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Chapter 1

Group Theory

In this first chapter, the principal goal is to present (briefly) the fundamental notions of
group theory we will be using in this course, and to give a sketchy idea of the groups we
will study in the second half of the course.

1.1 Set Theory

In this section, we briefly recall some of the basic definitions of set theory we will be using
throughout this course, and we will also introduce the notation.

Definition 1.1 (Set Operations). Let M and N be sets.

(a) The set M is a subset of N , and we denote it by M ⊆ N , if and only if

a ∈M =⇒ a ∈ N.

(b) The set M ∪N is the union of M and N , that is,

a ∈M ∪N ⇐⇒ a ∈M or a ∈ N.

(c) The set M ∩N is the intersection of M and N , that is,

a ∈M ∩N ⇐⇒ a ∈M and a ∈ N.

(d) The set N \M is the difference between N and M , that is,

a ∈ N \M ⇐⇒ a ∈ N and a /∈M.

(e) The set M ×N is the Cartesian product of M and N , that is,

(a, b) ∈M ×N ⇐⇒ a ∈M and b ∈ N.

Furthermore, we denote by M⊗n the Cartesian product M × · · · ×M
n

.
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Definition 1.2 (Mapping). Let M and N be sets.

(a) A mapping f : M −→ N is injective (=into) if and only if f(b) 6= f(a) for every
a 6= b ∈M .

(b) A mapping f : M −→ N is surjective (=onto) if and only if for every b ∈ N there
exists a ∈M such that f(a) = b.

(c) A mapping f : M −→ N is bijective if and only if f is both injective and surjective.

U
M N

U

M N

Figure 1.1: Left: M ∪N . Right: M ∩N .

U

M

N
U

M N

Figure 1.2: Left: M is a subset of N . Right: N \M .

Definition 1.3 (Equivalence Relation). Let M be a set. An equivalence relation ∼ is a
subset of the Cartesian product M⊗2 satisfying the following properties:

(i) Reflexive. For every a ∈M , it turns out that a ∼ a.

(ii) Symmetric. For every couple (a, b) ∈M⊗2, it turns out that a ∼ b ⇐⇒ b ∼ a.

(iii) Transitive. For every triple (a, b, c) ∈ M⊗3 satisfying a ∼ b and b ∼ c, it turns
out that a ∼ c.

Moreover, given a set M and an equivalence relation ∼, we denote by [a] the equivalence
class of a ∈M , that is,

[a] := {b ∈M : b ∼ a} .
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Example 1.1. Let R be the set of all real numbers. Then,

a ∼ b ⇐⇒ a− b ∈ R

is an equivalence relation. In fact, the reflexive property is obvious (a − a = 0 ∈ Z for all
a ∈ R), while the symmetric property follows from the fact that

a− b ∈ Z =⇒ −(a− b) ∈ Z =⇒ b− a ∈ Z.

The unique nontrivial property is the transitiveness, but a simple algebraic trick shows that

a− c = a± b− c = (a− b) + (b− c) ∈ Z,

and this is enough to infer that ∼ is an equivalence relation.

Remark 1.1. If M is a set and ∼ an equivalence relation on M , then it is always possible1
to write M as the disjoint union of the equivalence classes, that is,

The set of repre-
sentatives R is not
unique!

Caution!

M =
⊔
a∈R

[a]

where R ⊂M denotes a maximal collection of elements a ∈M that are not equivalent, i.e.,

a 6= b ∈ R =⇒ a 6∼ b.

1.2 Elementary Definitions and Basic Examples

In this section, we introduce the basic definitions of group theory, and we briefly explain
some of the leading examples we will be dealing with in this course.

We also present the notion of representation, which will be used in the next chapter to
introduce Lie groups and Lie algebras.

Definition 1.4 (Group). A group is a set, G, together with a mapping · : G × G −→ G,
called group product, satisfying the following properties:

1) Closure. For every g1, g2 ∈ G, the product g1 · g2 also belongs to G.

2) Associativity. For every g1, g2, g3 ∈ G, it turns out that

g1 · (g2 · g3) = (g1 · g2) · g3.

3) Left Identity. There exists e ∈ G such that e · g = g for every g ∈ G.

4) Left Inverse. For every g ∈ G there exists an element, denoted by g−1, such that

g−1 · g = e.

Lemma 1.5. Let G be a group, and let g ∈ G. Then the left inverse g−1 is also a right
inverse, and the left identity e is also a right identity.

1To prove this simple fact, it suffices to show that either a ∼ b or [a] is disjoint from [b], for all a, b ∈M .
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Proof. By assumption g−1 · g = e; thus the associative property implies that

g−1 · g · g−1 = e · g−1 = g−1,

which, in turn, yields to

(g−1)−1 · g−1

=e

· g · g−1 = (g−1)−1 · g−1

=e

.

We immediately deduce that
g · g−1 = e · g · g−1 = e,

which means that g−1 is also a right inverse for g ∈ G. It follows from the associativity that

g−1 = e · g−1 = g−1 · g · g−1 = g−1 · e,

which means that e is also a right identity element.

Lemma 1.6. Let G be a group. The identity element e ∈ G and the inverse element g−1

are unique.

Proof. Suppose that e and f are both identity elements for a group G. Then it turns out
that

e = e · f = f.

Suppose now that h1, h2 ∈ G are both inverse elements for g ∈ G. It follows from the group
axioms that

h1 = h1 · e = h1 · (g · h2) = (h1 · g)︸ ︷︷ ︸
=e

· h2 = h2.

Notation. Let (G, ·) be a group. From now on, unless there may be some ambiguity, we
shall drop the product symbol g1 · g2 and simply write g1g2.

Definition 1.7 (Abelian). A group G is abelian (=commutative) if and only if

g1g2 = g2g1 for every g1, g2 ∈ G.

Notation. If G is an abelian group, then the product notation (g1g2) is usually replaced
by the more comfortable additive notation (g1 + g2). Coherently, given g ∈ G, we define

nx :=



x+ · · ·+ x︸ ︷︷ ︸
n times

if n > 0,

−|n|x = −x− · · · − x︸ ︷︷ ︸
|n| times

if n < 0,

0 if n = 0,

where 0 is the replacement for the identity element e in the commutative notation.

Definition 1.8 (Subgroup). Let (G, ·) be a group. A subset H ⊆ G is a subgroup of G, and
we denote it by H 6 G, if H is a group with respect to the restriction of ·.

Example 1.2. The set of all real numbers R is a group w.r.t. the sum +. The set of all
integers Z is a subgroup of R since (Z, +

∣∣
Z) is a group.
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Definition 1.9 (Commutator). Let G be a group. The commutator of two elements g1, g2 ∈
G is defined by

[g1, g2] := g1g2g
−1
1 g−1

2 .

The center of G is the set of all the elements g ∈ G that commute with every other element
in G, that is,

C(G) := {g ∈ G : [g, h] = e for every h ∈ G} .

Remark 1.2. The center C(G) of a group G is clearly a subgroup, and it satisfies the
following properties:

(i) It is an abelian subgroup of G.

(ii) If G is an abelian group, then the commutator [g, h] is equal to e for every g, h ∈ G,
and the center of G coincides with G.

Proof.

(i) For every g1, g2 ∈ C(G) it turns out that [g1, g2] = e, which means that C(G) is
commutative.

(ii) Let g1, g2 ∈ G be two elements. We have

[g1, g2] = g1 g2g
−1
1︸ ︷︷ ︸

=g−1
1 g2

g−1
2 = g1g

−1
1 g2g

−1
2 = e,

which means that the center coincide with the whole group G.

Example 1.3.

Definition 1.10 (Group Order). The order of a group G is its cardinality, that is,

ord(G) := |G|.

Definition 1.11 (Order). Let G be a group. The order of an element g ∈ G is the smallest
positive integer m ∈ N such that2 gm = e, that is,

ord(g) := min {m ∈ N | gm = e} .

1.2.1 Main Examples in Physics

We are now ready to briefly discuss some of the leading examples of groups, some of which
will be studied more in depth later on the course.

2If G is a group equipped with a product, we shall denote by gm the product of m copies of g.
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Example 1.4 (Integer Numbers). The set of all integers Z is an abelian discrete3 group
with respect to the usual sum. The identity element is 0, while the inverse element is simply
given by

m−1 := −m for all m ∈ Z.

It is important to remark that Z is not a group with respect to the multiplication since only
1 and −1 admit a multiplicative inverse.

On the other hand, it is easy to prove that Q\{0} is a multiplicative group with identity
element 1 and inverse q−1 := 1

q for q 6= 0.

Example 1.5 (Real Numbers). The set of all real numbers R is an abelian group with
respect to the usual sum. The identity element is 0, while the inverse element is simply
given by

x−1 = −x for all x ∈ R.

It is important to remark that R is not a group with respect to the usual multiplication
because 0 is not invertible.

On the other hand, one can easily prove that R \ {0} is a multiplicative group with
identity element 1 and inverse element 1

x .

Example 1.6 (Symmetric Group). The symmetric group S3 consists of all the permutations
of three elements. More precisely, we have

S3 =
{
e, ρ, ρ2, σ, ρσ, σρ

}
where e is the identity element (i.e., every element is fixed), and

ρ :

1 7−→ 2

2 7−→ 3

3 7−→ 1

σ :

1 7−→ 2

2 7−→ 1

3 7−→ 3

The reader may easily check that ρ has order three and σ has order two. The symmetric
group S3 is the first example of a non-abelian group since

(13)(2) = ρσ 6= σρ = (1)(23).

Notation. The permutation ρ introduced above is usually denoted by the cycle (123), while
σ is denoted by (12)(3) or (12). In general, the permutation

(a1 . . . an)(b1 . . . bk)(c)(d1 . . . d`)

is given by the map that sends ai to ai+1 (except an 7→ a1), bi to bi+1 (except bk 7→ b1), c
to itself, and di to di+1 (except d` 7→ d1).

Example 1.7. The symmetric group Sn consists of all the permutations of n elements.The symmetric
group Sn is not
abelian for all n > 2.

Note

It
is easy to show that Sn is a discrete finite group of cardinality

|Sn| = n!

3A discrete group G is a group equipped with the discrete topology. For our purposes, it suffices to think
of a group parametrized by a discrete subset of R.



CHAPTER 1. GROUP THEORY 14

Example 1.8 (Linear Transformation). Let V be a N -dimensional vector space4. The set
of all N×N regular

In this course we use
the words "regular"
and "invertible" in-
terchangeably.

Caution!

matrices with complex coefficients is a group with respect to the matrix
product, and it is usually denoted by GL(N, C). More precisely, we have

GL(N, C) = {A ∈ M(N, C) : det(A) 6= 0} .

The regular matrices with real coefficients form a subgroup, denoted by GL(N, R), of
GL(N, C), which is given by

GL(N, R) = {A ∈ M(N, R) : det(A) 6= 0} .

In a similar fashion, the regular matrices with det(M) = 1 also form a subgroup, called
special linear group, which is given by

SL(N, C) = {A ∈ GL(N, C) : det(A) = 1} .

Example 1.9 (Unitary Group). Let V be a N -dimensional vector space. The set of all
unitary complex-valued matrices 5 matrices

U(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N

}
is a group with respect to the matrix product. Similarly,

SU(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N , det(U) = 1

}
is also a group, and it is usually called special unitary group.

Remark 1.3. The unitary group preserves the complex scalar product

〈z, w〉C = z† · w := z∗1w1 + · · ·+ z∗NwN for all z, w ∈ V .

In fact, it is enough to notice that U†U = IdN×N , and plug it into the scalar product:

〈z, w〉C = z† · w = z†(U†U)w = (z†U†)︸ ︷︷ ︸
=(Uz)†

(Uw) = 〈Uz, Uw〉C for all z, w ∈ V .

As we will see later, this group plays a fundamental role in physics. For example, the
isospin symmetry is given by the invariance of the Hamiltonian of the strong interactions
under the action of the Lie group SU(2, C).

In a similar fashion, in Section 13.1 we shall prove that the Hamiltonian of the 3-
dimensional harmonic oscillator

H :=
p2

2m
+
mω2

2
r2

is invariant both under the action of the space rotations (i.e., the elements of SO(3, R)) and
the action of the group SU(3, C).

4The reader that does not recall the definition of vector space should read this page before going any
further.

5Here we denote by U† the transpose conjugate of a matrix U , that is, U† := (UT )∗.

https://en.wikipedia.org/wiki/Vector_space
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Example 1.10 (Orthogonal Group). Let V be a N -dimensional vector space. The set of
all the orthogonal6 matrices with real coefficients

O(N, R) :=
{
O ∈ GL(N, R) : OTO = OOT = IdN×N

}
is a group with respect to the matrix product. Similarly,

SO(N, R) :=
{
O ∈ GL(N, R) : OTO = OOT = IdN×N , det(O) = 1

}
is also a group, and it is called special orthogonal group.

Remark 1.4. Notice that orthogonal matrices preserve the (real) scalar product. Indeed,
we simply plug the relation OTO = IdN×N into the scalar product, and we find that

〈x, y〉 = xT · y = xT (OTO)y = (xTOT )︸ ︷︷ ︸
=(Ox)T

(Oy) = 〈Ox, Oy〉 for all x, y ∈ V .

More precisely, the orthogonal group O(N, R) preserves the metric δ, that is, the metric
that defines the scalar product as follows:

〈x, y〉 := xiδ
ijyj .

Example 1.11 (Symplectic Group). Let x, y, p, q ∈ CN be given vectors. The symplectic
product between two 2N -dimensional vectors is defined by setting

(
x1 . . . xN y1 . . . yN

)
·



p1

...
pN
q1

...
qN


:=

N∑
i=1

(xiqi − yipi) .

The group of matrices that preserve the symplectic product between 2N -dimensional vectors
is called symplectic group, and it is usually denoted by Sp(2N, C), or Sp(2N, R) if the scalar
field is R.

Example 1.12 (Lorentz Group). The Lorentz group, denoted by O(1, 3), is the group of
all the invertible matrices Λ ∈ GL(4, R) such that

ΛT gΛ = g, (1.1)

where

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is the Minkwski metric with signature (+, −). The transformations of the Lorentz group
are thus given by

pµ 7−→ Λµνp
ν ,

where Λ is a regular matrix satisfying (1.1).

6Here we denote by MT the transpose of M .
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Example 1.13 (Poincaré Group). The Poincaré group, denoted by P(1, 3), is the group of
all the isometries of the Minkowski space-time. More precisely, the transformations are all
of the form

pµ 7−→ Λµν p
ν + bµ,

where Λ denotes a matrix in SO(1, 3), and b ∈ C4 a space-time translation.

Example 1.14 (Upper-Triangular Matrices). The set

UT(2, R) :=

{(
a c
0 b

)
: a, b > 0, c ∈ R

}
⊂ GL(2, R)

is a multiplicative subgroup of the 2× 2 regular matrices with real coefficients. Indeed, the
identity element is given by

Id2×2 =

(
1 0
0 1

)
,

while the product between two elements is explicitly given by the following formula:(
a c
0 b

)
·
(
a′ c′

0 b′

)
=

(
aa′ ac′ + cb′

0 bb′

)
.

Consequently, the inverse element can be explicitly computed, and it is simply given by[(
a c
0 b

)]−1

=

(
a−1 −c(ba)−1

0 b−1

)
.

Example 1.15 (Euclidean Group). The N -dimensional Euclidean group, denoted by EN ,
is the group of all transformations of the form

RN 3 x 7−→ Ax+ b,

where A ∈ O(N, R) is an orthogonal matrix, and b ∈ RN a space-translation vector. For
example, if N = 2 every Euclidean transformation can be written in the form(

x
y

)
7−→

(
x′

y′

)
:=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
+

(
b1
b2

)
. (1.2)

Therefore, if we set

R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
,

then the transformation (1.2) can be equivalently represented in the following wayxy
1

 7−→
x′y′

1

 =

R(θ)
b1
b2

0 0 1

xy
1

 . (1.3)

Denote by E2 (b, θ) the transformation given by (1.3). One can easily check that the product
between any two elements of this form is

E2 (b, θ1) · E2 (c, θ2) =

R(θ1) ·R(θ2) R(θ1) ·
(
c1
c2

)
+

(
b1
b2

)
0 0 1

 =

= E2 (R(θ1)c + b, θ1 + θ2) ,

and therefore the Euclidean group E2 is closed under the matrix product.
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N.B. The Euclidean group EN is not compact since the norm of the space-translation
vector can be arbitrarily big.

1.2.2 Back to Group Theory

To conclude this section, we now introduce more sophisticated objects (generalizing the
notion of a group), and we discuss the concepts of invariant subgroup, quotient group, and
morphisms in the group category.

Definition 1.12 (Ring). A ring R is a set with two binary operations, + and ·, satisfying
the following axioms:

(1) (R, +) is an abelian/commutative group, whose identity element is denoted by 0.

(2) The multiplication · is associative, that is,

x1 · (x2 · x3) = (x1 · x2) · x3 for every x1, x2, x3 ∈ R.

(3) There exists an identity element, 1 ∈ R, for the multiplication.

(4) The multiplication is distributive with respect to the addition, that is,

x1 · (x2 + x3) = x1 · x2 + x1 · x3 and (x2 + x3) · x1 = x2 · x1 + x3 · x1.

Furthermore, a ring R is said to be commutative if and only if the multiplication · is com-
mutative.

Definition 1.13 (Field). A (commutative) ring R is a (field) division ring if and only if
every nonzero element has a multiplicative inverse, that is,

x ∈ R \ {0} =⇒ ∃x−1 ∈ R : x · x−1 = x−1 · x = 1.

We are finally ready to introduce the most essential definitions in group theory (i.e.,
quotient group, invariant subgroup, homomorphism, representation, etc.), but we first recall
the notion of subgroup, and we expand it a little bit further.

Definition 1.14 (Subgroup). Let (G, ·) be a group. A subset H ⊂ G is a subgroup if H is
a group with the restriction of · to H. More precisely, we require that:

1) Closure. For every h1, h2 ∈ H it turns out that h1 · h2 ∈ H.

2) Associativity. For every h1, h2, h3 ∈ H it turns out that

h1 · (h2 · h3) = (h1 · h2) · h3.

3) Identity. The identity element e ∈ G is also the identity element of H.

4) Inverse. For every h ∈ H the inverse element h−1 ∈ G also belongs to H.

The singlet {e} and the whole group G are called trivial subgroups.
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Definition 1.15 (Normal Subgroup). Let (G, ·) be a group. A subgroup N ⊂ G is normal
(=invariant), and we denote it by N E G, if and only if for every g ∈ G it turns out that

ghg−1 ∈ N for every h ∈ N .

Exercise 1.1. Prove that a subgroup N of a group G is normal if and only if

gN g−1 ⊆ N for every g ∈ G.

Let N E G be a normal subgroup. We introduce an equivalence relation on the elements
of G in the following way:

g ∼N h ⇐⇒ gh−1 ∈ N ⇐⇒ g ∈ h · N .

Let R ⊂ G be a set of representatives. The set of the equivalence classes [g] := g · N is
called quotient group, and it is denoted by

G�N := {[g] : g ∈ R} .

The reader should check that G�N is actually a group with the following operation:

If H 6 G is not nor-
mal, then the quo-
tient is not a group
but a "set with a left
group action".

Caution!

[g] · [h] := [gh],

which is well-defined as a consequence of the fact that N is a normal subgroup!

Definition 1.16 (Simple Group). A group G is said to be simple if the normal subgroups
are the trivial ones only, that is,

N E G =⇒ N = {e} or N = G.

Definition 1.17 (Semisimple Group). A group G is said to be semisimple if any normal
subgroups is not abelian, that is,

N E G =⇒ N is not abelian.

Definition 1.18 (Direct Product). Let G and G′ be two groups. The direct product G ⊗G′
is given by the set of all couples (g, g′) ∈ G × G′ together with the following operation:

(g1, g
′
1) · (g2, g

′
2) := (g1g2, g

′
1g
′
2).

Remark 1.5. The direct product is a group, but it can never be simple since the subgroups

H := G × {e′} and H′ := {e} × G′

are both nontrivial and normal. In a similar fashion, one can easily prove that a direct
product G ⊗ G′ is semisimple if and only if both G and G′ are semisimple.

Theorem 1.19 (Direct Decomposition). Let G be a group, and let H, K 6 G. Suppose that
the following properties hold true:

(1) The subgroups H and K are normal, that is, H, K E G.

(2) The intersection between H and K is trivial, that is, H ∩K = ∅.
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(3) Every element g ∈ G can be written as the product of an element h ∈ H and an element
k ∈ K, that is, G = HK.

Then G is isomorphic to the direct product H⊗K.

Definition 1.20 (Homomorphism). A mapping ϕ : G −→ G′ between two groups is a
homomorphism (of groups) if it is compatible with the group structure, that is,

ϕ(g1 · g2) = ϕ(g1) · ϕ(g2) for all g1, g2 ∈ G.

Lemma 1.21. If ϕ : G −→ G′ is a homomorphism of groups, then

ϕ(e) = e′ and (ϕ(g))
−1

= ϕ(g−1)

for every g ∈ G.

Proof. The first property follows immediately by noticing that

ϕ(e) = ϕ(e · e) = ϕ(e) · ϕ(e) =⇒ ϕ(e) = e′. (1.4)

Fix g ∈ G. By (1.4) it turns out that

ϕ(g−1) · ϕ(g) = ϕ(g−1 · g) = ϕ(e) = e′,

ϕ(g) · ϕ(g−1) = ϕ(g · g−1) = ϕ(e) = e′,

which means that ϕ(g−1) is the inverse of ϕ(g).

Definition 1.22 (Isomorphism). A group homomorphism ϕ : G −→ G′ is an isomorphism
if ϕ is one-to-one (i.e., injective and surjective).

If G and G′ are two groups, we will say that G is isomorphic to G′ (and vice versa) if and
only if there exists a group isomorphism ϕ : G −→ G′, and we will write G ∼= G′.

Definition 1.23 (Automorphism). A group homomorphism ϕ : G −→ G is an automor-
phism if ϕ is a group isomorphism.

Remark 1.6. Let G be a group. The set of all the automorphisms of G is a group with the
composition, and it is usually denoted by (Aut(G), ◦). Indeed,

ϕ2 ◦ ϕ1 ∈ Aut(G),

ϕ1 ◦ idG = idG ◦ ϕ1 = ϕ1,

for every ϕ1, ϕ2 ∈ Aut(G), and the inverse element is given by the usual inverse ϕ−1, which
exists as the mappings are all one-to-one.

Definition 1.24 (Conjugation). Let G be a group. For every g ∈ G the conjugation with
respect to g is defined by setting

ϕg : G 3 h 7−→ ghg−1 ∈ G.
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The reader may easily prove that the conjugations ϕg form a subgroup of Aut(G), which
is usually called the group of the inner automorphisms and denoted by Inn(G).

Definition 1.25 (Kernel). Let ϕ : G −→ G′ be a group homomorphism. The kernel of ϕ is
the set of all the g ∈ G with image (via ϕ) the identity element e′, that is,

ker(ϕ) := {g ∈ G : ϕ(g) = e′} = ϕ−1(e′).

Lemma 1.26. The kernel of a group homomorphism ϕ : G −→ G′ is a normal subgroup.

Proof. For every h ∈ ker(ϕ) and g ∈ G it turns out that

ϕ(ghg−1) = ϕ(g)ϕ(h)︸︷︷︸
=e′

ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e′,

which means that
g · ker(ϕ) · g−1 ⊆ ker(ϕ) for every g ∈ G.

Lemma 1.27. Let ϕ : G −→ G′ be a group homomorphism, and let K be its kernel. Then
the induced group homomorphism

ϕ̃ : G�K −→ G
′

is injective.

Proof. The induced homomorphism is defined as follows:

ϕ̃([g]) := ϕ(h) for every h ∈ [g].

Therefore, if [g1], [g2] ∈ G�K have the same image via ϕ̃, then

ϕ(g1) = ϕ(g2) =⇒ ϕ(g1g
−1
2 ) = e′,

which means that g1g
−1
2 ∈ K. In particular,

g1 ∈ g2 · K =⇒ [g1] = [g2] =⇒ ϕ̃ is injective.

Definition 1.28 (Compact Group). A compact group G is a topology group whose topology
is compact7.

Definition 1.29 (Representation). A representation of a group G on aN -dimensional vector
space V over a field K is a group homomorphism

ρ : G −→ GL(N, K; V ),

that is, a mapping ρ such that ρ(g1g2) = ρ(g1) · ρ(g2) for every g1, g2 ∈ G, where · denotes
the matrices product.

7For our purposes, it suffices to define a compact group as a group which depends on a finite number of
parameters.
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In particular, the identity element e ∈ G is represented by the identity matrix IdN×N ,
while the inverse element g−1 is represented by the inverse matrix ρ(g)−1.

Moreover, every group G admits a trivial 1-dimensional representation, which is defined
in the following way:

ρ(g) := (1) for all g ∈ G.

Definition 1.30 (Similarity). Let G be a group, and let {ρ, V } and {ρ̃, Ṽ } be two N -
dimensional representations of G. We say that they are similar (or, equivalent) if and only
if there exists a regular (=invertible) matrix S such that

ρ̃(g) = Sρ(g)S−1 for every g ∈ G.

Definition 1.31 (Unitary Representation). A N -dimensional representation {ρ, V } of a
group G is unitary if and only if ρ(g) ∈ U(N, C) for every g ∈ G.

1.3 Finite Groups

In this brief section, we introduce some basic examples of finite group. More precisely, we
shall ultimately characterize the finite groups of order n = 2, 3 and 4, and introduce the
symmetric and dihedral groups.

Order 2.

There exists a unique group of order 2, and it is the cyclic group C2 = {e, a}. The product
· is uniquely determined by the group axioms, and we have that

a · a = e =⇒ a = a−1.

In particular, the group C2 admits a 1-dimensional representation which is given by

ρ(e) = 1 and ρ(a) = −1.

Moreover, the cyclic group C2 is isomorphic to the group Z2 = {0, 1} equipped with the
sum modulo 2, that is,

1 + 1 ≡2= 0 =⇒ 1 ≡2 −1.

Order 3.

There exists a unique group of order 3, and it is the cyclic group C3 = {e, a, b}. The product
· is uniquely determined by the group axioms, and we have that

a · a = b,

a · b = e,

b · b = a.
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In particular, the group C3 admits a 1-dimensional representation which is given by the
complex solutions of the equation z3 = 1, that is,

ρ(e) = 1 and ρ(a) = e
2ıπ
3 and ρ(b) = e

4ıπ
3 .

Moreover, the cyclic group C3 is isomorphic to the group Z3 = {0, 1, 2} equipped with the
sum modulo 3.

Figure 1.3: Left: 1-dimensional representation of C2. Right: 1-dimensional representa-
tion of C3.

Order n.

The notion of cyclic group can be easily generalized for every natural number n ∈ N. Indeed,
the nth cyclic group is given by

Cn = {a0 := e, a1, . . . , an−1}

and the product · is uniquely determined by the group axioms, that is,

ai · aj =

ai+j if i+ j < n,

ai+j−n if i+ j ≥ n.

In particular, the cyclic group Cn is isomorphic to

Cn = {e, a, a2, . . . , an−1 : an = e},

as the reader may easily check that the map

ϕ(ai) := ai for every i = 0, . . . , n− 1

is an isomorphism. Moreover, the group Cn admits a 1-dimensional representation which is
given by the complex solutions of the equation zn = 1, that is,

ρ(aj) = eı
2πj
n for every j ∈ {0, . . . , n− 1}.

Furthermore, the cyclic group Cn is isomorphic, for every n ∈ N, to the group Zn =
{0, 1, . . . , n− 1} equipped with the sum modulo n.
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Figure 1.4: Left: 1-dimensional representation of C4. Right: 1-dimensional representa-
tion of C5.

Order 4.

The cyclic group C4 is the unique abelian group of order 4, but there is also a non commu-
tative group, called dihedral group and denoted by D2.

The dihedral group of order 2 is given by the symmetries of a rectangle, which means
that there is the identity element e, a rotation Rπ of angle π, the reflection Sx with respect
to the x-axis, and the reflection Sy with respect to the y-axis.

The group D2 is isomorphic to the Klein group K4, but it is not isomorphic to the cyclic
group of order 4. To prove this assertion, it suffices to notice that

C4 is cyclic =⇒ C4 = {e, a, a2, a3},

D2 = {e, Rπ, Sx, Sy} and R2
π = S2

x = S2
y = e =⇒ D2 is not cyclic.

Dihedral Group 2n.

The nth dihedral group Dn has order 2n and consists of all the regular isometries of the
plane that preserve the regular polygons with n edges. More precisely, we have

Dn = {e, ρ, . . . , ρn−1, S1, . . . , Sn},

where ρ is the rotation of angle 2π
n , in such a way that ρj is the rotation of angle 2π

n j, and Si
is the reflection with respect to the ith axis of symmetry. The reader may check by herself
that

Dn = {e, ρ, . . . , ρn−1, S, Sρ, . . . , Sρn−1},

for any reflection S := Si. Moreover, a straightforward computation proves that

ρkS = Sρn−k for every k ∈ {0, . . . , n− 1}. (1.5)



CHAPTER 1. GROUP THEORY 24

Sx

Sy

12

43

Rπ

Sx

Sy

Sd1
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Figure 1.5: Left: Dihedral group D2. Right: Dihedral group D4.

The nth dihedral group Dn is completely characterized by these properties: It is generated
by a rotation ρ of order n and a symmetry S of order 2 satisfying the relation (6.6).



