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Chapter 1

Complex Analysis in One Variable

In this chapter, we investigate the theory of functions of one complex variable following
(mainly) the book by Narasimhan and Nievergelt [1], and the book [2] due to Rudin.

1.1 Holomorphic Functions

In this first section, we recollect some of the basic notions and results in complex analysis
that should be already familiar to the reader.

Definition 1.1 (Holomorphic Function). Let Ω ⊆ C be an open set, and let f : Ω −→ C
be a function. We say that f is holomorphic on Ω if and only if it is C-differentiable, that
is, for all a ∈ Ω the limit of the increment

lim
z→a

f(z)− f(a)

z − a
exists, and we indicate it by f ′(a). Furthermore, we denote by O(Ω) the set of all holomor-
phic functions f : Ω −→ C.

Proposition 1.2. Let Ω ⊆ C be an open set, and let f : Ω −→ C be a function. The
following assertions are equivalent:

(1) The function f is holomorphic on Ω.

(2) For all a ∈ Ω there exist a neighborhood Ua ⊆ Ω of a and a sequence (cn)n∈N ⊂ C
such that

f(z) =

+∞∑
n=0

cn(z − a)n for all z ∈ Ua.

Additionally, the series converges absolutely for all z ∈ Ua, and we refer to a function
f satisfying this property as analytic.

(3) The function f is continuous, the partial derivatives ∂xf and ∂yf exist and satisfy the
Cauchy-Riemann equations on Ω, that is,

∂f

∂x
(z) = −ı∂f

∂y
(z) (1.1)
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for all z ∈ Ω, where we consider the decomposition z = x+ ıy for x, y ∈ R.

This characterization of holomorphic functions is one of the fundamental results in com-
plex analysis since it connects the C-differentiability with the fact that f is locally equal to
its Taylor series.

The third condition, the Cauchy-Riemann equations (1.1), are usually rewritten using
the operators

∂

∂z
=

1

2

(
∂

∂x
− ı ∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ ı

∂

∂y

)
.

Indeed, it is easy to see that

∂f

∂x
(z) =

∂f

∂z
(z) +

∂f

∂z̄
(z),

and
∂f

∂y
(z) = ı

[
∂f

∂z
(z)− ∂f

∂z̄
(z)

]
,

which means that (1.1) can be replaced by the Cauchy-Riemann equation

∂f

∂z̄
(z) = 0. (1.2)

In particular, a function f : Ω −→ C is holomorphic if and only if it is continuous, its
directional derivatives exist, and f does not depend on the complex conjugate variable z̄.

Remark 1.1. The formulas defining the operators ∂z and ∂z̄ do not come out of nowhere.
In fact, the decomposition z = x+ ıy yields to

dz = dx+ ıdy and dz̄ = dx− ıdy,

and it is easy to check that {∂z, ∂z̄} is the dual basis of {dz, dz̄}.

Theorem 1.3. Let Ω ⊆ C be an open set, and let f : Ω −→ C be a function.

(i) Let {cn}n∈N ⊂ C be a sequence of complex numbers, and let

R := lim sup
n→+∞

|cn|1/n ∈ [0, ∞].

Then
∑∞
n=0 cnz

n converges absolutely for all z ∈ C such that |z| < R, and diverges
for all z ∈ C such that |z| > R. Furthermore, the convergence is uniform on the open
disk B(ρ) of radius ρ < R strictly, where

B(ρ) := {z ∈ C : |z| < ρ}

We refer to R as the radius of convergence of the series
∑∞
n=0 cnz

n.

(ii) The series
∑∞
n=1 ncnz

n−1 has the same radius of convergence of (i). In particular,
the derivative of the function

f(z) :=

∞∑
n=0

cnz
n

is given by

f ′(z) :=

∞∑
n=1

ncnz
n−1

for all z ∈ C for which both functions are well-defined.
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(iii) Let f ∈ O(Ω), and let a ∈ Ω. Then

f(z) =

∞∑
n=0

f (n)(z)

n!
(z − a)n,

and this series converges on the maximal disk B(a, r), centered in a, contained in Ω.

Theorem 1.4 (Cauchy-Goursat and Morera). Let Ω ⊆ C be an open set, and let f : Ω −→ C
be a function. Then f is holomorphic if and only if for all γ piecewise C1 curve homotopic
to a point in Ω it turns out that fi

γ

f(z) dz = 0.

Theorem 1.5 (Cauchy Formula). Let f ∈ O(Ω), and let D ⊆ Ω be a closed rectangle/disk
contained in Ω. Then

f(a) =
1

2πı

ˆ
∂D

f(ξ)

ξ − a
dξ (1.3)

and, more generally,

f (n)(a) =
n!

2πı

ˆ
∂D

f(ξ)

(ξ − a)n+1
dξ (1.4)

where f (n)(z) denotes the nth derivative of f evaluated at the point ξ, for all a ∈ D.

A straightforward consequence of the Cauchy formula (1.4) is the following results, which
estimates the value of the nth derivative at a certain point.

Theorem 1.6. Let f ∈ O(D(a, r)), and let 0 < ρ < r and

M(ρ) := max
|z−a|=ρ

|f(z)|.

Then the following estimate holds for all n ∈ N:

|f (n)(a)| ≤ n!

ρn
M(ρ). (1.5)

Corollary 1.7 (Liouville Theorem). A bounded function f ∈ O(C) holomorphic on the
whole complex plane is constant.

Exercise 1.1. Let f ∈ O(D(a, r)), and let 0 < ρ < ρ′ < r and

M(ρ) := max
|z−a|=ρ

|f(z)|.

Then the following estimate holds for all n ∈ N and z ∈ D(a, ρ):

|f (n)(z)| ≤ n!ρ′

(ρ′ − ρ)n
M(ρ′). (1.6)

1.2 Compact-Open Topology and Convergence Results

In this section, we first introduce suitable topologies on O(Ω) and compare them. Next, we
prove that holomorphic functions are stable under the uniform convergence on compact sets
(Weierstrass), and also that an Ascoli-Arzelà theorem (Stieltjes-Osgood-Montel) holds true.
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1.2.1 Pointwise Convergence and Uniform Convergence

Denote by CC the set of all functions f : C −→ C, and endow the codomain C with its usual
metric. Then the Tychonov topology τp on CC is the coarser topology such that makes all
the projections px, defined by

px : CC −→ Cx, px(f) = f(x),

continuous. It is easy to show that a sequence of function (fn)n∈N ⊂ CC converges to f ∈ CC

with respect to the topology τp if and only if

fn(x)
n→+∞−−−−−→ f(x)

with respect to the metric space C. The topology τp is, for this reason, usually referred to
as topology of pointwise convergence.

Remark 1.2. The topology τp is well-defined on O(Ω), but we need to introduce a finer
topology (uniform convergence on compact sets) because (O(Ω), τp) is not closed.

Idea of the Proof. We know that if (fn)n∈N ⊂ O(Ω) is a sequence of holomorphic functions,
converging pointwise to some f on Ω, then (Osgood’s theorem) we can find an open,
dense set D ⊆ Ω such that f is holomorphic on D.

The main issue is that, in general, D is a proper subset of Ω and thus f does not belong
to O(Ω) - see here for a concrete counterexample -.

We now denote by C0(Ω) the set of all continuous functions f : Ω −→ C, and we notice
that O(Ω) is a proper subset. The topology of uniform convergence on compact sets, denoted
by τuc, can be easily defined on C0(Ω), and it is easy to see that(

C0(Ω), τuc
)

is a Fréchet space. We will soon define τuc exactly, but we first need to recall what a Fréchet
space and a seminorm are.

Definition 1.8 (Seminorm). Let X be a C-vector space. We say that p : X −→ R is a
seminorm if the following properties holds true:

(a) Subadditivity. For every x, y ∈ X, it turns out that

p(x+ y) ≤ p(x) + p(y).

(b) Positive Homogeneity. For every α ∈ C and x ∈ X, it turns out that

p(αx) = |α| p(x).

Definition 1.9 (Topological Vector Space). A topological vector space over C (or R) is a
pair (X, τ) satisfying the following properties:

(a) X is a complex (or real) vector space.

(b) (X, τ) is a topological space.

https://math.stackexchange.com/questions/738658/existence-of-sequence-of-polynomial
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(c) The vector sum and the scalar product are continuous with respect to the topology τ .

(d) The singlet {0} is closed in τ , that is, X is T1.

Definition 1.10 (Locally Convex). A topological vector space (X, τ) is locally convex if
the origin has a local basis of absolutely convex1 absorbent sets.

Definition 1.11 (F-space). A topological vector space (X, τ) is a F -space if the following
properties are satisfied:

(i) The topology τ is induced by a translation-invariant metric d.

(ii) The metric space (X, d) is complete.

Definition 1.12 (Fréchet space). A topological vector space (X, τ) is a Fréchet space if
the following properties are satisfied:

(i) (X, τ) is locally convex.

(ii) (X, τ) is a F -space.

The key idea is that the topology of a Fréchet space (X, τ) can also be introduced via a
countable family of seminorms (pn)n∈N such that

pn(x) = 0 for all n ∈ N =⇒ x = 0.

The topology τ that makes X a topological vector space is nothing but the metric topology
induced by the distance (check!) given by

d(x, y) :=
∑
n∈N

2−n
pn(x− y)

pn(x− y) + 1
,

and therefore X is Fréchet if and only if d is a complete distance. It is not hard to see that
a sequence of points (xk)k∈N ⊂ X converges to some x ∈ X if and only if

pn(xk)
k→+∞−−−−−→ pn(x)

for all n ∈ N. In our case, we can consider on C0(Ω) the seminorms

pK(f) := sup
x∈K
|f(x)|

for all K ⊂ Ω compact. Since Ω is a subset of C, we can always cover it with an exhaustion
by compact sets, that is, a sequence (Kn)n∈N of compact sets such that Kj $

◦
Kj+1 and

Ω ⊆
⋃
n∈N

Kn.

It follows that we can simply consider on C0(Ω) the countable (we stress again that it is
fundamental to have a metric d that the seminorms are separated and countably many!)
collection of seminorms

P :=

{
pn(f) := sup

x∈Kn
|f(x)| : n ∈ N

}
.

1We say that a set is absolutely convex if and only if it is convex and balanced.
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It turns out that (fn)n∈N ⊂ C0(Ω) converges with respect to this topology τuc to some f ∈
C0(Ω) if and only if it converges uniformly to f on every compact set in Ω (or, equivalently,
on every compact set of an exhaustion.)

