)β(a+ h, σ)− S0(a)β(a, σ)

) ∫ σ

0
g(ρ)dρdσ

∣∣∣∣da ≤

≤
∫ a†

0

∫ a†

0

∣∣S0(a+ h)β(a+ h, σ)− S0(a)β(a, σ)
∣∣∣∣∣∣∫ σ

0
g(ρ)dρ

∣∣∣∣dσda
We now remark that since γ and µ are positive, |g(ρ)| ≤ |ζ(ρ)|, then∣∣∣∣∫ σ

0
g(ρ)dρ

∣∣∣∣ ≤ ∫ σ

0
|g(ρ)|dρ ≤

∫ σ

0
|ζ(ρ)|dρ ≤

∫ a†

0
|ζ(ρ)|dρ ≤ 1;

the last inequality holds because ζ ∈ B0,1; note that the bound we just obtained
means that in what follows we do not have to check that the limitation is uniform
in f , since f was defined in terms of ζ (and then g), but the part in S0 and β is
common to any f ∈ F . Then, for any f ∈ F∫ a†

0
|f(a+ h)− f(a)|da ≤

∫ a†

0

∫ a†

0

∣∣S0(a+ h)β(a+ h, σ)− S0(a)β(a, σ)
∣∣dσda ≤

≤ a2† sup
a,σ∈[ 0, a† ]

∣∣S0(a+ h)β(a+ h, σ)− S0(a)β(a, σ)
∣∣



3.3 Bacteria 19

and since S0 and β are continuous function, and then so is S0β, and they are
uniformly continuous, because the domain is compact

lim
h→0

‖τhf − f‖1a ≤ a2† lim
h→0

sup
a,σ∈[ 0, a† ]

∣∣S0(a+ h)β(a+ h, σ)− S0(a)− β(a, σ)
∣∣ = 0

So we have obtained the hypothesis of Theorem 3.5, since, as already remarked, the
second limit does not depend on f ; we thus proved that the image by K of B0,1 is
relatively compact, and as a consequence K is compact, so the thesis is proved.

3.3 Bacteria
The variable here is the spatial density at time t: u(·, t) ∈ X = L1([ 0, l ]) of bacteria,
depending on time t ≥ 0, and position x ∈ [ 0, l ], where l is the intestine length; the
evolution equations are:

∂tu(x, t) + ∂x(c(x)u(x, t)−D(x)∂xu(x, t)) + (β + µ)(x)u(x, t) =

= 2β(x)u(x, t)

c(0)u(0, t)−D(0)∂xu(0, t) = 0

c(l)u(l, t)−D(l)∂xu(l, t) = 0

(3.10)

where c(x) ≥ 0 is the velocity of the flow, D(x) ≥ 0 is the diffusion coefficient,
β(x) ≥ 0 and µ(x) > 0 are the fertility and mortality rates.

To define the birth and mortality operators we need to state what a birth event
is; when a cell divides we can assume either that the event is the birth of a cell
or that it is the birth of two cell and the death of one (the parent); the former is
generally preferred if the sizes of the two cells are clearly different, so that the parent
and the child are clearly distinguishable, while the latter is preferred for (almost)
symmetric division, when it cannot be told who the parent is, thus it is assumed
that the parent dies, leaving two children.

In general it may happen that some cells divide symmetrically, and other don’t;
if θ is the probability of asymmetric division we may define the birth and mortality
operators B : X → X and M : D(M) ⊆ X → X as follows:

Bϕ(x) = (θβ(x) + (1− θ)2β(x))ϕ(x)

Mϕ(x) = (c(x)ϕ(x))′ + ((1− θ)β(x) + µ(x))ϕ(x)− (D(x)ϕ′(x))′

However, here we set θ = 0, and write

Bϕ(x) := 2β(x)ϕ(x) (3.11a)

Mϕ(x) := (c(x)ϕ(x))′ + (β + µ)(x)ϕ(x)− (D(x)ϕ′(x))′ (3.11b)

with

D(M) :=
{
ϕ ∈W 2,1([ 0, l ]) : c(0)ϕ(0) = D(0)ϕ′(0), c(l)ϕ(l) = D(l)ϕ′(l)

}
. (3.12)
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These equations explain the reason why Eq. (3.10) is written in that nonstandard
way, with β in the lhs and 2β in the rhs.

We limit our work to the cases in which K is compact, since this is not true in
general, as we are going to show.

3.3.1 Non-compact case

We show here a case in which K in not compact; we prove it by showing that in this
case R0 is not an eigenvalue: thanks to the Krein-Rutman theorem (see [15]) this is
in contrast with K being compact.

Let D = 0; then Eq. (3.10) becomes
∂tu(x, t) + ∂x(c(x)u(x, t)) + (β + µ)(x)u(x, t) = 2β(x)u(x, t)

c(0)u(0, t) = 0

c(l)u(l, t) = 0

(3.13)

and assume that c is differentiable, c(x) > 0 for x ∈ ] 0, l [, c(0) > 0 , c(l) = 0 and∫ l

0

1

c(x)
dx = +∞.

This means that the flow is always positive, except at position l; i.e., bacteria
are transported towards the end of the intestine, but do not exit.

Also, note that the condition c(l) = 0 renders the boundary condition c(l)u(l, t) =
0 in Eq. (3.13) always automatically satisfied; this is desirable, since the first equation
with D = 0 is of the first order, and thus only one condition is usually expected.

To explain the reason behind the last assumption, we first compute the time
needed for a cell to arrive at x = l starting from x = x0: since the speed in x is c(x),
this time is

Tx0
:=

∫ l

x0

1

c(x)
dx.

In any closed set [ 0, x0 ] the function c is continuous and strictly positive, hence
it has a minimum, which we call c0 > 0.

Thus ∫ x0

0

1

c(x)
dx ≤ x0

c0
,

which is finite, implying Tx0 = +∞ for any x0 < l. As a consequence, requiring∫ l

0

1

c(x)
dx = +∞

means that the time needed for a cell to get from any position to the intestine end
is infinite. That is, the bacteria will not eventually accumulate at x = l, which is a
reasonable thing to ask.
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With these assumptions, we now define, like in the previous section, the operators
B and M :

Bϕ(x) := 2β(x)ϕ(x)

Mϕ(x) := (c(x)ϕ(x))′ + (β + µ)(x)ϕ(x)

D(M) :=
{
ϕ ∈W 1,1([ 0, l ]) : ϕ(0) = 0

}
=
{
ϕ ∈ L1([ 0, l ]) : ϕ ∈ L1([ 0, l ]), ϕ(0) = 0

}
.

Last, suppose by contradiction that R0 is an eigenvalue. Substituting the oper-
ators above into Eq. (3.4) we get{

2β(x)ϕ(x) = R0(c(x)ϕ(x))
′ +R0(β + µ)(x)ϕ(x)

ϕ(0) = 0

which we can rewrite as{
ϕ′(x) = 2β(x)−R0c′(x)−R0(β+µ)(x)

R0c(x)
ϕ(x)

ϕ(0) = 0

which is an initial value problem, whose first equation is defined for x 6= l (because
c(l) = 0); it satisfies the hypotheses of the Cauchy-Lipschitz theorem (since it is a
linear problem), and thus the solution ϕ(x) = 0 (which is a solution indeed) is the
only solution.