Chapter 2

Lie Groups and Lie Algebras

In this chapter, we introduce the notion of Lie groups via representation theory, and we
describe the local properties employing the concept of Lie algebras.

2.1 Definitions and Main Properties

Let G be a continuous group, whose elements A(α) are expressed as a function of a set of
continuous real-valued1 parameters {α}α∈∆ = {(α1, α2, . . . , αk)}α∈∆. The parameters are
chosen in such a way that

A(0, . . . , 0) = e

is the identity element of G.

Definition 2.1 (Lie Group). A Lie group G is a continuous group, of parameter α, satisfying
the following properties:

(a) Closure. For every α and β it turns out that

A(α)A(β) = A(γ),

where γ = f(α, β) and f is a differentiable function with respect to both variables
such that f(γ, 0) = γ and f(0, γ) = γ.

(b) Inverse. For every α it turns out that

A(α)−1 = A(α′),

where the function α 7−→ α′ is differentiable.

(c) Associativity. For every α, β and γ it turns out that

A(α) (A(β)A(γ)) = (A(α)A(β))A(γ),

Remark 2.1. Let G be a Lie group. The associative property immediately implies that

f(α, f(β, γ)) = f(f(α, β), γ) for every α, β, γ.

1In fact, if α ∈ C, then it is enough to consider α = β + ıγ for β, γ ∈ R.
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2.1.1 Local Behavior: Lie Algebras

In this subsection, we shall consider N -dimensional representations R := {ρ(α), VN} of a
Lie group G of parameter α satisfying

ρ(0) = IdN×N .

Therefore, we may expand (using Taylor’s formula) the representation ρ(α) for α near the
null-vector 0. It turns out that

ρ(α) = IdN×N + ı αaT
a + . . . where T a = ı

∂

∂αa
ρ(α)

∣∣
{α}=0

. (2.1)

The elements T a are called generators of the group G in the representation R.

Example 2.1. The trivial representation clearly gives

T a = 0 for every a.

The set of generators {T a}a=1, ... of the group G associated to the representation R
satisfies the following properties:

1) The set {T a}a=1, ... form a basis of a vector space g = Alg[G], which means that

T a, T b ∈ g =⇒ caT
a + cbT

b ∈ g for every ca, cb ∈ R.

2) The set {T a}a=1, ... is closed under the commutations, that is,

[T a, T b] ∈ g for every a, b.

The closure under commutations may be rewritten in a different form by choosing the
appropriate basis for the vector space g, that is,

[T a, T b] := ıfabcT c. (2.2)

The constants fabc are usually referred to as structure constants of the group G in the
literature. It follows from (2.2) that

fabc = −f bac. (2.3)

The basis {T a}a=1, ... form the so-called Lie algebra g of the group G, and it is clearly
uniquely characterized by the value of the structure constants.

The representation R can be chosen among many, but a convenient choice is to consider
the exponential representation given by

ρ(α) = eıαaTa =: eıα·T ,

which can be interpreted as the limit of k iterations of the infinitesimal transformation,
obtaining the following expression

eıαaTa = lim
k→+∞

(
1 + ı

αaT
a

k

)k
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so that formula (6.8) makes sense.

We now want to prove the necessity of the condition (2.2), which follows from the asso-
ciative property of G. If we set αT := α · T = αaT

a, then the property (a) of a Lie group
implies that

eıαT eıβT = eıδT (2.4)

for some parameter δ. In particular, it follows from (2.4) that

ıδT = log
(
eıαT eıβT

)
=

= log
(
eıαT eıβT ± IdN×N

)
'

α, β∼0
' log(IdN×N +K) =

= K − 1

2
K2 +

1

3
K3 + . . . ,

where K denotes the matrix eıαT eıβT − IdN×N . On the other hand, we have

K ' (IdN×N + ıαT + . . . )(IdN×N + ıβT + . . . )− IdN×N =

= ıαT + ıβT − (αT )(βT )− 1

2
(αT )2 − 1

2
(βT )2 + . . . ,

which means that
ıδT = ıαT + ıβT +

1

2
[βT, αT ] + · · · =

= ıαT + ıβT − 1

2
[αT, βT ] + . . .

since the quadratic terms (αT )2 and (βT )2 vanish. In conclusion, for small parameters α, β
and γ it turns out that

[αaT
a, βbT

b] = −2ı(δc − αc − βc)T c =: ıγcT
c,

and thus
γc = −2(δc − αc − βc) = αaβbf

abc =⇒ [T a, T b] = ıfabc T c,

which justifies the definition (2.2).

N.B. The Lie algebras are subject to a consistency condition[
[T a, T b], T c

]
+
[
[T b, T c], T a

]
+
[
[T c, T a], T b

]
= 0, (2.5)

known as the Jacobi identity.

2.1.2 Adjoint Representation

Let T a ∈ g be a Lie algebra. The relation (2.2) implies that[
[T a, T b], T c

]
= ıfabd

[
T d, T c

]
= ı2︸︷︷︸

=−1

fabdfdceT e,
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and similarly[
[T b, T c], T a

]
= −f bcdfdaeT e and

[
[T c, T a], T b

]
= −f cadfdbeT e.

If we plug these identities into the Jacobi identity (2.5), we find that

fabdfdce + f bcdfdae + f cadfdbe = 0 for every a, b, c, e ∈ {1, . . . , r}. (2.6)

We now consider the r matrices defined by

(Ta)b, c := ıf bac,

and we prove that {Ta}a=1, ..., r are the generators of the group G in the representation
R∗, which is called adjoint representation of R. Indeed, it follows from the definition and
formula (2.6) that ([

Ta, Tb
])
d, e

=
(
TaTb

)
d, e
−
(
TbTa

)
d, e

=

= (Ta)d, c(Tb)c, e − (Tb)d, c(Ta)c, e =

= −fdacf cbe + fdbcf cae =

(∗)
= −fdacf cbe − f bdcf cae =

(∗∗)
= −fabcfdce =

= ıfabc(Tc)d, e,

which is exactly the relation (2.2).

The equality (*) follows immediately from the antisymmetric behavior of fabc with re-
spect to the first two coordinates (2.3), while the equality (**) follows from (2.6).

2.1.3 Examples

In this brief section, we discuss the main examples proposed in the first chapter (e.g., the
Euclidean group, the special unitary group, etc.)

Example 2.2 (SO(2, R)). The special orthogonal group on R2 is given by the elements

R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
,

and therefore it is a one-parameter continuous group with θ ∈ [0, 2π). For θ ∼ 0 it turns
out that

R(θ) ' Id2×2 + ıθ

(
0 −ı
ı 0

)
,

which means that the unique generator is given by

T =

(
0 −ı
ı 0

)
.
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The representation ρ(θ) := R(θ) is the fundamental one (i.e., the smallest that is not trivial),
and it is easy to prove that

eıθT = R(θ) for every θ ∈ [0, 2π).

Example 2.3 (E2). Recall that the 2-dimensional Euclidean transformations of the form
(1.2) can be easily rewritten in the following wayxy

1

 7−→
R(θ)

b1
b2

0 0 1

xy
1

 .

The generators (see Chapter 9) are given by

T 1 = −ı ∂∂x ,

T 2 = −ı ∂∂y ,

R = −ı
(
x ∂
∂y − y

∂
∂x

)
,

since one can easily check that

eıb1T
1

(
x
y

)
' (1 + ıb1T

1)

(
x
y

)
=

(
x+ b1
y

)
,

eıb2T
2

(
x
y

)
' (1 + ıb2T

2)

(
x
y

)
=

(
x

y + b2

)
,

eıθR
(
x
y

)
'
(
x
y

)
+

(
θy
−θx

)
.

The commutators between these generators are easy to compute,

[T 1, T 2] = 0,

[T 1, R] = −ıT 2,

[T 2, R] = ıT 1

and therefore, for any a ∈ {1, 2, R}, we have

f12a = 0 and f1R2 = −f2R1 = −1.

Example 2.4 (SU(2, C)). The three generators of the special unitary group in the funda-
mental representation (=smallest nontrivial) are

T a =
1

2
τa,

where τa denotes the ath Pauli matrix, that is,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −ı
ı 0

)
, τ3 =

(
1 0
0 −1

)
.
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A straightforward computation proves that fabc is equal to the well-known Levi-Civita
tensor εabc, that is,

fabc = εabc :=


1 if (abc) is an even permutation,
−1 if (abc) is an odd permutation,
0 otherwise.

Example 2.5 (SU(N, C)). The generators of the Lie algebra in the fundamental represen-
tation are the N ×N Hermitian matrices with zero trace

(T a)† = T a and Tr(T a) = 0 for a = 1, . . . , N2 − 1.

Example 2.6 (SO(N, R)). The generators of the Lie algebra in the fundamental represen-
tation are the N ×N antisymmetric matrices

(T a)T = −T a for a = 1, . . . ,
N(N − 1)

2
.

The Lie group
SO(3, R) is not iso-
morphic to the Lie
group SU(2, C).

Caution!

The Lie algebra of SO(3) is isomorphic (=similar behavior near the identity element), as an
algebra, to SU(2), and we denote this with the symbol2

su(2) ∼ so(3).

More precisely, the generators of the fundamental representation of SO(3, R) are

T 1 =

0 0 0
0 0 −ı
0 ı 0

 , T 2 =

 0 0 ı
0 0 0
−ı 0 0

 , T 3 =

0 −ı 0
ı 0 0
0 0 0

 ,

and it is immediate to check that

[T a, T b] = ıεabcT c,

where εabc is the Levi-Civita tensor introduced above.

Example 2.7 (SL(N, C)). The generators of the Lie algebra in the fundamental represen-
tation are the N ×N matrices with zero trace, that is,

Tr(T a) = 0 for a = 1, . . . , N2 − 1.

Example 2.8 (Sp(2N, C)). The generators of the Lie algebra in the fundamental (=smallest
nontrivial) representation are the 2N × 2N matrices satisfying the following properties

(T a)† = T a and (T a)†J + T aJ = 0,

where
J =

(
0 IdN×N

−IdN×N 0

)

2.2 Lie Algebra

In this section, we focus more on the study of a Lie algebra g associated to a Lie group G.

2We shall always use the lower case for the Lie algebra associated to a given Lie group that is denoted
by a capital symbol.
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2.2.1 SubAlgebras

Let Xa ∈ g be a Lie algebra, and consider a subset h ⊂ g. If {Y ȧ} is the subset of the
generators of g which belongs also to h, then[

Y ȧ, Y ḃ
]
∈ h for every ȧ and ḃ =⇒ h is a subalgebra of g.

Clearly, both 0 and g form trivial subalgebras of any algebra g.

Definition 2.2 (Ideal). Let Xa ∈ g be a Lie algebra, and let {Y ȧ} be the subset of the
generators which belongs to a subalgebra h ⊂ g. If[

Y ȧ, Xb
]

= cḋY
ḋ ∈ h (2.7)

for every choice of ȧ and b, then {Y ȧ} generate an invariant subalgebra/ideal of g.

Definition 2.3 (Abelian). Let Xa ∈ g be a Lie algebra, and let h ⊂ g be an invariant
subalgebra. If [

Y ȧ, Y ḃ
]

= 0 for every Y ȧ, Y ḃ ∈ h, (2.8)

then h is said to be an abelian invariant subalgebra (or an abelian ideal) of g.

Definition 2.4 (Simple Algebra). A Lie algebra g is simple if the only invariant subalgebras
are the trivial ones, that is,

h ⊂ g invariant subalgebra =⇒ h = 0 or h = g.

Definition 2.5 (Semisimple Algebra). A Lie algebra g is semisimple if no invariant subal-
gebra is abelian.

Definition 2.6 (Center). Let g be a Lie algebra. The center of g is the set of all the
elements T ȧ ∈ g that commutes with every other element in g, that is,

C(g) :=
{
T ȧ ∈ g : [T ȧ, T b] = 0 for every T b ∈ g

}
.

Lemma 2.7. Let g be a Lie algebra, and let h ⊂ g be an invariant subalgebra. Then h
generates the invariant subgroup H ⊂ G.

Proof. Let h = eıαȧY
ȧ ∈ H and let g = eıβbX

b ∈ G: we need to prove that g−1hg ∈ H. By
definition, the conjugate is given by

g−1hg = g−1eıαȧY
ȧ

g = eıαȧ(g−1Y ȧg),

and thus it is enough to compute g−1Y ȧg. Now

g−1Y ȧg = e−ıβbX
b

Y ȧeıβbX
b

=

=

(
1− ıβX − 1

2
(βX)2 + . . .

)
Y ȧ
(

1 + ıβX − 1

2
(βX)2 + . . .

)
=

= Y ȧ − ı[βX, Y ȧ] +
(−ı)2

2
[βX, [βX, Y ȧ]] + · · ·+ (−ı)n

n!
[βX, [. . . [βX, Y ȧ] . . . ]] + · · · =

= γċY
ċ ∈ h,
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as a consequence of formula (2.7). To conclude the proof, it remains to give a formal
justification of the last equality. Let us consider the function

G(t) := e−ıtβbX
b

Y ȧeıtβbX
b

,

so that the idea is to compute G(1) by means of the Taylor’s formula, that is,

G(1) =

+∞∑
n=0

1

n!
G(n)(0).

We already know that G(0) = Y ȧ, and it is easy to prove that

G′(t) = −e−ıtβbX
b

ı[βX, Y ȧ]eıtβbX
b

,

which means that
G′(0) = −ı[βX, Y ȧ] = −ıβb[Xb, Y ȧ],

and the right-hand side is equal to cḋY
ḋ by definition of invariant subalgebra (2.7). In a

similar fashion, we notice that

G(2)(t)
∣∣
t=0

=
(−ı)2

2
[βX, [βX, Y ȧ]],

and thus by induction we infer that g−1hg ∈ H.

Corollary 2.8. The center of a Lie algebra g generates the center of the Lie group G.

2.3 Killing Form

In this section, we introduce a metric gab, also called killing form, which gives us a compelling
criterion to check whether a given Lie algebra is semisimple or not.

Definition 2.9 (Killing Form). Let g be a Lie algebra. We define a metric by setting

gab := facdf bdc for every a, b ∈ {1, . . . , r}. (2.9)

Theorem 2.10 (Cartan). A Lie algebra g is semisimple if det
∣∣gab∣∣ is nonzero.

Proof. We may equivalently prove the negation:

"If g is not a semisimple Lie algebra, then det
∣∣gab∣∣ = 0."

Let T ȧ ∈ h ⊂ g be an invariant abelian subalgebra. We have the identity

gȧb = f ȧcdf bdc
(∗)
= f ȧcḋf bḋc

(∗∗)
= f ȧċḋf bḋċ = 0

as a consequence of the following facts:

a) The equality (*) is a consequence of (2.7) because

f ȧcd = [T ȧ, T c] = cḋT
ḋ.
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b) The equality (**) is also a consequence of (2.7) applied to f bḋc.

c) The subalgebra h is abelian by assumption; hence

f ȧċḋTḋ = [T ȧ, T ċ] = 0 =⇒ f ȧċḋf bḋċ = 0.

It follows that gȧb = 0 for every b ∈ {1, . . . , r}, and therefore the metric form g has at least
a row (ȧ) that is equal to (0, . . . , 0).

2.3.1 Examples

We now apply the Cartan criterion introduced above to check whether the common algebras
we are dealing with in this course are semisimple or not.

Example 2.9 (su(2, C) ∼ so(3, R)). Recall that the structure constants of these Lie alge-
bras are given by the Levi-Civita tensor, that is,

fabc = εabc for every a, b, c ∈ {1, 2, 3}.

It follows that

gab := facdf bdc = εacdεbdc =

−2 if a = b,

0 if a 6= b,

and thus the Killing form is given by

g =

−2 0 0
0 −2 0
0 0 −2

 .

In conclusion, since det|gab| 6= 0, it follows from the Cartan’s criterion that the Lie algebra
su(2, C) ∼ so(3, R) is semisimple

Actually, the algebra
su(2, C) ∼ so(3, R)
is simple, but we will
not prove it here.

Note

.

Example 2.10 (so(2, 1)). The indefinite special orthogonal group, SO(2, 1) is the subgroup
of O(2, 1) consisting of all elements with determinant 1. More precisely, given

g :=

1 0 0
0 1 0
0 0 −1

 ,

the elements of SO(2, 1) are the transformations with determinant equal to 1 that preserves
the scalar product 〈x, y〉 := xT gy. The generators3 of the algebra so(2, 1) satisfy the
following relations

[T 1, T 2] = ıT 3,

[T 2, T 3] = −ıT 1,

[T 3, T 1] = ıT 2,

3We shall compute them explicitly later on the course.
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which means that the Killing form is given by

g =

−2 0 0
0 −2 0
0 0 2

 .

In particular, by Cartan’s criterion the algebra so(2, 1) is semisimple.

Example 2.11 (E2). Recall that the generators of the Lie algebra g associated to the
Euclidean group E2 are given by

T 1 = −ı ∂∂x ,

T 2 = −ı ∂∂y ,

R = −ı
(
x ∂
∂y − y

∂
∂x

)
,

which means that the structure constants are

f12R = 0, f2R1 = 1, f1R2 = −1.

We can easily compute the Killing form from the definition (2.9), obtaining

gab := facdf bdc =

−2 0 0
0 0 0
0 0 0

 =⇒ det|gab| = 0,

which means that by Cartan’s criterion the algebra associated to E2 is not semisimple.

More precisely, the reader may check (using the definitions) that {T 1, T 2} generate an
invariant subalgebra h ∈ g that is abelian (see Chapter 9 for a detailed dissertation.)

2.4 Casimir Operator

In mathematics, a Casimir Operator is a precise element which lies within the center of a
Lie algebra (e.g., the square of the angular momentum modulus in so(3, R)).

Let g be a semisimple Lie algebra, and let gab denote its Killing form (2.9). The matrix
g is invertible by Cartan’s criterion, and therefore the inverse is well-defined:

gab := (g−1)ab

Definition 2.11. The (quadratic) Casimir operator of a semisimple Lie algebra g is defined
by setting

C := gabT
aT b, (2.10)

where {T a} is the set of generators of G.

Lemma 2.12. The Casimir operator C is an element of the center C(g), that is,

[C, T a] = 0 for every T a ∈ g.

Proof.
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We also notice that, if we define cabc := gaef bce, then it turns out that cabc = cbca = ccab.
Moreover, the Casimir operator C takes a constant value in a representation4, characterizing
completely every other representation.

Example 2.12. The Casimir operator of the Lie algebra so(3, R) ∼ su(2, C) is proportional
to T aT a, which means that

C ∝ (T 1)2 + (T 2)2 + (T 3)2.

The right-hand side is equal to the modulus squared of the angular momentum.

4We shall see later that this property is a simple consequence of the well-known Schur’s Lemma.



Chapter 3

The Fundamental Group π1(M)

In the previous chapter, we proved that the Lie algebra so(3, R) is isomorphic to the Lie
algebra su(2, C), as they have the same universal constants.

The goal of this chapter is to introduce a powerful mathematical tool, called fundamental
group, which will allow us to answer the question

SO(3)
?∼= SU(2).

Furthermore, we shall explore the connection between the local behavior and the global
behavior of these two groups employing the notion of covering space.

3.1 Topological Spaces

In this section, we recall some of the fundamental (and elementary) notions in topology.
Note that, although these are not necessary for the group theory course, the reader might
find them surprisingly useful for a better understanding of the content of this chapter.

Definition 3.1 (Topological Space). Let X be a set. The couple (X, τ), where τ is a
collection of subsets of X, is called topological space if the following properties hold:

(i) Empty. The empty set ∅ and the whole set X both belong to τ .

(ii) Infinite Union. The infinite (or finite) union of elements of τ still belongs to τ .

(iii) Finite Intersection. The finite intersection of elements of τ still belongs to τ .

The elements A ∈ τ are the open sets of the topology τ .

Example 3.1 (Real Line). Consider X := R and define τ to be the set of all the open
segments of the real line, that is,

τ := {(a, b) : a, b ∈ R, a < b}
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The reader may check by herself that τ satisfies the properties listed above, but we want to
stress the fact that we do not require that infinite intersections belong to τ . To do this, we
consider the sequence of open sets

In :=

(
− 1

n
,

1

n

)
,

and we notice that ⋂
n∈N

(
− 1

n
,

1

n

)
= {0},

which is not an open set (it does not belong to τ .)

Example 3.2 (Trivial Topology). Let X be any set. There is a trivial topology, which is
always defined, with the least amount of open sets. Namely, we define

τ := {∅, X} .

Example 3.3 (Discrete Topology). Let X be any set. There is a trivial topology, which is
always defined, with the greatest amount of open sets. Namely, we define

τ := P(X),

where P(X) denotes the set of all subsets of X (i.e., the power set).

Definition 3.2 (Continuous Function). Let (X, τ) and (Y, σ) be two topological spaces.
A function f : X −→ Y is continuous if and only if for every A ∈ σ, the preimage f−1(A)
belongs to τ .

Definition 3.3. Let (X, τ) be a topological space, and let p ∈ X be a point. A subset
V ⊂ X is a neighborhood of p if p ∈ V and

∃U ∈ τ : p ∈ U ⊂ V.

The notion of neighborhood allows us to give an equivalent definition of continuity. We
say that f : X −→ Y is continuous at p ∈ X if and only if for every neighborhood V of f(x)
in Y , there is a neighborhood U of x in X such that

f(U) ⊆ V.

We say that f is continuous if and only if f is continuous at all x ∈ X. It is easy to show
that this notion is completely equivalent to the one presented above.

3.2 Homotopy

In this chapter, we develop the homotopy theory for a topological space M (i.e., a space
equipped with a topology τ).

In topology, there is a somewhat intuitive notion that measures, in a certain sense, how
similar two (geometrical) objects are.

For example, the union between the circumference S1 and its diameter is intuitively
equivalent to the union of two tangent S1. We shall soon be able to give a precise meaning
to this statement, and we will also be able to prove it formally.



CHAPTER 3. THE FUNDAMENTAL GROUP π1(M) 38

S1

d
∼

S1 S1

p

Figure 3.1: The union of a circumference with its diameter S1 ∪ d is equivalent to the
union S1 ∪ S1 between tangent circumferences.

3.2.1 Path-Components

The goal of this section is to introduce the π0(M), which is the set of all the path-connected
components ofM . We first need to recall some basic topological notions (e.g., connectedness,
path-connectedness, connected components, etc.)

Definition 3.4. A topological space M is disconnected if there are two nonempty proper
open sets A, B ⊂ M such that A ∪ B = M . A topological space is connected if it is not
disconnected.

S1
S1 S1

Figure 3.2: The circumference S1 is connected and path-connected, while the disjoint
union S1 t S1 is disconnected and has two connected components.

Definition 3.5. A topological space M is path-connected if for every x, y ∈M there exists
a continuous path α : [0, 1] −→M such that α(0) = x and α(1) = y.

Remark 3.1. A path-connected topological space M is also connected.

Definition 3.6. Let M be a topological space. A subset C ⊂M is a connected component
of M if the following properties are satisfied:

(1) C is connected.

(2) C is maximal with respect to the inclusion. Namely, if C ⊆ A and A is connected,
then A = C.

Definition 3.7 (Locally Connected). A topological space M is locally connected if every
point x ∈M admits a neighborhood basis made up of connected open sets.

Remark 3.2. A connected topological space M needs not to be a locally connected space.
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We are finally ready to introduce the notion of π0(M). Let M be a topological space,
and let us consider the equivalence relation defined by

x ∼ y ⇐⇒ ∃ α : [0, 1] −→M continuous such that α(0) = x and α(1) = y.

It is an easy exercise to prove that ∼ is actually an equivalence relation. The product
between two paths can be defined by

α ∗ β(t) :=

α(2t) if 0 ≤ t ≤ 1/2,

β(2t− 1) if 1/2 ≤ t ≤ 1,

while the inverse of a path is given by

i(α)(t) := α(1− t).

The set π0(M) is the set of all the equivalence classes of M with respect to ∼.
The set π0(M),
in general,
is not a group!

Caution!

These
equivalence classes are called path-connected components of M .

Definition 3.8 (Locally Path-Connected). A topological space M is locally path-connected
if every point x ∈M admits a neighborhood basis made up of path-connected open sets.

In particular, it turns out that two topological spaces (or manifolds) M and N are
not homeomorphic if the π0(·)’s are different. Unfortunately, both SO(3) and SU(2) are
path-connected and locally path-connected topological groups, and hence

π0(SO(3)) = π0(SU(2)), (3.1)

which means that we need to introduce a more sophisticated tool to distinguish them, which
will turn out to be the fundamental group π1(·).

3.2.2 Homotopy

We now introduce an equivalence relation between continuous maps, called homotopy, that
will make more precise the meaning of (3.1). In the next section, we will refine the notion
of homotopy to present the fundamental group finally.

Definition 3.9 (Homotopy). Two continuous maps f, g : M −→ N between topological
space are homotopic if there exists a continuous map

F : M × [0, 1] −→ N,

called homotopy, such that F (x, 0) = f(x) and F (x, 1) = g(x) for every x ∈M .

Example 3.4. Two continuous maps f and g, defined on a convex set C ⊂ Rn, are always
homotopic. Indeed, it suffices to consider the homotopy

F (x, t) := (1− t)f(x) + tg(x) for x ∈ C and t ∈ [0, 1].
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N.B. The notion of homotopy defines on C0(M ; N), the set of all continuous maps be-
tween M and N , an equivalence relation ∼ which is given by

f ∼ g ⇐⇒ there exists a continuous homotopy F between f and g

The formal proof that ∼ is actually an equivalence relation is very similar to the one we
presented above for paths, and hence we will not write it down here. It is interesting to
notice that the homotopy is stable under product (=composition), that is,

f0 ∼ f1 and g0 ∼ g1 =⇒ f0 ∗ g0 ∼ f1 ∗ g1,

where f0, f1 : M −→ N and g0, g1 : N −→ P are continuous mappings between topological
spaces.

Definition 3.10 (Homotopic Equivalence). A continuous mapping f : M −→ N between
topological spaces is a homotopic equivalence if there exists a continuous map g : N −→M
such that

f ◦ g ∼ idN and g ◦ f ∼ idM .

Furthermore, two topological space are said to be homotopic equivalent if there exists a
homotopic equivalence between them.

IfM andN are homeomorphic topological spaces (or, in our case, G and G′ are isomorphic
topological groups), then they are also homotopic equivalent.

The fundamental result of this section is the following one. If f : M −→ N is a homotopic
equivalence, then it turns out that π0(M) is isomorphic to π0(N), which means that

π0(M) 6= π0(N) =⇒ M and N are not homotopic equivalent =⇒ M 6∼= N,

and this explains the importance of this notion.

Definition 3.11 (Contractible). A topological space X is contractible if it is homotopic
equivalent to a point. Equivalently, X is contractible if the identity map idX is homotopic
to a constant map.

3.3 The Fundamental Group

Let α : [0, 1] −→ M be a closed path (that is, α(0) = α(1) = x0.) In this section, we shall
finally refine the notion of homotopy for closed paths of base point x0, and introduce the
fundamental group π1(M, x0).

3.3.1 Path Homotopy

Let x, y ∈M be two points in a topological space. We define the set of all continuous paths
between x and y as follows:

Ω(M, x, y) := {α : [0, 1] −→M : α is continuous, α(0) = x and α(1) = y} .
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Definition 3.12 (Path Homotopy). Two continuous paths α, β ∈ Ω(M, x, y) are path
homotopic if there exists a continuous map

F : [0, 1]× [0, 1] −→M,

called path homotopy, such that

F (t, 0) = α(t) and F (t, 1) = β(t) for every t ∈ [0, 1],

F (0, s) = x and F (1, s) = y for every s ∈ [0, 1].

The second condition can be easily rewritten as follows. If we let Fs(·) := F (·, s), then
we are requiring that the continuous path Fs belongs to Ω(M, x, y) for every s ∈ [0, 1].

The reader may prove easily that the existence of a path homotopy is also an equivalence
relation, denoted by ∼, in the set Ω(M, x, y). Moreover, both the product of paths and the
inverse element commute with the homotopy equivalence relation, which means that

α0 ∼ α1 and β0 ∼ β1 =⇒ α0 ∗ β0 ∼ α1 ∗ β1,

where αi ∈ Ω(M, x, y) and βi ∈ Ω(M, y, z), and

α0 ∼ α1 =⇒ i(α0) ∼ i(α1).

The product ∗ is associative up to homotopy, that is, given α ∈ Ω(M, x, y), β ∈ Ω(M, y, z),
and γ ∈ Ω(M, z, w), it turns out that

(α ∗ β) ∗ γ ∼ α ∗ (β ◦ γ),

which means that we have the equality as equivalence classes:

[(α ∗ β) ∗ γ] = [α ∗ (β ◦ γ)]

In a similar fashion, one can prove that given α ∈ Ω(M, x, y) and β ∈ Ω(M, x, y) it turns
out that

x ∗ α ∼ α ∗ y ∼ α =⇒ [x ∗ α] = [α ∗ y] = [α],

α ∗ i(α) ∼ x =⇒ [α ∗ i(α)] = [x],

where x and y denote the constant mappings x(t) := x and y(t) := y for all t ∈ [0, 1]
respectively.

3.3.2 The Fundamental Group

The fundamental group of a topological space (or manifold) M with base point x0 ∈ M is
given by the set of all the equivalence classes [α] for α ∈ Ω(M, x0, x0) closed path, and ∼
path homotopic equivalence.