We will see soon enough that the O(Ω) is closed with respect to the uniform conver-
gence (Weierstrass theorem), which means that, if a sequence of holomorphic functions
converges uniformly on all compact sets to some f , then f is holomorphic on Ω as well.

Notation. We will often refer to the seminorm pK(·) defined as the supremum over the
compact set K with the symbol ‖ · ‖K .

1.2.2 Compact-Open Topology

Let X and Y be topological spaces. The compact-open topology , denoted by τco, of Y X is
the topology whose prebasis is given by

W (K, U) :=
{
f ∈ Y X : f(K) ⊆ U

}
where K ⊆ X is a compact set and U ⊆ Y is an open set.

Remark 1.3. Note that, in general, the topology τp is coarser than τco. Furthermore, if Y
is a metric space, then τuc is coarser than τco.

The compact-open topology is interesting because it coincides with the topology of uni-
form convergence on compact sets on C0(Ω) and, also, on O(Ω).

Lemma 1.13. Let X be a topological space and Y be a metric space. Then τuc and τco
coincide on C0(X, Y ).

Idea of the Proof. Fix f ∈ C0(X, Y ). We first need to prove that for every prebasis element
W (K, U) in C0(X, Y ), there exists a positive ε > 0 such that

WK, ε(f) ⊆W (K, U),

where WK, ε(f) is an element of the basis that generates the topology τuc, that is,

WK, ε(f) :=

{
g ∈ C0(X, Y ) : sup

x∈K
d(g(x), f(x)) < ε

}
.

The key idea here is that f(K) is compact in Y and contained in U ; it follows that
Bδ(f(K)) ⊆ U , and therefore

WK, δ/2(f) ⊆W (K, U).

We need to be a little bit more careful for the opposite inclusion. Given K compact subset
of X and ε > 0, we need to find Ki ⊆ X compact sets and Ui ⊆ Y open sets such that
f(Ki) ⊆ Ui, and

WK, ε(f) ⊇
n⋂
i=1

W (Ki, Ui).

The reader might try to fill in the details by themselves as an exercise (only basic topology
is required here.)
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1.2.3 Weierstrass Theorem

In the previous sections, we proved that τuc coincides with the compact-open topology on
O(Ω). We will now endow it with the mentioned topology and investigate its main properties
(closure and compactness.)

Theorem 1.14 (Weierstrass). Let (fn)n∈N ⊂ O(Ω) be a sequence of functions τuc-converging
to some f . Then f belongs to O(ω), and the sequence of the derivatives (f ′n)n∈N ⊂ O(Ω)
τuc-converges to f ′.

Proof. Let D be a closed disk contained in Ω. The Cauchy formula (1.3) asserts that

fn(z) =
1

2πı

ˆ
∂D

fn(ξ)

ξ − z
dξ

for all n ∈ N and for all z ∈ D. Taking the limit as n→ +∞ yields to the formula

f(z) =
1

2πı

ˆ
∂D

f(ξ)

ξ − z
dξ,

and this is enough to infer that f is holomorphic since it holds for an exhaustion of Ω with
compact disks.

For the derivative, it suffices to apply the generalized Cauchy formula (1.3) which asserts
that for all n ∈ N and z ∈ D we have

f ′n(z) =
1

2πı

ˆ
∂D

fn(ξ)

(ξ − z)2
dξ.

Taking the limit as n→ +∞ yields to the same conclusion as above for f ′ and, clearly, we
can iterate the same for all derivatives of f .

Corollary 1.15. The set O(Ω) is closed in C0(Ω), and it is thus a Fréchet space.

1.2.4 Montel’s Theorem and Vitali’s Theorem

We will now show that a Ascoli-Arzelà compactness result holds for holomorphic functions
under the unique assumption that the family is uniformly bounded on every compact set.

Theorem 1.16 (Montel). Let Ω ⊆ C be an open set, and let F ⊂ O(Ω) be a family of
functions such that for all compact sets K b Ω there exists a constant MK > 0 satisfying

‖f‖K < MK for all f ∈ F .

Then F is relatively compact in O(Ω), that is, every sequence in F admits a converging
subsequence.

Proof. The proof is rather long, so we will divide it into four steps in order to ease the
notations and make it more clear.
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Step 1. Fix a ∈ Ω, and let 0 < r < d(a, ∂Ω) so that D(a, r) ⊂ Ω. Set cn(f) := f(n)(a)
n!

and notice that the series expansion of f is equal to

f(z) =

+∞∑
n=0

cn(f)(z − a)n for all z ∈ D(a, r).

Recall that the Cauchy inequality (1.5) for the nth derivative of f shows that

|cn(f)| ≤
‖f‖

D(a, r)

rn
. (1.7)

Step 2. Let us consider a sequence {fν}ν∈N ⊂ F , and denote by M the positive constant
such that

‖fν‖D(a, r)
< M for all ν ∈ N.

It follows directly from this uniform estimate that there is an increasing subsequence (ν1
j )j∈N

such that there is pointwise convergence

c0(fν1
j
) = fν1

j
(a)

j→+∞−−−−→ c0 ∈ C.

Furthermore, the estimate (1.7) is also uniform since ‖f‖
D(a, r)

is bounded by the constant
M , and thus we can find for all n ∈ N a subsequence (νnj )j∈N ⊂ (νn−1

j )j∈N such that

cn(fνnj )
j→+∞−−−−→ cn ∈ C.

We now exploit the well-known Cantor diagonal argument, letting νj := νj+1
j and noticing

that for all n ∈ N we have cn(fνj )→ cn for j → +∞.

Step 3. We now want to show that the subsequence {fνj}j∈N converges uniformly in a
smaller (open) disk Da, r, given for example by

Da, r := D
(
a,
r

2

)
,

to the function defined by the power expansion
∑+∞
n=0 cn(z − a)n, where cn is the sequence

defined by the limits above. For all z ∈ Da, r and all N ∈ N, we have the estimate

|fνk(z)− fνh(z)| ≤
N∑
n=0

|cn(fνk)− cn(fνh)||z − a|n +
∑
n>N

2M

rn
|z − a|n

as a consequence of (1.7). The point z belongs to the disk Da, r, so the distance from a
cannot be more than r/2, so that

|fνk(z)− fνh(z)| ≤ max

{
1,
rN

2N

} N∑
n=0

|cn(fνk)− cn(fνh)|+ 2M
∑
n>N

2−n ≤

≤ max

{
1,
rN

2N

}
:=KN

N∑
n=0

|cn(fνk)− cn(fνh)|+ 21−NM.
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Fix ε > 0 and let N ≥ 1 in such a way that 21−NM < ε
2 . Let n0 ∈ N be such that for all

natural numbers h, k ≥ n0 we have the estimate

|cn(fνk)− cn(fνh)| < ε

2NKN
for all n ∈ {0, . . . , N},

and this is possible because (cn(fνk))k∈N is a Cauchy sequence and N is finite. We conclude
that (fνk(z))k∈N is a Cauchy sequence uniformly with respect to z ∈ Da, r.

Step 4. The argument above proves the statement only on the disk Da, r, and the sub-
sequence depends on it, so we need to find a way to extend it to the whole Ω. To do it,
consider a sequence of points {aν}ν∈N ⊂ C such that

Ω =
⋃
ν∈N

Daν , r.

Now a Cantor diagonal argument, together with the fact that a subsequence exists on each
disk, allows us to extract a subsequence (fνj )j∈N that converges uniformly on all disks Daν , r.
Since compact subsets K b Ω can be covered by a finite number of Daν , r, it is easy to see
that (fνj )j∈N converge uniformly on all compact sets, and thus we can apply the Weierstrass
Theorem to infer the thesis.

Theorem 1.17 (Vitali). Let Ω ⊆ C be an open set, and let {fν}ν∈N ⊂ O(Ω) be a sequence of
holomorphic functions such that for all compact sets K b Ω there exists a constant MK > 0
satisfying the estimate

‖fν‖K < MK for all ν ∈ N.

Suppose also that there is a set A ⊆ Ω, with at least an accumulation point in Ω, such that
the sequence {fν(a)}ν∈N converges in C for all a ∈ A. Then {fν}ν∈N converges uniformly
on all compact sets K b Ω to a holomorphic function f ∈ O(Ω).

The fundamental idea here is to apply the Montel’s theorem to the family F := {fν}ν∈N,
but we first need a result concerning accumulation points in metric spaces, whose proof is
left to the reader as an easy exercise.

Exercise 1.2. Let (X, d) be a metric space, and let {xν}ν∈N be a sequence with compact
closure that admits a unique accumulation point x∞. Prove that

d(xν , x∞)
ν→+∞−−−−−→ 0.

Proof of Vitali’s Theorem. We argue by contradiction. Suppose that there exists a compact
set K b Ω, δ > 0, and sequences {nk}k∈N, {mk}k∈N and {zk}k∈N ⊂ K such that

|fnk(zk)− fmk(zk)| ≥ δ for all k ∈ N. (1.8)

Now Montel’s Theorem asserts that, up to subsequences, we can assume that

fnk
k→+∞−−−−−→ f ∈ O(Ω),

fmk
k→+∞−−−−−→ g ∈ O(Ω),

zk
k→+∞−−−−−→ z ∈ K.



CHAPTER 1. COMPLEX ANALYSIS IN ONE VARIABLE 14

It immediately follows from the uniform convergence and (1.8) that

|f(z)− g(z)| ≥ δ =⇒ f(z) 6= g(z).

On the other hand, by assumption f
∣∣
A
≡ g

∣∣
A
as functions, and thus the identity principle2

for holomorphic functions asserts that
f ≡ g

on all Ω, which is a contradiction with f(z) 6= g(z).

1.3 Meromorphic Functions and Laurent Series

In this section, we recall some notions the reader should be already familiar with, such as
meromorphic functions, Laurent series, zeros, poles, essential singularities, etc.

Definition 1.18 (Biholomorphism). A function f : Ω1 −→ Ω2 is a biholomorphism if and
only if f is holomorphic, invertible, and its inverse is also holomorphic.In some books, the

term conformal map-
ping is also used to
refer to a biholomor-
phism. To us, a con-
formal map will be a
map that preserves
angles.

Caution!

Definition 1.19 (Local Biholomorphism). A function f : Ω −→ C is a local biholomorphism
if and only if f ∈ O(Ω) and for all a ∈ Ω there exists a neighborhood U ⊆ Ω of a such that

f
∣∣
U

: U −→ f(U)

is a biholomorphism.

Theorem 1.20. Let 0 ≤ r1 < r2 ≤ ∞, and let A(r1, r2) denote the annulus given by

A(r1, r2) := {ζ ∈ C : r1 < |ζ| < r2} .