But this means that R0 is not an eigenvalue.
As already said, we will not investigate further this case.

3.3.2 Explicit solutions

In the special case of constant β and µ we can solve the problem explicitly: let
p(t) =

∫ l
0 u(x, t)dx be the total population at time t; then integrating the first

equation of Eq. (3.10), yields

p′(t) = c(0)u(0, t)−c(l)u(l, t)−(β+µ)p(t)+2βp(t)+D(l)∂xu(l, t)−D(0)∂xu(0, t).

By applying the boundary condition of Eq. (3.10) the terms containing D and c
cancel:

p′(t) = (β + µ)p(t) + 2βp(t);

This equation is in the same form as Eq. (2.1), which allowed a direct computation
of R0; in this case the result is

R0 =
2β

β + µ
. (3.14)

The eigenvector of BM−1 relative to the eigenvalue R0 can also be computed
explicitly:

Bψ = R0Mψ
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means
2βψ(x) =

2β

β + µ

(
(c(x)ψ(x))′ + (β + µ)ψ(x)− (D(x)ψ′(x))′

)
and since all terms containing β and µ cancel, by integration

c(x)ψ(x)−D(x)ψ′(x) = k (3.15)

for some constant k. Considering Eq. (3.15) in x = 0 it must be k = 0, due to the
boundary condition in Eq. (3.10), or equivalently for the constraints on ψ imposed
by the domain of M (Eq. (3.12)).

Then it holds:
ψ(x) = e

∫ x
0

c(s)
D(s)

ds

which is the only eigenvector associated to R0.



Chapter 4

Numerical approximation

An explicit representation of the next generation operator is not available in general;
this means that it cannot be directly approximated using a matrix. On the contrary,
for the model to be defined, the operators B and M must be available.

The spectral radius of the next generation operator can then be approximated
by the spectral radius of the matrix BnM

−1
n , where Bn and Mn are suitable approx-

imations of B and M respectively. This can be done by solving the discrete version
of one of Eqs. (3.3) and (3.4), namely

BnM
−1
n Φ = λΦ

BnΨ = λMnΨ.

As already remarked, these problems are equivalent in exact arithmetic, but not
in machine arithmetic.

4.1 General method

Let X = L1([ 0, l ]), Xn = Cn (for any n ∈ N).
Let

Jn : Xn → X

and
Pn : X → Xn

be bounded linear operators (we do not require, however, that the bound is uniform
in n), such that

PnJn = IXn . (4.1)

Lemma 4.1. Under the conditions above it also holds JnPn|JnXn = IX .

23
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Proof. Since
(JnPn) Jnφ = Jn (PnJn)φ = Jnφ

the thesis holds.

This means that Jn is an immersion of Xn into X, and JnPn is a projection of
X onto JnPnX.

From now on, whenever it may be useful we will abuse of notation and say that
Xn ⊆ X, and Pn projects X onto Xn; that is, we want to identify the functions
of the space JnXn with the vectors of Xn which represent them in a chosen (fixed)
basis.

Definition 4.2. Given any linear operator L : X → X, define

Ln := PnLJn.

Given any linear functional Q : X → Rp, define

Qn := QJn

This mean that we want Ln to be an endomorphism of XN which approximates
L on this subspace, and Qn a matrix approximating Q.

Lemma 4.3. Let K : X → X or K : X → Rp; then the operator

K 7→ Kn

is linear. Moreover, suppose that L(Xn) ⊆ Xn; then

(KL)n = KnLn (4.2)

Proof. The linearity is obvious.
Let K : X → Rp; Eq. (4.2) means

KLJn = KJnPnLJn (4.3)

which is true since L maps JnX into itself and because of Lemma 4.1.
If K : X → X Eq. (4.3) continues to hold; applying Pn to both sides concludes

the proof.

We note however that approximating KL by KnLn may yield good results even
if L does not map Xn into itself, as we will see in Lemma 5.2 and Theorem 5.3 ;
also, we may not be able to write the matrix Ln, in which case we must resort to a
good approximation.

Applying Definition 4.2 for L =M and L = B, we get two square matrices, that
we call M̃n and B̃n.
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However, we did not consider the constraints due to the domain of M , so we
must also apply Definition 4.2 with Q := C, and the condition Cφ = 0 becomes
CnΦ = 0.

Then, we have two ways to force the condition deriving from the domain of M .
The first method involves finding kerCn first, and writing it in the form

Φ1 = EΦ2 (4.4)

where Φ = (Φ1,Φ2) (except at most for an index reordering; row vector are used in
the last expression for typographic reasons); then B̃n and M̃n have to be modified
accordingly, and only applied to the space generated by Φ2 (thus obtaining Bn and
Mn, both of dimension (n−p)×(n−p)), since then Φ1 is recovered from the equation
above.

The second method relies on a direct modification of the action of B̃n and M̃n

in such a way that the condition on the domain is satisfied for any vector solving
the eigenvalues problem

BnM
−1
n Φ = λΦ (4.5)

or, equivalently
BnΦ = λMnΦ. (4.6)

Regarding this alternative we note that a matrix which correctly approximates
the action of M on the space of polynomials cannot be square, in general (due to
the conditions in D(M)); and that in order to solve the problem the action of B is
also actually needed only in the domain of M , because B acts on M−1φ ∈ D(M) in
Eq. (3.3); in Eq. (3.4) it acts on ψ, like also M does, so ψ must be in D(M) too.

What we want to do is then stack the action on D(M), described by rectangular
matrices of dimensions (n − p) × n, and the domain conditions which use Cn, of
dimensions p× n together with a zero matrix of the same dimension. We still need
to know the decomposition of Φ, although we do not need the matrix E of Eq. (4.4).
So we define

Mn =

(
Cn

M̃n

)
(4.7a)

Bn =

(
0

B̃n

)
(4.7b)

where 0 is here the p× n zero matrix.
The correctness (with respect to Definition 4.2) of these expressions is evident

from Eq. (4.6), which decomposes in{
0Φ = λCnΦ (equations describing Φ1)
BnΦ = λMnΦ (equations describing Φ2).

Also, Eqs. (4.5) and (4.6) are equivalent, so we can choose any of the two.
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4.2 Choice of the method
The numerical method is now determined by Jn, Pn and the choice for how to impose
the condition on the domain.

Since the functions of X do not have a particular form (e.g. they are not periodic,
or symmetric), the standard choice is to set

JnXn = ΠN,ν ,

for some N, ν : Nν = n; i.e., having a division of the domain [ 0, l ], namely 0 = a0 <
· · · < aN = l, ΠN,ν is the space piecewise polynomials defined by

ΠN,ν =
{
f ∈ L1([ 0, l ]) : f is a polynomial of degree ν in [ aj−1, aj ] , 1 ≤ j ≤ N

}
.

We call external mesh the set of points a defined above, or equivalently the set of
the intervals that these points induce.

4.2.1 Spectral method or finite elements method?

Here another choice is to be made. The first alternative is to use the space of
polynomials of degree at most n, i.e. N = 1, ν = n; or fix N , and then improve
the approximation by increasing the polynomial degree. This is what we call called
“spectral method”. The second alternative is to use piecewise polynomials, fixing
the degree ν and using an increasing number N of intervals to improve the approx-
imation. We will call this a “finite elements” method.