Theorem 3.13. The set π1(M, x0) endowed with the path product ∗ is a group, where the
identity element is the path x0, and the inverse element is given by i(·).
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The group π1(M, x0) does not depend on x0 as an individual point, but rather on the
entire path-connected component containing x0. Hence, if M is a path-connected space

π1(M, x0) ∼= π1(M, y0) for every x0, y0 ∈M,

and thus we can drop the notation π1(M, x0) and simply write π1(M).

Since both SO(3) and SU(2) are path-connected, this simple remark will be extremely
useful in the last part of this chapter.

Definition 3.14 (Simply Connected). A topological space M is simply connected if M is
path-connected and π1(M) = {e} is the trivial group.

3.3.3 Examples

We will develop more the theory of the fundamental group in the next section after we have
introduced the notion of covering space. Here we present some examples of π1(−) that can
be computed explicitly with some efforts.

Theorem 3.15. The fundamental group of S1 is isomorphic to Z.

Proof. This result is highly nontrivial, and a proof can be found in [3, pp. 29–32].

Theorem 3.16. The fundamental group of Sn is trivial for every n ≥ 2.

Proof. This assertion follows from a straightforward application of the Van Kampen’s the-
orem. The interested reader may consult [3, pp. 43–52] for a more detailed discussion.

Theorem 3.17. The fundamental group of the torus T is isomorphic to Z× Z.

Proof. The torus T is isomorphic to S1 × S1, and therefore it is enough to show that

π1(M ×N) ∼= π1(M)× π1(N)

for path-connected topological spaces M and N .

Theorem 3.18. Let M be a contractible manifold (or topological space). Then the funda-
mental group of M is trivial.

Before we can talk about our last, fundamental, example, we need to briefly introduce
the n-dimensional real projective space1 RPn. We consider the equivalence relation

x ∼ı y ⇐⇒ ∃ λ ∈ R \ {0} : x = λy,

and we define the real projective space as the quotient

RPn := Rn+1 \ {0}�∼ı.

Intuitively, the projective space is the set of all the lines through the origin in Rn+1, and
therefore one can easily prove that we also have

RPn := Sn�∼ı,

where Sn :=
{
x ∈ Rn+1 : |x| = 1

}
and x ∼ı y if and only if x = −y.

1The projective space is a smooth manifold, i.e. a manifold of class C∞.



43 3.4. COVERING SPACE

Theorem 3.19. The fundamental group of the real projective space RPn is isomorphic to
Z2 (=C2) for every n ≥ 2.

Proof. The reader may consult [3, pp. 71–73].

3.4 Covering Space

Definition 3.20 (Covering Space). A topological covering is a continuous surjective map
of topological spaces

p : M̃ −→M

such that, for every x ∈M , there exists an open neighborhood Ux ⊂M of x, such that

p−1(Ux) =
⊔
i∈I

Ui,

where {Ui}i∈I is a disjoint collection (eventually infinite) of open sets Ui ⊂ M̃ such that

p
∣∣
Ui

: Ui −→ Ux

is a homeomorphism2 for every i ∈ I.

The space M̃ is called total space, the space M is the base space, and the sets p−1(x) are
the fibers of the covering p.

Definition 3.21 (Degree). If every fiber of p : M̃ −→ M is finite and of cardinality d, we
say that p is a covering of degree d. If the cardinality is infinite, we simply say that p is a
covering of infinite (∞) degree.

Example 3.5 (Circle). The (universal) covering of S1 is given by

R 3 t 7−→ e2πı·t ∈ S1,

and it degree is equal to infinity.

Example 3.6 (Complex Polynomial). The map

C \ {0} 3 z 7−→ zn ∈ C \ {0},

is a covering of degree n for every n ≥ 1.

Example 3.7 (Projective Space). Let n ≥ 2. The natural projection

π : Sn −→ Sn�∼ı = RPn

that sends a point x to its equivalence class [x] := {x, −x} is a covering of degree two.

2A homeomorphism f : X −→ Y is an invertible continuous map between topological spaces such that
f−1 : Y −→ X is also continuous.
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3.5 Application: SU(2, C) 6∼= SO(3, R)

In this final section, the goal is to prove that SU(2, C) is isomorphic to the sphere S3 and
SO(3, R) is isomorphic to the real projective space RP3. From Theorem 3.16 and Theorem
3.19 it will follow easily that

π1 (SU(2, C)) = {e} 6= Z2
∼= π1 (SO(3, R)) ,

and thus SU(2, C) 6∼= SO(3, R). Moreover, we will also be able to find a covering

π : SU(2, C) −→ SO(3, R)

of degree 2, that is, a surjective map between the two groups which is also 2-to-1.

We will not give an entirely formal proof of the following results, but we will only describe
the main ideas behind them and leave it to the reader to fill in the details.

Theorem 3.22. The special orthogonal group SO(3, R) is isomorphic to RP3.
Actually, the same
proof shows that
SO(3, R) is diffeo-
morphic to RP3.

Note

Proof. The group SO(3, R) consists in all the rotations of R3, and these are characterized
uniquely by the choice of an oriented vector ~v ∈ S2 and an angle θ ∈ [0, 2π). If we denote
by R(~v, θ) a rotation, it is easy to prove that

R(~v, π) = R(−~v, π) and R(~v, 0) = R(~w, 0),

which means that we can define a mapping

ϕ : SO(3, R) −→ S3
�∼ı

that sends R(~v, θ) to the equivalence class [v · θ]. The reader can easily prove using the
definition that ϕ is continuous, bijective, and its inverse ϕ−1 is also continuous.

Theorem 3.23. The special unitary group SU(2, C) is isomorphic to S3.
Actually, the same
proof shows that
SU(2, C) is diffeo-
morphic to S3.

Note

Proof. The 3-sphere S3 in R4 can be identified with the complex sphere

S1
C :=

{
(z, w) ∈ C2 : |z|2 + |w|2 = 1

}
,

and thus it suffices to prove that S1
C
∼= SU(2, C). On the other hand, one can easily check

that
U ∈ SU(2) =⇒ U =

(
z −w̄
w z̄

)
and det(U) = |z|2 + |w|2 = 1. (3.2)

If we identify the unitary matrix (3.2) with the symbol Uz, w, then we can easily define a
mapping

ψ : SU(2, C) −→ S1
C

that sends Uz, w to (z, w) ∈ C2. Clearly, ψ is invertible and its inverse is given by

ψ−1 : S1
C 3 (z, w) 7−→

(
z −w̄
w z̄

)
∈ SU(2, C),

and, as the reader may check by herself, both are continuous.
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3.6 Monodromy Group

Let p : M −→ N be a covering, and let x, y ∈ N be any two points in the base space. The
monodromy mapping associated to p is given by

Mon : p−1(x)× Ω(N, x, y) −→ p−1(y), Mon(e, α) := αe(1),

where αe : I −→ M is the unique path lifting3 of α such that αe(0) = e. For any path
β ∈ Ω(N, y, z) it is easy to prove that

(α ∗ β)e = αe ∗ βαe(1),

where ∗ is the path multiplication. It follows that

Mon(e, α ∗ β) = Mon (Mon(e, α), β) . (3.3)

We will not prove it here, but the monodromy Mon(e, α) depends only on the homotopy
class of the path α, and hence

Mon (e, α ∗ i(α)) = Mon(e, x) = e.

It follows that for any α ∈ Ω(N, x, y), the mappings

p−1(x) −→ p−1(y), e 7−→ Mon(e, α)

is bijective, whose inverse is given by

p−1(y) −→ p−1(x), e 7−→ Mon(e, i(α))

If x = y, then the monodromy mapping associated to p acts on the π1(N, x), that is,

Mon : p−1(x)× π1(N, x) −→ p−1(y), Mon(e, [α]) := αe(1),

where [α] denotes the equivalence class of α. The monodromy mapping sends the constant
path x to the identity element in p−1(x), and similarly from (5.1) we infer that

Mon(e, [α ∗ β]) = Mon (αe(1), [β]) = βαe(1)(1).

More intuitively, the monodromy map permutes the points in the fiber p−1(x) = {aj}j∈J . In
fact, given a closed loop [α] ∈ π1(N, x), the lifting αaj , for some j ∈ J , does not necessarily
satisfies αaj (1) = aj , but it could happen that αaj (1) = ak for a k ∈ J different from j.

In particular, we associate a permutation matrix σ(α), called monodromy matrix , to the
path α in such a way thata1

a2

...

 αaj−−→

aσ(1)

aσ(2)

...

 =

 σ(α)


a1

a2

...

 .

The square matrix σ(α) has a number of row/column equal to the grade of the covering p,
which means that it could be infinite-dimensional. The monodromy matrix depends only
on the homotopy class of α, and we also have that

σ(α ∗ β) = σ(α)σ(β)

3Let p :M −→ N be a covering and α : I −→ N a path. A path γ : I −→M is a lifting of α if and only
if the diagram is commutative, that is p ◦ γ = α.
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as a consequence of (5.1). It follows that

{σ(α) | [α] ∈ π1(N, x)}

is a matrices group, which gives us a representation of the fundamental group π1(N, x). We
denote it by σ(π1(N, x)), and we call it monodromy group.

3.6.1 Examples

In this section, we investigate some simple examples of covering spaces, and we compute
the respective monodromy groups.

Example 3.8 (Circle). Recall that the (universal) covering of S1 is given by

R 3 t 7−→ e2πı·t ∈ S1,

and the fundamental group of S1 is isomorphic to Z. The integer m ∈ Z corresponding to
a closed loop [α] ∈ π1(S1) is, intuitively, equal to the "number of laps", which means that
the monodromy matrix is simply given by a translation

σ(m) : x 7−→ x+m for m ∈ Z ∼= π1(S1).

Therefore, the monodromy group is the additive group of integer translation, i.e. σ(π1(S1)) ∼=
Z once again.

Example 3.9. We consider the covering of degree n

C \ {0} 3 z 7−→ zn ∈ C \ {0},

and we identify C \ {0} with S1 in the usual way. The fundamental group of S1 is still Z,
but in this case the monodromy matrix is slightly different since an entire "lap" (m = 1)
corresponds to a rotation of 2π/n of the nth roots of the unity. Namely, we have

σ(1) =


0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 , . . . , σ(n− 1) =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0

 ,

and it is easy to prove that σ(i+ n) = σ(i) for every i ∈ {0, . . . , n− 1}. In particular, the
monodromy group σ(π1(S1)) is isomorphic to the cyclic group Zn (=Cn).

Example 3.10. Let n ≥ 2. We notice in the previous sections that the natural projection

π : Sn −→ Sn�∼ı = RPn

that sends a point x to its equivalence class [x] := {x, −x} is a covering of degree two. The
fundamental group of RPn is isomorphic to Z2, which means that the monodromy group
consist in only two elements:

σ(0)(x) = x and σ(1)(±x) = ∓x.

In particular, the monodromy group σ(π1(RPn)) is also isomorphic to Z2.
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3.7 Higher-Order Homotopy Groups

Homotopy theory begins with the notion of generalized homotopy group πn(M) for n ≥ 2.
These allow us to "distinguish", in a certain sense, the class of homeomorphism of topological
spaces (i.e., Lie groups) as follows. If M and N are two topological groups such that

∃ i ≥ 0 : πi(M) 6∼= πi(N),

then one can infer that M 6∼= N . Unfortunately, the opposite assertion

πi(M) ∼= πi(N) for all i ≥ 0 =⇒ M ∼= N

is false, as one can easily check by taking M := R and N = {x0}. Furthermore, the higher-
order homotopy groups are usually hard to compute than the fundamental group, due to
the fact that the Van Kampen’s theorem does not hold for πn, n ≥ 2.

Before we give the formal definition of πn(M) for any n ≥ 2, we take a look at some of
the computations of the group πi(Sn) presented in [5].

n/i 1 2 3 4 5 6 7 8 9 10 11 12

1 Z 0 0 0 0 0 0 0 0 0 0 0

2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

4 0 0 0 Z Z2 Z2 Z × Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3 Z15 Z2

5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30

6 0 0 0 0 0 Z Z2 Z2 Z24 0 Z Z2

7 0 0 0 0 0 0 Z Z2 Z2 Z24 0 0

8 0 0 0 0 0 0 0 Z Z2 Z2 Z24 0

Figure 3.3: The LATEXcode of this table can be found here.

We shall follow closely [3, Section 4.1] from now on. The table above shows a lot of
peculiar properties, e.g., the subdiagonal is zero, and indeed πi(Sn) = 0 for all i < n. Also,
the diagonal is given by a sequence of Z, as a consequence of the Hurewicz theorem, which
asserts that for a simply-connected space (π1(Sn) = 0 for all n ≥ 2), the first nonzero
homotopy group πn(Sn) is isomorphic to the homology group Hn(Sn).

Another interesting property is that along each diagonal the groups πn+k(Sn) with k
fixed and n varying eventually become independent of n for a large enough n.

https://tex.stackexchange.com/questions/67586/how-to-create-comparison-tables-in-latex


CHAPTER 3. THE FUNDAMENTAL GROUP π1(M) 48

3.7.1 Definitions and Basic Properties

Let In be the n-dimensional unit cube [0, 1]n. The boundary ∂In is the set of all point
p ∈ In such that at least one of the coordinates is either 0 or 1.

For a topological space X and a base point x0 ∈ X, we define the nth homotopy group
πn(X, x0) to be the set of homotopy classes of continuous maps

α : In −→ X, ∂In 7−→ x0,

where a homotopy H is admissible if and only if Ht(∂I
n) = x0 for every t ∈ [0, 1].

It is immediate to verify that, if we take n := 1, then we obtain the definition of the
fundamental group π1(X, x0). For n ≥ 2, a sum operation in πn(X, x0) is defined, as a
generalization of the path product α ∗ β in the fundamental group, as follows:

(α+ β)(x1, . . . , xn) =

{
α(2x1, x2, . . . , xn) if x1 ∈ [0, 1/2],

β(2x1 − 1, x2, . . . , xn) if x1 ∈ [1/2, 1].

The sum is well-defined on homotopy classes and, since there is only a coordinate involved
(x1), it easily turns out that πn(X) is a group with inverse element

i(α)(x1, . . . , xn) = α(1− x1, x2, . . . , xn).

We use the additive notation (i(α) = −α and α+ β) because the homotopy group πn(X) is
abelian for every n ≥ 2. Namely, we have that

α+ β ∼ β + α i.e. [α+ β] = [β + α]

via the following homotopy (see [3, pp 340]). Assume that dom(α) = [0, 1/2] × [0, 1]n−1

and dom(β) = [1/2, 1]× [0, 1]n−1.

The homotopy begins with α+ β by shrinking the domain of α and β to subcubes of In
that are well-separated, with the region outside these domains mapping to the base point x0.
After this, there is room to slide the two subcubes anywhere around In as long as they stay
disjoint, so if n ≥ 2 they can be slid past each other, interchanging their initial positions. In
conclusion, the domains of α and β can be enlarged to their original size obtaining β + α.

3.7.2 Equivalent Definitions and Base Point

A continuous map
α : In −→ X, ∂In 7−→ x0,

can easily be identified with quotient maps

α : Sn = In�∂In −→ X, s0 = ∂In�∂In 7−→ x0.

This means that we can also view πn(X, x0) as homotopy classes of maps (Sn, s0) →
(X, x0), where homotopies are through maps of the same form (Sn, s0)→ (X, x0). In this
equivalent interpretation, the sum is given by the composition

Sn
c−→ Sn ∨ Sn f∨g−−→ X,
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where c collapses the equator Sn−1 ⊂ Sn to a point s0, obtaining the wedge Sn ∨ Sn, and
f ∨ g is the wedge map.

We shall now enlist a few intuitive and useful properties of higher-order homotopy group.
The reader interested in the proof of these statements and in a more systematic investigation
of homotopy groups, may consult [3, Chapter 4].

Proposition 3.24. Let X be a path-connected topological space. Then

πn(X, x0) ∼= πn(X, y) for every y ∈ X and n ∈ N.

In particular, if X is path-connected we shall always write πn(X) in place of πn(X, x0).

Proposition 3.25. Let {Xα}α be a collection of path-connected topological spaces. Then

πn(
∏
α

Xα) ∼=
∏
α

πn(Xα) for every n ∈ N.

3.7.3 Higher-Order Homotopy Groups in Physics

In this final section, we give a table of explicitly computed higher-order homotopy groups
related to Lie groups of fundamental importance in physics (e.g., SO(n, R)). These are
stable groups, for which the homotopy groups repeat themselves periodically, as one can see
from the table below:

i mod 8 1 2 3 4 5 6 7 8

πiO(n) Z2 Z2 0 Z 0 0 0 Z

πiU(n) 0 Z 0 Z 0 Z 0 Z

πiSp(n) 0 0 0 Z Z2 Z2 0 Z

Figure 3.4: The LATEXcode of this table can be found here.

https://tex.stackexchange.com/questions/67586/how-to-create-comparison-tables-in-latex


Chapter 4

Haar Measures

In this chapter, we introduce the notion of invariant measure on a topological group G (or
a manifold M), and we sketch the proof of existence and uniqueness for compact groups.

4.1 Invariant Measure on a Topological Group

In this section, we examine the assumptions needed for the existence and uniqueness of an
invariant measure defined on a topological group G.

Definition 4.1 (Push-Forward). Let µ be a positive measure on X, and let f : X −→ Y
be a Borel function between topological spaces. The push-forward measure of µ via f is
defined by setting

f#µ(E) := µ
(
f−1(E)

)
for all E ∈ B(Y ),

where B(X) and B(Y ) denote, respectively, the Borel algebra of X and Y .

Example 4.1.

Lemma 4.2. Let (X, B(X)) and (Y, B(Y )) be measurable spaces, and let µ be a positive
measure on X. Then the push-forward f#µ is a well-defined measure on the the Borel
σ-algebra of Y .

Topological Groups. Let G be a topological group. For any y ∈ G, we denote by τy the
left-multiplication (x 7→ y · x) and by τ∗y the right-multiplication (x 7→ x · y).

Definition 4.3 (Invariant Measure). Let µ be a measure defined on a topological group G.
The measure µ is left-invariant on G if and only if

(τy)# µ = µ ∀ y ∈ G.

In a similar fashion, the measure µ is right-invariant if and only if(
τ∗y
)

#
µ = µ ∀ y ∈ G,

and, clearly, µ is invariant if and only if µ is both left-invariant and right-invariant.
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We are now ready to state the existence and uniqueness results. We only prove the
theorem assuming that G is a compact abelian group, and we give the main idea behind the
proof for an arbitrary compact Lie group.

Theorem 4.4. Let G be a compact group. Then there exists a unique invariant probability
measure on G, called Haar measure.

Sketch of the Proof. Let G be a k-dimensional compact Lie group. The idea is to define a
left-invariant k-form ω, that is, a k-form such that the pull-back according to τy is given by
ω itself. Then it suffices to check that

µ(E) :=

∫
E

ω

is the sought invariant measure, and also that it is unique.The proof presented
below works for com-
pact abelian groups
only. For the general
case, the reader may
consult this page.

Caution!

Proof. Let G be a commutative group, and let P be the space of probability measures defined
on G. For any g ∈ G, set

Pg :=
{
µ ∈ P

∣∣∣ (τg)# µ = µ
}

be the subset of P containing all the g-invariant probability measures defined on X.

Step 1. We want to prove that, for every g ∈ G, the subset Pg is nonempty. Fix µ0 ∈ P
and let us consider, for every n ∈ N, the probability measure defined by setting

µn :=
µ0 + (τg)# µ0 + · · ·+ (τgn)# µ0

n+ 1
∈ P,

where gn denotes the product of n copies of g.

By compactness there exists a subsequence µnk weakly-∗ converging to a measure µ∞.
We now claim that µ∞ is a τg-invariant probability measure. Indeed, by definition of µn, it
follows that

(τg)# µnk → µ∞ =⇒ (τg)# µ∞ = µ∞.

Step 2. We want to prove that the intersection of all the Pg is nonempty, which is clearly
enough to infer the existence of an invariant measure.

Let g, h ∈ G be two elements, let µ0 ∈ Pg be an invariant measure, and let µ∞ be the
weakly-∗ limit of the sequence

µn :=
µ0 + (τh)# µ0 + · · ·+ (τhn)# µ0

n+ 1
∈ P.

The set Pg is weakly-∗ closed; therefore µ∞ ∈ Pg ∩ Ph. By induction we can prove that
the family {Pg}g∈G has the finite intersection property, and thus, by compactness of G, it
immediately follows that ⋂

g∈G
Pg 6= ∅.

https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Gleason.pdf


CHAPTER 4. HAAR MEASURES 52

Step 3. We want to prove that the intersection above contains only one element. In order
to do that, we define the convolution product of two measures by setting

µ1 ∗ µ2(E) := (µ1 × µ2) ({(x1, x2) | x1 + x2 ∈ E }) .

The reader may prove that the convolution is commutative, and also that

µ1 ∗ µ2 = µ1,

if µ1 is an invariant measure.

This is enough to infer that the invariant measure is unique. Indeed, if λ, µ ∈ ∩g∈GPg
are two invariant measures, then the properties above of the convolution implies that

µ = µ ∗ λ = λ ∗ µ = λ =⇒ µ = λ.

There is also a more general result of existence and almost-uniqueness concerning topo-
logical group that are only locally compact1 and separable.

Theorem 4.5. Let G be a locally compact and separable group. Then there exists a locally
finite invariant measure on G, which is unique up to a multiplicative constant.

Remark 4.1. Recall that a topological group G is compact if the topology is compact. As
a consequence of Theorem 4.4, we infer that a topological group G is compact if and only if
there exists an invariant measure µ such that∫

G
dµ = 1.

Proposition 4.6. Let G be a compact group, and let µ be its Haar probability measure.

(1) For every function f and every y ∈ G it turns out that∫
G
f(τy(g)) dµ(g) =

∫
G
f(g) dµ(g) =

∫
G
f(τ∗y (g)) dµ(g),

where f(τy(g)) = f(y · g).

(2) The integral is homogeneous, that is, for every function f and every y ∈ G it turns
out that ∫

G
τy(f(g)) dµ(g) = τy

(∫
G
f(g) dµ(g)

)
=

∫
G
τ∗y (f(g)) dµ(g).

(3) The integral is additive, that is, for any couple (f, h) of functions it turns out that∫
G

(f(g) + h(g)) dµ(g) =

∫
G
f(g) dµ(g) +

∫
G
h(g) dµ(g).

1A topological space X is locally compact if every point x ∈ X has a compact neighborhood Ux 3 x.



53 4.1. INVARIANT MEASURE ON A TOPOLOGICAL GROUP

(4) For every function f it turns out that∫
G
f(g−1) dµ(g) =

∫
G
f(g) dµ(g).

Moreover, one can use the Haar probability measure µ to define a scalar product for
G-valued functions as follows:

〈f, h〉 :=

∫
G
f∗(g)h(g) dµ(g).

4.1.1 Examples

In this brief section, we illustrate how to find an invariant measure both for compact and
non-compact groups when the structure is particularly simple.

Example 4.2. The Lebesgue measure dx is an invariant measure for the non-compact
additive group (R, +). In fact, a simple change of variables proves that∫

R
f(x+ y) dx =

∫
R
f(x) dx,

where x+ y corresponds to τy(x) in this case. On the other hand, the Lebesgue measure is
not invariant for the non-compact multiplicative group (R>0, ·) since∫

R
f(y · x) dx =

1

y

∫
R
f(x) dx.

We consider the logarithmic measure dx
x , and we notice that∫

R
f(y · x)

dx

x
=

1

y

∫
R
f(x)

y

x
dx =

∫
R
f(x)

dx

x
,

which means that it is an invariant measure on (R>0, ·).
Example 4.3. Recall that the 2× 2 real upper-triangular matrices are defined by

UT(2, R) :=

{(
a c
0 b

)
: a, b > 0, c ∈ R

}
⊂ GL(2, R),

and the product between two elements can be computed explicitly:(
a c
0 b

)
·
(
x z
0 y

)
=

(
ax az + cy
0 by

)
=:

(
x̃ z̃
0 ỹ

)
.

If we compute the Jacobian of the transformation (=multiplication), we find that an invari-
ant measure is given by

dµ =
dxdydz

x2y
=

dx̃dỹdz̃

x̃2ỹ
,

where dxdydz denotes the Lebesgue measure on the 3-dimensional space, which is coherent
with the fact that UT(2, R) has dimension 3. More precisely, we notice that∫

R2
+×R

(
a c
0 b

)(
x z
0 y

)
dxdydz =

∫
R2

+×R

(
ax az + cy
0 by

)
dxdydz =

=
1

a2b

∫
R2

+×R

(
x z
0 y

)
dxdydz.
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Example 4.4. Recall that the matrices of the special unitary group SU(2, C) may be
identified with elements on the complex circumference. Therefore(

z w
−w∗ z∗

)
for |z|2 + |w|2 = 1,

and by Theorem 5.13 this gives a diffeomorphism with the unitary 3-dimensional real sphere
S3. It follows easily that a Haar measure2 is given by the volume form of S3, that is,

dV =
1

2π2
sin2(θ1) sin(θ2) dθ1dθ2dθ3.

2The invariant measure here is not a probability measure, but it is finite (i.e., the surface of the 3-ball),
and thus it is enough to renormalize it.



Chapter 5

Representation Theory

In this chapter, we develop the theory of representations we need later to investigate in-
depth properties of SU(2, C), SU(3, C), SO(4, R), the Euclidean groups, the Lorentz group,
the Poincaré group, etc.

5.1 Introduction

First, we recall some definitions we have already introduced in the introductive chapter.

Definition 5.1 (Representation). A representation of a group G on a N -dimensional vector
space V over a field K is a group homomorphism

ρ : G −→ GL(N, K; V ),

that is, a mapping ρ such that ρ(g1g2) = ρ(g1) · ρ(g2) for every g1, g2 ∈ G, where · denotes
the matrices product.

In particular, the identity element e ∈ G is represented by the identity matrix IdN×N ,
while the inverse element g−1 is represented by the inverse matrix ρ(g)−1.

Moreover, every group G admits a trivial 1-dimensional representation, which is defined
in the following way:

ρ(g) := (1) for all g ∈ G.

Definition 5.2 (Similarity). Let G be a group, and let {ρ, V } and {ρ̃, Ṽ } be two N -
dimensional representations of G. We say that they are similar (or, equivalent) if and only
if there exists a regular (=invertible) matrix S such that

ρ̃(g) = Sρ(g)S−1 for every g ∈ G.

Definition 5.3 (Unitary Representation). A N -dimensional representation {ρ, V } of a
group G is unitary if and only if ρ(g) ∈ U(N, C) for every g ∈ G.

Example 5.1. Recall that S3 is the group of all permutations of 3 elements, that is,

S3 = {e, (123), (132), (12), (13), (23)} .
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There is an obvious three dimensional representation ρ that acts as

ρ((123))

ab
c

 =

bc
a

 ,

and does a similar work with any other element of S3. They are explicitly given by the
usual permutation matrices, that is,

ρ(e) =

1 0 0
0 1 0
0 0 1

 , ρ((123)) =

0 0 1
1 0 0
0 1 0

 , ρ((132)) =

0 1 0
0 0 1
1 0 0

 ,

ρ((12)) =

0 1 0
1 0 0
0 0 1

 , ρ((13)) =

0 0 1
0 1 0
1 0 0

 , ρ((23)) =

1 0 0
0 0 1
0 1 0

 .

Example 5.2 (Direct Product). Let {ρ, V } and {σ, W} be representations of two groups
G and G′ respectively. Recall that the direct product G ⊗ G′ is defined as the group with
underlying set the Cartesian product G × G′ and component-wise multiplication, i.e.,

(g, h)⊕ (g′, h′) = (gg′, hh′) ∈ G × G′.

There is an obvious representation of the direct product that is given by {ρ ⊕ σ, V ⊕W},
where V ⊕ V is the direct sum of vector spaces, and

ρ⊕ σ(g, h) := ρ(g)⊕ σ(h).

The reader may quickly check that ρ ⊕ σ is a group homeomorphism, i.e. it preserves the
group structure.

5.2 Irreducible Representations

A diagonal block matrix is a n× n matrix M of the form

M =


M1 0 0 0
0 M2 0 0

0 0
. . . 0

0 0 0 Mk


where Mi is a ni × ni matrix for all i ∈ {1, . . . , k} and

∑k
i=1 ni = n.

Definition 5.4 (Irreducible Representation). A representation {ρ, V } of a group G is re-
ducible if it is equivalent (via a regular matrix S) to a diagonal representation, that is,

Sρ(g)S−1 = M(g) =


M1(g) 0 0 0

0 M2(g) 0 0

0 0
. . . 0

0 0 0 Mk(g)

 for every g ∈ G.

A non-reducible representation is usually referred to as irreducible representation.
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Definition 5.5 (G-Invariant). Let {ρ, V } be a representation of G. A linear subspace
W ⊂ V is G-invariant if

ρ(g)w ∈W for every g ∈ G and w ∈W.

Definition 5.6 (Subrepresentation). Let {ρ, V } be a representation of G, and letW ⊂ V be
a G-invariant subspace. The representation {ρ

∣∣
W
, W} is called subrepresentation of {ρ, V }.

Remark 5.1. A representation {ρ, V } of a group G is reducible if and only if there are
G-invariant nontrivial subspaces W1, . . . , Wk ⊂ V such that

W1 ⊕ · · · ⊕Wk = V.

Definition 5.7 (Complex Conjugate). Let {ρ, V } be a representation of a group G over a
complex vector space V . The complex conjugate representation {ρ∗, V ∗} is defined by

g 7−→ ρ∗(g) := −(ρ(g))∗,

where M∗ is the complex conjugate of the matrix M .