Let f ∈ O(A(r1, r2)). Then there exists a unique sequence {cn}n∈Z such that

f(z) =

+∞∑
n=−∞

cnz
n for all z ∈ A(r1, r2),

usually called Laurent expansion of f , and the convergence is absolute and uniform on all
compact subsets of A(r1, r2).

In particular, given Ω ⊆ C open subset and a ∈ Ω, a function f ∈ O(Ω \ {a}) admits a
Laurent expansion

f(z) =

+∞∑
n=−∞

cn(z − a)n for all z ∈ D(a, r) \ {a},

where 0 < r < d(a, ∂Ω).

2Theorem. Let f and g be holomorphic functions defined on a connected open set Ω. If f equals g on
some nonempty open subset A ⊂ Ω, then f equals g on all Ω.
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We will not prove this theorem, as it should be already known to the reader, but we will
show that the coefficient cn is given by the expression

cn =
1

2πı

ˆ
∂D(a, r)

f(ζ)

(ζ − a)n+1
dζ.

To do it, set a := 0 and denote D(0, r) simply by Dr. The function f admits a Laurent
expansion near the origin, so we write

f(z) =

+∞∑
n=−∞

cnz
n,

and we notice that

1

2πı

ˆ
∂Dr

f(ζ)

ζn+1
dζ =

1

2πı

ˆ
∂Dr

∑+∞
k=−∞ ckζ

k

ζn+1
dζ.

The converge (of the series) is uniform, so we can apply a monotone-type result to inter-
change sum with integral

1

2πı

ˆ
∂Dr

∑+∞
k=−∞ ckζ

k

ζn+1
dζ =

1

2πı

+∞∑
k=−∞

ck

ˆ
∂Dr

ζk−n−1 dζ.

We now apply the change of variable ζ 7−→ ζ := reıθ, which is true because ζ belongs to the
boundary of Dr, to obtain

1

2πı

+∞∑
k=−∞

ck

ˆ
∂Dr

ζk−n−1 dζ =
1

2π

+∞∑
k=−∞

ck

ˆ 2π

0

rk−n−1eı(k−n−1)θreıθ dθ =

=
1

2π

+∞∑
k=−∞

ckr
k−n
ˆ 2π

0

eı(k−n)θ dθ.

We now exploit the orthogonality relation between the exponentials to infer that
ˆ 2π

0

eı(k−n)θ dθ 6= 0 ⇐⇒ k = n,

and this implies that
1

2πı

ˆ
∂Dr

f(ζ)

ζn+1
dζ = ck.

Definition 1.21 (Residue). Let f be as above. The residue of f at a ∈ Ω is defined as the
coefficient c−1 of its Laurent expansion, that is,

resf (a) :=
1

2πı

ˆ
∂D(a, r)

f(ζ) dζ.

Theorem 1.22 (Riemann). Let f ∈ O(D(a, r) \ {a}) be a function such that

lim
z→a

(z − a)f(z) = 0. (1.9)

Then f can be holomorphically extended to the whole disk D(a, r).
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Proof. The previous theorem asserts that f admits a Laurent expansion in such a way that

f(z) =

+∞∑
n=−∞

cn(z − a)n for all z ∈ D(a, r) \ {a},

and therefore it turns out that

(z − a)f(z) =

+∞∑
n=−∞

cn(z − a)n+1 for all z ∈ D(a, r) \ {a}.

The assumption (1.9) implies that cn must be equal to zero for all n < −1. Additionally, it
is easy to see that the residue of f at a is zero, which means that also c−1 = 0. Then

f(z) =

+∞∑
n=0

cn(z − a)n for all z ∈ D(a, r) \ {a},

and this means that f extends holomorphically to a.

Definition 1.23 (Order). Let f ∈ O(D(a, r) \ {a}). The order of f at a is defined as

ordf (a) := inf {n ∈ N : cn 6= 0} ∈ Z ∪ {−∞}.

Furthermore, we say that a is

• an essential singularity if its order is minus infinity, that is, ordf (a) = −∞;

• a pole if its order is strictly negative, that is, ordf (a) < 0;

• a regular point if its order is nonnegative, that is, ordf (a) ≥ 0;

• a zero if its order is strictly positive, that is, ordf (a) > 0.

Theorem 1.24 (Casorati-Weierstrass). Let Ω ⊆ C be an open set, and let f ∈ O(Ω \ {a})
for some a ∈ Ω. If a is an essential singularity, then for all r > 0 it turns out that

f(D(a, r) \ {a}) ⊆ C is a dense inclusion.

Definition 1.25 (Meromorphic Function). Let Ω ⊆ C be an open set, and let E ⊂ Ω be a
discrete set. A function f ∈ O(Ω\E) is meromorphic on Ω, and we denote it by f ∈M(Ω),
if and only if it is locally the quotient of holomorphic functions.

A function f ∈ O(Ω \ E) is meromorphic if and only if for all a ∈ E there are a
neighborhood Ua ⊂ Ω of a and holomorphic functions f, g ∈ O(U) such that

f
∣∣
U\{a} ≡

g

h

∣∣
U\{a}.

To better understand the behavior of the function f near a point a ∈ E, we consider the
power expansions of g and h, given by

g(z) = (z − a)k0
∑
n≥k0

an(z − a)n−k0 and h(z) = (z − a)k1
∑
n≥k1

bn(z − a)n−k1 .
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It follows that the local behavior of f is given by the ratio between these two power expan-
sions, that is,

f(z) = (z − a)k0−k1
g1(z)

h1(z)
,

where g1(a) 6= 0 and h1(a) 6= 0. The quotient g1/h1 is holomorphic on the whole U , and
thus it admits a power expansion around a; it follows that

f(z) = (z − a)k0−k1
∑
n≥0

cn(z − a)n =
∑
n≥0

cn(z − a)n+k0−k1 .

This is the Laurent expansion of the meromorphic function f , and it is easy to see that
k0 − k1 is finite, which means that

f ∈M(Ω) =⇒ for all a ∈ E, a is not an essential singularity.

Corollary 1.26. Let E be a discrete subset of Ω. Then:

(1) A function f ∈ O(Ω\E) is meromorphic on Ω if and only if for all a is not an essential
singularity for any a ∈ E.

(2) A function f ∈ O(Ω\E) is meromorphic on Ω if and only if either the limit limz→a f(z)
exists (regular point) or limz→a |f(z)| = +∞ (pole).

1.3.1 Riemann Sphere

Denote by Ĉ the Alexandroff one-point compactification of C, that is, the set C ∪ {∞}
endowed with the topology τc defined as follows:

• The topology τc coincides with the euclidean topology on C, that is, the neighborhoods
of the points a ∈ C are the usual ones.

• The open neighborhoods of ∞ are the sets (C \K)∪ {∞}, where K ranges among all
compact subsets K b C.

It is easy to see that the stereographic projection induces a topological spaces homeomor-
phism between Ĉ and the sphere S2, which is usually referred to as Riemann sphere.

Remark 1.4. Let f ∈M(Ω). Then f can be extended to a continuous function

f : Ω −→ Ĉ

by setting f(a) :=∞ for all a ∈ E. We will soon see that a sort of vice versa holds.

To define the notion of holomorphic with values in Ĉ, the idea is to change chart and
identify ∞ with the origin in the following way. The mapping

τ : Ĉ \ {0} −→ C, w 7−→


1
w if w ∈ C \ {0},

0 if w =∞
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is continuous and invertible, and its inverse is given by

τ−1 : C −→ Ĉ \ {0}, z 7−→


1
z if z ∈ C \ {0},

∞ if z = 0.

Definition 1.27 (Holomorphic Function). Let z0 ∈ Ω be such that f(z0) =∞. A function
f : Ω −→ Ĉ is holomorphic in a neighborhood of z0 if and only if τ ◦ f is holomorphic at z0,
which means that

lim
z→z0

1

f(z)
= 0 and

1

f
is holomorphic on U \ {z0}.

Definition 1.28. We say that f ∈ O(Ω, Ĉ) if and only if f is holomorphic at all points
with image contained in C and holomorphic in a neighborhood of all points with image ∞.

Corollary 1.29. A function f ∈ O(Ω \ E) belongs to M(Ω) if and only if its extension to
the Riemann sphere Ĉ - that sends E to ∞ - belongs to O(Ω, Ĉ).

Definition 1.30 (Holomorphic Function). A function f : Ĉ −→ C is holomorphic if and
only if f

∣∣
C is holomorphic and f ◦ τ−1 is holomorphic in a neighborhood of the origin.

Putting together the definition of O(Ω, Ĉ) and the definition of O(Ĉ, C), we get for free
the notion of holomorphic function between Riemann spheres.

Corollary 1.31. A function f belongs to O(Ĉ, C) if and only if f is constant.

Corollary 1.32. Any function f that belongs to O(Ĉ, Ĉ) is necessarily surjective.

1.4 Residue Theorem

In this section, we recall the residue theorem and we use it to deduce properties of the zeros
of meromorphic functions (argument principle, Rouché, etc.)

Let p : C −→ C∗ be the universal covering defined by the complex exponential, and
consider for all a ∈ C the translation

pa : C −→ C \ {a}, pa(z) = ez + a.

Let γ : [0, 1] −→ C \ {a} be a closed curve that can be lifted (via the universal covering
property) to a curve γ̃ such that the following diagram commutes

C

I C \ {a}

pa
γ̃

γ

that is, we have γ̃ ◦ p = γ, and thus γ̃(t) = log(γ(t)− a). It follows that γ̃ is not necessarily
a closed curve, but rather we have

γ̃(1)− γ̃(0) = 2kπı,

where k ∈ Z corresponds to the number of turns around the point. We denote it by

n(γ, a) :=
1

2πı
[γ̃(1)− γ̃(0)] ∈ Z.
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Proposition 1.33. Under the assumptions above, we have the identity

n(γ, a) =
1

2πı

ˆ
γ

1

z − a
dz.

Theorem 1.34 (Residue Theorem). Let E ⊂ Ω be a discrete set, and let γ : [0, 1] −→ Ω\E
be a closed curve homotopic to a constant in Ω. Then

1

2πı

ˆ
γ

f(z) dz =
∑
a∈E

resf (a)n(γ, a), (1.10)

holds for all f ∈ O(Ω \ E), and the right-hand series is finite.