The choice typically depends on the regularity of the eigenvector φ, since higher
degree polynomials yield faster convergence for regular functions.

That is, if we use a single polynomial (or a piecewise polynomial on a fixed
number of intervals), and the eigenvector is analytic, the error is

O

((
ν

q

)−ν)

for some q which depend on the eigenvector; this behavior is called “spectral accu-
racy” [24, Chapter 4].

On the contrary for functions in Ck, since the order of convergence is limited at
most to k, unless the operator M and B are smoothing, fixing ν = k as the polyno-
mial degree gives a faster method while reaching the maximum order of convergence
O(N−k); this is mostly useful if Mn and Bn are block-diagonal, since the high-
est computational cost of the method comes from solving the eigenvalues problem
(and inverting Mn, if solving the standard eigenvalues problem), which has cubic
complexity in the matrix dimension.

Also, note that it is not necessary that every function in X is regular, only the
eigenvector φ relative to R0. Indeed, suppose that the spectral radius of K is an
eigenvalue ρ, and φ is an eigenvector relative to ρ; when restricting to the functions
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at least as regular as φ, the actions of B and M do not change, only the domain do,
so φ is still an eigenvector, relative to the same eigenvalue; then the spectral radius
is at least ρ; moreover, it cannot be greater, otherwise we would have a regular
eigenvector relative to this greater eigenvalue, but it would, in particular, be an
eigenvalue of K, whose spectral radius would be greater.

In the models of Chapter 3 this eigenvector is usually C∞: let p be the greatest
derivative order of ψ appearing in Mψ; write M = M1 + M2, where M2ψ only
depend on ψ(p), not on ψ or the lower order derivatives themselves, and M1ψ does
not depend on ψ(p). Consider now Eq. (3.4), which we can also write as

λM2ψ = (B − λM1)ψ

then, if ψ ∈ Ck, with k ≥ p, and B,M ∈ Ck−p+1 then

(B − λM1)ψ ∈ Ck−p+1

(since p − 1 is the maximum derivative order appearing in the rhs), so we also get
ψ(p) ∈ Ck−p+1, i.e. ψ ∈ Ck+1; that is, if B,M ∈ C∞, it must also hold ψ ∈ C∞.

Since ψ is regular, a single polynomial should yield faster convergence; we will
not restrict to this choice, however, because our aim is to compare these different
instances of the general method presented in the previous section.

4.2.2 Choice of the nodes

Having chosen the (piecewise) polynomials as the approximating space, we now
choose a basis of that space. We do so by choosing a set of nodes in each interval
of the external mesh, and then by using the Lagrange basis on those nodes, i.e. the
jν+ j+m-th element of the basis, with 0 ≤ m ≤ ν, and 0 ≤ j < N , is a polynomial
of the Lagrange basis when restricted to the j-th interval, and is 0 outside that
interval1.

We can then define Jn as the isomorphism which associates the j-th element of
the canonical basis of Cn to the j-th element of the chosen basis of Πn and Pn as
the operator mapping a function of X to the (piecewise) polynomial interpolating
it on the chosen nodes.

We call internal mesh the set of nodes in a specific interval, and full mesh the
whole set of nodes, i.e. the union of internal meshes of all intervals.

Since not all nodes distributions are well suited for polynomial approximation
(e.g. uniform nodes are not, in general) we restrict here to two types; those “optimal”
for integration, i.e. Gauss nodes, which are (for ν + 1 points) the zeros of the ν-th
Legendre polynomial and can be computed solving a tridiagonal eigenvalue problem
(see Appendix A.1.4); those “optimal” for interpolation, i.e. Chebyshev extremal
nodes, given (for ν + 1 points) by

cos

(
ν − i

ν
π

)
, for 0 ≤ i ≤ ν;

1See Appendix A.1.2 for the definition of the polynomial of the Lagrange basis.
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Chebyshev nodes are located in [−1, 1 ], so they must then be scaled to be used
in the needed interval; on the contrary Gauss nodes can be directly computed in
any interval; however computing them in a single interval and then using the same
scaling as for Chebyshev nodes leads to faster computation.

Different nodes choices also have side effects, particularly when it comes to the
conditions on the domain: since Chebyshev nodes include the two extremes, if do-
main conditions are only imposed on (one of) such points, which is a common situ-
ation, there exists a natural decomposition of Φ; on the contrary, when using Gauss
nodes, it is generally more complicated to write the decomposition.

Also, using the finite elements method and the Chebyshev nodes, the points of
the external mesh (excluding the interval endpoints) are used twice, representing
the left and right limit of the function at that point. This is not a problem, but,
since the eigenvector relative to R0 is continuous, we can set

JnXn := Π
(0)
N,ν+1 :={

f ∈ C0([ 0, l ]) : f is a polynomial of degree ν + 1 in [ aj−1, aj ] , 1 ≤ j ≤ N
}
,

i.e. the space of continuous piecewise polynomials, were n is now given by Nν + 1
(intuitively, N − 1 parameters are fixed by the continuity conditions); this is done
including the first (resp. last) point of the internal mesh only in the first (resp.
last) interval of the external mesh, which produces a smallest matrix, destroying,
however, any possible block-diagonal structure, because any two consecutive blocks
will share a column.

In terms of the basis of the space, this choice means that it contains elements
which are nonzero polynomials on two intervals of the external mesh; these elements
are those with the same index as a point which is the first or the last of an internal
mesh (except for the endpoints 0 and l).

4.3 Matrices construction
Let bj , 0 ≤ j ≤ ν be nodes in [ 0, 1 ],

∆aj := aj+1 − aj , 0 ≤ j ≤ N − 1,

and pjν+j+m := aj + bm∆aj for 0 ≤ j ≤ N − 1, 0 ≤ m ≤ ν be the points of the full
mesh.

If φ ∈ X we define Φk = φ(pk), for 0 ≤ k ≤ N(ν + 1)− 1, where Φk is the k-th
component of Φ (which is coherent with our choice of Pn and Jn).

We will also, as already said, abuse of notation and identify the vector Φ and
the polynomial it represents in the Lagrange basis, i.e.

Φ|[ ak, ak+1 ] =

(k+2)ν∑
j=(k+1)ν

ljΦj ,



4.3 Matrices construction 29

where lj is the j-th polynomial of the basis of JnXn defined above.
The matrices approximating the birth and mortality operators are simpler to

describe using indexes ranging from 0 to n− 1, so we will adopt this convention.

4.3.1 Disease

Boundary condition From Eq. (3.7) we get

Cφ = φ(0), (4.8)

which in Xn translates to

φn(0) =

ν∑
j=0

lj(0)Φj ;

we can thus write, using Definition 4.2

Cn = (l0(0) l1(0) . . . lν(0) 0 . . . 0), (4.9)

i.e. a 1× n matrix.
Using Chebyshev nodes, its entries are all 0 except the first; on the contrary,

using Gauss nodes φn(0) depends on the values on the whole first internal mesh, i.e.
the first ν + 1 entries are nonzero.

Thus using the Chebyshev nodes we can only replace the first line; the Gauss
nodes let us choose any of the first ν rows; we choose the first as well, since we have
no reasons to do otherwise.