Definition 5.8 (Real Representation). A representation {ρ, V } of G is real if it satisfies
one of the following:

(a) For all g ∈ G, it turns out that ρ∗(g) := −(ρ(g))∗ = ρ(g).

(b) It is equivalent via a unitary matrix S to the complex conjugate representation
{ρ∗, V ∗}, that is,

−
(
Sρ(g)S−1

)∗
= Sρ(g)S−1 for every g ∈ G.

Definition 5.9 (Pseudoreal Representation). A representation {ρ, V } is pseudoreal if it is
not real and it is equivalent, via a regular (=invertible) matrix S, to the complex conjugate
representation {ρ∗, V ∗}, that is,

Sρ(g)S−1 = ρ∗(g) := −(ρ(g))∗ for every g ∈ G.

Definition 5.10 (Complex Representation). A representation {ρ, V } is complex if it is
neither real or pseudoreal.

5.2.1 Schur Lemmas

In this section, we prove the fundamental theorem due to Schur, known as Schur lemma,
for irreducible representations, and we use it to show interesting properties of irreducible
(complex) representations of a group G.

Lemma 5.11 (Schur). Let {ρ, V } and {ρ′, W} be two irreducible representations of a group
G. If there exists a linear mapping A : V −→W such that

Aρ(g) = ρ′(Ag) for every g ∈ G, (5.1)

then A is either the null map or an isomorphism of vector spaces.

Proof. We assume that A 6= 0, and we show that A is both injective and surjective.
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Injective. The kernel K := kerA is clearly G-invariant since

x ∈ K =⇒ Aρ(x) = ρ′(Ax) = ρ′(0) = 0 =⇒ ρ(x) ∈ K.

The representation {ρ, V } is irreducibile; therefore K is either {0} or V . The linear appli-
cation A is not constantly zero, which means that K cannot be equal to the whole vector
space V , and hence A is injective.

Surjective. The rank R := ranA = A(V ) is clearly G-invariant since

x ∈ R =⇒ x = Ay =⇒ ρ′(x) = Aρ(y) =⇒ ρ′(x) ∈ R

The representation {ρ′, W} is irreducibile; therefore R is either {0} or W . The linear
application A is not constantly zero, which means that R cannot be equal to {0}, and hence
A is surjective.

Lemma 5.12. Let {ρ, V } be an irreducible representation of a group G over a complex
vector space V . If there exists a linear mapping A : V −→ V such that

Aρ(g) = ρ(Ag) for every g ∈ G, (5.2)

then there exists λ ∈ C such that A = λ · IdV = λ · idn×n.

Proof. Let λ ∈ C be an eigenvalue of A. Then B := A− λ · idn×n commutes with ρ(g) for
all g ∈ G, and thus we infer from Schur Lemma that A− λ · idn×n = 0.

5.2.2 Representations of Finite and Compact Groups

As a consequence of Haar measures theory (see Chapter 4), we can easily show that ev-
ery finite-dimensional representation of a compact group G is equivalent to some unitary
representation.

Theorem 5.13. Every representation of a finite group G is equivalent to some unitary
representation.

The proof we present
here is taken, almost
verbatim, from [2].

Caution!

Proof. Let {ρ, V } be a representation of G. Consider the hermitian operator

R :=
∑
g∈G

ρ(g)†ρ(g),
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and notice that for every h ∈ G we have

ρ(h)†Rρ(h) =
∑
g∈G

ρ(h)†ρ(g)†ρ(g)ρ(h) =

=
∑
g∈G

(ρ(g)ρ(h))†ρ(g)ρ(h) =

=
∑
g∈G

ρ(gh)†ρ(gh)
(∗)
=

(∗)
=
∑
x∈G

ρ(x)†ρ(x) = R,

where the equality
(∗)
= follows from the fact that G is a finite group, and hence

{gh : g ∈ G} = G for every fixed h ∈ G.

Let S :=
√
R. Multiply the identity above by S−1 on the left and by ρ(g)−1S−1 on the

right to obtain

ρ(g)†Rρ(g) = R =⇒ S−1ρ(g)†S = Sρ(g)−1S−1

=⇒
(
Sρ(g)S−1

)†
=
(
Sρ(g)S−1

)−1 for every g ∈ G,

which means that the representation ρ′(g) := Sρ(g)S−1 is unitary and equivalent to {ρ, V }.

Theorem 5.14. Every finite-dimensional representation of a compact group G is equivalent
to some unitary representation.

Proof. Let µ be the Haar probability measure given by Theorem 4.4, and let {ρ, V } be a
representation of G. Let b : V × V −→ C be any inner product and define

〈u, v〉 :=

∫
G
b(ρ(g)u, ρ(g)v) dµ(g).

The reader may check by herself that 〈·, ·〉 is a G-invariant inner product, that is, a inner
product such that 〈ρ(g)u, ρ(g)v〉 = 〈u, v〉 for all u, v ∈ V and g ∈ G.

Let V := {v1, . . . , vn} be a basis of the vector space V , and denote by S the matrix
associated to 〈·, ·〉 with respect to V. It turns out that

〈vi, vj〉 = 〈ρ(g)vi, ρ(g)vj〉 =⇒ S†S = (Sρ(g))†Sρ(g) for every g ∈ G,

and therefore the representation

G 3 g 7−→ Sρ(g)S−1 ∈ GL(V, C)
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is unitary because(
Sρ(g)S−1

)†
Sρ(g)S−1 = (S−1)†ρ(g)†S†Sρ(g)S−1 =

= (S−1)∗ (Sρ(g))
†

(Sρ(g))

=S†S

S−1 =

= (S−1)†S†SS−1 = Idn×n.

Remark 5.2.

Proposition 5.15. Every irreducible representation of an abelian group G is one-dimensional.

Proof. Let R := {ρ, V } be any representation of G. The group is abelian, hence (5.2) holds
with A := ρ(g) for every g ∈ G. It follows from Schur Lemma 5.12 that

∀g ∈ G, ∃λ(g) ∈ C : ρ(g) = λ(g) · idn×n,

which means that R is a 1-dimensional representation given by

G 3 g 7−→ λ(g) ∈ C.

Example 5.3 (SO(2, R)). Fix m ∈ Z. Every element of SO(2, R) is a rotation that can be
represented as a complex exponential

ψm(ϕ) := eımϕ

for some ϕ ∈ [0, 2π). For every m ∈ Z we have a 1-dimensional unitary representation given
by the mapping

SO(2, R) 3 ψm(ϕ) 7−→ ϕ ∈ R.
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Chapter 6

Special Unitary Group SU(2, C)

In this chapter, we study more in-depth the special unitary (Lie) group SU(2, C) and the
associated Lie algebra su(2, C). Recall that the set of all unitary matrices

U(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N

}
is a group with respect to the matrix product. Similarly,

SU(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N , det(U) = 1

}
is also a group, and it is called special unitary group. Moreover, we proved that

SU(2, C) ∼= S3,

where S3 is the 3-dimensional sphere in R4 (or C2). The three generators of the special
unitary group in the fundamental representation (=smallest nontrivial) are

Ja =
1

2
τa,

where τa denotes the ath Pauli matrix, that is,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −ı
ı 0

)
, τ3 =

(
1 0
0 −1

)
.

Moreover, we also proved that fabc is equal to the Levi-Civita tensor εabc, that is,

fabc = εabc :=


1 if (abc) is an even permutation,
−1 if (abc) is an odd permutation,
0 otherwise.

Remark 6.1. Let A, B, C be arbitrary operators (e.g., n × n matrices). The reader can
easily show that the following identity for the commutator of a product holds:

[AB, C] = A[B, C] + [A, C]B. (6.1)
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Casimir. Recall that the Casimir operator of this representation is

J2 := (J1)2 + (J2)2 + (J3)2.

We can apply (6.1) to show that J2 commutes with all the generators J i. Indeed, a straight-
forward computation proves that

[J2, J1] = [(J1)2, J1]︸ ︷︷ ︸
=0

+[(J2)2, J1] + [(J3)2, J1] =

= J2[J2, J1] + [J2, J1]J2 + J3[J3, J1] + [J3, J1]J3 =

= −ıJ2J3 − ıJ3J2 + ıJ3J2 + ıJ2J3 = 0.

In a similar way, one can prove that [J2, J2] = [J2, J3] = 0.

Remark 6.2. The unitary group preserves the complex scalar product

〈z, w〉C = z† · w := z∗1w
∗
1 + · · ·+ z∗Nw

∗
N for all z, w ∈ V .

In fact, it is enough to notice that U†U = IdN×N , and plug it into the scalar product:

〈z, w〉C = z† · w = z†(U†U)w = (z†U†)︸ ︷︷ ︸
=(Uz)†

(Uw) = 〈Uz, Uw〉C for all z, w ∈ V .

6.1 Finite Irreducible Representations

The primary goal is to find all the irreducible representations of SU(2, C) and su(2, C),
starting here with the finite-dimensional1 ones.

6.1.1 Introduction

From [7]: "In quantum mechanics, when a Hamiltonian has a symmetry, that symmetry
manifest itself via a set of states at the same energy, i.e. degenerate states.

In particle physics, the near mass-degeneracy of the neutron and proton points to an
approximate symmetry of the Hamiltonian describing the strong interactions. The neutron
does have a slightly higher mass due to isospin breaking; this is due to the difference in the
masses of the up and down quarks and the effects of the electromagnetic interaction.

It was Heisenberg, the scientist who noticed that the mathematical formulation of this
symmetry was in certain respects similar to the mathematical formulation of spin, whence
the name "isospin" derives. To be precise, the isospin symmetry is given by the invariance
of the Hamiltonian of the strong interactions under the action of the Lie group SU(2, C).
The neutron and the proton are assigned to the doublet (the spin −1/2, 2, or fundamental
representation) of SU(2, C), which is described above in terms of Pauli’s matrices." Namely,
the nucleon transforms as follows:(

p
n

)
7−→ U(α)

(
p
n

)
where U(α) = eı

τa

2 αa ∈ SU(2, C).

1A representation is finite dimensional if and only if the carrying vector space V has finite dimension.
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The pions, on the other hand, are assigned to the adjoint representation of SU(2, C).
Recall that the adjoint representation is defined by setting

(Ta)b, c := ıf bac,

where a, b, c = 1, . . . , 3. It follows that we can also represent the elements of the special
unitary group as 3× 3 matrices

U(α) = eıT
aαa ∈ SU(2, C)

in such a way that the pions triplet transforms as follows:π1

π2

π3

 7−→ U(α)

π1

π2

π3

 . (6.2)

Remark 6.3. The adjoint representation of SU(2, C) has dimension 3. A straightforward
computation shows that the generators of SO(3, R)

T 1 =

0 0 0
0 0 −ı
0 ı 0

 , T 2 =

 0 0 ı
0 0 0
−ı 0 0

 , T 3 =

0 −ı 0
ı 0 0
0 0 0

 ,

are equal to the generators of the adjoint representation of SU(2, C). For example, we have

(
T1
)
b, c

= ıf b1c =

0 0 0
0 0 −ı
0 ı 0

 = T 1,

and, similarly, for the other generators.

Recall that the triplet of pions πi for i = 1, 2, 3, is connected to the observable triplet
π0 and π±, by the following relations:

π3 := π0, π+ :=
π1 − ıπ2

√
2

, π− :=
π1 + ıπ2

√
2

.

There is a different transformation for the triplet of pions through the (2-dimensional)
fundamental representation, defined in the following way:

πa
τa

2
7−→ U(α)πa

τa

2
U(α)−1 =: (π′)a

τa

2
. (6.3)

Proposition 6.1. The transformation (6.2) is equivalent to the transformation (6.3).

Hint. It is enough to use Taylor’s formula (w.r.t. α) up to order one of both, i.e.,

U(α) = id3×3 + ıTaαa + . . . ,

and
U(α) = id2×2 + ı

τa

2
αa + . . . and U(α)−1 = id2×2 − ı

τa

2
αa + . . . .
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As a consequence, we find a simple formula for the Yukawa interaction

VY := gY
(
p̃ ñ

)
πa
τa

2

(
p
n

)
=

= (p̃p− ñn)π0 +
√

2
(
p̃nπ+ + ñpπ−

)
,

which describes the nuclear force between nucleons, mediated by pions.

6.1.2 Admissible Dimensions of Finite Representations

In this section, we assume that J1, J2 and J3 are the generators of a finite-dimensional
representation R of SU(2, C), whose dimension is unknown at the moment. Let J2 be the
quadratic Casimir operator, and set

J± := J1 ± ıJ2 and J3 := J3.

Note that {J+, J−, J3} is also a generator basis, called Cartan basis, satisfying the following
commutators relations:

[J3, J+] = J+, [J3, J−] = −J− and [J+, J−] = 2J3.

The Casimir quadratic operator J2 commutes with the generator J3, which means that they
are simultaneously diagonalizable and J2 = c · IdN×N as a consequence of Schur’s Lemma.

From now on, we shall denote by {| c, m〉} the common basis of eigenstates for both J3

and J2, that is, we require that

J3 | c, m〉 = m | c, m〉 and J2 | c, m〉 = c | c, m〉.

Let j := max{m : J3 | c, m〉 = m | c, m〉} be the maximum eigenstate2 in the representation
R w.r.t. the operator J3. A straightforward computation shows that

J3 (J+ | c, m〉)
(∗)
= J+ (J3 | c, m〉) + J+ | c, m〉 =

= mJ+ | c, m〉+ J+ | c, m〉 =

= (m+ 1) J+ | c, m〉,

where (∗) follows from the commutator identity [J3, J+] = J+. Similarly, we find that

J3 (J− | c, m〉)
(∗)
= J− (J3 | c, m〉)− J− | c, m〉 =

= mJ− | c, m〉 − J− | c, m〉 =

= (m− 1) J− | c, m〉,

which means that
J− | c, m〉 ∝ | c, m− 1〉,

J+ | c, m〉 ∝ | c, m+ 1〉.

2The maximum is well-defined because the representation R is finite-dimensional by assumption!
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In particular, since j is the maximum eigenstate, we have that J+ | c, j〉 = 0.

The goal is now to find the relation between c and j, and use it to derive an upper bound
(resp. lower bound) to the number of "jumps" via J+ (resp. J−).

Remark 6.4. The quadratic Casimir operator can be easily rewritten in terms of J+J− as

J2 = J+J− + J2
3 − J3, (6.4)

Here J2
3 denotes the

square of the opera-
tor J3.

Caution!

and, similarly, in terms of J−J+ as

J2 = J−J+ + J2
3 + J3. (6.5)

The proof does not require any idea, but it suffices to evaluate the right-hand side of both
identities plugging in the formulas defining J+ and J−.

Recall that a linear algebra result shows that the eigenstates {| c, m〉} are orthogonal;
thus, we can always assume without loss of generality that {|c, m〉} is a orthonormal basis,
which means that

〈c, m | c, m〉 = 1 and 〈c, m | c, m′〉 = 0 for all m 6= m′.

As a consequence of the normalization, we find that

c = 〈c, j | J2 | c, j〉 (∗)
= 〈c, j | J−J+ + J2

3 + J3 | c, j〉 =

= 〈c, j | J−J+ | c, j〉+ 〈c, j | J2
3 | c, j〉+ 〈c, j | J3 | c, j〉 =

= 0 + j2 〈c, j | c, j〉︸ ︷︷ ︸
=1

+j 〈c, j | c, j〉︸ ︷︷ ︸
=1

= j(j + 1),

where (∗) follows from a direct application of formula (6.5).

In particular, c depends on j, and thus, from now on, we shall denote by | j, m〉 the
eigenstate | c, m〉. The representation R is finite-dimensional, which means that also J−
cannot go all the way down; let n be the minimum eigenstate, that is,

J− | j, j − n+ 1〉 = | j, j − n〉 and J− | j, j − n〉 = 0.

If we plug (6.4) into the previous computation, we find that

c = 〈j, j − n | J2 | j, j − n〉

= 〈j, j − n | J−J+ + J2
3 − J3 | j, j − n〉 =

= 〈j, j − n | J+J− | j, j − n〉+ 〈j, j − n | J2
3 | j, j − n〉 − 〈j, j − n | J3 | j, j − n〉 =

= 0 + (j − n) 〈j, j − n | j, j − n〉︸ ︷︷ ︸
=1

+(j − n− 1) 〈j, j − n | j, j − n〉︸ ︷︷ ︸
=1

= j(j + 1),

from which we infer that

c = j(j + 1) = (j − n)(j − n− 1) =⇒ n = 2j.
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In particular, it turns out that the dimension of an irreducible representationR isN := 2j+1
(since the eigenvalues range from −j to +j), where

j ∈ N
2

:=
{n

2
: n ∈ N

}
.

Recall that the nucleon corresponds to the fundamental representation of SU(2, C), which
means that j = 1/2 and N = 2. It turns out that(

p
n

)
∼ | 1

2
, ±1

2
〉.

In a similar fashion, the triplet of pions is associated with the fundamental representation
(j = 1), and therefore we have π+

π0

π−

 ∼ | 1, 1〉,
| 1, 0〉,
| 1, −1〉,

where the right-hand side vectors correspond to π1, π2 and π3 respectively. The πN scatter-
ing shows a strong resonance at the kinetic energy about 200 MeV; it occurs in the P -wave
(` = 1) with total angular momentum J = 3, which means j = 3/2. In this case, we have


∆++

∆+

∆0

∆−

 ∼
| 3

2
,

3

2
〉,

| 3
2
,

1

2
〉,

| 3
2
, −1

2
〉,

| 3
2
, −3

2
〉.

6.2 Fundamental Representation of SU(2, C)

Recall that the generators of the fundamental representation R := {ρ, V } of SU(2, C) are
given by

T a =
1

2
τa for a = 1, 2, 3,

where τa denotes the ath Pauli matrix, that is,

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −ı
ı 0

)
, τ3 =

(
1 0
0 −1

)
.

Note that Pauli matrices are Hermitian matrices ((τa)† = τa) with null-trace. Furthermore,
a straightforward computation proves that fabc is equal to the Levi-Civita tensor, i.e.,

fabc = εabc :=


1 if (abc) is an even permutation,
−1 if (abc) is an odd permutation,
0 otherwise,
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which means that

[T a, T b] = ıεabcT c =⇒

[T 1, T 2] = −[T 2, T 1] = ıT 3,

[T 2, T 3] = −[T 3, T 2] = ıT 1,

[T 3, T 1] = −[T 1, T 3] = ıT 2.

Definition 6.2 (Quaternion Group). The quaternion group Q8 is one of the two non-
commutative group of order 8. More precisely, it is given by

Q8 := {±1, ±i, ±j, ±k} ,

endowed with a product satisfying the following rules, known as Hamilton’s rules:

i2 = j2 = k2 = ijk = −1 and


ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

We now prove that the Pauli matrices form a quaternion group, that is, we show that{
±id2×2, ±ıτ1, ±ıτ2, ±ıτ3

}
,

endowed with the matrix product, is isomorphic to Q8. Recall that the anticommutator is
denoted by {·, ·}, and is defined by setting

{A, B} := AB +BA.

A direct computation proves that

(τa)2 = id2×2 =⇒ (ıτa)2 = −id2×2 for all a = 1, 2, 3,

and also that
{τa, τ b} = 0 for all a 6= b ∈ {1, 2, 3}.

It follows that, using the generator formula [T a, T b] = ıεabcT c, we have

(ıτa)(ıτ b) = −τaτ b =
1

2
(τ bτa − τaτ b) = ıτ c,

which means that
{
±id2×2, ±ıτ1, ±ıτ2, ±ıτ3

}
is, actually, a quaternion group.

6.2.1 Elements in the Fundamental Representation

In this section, we want to compute the element U(α) in the fundamental representation,
where α is a (real) parameter in R3. Let βa := αa

2 and β := (β1, β2, β3), and notice that

U(α) = eıT
aαa = e

∑3
a=1 ıτ

aβa 6=
3∏
a=1

eıτ
aβa

because, as we proved earlier, the Pauli matrices do not commute between themselves.
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The idea is thus to apply the quaternion rules and the definition, as a series, of the
exponential function. Namely, let us denote by τ · β the scalar product τaβa. By definition

eıτ ·β =
∑
n∈N

1

n!
ın(τ · β)n =

=
∑
m∈N

1

(2m)!
(−1)m

[
(τ · β)2

]m
+
∑
m∈N

1

(2m+ 1)!
(−1)m

[
(τ · β)2

]m
(τ · β),

(6.6)

and using the anticommutative property of the quaternion algebra, we also have that

(τ · β)2 = βaβbτ
aτ b =

=
1

2
βaβb

(
τaτ b + τ bτa

)
=

= β2
a(τa)2 = |β|2,

since (τa)2 = id2×2 for all a = 1, 2, 3. Plugging this identity into (6.6) we find that

eıτ ·β =
∑
m∈N

1

(2m)!
(−1)m|β|2m +

∑
m∈N

1

(2m+ 1)!
(−1)m

|β|2m+1

|β|
(τ · β) =

= cos |β| · id2×2 +
ı sin |β|
|β|

(τ · β).

(6.7)

We can easily compute the matrix τ · β explicitly as

τ · β =

(
0 β1

β1 0

)
+

(
0 −ıβ2

ıβ2 0

)
+

(
β3 0
0 −β3

)
=

(
β3 β1 − ıβ2

β1 + ıβ2 −β3

)
,

and thus we obtain from (6.7) that the element of parameter α in the fundamental repre-
sentation is given by

U(α) = eıτ ·β =

(
cos |β| 0

0 cos |β|

)
+
ı sin |β|
|β|

(
β3 β1 − ıβ2

β1 + ıβ2 −β3

)
=

= eıτ ·
α
2 =

(
cos |α|2 0

0 cos |α|2

)
+
ı sin |α|2
|α|

 α3√
2

α1−ıα2√
2

α1+ıα2√
2

− α3√
2

 .

6.2.2 Pseudo-Real (Fundamental) Representation

In this section, we introduce a refinement of the notion of real representation, and we prove
that the fundamental representation of SU(2, C) is, actually, pseudo-real (or quaternionic).

Definition 6.3 (Real Representation). A representation R = {ρ, V } of a group G is real if
it is equivalent via a unitary matrix S to the representation {ρ∗, V ∗}, that is,

Sρ(g)S−1 = ρ(g)∗ for every g ∈ G.
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Definition 6.4 (Pseudo-Real Representation). A representation R = {ρ, V } of a group G
is said to be pseudo-real if it is equivalent via an antisymmetric unitary matrix S to the
complex conjugate representation {ρ∗, V ∗}, that is,

Sρ(g)S−1 = ρ(g)∗ for every g ∈ G.

Let R := {U(α), V } denote the fundamental representation of SU(2, C). We know that
the Pauli matrices τa are Hermitian, and hence

(τa)† = τa =⇒ (τa)∗ = (τa)T for all a ∈ {1, 2, 3}.

Therefore

U(α)∗ = SU(α)S−1 ⇐⇒ e−ı(t
a)∗αa = Seıt

aαaS−1 = eıSt
aαaS

−1

,

which means that the fundamental representation is real if and only if one can find a regular
matrix S such that

StaS−1 = −(ta)∗ for all a ∈ {1, 2, 3}. (6.8)

The reader can quickly check that S := τ2 is the sought unitary matrix since

τ2 τ
1

2
(τ2)−1 =

1

2
τ2τ1τ2 = −1

2
(τ2)2︸ ︷︷ ︸
=id2×2

τ1 = −1

2
τ1︸︷︷︸

=(τ1)∗

τ2 τ
2

2
(τ2)−1 =

1

2
τ2 = −1

2
(τ2)∗,

τ2 τ
3

2
(τ2)−1 =

1

2
τ2τ3τ2 = −1

2
(τ2)2︸ ︷︷ ︸
=id2×2

τ3 = −1

2
τ3︸︷︷︸

=(τ3)∗

.

The matrix τ2 is antisymmetric since (τ2)T = (τ2)∗ = −τ2, therefore the fundamental
representation is pseudo-real.

Note that it is not necessary to know that S = τ2 to prove that the representation is
pseudo real since we can use (6.8) and the fact that τa is Hermitian for every a. Namely,
we have that

(6.8) =⇒ StaS−1 = −(ta)∗ = −(ta)T =⇒ ta = −(S−1)T (ta)TST ,

and therefore
ta = (S−1)TStaS−1ST =⇒ S−1ST ta = taS−1ST .

In particular, the matrix S−1ST commutes with each element of the Lie group SU(2, C),
and thus by Schur Lemma it follows that

∃λ ∈ R : S−1ST = λ.

In particular, we have that ST = λS and, by taking the square of the identity, we also find
that λ2 = 1, i.e. S = ST is symmetric or S = −ST is antisymmetric, which is exactly what
we wanted to prove (i.e., the representation is either real or pseudo real, depending on the
matrix S.)
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6.2.3 Simpleness of SU(2, C)

In the fundamental representation, the Lie algebra su(2, C) has three subalgebras, which
are nothing but the ones generated by τa for each a ∈ {1, 2, 3}. If h := {τ3}, then one can
check that

[τ3, τ3] = 0 and [τ3, τ1] = ıτ2 /∈ h,

and similarly with any subalgebra h ⊂ su(2, C).

In particular, the Lie algebra su(2, C) has no nontrivial invariant subalgebras, which
means that the only normal subgroups H of SU(2, C) that are abelian, are the trivial ones.

Theorem 6.5. The Lie group SU(2, C) is simple.

Proof. The reader can consult [6] for a formal proof of this fact.

6.3 Elements in Irreducible Representations

Let J1, J2 and J3 be the generators of a N = 2j + 1 dimensional irreducible representation
of SU(2, C). Recall that by (6.4) we have

c = 〈j, m | J2 | j, m〉 = 〈j, m | J+J− + J2
3 − J3 | j, m〉 =

= 〈j, m | J+J− | j, m〉+m(m− 1).

Remark 6.5. Let {v(m)}m=j, j−1, ...,−j be an orthonormal basis of eigenstates for J3. The
eigenvalues λ(m) are real, and it is easy to see that

J3v
(m) = λ(m)v(m) =⇒ (v(m))†J†3 = λ(m)(v(m))†,

which yields to the so-called completeness identity∑
m

v(m) · (v(m))† = idN×N . (6.9)

It follows from (6.9) that

c = 〈j, m | J+J− | j, m〉+m(m− 1) =

=
∑
m′

〈j, m | J+ | j, m′〉〈j, m′ | J− | j, m〉+m(m− 1) =

= 〈j, m | J+ | j, m− 1〉〈j, m− 1 | J− | j, m〉+m(m− 1) =

= |〈j, m− 1 | J− | j, m〉|2 +m(m− 1).

In a similar fashion, one can employ formula (6.5) to prove the equivalent identity for
J+, which yields immediately to a complete characterization of the matrices J+ and J− as
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follows:
〈j, m− 1 | J− | j, m〉 =

√
(j +m)(j −m+ 1),

〈j, m+ 1 | J+ | j, m〉 =
√

(j −m)(j +m+ 1).

In particular, the matrices J+ and J− have a peculiar form as the only nonzero elements
are the supdiagonal and the subdiagonal respectively, that is,

J− =


0 0 . . . 0

∗ 0
. . .

...
...

. . . 0 0
0 . . . ∗ 0

 and J+ =


0 ∗ . . . 0

0 0
. . .

...
...

. . . 0 ∗
0 . . . 0 0

 .

It follows that

J1 =
1

2
(J+ + J−) =


0 ∗ . . . 0

∗ 0
. . .

...
...

. . . 0 ∗
0 . . . ∗ 0

 and J2 =
1

2ı
(J+ − J−) =


0 ∗ . . . 0

∗ 0
. . .

...
...

. . . 0 ∗
0 . . . ∗ 0

 ,

and J3 is the diagonal (2j + 1)× (2j + 1) matrix diag(j, j − 1, . . . , −j).

Adjoint Representation. One can easily apply the general formulas provided above to
compute the generators of the adjoint representation (j = 1), and the exponentials U(α) for
α ∈ R3.

6.4 Tensor Product of Representations

The content of this section is mostly a summary of [2, Chapter 24.8]. The reader interested
in a better understanding of this topic may start by consulting that book.

A quantum mechanical system possessing a group of symmetry is described by vectors
that transform according to an irreducible representation R. For example, a rotationally
invariant system can be characterized by an eigenstate of angular momentum, the generator
of the rotation.

Often irreducible states are combined to form new states. For example, the state of
two noninteracting particles is described by a two-particle state, labeled by the combined
eigenvalues of the two sets of operators that define each particle separately.

In the case of the angular momentum, the single-particle states may be labeled as
| j1, m1〉 and | j2, m2〉. Then the combined state is labeled by

| j1, m1〉| j2, m2〉 or | j1, m1; j2, m2〉,

and one can define an action of the rotation group on the vector space spanned bu these
combined states to construct the so-called tensor product representation. We now recall the
way in which one can construct such a representation.
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Kronecker Product. Let R := {ρ, V } and S := {ρ′, W} be two representations of a
group G. We can easily define an action of the group G on the tensor product V ⊗W via
the representation ρ⊗ ρ′ : G −→ GL(V ⊗W ) given by

(ρ⊗ ρ′)(g)(|v〉, |w〉) := (ρ(g)|v〉, ρ′(g)|w〉) . (6.10)

The reader can easily check that (6.10) gives a representation on the tensor product since
the associativity is an immediate consequence of the associativity of both R and S.