Theorem 1.35 (Argument Principle). Let f ∈ M(Ω) be a meromorphic function, and
denote by Zf and Pf the set of zeros and the set of poles of f respectively. Let

γ : [0, 1] −→ Ω \ (Zf ∪ Pf )

be a closed curve homotopic to a constant path on Ω. Then

1

2πı

ˆ
γ

f ′(ζ)

f(ζ)
dζ =

∑
a∈Zf∪Pf

n(γ, a) · ordf (a). (1.11)

In particular, if γ is a oriented parametrization of a closed disc D b Ω with ∂D∩(Zf∪Pf ) =
∅, then

1

2πı

ˆ
γ

f ′(ζ)

f(ζ)
dζ =

∑
a∈Zf∪Pf

ordf (a).

Proof. It suffices to apply (1.10) with f := f ′

f .

Proposition 1.36 (Rouché). Let f and g be holomorphic functions on the interior of the
disk D. Assume that

|f(z)− g(z)| < |g(z)| for all z ∈ ∂D. (1.12)

Then f and g have the same number of zeros, counted with their own multiplicity, in D.

Proof. Consider the function ft(z) := g(z) + t(f(z) − g(z)) for t ∈ [0, 1]. The reverse
triangular inequality shows that

|ft(z)| ≥ |g(z)| − t|f(z)− g(z)| ≥ |g(z)| − |f(z)− g(z)| > 0

for all z ∈ ∂D, which means that ft
∣∣
∂D

is always different from zero. It follows from (1.11)
that

1

2πı

ˆ
γ

f ′t(ζ)

ft(ζ)
dζ =

∑
a∈Zf∪Pf

ordft(a),

and this is enough to conclude since the left-hand side depends continuously on t, while the
right-hand side takes value in a discrete set (N). Therefore, the function

t 7−→ 1

2πı

ˆ
γ

f ′t(ζ)

ft(ζ)
dζ =

∑
a∈Zf∪Pf

ordft(a)
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takes the same value at t = 0 and t = 1, that is,∑
a∈Zf∪Pf

ordf (a) =
∑

a∈Zf∪Pf

ordg(a).

Corollary 1.37. Let ∆ ⊂ C denote the unit disk. Assume that f ∈ O(∆, ∆) is a function
whose image f(∆) is relatively compact in ∆. Then f admits a unique fixed point.

Proof. Let r < 1 be a real number such that |f(z)| < r for all z ∈ ∆. It follows that

|z − (z − f(z))| = |f(z)| < r = |z|

for all z ∈ ∂∆r. By Rouché id∆ and id∆−f have the same number of zeros (with multiplicity)
in ∆, which means that there exists a unique z∗ ∈ ∆ such that

id∆(z∗)− f(z∗) = 0 =⇒ z∗ = f(z∗).

1.5 Hurwitz Theorems

The fundamental result by Hurwitz asserts that a sequence of holomorphic functions, τuc-
converging to a holomorphic nonconstant function f , is definitively equal to f(z) for all
z.

Theorem 1.38 (Hurwitz). Let (fn)n∈N ⊂ O(Ω) be a sequence converging uniformly on all
compact sets to f ∈ O(Ω). Suppose that f is not constant. Then for all z ∈ Ω there are a
sequence of points (zn)n∈N ⊂ Ω converging to z and an index N := N(z) ∈ N such that

fn(zn) = f(z) for all n ≥ N.

Proof. Set w := f(z). Since f is nonconstant, the preimage f−1(w) is a discrete subset of
Ω, and thus there is a positive constant δ > 0 such that

f−1(w) ∩D(z, δ) = {z} and D(z, δ) ⊆ Ω.

For all k ≥ 1 denote by γk the boundary of the rescaled disk D(z, δk ), and notice that
w /∈ f(γk). Consider now the distance

δk := min {|f(ζ)− w| : ζ ∈ γk} = d(w, γk),

and take (nk)k∈N ⊂ N increasing sequence in such a way that for all n ≥ nk and all k ≥ 1
it turns out that

max
ζ∈γk
|f(ζ)− w| < δk

2
.

Fix k ≥ 1. For all n ≥ nk and ζ ∈ γk we have the inequality

|(fn(ζ)− w) + (f(ζ)− w)| = |fn(ζ)− f(ζ)| < δk
2
< δk ≤ |f(ζ)− w|,
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and thus it follows from the Rouché Theorem 1.36 that the functions fn(ζ)−w and f(ζ)−w
have the same number of zeros in Dk := D(z, δk ), which means at least one.

In particular, there exists a sequence zn, k ∈ Dk such that fn(zn, k) = w = f(z). To
conclude the proof we extract a subsequence (zn)n∈N ⊂ Ω as follows: set zn := zn, k, where
k is the unique integer such that nk ≤ n ≤ nk+1.

Corollary 1.39 (First Hurwitz Theorem). Let (fn)n∈N ⊂ O(Ω) be a sequence converging
uniformly on all compact sets to f ∈ O(Ω). Suppose that each fn has no zeros. Then f is
either nonzero at all points or constant.

More in general, if there exists w ∈ C such that w /∈ fn(Ω) for all3 n ∈ N, then f is
either constant or w does not belong to f(Ω).

Proof. Suppose that f is nonconstant. If w ∈ f(Ω), then by Hurwitz Theorem 1.38 it also
belongs (definitively) to fn(Ω), which is a contradiction.

Example 1.1. The sequence of functions fn(z) := 1
nez satisfies the assumptions of the

previous corollary, and its limit is the constant value zero.

Corollary 1.40 (Second Hurwitz Theorem). Let (fn)n∈N ⊂ O(Ω) be a sequence converging
uniformly on all compact sets to f ∈ O(Ω). Suppose that each fn is injective. Then f is
either constant or injective.

Proof. We argue by contradiction. Suppose that f is not injective (and not constant) and
let z1 6= z2 ∈ Ω be two points such that f(z1) = f(z2). Set

hn(z) := fn(z)− fn(z2),

h(z) := f(z)− f(z2).

Then hn converges uniformly on all compact sets to h and h(z1) = 0, so that h is nonconstant
and admits a zero in Ω. By Hurwitz Theorem 1.38 we can find a sequence of points (zn)n∈N
such that hn(zn) = 0 and zn → z1. Thus

fn(zn) = fn(z2),

and since zn converges to z1 6= z2, we have that zn 6= z2 definitively, which is the desired
contradiction.

Example 1.2. The sequence of functions fn(z) := 1
nz satisfies the assumptions of the

previous corollary, and its limit is once again the constant value zero.

Exercise 1.3. Let (fn)n∈N ⊂ O(Ω) be a sequence converging uniformly on all compact sets
to f ∈ O(Ω).

(a) Prove that, if fn is a local biholomorphism for all n ∈ N, then f is also a local
biholomorphism.

(b) Prove that, if fn is injective for all n ∈ N and f is not constant, then f−1
n converges

uniformly on all compact sets to f−1.

3It is clearly enough to require this to happen definitively w.r.t. n. The same is true for all the results
presented in this section.



Chapter 2

Automorphism Groups

In this chapter, we will investigate the automorphism groups of several subsets of the com-
plex plane, focusing mainly on the unit disk (which is a model for every simply connected
bounded domain), the complex plane and the Riemann sphere.

2.1 Automorphism Group of the Unit Disk ∆

In this section, we first introduce a fundamental result known as Schwarz’s Lemma. Next, we
use Möbius transformations, together with rotations, to describe the automorphism group
of the unit disk.

Lemma 2.1 (Schwarz). Let f ∈ O(∆, ∆) be a function such that f(0) = 0. Then the
following assertions hold:

(i) For all z ∈ ∆ we have the estimate

|f(z)| ≤ |z|. (2.1)

(ii) The derivative of f is bounded at the origin, and

|f ′(0)| ≤ 1. (2.2)

(iii) The equality holds in (ii) or in (i) for some z ∈ ∆ \ {0} if and only if the equalities
holds at all points if and only if f is a rotation, that is,

f(z) = eıθz.

To prove this result the key is to apply the maximum principle to a suitable function that
is strictly related to f . We first recall the statement of the maximum modulus principle.

Proposition 2.2. Let f be a function holomorphic on some connected open set Ω ⊂ C. If
z0 is a point in Ω such that

|f(z0)| ≥ |f(z)|
for all z in a neighborhood of z0, then the function f is constant on the whole Ω.
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Proof. The function g(z) := f(z)
z is holomorphic in ∆ since

g(z) =

∑
n≥1 anz

n

z
=
∑
n≥0

an+1z
n,

and it is thus clear that g(0) = f ′(0). Let z ∈ ∆ and let |z| < r < 1. The maximum
modulus principle asserts that

|g(z)| ≤ max
|ζ|=r

|g(ζ)| = max
|ζ|=r

|f(z)|
r
≤ 1

r
.

Taking the limit as r → 1−, we conclude that |g(z)| ≤ 1 for all z ∈ ∆, which is equivalent
to both (i) and (ii). To prove (iii) we simply notice that, if there exists z0 ∈ ∆ such that
|g(z0)| = 1, then the maximum modulus principle implies that g is constant and of modulus
one, which means that

g(z) ≡ eıθ =⇒ f(z) = eıθz.

Definition 2.3. The automorphism group of an open set Ω ⊂ C is defined as

Aut(Ω) := {f ∈ O(Ω) : f(Ω) = Ω and f is injective} .

It is not hard to prove that the automorphism group can also be rewritten using the
notion of biholomorphism, that is, we have

Aut(Ω) = {f : Ω −→ Ω : f is biholomorphic} .

Definition 2.4 (Möbius Transformation). Let a ∈ ∆. The a-Möbius transformation, de-
noted by γa, is defined by

γa(z) :=
z − a
1− āz

.

Exercise 2.1. Let a ∈ ∆.

(1) The preimage of the origin via γa is {a}, and thus γa(a) = 0.

(2) For all z ∈ ∆ we have

1− |γa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2
.

(3) The function γa can be extended by continuity to the boundary ∂∆.

(4) The function γa is an automorphism of the unit disk ∆ and its inverse is given by

γ−1
a (z) =

z + a

1 + āz
= γ−a(z).

It follows from these properties that Aut(∆) acts transitively on ∆, which means that
for all a, b ∈ ∆ there exists γ ∈ Aut(∆) such that γ(a) = b. The reader may check as an
exercise that γ is nothing but the composition γ−1

b ◦ γa.
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Corollary 2.5. The automorphism group of ∆ is given by

Aut(∆) = {ρθ ◦ γa : θ ∈ R, a ∈ ∆} ,

where ρθ denotes the rotation of angle θ.

Proof. Let γ ∈ Aut(∆) be an automorphism such that γ(0) = 0. Then γ−1 also belongs to
Aut(∆) and maps 0 to 0. Now (2.2) implies that

|γ′(0)| ≤ 1 and
1

|γ′(0)|
= |(γ−1)′(0)| ≤ 1,

and this is possible if and only if |γ′(0)| = 1. The third point of the Schwarz’s Lemma
implies that γ(z) must be a rotation, that is,

γ(z) = ρθ(z).