In what follows we thus omit the description of the first row.

Operator action We rewrite Eqs. (3.6a) and (3.6b) as

M := H + diag(µ+ γ) (4.10a)

B := diagS0Σ, (4.10b)

where for a function f we define diag f as the operator F such that(Fφ)(a) =
f(a)φ(a); H is the derivation operator Hφ = φ′; and Σ is the following integral
operator:

(Σφ)(a) =

∫ l

0
β(a, σ)φ(σ)dσ.

We would now like to apply Lemma 4.3. We can use it for Eq. (4.10a), but not
for Eq. (4.10b), because Σ does not map Xn into itself in general; and anyway we
are not able to write the exact action of Σ on Xn, unless we know β, and only for a
few special functions β.

Since we do not want our method to depend on β we approximate the entire
integral with a quadrature formula; We will then need to prove, in Lemma 5.8, that
this choice is a good one and does not lead to problems in the convergence.
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Since Eqs. (4.10a) and (4.10b) involves derivatives and integrals, we choose
qj , 0 ≤ j ≤ ν weights of a quadrature formula and dj,k, 0 ≤ j, k ≤ ν weights
of a differentiation formula on the nodes of any internal mesh; since we actually use
the same nodes on any interval of the external mesh, scaled to fit the interval, we
also choose a single set of quadrature and differentiation weights and scale them so
that they continue to be the weights of quadrature and differentiation formulas of
the desired polynomial order on the given (scaled) nodes.

So we approximate separately H, diag(µ+ γ), diagS0 and Σ. Since Hn is given
by

(Hn)iν+i+h,jν+j+m = δi,j
dh,m
∆a

,

we obtain (still denoting, with some abuse of notation, the approximated matrices
by Bn and Mn)

(Bn)iν+i+h,jν+j+m = S0(ai + bh∆ai)qmβ(ai + bh∆ai, aj + bm∆aj) (4.11)

(Mn)iν+i+h,jν+j+m = δi,j

(
dh,m
∆a

+ δh,m(γ + µ)(pt)

)
, (4.12)

for iν + i + h 6= 0, 0 ≤ h,m ≤ ν, 0 ≤ i, j < N , where δa,b is the Kronecker delta,
which is 1 if a = b, and 0 otherwise.

On the Chebyshev nodes we can also write:

(Bn)iν+h,jν+m = S0(ai + bh∆ai)∆ajqmβ(ai + bh∆ai, aj + bm∆aj)

for 1 ≤ h ≤ ν, 0 ≤ i < N and 1 ≤ m < ν, 0 ≤ j < N or jν+m = 0 or jν+m = n−1;
in the remaining cases

(Bn)iν+h,jν = S0(aiν+h)(∆ajqm +∆aj−1q0)β(ai + bh∆ai, aj)

i.e. for the same values of i, h and 0 < j < N .
In other words, the matrix Bn is constructed using blocks, whose last column

overlaps with the first of the following block, i.e.

B1,1(ν)
B1,1(0 : ν − 1) + B1,2(1 : ν − 1) · · · B1,N (1 : ν)

B1,2(0)

B2,1(ν)
B2,1(0 : ν − 1) + B2,2(1 : ν − 1) · · · B2,N (1 : ν)

B2,2(0)
...

...
... . . . ...

BN,1(ν)
BN,1(0 : ν − 1) + BN,2(1 : ν − 1) · · · BN,N (1 : ν)

BN,2(0)


,
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where an item Bi,j(h : k) are the columns from h to k of the block Bi,j , and Bi,j(k)
is only the k-th column; Bi,j is obtained fixing i and j in Eq. (4.11), and eliminating
the first row of the obtained block.

Like for Bn, Mn also has overlapping blocks; but since it previously was block-
diagonal, the structure remains simpler

(Mn)iν+h,jν+m = δi,j

(
dh,m
∆a

+ δh,m(γ + µ)(pt)

)
for 1 ≤ h ≤ ν, 0 ≤ i, j < N and 0 ≤ m ≤ ν; i.e. it is now quasi-block-diagonal,
having the blocks (derived from in Eq. (4.12) in the same way as those of Bn) which
overlap in the same way as in Bn, and the diagonal perturbed by γ+µ; the structure
is the following: 

M1

M2

M3

. . .
M4


4.3.2 Bacteria

Let Hn be the derivation matrix described above.

Boundary conditions We rewrite Eq. (3.12) in terms of C, whose image is now
R2:

Cφ =

(
c(0)φ(0)−D(0)φ′(0)
c(l)φ(l)−D(l)φ′(l)

)
or, if V0f := f(0) and Vlf := f(l)

C :=

(
V0
Vl

)
(diag c− diagDH) .

Here H maps Πn into itself, but diag c and diagD do not, in general; so again
we can only use Lemma 4.3 only for the linearity. We nevertheless separately ap-
proximate H, diag c, diagD and (V0, Vl)

T , which will yield good results, thanks to
what we will see in Lemma 5.2 and Theorem 5.3.

We can thus construct Cn: if

v0 := (l0(0) l1(0) . . . lν(0) 0 . . . 0),

vl := (0 . . . 0 l(N−1)ν(l) l(N−1)ν+1(l) . . . lNν(l)),

then
C :=

(
v0
vl

)
(diagn c− diagnDHn)
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where for a function f we define diagn f as the diagonal matrix F such that

Fi,i := f(pi)

and pi is th i-th point of the full mesh.
This time we have to choose two rows to describe the domain conditions; they

need to be one in the first block (i.e. blocks of ν+1 rows) and one in the last, using
both the Chebyshev and the Gauss nodes (due to the derivative); we choose the first
and the last row.

Operators action Then Eq. (3.11b) can be written as

M = H (diag c+ diagnDH) + diag(β + µ)

This is very similar to the boundary condition, so the same considerations on
the use of Lemma 4.3 hold.

Again, we approximate H, diag c, diagD and diag(β + µ) separately, and we
delay the proof that this yields good results to Lemma 5.2 and Theorem 5.3:

MnΦ = Hn (diagn c+ diagnDHn)Φ + diagn(β + µ)Φ.

Eq. (3.11a) has no problems since it contains no operator multiplications and
becomes

Bn := 2 diagn β.



Chapter 5

Proofs of convergence

5.1 General method

In this preliminary convergence analysis we are going to assume some facts that
are actually not true, namely that there are no border conditions and that M is
bounded.

We now suppose that we can search for the eigenvector relative to R0 in a space
of regular functions; we thus define, for some set of points 0 = α0, . . . , αN0 = l, the
normed spaces

Cν
N0

= ({f ∈ C0([ 0, l ]) : f |[αj−1, αj ] ∈ Cν , 1 ≤ j ≤ N0}, ‖·‖∞)

Xn =
(
Cn, ‖·‖Xn

)
for any n ∈ N,

where
‖Φ‖Xn

:=
n

max
j=1

|Φj |

for Φ ∈ Xn and n ∈ N; here Φj denotes the j-th component of Φ. Note that Cν
N0

is
not a Banach space, unless ν = 0.

When it does not create confusion we write C in place of Cν
N0

.
We also consider the same operators Pn and Jn of the previous chapter, which

now have a different codomain and domain respectively; we may omit the subscript
in the norms when it is clear which norm is used.