Notation. In this course, we shall often denote the direct product element (|v〉, |w〉) by
|v, w〉, or simply |vw〉. Similarly, if {|vi〉} is an orthonormal basis for V and {|wa〉} is an
orthonormal basis for W , we define an inner product on V ⊗W by setting

〈v, w | v′, w′〉 := 〈v | v′〉〈w |w′〉. (6.11)

An important special case is the tensor product of a representation with itself. For such
a representation, the matrix elements satisfy the symmetry relation

(ρ⊗ ρ)(g)ia, jb = (ρ⊗ ρ)(g)ai, bj .

The symmetry can be used to decompose the tensor product space into two G-invariant
subspaces. To do this, take the span of all symmetric vectors |viwj〉 + |vjwi〉 and denote
it by (V ⊗ V )s. Similarly, take the span of all antisymmetric vectors |viwj〉 − |vjwi〉 and
denote it by (V ⊗ V )a. It is easy to see that every vector in V ⊗ V can be written as the
sum of a symmetric and an antisymmetric vector, i.e.

|viwj〉 =
1

2
(|viwj〉+ |vjwi〉) +

1

2
(|viwj〉 − |vjwi〉).

It follows that
V ⊗ V = (V ⊗ V )s ⊕ (V ⊗ V )a

since the unique common vector is the zero vector. It follows that the Kronecker product of
a representation with itself is always reducible into two representations, the symmetric and
the antisymmetric ones.

6.4.1 Clebsh-Gordan Decomposition

Let j1 and j2 be irreducible representations of SU(2, C). The tensor product j1 ⊗ j2 is,
clearly, not irreducible anymore by definition. The idea is to decompose it as a sum of
irreducible representations

j1 ⊗ j2 = (j1 + j2)⊗ (j1 + j2 − 1)⊗ · · · ⊗ |j1 − j2|

in such a way that

|j1, m1〉|j2, m2〉 =

|j1−j2|∑
M=j1+j2

|J, M〉〈J, M |j1, m1; j2, m2〉,

where J = j1 + j2. The coefficients of the sum 〈J, M |j1, m1; j2, m2〉 are known as Clebsh-
Gordan coefficients.
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6.5 Comparison: SO(3, R) and SU(2, C)

In this final section, we discuss a little bit more about the relationship between the Lie
groups SO(3, R) and SU(2, C). First, recall that

SO(2, R) ∼= U(1, C)

via the isomorphism

SO(2, R) 3
(

cos θ sin θ
− sin θ cos θ

)
7−→ eıθ ∈ U(1, C).

The irreducible unitary representations of U(1, C) are all one-dimensional as a consequence
of Schur’s Lemma; namely, we have that

ψm : U(1, C) −→ R, eımθ 7−→ θ

is a one-dimensional unitary irreducible representation for every m ∈ Z. Consider the
fundamental representation (m = 1), given by

SO(2, R) 3
(

cos θ sin θ
− sin θ cos θ

)
7−→ θ ∈ R,

and consider the change of basis via a regular matrix

S =
1√
2

(
1 ı
ı 1

)
and S−1 =

1√
2

(
1 −ı
−ı 1

)
.

It turns out that

S

(
x
y

)
=

1√
2

(
x+ ıy
ıx+ y

)
=:

1√
2

(
z
ız̄

)
,

and

SRθS
−1 =

(
e−ıθ 0

0 eıθ

)
,

which means that the matrix S transforms the fundamental representation m = 1 into the
one-dimensional representation given by m = −1 (since e−ıθz = −ıeıθ z̄).

Subgroups. We now show that SO(2, R) is a subgroup of SU(2, C), and we explain the
intuitive reason behind the 2-degree covering

SU(2, C) −→ SO(3, R).

Recall that the third Pauli matrix τ3 is diagonal, and therefore the computation of the
exponential is extremely easy. In particular, we obtain that the subgroup generated by τ3

only is given by

U((0, 0, θ)) = eı
τ3

2 θ =

(
e−ı

θ
2 0

0 eı
θ
2

)
,

which means that τ3 generates the U(1, C) as a subgroup of SU(2, C).
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Note that there is a factor 2 on the rotation angle, and this is the main reason behind
the existence of a 2-degree covering. We shall not compute it directly, but one can prove
that

U((0, θ, 0)) = eı
τ2

2 θ = R θ
2
,

and similarly for the subgroup generated by the first Pauli matrix τ1. Intuitively, for any
fixed axis of rotation ~v, there is a subgroup isomorphic to SO(2, R) that consist in all the
rotations of the plane perpendicular to ~v.

Rotation Group. Recall that the generators of the Lie group SO(3, R) are given by

T 1 =

0 0 0
0 0 −ı
0 ı 0

 , T 2 =

 0 0 ı
0 0 0
−ı 0 0

 , T 3 =

0 −ı 0
ı 0 0
0 0 0

 ,

that are nothing else but the rotations on the coordinate planes xy, yz and xz. Let (α, β, γ)
be the Euler angle of rotation, so that a generic element of SO(3, R) in this representation
is given by

U((α, β, γ)) = U3(γ)U2(β)U1(α),

where Ui(θ) is a rotation around the ith coordinate axis of angle θ. For example, we have

U1(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1


as an element of SO(3, R), and

Ũ1(α) =

(
e−ı

α
2 0

0 eı
α
2

)
as an element of SU(2, C). It is easy to check that

U1(2π) = id3×3 and Ũ1(4π) = id2×2,

which means that in SU(2, C) we need to complete "two laps" to go back to the identity
matrix, and this is to be expected as a consequence of the existence of the degree-two
covering.



Chapter 7

Special Unitary Group SU(3, C)

In this chapter, we study more in-depth the special unitary (Lie) group SU(3, C) and the
associated Lie algebra su(3, C). Recall that the set of all unitary matrices

U(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N

}
is a group with respect to the matrix product. Similarly,

SU(N, C) :=
{
U ∈ GL(N, C) : U†U = UU† = IdN×N , det(U) = 1

}
is also a group, and it is called special unitary group.

The eight generators of the 3-special unitary group can be computed explicitly in the
fundamental representation (=smallest nontrivial), and they are given by the Gell-Mann
matrices:

λ1 =
1

2

0 1 0
1 0 0
0 0 0

 , λ2 =
1

2

0 −ı 0
ı 0 0
0 0 0

 , λ3 =
1

2

1 0 0
0 −1 0
0 0 0

 ,

λ4 =
1

2

0 0 1
0 0 0
1 0 0

 , λ5 =
1

2

0 0 −ı
0 0 0
ı 0 0

 , λ6 =
1

2

0 0 0
0 0 1
0 1 0

 ,

λ7 =
1

2

0 0 0
0 0 −ı
0 ı 0

 , λ8 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 .

We immediately see that SU(2, C) is generated by λ1, λ2 and λ3, and it is thus a subgroup
of SU(3, C). Moreover, one can easily prove that

tr(λaλb) =
1

2
δab and fabc =



1 if (abc) = (123),

1/2 if (abc) ∈ {(345), (147), (246), (257)} ,

−1/2 if (abc) ∈ {(156), (367)},
√

3/2 if (abc) ∈ {(458), (678)},

which determines all the possible values of fabc since it is a completely antisymmetric tensor.
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Killing Form. We can easily check that the killing form (2.9) is given by

gab := facdf bdc = −3

2
δab for all a, b = 1, . . . , 8.

Recall that a Casimir Operator is a precise element which lies within the center of a Lie
algebra (e.g., the square of the angular momentum modulus in so(3, R)).

Let g be a semisimple Lie algebra, and let gab denote its metric (2.9). The matrix g is
invertible by Cartan’s criterion, and therefore we can introduce the following notation:

gab := (g−1)ab

The (quadratic) Casimir operator of the semisimple Lie algebra su(3, C) is defined by setting

C := gabλ
aλb. (7.1)

Lemma 7.1. The Casimir operator C is an element of the center C(g), that is,

[C, T a] = 0 for every T a ∈ g.

Recall also that, if we define cabc := gaef bce, then it turns out that cabc = cbca = ccab
and c is totally antisymmetric. In particular, in the case of the special unitary group we
have that

cabc := −3

2
f bca =⇒ f bca is also totally antisymmetric.

7.1 Finite Irreducible Representations

The primary goal is to find all the irreducible representations of SU(3, C) and su(3, C),
starting here with the finite-dimensional1 ones.

7.1.1 Construction via Weight Diagrams

Let us consider the fundamental (3-dimensional) representation

3 :

q1

q2

q3

 where | q1〉 =

1
0
0

, | q2〉 =

0
1
0

 and | q3〉 =

0
0
1

.

The generators λ3 and λ8 are both diagonal, and thus {| qi〉 : i ∈ {1, 2, 3}} is a basis for
the both of them. Precisely, we have that

λ3 | q1〉 =
1

2
| q1〉 and λ8 | q1〉 =

1

2
√

3
| q1〉,

λ3 | q2〉 = −1

2
| q2〉 and λ8 | q2〉 =

1

2
√

3
| q2〉,

λ3 | q3〉 = 0 | q3〉 and λ8 | q3〉 = − 1√
3
| q3〉.

1A representation is finite dimensional if and only if the carrying vector space V has finite dimension.
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The vectors qi are 2-dimensional vectors2 in the space generated by λ3 and λ8, whose
coordinate are given by the relations above:

q1 =
(

1
2

1
2
√

3

)
, q2 =

(
− 1

2
1

2
√

3

)
, q3 =

(
0 − 1√

3

)
.

If we consider the hypercharge operator Y := 2√
3
λ8, then the points qi delimits a regular

triangle as in the figure below:

λ3

Y

q2 q1

q3

λ3

Y

q2 q1

q3

Figure 7.1: Left. Fundamental Representation 3. Right. Complex conjugate represen-
tation 3∗.

We can now employ weight diagrams to compute the tensor product representation 3⊗3∗

(|qq̄〉), and prove that it is equivalent to the representation 8 ⊕ 1. We consider the vector
sum

qij := qi + q∗j = qi − qj for all i, j = 1, 2, 3

and we obtain the following figure:

In particular, the representation 3 ⊗ 3∗ is decomposed in a octet 8 with a degenerate
state at the origin, and a singlet which represents the direct scalar product:

|1〉 = |q∗1〉|q1〉+ |q∗2〉|q2〉+ |q∗3〉|q3〉.

In a similar fashion, one can prove that the tensor product representation 3 ⊗ 3 (|qq〉) is
equivalent to the representation 6⊕ 3∗.

Using the decompositions we derived above we can construct more higher-dimensional
representations, e.g.,

3⊗ 3⊗ 3 = (6⊕ 3∗)⊗ 3 = 10⊕ 8⊕ 8⊕ 1,

as the reader can easily check by a direct computation.

7.1.2 Generators of the Special Unitary Group SU(2, C)

The generators λ1, λ2 and λ3 are, essentially, the Pauli matrices τa. Therefore

Span < λ1, λ2, λ3 >∼= su(2, C),

2The rank of a group G is defined as the number of diagonal generators in the fundamental representation.
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λ3

Y

q22 q11

q23 q13

q32 q31

q21 q12
λ3

Y

q33

Figure 7.2: The decomposition of the tensor product representation 3⊗ 3∗.

λ3

Y

λ3

Y

Figure 7.3: The decomposition of the tensor product representation 3⊗ 3.
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that is, they generate the algebra su(2, C) inside su(3, C). We also introduce the isospin
operators

T± := λ1 ± ıλ2,

and notice that {T±, λ3} is still a basis of su(2, C). Similarly, we introduce the U -spin
operators

U± := λ6 ± ıλ7,

and notice that
[U+, U−] =

(√
3λ8 − λ3

)
=: 2U3.

One can easily check that, similarly to the case of su(2, C), we have the following relations:

[U3, U+] = U+ and [U3, U−] = −U−.

In a similar fashion, we introduce the V -spin operators

V± := λ4 ± ıλ5,

and notice that
[V+, V−] =

(√
3λ8 + λ3

)
=: 2V3.

One can easily check that, similarly to the case of su(2, C), we have the following relations:

[V3, V+] = V+ and [V3, V−] = −V−.

We can use these new spin operators to get a better understanding of what happens when
we decompose the representation 3⊗3∗. Indeed, a straightforward computation proves that
the points of the hexagon are given by T±0, U±0 and V±0.

λ3

Y

T−0 T+0

U+0 V+0

V−0 U−0

0
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The generators λ2, λ5 and λ7, on the other hand, are essentially rotations with fixed axis
z, y and x respectively. Therefore

Span < λ2, λ5, λ7 >∼= so(3, R),

and the isomorphism is given by sending λ2 to 1
2τ

3, λ5 to 1
2τ

2 and λ7 to 1
2τ

1. We notice
that

tr(λaλb) =
1

2
δab and tr(τaτ b) = 2δab,

which means that this is a minimal embedding of so(3, R) into su(2, C).

7.2 Quark Model

In physics an hadron is a subatomic particle (not elementary) that is subject to the strong
nuclear force and is formed by quarks, sometimes associated to anti-quarks. Denote

| q〉 =

ud
s

 and | q̄〉 =

ūd̄
s̄


the quark and the anti-quark respectively.

Baryons All known baryons are made of three valence quarks, so they are fermions, i.e.,
they have half-integer spin. In particular, we denote by

p, n, Σ−, Σ0, Σ+, Λ, Ξ0, Ξ−

the collection of the eight baryons of the form | qqq〉.

Mesons. Mesons are hadrons composed of a quark-antiquark pair. They are bosons,
meaning they have integer spin, i.e., 0, 1, or −1. In particular, we denote by

π−, π0, π+, κ+, κ0, κ̄0, κ−, η

the collection of the eight mesons of the form | qq̄〉.

Representation. We can employ the weight diagrams introduced in the previous section
to describe these octets in such a way to reveal some of their symmetries.

The weight diagrams representation is coherent with the fact that, for example, the
couple (n, p) is an iso-duplet and (π−, π0, π+) is an iso-triplet, as we have already proved
earlier.
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λ3

Y

π− π+

κ0 κ+

κ− κ̄0

π0 η
λ3

Y

Σ− Σ+

n p

Ξ− Ξ0

Σ0 Λ

Figure 7.4: On the left the mesons, and on the right the baryons.

The symmetry of SU(2, C) is a "good symmetry" in nature, but the SU(3, C) symmetry
is broken by the masses since mu and md are very near, while ms is comparable with ΛQCD.
More precisely, assuming c = 1, we have that

mu ∼ 5MeV
md ∼ 10MeV

}
� ΛQCD ∼ 200MeV while ms ∼ 200MeV.

7.2.1 Young Tableaux

In mathematics, a Young tableau is a combinatorial object useful in representation theory.
It provides a convenient way to describe the group representations of the symmetric and
general linear groups Sn and to study their properties.

We will not develop this topic here. The interested reader may consult [2, Chapter
25.5]. We only note that Young diagrams are in one-to-one correspondence with irreducible
representations of the symmetric group over the complex numbers.

There is a nice way to introduce Young diagrams as a natural consequence of the sym-
metry properties of a system of n particles interacting between themselves. We consider

ψa1(1) . . . ψan(n),

where ai ∈ {1, . . . , p} is, in a certain sense, the set of all properties.

The idea is to consider the symmetrization, anti-symmetrization and a mix of both of this
expression with respect to the exchange of particles, and denote them via Young diagrams.
For example, if n = 2 we have

=
1√
2

(ψa1(1)ψa2(2) + ψa2(1)ψa1(2)) ,
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and

=
1√
2

(ψa1(1)ψa2(2)− ψa2(1)ψa1(2)) .

Denote by ψS1, 2 the symmetrization with respect to the indices (1, 2), and denote by ψA1, 2
the anti-symmetrization with respect to the indices (1, 2). If n = 3 we have either a totally
symmetric tensor, a totally antisymmetric tensor or a mix as follows:

=
1√
3!

∑
σ∈S3

ψa1(σ(1))ψa2(σ(2))ψa3(σ(3)) = ψS1, 2, 3,

=
1√
3!

∑
σ∈S3

(−1)sgn(σ)ψa1(σ(1))ψa2(σ(2))ψa3(σ(3)) = ψA1, 2, 3,

and

=
∑
σ∈S2

(−1)sgn(σ)ψS1, σ(2)ψa3(σ(3)).

The total symmetrization and anti-symmetrization can be computed explicitly for any value
of n and p as follows:

. . . =
1√
n!

∑
σ∈Sn

ψa1(σ(1))ψa2(σ(2)) . . . ψan(σ(n)),

and

...
=


1√
n!

∑
σ∈Sn(−1)sgn(σ)ψa1(σ(1))ψa2(σ(2)) . . . ψan(σ(n)) if n ≤ p,

0 if p > n.

Special Unitary Group. Let us consider neutrons of the form

|N〉 :=

(
p
n

)
subject to the action of the special unitary group SU(2, C). It is easy to check that

p1n2 − n1p2√
2

= ∼ 1, (7.2)

that is, the antisymmetric form corresponds to the singlet 1 as a consequence of the fact that
the relation above is invariant under the action of SU(2, C). Indeed, consider the vectors(

p′1
n′1

)
=

(
a −b∗
b a∗

)(
p1

n1

)
=

(
ap1 − b∗n1

bp1 + a∗n1

)
,

and (
p′2
n′2

)
=

(
a −b∗
b a∗

)(
p2

n2

)
=

(
ap2 − b∗n2

−bp2 + a∗n2

)
.
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A straightforward computation yields to

p′1n
′
2 − n′1p′2 = (ap1 − b∗n1)(bp2 + a∗n2)− (bp1 + a∗n1)(ap2 − b∗n2) =

= −bb∗n1p2 − aa∗n1p2 + aa∗p1n2 + bb∗p1n2 =

= p1n2 − n1p2,

and this proves the invariance under the action of SU(2, C). The antisymmetric form
corresponds to the so-called deuteron, whose electric charge is one. In a similar way, one
can prove that

∼ 3, ∼ 4, etc...

On the other hand, here n is equal to 2, and this means that the unique totally antisymmetric
setting is the invariant one described above, that is,

= 0.

In particular, a Young diagram for the group SU(2, C) is equivalent to a totally symmetric
one since

= or =

There is a simple rule, that can be found in [2, Chapter 25.5], that allows us to find the
decomposition of a direct product of two representations.

In the following example, we show that what we have already proved for SU(3, C) may
be obtained via Young diagrams in a simple and coherent way. We shall now describe that
rule, but we do not present any proof here.

The following result
and the first applica-
tion is taken, almost
verbatim, from [2,
Chapter 25.5].

Note

Theorem 7.2 (Young Rule [2]). To find the components of Young frames in the product
of two Young frames, draw one of the frames. In the other frame, assign the same symbol,
say a, to all boxes in the first row, the same symbol b to all the boxes in the second row, etc.
Now attach the first row to the first frame, and enlarge in all possible ways subject to the
restriction that no two a’s appear in the same column, and that the result graph be regular.
Repeat with the b’s etc., making sure in each step that as we read from right to left and top
to bottom no symbols counted fewer times than the symbol that came after it. The product
is the sum of all the diagrams obtained in this way

To illustrate this procedure, we shall compute the product 8⊗8 between representations
of SU(3, C). More precisely, consider the product

⊗ 1 1
2

We now apply the first row 1 1 to the frame on the left, and we obtain the following four
Young diagrams:

1 1 1
1

1

1
1

1

Now we apply the second row 2 to each of these graphs separately.
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First Diagram. We cannot put a 2 to the right of the 1’s, because in that case, as we
count from right to left, we would start with a 2 without having counted any 1’s. The
allowed graphs obtain from the first diagram are thus given by

1 1
2

1 1

2

Second Diagram. Applying the 2 to the second graph yields to

1
1 2

1
1

2

Third Diagram. Applying the 2 to the third graph gives

1
2

1

1

1
2

Fourth Diagram. Applying the 2 to the fourth graph yields to

1
1 2

1
1
2

In particular, the entire process described above can be easily written in terms of frames
as follows:

⊗ = + + + . . .

· · ·+ 2 + + +

On the other hand, we are dealing with two representations of SU(3, C), which means that
the Young column of length 3 is the singlet. The result is thus given by

8⊗ 8 = + + + . . .

· · ·+ 2 + =

= 27 + 10 + 10∗ + 8 + 8 + 1
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The fifth addendum and the seventh addendum are zero because N = p = 3, and therefore
every column of length 4 or more is automatically zero (as we already mentioned above).

Example 7.1. The fundamental representation of SU(3, C) is given by

3 ∼

while its adjoint is given by

3∗ ∼

The reader may check, as an exercise, that the following computations are correct and
compare them with the results we already know.

3⊗ 3 ∼ ⊗ = + ∼ 6⊕ 3∗

6⊗ 3 ∼ ⊗ = + ∼ 10⊕ 8

6⊗ 6 ∼ ⊗ = + +

3⊗ 3∗ ∼ ⊗ = + ∼ 8⊕ 1

3∗ ⊗ 3∗ ∼ ⊗ = + +

We now want to generalize the relation (7.2), that is, in the special unitary group
SU(2, C) the totally antisymmetric form corresponds to the singlet 1.

More precisely, we shall prove that the Young diagram with N rows and 1 column is the
singlet in SU(N, C) for all N ∈ N. First, notice that we have

...
=

1√
n!

∑
σ∈Sn

(−1)sgn(σ)ψa1(σ(1))ψa2(σ(2)) . . . ψan(σ(n)),

where the ais takes value in the set {1, . . . , n}. Let U ∈ SU(N, C) be an arbitrary unitary
transformation, and consider

ψ′i = Uψi =⇒ (ψ′i)j = Uj, `(ψi)`,

where (ψi)` denotes the `th component of the ith vector. It suffices to prove that∑
σ∈Sn

(−1)sgn(σ)ψ1(σ(1))ψ2(σ(2)) . . . ψn(σ(n)) =
∑
σ∈Sn

(−1)sgn(σ)ψ′1(σ(1))ψ′2(σ(2)) . . . ψ′n(σ(n)),
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where ψi(σ(j)) denotes the component (ψi)j . A simple computation yields to∑
σ∈Sn

(−1)sgn(σ)ψ′1(σ(1)) . . . ψ′n(σ(n)) =
∑
σ∈Sn

(−1)sgn(σ)Uσ(1), `(ψ1)` . . . Uσ(n), `(ψn)` =

= εσ(1)...σ(n)Uσ(1), `(ψ1)` . . . Uσ(n), `(ψn)` =

= εσ(1)...σ(n)det(U)(ψ1)σ(1) . . . (ψn)σ(n) =

=
∑
σ∈Sn

(−1)sgn(σ)ψ1(σ(1)) . . . ψn(σ(n)),

which is exactly what we wanted to prove.

7.2.2 Adjoint Representation

The Young frame of the adjoint representation of a given representation is extremely easy
to find, especially when we are dealing with SU(N, C).

Indeed, we know that the Young column of length N corresponds to the singlet 1 in
SU(N, C), and therefore, given a representation R with a Young frame, we can find the
Young frame of R∗ as the "smallest" one that attached to the one of R gives a singlet.

Example 7.2. The adjoint of the fundamental representation 3 ∼ is given by 3∗ ∼
since

l = ∼ 1.

The adjoint of the representation 6 ∼ is given by the square, i.e.

6∗ ∼

since

l
= ∼ 1.

7.2.3 Multiplicity

There is an easy way to find, given an arbitrary Young frame, the corresponding represen-
tation in SU(3). Indeed, if we consider the number p1 of squares in the first row that have
no other square attached below them, and the number p2 of squares in the first row that
have no other square attached below them, then

N3 =
1

2
(p1 + 1)(p1 + p2 + 2)(p2 + 1)
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is the corresponding representation. For example, we have that

∼ 15

because p1 = 2 and p2 = 1.

7.2.4 Baryons, Resonances and Colors Model

Recall that the known baryons are made of three valence quarks, so they are fermions, i.e.,
they have half-integer spin. In particular, we denote by

p, n, Σ−, Σ0, Σ+, Λ, Ξ0, Ξ−

the collection of the eight baryons of the form | qqq〉. Using Young diagrams we infer that

| qqq〉 ∼ ⊗ ⊗ = + + + ∼ 10⊕ 8⊕ 8⊕ 1,

and therefore we would like to know something more specific about the composition of the
decuplet. We will not give any details, as this topic will most likely be presented in a better
way in a Quantum Physics course, but we simply recall some basic facts.

The four ∆ baryons form a quartet in the weight diagram of 10, and they are given
by ∆++ (constituent quarks: |uuu〉), ∆+ (|uud〉), ∆0 (|udd〉), and ∆− (| ddd〉), which
respectively carry an electric charge of +2, +1, 0, and −1. They have spin and isospin 3

2 ,
and mass ∼ 1240MeV /c2.
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λ3

Y

∆−

Σ∗− Σ∗+

∆0 ∆+ ∆++

Ξ∗− Ξ∗0

Σ∗0

Ω−

Figure 7.5: The decuplet of baryons. Note that the charge is constant on each diagonal
and takes value in {−1, 0, 1, 2}.

The baryon Ω− is given by | sss〉 and, as we will see in a few moments, this is one of the
reasons why we need to introduce the notion of colors. First, notice that

mΩ− ∼ 1650MeV /c2,

which is way different from the energy of the ∆ baryons since the symmetry in SU(3, C)
is broken by the introduction of the strange quark s, which brings a mass comparable to
ΛQCD, and this does not happen for u and d.

Furthermore, the baryon | sss〉 is totally symmetric with respect to the space, and this is
a direct contradiction with the Fermi-Dirac statistic, which asserts that it should be totally
antisymmetric.
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7.3 Fundamental Representation in SU(2, C)× U(1, C)

In this section, we want to decompose the irreducible representation 8 of SU(3, C) in the
product of irreducible representations of SU(2, C)×U(1, C). Recall that

Y =
2√
3
T 8 and 3 ∼ ∼

(
2,

1

3

)
⊕
(

1, −2

3

)
∼ 3

It follows that
8 ∼ = 3 + 3 3 + +

3
=

= (1, 0) + (2, −1) + (2, 1) + (3, 0).

since both 3 3
3 and 3 are zero.



Chapter 8

Special Orthogonal Group SO(4, R)

In this chapter, we study more in-depth the special unitary (Lie) group SO(4, R) and the
associated Lie algebra so(4, R). Recall that the set of all orthogonal matrices

O(N, R) :=
{
O ∈ GL(N, R) : OTO = OOT = IdN×N

}
is a group with respect to the matrix product. Similarly,

SO(N, R) :=
{
O ∈ GL(N, R) : OTO = OOT = IdN×N , det(O) = 1

}
is also a group, and it is called special orthogonal group.

8.1 Representations of SO(4, R)

The six generators of the 4-dimensional special orthogonal group can be computed explicitly
in the representation 4, and they are given by the following matrices:

M23 =


0 0 0 0
0 0 −ı 0
0 ı 0 0
0 0 0 0

 , M31 =


0 0 ı 0
0 0 0 0
−ı 0 0 0
0 0 0 0

 , M12 =


0 −ı 0 0
ı 0 0 0
0 0 0 0
0 0 0 0

 ,

M14 =


0 0 0 −ı
0 0 0 0
0 0 0 0
ı 0 0 0

 , M24 =


0 0 0 0
0 0 0 −ı
0 0 0 0
0 ı 0 0

 , M34 =


0 0 0 0
0 0 0 0
0 0 0 −ı
0 0 ı 0

 .

We immediately see that SO(4, R) is generated by the rotations restricted to all the possible
coordinate planes. More precisely, the matrix M ij is a rotation on the plane Span〈i, j〉.

The elements of SO(4, R) can be easily computed via the exponentiation of the matrix
M ij since we already know that

e
ıθ
(
0 −ı
ı 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
.
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In particular, it turns out that

(
eıθM

ij
)
k, `

=



1 if k = ` and k 6= i, k 6= j,

cos θ if k = ` = i or k = ` = j,

sin θ if (k, `) = (i, j),

− sin θ if (k, `) = (j, i),

0 otherwise.

This computation is quite surprising because, for one thing, it implies that 4 is not the
smallest nontrivial representation of SO(4, R). Indeed, as we will be able to show soon, the
associated Lie algebra so(4, R) can be decomposed as the direct product of two invariant
Lie algebras.

Our goal is now to find the relations between the generators, that is, [M ij , Mk`]. To
complete this task, we first rewrite the generators in a more compact manner in terms of
the Dirac deltas, that is,

(M ij)k` = −ı(δikδjl − δilδjk). (8.1)

It follows from (8.1) that

[M ij , Mk`] =

0 if {i, j} ∩ {k, `} = ∅,

−ıM ik if {i, j} ∩ {k, `} 6= ∅.

The algebra so(4, R) is thus given by the direct product of two invariant subalgebras if we
consider a new set of generators defined by

S1 =
1

2
(M23 +M41), Ŝ1 =

1

2
(M23 −M41),

S2 =
1

2
(M31 +M42), Ŝ2 =

1

2
(M31 −M42),

S3 =
1

2
(M12 +M43), Ŝ3 =

1

2
(M12 −M43).

In fact, the reader can quickly verify that from (8.1) it follows that

[Si, Sj ] = ıεijkSk,

[Ŝi, Ŝj ] = ıεijkŜk,

[Si, Ŝj ] = 0,

which means that

so(4, R) ∼= su(2, C)⊗ su(2, C) = Span〈S1, S2, S3〉 ⊗ Span〈Ŝ1, Ŝ2, Ŝ3〉.

In particular, the Lie algebra so(4, R) is not simple, but one can easily show that it is
semisimple since no invariant subalgebra is abelian (e.g., su(2, C) is not commutative).
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Consequently, there exists a bijective correspondence between the representations of
so(4, R) and the representation of the direct product su(2, C)⊗ su(2, C). For example,

(1, 1)↔ 1 or (2, 2)↔ 4,

while the mixed representations (2, 1) and (1, 2) are usually called spin representation.