Suppose now that γ is an automorphism such that γ−1(0) = a. Then γ ◦ γ−1
a maps the

origin to the origin, and therefore

γ ◦ γ−1
a (z) = ρθ(z) =⇒ γ(z) = ρθ ◦ γa(z).

Exercise 2.2. Show that the properties (2) and (3) of the previous exercise hold true for
all automorphisms, and not only for Möbius transformations.

Exercise 2.3. Prove the following assertions.

(1) If f ∈ O(∆, ∆) has two different fixed points z1, z2 ∈ ∆, then f is the identity map.

(2) Let γ ∈ Aut(∆) \ {id}. Then one and only one of the following hold:

(a) Elliptic. γ has a unique fixed point in ∆ and no fixed points in ∂∆.

(b) Parabolic. γ has no fixed points in ∆ and a unique fixed point in ∂∆.

(c) Hyperbolic. γ has no fixed points in ∆ and two fixed points in ∂∆.

(3) The automorphism group Aut(∆) is doubly transitive on the boundary, that is, for
all1 (ξ1, ξ2), (η1, η2) ∈ ∂∆ × ∂∆ there exists an automorphism γ whose boundary
extension maps (ξ1, ξ2) to (η1, η2).

Lemma 2.6 (Schwarz-Pick). Let f ∈ O(∆, ∆). Then the following assertions hold:

(i) For all z, w ∈ ∆ we have the estimate∣∣∣∣ f(z)− f(w)

1− ¯f(w)f(z)

∣∣∣∣ ≤ ∣∣∣∣ z − w1− w̄z

∣∣∣∣ |. (2.3)

(ii) For all z ∈ ∆ we have
|f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2
. (2.4)

1We assume that the trivially false cases are not to be considered here.
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(iii) The equality holds in (ii) for some z ∈ ∆ or in (i) for some (z, w) ∈ ∆2 if and only
if f is an automorphism, that is, f ∈ Aut(∆).

Proof. It follows from Schwarz’s Lemma applied to γf(w) ◦ f ◦ γ−1
w .

There is another way to rewrite this result, introducing a function that will also be useful
from a topological point of view. Let ω : ∆2 −→ R+ be the function

(z, w) 7−→ atanh

∣∣∣∣ z − w1− w̄z

∣∣∣∣ .
Notice that [0, 1) is mapped into [0, ∞), and the function is strictly increasing.

Corollary 2.7. Let f ∈ O(∆, ∆). For all z, w ∈ ∆ we have the estimate

ω(f(z), f(w)) ≤ ω(z, w), (2.5)

and the equality holds if and only if f ∈ Aut(∆).

It is not hard to see that ω is a distance, known as Kobayashi distance, which was first
introduced to give a manifold structure to the so-called hyperbolic space.

Exercise 2.4 (Kobayashi Distance Properties). Prove the following assertions:

(1) For all w, z ∈ ∆ it turns out that

ω(w, z) = ω(0, γw(z)).

(2) The group of isometries of ω is given by the automorphisms of the unit disk ∆ and
their conjugates, that is,

Iso(ω) = Aut(∆) ∪Aut(∆).

(3) For all r ∈ (0, 1] and z0 ∈ ∆ it turns out that

Bω(z0, r) = BC

(
(1− tanh(r))2

(1− tanh2(r))|z0|2
z0,

(1− |z0|2) tanh(r)

(1− tanh2(r))|z0|2

)
,

where BC denotes the euclidean ball.

We now give the definition of geodesic, but the reader should be aware of the fact that
there is a much more general definition (on Riemannian manifold) that is usually introduced
in a differential geometry course.

Definition 2.8 (Geodesic). A curve γ : R −→ ∆ is a geodesic with respect to ω, or
ω-geodesic, if for all t1, t2 ∈ R it turns out that

ω(γ(t1), γ(t2)) = |t2 − t1|.

Exercise 2.5. Prove that the curve

R 3 t 7−→ tanh(t)
z0

|z0|

is a ω-geodesic for all z0 ∈ ∆ \ {0}.
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Exercise 2.6. A reasonable parametrization of a circumference arc, orthogonal to the
boundary of the disk, is a geodesic.

Hint. It suffices to show that all ω-geodesics are images of diameters via the automorphism
group of the unit disk.

The reader without a solid background in differential geometry may skip the following
paragraph. The Kobayashi distance ω is induced by the Riemannian metric

k2
δ : ∆× T∆ 7−→ C, (z, w) 7−→ |v|2

(1− |z|2)2
,

which is usually known as Poincaré metric and gives a manifold structure to the hyperbolic
plane. The metric allows us to compute the length L(·) of a curve, and thus we can define
a distance as

d(x, y) := inf {L(γ) : γ regular curve in ∆ between x and y} .

The length L(·) can be defined as the integral of the norm of the tangent vectors, and it is
not hard to see that d coincides with ω.

Remark 2.1. The Gaussian curvature of the hyperbolic plane with the Poincaré metric
is constant and negative, a phenomenon that cannot happen in R3 as a consequence of a
result due to Hilbert (which means that the unit disk cannot be embedded in R3.)

2.2 Automorphism Group of the Hyperbolic Plane

There is another model of the hyperbolic plane, which is completely equivalent to (∆, ω).
We consider the upper half-plane

H+ := {z ∈ C : Im(z) > 0} ,

with boundary (seen in the Riemann sphere) given by

∂H+ := {z ∈ C : Im(z) = 0} ∪ {∞}.

The Caley transform sends the unit disk ∆ into the upper half-plane H+ as follows:

Ψ(z) = ı
1 + z

1− z
.

We can easily check that Ψ is a well-defined map since for all |z| < 1 it turns out that

Im(Ψ(z)) = Re

(
1 + z

1− z

)
> 0 ⇐⇒ |z| < 1.

The inverse of the Caley transform can be computed explicitly, and equals

Ψ−1(w) =
w − ı
w + ı

.
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We have Ψ(0) = ı, Ψ(1) = ∞ and Ψ(−1) = 0, so that the diameter of the unit disk ∆ is
mapped into the half-line [0, +∞]. The reader should also check that Ψ is a biholomorphism
between ∆ and H+, and therefore

f ∈ O(H+, H+) ⇐⇒ Ψ−1 ◦ f ◦Ψ ∈ O(∆, ∆),

which means that we can investigate the leading properties of f both in ∆ and H+ with no
significant difference.

Proposition 2.9. The mapping

SL(2, R) 3
(
a b
c d

)
7−→

(
w 7−→ aw + b

cw + d

)
∈ Aut(H+)

induces an isomorphism of groups

PSL(2, R) := SL(2, R)�{±Id2×2}
∼= Aut(H+) ∼= Aut(∆).

Proof. We know that γ ∈ Aut(H+) if and only if Ψ−1 ◦ γ ◦Ψ ∈ Aut(∆), and the automor-
phisms of the unit disk have a nice explicit formula. It turns out that

Ψ−1 ◦ γ ◦Ψ(z) = ρθ ◦ γa(z),

and the thesis follows immediately from a simple computation.

In the previous section, we classified the automorphisms of the unit disk in elliptic,
parabolic and hyperbolic. Now we are finally ready to write them explicitly through the
biholomorphism with the half-plane model.

A elliptic automorphism has a unique fixed point in ∆. We assume without loss of
generality that the fixed point is the origin, and it is easy to check that

ρθ(z) = z ⇐⇒ z = 0.

In the general case, let a ∈ ∆ be the fixed point. Then γa(a) = 0, and therefore

γ−1
a ◦ ρθγa ∈ Aut(∆)

is the unique automorphism, for a fixed angle θ ∈ R \ {0}, that fixes only the point a ∈ ∆.

Suppose now that γ ∈ Aut(H+) is a parabolic automorphism. As before, we may
assume without loss of generality that the unique fixed point in the boundary ∂∆ is ∞. It
follows that

γ(∞) =∞ ⇐⇒ a

c
=∞ ⇐⇒ c = 0,

which means that
γ(w) =

a

d
w +

b

d
.

We now require that γ does not have any fixed point inside ∆. It is easy to check that(a
d
− 1
)
w0 = − b

d
for all w0 ∈ ∆ ⇐⇒ a = d,
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Figure 2.1: A parabolic automorphism.

which means that the desired parabolic automorphism is given by

γ(w) = w + β

for some β ∈ R. In Figure 2.1 we show the graph of a parabolic automorphism in the
half-plane H+ and how difficult it is in the unit disk ∆.

Suppose now that γ ∈ Aut(H+) is a hyperbolic automorphism. As before, we may
assume without loss of generality that the fixed points in the boundary ∂∆ are 0 and ∞. It
follows that

γ(∞) =∞ ⇐⇒ a

c
=∞ ⇐⇒ c = 0,

and
γ(0) = 0 ⇐⇒ b = 0,

which means that the desired parabolic automorphism is given by

γ(w) = λw

for some λ ∈ R>0. In Figure 2.2 we illustrate the graph of a hyperbolic automorphism in
the half-plane H+ and how different it is in the unit disk ∆.

Figure 2.2: A hyperbolic automorphism.
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2.3 Automorphism Group of the Complex Plane

We will see that simply connected domains Ω are biholomorphic to the unit disk, except for
the complex plane C. Therefore, it makes sense to study its automorphism group Aut(C).

Proposition 2.10. Let f ∈ O(Ĉ, Ĉ) be a holomorphic function. Then there exist p, q ∈ C[z]
coprime polynomials ((p, q) = 1) such that

f(z) =
p(z)

q(z)
for all z ∈ Ĉ.

Proof. Let Zf and Pf be respectively the set of zeros and the set of poles of f in C, and
notice that these are discrete subset in a compact space Ĉ, and thus are finite. Set

Zf := {z1, . . . , zr} ,

and
Pf := {w1, . . . , ws} .

The function

g(z) =

∏s
i=1(z − wi)∏r
j=1(z − zj)

f(z)

has no zeros nor poles in C, so we only need to address what happens at ∞. If g(∞) ∈ C,
then g maps Ĉ into C, and this implies that g is a constant function, i.e.,

λ =

∏s
i=1(z − wi)∏r
j=1(z − zj)

f(z) =⇒ f(z) = λ

∏r
j=1(z − zj)∏s
i=1(z − wi)

.

If g(∞) = ∞, then we simply consider the function 1
g and apply the same argument to it;

since 1
g (∞) = 0, we infer that

1

λ
=

∏s
i=1(z − wi)∏r
j=1(z − zj)

f(z) =⇒ f(z) = λ′
∏r
j=1(z − zj)∏s
i=1(z − wi)

.