We define Ñ = {Nν : N ∈ N}, and for f : Ñ → R+

O(f(n)) =
{
g : Ñ → R+ : ∃a, b > 0: g(x) ≤ a+ bf(x)∀x ∈ Ñ

}
Suppose that for some functions ω, ι, κ

33
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Assumption 5.1.

‖Jn‖C←Xn
∈ O(ι(n))

‖Pn‖Xn←C ∈ O(ι(n))

‖JnPn − IC‖ ∈ O(ω(n)) ⊆ O(κ(n))

ιd(n)ω(n) ∈ O(κ(n))∀d ∈ N.

Actually, we should call these objects ων , ιν , κν , because they depend on ν, but
we omit the subscript when there is no ambiguity.

For a linear operator L, let Ln be defined as in the previous chapter.

Lemma 5.1. Fix L; if it is bounded, the following hold:

‖JnLnPn − L‖ ∈ O((ι2ω)(n))

Proof. Using the definition of Ln, the triangular inequality and the operator norms
properties we can write

‖JnLnPn − L‖ = ‖JnPnLJnPn − L‖ ≤
≤ ‖JnPnLJnPn − LJnPn‖+ ‖LJnPn − L‖ ≤

≤ ‖JnPn − IC‖‖L‖(‖JnPn‖+ 1).

Moreover, thanks to Assumption 5.1 ‖JnPn − IC‖ ∈ O(ω(n)), ‖JnPn‖ + 1 ∈ ι2(n),
and so the whole expression is in ‖L‖O((ι2ω)(n)) := O(‖L‖(ι2ω)(n)). Since ‖L‖ is
a multiplicative constant we can absorb it into the O((ι2ω)(n)) term, and the thesis
follows.

We already proved in Lemma 4.3 that if L maps CN,ν into itself, for a linear
operator K

(KL)n = KnLn;

This is, however, a rather restrictive requirement; we then wish to generalize
that statement.

Lemma 5.2. Let L : C → C, and K : C → C or K : C → Rp be bounded operators;
then

‖(KL)n −KnLn‖ ∈ O((ι2ω)(n))

Proof. Let K : C → C; then thanks to the operator norms properties and Assump-
tion 5.1

‖PnKJnPnLJn − PnKLJn‖ ≤ ‖Pn‖‖K‖‖JnPn − IC‖‖L‖‖Jn‖ ∈ ‖K‖‖L‖O((ι2ω)(n))
(5.1)

and since K and L are fixed (bounded) operators their norm can be absorbed in the
term O((ι2ω)(n)) and the thesis is proved in this case.

If K : C → Rp Eq. (5.1) holds without the factor Pn on the right; so the conclu-
sion ‖KJnPnLJn −KLJn‖ ∈ ‖K‖‖L‖O((ι2ω)(n)) is still true; as before the norm
of K and L can be absorbed in the term O((ι2ω)(n)), which completes the proof.
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As a special case, if L and L−1 are bounded
∥∥(L−1)nLn − I

∥∥ ∈ O((ι2ω)(n)).
We are interested in an approximation of the next generation operator K =

BM−1. We thus suppose

Assumption 5.2. The operators B,M and M−1 are bounded;

We now can prove

Theorem 5.3. Under Assumptions 5.1 and 5.2, and if
∥∥(Mn)

−1∥∥ ∈ O(ιτ (n)), for
some τ ∈ N, then

∥∥JnBn(Mn)
−1Pn −BM−1

∥∥ ∈ O(κ(n)).

Proof.∥∥JnBn(Mn)
−1Pn −BM−1

∥∥ ≤
≤
∥∥JnBn(Mn)

−1Pn − JnBnPnM
−1∥∥+ ∥∥JnBnPnM

−1 −BM−1
∥∥ ≤

≤ ‖Jn‖‖Bn‖
∥∥(Mn)

−1Pn − PnM
−1∥∥+ ‖JnBnPn −B‖

∥∥M−1∥∥.
Thanks to Lemma 5.1 and the bound on M−1 the second term is in O((ι2+τω)(n)).
As for the first term, we write∥∥(Mn)

−1Pn − PnM
−1∥∥ ≤
≤
∥∥(Mn)

−1∥∥‖Pn‖
∥∥I −MJnPnM

−1∥∥ ≤
≤
∥∥(Mn)

−1∥∥‖Pn‖‖M‖‖I − JnPn‖
∥∥M−1∥∥; (5.2)

and
‖Bn‖ ≤ ‖Pn‖‖B‖‖Jn‖

that is,

‖Jn‖‖Bn‖
∥∥(Mn)

−1Pn − PnM
−1∥∥ ≤ ‖Jn‖2‖Pn‖2‖B‖‖M‖‖I − JnPn‖

∥∥M−1∥∥2;
so the first term is in O((ι4+2τω)(n)) ⊆ O(κ(n)), because ‖B‖, ‖M‖,

∥∥M−1∥∥ are
constants which can be absorbed in the O(κ(n)) term.

Finally, suppose that Mn and Bn are not directly approximations of B and M ,
but rather, if B = B1B2, Bn := PnB1JnPnB2Jn.

Then,∥∥JnPnB1JnPnB2Jn(Mn)
−1Pn −BM−1

∥∥ ≤
≤
∥∥JnPnB1JnPnB2Jn(Mn)

−1Pn − JnPnBJn(Mn)
−1Pn

∥∥+
+
∥∥JnPnBJn(Mn)

−1Pn −BM−1
∥∥ ≤

≤ ‖Jn‖‖PnB1JnPnB2Jn − PnBJn‖
∥∥(Mn)

−1∥∥‖Pn‖+
+
∥∥JnPnBJn(Mn)

−1Pn −BM−1
∥∥

We already proved that the second term is in O(κ(n)); for the first term

‖PnB1JnPnB2Jn − PnBJn‖ ∈ O((ι2ω)(n))
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thanks to Lemma 5.2, and the remaining part is in O(ι2+τ (n)), i.e. the whole product
in the first term is in O((ι4+τω)(n)) ⊆ O(κ(n)), and then so is the whole∥∥JnPnB1JnPnB2Jn(Mn)

−1Pn −BM−1
∥∥.

Similarly, if M = M1M2, and Mn := PnM1JnPnM2Jn, we need to modify
Eq. (5.2). We thus write∥∥(Mn)

−1Pn − PnM
−1∥∥ ≤

≤
∥∥(Mn)

−1∥∥‖Pn‖
∥∥I −M1JnPnM2JnPnM

−1
2 M−11

∥∥ ≤
≤
∥∥(Mn)

−1∥∥‖Pn‖‖M1‖
∥∥I − JnPnM2JnPnM

−1
2

∥∥∥∥M−11

∥∥ ≤
≤
∥∥(Mn)

−1∥∥‖Pn‖‖M1‖
∥∥I −M2JnPnM

−1
2

∥∥∥∥M−11

∥∥+
+
∥∥(Mn)

−1∥∥‖Pn‖‖M1‖
∥∥M2JnPnM

−1
2 − JnPnM2JnPnM

−1
2

∥∥∥∥M−11

∥∥ ≤
≤
∥∥(Mn)

−1∥∥‖Pn‖‖M1‖‖M2‖‖I − JnPn‖
∥∥M−12

∥∥∥∥M−11

∥∥+
+
∥∥(Mn)

−1∥∥‖Pn‖‖M1‖‖I − JnPn‖
∥∥M2JnPnM

−1
2

∥∥∥∥M−11

∥∥ ∈ O((ι3+τω)(n))

So that the object we are interested in, namely∥∥JnBn(Mn)
−1Pn −BM−1

∥∥
is in O((ι6+τω)(n)) ⊆ O(κ(n)), which gives the thesis.