Notice that these do not represent Dirac spinors because both (2, 1) and (1, 2) are given
by elements with four components. Since only two of them are linearly independent, it turns
out that these are Majorana spinors.



Chapter 9

Euclidean Groups En

In this chapter, we study more in-depth the special unitary (Lie) group En and the associated
Lie algebra, denoted by e2.

Recall that En is the symmetry group of the n-dimensional Euclidean space (Rn). Its
elements are the isometries associated with the Euclidean distance and are called Euclidean
isometries or Euclidean transformations.

9.1 Two-Dimensional Euclidean Group E2

The two-dimensional Euclidean group E2 is the symmetry group of the plane, and its ele-
ments are the transformations of the form(

x
y

)
7−→

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a1

a2

)
, (9.1)

where θ ∈ [0, 2π) is the rotation angle, and a = (a1, a2)T ∈ R2 denotes the translation.

In the previous chapters, we proved that the generic transformation of the form (9.1)
may be equivalently rewritten as a 3-dimensional transformation:xy

1

 7−→
R(θ)

a1

a2

0 0 1

xy
1

 ,

where R(θ) denotes the rotation of angle θ, that is,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

The generators of the Lie algebra (computed in the second chapter) are given by

P 1 = −ı ∂∂x ,

P 2 = −ı ∂∂y ,

J = −ı
(
x ∂
∂y − y

∂
∂x

)
,
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since one can easily check that

eıa1P
1

(
x
y

)
≈ (id2×2 + ıa1P

1)

(
x
y

)
=

(
x+ a1

y

)
,

eıa2P
2

(
x
y

)
≈ (id2×2 + ıa2P

2)

(
x
y

)
=

(
x

y + a2

)
,

eıθJ
(
x
y

)
≈ (id2×2 + ıθJ)

(
x
y

)
=

(
x
y

)
+

(
−θy
θx

)
.

We can easily compute the value of the commutators

[P 1, P 2] = 0,

[P 1, J ] = −ıP 2,

[P 2, J ] = ıP 1

from which we infer that, for any a ∈ {1, 2, J}, we have

f12a = 0 and f1J2 = −f2J1 = −1.

Recall that the action of any element of the group E2 can also be seen as the action of a
3-dimensional matrix, which will be denoted from now on by g(a, θ):xy

1

 7−→
R(θ)

a1

a2

0 0 1

xy
1

 =: g(a, θ)

xy
1

 .

The product between any two elements is given by

g(a, θ)g(b, φ) = g (R(θ)b + a, θ + φ) ,

and this is the composition rule that characterize the two-dimensional Euclidean group E2.
Using this notation, we can easily write the generators P 1, P 2 and J as follows:

J =

0 −ı 0
ı 0 0
0 0 0

 , P 1 =

0 0 ı
0 0 0
0 0 0

 , P 2 =

0 0 0
0 0 ı
0 0 0

 .

Remark 9.1. Notice that we cannot use the representation of the Euclidean groupxy
1

 7−→
R(θ)

a1

a2

0 0 1


to find the generators of E2. The reason is that, although the form is useful to multiply the
elements of E2, it is not the right vector space (and we shall see soon that a similar thing
happens for the Poincaré group.)

We can easily compute the elements in this particular representation by noticing that

(P i)2 = 0 for i = 1, 2 =⇒ (P i)n = 0 for i = 1, 2 and for all n ≥ 2,
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which means that the exponential power series has only two nonzero terms, i.e.,

eıa1P
1

= id3×3 − ıa1P
1 = g((a1, 0), 0) and eıa2P

2

= id3×3 − ıa2P
2 = g((0, a2), 0)

while the rotation is computed as usual:

eıθJ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 = R(−θ) = g(0, −θ).

Notice also that
t := Span〈P 1, P 2〉

is an invariant subalgebra, generated by P 1 and P 2, which is also abelian. In particular,
the algebra associated with E2 is not semisimple (and thus, it is not simple), and we can
always write

g(a, θ) = g(b, 0)g(0, θ) =⇒ e2 = t⊗ so(2, R).

We now want to study the action of a rotation on the generators P i, for i = 1, 2, in
order to show that the translations form a normal subgroup of E2. First, notice that

e−ıθJP 1eıθJ = g(0, θ)P 1g(0, −θ) =

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

0 0 ı
0 0 0
0 0 0

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

0 0 ı
0 0 0
0 0 0

 =

=

0 0 ı cos θ
0 0 ı sin θ
0 0 0

 = P 1 cos θ + P 2 sin θ = P ig(0, θ)i, 1,

and, in a similar way, we also have that

e−ıθJP 2eıθJ = g(0, θ)P 1g(0, −θ) =

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

0 0 0
0 0 ı
0 0 0

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

0 0 0
0 0 ı
0 0 0

 =

=

0 0 −ı sin θ
0 0 ı cos θ
0 0 0

 = −P 1 sin θ + P 2 cos θ = P ig(0, θ)i, 2.
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It follows that

g(0, θ)g(a, 0)g(0, θ)−1 = e−ıθReı(a1P
1+a2P

2)eıθR =

= e−ıθR
(
id3×3 − ıa1P

1 − ıa2P
2
)

eıθR =

= id3×3 − ıa1P
ig(0, θ)i, 1 − ıa2P

ig(0, θ)i, 2 =

=

1 0 a1 cos θ − a2 sin θ
0 1 a1 sin θ + a2 cos θ
0 0 1

 = g(a′, 0),

where a′ is a new translation vector defined by the product

a′ := R(θ)a.

Theorem 9.1. The subgroup of all translation

T :=
{
g(b, 0) : b ∈ R2

}
⊂ E2

is an invariant/normal subgroup of E2.

Proof. Let g(a, 0) ∈ T be a translation, and let g(b, θ) be an arbitrary element of E2. From
the identity proved above, it follows that

g(b, θ)g(a, 0)g(b, θ)−1 = g(b, 0)g(0, θ)g(a, 0)g(0, θ)−1g(−b, 0) =

= g(b, 0)g(R(θ)a, 0)g(−b, 0) =

= g(R(θ)a, 0) ∈ T,

and this concludes the proof.

In particular, we can consider the quotient group E2�T. It is interesting to notice that
any element in the quotient depends on the rotation only since

[g(c, θ)] ∈ E2�T =⇒ g(a, 0) [g(c, θ)] = [g(c, θ)] ,

and therefore
[g(c, θ)] =

{
g(b, θ) : b = c + a, a ∈ R2

}
=

=
{
g(b, θ) : b ∈ R2

}
.

In particular, the elements of the quotient group E2�T depends on the rotation angle θ only,
which means that

E2�T −→ SO(2, R), [g(b, θ)] 7−→ R(θ)

is an isomorphism, that is,
E2�T ∼= SO(2, R).
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9.1.1 Irreducible Representation of E2

In this section, our goal will be to determine all the finite-dimensional irreducible represen-
tations of the Euclidean group E2.

Remark 9.2. The Euclidean group E2 is not compact since the norm of the elements g(b, θ)
is arbitrarily big (and, hence, not bounded). Unitary representations of non-compact non-
abelian Lie groups (like E2) tend to be infinite-dimensional, as we will see in a few moments.

Trivial Representation. Fix m ∈ Z. There is a "trivial" representation given by

g(b, θ) 7−→ Um(b, θ) := eımθ. (9.2)

To assure that (9.2) actually defines a representation, we simply need to check the associa-
tivity property. Indeed, from the product formula

g(a, θ)g(b, φ) = g(R(θ)b + a, θ + φ),

we immediately infer that

g(a, θ)g(b, φ) 7−→ eım(θ+φ) = Um(a, θ)Um(b, φ),

which means that (9.2) satisfies the associative property.

The problem with this particular representation is that it does not bring any information
about the translations, and therefore it is not a faithful representation. On the other hand,
the map (9.2) gives a faithful representation of the quotient space

[g(0, θ)] 7−→ Um(θ) := eımθ. (9.3)

Infinite-Dimensional Representation. Let us consider the Casimir operator relative
to the translation invariant subalgebra, i.e.,

P2 := (P 1)2 + (P 2)2.

Recall that P2 commutes with every other generator P 1, P 2 and J . Indeed, a straightforward
computation shows that

[P2, J ] = P 1[P 1, J ] + [P 1, J ]P 1 + P 2[P 2, J ] + [P 2, J ]P 2 =

= −ıP 1P 2 − ıP 2P 1 + ıP 2P 1 + ıP 1P 2 = 0.

We also consider the up/down operators P±, defined by setting

P± = P 1 ± ıP 2,

and we notice that
[P±, P±] = 0 and [J, P±] = ±P±.

In particular, the Casimir operator P2 commutes with the generator J , which means that
there exists a common basis of eigenstates (i.e., they are simultaneously diagonalizable).
More precisely, let us consider an orthonormal basis |p, m〉 such that{

J | p, m〉 = m | p, m〉,

P2 | p, m〉 = p2 | p, m〉,
and

{
〈p, m | p, m〉 = 1,

〈p, m | p, m′〉 = 0.
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In order to understand how the up/down operators P± acts on the eigenstates, we first
notice that

J (P+ | p, m〉) = P+ | p, m〉+mP+ | p, m〉 = (m+ 1)P+ | p, m〉,

which means that there exists a complex c ∈ C such that P+ | p, m〉 = c | p, m + 1〉. To
compute the absolute value of c, we employ the orthogonality and the identity above as
follows:

|c|2 = 〈p, m+ 1 | |c|2 | p, m+ 1〉 = 〈p, m |P−P+ | p, m〉 = p2 〈p, m | p, m〉
=1

.

In particular, we have that

|c|2 = p2 =⇒ c = ±p
ı

=⇒ P± |p, m〉 = ±p
ı
| p, m± 1〉,

and therefore we need to consider every possible value of m to have a basis of eigenstates
{|p, m〉}m∈Z, which clearly gives us a infinite-dimensional vector space. It follows that

g(0, θ) | p, m〉 = e−ıθJ | p, m〉 = e−ımθ | p, m〉,

which means that the "trivial" representation presented above gives the eigenvectors of the
pure rotations in E2. Therefore, if we employ the fact that the basis is orthonormal, we find
that

〈p, m′ | g(0, θ) | p, m〉 = δm,m′e
−ımθ.

We now want to do the same computation with a translation element g(a, θ), but, surpris-
ingly, it requires quite a lot of work. First, recall that

g(0, θ)g(a, 0)g(0, θ)−1 = g(a′, 0),

and hence we can always write a as a suitable rotation.

Namely, let φ be the angle between the x-axis and the vector a, and consider the pro-
jection a0 := (a, 0) for a equal to the length of a, i.e., a = |a|. Then

a = R(φ)a0 =⇒ e−ıP ·a = g(0, φ)g(a0, 0)g(0, φ)−1,

which yields to the following identity:

g(a, θ) = g(0, θ)g(0, φ)g(a0, 0)g(0, φ)−1.
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A straightforward computation shows that

〈p, m′ | g(a, θ) | p, m〉 = 〈p, m′ | g(0, θ)g(0, φ)g(a0, 0)g(0, φ)−1 | p, m〉 =

= e−ımθ〈p, m′ | g(0, φ)g(a0, 0)g(0, φ)−1 | p, m〉 =

= e−ımθeıφ(m−m′)〈p, m′ | e−ıP ·a0 | p, m〉 =

= e−ımθeıφ(m−m′)〈p, m′ | e−ıP
1a | p, m〉 =

= e−ımθeıφ(m−m′)〈p, m′ | e
−ıa
2 (P++P−) | p, m〉 =

= e−ımθeıφ(m−m′)
+∞∑
k, `=0

1

k!`!

(
−ıa

2

)k+`

〈p, m′ |P k+P `− | p, m〉 =

= e−ımθeıφ(m−m′)
+∞∑
k, `=0

1

k!`!

(
−ıa

2

)k+` (p
ı

)k (
−p
ı

)`
δm′,m+k−` =

= e−ımθeıφ(m−m′)
+∞∑
k, `=0

(−1)k

k!`!

(pa
2

)k+`

δm′,m+k−`.

Notice that for m > m′ we can consider ` := m−m′ + k, and obtain

〈p, m′ | g(a, θ) | p, m〉 = e−ımθeıφ(m−m′)
+∞∑
k=0

(−1)k

k!(m−m′ + k)!

(pa
2

)2k+m−m′

=

= e−ımθeıφ(m−m′)
(pa

2

)m−m′ +∞∑
k=0

(−1)k

k!(m−m′ + k)!

(pa
2

)2k

=

= e−ımθeıφ(m−m′)Jm−m′(ap),

where Jν(z) is the Bessel function defined by

Jν(z) :=
(z

2

)ν +∞∑
k=0

(−1)k
(
z
2

)2k
k! Γ(ν + k + 1)

. (9.4)

Recall that the Bessel function is the solution, regular at z = 0, of the second-order differ-
ential equation

d2

dz2
u(z) +

1

z

d

dz
u(z) +

(
1− ν2

z2

)
u(z) = 0,

while the Gamma function is defined by setting

Γ(z) :=

∫ +∞

0

tz−1e−t dt for all Re(z) > 0,
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which can be easily extended analytically to the whole complex plane except at the integers
(Z−) less than 0. Furthermore, the Bessel function satisfies a nontrivial symmetry property

J−ν(z) = (−1)νJν(z) for all ν ∈ Z. (9.5)

Now, notice that for m′ > m we can consider k := m′ −m+ `, and obtain

〈p, m′ | g(a, θ) | p, m〉 = e−ımθeıφ(m−m′)
+∞∑
`=0

(−1)m
′−m+`

(m′ −m+ `)!`!

(pa
2

)2`+m′−m
=

= e−ımθeıφ(m−m′)
(
−pa

2

)m′−m +∞∑
`=0

(−1)`

(m′ −m+ `)!`!

(pa
2

)2`

=

= e−ımθeıφ(m−m′)(−1)m
′−mJm′−m(ap) =

(9.5)
= e−ımθeıφ(m−m′)Jm−m′(ap),

which means that for all m, m′ ∈ Z we have

〈p, m′ | g(a, θ) | p, m〉 = e−ımθeıφ(m−m′)Jm−m′(ap).

Remark 9.3. The representation presented here reduces to the "trivial" one when p2 = 0.

Remark 9.4. If p2 is different from zero, we can choose a different system of coordinates.
The Casimir operator P2 commutes with P 1 as well, and therefore we can find a simultaneous
basis of eigenstates | p, 0〉 in such a way that

P 1 | p, 0〉 = p | p, 0〉 and P 2 | p, 0〉 = 0,

while the Casimir operator gives

P2 | p, 0〉 = p2 | p, 0〉.

A straightforward computation also proves that

J | p, 0〉 = |R(θ)p0〉 where p0 = (p, 0).



Chapter 10

Lorentz Group

The Lorentz group, denoted by O(1, 3), is the group of all the invertible matrices Λ ∈
GL(4, R) preserving the Minkowski space-time metric, that is, satisfying

ΛηµgηλΛλν = gµν , (10.1)

where

g ≡ (gµν)µ, ν=0, ..., 3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is the standard Minkowski space-time metric with signature (1, −1). The transformations
of the Lorentz group are thus given by

pµ 7−→ Λµνp
ν , (10.2)

where Λ is a regular matrix satisfying (10.1) and pµ is a contravariant 4-vector.

10.1 Introduction

In this chapter we will mainly focus on a class of equivalence of the Lorentz group O(1, 3),
namely the connected component SO+(1, 3) (usually called proper orthochronous Lorentz
group), which will be introduced shortly.

Recall that the inverse of g is usually denoted via upper indices, in such a way that the
Einstein convention works just fine, that is, we set

gµν := (g−1)µν for µ, ν = 0, . . . , 3.

We say that a quadrivector pµ is contravariant, and the quadrivector pµ is covariant . It
follows that the scalar product induced by the Minkowski space-time metric gµν can be
compactly written using the convention introduced above:

pµqν := pµqνgµν = pµqνg
µν . (10.3)
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Notice also that from (10.1) we necessarily have

[det(Λ)]
2

= 1 =⇒ det(Λ) = ±1,

and we decide (arbitrarily) to work in the component of the space whose elements satisfies
the constraint

det(Λ) = 1. (10.4)

Additionally, notice that

ΛηµgηλΛλν = gµν
η=λ
=⇒ (Λ0

0)2 −
3∑
i=1

(Λi0)2 = 1 =⇒ (Λ0
0)2 ≥ 1,

which means that either Λ0
0 is greater than or equal to 1 or less than or equal to −1. We

decide (arbitrarily) to work in the component of the space where

Λ0
0 ≥ 1. (10.5)

The connected component of O(1, 3) satisfying the properties (10.4) and (10.5) is called in
the literature proper orthochronous Lorentz group, and it is usually denoted by T+.

Remark 10.1. Recall that the Levi-Civita tensor εµνλσ is defined by setting

εµνλσ :=


1 if (µνλσ) even permutation of (0123),

−1 if (µνλσ) odd permutation of (0123),

0 otherwise.

The reader may check that the matrices Λ ∈ T+ satisfies the following useful property

εµνλσ = ΛαµΛβνΛγλΛδσεαβγδ

by means of the following well-known formula for the determinant:

1 = det(Λ) = εµνλσΛµ0 Λν1Λλ2Λσ3 .

In particular, the Levi-Civita tensor is called invariant tensor for the proper Lorentz group,
since it satisfies the same properties of the Levi-Civita tensor εijk in the group SU(3, C).

10.2 Irreducible Representations of T+: Part I

In this section, we investigate the irreducible representations of the group T+, and we take
a closer look at the Lie algebra.

10.2.1 Generators

Recall that the Lie group SO(4, R) is generated by the six matrices M ij , where the couple
(i, j) denotes the rotation plane and ranges between the axes x̂, ŷ, ẑ, ŵ.
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Using a similar notation, we now introduce the generators of the proper orthochronous
Lorentz group T+, and we show that - accordingly to what happens in SO(4, R) - only 6 of
them are actually necessary. Let

(Jλσ)νµ := −ı (δνλgσµ − δνσgλµ) for λ, σ = 0, . . . , 3,

and notice that these are antisymmetric with respect to the swap of indices, that is,

Jλσ = −Jσλ,

so that only 6 of them are actually necessary to generate the Lie group T+. We define

Km := Jm, 0 for m = 1, 2, 3,

and we notice that these are nothing but the boost in the spacial directions (x̂, ŷ and ẑ
respectively.) In a similar fashion, we define

Jk :=
1

2
εkmnJm,n for k = 1, 2, 3,

and we notice that these are the generators of the rotation subgroup (isomorphic to SO+(3, R))
with respect to the spacial coordinates.

The set of generators {Jλσ}λ, σ=0, ..., 3 may be equivalently replaced by the generators
{Km, Jk}m, k=1, ..., 3 Lie group T+. and it is easy to see that

Λαθφrot :=


1 0 0 0
0 c(α)c(θ)c(φ)− s(α)s(φ) −c(α)c(θ)s(φ)− s(α)c(φ) c(α)s(θ)
0 s(α)c(θ)c(φ)− c(α)s(φ) −s(α)c(θ)s(φ) + c(α)c(φ) s(α)s(θ)
0 −s(θ)c(φ) s(θ)s(φ) c(θ)

 ,

where c(·) and s(·) denote the cosine and the sine respectively, is the transformation in T+

associated to {Jk}k=1, 2, 3. The matrix

Λγβẑboost :=


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ


is, for example, the boost transformation along the z-axis. The parameters of the boost
elements are nothing else than the Lorentz transformations parameters, that is,

β =
v

c
∈ [−1, 1] and γ =

1√
1− β2

≥ 1.

Remark 10.2. There is an alternative parametrization for the boost elements. Namely, we
replace β with the hyperbolic tangent of another parameter, that is, we set

β := tanhω.

Then ω takes value in (−∞, +∞), and therefore

γ =
1√

1− tanh2 ω
= coshω ≥ 1,

which gives us the boost transformation

Λγωẑboost :=


coshω 0 0 − sinhω

0 1 0 0
0 0 1 0

− sinhω 0 0 coshω

 .
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10.2.2 Lie Algebra of T+

In this section, we investigate the Lie algebra associated to T+, denoted by so+(3, 1), by
means of different sets of generators. First, a simple computation shows that

(Jµν)αβ(Jσλ)βγ = (−ı)2
(
δαµgνβ − δαν gµβ

) (
δβσgλγ − δ

β
λgσγ

)
=

= −δαµgνβδβσgλγ + δαµgνβδ
β
λgσγ + δαν gµβδ

β
σgλγ − δαν gµβδ

β
λgσγ =

= −δαµgνσgλγ + δαµgνλgσγ + δαν gµσgλγ − δαν gµλgσγ =

= ı [(Jµν)αλgσγ − (Jµν)ασgλγ ] ,

and therefore

[Jµν , Jσλ]αγ = (Jµν)αβ(Jσλ)βγ − (Jσλ)αβ(Jµν)βγ =

= ı
[
(Jµν)αλgσγ − (Jµν)ασgλγ −

(
(Jσλ)αν gµγ − (Jσλ)αµgνγ

)]
=

= ı
[
(Jµν)αλgσγ − (Jµν)ασgλγ − (Jσλ)αν gµγ + (Jσλ)αµgνγ

]
.

In order to simplify the Lie algebra, it is convenient to use the 6 equivalent generators
introduced above, that is, {Jk, Km}k,m=1, 2, 3. It turns out that

[Jm, Jn] = ıεmnkJk,

[Km, Jn] = ıεmnkKk,

[Km, Kn] = −ıεmnkJk,

and therefore (looking at the first identity) the set of generators {Jk}k=1, 2, 3 forms an
invariant subalgebra isomorphic to so(3, R), that is, we have an isomorphism

Span〈J1, J2, J3〉 ∼= so(3, R) ⊂ so(3, 1).

Let us consider now the up-down generators, given by

Mn :=
1

2
(Jn + ıKn) and Nn :=

1

2
(Jn − ıKn)

for n = 1, 2, 3, and notice that

[Mm, Mn] = ıεmn`M`,

[Nm, Nn] = −ıεmn`N`,

[Mm, Nn] = 0,

which means that the sets of generators {Mn}n=1, ..., 3 and {Nn}n=1, ..., 3 form two invariant
subalgebras, both isomorphic to su(2, C). It follows that the Lie algebra of the Lorentz group
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T+ is isomorphic to the product of two copies of the Lie algebra associated to su(2, C), that
is, there is an isomorphism

so(3, 1) ∼ Span〈Mn, Nm〉m,n=1, 2, 3 ∼ su(2, C)× su(2, C).

It follows that the irreducible finite-dimensional representations of the Lorentz group T+

are in correspondence with the couples (j1, j2), where j1, j2 ∈ 2−1 ·Z denote the irreducible
representations of SU(2, C) (which have been already investigated thoroughly in the previous
chapters.) For example, the couple

(0, 0) denote the trivial representation,

while (
1

2
, 0

)
and

(
0,

1

2

)
are usually referred to as spinorial representations of chirality left (L) and right (R) respec-
tively, and we will study them more in details in the subsequent section.

10.3 Spinorial Representations

The goal of this brief section is to expand a little bit on the last notion we introduced in
the previous discussion: the spinorial representations.

Remark 10.3. The Lorentz group T+ is not compact since the boost’s parameter γ can
be arbitrarily big (γ ≥ 1), and thus its norm is arbitrarily big. It follows that irreducible
representations need not to be finite-dimensional.

First, recall that the special linear group SL(2, C) is a 6-parameters Lie group because
an arbitrary element is given by(

α1 + ıβ1 α2 + ıβ2

α3 + ıβ3 α4 + ıβ4

)
for αi, βi ∈ R,

satisfying the constraint detA = 1, which gives us two equations (real and imaginary part).

In the first half of this section, the main goal is to prove that every transformation in
the Lorentz group T+ corresponds to an element of the group SL(2, C), and infer that

T+
∼= SL(2, C).

Denote by σi the ith Pauli’s matrix. We introduce an useful notation that takes into account
the particular form of the Minkowski metric, that is,

σµ := (−id2×2, σ
i)i=1, 2, 3,

and
σ̄µ := (−id2×2, −σi)i=1, 2, 3.

Let pµ be a given 4-vector. We associate to pµ the matrix

P := pµσµ,
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where σµ = σνgµν . A straightforward computation shows that

P = p0σ0 − piσi =

(
−p0 − p3 −p1 + ıp2

−p1 − ıp2 −p0 + p3

)
,

and, therefore, we can easily reverse this operation and find that

pµ =
1

2
Tr [σ̄µP ] ,

where P is the matrix above. In particular, every 4-vector pµ corresponds to a matrix,
denoted by the capital P , and therefore it suffices to show that SL(2, C) acts on P in the
same way T+ acts on pµ to infer that

T+
∼= SL(2, C).

Let M ∈ SL(2, C). The action on P is defined by

P 7−→MPM† ≡ P ′,

and this shows immediately that

pµpµ = detP = detP ′ = (p′)µp′µ.

Example 10.1. Let φ ∈ [0, 2π). The matrix M could be chosen in such a way that

Mθ := e
ı
2φσ3 =

(
eı
φ
2 0

0 e−ı
φ
2

)
or M = e

ı
2φσ2 =

(
cos φ2 sin φ

2

− sin φ
2 cos φ2

)
.

Furthermore, if ω ∈ (−∞, +∞) is the parameter introduced above, it makes sense to con-
sider the real exponential

Mω := e
1
2ωσ3 =

(
e
ω
2 0
0 e−

ω
2

)
since, given a 3-dimensional vector v, it is easy to see that

Tr(σi) = 0 for all i = 1, 2, 3 =⇒ det
[
e

1
2 v·σ

]
= 1.

Let us focus on the complex exponential transformation induced by the matrix Mθ

introduced above. A straightforward computation shows that

P 7−→ P ′ =

(
eı
φ
2 0

0 e−ı
φ
2

)(
−p0 − p3 −p1 + ıp2

−p1 − ıp2 −p0 + p3

)(
e−ı

φ
2 0

0 eı
φ
2

)
=

(
−(p′)0 − (p′)3 −(p′)1 + ı(p′)2

−(p′)1 − ı(p′)2 −(p′)0 + (p′)3

)
,

where(p0)′ = p0,

(p3)′ = p3,
and

(p1)′ = p1 cos θ + p2 sin θ,

(p2)′ = −p1 sin θ + p2 cos θ
=⇒

(
(p1)′

(p2)′

)
= R(−θ)

(
p1

p2

)
.
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In a similar fashion, if we focus on the real exponential transformation induced by the matrix
Mω introduced above, we have that

P 7−→ P ′ =

(
e
ω
2 0
0 e−

ω
2

)(
−p0 − p3 −p1 + ıp2

−p1 − ıp2 −p0 + p3

)(
e
ω
2 0
0 e−

ω
2

)
=

(
−(p′)0 − (p′)3 −(p′)1 + ı(p′)2

−(p′)1 − ı(p′)2 −(p′)0 + (p′)3

)
,

where(p1)′ = p1,

(p2)′ = p2,
and

(p0)′ = p0 cos θ − p3 sin θ,

(p3)′ = p0 sin θ + p3 cos θ
=⇒

(
(p0)′

(p3)′

)
= R(θ)

(
p0

p3

)
.

In particular, the complex exponentials (w.r.t. the Pauli’s matrices) give us the transforma-
tions of the form Λαθφrot , while the real exponentials give us the boost transformations, and
therefore we can finally infer that

T+
∼= SL(2, C).

We are now ready to investigate the spinorial representations introduced above. Consider a

Weyl spinor (L) with two components ψ =

(
·
·

)
∼ ( 1

2 , 0) that transforms like

ψ 7−→Mψ,

and notice that ψ̄ ∼ (0, 1
2 ) and

ψ̄ 7−→M∗ψ̄.

It follows that
ψ 7−→ ψ′ =⇒ (ψ′)α = Mβ

αψβ ,

and, if we set ψα := εαβψβ , then one can easily prove that

(ψ′)α = (M−1)αβψ
β .

In a similar fashion, one could also prove that the conjugate transforms in a similar way,
that is,

(ψ̄′)α = (M∗)βαψ̄β =⇒ (ψ̄′)α =
[
(M−1)∗

]α
β
ψ̄β .

Let ψ and χ be two Weyl (L)-spinor. The scalar product is commutative as a consequence
of the following, straightforward, computation:

ψαχ
α = ψβεαβχγε

αγ =

= εαβε
αγψβχγ =

= δγβψ
βχγ = ψαχα.

Notice that, for a two-component spinor ψ, it is equivalent to be a Weyl spinor or a Majorana
spinor since we can write it in the form

ψM =

(
ψ

ψ

)
,
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which means that one is the antiparticle of the other one. The Dirac spinor

ψD =

(
ψ
χ

)
,

on the other hand, is not equivalent because the two components are independent.

Example 10.2 (QCD). Let us consider the two-component spinor

ψ =

(
qL
qR

)
∼ 3,

where 3 is the fundamental representation of SU(3, C) (color), and

ψL ∼ qL : −→←−

ψR ∼ qR : −→−→

and λ =
p · J
|p|

.

The fermions "condense" in the empty space and, in particular, we have that

〈ψψ̄〉 = 〈qcRqL〉+ 〈qcLqR〉.

Dirac Spinor. Recall that the Dirac matrices γµ’s are defined by means of the Pauli
matrices σµ’s as follows:

γµ =

(
0 σµ

σ̄µ 0

)
and γ5 = γ0γ1γ2γ3 =

(
id2×2 0

0 −id2×2

)
.