Remark 2.2. To compute f(∞) we simply compute f(0) in the opposite chart (with tran-
sition map 1

z ). In particular, we have

f(∞) = lim
w→0

p( 1
w )

q( 1
w )

=
am
bn
wn−m,

and therefore the value of f(∞) depends on n − m, where am and bn are the leading
coefficients of the polynomials p and q respectively.

Definition 2.11 (Order). Let f ∈ O(Ĉ, Ĉ) be a holomorphic function. The order of f at
∞, denoted by ordf (∞) is given by

ordf (∞) := deg q − deg p.
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Definition 2.12 (Degree). Let f ∈ O(Ĉ, Ĉ) be a holomorphic function. The degree of f
is defined as the maximum between the degrees of the polynomials, that is,

deg f := max{deg p, deg q}.

Definition 2.13 (Multiplicity). Let f be a holomorphic function, and let f(z0) = w0. The
multiplicity of f at z0 is thus given by

∂f (z0) :=

ordf−w0
(z0) if w0 ∈ C,

−ordf (z0) if w0 =∞.

Theorem 2.14. Let f ∈ O(Ĉ, Ĉ) be a holomorphic nonconstant function. Then for all
w0 ∈ Ĉ we have the identity ∑

f(z0)=w0

δf (z0) = deg f. (2.6)

Proof. We first prove it for w0 = 0. The key idea is to split the sum between the z0s in C
and ∞, that is,∑
f(z0)=0

δf (z0) =
∑

f(z0)=0
z0∈C

δf (z0) +
∑

f(∞)=0

δf (∞) = deg p+ max{0, deg q − deg p} = deg f.

We now prove it for w0 =∞. Again we have∑
f(z0)=∞

δf (z0) =
∑

f(z0)=∞
z0∈C

δf (z0) +
∑

f(∞)=∞

δf (∞) = deg q + max{0, deg p− deg q} = deg f.

Finally, if w0 ∈ C \ {0}, then it is easy to see that

f(z)− w0 =
p(z)− w0q(z)

q(z)
,

and the degree of f −w0 is clearly equal to the degree of f , so the previous case applies.

Corollary 2.15. The group of automorphisms of the Riemann sphere Ĉ is isomorphic to
PSL(2, C).

Proof. It suffices to apply (2.6) and note that γ has necessarily degree one.

Exercise 2.7. The group of automorphisms of the Riemann sphere Ĉ is 3-transitive.

Exercise 2.8. The group of automorphisms of the complex plane C is isomorphic to

{az + b : a ∈ C∗, b ∈ C} .
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2.4 Wolff-Denjoy Theorem

Let f be a holomorphic map from the unit disk ∆ to the unit disk ∆, and assume that there
exists z0 ∈ ∆ such that f(z0) = z0. It follows from (2.3) that∣∣∣∣ f(z)− z0

1− z̄0f(z)

∣∣∣∣ ≤ ∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣ ,
and this is equivalent to the inequality

1−
∣∣∣∣ f(z)− z0

1− z̄0f(z)

∣∣∣∣2 ≥ 1−
∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣2 .
We now employ the formula

1− |γa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2

to infer that
|1− z̄0f(z)|2

1− |f(z)|2
≤ |1− z̄0z|2

1− |z|2
(2.7)

holds for all z ∈ ∆, provided that f admits a fixed point z0. Unfortunately, this argument
does not work for a function without fixed points inside the unit disk.

The next goal is to show that it is possible to find a point τ ∈ ∂∆ such that (2.7) holds,
even if f(τ) is not well-defined.

Definition 2.16 (Horocycle). Let τ ∈ ∂∆ and R > 0. The horocycle of "center" τ and
radius ∆ is the set given by

E(τ, R) :=

{
z ∈ ∆ :

|1− τ̄ z|2

1− |z|2
< R

}
.

Figure 2.3: The horocycle of center τ and radius R.
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Remark 2.3. Let ω be the Kobayashi distance. Then

lim
ζ→τ

[ω(z, ζ)− ω(0, ζ)] =
1

2
log
|1− τ̄ z|2

1− |z|2

holds for all z ∈ ∆, and therefore the horocycle E(τ, R) is nothing but the open ω-ball of
radius 1

2 logR.

Theorem 2.17 (Wolff’s Lemma). Let f ∈ Hom(∆, ∆) be a holomorphic function with no
fixed point in ∆. Then there exists a unique τ ∈ ∂∆ such that

|1− τ̄ f(z)|2

1− |f(z)|2
≤ |1− τ̄ z|

2

1− |z|2
(2.8)

for all z ∈ ∆. Furthermore, the equality in (2.8) holds at some z0 ∈ ∆ if and only if at all
points of the unit disk ∆ and f is a parabolic automorphism with fixed point τ .

Remark 2.4. The condition (2.8) is equivalent to the fact that

f(E(τ, R)) ⊆ E(τ, R)

for all R > 0.

Proof. We first prove the uniqueness since it follows from an easy geometric argument, and
then we prove the existence using a simple trick.

Uniqueness. Suppose that τ1 6= τ2 ∈ ∂∆ both satisfy these properties. We can always
find - see Figure 2.4 - R1 > 0 and R2 > 0 such that the horocycles E(τ1, R1) and E(τ2, R2)
are tangent at some z0 ∈ ∆, that is,

E(τ1, R1) ∩ E(τ2, R2) = {z0}.

Then f(z0) is contained in both E(τi, Ri), and thus it must be equal to z0, which is absurd
since we assumed f to be a map without fixed points in ∆.

Existence. Let rν ↗ 1 and set fν := rν · f . The inclusion fν(∆) b ∆ is relatively
compact, and hence there exists a unique wν ∈ ∆ fixed point such that fν(wν) = wν . Up
to subsequences, we may assume that

wν
ν→∞−−−−→ τ ∈ ∆̄.

If τ were a point of ∆, then the continuity of f in ∆ would imply that

f(wν)
ν→∞−−−−→ f(τ) and f(wν) =

1

rν
wν

ν→∞−−−−→ τ,

and, by assumption, f does not admit any fixed point in ∆. Thus τ ∈ ∂∆. Now the
inequality (2.7) applies to fν , and we have that

|1− w̄νfν(z)|2

1− |fν(z)|2
≤ |1− w̄νz|

2

1− |z|2

passes to the limit for ν →∞, and we conclude that (2.8) holds.
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Equality. Suppose that (2.8) holds with the equal at some point z0 ∈ ∆. We have

Re

(
z + f(z)

z − f(z)
− τ + z

τ − z

)
≤ 0

at all points z ∈ ∆, and

Re

(
z + f(z)

z − f(z)
− τ + z

τ − z

) ∣∣
z=z0

= 0.

The maximum principle for the real part of a holomorphic function immediately implies
that it must be equal to a constant imaginary function, which means that

z + f(z)

z − f(z)
− τ + z

τ − z
= ıc

for some c ∈ R. We solve the equation for f(z) and we easily infer that f is a parabolic
automorphism.

Figure 2.4: The idea behind the proof of the uniqueness in Wolff’s Lemma.

Definition 2.18. Let f ∈ Hom(∆, ∆) \ {id∆} be a holomorphic function. The Wolff point
of f is the fixed point in ∆, if any, or the τ ∈ ∂∆ given by the previous result.

2.4.1 Discrete Dynamical Systems

In this section, we shall denote by fn the function obtained iterating n times f , that is,

fn(z) = f ◦ · · · ◦ f(z) = fn−1 ◦ f(z).

Let f ∈ Hom(∆, ∆) \ {id∆}. The orbit of a point z0 ∈ ∆ is given by

O+
f (z0) := {fn(z0) : n ∈ N} .
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We are interested in the behavior of O+
f (z0) as z ranges among the unit disk and, also, as

f ranges among Hom(∆, ∆).

The stability of a discrete dynamical system is strictly related to the differences between
O+
f (z0) and O+

f (z1) whenever z0 is near (in some sense) to z1; the structural stability, on
the other hand, concerns the dynamics associated to f1 and f2 whenever these are near.

Theorem 2.19 (Wolff-Denjoy). Let f ∈ Hom(∆, ∆) be a holomorphic map that is not an
elliptic automorphism. Then fk converges uniformly on all compact sets to τ , the Wolff
point of f .

Proof. We divide the proof into two cases: when τ is an interior point, and when τ is the
point on the boundary.

Case 1. Suppose that τ ∈ ∆. Up to automorphisms2, we may assume that τ is the origin
since we can easily show that

g = γ−1 ◦ f ◦ γ =⇒ gk = γ−1 ◦ fk ◦ γ,

so that the dynamic associated to f and the dynamic associated to g coincide. Now for all
z ∈ ∆ we have |f(z)| < |z| - as f is not elliptic -, and therefore for all r < 1 there exists
λr ∈ (0, 1) such that

|f(z)| ≤ λr|z|

for all z ∈ ∆r. It follows that f(∆̄r) ⊆ ∆r, and therefore for all n ∈ N we have

|f(z)| ≤ λnr |z| ≤ λnr r
n→∞−−−−→ 0.

Case 2. Suppose that τ ∈ ∂∆, and suppose that for some z0 ∈ ∆ we have

fn(z0)
n→∞−−−−→ x ∈ ∆̄.

If x were a point of ∆, then we would be able to conclude that

f(x) = lim
n→∞

f(fn(z0)) = lim
n→∞

fn+1(z0) = x,

which is absurd since f has no fixed points in ∆. Thus

fn(z0)
n→∞−−−−→ x ∈ ∆̄ =⇒ x ∈ ∂∆.

It is easy to see that, if we can show that fn(z0) converges to τ for all z0 ∈ ∆, then we can
apply Vitali’s theorem to infer the thesis. Now notice that

{fn(z0)}n∈N ⊆ ∆̄

and ∆̄ is compact, which means that everything will come along if we can prove that τ is
the unique accumulation point.

2Let γ be an automorphism satisfying γ(0) = τ in such a way that g(0) = 0.
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(a) Suppose that f(∂E(τ, R)) intersects ∂E(τ, R) in a point σ 6= τ . Then f is a parabolic
automorphism, and therefore in the upper half-plane model

f(z) = z + c =⇒ fn(z) = z + n · c n→∞−−−−→∞,

which is the Wolff point of f and the unique fixed point.