Following [17, Lemma 2.25], we state the following

Lemma 5.4. Let U be a Banach space, A a linear and bounded operator on U and
{AN}N∈N a sequence of linear and bounded operators on U such that ‖AN −A‖U←U →
0 for N → +∞. If µ ∈ C is an eigenvalue of A with finite algebraic multiplicity ν
and ascent l, and ∆ is a neighborhood of µ such that µ is the only eigenvalue of A
in ∆, then there exists a positive integer N̄ such that, for any N ≥ N̄ , An has in
∆ exactly ν eigenvalues µN,j , j ∈ 1, . . . , ν, counting their multiplicities. Moreover,
by setting εN :=

∥∥(AN −A)|εµ
∥∥
U←εµ

, where εµ is the generalized eigenspace of µ
equipped with the norm ‖·‖U restricted to εµ, the following holds:

max
j∈{1,...,µ}

|µN,j − µ| ∈ O(ε
1/l
N ).

Proof. By [5, Example 3.8 and Theorem 5.22], the norm convergence of AN to A
implies the strongly stable convergence AN−µIU

ss→ A−µIU for all µ in the resolvent
set of A and all isolated eigenvalues µ of finite multiplicity of A. The thesis follows
then by [5, Proposition 5.6 and Theorem 6.7].

The ascent denotes the maximum dimension of the Jordan blocks relevant to µ;
if µ := R0, we know from the compactness of K that l = 1.

So the following holds:
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Theorem 5.5. Suppose that Theorem 5.3 holds for ν = 0, with κ0(n) → 0 for
n→ +∞; assume also that Assumptions 5.1 and 5.2 hold, and there are no boundary
conditions.

Suppose that εR0 ⊆ Cν
N0

).
Then, ‖R0,n −R0‖ ∈ O(κ(n)).

Proof. We apply Lemma 5.4 with U := C0([ 0, l ]), AN := Kn = Bn(Mn)
−1; thanks

to Theorem 5.3 εN ∈ O(κ(N)) and so the thesis is proved.

Finally, we prove that in some cases Assumption 5.1 holds.

Lemma 5.6. Let Jn, and Pn defined as in the previous chapter, fix ν and let ∆a :=
max0≤k<N ∆ak ∈ O(g(n)) for some g(n) such that limn→∞ g(n) = 0. Then

• ‖Pn‖Xn←C ∈ O(1)

• ‖Jn‖C←Xn
∈ O(1)

• ‖JnPn − IC‖ ∈ O((g(n))ν)

Proof. • Let ψ ∈ X, with ‖ψ‖ ≤ 1. Then ‖Pnψ‖ = maxnj=0|ψ(pj)| ≤ 1, and the
first point is proved.

• ‖Jn‖ is related to the Lebesgue constant:

‖Jn‖Ψ = max
1≤k≤N

sup
x∈[ ak−1, ak ]

ν∑
j=0

|lkν+k+j(t)| = max
1≤k≤N

Λν(p(k+1)ν , . . . , p(k+2)ν);

since ν is fixed, this is bounded, and thus the second point is proved.

• Let ψ ∈ C, with ‖ψ‖ ≤ 1; then JnPnψ is the piecewise polynomial of ΠN,ν

which interpolates ψ; we know that the error is in O((∆a))ν = O((g(n))ν) (see
[22, Eq 7.21]).

If g(n) → 0 for n → +∞, it also holds, for C = C0, ‖JnPn − IC0‖ → 0 for
n→ +∞, and we can thus apply Theorem 5.5.

5.2 Generic disease
We will now prove that part of Assumption 5.2 holds.

Recall that β, S0, γ, µ are continuous on a compact set, thus they are uniformly
bounded; we call β+, S0

+, γ+, µ+ their maximum.
We also recall that ‖ϕ‖ = ‖ϕ‖∞ = supa∈[ 0, a† ]|ϕ(a)|. We can then state

Lemma 5.7. Let B,M be defined as in Eqs. (3.6a) and (3.6b); then B and M−1

are bounded .
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Proof. Let ϕ ∈ C0([ 0, a† ]); then ‖Bϕ‖ ≤ a†S
0
+β+‖ϕ‖, thus B is bounded.

Using the expression for the inverse of M (Eq. (3.8)), we write

M−1ζ(σ) =

∫ σ

0
e−

∫ σ
ρ (µ+γ)(η)dηζ(ρ)dρ ≤ a†‖ζ‖

In Section 4.3.1 we also left the following lemma to prove:

Lemma 5.8. Let Σφ(a) :=
∫ l
0 β(a, σ)φ(σ)dσ, and suppose that for each a ∈ [ 0, a† ]

it holds
β(a, σ)φ(σ) ∈ Cν

N0

as a function of σ.
Let aj be the nodes of the external mesh and pi those of the full mesh, as defined

in Chapter 4.
Define a piecewise quadrature formula Iνφ(a) :=

∑N−1
j=0 Ij,νφ(a), with

∫ aj+1

aj

β(a, σ)φ(σ)dσ ' Ij,νφ(a) :=

j(ν+1)+ν∑
i=j(ν+1)

qiβ(a, pi)φ(pi),

where qi :=
∫ aj+1

aj
li(a)da are the quadrature weights.

Then ‖Σφ(a)− Iνφ(a)‖ ∈ O((∆a)ν).

Proof. We start with a single interval:∣∣∣∣∣∣
∫ aj+1

aj

β(a, σ)φ(σ)dσ −
j(ν+1)+ν∑
i=j(ν+1)

qiβ(a, pi)φ(pi)

∣∣∣∣∣∣ ≤
≤
∫ aj+1

aj

∣∣∣∣∣∣β(a, σ)φ(σ)−
j(ν+1)+ν∑
i=j(ν+1)

li(σ)β(a, pi)φ(pi)

∣∣∣∣∣∣dσ ≤

≤ ∆aj sup
σ∈[ aj , aj+1 ]

∣∣∣∣∣∣β(a, σ)φ(σ)−
j(ν+1)+ν∑
i=j(ν+1)

li(σ)β(a, pi)φ(pi)

∣∣∣∣∣∣ ∈ O((∆aj)
ν+1)

Thanks to the properties of the interpolating polynomial ([22, Eq 7.21]).
Then, taking the sum over j, we get ‖Σφ(a)− Iνφ(a)‖ ∈ O((∆a)ν), and the

thesis is proved.