Let (m, ψ̄D, ψD) be a Dirac mass triplet. We introduce the Dirac conjugate ψ+
D as

ψ̄D = ψ+
Dγ0,

and we notice that
mψ̄DψD = ψcRψL + hc.

The Dirac spinor representation is not an irreducible representation of the Lorentz group
T+, but it is the direct sum of two irreducible representations. More precisely, we have that

ψD ∼ (
1

2
, 0)⊕ (0,

1

2
),

while the Weyl spinor representation is obviously irreducible and given by

ψM ∼ (
1

2
, 0).

The tensor product representation ψM ⊗ ψM is clearly equal to the trivial representation 0
since it contains the singlet only. For example, the kinetic term

Lc = ψ̄ıγ̄µ∂µψ + ψ ↔ χ,

where ψ̄ ≡ ψ+, is given by a (1/2, 1/2) vector. Indeed, one can easily prove that

ψ̄ ∼ (0,
1

2
) and γ̄µψ ∼ (

1

2
, 0) and ∂µ ∼ (

1

2
,

1

2
) =⇒ Lc ∼ (

1

2
,

1

2
).
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In the neutrino theory (m = 0) the equation of motion is the well-known Weyl equation,
which asserts that

ıσ̄µ∂µψ = 0. (10.6)
On the other hand, in the Dirac theory (mD 6= 0) the energy is given by

Lc +mD(χ̄ψ + ψ̄χ),

and therefore the equation of motion is given by

ıσ̄µ∂µψ︸ ︷︷ ︸
Left (L) spinor

+ mDχ︸ ︷︷ ︸
Right (R) spinor

= 0.

In any case, if we write explicitly the Weyl equation (10.6), we find that

(−ı∂0 − ıσi∂i)ψ = 0,

and therefore, if we set pi := −ı∂i for i = 1, 2, 3, then

E := ı∂0 =⇒ E = ~p · ~σ.

In conclusion, since the Einstein’s equation asserts that E is equal to the modulus of ~p, i.e.√
p2, we infer that

~p · ~σ
|p|

= 1.

10.4 Irreducible Representations of T+: Part II

In this finals section, the primary goal is to conclude the discussion of the possible set of
generators of the Lorentz group and to find the finite-dimensional representations similarly
to what we have already done for the groups introduced earlier.

10.4.1 Generators of T+

Recall that the generators are defined by

(Jλσ)νµ := −ı (δνλgσµ − δνσgλµ) for λ, σ = 0, . . . , 3.

If we consider the Dirac matrices

γµ =

(
0 σµ
σ̄µ 0

)
and γ5 = γ0γ1γ2γ3,

then it is easy to see that

Jµν =
ı

4
[γµ, γν ] =

ı

4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
,

and, hence, we refer to {γµ}µ=0, ..., 3 as chiral basis, and to γ5 as chiral operator . Recall that

γ5 =

(
id2×2 0

0 −id2×2

)
,

and this implies that the chiral operator commutes with each generator Jµν , that is,

[Jµν , γ5] = 0 =⇒ invariant chirality of the Lorentz group,

and it does not depend on the reference system.
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10.4.2 Finite Irreducible Representations of T+

In the first half of the chapter, we proved that the Lie algebra associated to T+ is isomorphic
to the Lie algebra su(2, C)× su(2, C). We also introduced the operatorsKm := Jm, 0 for m = 1, 2, 3,

Jk := 1
2ε
kmnJm,n for k = 1, 2, 3,

and

Mn := 1
2 (Jn + ıKn) for n = 1, 2, 3,

Mn := 1
2 (Jn − ıKn) for n = 1, 2, 3,

in such a way that the following commutator relations hold true:

[Mm, Mn] = ıεmn`M`,

[Nm, Nn] = −ıεmn`N`,

[Mm, Nn] = 0.

It follows that the (second) sets of generators form two invariant subalgebra isomorphic to
su(2, C), which means that the Lie algebra of the Lorentz group T+ is semisimple, but not
simple.

Let j ∈ 1
2Z be a representative of a finite-dimensional representation of su(2, C), and let

J2 = j(j + 1) denote the Casimir operator. Consider the usual basis of eigenstates

{| j, m〉}m=−j, ..., j

of the irreducible representation of su(2, C). Furthermore, recall that the irreducible finite-
dimensional representations of the Lorentz group T+ are in correspondence with the couples
(j1, j2), where j1, j2 ∈ 1/2Z denote the irreducible representations of SU(2, C).

We can define, as we have already done in the previous chapters, the up/down operators
as follows (obtaining the six generators of the Lorentz group):K± := ı(1⊗N± −M± ⊗ 1),

K3 = ı(N3 −M3),
and

J± := M± ⊗ 1 + 1⊗N±,

J3 = M3 +N3.

Consider now a general representation (j1, j2), and let us denote by | j1, m1〉| j2, m2〉 the
eigenstates of the two irreducible representations of SU(2, C). Then

(J3)(m′1,m
′
2); (m1,m2) = δm′1,m1

δm′2,m2
(m1 +m2),

and (see Section 6.3)

(J+)(m′1,m
′
2); (m1,m2) = δm′1,m1+1δm′2,m2

√
(j1 −m1)(j1 +m1 + 1) + . . .

· · ·+ δm′1,m1
δm′2,m2+1

√
(j2 −m2)(j2 +m2 + 1).

In a similar fashion, it turns out that

(K3)(m′1,m
′
2); (m1,m2) = ıδm′1,m1

δm′2,m2
(m2 −m1),

and
(K+)(m′1,m

′
2); (m1,m2) = ı

[
δm′1,m1

δm′2,m2+1

√
(j2 −m2)(j2 +m2 + 1)− . . .

· · · − δm′1,m1+1δm′2,m2

√
(j1 −m1)(j1 +m1 + 1)

]
.
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Remark 10.4. The representation (j1, j2) is finite-dimensional, but it is not unitary. In
fact, the Lorentz group T+ is not compact, and hence unitary representations need to be
infinite-dimensional.

10.5 Chirality

In this final section, we briefly discuss the physic part concerning the Lorentz group, and
we show that the theory developed so far is strongly correlated with the Higgs mechanism.

10.5.1 Standard Model

The Gauge group in the standard model is given by

G := SUQED(3, C)× SUL(2, C)×UY (1, C).

The second term SUL(2, C) is profoundly related to Higgs mechanism. Indeed, the group
acts on the bosons Wµ, and the couple (W 3, Y ) is transformed in the couple (Z, Y ), where
Z is a different boson. The Higgs mechanism breaks the symmetry of Uem(1, C) since the
boson Z acquires a whole lot of mass. It follows that the radius is small, and the potential
has an exponential growth, that is,

VY = g
e−mτ

τ
"Yukawa Potential",

and it is thus a non-Coulombian type of potential. We also notice that

SUL(2, C) =⇒ the symmetry is broken (left only).

There are different possible quarks, and, more precisely, we have

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

∼ 3× (2,
1

3
)×


2

3

−1

3

 in G,

(
u
d

)
R

∼ 3× (

(
1
1

)
,


4

3

−2

3

)×


2

3

−1

3

 in G,

and, clearly, there are some differences between left and right. It also turns out that(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

∼ 3× 2× (−1) =⇒ Qem = −1,

e−R, µ−R, τ−R ∼ 1× 0× (−2) =⇒ Qem = −1,

(νe)R, (νµ)R, (ντ )R ∼ 1× 1× 0 =⇒ Qem = 0.

Notice that we thought that neutrino did not have any mass, but later (neutrino oscillations)
we found that the mass is different from zero.
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The fermions’ mass mixes up the left (L) and right (R), and it is not separable. The
mass of an elementary particle given by condensation is called Yukawa mass, and we have
that

LY = gY (ψ̄L)(φ)ψR + . . .

Notice that the masses of the elementary particles are not all given as a result of the Higgs
mechanism; for example, we do not know it yet for the neutrino. Even if the (R) neutrino
νR does not exist, the (L) neutrino does, and it turns out that

mL(ψ′ψ2 − ψ2ψ′) = 2mLψ
′ψ2 6= 0,

which means that the mass mL of the (L) neutrino should be different from zero. A similar
argument works for the (R) neutrino νR, and the Higgs mechanics (may..) gives us the
second addendum of

mRνRνR +mDν̄RνL + hc,

while the first comes out from the fact that νR is unbiased with respect to everything else.



Chapter 11

Poincaré Group

The Poincaré group, usually denoted1 by R1, 3oSO+(1, 3), is the group of all the isometries
of the Minkowski space-time. More precisely, the transformations are all of the form

pµ 7−→ Λµν p
ν + bµ, (11.1)

where Λ denotes a matrix in SO+(1, 3) = T+ - the proper orthochronous Lorentz group -,
and bµ ∈ R4 is a space-time translation vector.

11.1 Introduction

We first want to give meaning to the notation R1, 3oSO+(1, 3), and explain why it coincides
with the Poincarè group. To achieve this, we first need to introduce the notion of semidirect
product between two groups.

Definition 11.1 (Semidirect Product). Let G and G′ be two groups, and let ϕ : G′ −→
Aut(G) be a group homomorphism. The (outer) semidirect product of G and G′ with respect
to ϕ is a new group, denoted by G oϕ G′, is defined as follows.

(a) The underlying set is the Cartesian product G × G′.

(b) The group operation · is defined by means of ϕ. Namely, we set

(g, g′) · (h, h′) := (gϕg′(h), g′h′),

where ϕg′ := ϕ(g′) ∈ Aut(G).

Exercise 11.1. Let G and G′ be two groups, and let ϕ : G′ −→ Aut(G) be a group
homomorphism. Find, explicitly, the identity and the inverse of the group G oϕ G′.

Remark 11.1. The direct product (introduced in Section 1) is nothing but a particular
case of semidirect product, which is achieved when ϕ sends each element of G′ to the identity
idG ∈ Aut(G).

1We shall explain the meaning of this particular notation soon. For the time being, one could think of it
as a simple notation and nothing more.
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Theorem 11.2 (Semidirect Decomposition). Let G be a group, and let H, K 6 G. Suppose
that the following properties hold true:

(i) The subgroup H is normal, that is, H E G.

(ii) The intersection between H and K is trivial, that is, H ∩K = ∅.

(iii) Every element g ∈ G can be written as the product of an element h ∈ H and an element
k ∈ K, that is, G = HK.

Then G is isomorphic to the semidirect product H oϕ K, where ϕ(k) ∈ Aut(H) is the
conjugation map, which is defined by

ϕ(k) := ϕk : H −→ H, h 7−→ khk−1.

Proof.

The transformations of the form (11.1) are usually denoted by g(b, Λ), in such a way that
the elements of the form g(0, Λ) = Λ generate the Lorentz group T+, while the elements of
the form g(b, 0) = T (b) generate the translation group T := R1, 3.

We shall prove this later, but the abelian group of translation T is normal, while the
proper orthochronous Lorentz group SO+(1, 3) is a subgroup acting on the Minkowski vector
space T := R1, 3 as follows:

g(a, Λ)v = a + Λv.

It follows that the Poincarè group is isomorphic to the semidirect product R1, 3oSO+(1, 3)
with respect to the group homomorphism ϕ : SO+(1, 3) −→ Aut(R1, 3) defined by setting

ϕ(Λ)(v) := Λv.

11.2 Irreducible Representations of P(1, 3)

In this section, we investigate the irreducible representations of the Poincaré group R1, 3 o
SO+(1, 3), and we take a closer look to its Lie algebra, and the connection with the Lorentz
Lie algebra.

11.2.1 Generators

Let Jµν denote the generators of the Lie algebra associated to T+, and let Pµ be the
generators of the translations, that is, we require that

T (b) = e−ıb
µPµ , (11.2)

where T (b) denotes the space-time translation given by the vector b. Note that Pµ is also
given by −ı∂xµ , and therefore we may equivalently denote the generators of the translation
subgroup as follows (taking into account the signature (1, −1)):

Pµ = −ı ∂

∂xµ
 

H
0 = −ı ∂∂t ,

P i = ı ∂
∂xi for i = 1, 2, 3.
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Furthermore, the set of generators {Pµ}µ=0, ..., 3 generates a normal and abelian subalgebra
P of2 p(1, 3), and this tells us that the Lie algebra of the Poincaré group is not semisimple.
In particular, we have the following commutator identites:

[Pµ, Pν ] = 0,

[Pµ, Jλσ] = ı(Pλgµσ − Pσgµλ),

[Jµν , Jσλ]αγ = ı
[
(Jµν)αλgσγ − (Jµν)ασgλγ − (Jσλ)αν gµγ + (Jσλ)αµgνγ

]
.

The Poincarè transformation g(b, Λ) is also equal to the composition between a translation
and a Lorentz transformation, that is, T (b)Λ, as a consequence of formula (11.1). It follows
that

ΛT (b)Λ−1 = T (Λb), (11.3)

and this implies that the translation subgroup T (which is associated to the subalgebra P)
is also a normal abelian subgroup of R1, 3oSO+(1, 3), as we claimed in the previous section.

The proof of (11.3) follows immediately from the multiplicative rule given by the iso-
morphism with the semidirect product, i.e.,

g(b, Λ)g(c, Γ) = g(Λc + b, ΛΓ). (11.4)

Now, recall that in the previous chapter we proved that the generators Jµν of the Lorentz
group T+ can be replaced by the following ones

Km := Jm, 0 and Jk :=
1

2
εkmnJm,n,

for m, k ∈ {1, 2, 3}. Therefore, the set of generators {Pµ, Jµν} can be replaced by an
equivalent set of generators, given by

{H0, P i, Jm, Km}i,m=1, 2, 3.

The Lie algebra generated by this new set of generators is characterized by the following
commutator identities, whose proof is left to the reader:

[P 0, Jn] = 0,

[Pm, Jn] = ıεmnkPk,

[Pm, Kn] = ıεmnP 0,

[P 0, Kn] = ıPn,

[Jm, Jn] = ıεmnkJk,

[Km, Jn] = ıεmnkKk,

[Km, Kn] = −ıεmnkJk.

2We will always denote the Lie algebra of R1, 3 o SO+(1, 3) with the symbol p(1, 3). Note that this is
not an universal notation.
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Note that the third and the fourth ones are nontrivial, as they contain the boost component
of the Lorentz group T+.

The Casimir Operators

The Casimir invariants of this Lie algebra are

c1 := PµPµ = (H0)2 − (P i)2,

and
c2 = WµWµ = (W 0)2 − (W i)2,

where
Wµ :=

1

2
εµνλkKνλPk

is the so-called Pauli–Lubanski pseudovector , which is used to describe the spin states of
moving particles. In any case, the operator Wµ is orthogonal to Pν and they also commute,
that is,

WµPµ = 0 and [Wµ, Pν ] = 0.

Similarly, the reader can easily prove that

[Wλ, Jµν ] = ı(Wµgλν −W νgλµ) and [Wλ, W ν ] = ıελνρσWρPσ.

Recall that, if the system is given by a unique particle, then c1 gives us the mass of
that particle (otherwise, it is the square of the total momentum.) Both c1 and c2 induce
irreducible representations of the Poincaré group R1, 3oSO+(1, 3), and they commute with
the generators, that is,

[c1, Jµν ] = 0,

[c1, P
µ] = 0,

and
[c2, Jµν ] = 0,

[c2, P
µ] = 0.

We shall investigate more in-depth the main differences between the following possibilities for
the Casimir operator value: c1 > 0, c1 = 0 or c1 < 0. If, for example, we have pµ = (M, 0),
then c1 = M2 > 0, and therefore the Pauli-Wbanski operator is given by

W i := −MJi ∈ so(3, C),

which means that it is the generator (along the ith axis) of the angular momentum.

11.3 Little Group

In this final section, our goal is to introduce the so-called little group associated to the
Poincarè group R1, 3 o SO+(1, 3) and the space-time vector b ∈ R1, 3.

Definition 11.3. Let G be a group, let X be a set, and let ϕ : G ×X −→ X be a group
action. The little group of x ∈ X, denoted by G(x), is the set of all the elements of g ∈ G
such that ϕ(g, x) = x, that is,

G(x) := {g ∈ G : ϕ(g, x) = x} .
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Theorem 11.4. Let Pµ ≡ pµ be the impulse 4-vector. Then, the operators Wµ generate
the stability group (=little group) G(pµ) that stabilizes pµ.

Example 11.1. In SO(3, R), the little group associated to
(
0 0 1

)T is isomorphic to the
group SO(2, R), acting on the first two components only.

Theorem 11.5. Let Pµ ≡ pµ be the impulse 4-vector. The irreducible representations of the
Poincaré group R1, 3 o SO+(1, 3) are in correspondence with the irreducible representations
of G(pµ) via the action of the Lorentz group T+.

Remark 11.2.

(a) If pµ = 0, then the little group is G(0) = T+.

(b) If c1 := pµpµ > 0, then we can always assume3 that the 4-impulse is given by pµ =
(M, 0) for some positive constant M > 0. In this case, we have

Wµ =
1

2
εµνλσJνλPσ,

and a straightforward computation shows that

W 0 = 0 and W i = MJi for i = 1, 2, 3.

It follows that the little group G(pµ) is given by SO(3, R), whose generators are the
rotations J1, J2 and J3.
The irreducible representations of SO(3, R) correspond to the irreducible represen-
tations of SU(2, C), and therefore we consider the eigenstates basis {|j, m〉}. If we
denote by Jz the simultaneously diagonalizable generator, then it is easy to check that

Pµ |0, m〉 = pµ |0, m〉,

J2 |0, m〉 = j(j + 1) |0, m〉,

Jz |0, m〉 = m |0, m〉,

where J2 is the Casimir operator. Now set |p, m〉 ≡ H(p) |0, m〉, and notice that

|p, m〉 ≡ H(p) |0, m〉 = R(α, β, 0)Lz(ξ) |0, m〉,

where R(α, β, 0) is the space-rotation w.r.t. the z-axis, and Lz(ξ) is the Lorentz boost
in the ẑ direction, i.e.,

Lz(ξ) =


cosh(ξ) 0 0 sinh(ξ)

0 1 0 0
0 0 1 0

sinh(ξ) 0 0 cosh(ξ)


We now claim that {|p, m〉} is a basis for the irreducible representation of the Poincaré
group induced by the one of SO(3, R). Indeed, it is easy to check that

T (b) |p, m〉 = e−ıbµp
µ

|p, m〉,

Λ |p, m〉 = |p′, m′〉 = Dj
m,m′(R(Λ, p)),

3It suffices to consider the frame of reference where the particle is not moving or, if there are more than
a single particle, the center of mass.



119 11.3. LITTLE GROUP

where Dj
m,m′ is the rotation matrix in SU(2, C). More precisely, we have

Dj
m,m′(R

z(θ)) = eı
θ
2 τ3 =

(
eı
θ
2 0

0 e−ı
θ
2

)
,

and

Dj
m,m′(R

λ(θ)) = eı
θ
2 τ2 =

 cos θ2 sin θ
2

− sin θ
2 cos θ2

 .

The reader may prove, as an exercise, that in general we have

R(Λ, p) = H−1(p′)ΛH(p).

(c) If c1 := pµpµ = 0, then we can always assume that the 4-impulse is given by pµ =
(ω0, 0, 0, ω0) for a constant ω0. In this case, we have

W 0 = −W 3 = ω0J12 = ω0J3,

W 1 = ω0(J23 + J20) = ω0(−J1 +K2),

W 2 = ω0(J31 − J10) = ω0(−J2 −K1).

It follows that c2 := WµWµ = −(W1)2 − (W2)2, and we also have that the associated
Lie algebra is

[W 1, W 2] = 0,

[W2, J3] = ıW 1,

[W 1, J3] = −ıW 2,

and clearly it is isomorphic to the Lie algebra of the Euclidean group E2.

More precisely, the generators W 1 and W 2 act like translations (i.e., like P 1 and P 2

in the Euclidean group) in the xy plane, while J3 generates the rotations.

Let |p, λ〉 be a basis of eigenstates for which Pµ and J3 are simultaneously diagonal-
izable, and let λ represent the eigenvalues of J3, that is,

λ = 0, ±1

2
, . . .

By definition, we have that |p, λ〉 is an eigenstate for both Pµ and J3, which means
that

Pµ |p, λ〉 = Pµ1 |p, λ〉,

J3 | p, λ〉 = λ |p, λ〉,
and therefore

|p, λ〉 ≡ H(p) |p, λ〉 = R(θ, ϕ, 0)Lz(ξ) |p, λ〉 = R(θ, ϕ, 0) |pẑ, λ〉.

Denote by p1 the 4-vector (ω0, 0, 0, ω0). Then the identity above yields to

|p, λ〉 ≡ H(p) |p1, λ〉.
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Furthermore, the reader may check that

T (b) |p, λ〉 = e−ıbµp
µ

|p, λ〉,

Λ |p, λ〉 = e−ıλR(Λ, p) |Λp, λ〉 = 〈p, λ|H−1(Λp)ΛH(p) |p1, λ〉,

from which it follows that the helicity - invariant under Lorentz transformations if
the mass of the particle is zero - is given by

λ ∼ p · s
|p · s|

,

where s denotes the spin vector and p is the 4-impulse mentioned above.
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Chapter 12

Roots and Weights

In this chapter, we introduce the last theoretical tools of this course: weights and roots. We
shall see that a semisimple Lie algebra g is entirely characterized by its simple roots, and
we will also show that Dynkin diagrams, for example, are a valuable tool when it comes to
representing an algebra in terms of its roots.

12.1 Introduction

In the whole chapter, we shall always denote by g a semisimple Lie algebra endowed with
the Cartan basis

{Hi, Eα : i = 1, . . . , m, α ∈ ∆} ,

The parameters
α ∈ ∆ are, actu-
ally, vectors with m
components. These
are called roots.

Note

where ∆ is the system of all non-zero roots of g with respect to h, the Cartan subalgebra
generated by the diagonal generators Hi, and m is the so-called rank of g.

We proved during the course that the Cartan subalgebra h is the maximal abelian sub-
algebra1 of g, and therefore the commutator between Hi and Hj is zero, that is,

[Hi, Hj ] = 0 for all i, j ∈ {1, . . . , m}.

Furthermore, we require that the following commutator identities hold true for suitable
choices of coefficients Nαβ :

[Hi, Eα] = αiEα,

[Eα, Eβ ] = NαβEα+β ,

[Eα, E−α] =

m∑
i=1

αiHi.

(12.1)

The number of roots depends both on g and on h. The Jacobi identity (2.5) proves that

[Hi, [Eα, Eβ ]] = βi[Eα, Eβ ] + αi[Eα, Eβ ] = (αi + βi)[Eα, Eβ ],

1Note that, since g is semisimple, the subalgebra h cannot be invariant.
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and therefore the Lie algebra can be easily characterized by means of the sums α + β,
provided that ∆ is closed with respect to the sum (that is, α+ β belongs to ∆ for all α and
β root vectors.)

Remark 12.1. The relations (12.1) are well-defined. To prove that α ∈ ∆ implies −α ∈ ∆,
it suffices to notice that

Hi = H†i and ([Hi, Eα])
†

= (αiEα)
†

=⇒ E−α = E†α.

Example 12.1 (SU(2, C)). Recall that the Lie algebra su(2, C) is semisimple, and its
Cartan basis is given by

{H1 := J3, Eα := J+, E−α := J−} ,

where α is a single-valued vector. It is easy to check that it satisfies the relations (12.1).

In the general case, we can always reduce to su(2, C) by introducing a new generator
basis. Fix a root vector α ∈ ∆, and set

Here α2 is defined as
α · α, scalar prod-
uct between two m-
vectors.

Caution!

J1
α :=

1√
2α2

(Eα + E−α), J2
α := − ı√

2α2
(Eα − E−α), J3

α := α∗ ·H,

where H is the vector (H1, . . . , Hm) and α∗ = α
α·α is the so-called dual root of α. In this

chapter, the symbol · is used to denote the usual scalar product between vectors, which
means that

α · β :=

m∑
i=1

αiβi.

Surprisingly, for α ∈ ∆ fixed but arbitrary, these three operators generate a Lie algebra
isomorphic to su(2, C). Indeed, a straightforward computation shows that

[J1
α, J

2
α] =

ı

α2
[Eα, E−α] = ı

α ·H
α2

= ıJ3
α,

[J1
α, J

3
α] = −ıJ2

α and [J2
α, J

3
α] = ıJ1

α,

where α ·H := α1H1 + · · ·+ αmHm.

Definition 12.1 (Weight Vector). Let H1, . . . , Hm be the generators of the Cartan subal-
gebra h. A weight is a vector µ such that

Hi |µ〉 = Λi |µ〉 for all i ∈ {1, . . . , m},

that is, a simultaneous eigenstate for all the His. We shall also denote it by

µ = (Λ1, . . . , Λm)

to emphasize the fact that µ is an eigenstate of the operator H with eigenvalues Λ1, . . . , Λn.

Theorem 12.2. Let α, β ∈ ∆ be roots.

(a) The ratio of the scalar products α · β and α2 is either integer or semi-integer, that is,

2
α · β
α · α

= 2
α · β
α2
∈ Z.
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(b) The Weyl reflection, given by

W (α, β) := β − 2α(α · β)

α · α
,

is also a root vector, that is, W (α, β) ∈ ∆.

(c) Let µ be a weight. Then
2
α · µ
α · α

= 2
α · µ
α2
∈ Z.

Proof.

(a) Exercise.

(b) The proof requires the introduction of the generators of the Lie algebra su(2, C), as
well as the commutator identities, and it is postponed for a few paragraphs (see here.)

(c) Let µ be a weight vector. From the definitions, it follows that µ is an eigenstate for
J3
α, and therefore we must have

J3
α |µ〉 =

α · µ
α2
|µ〉

The eigenvalues of J3
α are semi-integer numbers (see, for example, Subsection 6.1.2),

which means that
2
α · µ
α2
∈ Z.

The argument used in the point (c) of the previous Theorem tells us much more than
what we needed to conclude. More precisely, we have

J3
α

(
J1
α |µ, R〉

)
= J1

α |µ, R〉+ J1
αJ

3
α |µ, R〉 =

(α · µ
α2

+ 1
)
J3
α |µ, R〉,

where R is any representation. Set

j3 :=
(α · µ
α2

+ 1
)
∈ {−j, . . . , j}.

There exists p ∈ Z such that

j3(p) :=
(α · µ
α2

+ p
)

= j,

and, using a similar argument with J2
α, we also infer that there must be q ∈ Z such that

j3(q) :=
(α · µ
α2
− q
)

= −j.

In particular, from the proof of the point (c) we conclude that there are p, q ∈ Z, satisfying
the properties above, such that

2
α · µ
α2

+ p− q = 0. (12.2)
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12.2 Weight and Roots in SU(3, C)

Recall that the Lie algebra su(3, C) is semisimple, and it is generated by eight matrices: the
up-down operators T±, U±, V±, and the diagonal generators λ3 and λ8.

We have proved already that these generators define a Cartan basis, and clearly the
Cartan subalgebra is given by

h := Span〈λ3, λ8〉,

while the system of all non-zero roots of su(3, C) with respect to h is given by

Eα1
= T+ and E−α1

= T−,

Eα2 = U+ and E−α2 = U−,

Eα3 = V+ and E−α3 = V−.

In Chapter 7 we studied entirely the Lie algebra su(3, C) and, in particular, the commutators
between the generators. We have

[λ3, T±] = ±T± and [λ8, T±] = 0,

[λ3, U±] = ∓1

2
U± and [λ8, U±] = ±

√
3

2
U±,

[λ3, V±] = ±1

2
V± and [λ8, V±] = ±

√
3

2
V±,

which means that the root vectors are given by

α1 = (1, 0), α2 =

(
−1

2
,

√
3

2

)
, α3 =

(
1

2
,

√
3

2

)
.

In the Cartan basis, we have that

3 : |q1〉 =

1
0
0

 ∼ z1, |q2〉 =

0
1
0

 ∼ z2, |q3〉 =

0
0
1

 ∼ z3.

We can equivalently consider |q1〉, |q2〉 and |q3〉 either as quantum states or complex vectors2.
In a similar fashion, one can check that the weight vectors are

The states | q1〉, | q2〉
and | q3〉 are orthog-
onal, but the associ-
ated points αi and
µi are not orthogo-
nal vectors. These
are totally unrelated
concepts!

Caution!

3 : µ1 =

(
1

2
,

1

2
√

3

)
, µ2 =

(
−1

2
,

1

2
√

3

)
, µ3 =

(
0, − 1√

3

)
,

where | qi〉  µi. The adjoint representation 3∗ can be easily found using the theory
developed in this chapter since

3∗ : −µ1 =

(
−1

2
, − 1

2
√

3

)
, −µ2 =

(
1

2
, − 1

2
√

3

)
, −µ3 =

(
0,

1√
3

)
.

2This has nothing to do with Quantum Mechanics but, rather, one can chose the best way to consider
them, depending on the context.
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Furthermore, we can easily compute the weight vectors associated to the representation 8,
using the well-known fact that

3⊗ 3∗ = 8⊕ 1.

In fact, the representation 8 is given by the couples |qi〉 |qj〉∗ of quantum states, for i 6= j ∈
{1, 2, 3}, and therefore the weight vectors are

µi, j := µi − µj for all i 6= j ∈ {1, 2, 3},

so that the corresponding figure in the (λ3, Y )-plane is an hexagon. Note that this gives
us a total of six points, and thus we need two more to complete the octet. We consider the
combinations

1√
2

(|q1〉 |q1〉∗ − |q2〉 |q2〉∗) and
1√
2

(|q1〉 |q1〉∗ + |q2〉 |q2〉∗ − 2|q3〉 |q3〉∗) ,

both of which are associated with the weight vector 0. Note that these are nothing but q21

and q12 in the figure below.