(b) Suppose that f(∂E(τ, R)) intersects ∂E(τ, R) only in τ . Then f is not parabolic, and
it is easy to see that there exists λR ∈ (0, 1) such that

|1− τ̄ fn(z)|2

1− |fn(z)|2
≤ λnR

|1− τ̄ z|2

1− |z|2
≤ λnR ·R

for all z ∈ E(τ, R) and all n ∈ N. If fnk(z0) converges to σ 6= τ for k → ∞, then
fnk(z0) does not belong to E(τ, r) for all n big enough and r sufficiently small. On
the other hand, the inequality above implies that

fn(z0) ∈ E(τ, λnR ·R),

and therefore fn(z0) belongs to E(τ, ρ) for some ρ > 0 and all n ≥ N .
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Sheaf Theory

3.1 Holomorphic Functions Sheaf

Let a ∈ C be an arbitrary point, and let us consider the set of couples

{(U, f) : U neighbourhood of a and f ∈ Hol(U, C)}

equipped with the equivalence relation (U, f) ∼ (W, g) if and only if there exists V , neigh-
bourhood of a, such that V ⊆ U ∩W and

f
∣∣
U
≡ g

∣∣
W
.

The set of all equivalence classes, known as stalk , is usually denoted by Oa, and we refer to
the class [(U, f)] as the germ of f at a.

Definition 3.1 (Sheaf). The union of all stalks as a ranges in C, denoted by

O :=
⋃
a∈C
Oa,

is called germs sheaf of holomorphic functions, and it is endowed with the projection

p : O −→ C, Oa 7−→ a.

Let [(U, f)] =: fa be an element of the stalk Oa, and let (U, f) be a representative chosen
in such a way that U is an open neighbourhood of p. We define

N(U, f) := {fz : z ∈ U, fz ∈ Oz} .

Exercise 3.1. There exists a unique topology τ such that the family N(U, f), as (U, f)
ranges in fa, is a complete system of neighbourhoods of fa for all germs of O.

Proposition 3.2. The topology τ defined in the exercise is Hausdorff1.

Proof. Let fa 6= gb ∈ O be distinct germs. Then either a 6= b or a = b.

1Recall that a topological space X is Hausdorff if and only if for all x 6= y ∈ X we can find neighbourhoods
U 3 x and V 3 y such that U ∩ V = ∅



37 3.1. HOLOMORPHIC FUNCTIONS SHEAF

Case 1. Take (U, f) and (W, g) representatives such that U 3 a and W 3 b are disjoint
neighbourhoods (which is possible because C is Hausdorff). Then

N(U, f) ∩N(W, g) = ∅.

Case 2. Take (U, f) ∈ fa and (W, g) ∈ ga, and let D 3 a be a disk contained in the
intersection U ∩ V . We now claim that

fa 6= ga =⇒ N(D, f) ∩N(D, g) = ∅. (3.1)

We argue by contradiction. Assume that there exists hz ∈ N(D, f)∩N(D, g). Then z ∈ D
and, by definition, we have

hz = fz and hz = gz =⇒ fz = gz.

It follows that we can find a subsetW ⊂ D such that f
∣∣
W
≡ g

∣∣
W
, and therefore f

∣∣
D
≡ g

∣∣
D
,

which yields to a contradiction with the assumption fa 6= ga.

Remark 3.1. In the argument by contradiction, we employed the well-known identity
principle for holomorphic functions to infer that

f
∣∣
W
≡ g

∣∣
W

=⇒ f
∣∣
D
≡ g

∣∣
D
.

Corollary 3.3. The topology τ induces (with the inclusion topology) the discrete topology2

on all the stalks Oa, for a ∈ C.

Proposition 3.4. The projection p : O −→ C is continuous, open and a local homeomor-
phism. In particular, τ is not the discrete topology on O.

Proof. Let V ⊆ C be an open set. The preimage of V via p is given by

p−1(V ) =
⋃
{N(U, f) : U ⊆ V open and f ∈ Hol(U, C)} ,

and thus p−1(V ) is open (=p is continuous) because it is equal to the arbitrary union of
open sets. Furthermore, we have that

p (N(U, f)) = V

for all U ⊆ V open and f ∈ Hol(U, C), which implies that p is open. In conclusion, notice
that the map defined by

V 3 z 7−→ fz ∈ N(U, f)

is a local inverse of p, which is also continuous and equal to
(
p
∣∣
N(U, f)

)−1

.

Definition 3.5 (Analytic Extension). Let fa ∈ O, and let γ : [0, 1] −→ C be a continuous
curve such that γ(0) = a. An analytic extension of fa along γ is a continuous lift

γ̃ : [0, 1] −→ O

such that γ̃(0) = fa and the diagram commutes, that is, p ◦ γ̃ = γ.

2This is true in the general framework as well, as no property of holomorphic functions is necessary.
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Remark 3.2. The projection p is not a covering.

Proof. Set a := 1 ∈ C, fa := (z−1)a and γ(t) := 1− t. The reader should check that f1 does
not admit an analytic extension along γ, and conclude that p is not a covering (otherwise
such a lift would exist always.) We recommend to first solve the following general exercise:

Exercise 3.2. Let γ : [0, 1] −→ C be a continuous curve such that γ(0) = a, and let
fa, ga ∈ O. Assume that p ∈ C[X, Y ] is a polynomial such that

P (fa, ga) = 0.

Assume also that both fa and ga admit analytic extensions fγ(t) and gγ(t) along γ. Then

P (fγ(t), gγ(t)) = 0 for all t ∈ [0, 1].

Definition 3.6. Fix a ∈ C. We can endow the stalk Oa with a sum given by

fa + ga :=
[(
U ∩ V, (f + g)

∣∣
U∩V

)]
,

where fa = [(U, f)] and ga = [(V, g)], and a product

fa · ga :=
[(
U ∩ V, (f · g)

∣∣
U∩V

)]
,

that make Oa a C-algebra.

Exercise 3.3. Prove that the operations defined above are well-defined.

Exercise 3.4. Prove that the C-algebra (Oa, +, ·) has a unique maximal ideal, which is
explicitly given by

Ma := {fa ∈ Oa : fa(a) = 0} .

Remark 3.3. The local nature of the germ fa proves that fa(a) is well-defined, and equal
to f(a) for any representative (U, f) of fa.

Remark 3.4. Let k ∈ N. The argument above works also for the kth derivative, f (k)
a (a),

as it depends only on the local behaviour around a, and thus

f (k)
a (a) := f (k)(a) for any f such that (U, f) ∈ fa

is also well-defined.

Remark 3.5. If Ω ⊆ C is an open subset, then the preimage p−1(Ω) is given by OΩ.

Definition 3.7 (Section). A section s of the projection p on some Ω ⊆ C is a continuous3
map s : Ω −→ O such that

p ◦ s = idΩ.

Exercise 3.5. The set of all sections defined on Ω, denoted by O(Ω), is in a 1-1 correspon-
dence with holomorphic maps defined on Ω, that is, Hol(Ω, C).

3We usually define sections without any regularity requirement, but, since we will only be interested with
continuous ones, we add it to the definition.
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We now define a derivative map d : O −→ O that maps a germ fa to its "derivative",
that is, we set

d(fa) := [(U, f ′)] for some (U, f) ∈ fa.

Theorem 3.8. The map d : O −→ O is a covering.

Lemma 3.9. Let D ⊂ C be an open disk. Then any holomorphic function f ∈ O(D) admits
a unique, up to additive constants, primitive F ∈ O(D).

Proof. We have that

f(z) =

+∞∑
n=0

an(z − a)n,

and the series converges uniformly on all compact subsets of D. Then

F (z) =

+∞∑
n=0

an
n+ 1

(z − a)n+1

is a primitive of f in D, and it is clearly unique up to additive constant.

Proof of Theorem 3.8. Let fa be a germ in Oa, and take any (U, f) ∈ fa. Let D := D(a, r)
be an open disk centered at a so that

(D, f
∣∣
D

) ∈ fa,

and let F ∈ O(D) be a primitive of f . We now consider the family of neighbourhoods

F := {N(D, F + c)}c∈C ,

and we claim that
d−1(D) =

⊔
c∈C

N(D, F + c). (3.2)

To prove this claim, we first notice that the derivative map d maps each element of F onto
D, that is,

d(N(D, F + c)) = D for all c ∈ C.
Vice versa, let gz ∈ d−1(D) be any germ with z ∈ D and d(gz) = fz. It follows easily that
there exists V ⊆ D open connected neighbourhood of z such that

g′
∣∣
V
≡ f

∣∣
V
.

Since F ′
∣∣
V

coincides with f
∣∣
V

as well and V is a connected open set, we infer that

g(x) = F (x) + c for all x ∈ V and some c ∈ C,

and therefore we conclude that gz ∈ N(D, F + c). In particular, the claim (3.2) holds true,
and thus it remains only to show that

d
∣∣
N(D,F+c)

: N(D, F + c) −→ D

is a homeomorphism for all c ∈ C. The map d
∣∣
N(D,F+c)

is obviously continuous (as d itself
is), surjective and open since

d(N(U, g)) = N(U, g′).

The injectivity of the restriction d
∣∣
N(D,F+c)

is also obvious since it preserves the stalks,
and therefore d

∣∣
N(D,F+c)

is a homeomorphism and d a covering.
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Corollary 3.10. Let Ω ⊆ C be a simply connected subset, and let f ∈ O(Ω). Then f admits
a primitive F ∈ O(Ω) which is unique up to an additive constant.

Proof. Consider the diagram
OΩ

Ω OΩ

d
F

f

Since d is a covering and Ω is simply connected, we can always find a lift F of f such that
the diagram is commutative, that is, d ◦ F = f . Furthermore, we have that

idΩ = p ◦ f = p ◦ d ◦ F = p ◦ F

since p ◦ d = p, and hence F is a section and belongs to O(Ω).

Corollary 3.11. Let Ω ⊆ C be a simply connected subset, and let f ∈ O(Ω). Assume also
that f(z) 6= 0 for all z ∈ Ω. Then the following properties hold:

(1) There exists g ∈ O(Ω) such that f = eg, and g is unique up to additive constants of
the form 2kπı for k ∈ Z.

(2) For all n ∈ N there exists hn ∈ O(Ω) such that f(z) = hn(z)zn, and hn is unique up
to the roots of 1.

Proof. The idea is to take g equal to the primitive of f
′

f , and hn := e
g
n .

3.2 Riemann Uniformization Theorem

The primary goal of this section is to give a proof of the Riemann uniformisation theorem,
which gives a complete characterisation of Riemann surfaces and the universal coverings.

Theorem 3.12 (Riemann). Let X be a Riemann surface, and let π : X̃ −→ X be its
universal covering. Then of the following possibilities hold:

(i) Elliptic Case. There are biholomorphisms X ∼= Ĉ and X̃ ∼= Ĉ, with universal covering
given by the identity map.