5.3 Bacteria
Like in the previous case, we will now prove that part of Assumption 5.2 holds.

Recall that β, µ are continuous on a compact set, thus they are uniformly
bounded; we call β+, S0

+, γ+, µ+ their maximum.
We also recall that ‖ϕ‖ = ‖ϕ‖∞ = supa∈[ 0, a† ]|ϕ(a)|. We can then state the

following
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Lemma 5.9. Let B defined as in Eqs. (3.11a) and (3.11b); then B is bounded

Proof. Let ϕ ∈ C0([ 0, l ]); then ‖Bϕ‖ ≤ β+‖ϕ‖, thus B is bounded.

5.4 Remarks on the missing hypotheses
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Chapter 6

Simulation results

We tested our method on the models presented in Chapter 3, using different param-
eters.

All graphs in this chapter plot, in logarithmic scale on both axes, the absolute er-
ror in the computation of R0, i.e. the difference between the current computed value
and a reference value which is usually the value computed by the “spectral” method
with the highest-degree polynomial used, because the results obtained suggest it is
correct up to machine precision.

6.1 Sample functions

As a first test we choose the model described by Eq. (3.5), using the following
parameters:

a† = 1

S0(x) = 5187 + 226.438x− 2.777x2

γ(x) = 52

µ(x) =
8.3675

110− x

β = 1, 8 · 10−11
(
1002 − (x1− x2)2

)
+ 3 · 10−8.

Here γ, β are taken from [16]; µ, S0 are constructed as analytic functions which are
not too far from the experimental data [20, 21]; finally, the maximum age a† is set
to 1, in order to get a simple problem, since the error also depends from the domain
size.

The first graph is obtained using the spectral method, i.e. a single polynomial
of increasing degree is approximating the eigenvector. The obtained reference value
is R0 ' 2.095 ·10−5. The following graphs are obtained through a “finite elements”
like method: the polynomial degree is kept fixed and the number of intervals is
increased.

41
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These graphs show that the algorithm produces the expected results: the spectral
method reaches machine precision when the polynomial of degree is about 40; the
finite elements methods shows the asymptotic expected behavior, approaching an
error of O(n−k), which in a log-log plot is a straight line of slope k.

However, they are all far from reaching the machine precision (10−20, since R0

itself is of the order of 10−5), even if the results from methods of order can still be
considered quite accurate results.

This confirms that the spectral method is the best choice for analytic eigenvec-
tors, in the sense that it reaches the lowest possible error at parity of computational
resources, i.e. time and memory: let n be the number of intervals times the degree
of the polynomial; the computing time is mainly due to the O(n3) cost of solving
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the generalized eigenvalues problem, and the memory is maily used to store the ma-
trices Mn and Bn; then the spectral method reached machine precision with n ' 40,
while for the similar values of n the order 2 method produced an error of about
10−7 (meaning two correct decimal digits, obtained with N = 13, ν = 3), and the
method of order 6 produced an error of about 10−9 (four correct decimal digits, with
N = 6, ν = 7); to better compare the resources requirement, we add that the order
6 method reaches an absolute precision of 10−15, which as said in quite an accurate
result, for n = 701, that is using about 300 times the memory and 5000 times the
time needed by the spectral method to reach full precision.

6.2 Generic disease: test using analytic functions

We now wan to test our method to a more realistic example: we use the same
parameters as before, but now the maximum age is set to 100, which is more realistic
if we are talking about a human population of susceptibles, as defined in Section 3.2

a† = 100

S0(x) = 5187 + 226.438x− 2.777x2

γ(x) = 52

µ(x) =
8.3675

110− x

β = 1, 8 · 10−11
(
1002 − (x1− x2)2

)
+ 3 · 10−8

Again, the first graph is obtained using the “spectral method”. The obtained
reference value is R0 = 2.636 · 10−3. The following graphs are obtained through a
“finite elements”method.
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Again, the spectral method reaches machine precision, although this time a poly-
nomial of degree 200 is needed; however the finite elements methods do not show the
asymptotic expected behavior; this is due to the large maximum age, which gives
a higher multiplicative constant in the error behavior O(n−k) (see also the proof of
Lemma 5.7, although not all the hypothesis of that lemma are verified); as we can
see the slope of the blue line increases with the intervals number, which means that
the asymptotic behavior will be reached with more intervals (and computing time:
this is the reason why we limited to 1000 intervals, since whole order 4 graph took
more than an hour on a 3.2 GHz CPU, and 6 GB of RAM, which is far more than
needed).
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6.3 Generic disease

Finally, as in [16] we tested our code on a real data set: we took the values of S0

from [21], and the values of µ from [20], taking a value every 5 years in order to
match the same sampling of S0; both these data were interpolated by cubic splines
to obtain the actual functions.

We kept the same maximum age (as suggested by [21]), and following [16] the
same values for γ and β, which model the disease:

a† = 100

γ(x) = 52

β = 1, 8 · 10−11
(
1002 − (x1− x2)2

)
+ 3 · 10−8.

In this case (some of) the functions are not analytic; they are instead piecewise
analytic, on intervals of 5 years. We thus fixed 20 intervals instead of one for the
spectral method, and used a number of intervals multiple of 20 for the finite elements
method.

Again, the first graph is obtained using the “spectral method”; The obtained
reference value is R0 = 2.286. The following graphs are obtained through a “finite
elements”method.
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The same conclusions of the previous case are valid: the polynomial degree
needed for convergence is about 80, but using 20 distinct polynomials; the finite
elements methods do not show the asymptotic expected behavior yet, but, like in
the previous case, the slope of the blue line is increasing, i.e. the convergence is
most likely still slow because of the high maximum age, and the computing times
for the finite elements are almost the same.

Nevertheless, not only the spectral method, but also high order methods still
compute an acceptable approximation, given that the statistical data are not ex-
act (we used interpolating splines), hence augmenting the precision above a given
threshold does not give more accurate information.



6.4 Bacteria 51

6.4 Bacteria

We chose these functions for testing:

l = 1

β(x) = 12

µ(x) = 1

c(x) = 2 + x

D(x) = 0.5 + x.

The choice of constant functions for β and µ let us compute R0 exactly, given
from Eq. (3.14); for this reason we used the exact value 24/13 as the reference value
for R0.

What follows is the plot for the spectral method; it still exhibits spectral accuracy
[24, Chapter 4], but this time the approximation with odd degree polynomials is
always exact to machine precision, and there seems to be more instability for high
degree polynomials (for the sake of clariny, we split the plot based on he parity of
the used polynomial degree).

10 0 10 1 10 2
10 -13
10 -12
10 -11
10 -10
10 -09
10 -08
10 -07
10 -06
10 -05
10 -04

Polynomial degree

A
bs

ol
ut

e
er

ro
r

Absolute error estimate vs mesh size,
spectral method, even degree polynomials



52 Simulation results

10 0 10 1 10 2
10 -15

10 -14

10 -13

10 -12

10 -11

10 -10

Polynomial degree

A
bs

ol
ut

e
er

ro
r

Absolute error estimate vs mesh size,
spectral method, odd degree polynomials

We will not show the graphs produced by the finite elements method since those
methods seem not to converge for even degree polynomials. Investigating the reason
why it is so is left as a future work.



Appendix A

Implementation

The code has been written in C++, using the Gnu Scientific Library, and is available
at https://github.com/f-florian/thesis and https://github.com/f-florian/
thesis-differential, except that for plotting graphs which consist of trivial Octave
scripts not deserving particular attention.