λ3

Y

q2 q1

q3

λ3

Y

q2 q1

q3

Figure 12.1: Left. Fundamental Representation 3. Right. Complex conjugate represen-
tation 3∗.

λ3

Y

q22 q11

q23 q13

q32 q31

q21 q12
λ3

Y

q33

Figure 12.2: The decomposition of the tensor product representation 3⊗ 3∗.
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The six quantum states |qi〉|qj〉∗ and the two quantum states defined above are all or-
thonormal vectors, and thus they form an orthonormal frame of C8.

The weight vectors associated to the last two of them are the zero vector 0, and these
are usually referred to as degenerate states.

Theorem 12.3. Let R be a representation of SU(3, C). Then

Eα |µ, R〉 ∝ |(µ+ α), R〉. (12.3)

Remark 12.2. We use the symbol ∝ (=proportional to) because there is no guarantee that
the left-hand side of (12.3) is different from zero.

Proof. It follows from (12.1) that

Hi (Eα |µ, R〉) = [Hi, Eα] |µ, R〉+ Eα (Hi |µ, R〉) = (αi + µi) · (Eα |µ, R〉) .

In particular, Eα |µ, R〉 is an eigenstate of Hi for all i = 1, . . . , m, and therefore it must be
proportional to |(µ+ α), R〉.

Remark 12.3. Fix α ∈ ∆, and consider the generators J1
α, J2

α and J3
α of the su(2, C) Lie

algebra. If j is the maximum eigenvalue of the diagonal operator J3
α, then

J1
α |j〉 = 0,

and this implies that (12.3) is a proportionality relation only.

We now need to use the theory of irreducible representations of SU(2, C), developed in
Chapter 6, to prove that the Weyl reflection of two root vectors is also a root vector.

Let j denote the maximum eigenvalue of J3
α, and let m ∈ {−j, . . . , j} be the set of all

eigenvalues. Recall that, if µ is a weight vector, then

J3
α |µ〉 =

µ · α
α2
|µ〉.

Note that the eigenvalues of J3
α are either integer or semi-integer (depending on the value

of j), and therefore the same goes for the scalar product, that is,

µ · α
α2

is either semi-integer or integer.

The operators E±α can be easily recovered using the definitions of J1
α, J2

α and, in particular,
the following formulas hold true:

Eα =

(√
2

α

)−1

(J1
α + ıJ2

α) and E−α =

(√
2

α

)−1

(J1
α − ıJ2

α).

We are now ready to prove the point (b) of Theorem 12.2, i.e., that the Weyl reflection of
two root vectors is a root vector. First, notice that

J3
α |β〉 =

α · β
α2
|β〉 =

α ·H
α2
|β〉,
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and, as a consequence of formula (12.3), we also have that

E−α |β〉 ∝ |α− β〉.

The commutator identities between the SU(2, C) generators yield to the following chain of
equalities:

J3
α (E−α |β〉) =

α ·H
α2

(E−α |β〉) =

=
αi
α2
Hi (E−α |β〉) =

=
αi
α2

{
[Hi, E−α] |β〉+ E−α (Hi |β〉)

}
=

= −E−α |β〉+
α · β
α2

E−α |β〉 =

=

(
α · β
α2
− 1

)
· E−α |β〉.

Suppose that α·β
α2 > 0. The operator (E−α)

2α·β
α2 is well-defined because the exponent is an

integer number (as a consequence of the point (a)), and therefore the computation above
shows that

(E−α)
2α·β
α2 |β〉 ∝ |β − 2α · β

α2
α〉.

In particular, the vector |β− 2α·β
α2 α〉 is an eigenstate of J3

α with associated eigenvalue −α·βα2 ,
and this is exactly what we wanted to prove for the point (b).

Let |µ, R〉 be a generic weight vector in the representation R. We can always write it as
a linear combination of representations j of the group SU(2, C). Consequently, there must
be an integer p ∈ Z≥0 such that

(J1
α)p |µ, R〉 6= 0 and (J1

α)p+1 |µ, R〉 = 0.

Using the usual commutator identity, we also find thatHere (J1
α)p denotes

the pth power of the
operator J1

α.

Caution!

J3
α

{
(J1
α)p |µ, R〉

}
=
(α · µ
α2

+ p
)
· (J1

α)p |µ, R〉,

and therefore (α · µ
α2

+ p
)

= j. (12.4)

Similarly, there exists q ∈ Z≥0 such that

(J2
α)q |µ, R〉 6= 0 and (J2

α)q+1 |µ, R〉 = 0.

Using the usual commutator identity, we also find that

J3
α

{
(J2
α)q |µ, R〉

}
=
(α · µ
α2
− q
)
· (J2

α)q |µ, R〉,

and therefore (α · µ
α2
− q
)

= −j. (12.5)
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If we sum (12.4) and (12.5), we obtain the well-known relation

2
α · µ
α2

+ p− q = 0. (12.6)

Note that p and q characterize the position of the multiplets SU(2, C) generated by J1
α, J2

α

and J3
α. If we apply (12.6) for β = µ, then

(12.6) =⇒ α · β
α2

= −1

2
(p− q).

Similarly, if we do the same with the SU(2, C) generated by J1
β , J

2
β and J3

β , then

(12.6) =⇒ α · β
β2

= −1

2
(p′ − q′)

for some (possibly different) positive integers p′, q′ ∈ Z. If we multiply the two identities
above, we find that

(α · β)2

α2β2
=

1

4
(p− q)(p′ − q′) ≤ 1,

which means that there exists θα, β ∈ [0, 2π) such that

cos2(θα, β) =
1

4
(p− q)(p′ − q′) ≤ 1.

Clearly, there are only four possibilities for the right-hand side, and therefore there are only
four possibilities for the angles between the roots.

(p − q)(p′ − q′) cos(θα, β) θα, β

0 0
π
2

1 ± 1
2

π
3

2 ± 1√
2

π
4 or

3π
4

3 ± 3√
2

π
6 or

5π
6

Figure 12.3: The LATEX code of this table can be found here.

Remark 12.4. The value (p−q)(p′−q′) = 4 is not admissible because the angle θα, β would
be equal to 0 or π, that is, the two roots are parallel (which is impossible).

12.3 Simple Roots

Definition 12.4 (Positive Weight). A weight vector µ is said to be positive if and only if
the first nonzero component is positive.

https://tex.stackexchange.com/questions/67586/how-to-create-comparison-tables-in-latex


CHAPTER 12. ROOTS AND WEIGHTS 130

Definition 12.5. Let µ and ν be two weight vectors. Then

µ ≥ ν ⇐⇒ µ− ν := (µ1 − ν1, . . . , µm − νm) ≥ 0.

The relation ≥ defined here is a partial order in the sense of the following definition.

Definition 12.6 (Partial Order Relation). Let M be a set. A partial order ≤ is a subset
of the product M ×M satisfying the following properties:

(i) Reflexive. For every a ∈M it turns out that a ≤ a.

(ii) Antisymmetric. For every couple (a, b) ∈M⊗2 it turns out that a ≤ b and b ≤ a
if and only if a = b.

(iii) Transitive. For every triple (a, b, c) ∈ M⊗3 satisfying a ≤ b and b ≤ c, it turns
out that a ≤ c.

Definition 12.7 (Highest Weight). Let R be a representation of g. The highest weight is
defined as the weight vector µ such that µ > ν for all other weight vectors ν 6= µ.

From now on, we shall denote by µhighest the highest weight of a semisimple Lie algebra
g with respect to the Cartan subalgebra h.

Theorem 12.8. A representation R of g is entirely characterized by the weight µhighest.

Proof. The interested reader can find a detailed proof of this result in [6, Chapter 7].

Definition 12.9 (Positive Root). A root α ∈ ∆ is said to be positive if and only if the first
nonzero component is positive.

Definition 12.10 (Simple Root). A root α ∈ ∆ is said to be a simple root if and only if α
is positive and cannot be expressed as a sum of positive roots.

From now on, we
shall denote by L
the subset of ∆ con-
taining all the simple
roots of g.

Note

Theorem 12.11. Let |µ〉 be a weight vector. Then

Eα |µ〉 = 0 for all α ∈ ∆ =⇒ |µ〉 = |µhighest〉.

We now show how to apply the notions introduced in this section to a concrete example.
Consider the Lie algebra su(3, C), and consider the representation 8:

λ3

Y

q22 q11

q23 q13

q32 q31

q21 q12
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It is easy to see that the highest weight vector here is given by q11, since its first com-
ponent is not only positive, but also bigger than any other. Note that the strictly positive
weight vectors here are q11, q13 and q31, while q21 = q12 is exactly equal to zero.

Theorem 12.12. Let α, β ∈ L be (simple) roots. Then α− β /∈ ∆ is not a root.

Proof. We may assume without loss of generality that α > β. If α− β is nonzero, then it is
necessarily a positive root. This yields to a contradiction since

α = β + (α− β)

is sum of positive roots, and therefore α would not be simple.

12.3.1 Angle Between Simple Roots

Let α, β ∈ L be two fixed (simple) roots. There exists p ∈ N such that

α · β
α2

+ p = j and
α · β
α2

= −j,

α · β
β2

+ p′ = j′ and
α · β
β2

= −j′,

α · β
α2

= −p
2

and
α · β
β2

= −p
′

2
.

The value of the angle θα, β is thus given by

cos(θα, β) = −
√
pp′

2
,

and, consequently, for a simple root we have

θα, β ∈
[π

2
, π
)

and
∣∣∣∣βα
∣∣∣∣ =

√
p

p′
,

which means that the angle between two simple roots is always obtuse.

Remark 12.5. It turns out that the highest weight vector is the "highest member of the
multiplets generated by all the simple roots." More precisely, in Theorem 12.8 it suffices to
check that |µ〉 vanishes against Eα for all α simple, that is,

Eα |µ〉 = 0 for all α ∈ L =⇒ |µ〉 = |µhighest〉.

Theorem 12.13. Simple roots are linearly independent as vectors.

Proof. Let us consider a linear combination of simple roots

γ :=
∑
α∈L

xαα,
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and suppose that γ = 0. The roots α ∈ L are necessarily positive, and therefore the
coefficients xα cannot possibly be all positive. We write

γ =
∑
α∈L1

xαα−
∑
α∈L2

yαα =: µ− ν,

where L1 t L2 = L, and the two linear combinations are both positive with yα := −xα. If
we take the square of γ, we obtain

γ2 = µ2 + ν2 − 2
∑

(α, β)∈L1×L2

xαxβαβ ≥ 0.

The cosine of the angle between simple roots is always negative (second quarter), and hence
α · β ≤ 0. It follows that

0 = µ2 + ν2 − 2
∑

(α, β)∈L1×L2

xαxβαβ ≥ 0 ⇐⇒ xα = xβ = 0,

which means that simple roots are linearly independent.

Theorem 12.14. Let α ∈ ∆ be a positive root. Then α can always be written as a positive
linear combination of simple roots.

Theorem 12.15. The collection L of all simple roots is a complete set of vectors. Further-
more, there are exactly m := rank(g) simple roots.

Proof. We argue by contradiction.

The vector w is or-
thogonal to every
root α ∈ ∆ if it is
orthogonal to the
simple ones!

Caution!

Let ξ be a nonzero vector orthogonal to all α ∈ L. Then

[ξ ·H, Eα] = ξi[Hi, Eα] = ξαiEαi = 0,

and thus ξ ·H is an abelian subalgebra of g that commutes with all the generators. This is
a contradiction with the fact that g is a semisimple algebra.

12.3.2 Simple Roots  Lie Algebra g

We are finally ready to show what we have anticipated above: the whole Lie algebra g is
characterized by its simple roots, at least for rank-two algebras. First, we notice that for
m = 2 there are only four possible choices for p and p′, that is,

p = p′ = 0 =⇒ β

α
is indeterminate so(4, R),

p = p′ = 1 =⇒ θα, β =
2π

3
and

β

α
= 1 su(3, C),

p = 1, p′ = 2 =⇒ θα, β =
7π

12
and

β

α
=

1√
2
 so(5, R) ∼ usp(4, C),

p = 2, p′ = 3 =⇒ θα, β =
5π

6
and

β

α
=

1√
3
 g2.

In the next couple of pages, we picture the weight diagram of the groups of rank 2
mentioned above, and show which ones are the simple roots and why they are enough to
characterize the algebra itself.
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h

p, s

p, s

Figure 12.4: The Lie algebra su(3, C).

p, s

p, s

Figure 12.5: The Lie algebra so(4, R) ∼ su(2, C)× su(2, C).

Figure 12.6: The Lie algebras so(5, R) and usp(4, C). The color red denotes the two
simple roots.

12.4 Dynkin Diagram

The 2-dimensional Dynkin diagram is a valuable tool to picture the rank-two algebras stud-
ied above, without relying on the weight diagram. We introduce the following notation:

(1) We denote by ◦ the bigger simple root, and by • the smaller simple root.

(2) We denote the angle between α and β simple roots with a number of segments equal
to the number in the first column of Figure 12.3.

The following Dynking Diagrams are an easy consequence of what we have proved so far
in this chapter and, especially, in the last section.

su(3, C) :

su(4, C) :

su(n+ 1, C) : . . .
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We can also use the Dynking diagrams to show that so(5, R) is isomorphic (as a Lie algebra)
to usp(4, C), and su(4, C) is isomorphic to so(4, R). Namely, we have

so(4, R)

which is clearly equivalent to su(4, C). We also have

so(2n, R)

while, for odd natural numbers, we have

so(2n+ 1, R)

Since

so(5, R)

and

usp(4, C)

we can easily infer that so(5, R) is isomorphic (as a Lie algebra) to usp(4, C).

Dynking Diagram of Exceptional Groups

G2

F4

E6

E7

E8
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12.5 Cartan Matrices

Let L be the set of simple roots of a semisimple Lie algebra g. The Cartan matrix is definedThe non-diagonal el-
ements of the Cartan
matrix represent the
angles between the
simple roots of g.

Caution!

by setting

(Ag)i, j := 2
αiαj
α2
i

for i, j ∈ {1, . . . , m},

where m is the rank of g.

Example 12.2. In the case of su(3, C), the matrix is given by

A =

(
2 −1
−1 2

)
.

Example 12.3. In the case of su(4, C), the matrix is given by

A =

 2 −1 0
−1 2 −1
0 −1 2

 .

12.5.1 The construction of the Lie algebra su(3, C)

The simple roots of su(3, C) are

α =

(
1

2
,

√
3

2

)
and β =

(
1

2
, −
√

3

2

)

and we have already proved that γ := α+ β is also a root. It is easy to check that

α · α
α2

= −1

2
=⇒ J3

α |β〉 = −1

2
|β〉,

which means that the maximum eigenvalue is j = 1/2. We now prove that Eα and Eβ ,
together with the generator H of the Cartan invariant subalgebra, generate the Lie algebra
su(3, C) by showing the commutator identities. First, note that

[Eα, Eβ ] = (Tα1 )δβEδ =

= 〈δ|Tα1 |β〉Eδ =

= 〈δ| Jα1
1 |β〉Eδ =

=
1√
2
Eα+β =

1√
2
Eγ .
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Using this relation and the Jacobi identity (2.5), we infer that

[E−α, Eγ ] =
√

2 [E−α, [Eα, Eβ ]] =

= −
√

2

Eα, [Eβ , E−α]

=0

−√2

Eβ , [E−α, Eα]

=α·H

 =

=
√

2[α ·H, Eβ ] =

= −
√

2(α · β)Eβ =
1√
2
Eβ .

In a similar fashion, one can prove that

[E−β , Eγ ] =
√

2 [E−β , [Eα, Eβ ]] =

= −
√

2

Eα, [Eβ , E−β ]

=β·H

−√2

Eβ , [E−β , Eα]

=0

 =

= −
√

2[Eα, β ·H] =

=
√

2(α · β)Eα = − 1√
2
Eα.

In particular, the coefficients Nαβ of (12.1) have been entirely determined, and it is not
hard to see that this is the Lie algebra su(3, C).

12.5.2 Weyl Reflection Group

Let α, β ∈ ∆ be roots. We have proved in Theorem 12.2 that the Weyl reflection, given by

β − 2α(α · β)

α · α
,

is also a root. The set of Weyl reflections preserves the weights diagram, as one can easily
check by computing the action of the operators J iα against β.

Theorem 12.16. The trace of any generator of any representation of a compact simple Lie
group is zero

Proof. See [1] for a detailed dissertation on the topic.



Chapter 13

Quantum Physics Applications

In this final chapter, the primary goal is to show how we can apply the theory developed
during the whole course to prove specific properties of physical systems in quantum me-
chanics.

13.1 3-Dimensional Harmonic Oscillator

The Hamiltonian of a 3-dimensional harmonic oscillator is given by

H =
1

2m
p2 +

mω2

2
r2, (13.1)

where p := −ı~∇ is the momentum operator, and r the position vector. Let L := r× p be
the angular moment. A standard computation shows that

[L, H] = 0 =⇒ L is preserved.

Let us denote |N〉 by |n1, n2, n3〉, where N = n1 + n2 + n3, the eigenvectors, and let us
consider the respectively (energy) eigenvalue associated to N :

EN = ω~
(
N +

3

2

)
=: ω~

(
2k + `+

3

2

)
.

Since k is a non-negative integer, the value of ` depends on the parity of N , and, more
precisely, we have

` =

0, 2, 4, . . . if N is even,

1, 3, 5, . . . if N is odd.

The magnetic quantum number m is an integer satisfying the constraint −` ≤ m ≤ `,
and thus there are 2` + 1 different quantum states for every N and `, labeled by m. It
follows that the degeneracy at level N is

N∑
`=0
` even

(2`+ 1) =

N/2∑
k=0

(4k + 1) =
(N + 1)(N + 2)

2
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if N is even, and

N∑
`=0
` odd

(2`+ 1) =

(N−1)/2∑
k=0

(4k + 3) =
(N + 1)(N + 2)

2

if N is odd.

In order to have a better understanding of why there always is degeneration at the N
level, we introduce the ladder operator formalism. Following this approach, we define the
operators a, and its adjoint a†, as follows:

a :=

√
mω

2~

(
r +

ı

mω
p
)

and a† =

√
mω

2~

(
r− ı

mω
p
)
.

The Hamiltonian (13.1) can be easily rewritten in terms of these new operators as

H = ω~
(
a†1a1 + a†2a2 + a†3a3 +

3

2

)
, (13.2)

where ai and a
†
j denote, respectively, the components of the ladder operators. The Hamil-

tonian (13.2) is invariant both under the action of SO(3, R) and SU(3, C) since the latter
preserves the complex scalar product. To prove this, we introduce the operators

Qa := a†i (λ
a)ijaj for a = 1, . . . , 8,

where λa denotes the ath generator of SU(3, C).

Lemma 13.1. The operators Qa commute with the Hamiltonian given by (13.2).

Proof. A straightforward computation shows that

[H, Qa] = [a†iaj , a
†
kak] = −a†iaj + a†iaj = 0.

In particular, the Hamiltonian (13.2) is invariant under the action of SU(3, C). Further-
more, if we denote by ψN the eigenstate relative to the energy EN , that is,

H |ψN 〉 = EN |ψN 〉,

then QaψN 6= 0 yields to degeneration1. Indeed, using the fact that H and Qa commutes,
we can easily show that

H (Qa |ψN 〉) = Qa (H |ψN 〉) = EN ·Qa |ψN 〉,

which means that Qa |ψN 〉 is also an eigenstate associated to the same eigenvalue. To find
the degeneration order, it suffices to compute the number (multiplicity) of |ψN 〉,

N∑
n3=0

N−n3∑
n2=0

1 =

N∑
n3=0

(N − n3 + 1) =
(N + 1)(N + 2)

2
,

which coincides with the degeneration order found above using the magnetic quantum num-
ber. Furthermore, note that the generic vector N may be rewritten in terms of the ladder
operators as follows:

|N〉 = (a†1)n1(a†2)n2(a†3)n3 |0〉.
1The dimension of the eigenspace is strictly bigger than one.
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13.2 Hydrogen Atom

The Hamiltonian of the hydrogen atom is given by

H =
1

2m
p2 + e2 1

r2
, (13.3)

where p := −ı~∇ is the momentum operator and e the electronic charge. Let L := r × p
be the angular moment. A standard computation shows that

[L, H] = 0 =⇒ L is preserved.

Also, the energy eigenvalue associated to the eigenvectors ψn, `,m is given by

En := − e2

2rBn2
for n = 1, 2, . . .

where rB is the Bohr radius. In this case ` can take all the possible values between 0 and
n− 1 so that the degeneracy at the level n is given by

n−1∑
`=0

(2`+ 1) = (n− 1)n+ n = n2.

This degeneration can be explained by the symmetries of the hydrogen atoms. Hence, we
introduce the Lenz vector , which is defined by

A :=
e2

r
r− 1

2m
(p× L− L× p) , (13.4)

where r denotes the length of the vector r. We now notice that

[Li, pj ] = ıεijk~pk,

[Li, Lj ] = ıεijk~Lk,

[Li, rj ] = ıεijk~rk,

where Li, pj and rk denote the components of the vectors L, p and r respectively. Recall
that, for all functions F , we have

[pi, F (r)] = −ı~ ∂

∂xi
F (r),

and hence it is not hard to check that

[A, H] = 0. (13.5)
From now on, we fix

~ = e = m = 1.

Caution!

In a similar fashion, one can show that the following relations hold:

[Li, Aj ] = ıεijkAk,

[Ai, Aj ] = −2HiεijkLk,

[Li, Lj ] = ıεijkLk.



CHAPTER 13. QUANTUM PHYSICS APPLICATIONS 140

Fix n ∈ N, and set −2E := −2En > 0. The operator u, whose ith component is defined by
setting

ui :=
Ai√
−2E

,

is clearly well-defined. The commutator identities listed above also imply that

[Li, uj ] = ıεijkuk,

[Li, Lj ] = ıεijkLk,

[ui, uj ] = ıεijkLk.

Therefore, if we introduce the operators j1 := L+u
2 and j2 := L−u

2 , then the commutator
relations above may be rewritten as

[j1, i, j2, j ] = 0,

[j1, i, j1, j ] = ıεijkj1, k,

[j2, i, j2, j ] = ıεijkj2, k.

It follows that there is a correspondence with the generators of su(2, C)×su(2, C) ∼ so(4, R)
Lie algebra. Furthermore, the angular moment L and the vector u both commute with the
Hamiltonian H, but [L, u] 6= 0, and this is the reason why there is degeneracy at every level
n ∈ N. A simple computation shows2 that

A2 = 2H
(
L2 + 1

)
+ 1,

and thus
A2 = (−2E)u2 =⇒ u2 + L2 = −1− 1

2E
.

Since
L · u = 0 and L ·A = L ·

[
1

r
r− 1

2
(p× L− L× p)

]
,

we easily infer that

(j1)2 =
1

4
(L2 + u2) =

1

4

(
−1− 1

2E

)
= j(j + 1),

(j2)2 =
1

4
(L2 + u2) =

1

4

(
−1− 1

2E

)
= j(j + 1).

In particular, the value of j is given by

(2j + 1)2 = − 1

2E
> 0,

and therefore we have

E = − 1

2n2
= − e2

2rBn2
,

and the degeneracy number is (2j + 1)(2j + 1) = n2, as expected.

2Note that r and p do not commute.
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13.3 Wigner-Eckart Theorem in SU(2, C) - SO(3, R)

The Wigner–Eckart theorem is a fundamental result in quantum mechanics. It was
first presented by E. Wigner and C. Eckart as a link between the symmetry transformation
groups (in our case SU(2, C) or SO(3, R)) of the space and the laws of conservation (e.g.,
energy, momentum, and angular momentum) [4].

We will give a precise statement by the end of the section, but it is worth remarking
now that, essentially, it asserts that matrix elements of spherical tensor operators, on the
basis of angular momentum eigenstates, can be expressed as the product of two factors.
Furthermore, one of these two factors is independent of angular momentum orientation,
while the other a Clebsch–Gordan coefficient.

First, let us consider a basis {|j, m〉} of eigenstates that simultaneously diagonalize the
Casimir operator J2 and the z-rotation operator Jz, in such a way that

J2 |j, m〉 = j(j + 1) |j, m〉 and Jz |j, m〉 = m |j, m〉.

These vectors transform via a rotation matrix U(ω), whose result can be expressed as a sum
of rotations of the eigenstates basis, that is,

|j, m〉 7−→ U(ω) |j, m〉 :=
∑
m′

Dj
m′,m(ω) |j, m′〉,

where Dj
m′,m(ω) denotes the rotation matrix (j; m′, m) of angle ω.

Remark 13.1. The notation is consistent with the one used in the previous chapters. In
particular, recall that for j = 1/2 we have the following matrices:

D
1/2
m′,m(φ, ẑ) :=

(
eı
φ
2 0

0 e−ı
φ
2

)
and D

1/2
m′,m(ψ, ŷ) :=

 cos ψ2 sin ψ
2

− sin ψ
2 cos ψ2

 .

In a similar way, when j = 1, we have

D1
m′,m(φ, ẑ) :=

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 .

Remark 13.2. Note that the vector transformations described above immediately implies
that a vector of the form |j1, m1〉|j2, m2〉 transforms as follows:

|j1, m1〉|j2, m2〉 7−→ U(ω) |j1, m1〉|j2, m2〉 := eıj1ωeıj2ω |j1, m1〉|j2, m2〉.

The second member can be rewritten more explicitly exploiting again the eigenstates basis
{|j, m〉} and the rotation matrices (j; m′i, mi) as

eıj1ωeıj2ω |j1, m1〉|j2, m2〉 =
∑

m′1,m
′
2

Dj1
m′1,m1

Dj2
m′2,m2

|j1, m′1〉|j2, m′2〉.
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Spherical Tensor Operators

We now want to rearrange the operators

r 7−→ eıL·ω r e−ıL·ω,

p 7−→ eıL·ω p e−ıL·ω,

in such a way to obtain spherical tensor operators. For example, for an operators of rank
equal to one, i.e. A = (Ax, Ay, Az), we may rearrange it as follows:

T 1
0 := Az,

T 1
1 := − 1√

2
(Ax + ıAy),

T 1
−1 := 1√

2
(Ax − ıAy).

The operator T := (T 1
0 , T

1
1 , T

1
−1) is clearly a spherical tensor, as the reader may check by

herself. Similarly, for an operator of rank equal to two, we may rearrange as follows:
T 2

0 := 1√
6
(Axx +Ayy − 2Azz),

T 2
±1 := ∓(Axz ± ıAyz),

T 2
±2 := − 1

2 (Axx −Ayy ± 2ıAxy).

In general, a spherical tensor operator can be obtained using the Clebsch–Gordan coefficients
by setting the (P, Q) coefficient as

TPQ := 〈p1, q1; p2, q2|P, Q〉T p1q1 T
p2
q2 .

We easily deduce that the transformations introduced above for vectors are replaced by a
similar formula, that is,

T pq 7−→ U(ω)T pq U(ω)−1 =
∑
q′

Dp
q′, q(ω)T pq′ .

In particular, for spherical tensor operators, we have that

T pq |j, m〉 7−→ eıjωT pq |j, m〉 = eıjωT pq e−ıjωeıjω |j, m〉 =

=
∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)T pq′ |j, m
′〉,

which can be compactly rewritten as

|p, q〉|j, m〉 7−→
∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)|p, q′〉|j, m′〉.

Let us now multiply for an arbitrary eigenstate 〉J, M | on both the left and the right-hand
side of the identity above. Then, we have

〈J, M |eıjωT pq |j, m〉 =
∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)〈J, M |T pq′ |j, m
′〉,
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which is equivalent (in the compact notation) to

〈J, M | eıjω| p, q〉 | j, m〉 =
∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)〈J, M | p, q〉 | j, m′〉.

We apply the rotation eıjω to the vector on the right, which transforms via the complex
conjugate; it follows that∑

M ′

(DJ
M,M ′(ω))∗〈J, M ′|T pq |j, m〉 =

∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)〈J, M |T pq′ |j, m
′〉,

and, equivalently, that∑
M ′

(DJ
M,M ′(ω))∗〈J, M ′| | p, q〉 |j, m〉 =

∑
q′,m′

Dp
q′, q(ω)Dj

m′,m(ω)〈J, M | | p, q〉 |j, m′〉.

We now use the orthogonality relation between the rotation matrices,∫ (
Dj
m,m′(ω)

)∗
Dp
q, q′(ω) dω =

4π2

2j + 1
δjpδm′q′δmq

to infer the thesis of the Wigner–Eckart theorem, that is,

〈J, Mα|T pq |j, mβ〉 = 〈J, M |p, q 〉 |j, m〉 · 〈Jα‖T p‖jβ〉, (13.6)

where α and β are quantum numbers, 〈J, M |p, q 〉 | j, m〉 is an universal object that does
not depend on α and β (the Clebsch–Gordan coefficient), and 〈Jα‖T (p)‖jβ〉 denotes some
value that does not depend on m, m′, nor q and is referred to as the reduced matrix
element.
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homotopic equivalence, 40
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mesons, 81
monodromy group, 46
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neighborhood, 37
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trivial representation, 21, 55
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positive, 129
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Weyl equation, 109
Weyl reflection, 123, 127
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Young tableaux, 82
Yukawa interaction, 65
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