(ii) Parabolic Case. The universal covering X̃ is biholomorphic to C, while X is either bi-
holomorphic to C, C∗, or homeomorphic4 to a torus X ∼= C�Z2.

(iii) Hyperbolic Case. The universal covering X̃ is biholomorphic to ∆ and X is none of the
previous ones.

In this course, we will not prove the Riemann uniformisation theorem in all its generality,
but we will settle with a slightly weaker result.

4The reason is that we can find Riemann surfaces holomorphic to torii that are not biholomorphic.
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Theorem 3.13. Let Ω ⊂ C be a simply connected domain. Then Ω is biholomorphic to ∆.

Theorem 3.14. Let Ω b C be a bounded domain, and let z0 ∈ Ω. Then there is a unique
holomorphic covering ϕ : ∆ −→ Ω such that

ϕ(0) = z0 and ϕ′(0) > 0.

Proposition 3.15. Let Ω ⊂ C be a simply connected domain. Then Ω is biholomorphic to
a bounded domain.

*r

dinky?.LI?etd"z¥i" state
's

Figure 3.1: Idea of the argument used to prove Proposition 3.15.

Lemma 3.16. Let Ω b C be a bounded domain strictly contained in ∆ and such that 0 ∈ Ω.
Then there exists a holomorphic map f ∈ Hol(∆, ∆) such that the following properties are
satisfied:

(1) We have f(0) = 0, f ′(0) > 0, and f(∆) ⊃ Ω.

(2) If Ω1 is the connected component of f−1(Ω) containing the origin, then f
∣∣
Ω1

is a
covering of degree 2.

(3) We have
inf
z/∈Ω1

|z| =: d1 > d := inf
z/∈Ω
|z|. (3.3)

Proof. Let a ∈ ∆\Ω, and let b ∈ Ω be a square root of −a, that is, b2 = −a. Let us consider
the automorphisms Φ and Ψ of ∆ given by

Φ(z) :=
z + a

1 + āz
andΨ(z) :=

z + a

1 + b̄z

Now let f : ∆ −→ ∆ be given by

f(z) :=
b̄

|b|
Φ(Ψ2(z)),

and recall that z 7−→ z2 is a covering ∆∗ −→ ∆∗ of degree 2.
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(1) A straightforward computation shows that

f(∆) = ∆ and f(0) = 0,

and thus f is surjective. Furthermore, we have that

f ′(0) = 2|b| 1− |b|
2

1− |a|2
> 0.

(2) The preimage via Φ of Ω is a subset of ∆∗ because Φ(0) = a does not belong to Ω by
assumption. The reader might check as an exercise that

f
∣∣
Ω1

: Ω1 −→ Ω

is a covering of degree 2.

(3) If d1 = 1, then (3.3) is trivially satisfied and Ω1 = ∆. Suppose now that d1 < 1
strictly, and let z1 ∈ ∂Ω1 be a point such that d1 = |z1|. Then

f(z1) /∈ Ω =⇒ |f(z1)| ≥ d,

and this is enough to conclude since by Schwarz (2.1) we have

d1 = |z1| > |f(z1) ≥ d.

Proof of Theorem 3.14. We divide the proof into two steps.

Uniqueness. Suppose that there are two holomorphic coverings ϕ1 and ϕ2 satisfying

ϕi(0) = z0 and ϕ′i(0) > 0.

We consider the diagram
∆

∆ Ω

ϕ2

ϕ̃2

ϕ̃1

ϕ1

Then we can find a lift ϕ̃i of ϕi, for i = 1, 2, such thatϕ2 ◦ ϕ̃1 = ϕ1,

ϕ1 ◦ ϕ̃2 = ϕ2,

where ϕ̃i : ∆ −→ ∆ is a holomorphic covering satisfying

ϕ̃i(0) = 0 and ϕ̃′(0) > 0.

The unique automorphism satisfying these two properties is the identity, and thus ϕ2 ≡ ϕ1,
which gives us the uniqueness of the holomorphic covering.
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Existence. Let us consider the family

F := {f ∈ Hol(∆, ∆) : f satisfies (1) and (2)} .

We will denote by Ωf the connected component given in (2) rather than Ω1. The previous
result asserts that F is a nonempty family, and

df := inf
z/∈Ωf

|z| ≤ 1

is equal to one if and only if Ωf coincides with ∆. Let

d := sup
f∈F

df ≤ 1,

and let (fn)n∈N ⊂ F be a sequence of functions such that

dfn
n→∞−−−−→ d.

By Montel’s Theorem we conclude5 that, up to subsequences, fn converges to a function
f0 ∈ Hol(∆, ∆); it remains to show that f0 belongs to F .

Existence - (1). Let r > 0 be a positive number such that ∆r b Ω, and let hn be the
restriction (see Figure 3.2) of fn to ∆r satisfying hn(0) = 0. Then

hn ∈ Hol(∆r, ∆) and fn ◦ hn = id∆r
.

It turns out that, up to subsequences, hn converges to some h0 ∈ Hol(∆r, ∆) satisfying
f0 ◦ h0 = id∆r

, which gives

f0(0) = f0(h0(0)) = 0 and f ′0(0) > 0.

Existence - (2.1). Let Ωf0 be the connected component containing the origin. We will
first show that

f0(Ωf0) = Ω.

Let z0 ∈ Ω and γ : [0, 1] −→ Ω continuous curve such that γ(0) = 0 and γ(1) = z0. We can
always (see Figure 3.3) cover γ([0, 1]) with a finite number of closed disks D0, . . . , DJ b Ω
such that

0 ∈ D0, z0 ∈ DJ and Dj ∩Dj+1 6= ∅.

Denote by hn, 0 the inverse of fn
∣∣
D0

satisfying hn, 0(0) = 0, and denote by hn, j the inverse
of fn

∣∣
Dj

, j = 1, . . . , J , satisfying

hn, j
∣∣
Dj∩Dj−1

≡ hn, j−1

∣∣
Dj∩Dj−1

.

By Vitali’s Theorem, up to subsequences, for all j = 1, . . . , J we have

hn, j
n→∞−−−−→ h0, j ∈ Hol(Dj , ∆)

5Note that Montel’s theorem was proved for sequences in O(∆), but it is easy to see that we can restrict
the codomain to ∆.
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since the disks intersect in a nonempty region, and it turns out that

f0 ◦ h0, j = idDj

for all j. Note that for j = J we obtain f0 ◦ h0, J = idDJ , and thus

f0(h0, J(z0)) = z0 =⇒ z0 ∈ f0(∆),

but this is not enough. We define the curve

γ̃(t) := h0, J ◦ γ(t),

and we notice that it is a continuous lift of γ, that is, f0 ◦ γ̃ = γ. Furthermore, γ̃ connects
0 and h0, J(z0), which means that

h0, J(z0) ∈ Ωf0 =⇒ z0 ∈ f0(Ωf0),

and this is exactly what we wanted to prove.

Existence - (2.2). We will now prove that f0

∣∣
Ωf0

is a covering of degree two. Let z0 ∈ Ω

and let D be a disk, centered at z0, compactly embedded in Ω. We claim that for all
w0 ∈ f−1

0 (z0) ∩ Ωf0 , we can find a neighbourhoods Uw0 3 w0 ⊂ Ωf0 such that

f
∣∣
Uw0

: Uw0
−→ D

is a biholomorphism, and Uwi ∩Uwj = ∅ for all i and j. By Hurwitz’s Theorem there exists
n1 ≥ 1 such that for all n ≥ n1 there is wn ∈ ∆ with the following properties:

fn(wn) = z0 and wn
n→∞−−−−→ w0.

It follows that wn ∈ Ωf0 for n sufficiently big. Let hn : D −→ ∆ be the local inverse of fn
satisfying hn(z0) = wn. Up to subsequences, we have

hn
n→∞−−−−→ h0 ∈ Hol(D, ∆),

h0(z0) = w0, and f0 ◦ h0 = idD. Then we can take Uw0
:= h0(D), and it is easy to see that

the restriction
f
∣∣
Uw0

: Uw0
−→ D

is a biholomorphism. To prove that Uwi∩Uwj = ∅, we consider a point w̃0 6= w0 in f−1
0 (z0)∩

Ωf0 and we denote by h̃0 the local inverse above. The idea is to argue by contradiction
assuming that

∃w ∈ Uw0
∩ Uw̃0

.

Then w = h0(z1) = h̃0(z̃1), and thus

z1 = f0 ◦ h0(z1) = f0 ◦ h̃0(z̃1) = z̃1 =⇒ z1 = z̃1.

Therefore, the point w is a zero of the function h0 − h̃0. On the other hand, the sequence
hn − h̃n has no zeroes for n sufficiently big because w0 6= w̃0.

Applying Hurwitz’s Theorem again, we conclude that the limit function h0− h̃0 must be
identically equal to zero, which means that

h0 ≡ h̃0 =⇒ w0 = w̃0,
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'

÷µ.

⇒ 
one

Figure 3.2: The mapping hn as the local inverse of fn.

and this is the desired contradiction. It follows that f0 ∈ F and df0 = d. If d = 1, then
there is nothing else left to do; if d < 1, then we apply the result above to Ωf0 and obtain
f̂ ∈ F such that df̂ > d and so on - stopping when d becomes 1.

Proof of Proposition 3.15. Let a ∈ C \ Ω. The function z − a does not vanish on Ω, and
therefore there exists h ∈ O(Ω) such that

h2(z) = z − a.

Let z1, z2 ∈ Ω. If h(z1) = ±h(z2), then

h2(z1) = h2(z2) =⇒ z1 = z2,

and therefore h is injective and h(Ω)∩ (−h(Ω)) = ∅. Now fix z0 ∈ Ω and let r > 0 be small
enough to have the compact inclusion

D := Dh(z0), r b h(Ω).

The property showed above implies that −D ∩ h(Ω) is empty, and thus

|h(z) + h(z0)| ≥ r for all z ∈ Ω =⇒ 2|h(z0)| ≥ r.

The function
f(z) :=

r

4

1

|h(z0)|
h(z)− h(z0)

h(z) + h(z0)

is obviously injective, and also such that∣∣∣∣h(z)− h(z0)

h(z) + h(z0)

∣∣∣∣ = |h(z0)|
∣∣∣∣ 1

h(z0)
− 2

h(z) + h(z0)

∣∣∣∣ ≤ 4
|h(z0)|
r

,
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which in turn implies that f(Ω) ⊆ ∆, and thus Ω is biholomorphic to the bounded domain
f(Ω).

:t.GE
Figure 3.3: Cover the image of the curve γ with a finite number of closed disks compactly
embedded in Ω.
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