We discuss here some numerical problems which are not strictly related to the
approximation of R0 (i.e., their solutions also have other applications), but are nev-
ertheless to be solved in order to implement the algorithm described in the previous
chapters.

For the sake of clarity we limit this discussion to one sample interval; since it
can be replicated (with proper scaling) in any interval of the external mesh this is
not a limitation1.

A.1 Nodes, interpolation, quadrature and differentia-
tion

The choice has been made, of using the same nodes for interpolation, quadrature
and differentiation. This is not the only possible choice: we can write a polynomial
interpolating the function f on some nodes p as

fn(x) :=

n∑
i=0

f(pi)li(x), (A.1)

where we used the Lagrange basis; then the integral of f could be approximated by
that of fn, using a quadrature formula on a different set of nodes b:

nq∑
j=0

(
q̃j

n∑
i=1

f(pi)li(bj)

)
; (A.2)

1In fact, also the code in the thesis-differential library has been written for a single interval.
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for the derivative in a point y we could use yet another set of nodes cy, obtaining a
similar formula, with quadrature weights replaced by differentiation weights:

ny∑
j=0

(
d̃y,j

n∑
i=1

f(pi)li(cy,j)

)
. (A.3)

However, using the same nodes p also for quadrature and differentiation leads to
much simpler formulas:

n∑
j=0

qjf(pj), (A.4)

and the same for the derivative at one of the points p, changing only the weights.

A.1.1 Polynomial basis

Also, we are not even forced to use the Lagrange basis of polynomials; on the contrary
it might be thought that a Newton basis is better suited for numerical computation
because the polynomial evaluations are then more accurate.

The first problem is that in order to compute the coefficients for the represen-
tation of a polynomial in the Newton basis it is necessary to solve a triangular
linear system, (which is equivalent to computing the divided differences tableau);
even worse, if the polynomial is the interpolation of the eigenvector, i.e. it is an
unknown, we need to invert the triangular matrix

1
1 x1 − x0
...

... . . .
1 xn − x0 . . .

∏n−1
j=0 (xk − xj)


and perform a matrix-matrix multiplication. This last problem could be solved using
the same nodes for interpolation, quadrature and differentiation, and using weights
which allows using the coefficients instead of the polynomial values as unknowns.

However using barycentric representation of Lagrange polynomials is even sim-
pler, and yields accurate results for both evaluating the polynomials and computing
the differentiation weights, as shown in [3]; as for the quadrature weights, the are
commonly computed so that they can be used as in Eqs. (A.2) and (A.4), so the
choice of Lagrange polynomial is again simpler (and accurate enough).

A.1.2 Lagrange polynomials in barycentric form

So we write the generic polynomial of the Lagrange basis, showing how to obtain
the barycentric formulation:

lj(x) =

∏n
k=0,k 6=j(x− pk)∏n
k=0,k 6=j(pj − pk)

; (A.5)
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since the denominator does not depend on the evaluations point, and we can can
collect

l(x) =

n∏
k=0

(x− pk)

(which does not depend on the index j) from the numerator, we define the barycen-
tric weights

wj :=
n∏

k=0,k 6=j

(pj − pk)

and write

lj(x) =

{
l(x)

(x−pj)wj
x 6= pj

1 x = pj .
(A.6)

Interpolating the function 1 we get

1 =

n∑
i=0

li(x) = l(x)

n∑
i=0

1

(x− xi)wi
(A.7)

so dividing by 1 in Eq. (A.6) we get

lj(x) =

1

(x− xj)wj
n∑

j=0

1

(x− xj)wj

(A.8)

for x 6= pi, and 1 otherwise.
The main advantage of this formulation is that after the weights wj have been

computed in O(n2) operations, evaluating a function fn by

fn(x) =

n∑
j=0

f(pj)

(x− xj)wj

n∑
j=0

1

(x− xj)wj

requires only O(n) operations (including the check that x is not one of the nodes)
and the computation quite accurate.

From now on we therefore assume we have chosen the Lagrange basis and the
same set of nodes for interpolation, quadrature and differentiation.

A.1.3 Differentiation weights

We want to approximate f ′(x), using only the evaluations of f in the nodes p; we
note that, in order to write the birth and mortality operators we only need this
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when x = pk for some index k; so we can write, using Eq. (A.1) and linearity of the
derivative

f ′(pk) ' f ′n(pk) =

n∑
i=0

f(pi)l
′
i(pk).

We thus need to compute the derivatives of the polynomials in the Lagrange
basis at those points; in order to do this we start from Eq. (A.5); since we are
differentiating a product we get

l′i(x) =
1

wi

n∑
m=0,m 6=i

n∏
j=0,j 6=m,i

(x− pj)

and so, for k 6= i

l′i(pk) =
1

wi

n∑
m=0,m 6=i

n∏
j=0,j 6=m,i

(pk − pm) =
1

wi

n∏
j=0,j 6=k,i

(pk − pj) =
wk

(pk − pi)wi
.

For k = i we differentiate Eq. (A.7) and get

0 =
n∑

j=0

l′j(x)

and finally

l′i(pi) = −
n∑

j=0,j 6=i

l′j(pi)

A.1.4 Nodes and quadrature weights

We were able to obtain an analytic expression for the derivative of the Lagrange
polynomials. For quadrature rules things get more complicated, so we limit to
Gauss and Chebyshev nodes, like in Chapter 3 (this means that we only use those
nodes for differentiation too).

For Gauss nodes, the algorithm given by Golub and Welsch in [10] gives nodes
and weights of quadrature computing eigenvalues and eigenvectors of a tridiagonal
matrix. The article by Golub and Welsch describes the tridiagonal matrix for an
integral which uses a general weight function; the particular matrix we need is
described in the function gauss in [25]2. Once the nodes and weights have been
computed, the integral evaluation is exact for all polynomials of degree at most 2n+1,
which is the greatest attainable polynomial order: in this sense Gauss quadrature is
often considered the “optimal” one.

For Chebyshev nodes, the quadrature rule is called “Clenshaw-Curtis” quadra-
ture, and has polynomial order n, i.e. it can integrate exactly polynomials up to
degree n; [25] gives an algorithm for computing the quadrature weights on these
nodes.

2We actually used the Gauss weights and nodes provided by the Gnu Scientific Library, without
the need of re-implement the method.
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A.2 Eigenvalues computation
Once the matrices approximating the birth and mortality operators have been writ-
ten, we have to solve the eigenvalues system; as already pointed out Eqs. (3.3)
and (3.4) are mathematically equivalent, but their numerical properties may differ;
the first was solved by inverting a matrix and then computing the Schur decomposi-
tion BM−1 = ZTZT ; the diagonal of T gives the eigenvalues. The second is solved
using the so called QZ method to compute the generalized Schur decomposition
B = QTZT , M = QSZT [9, Sections 15.3 and 15.6].

Surprisingly, the two methods seem to produce similar results (although some
simulations have been performed using only the second method); the matrix inver-
sion was performed by computing a QR decomposition first, in order to get more
accurate results.

Finally, since we are only interested in the eigenvalue of greatest magnitude, we
could also use a method which only find a subset of the eigenvalues, like the power
method, possibly leading to an execution time speedup; the opportunity of doing so
has not been investigated and is left as a possible future improvement.
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