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Part I

Nonlinear Analysis



Chapter 1

Differential Calculus in Banach
Spaces

In this chapter, we generalise differential calculus on Rn to general Banach spaces X and Y

and prove fundamental theorems such as the global inversion theorem. We will follow the
first section of the book [2] closely.

1.1 Introduction to the course

The main goal of this course is to introduce tools from analysis and topology to deal with
the existence, uniqueness and regularity of solutions to nonlinear problems such as−∆u = f(x, u) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.
(1.1)

A possible approach to look for solutions u of (1.1) with some regularity (for example,
Hölder Ck, α(Ω) or Sobolev W k, p

0 (Ω)), is to rewrite it as

u− T (u) = 0,

where T is the operator defined by taking the inverse of the Laplace operator; namely,

T (v)(x) = (−∆)−1f(x, v).

At this point, one can try to prove an appropriate fixed-point theorem that works under
some assumptions on the nonlinearity f and find a solution.

In this course, however, we are mainly interested in exploiting the variational structure
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of (1.1). Setting aside for the moment all regularity concerns, notice that∫
Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx−
∮
∂Ω

v
∂u

∂ν
dσ

holds for all v ∈ H1
0 (Ω). Since u

∣∣
∂Ω
≡ 0, we infer that∫

Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx.

Therefore, if u is a solution of the nonlinear problem (1.1), then u satisfies∫
Ω

∇u · ∇v dx =

∫
Ω

f(x, u)v dx for all v ∈ H1
0 (Ω). (1.2)

It remains to prove that we can always recover the identity (1.2) starting from the variational
framework. Let X := H1

0 (Ω), endow it with the homogeneous norm

‖u‖2X :=

∫
Ω

|∇u|2 dx,

and define
F(u) :=

∫
Ω

F (x, u) dx, where F (x, u) =

∫ u

0

f(x, s) ds.

Finally, introduce the functional

G(u) :=
1

2
‖u‖2X −F(u),

and notice that its directional derivative Dv is given by

DvG(u) =

∫
Ω

∇u · ∇v dx−
∫

Ω

∂uF (x, u)v dx.

Since ∂uF (x, u) = f(x, u) by definition, we just "proved" that (1.2) is equivalent to the
fact that the first variation of G(u) is zero for all v ∈ H1

0 (Ω).

1.2 Fréchet and Gâteaux derivatives

Throughout this section, the symbols X and Y will always denote two Banach spaces and,
unless otherwise stated, U will always be an open subset of X.

Definition 1.1 (F -differentiable). A map F : U → Y is said to be (Fréchet) differentiable
at u ∈ U if there exists a linear map A ∈ L(X, Y) such that

F (u+ h) = F (u) +Ah+ o(‖h‖X). (1.3)

The map A is usually referred to as the (Fréchet) differential of F at u and denoted by
either dF (u) or F ′(u).
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Proposition 1.2. Let F : U → Y be Fréchet differentiable at some u ∈ U . Then

(1) the differential A of F at u is unique;

(2) the map F is continuous at u;

(3) the notion of differentiability does not depend on the choice of equivalent norms on
either X or Y.

Proof. Let A 6= B ∈ L(X, Y) be two F -differentials. Then (1.3) yields

‖Ah−Bh‖Y = o(‖h‖X). (1.4)

On the other hand, if A 6= B then there exists x0 ∈ X such that

a := ‖Ax0 −Bx0‖Y 6= 0.

Take t ∈ R, t 6= 0, and set x := tx0 ∈ X. Then

a

‖x0‖X
=
‖Ax0 −Bx0‖Y
‖x0‖X

=
‖Ax−Bx‖Y
‖x‖X

,

and the left-hand side is a constant that does not depend on t, so taking the limit as t goes
to zero leads to a contradiction of (1.4).

Example 1.3. We now give a few explicit examples.

(a) The constant map F (u) ≡ c is differentiable at all u ∈ X and its differential is the
identically zero map dF (u) = 0.

(b) Let A ∈ L(X, Y). Since
A(u+ h) = Au+Ah

we easily find that A is differentiable at all points and dA(u) = A. Furthermore, the
remainder o(‖h‖X) is exactly equal to zero.

(c) Let B : X×Y −→ Z be a bilinear continuous map. We have

B(u+ h, v + k) = B(u, v) +B(h, v) +B(u, k) +B(h, k),

and using the continuity at the origin we find that

‖B(h, k)‖Z ≤ ‖h‖X‖k‖Y.

Then B is differentiable at all (u, v) ∈ X×Y and the differential is given by

dB(u, v)[h, k] := B(h, v) +B(u, k).

(d) Let X be a Hilbert space with scalar product 〈·, −〉X and consider the map

F (u) := 〈u, u〉X = ‖u‖2X.
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We can explicitly compute F at u+ h using the scalar product obtaining

F (u+ h) = ‖u‖2X + 2〈u, h〉X + ‖h‖2X.

It follows that F is differentiable at all u ∈ X and its differential is given by

dF (u)[h] := 2〈u, h〉X.

Proposition 1.4.

(1) Let F, G : U → Y be F -differentiable at u ∈ U . Then for all a, b ∈ R the map aF +bG

is also F -differentiable at u and

d(aF + bG) = adF + bdG.

(2) Let F : U → Y and G : V ⊂ Y→ Z with F (U) ⊂ V . If F is F -differentiable at u ∈ U
and G at F (u) ∈ V , then G ◦ F is also F -differentiable at u and

d(G ◦ F )(u)[h] = dG(v) [dF (u)[h]] .

Definition 1.5. A map F : U → Y belongs to C1(U, Y) if it is differentiable in U and

U 3 u 7−→ dF (u) ∈ L(X, Y)

is a continuous mapping.

Notation. A map F from a Banach space X to R is known as functional. If F is differen-
tiable, then the differential belongs to the dual space

dF (u) ∈ L(X, R) = X∗,

and thus, if X is a Hilbert space, an application of Riesz’s theorem shows that there exists
a vector ∇F (u) ∈ X, called gradient of F at u, such that

dF (u)[h] = (∇F (u), h)X for all h ∈ X.

In the general framework of Banach spaces, the gradient is defined as the unique element
satisfying the identity

dF (u)[h] = 〈∇F (u), h〉X∗,X for all h ∈ X,

where 〈·, −〉 here denotes the so-called duality coupling.

Definition 1.6. Let X be a Hilbert space and F : U ⊂ X → X. We say that F is a
variational operator if there exists a functional J : U → R such that

F (u) = ∇J(u) for all u ∈ U.

Definition 1.7 (G-differentiability). A map F : U → Y is said to be Gâteaux-differentiable
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at u ∈ U if there exists a linear map A ∈ L(X, Y) such that

F (u+ th)− F (u)

t

t→0−−−→ Ah. (1.5)

The map A, uniquely determined, is called G-differential of F at u and it is usually indicated
with the symbol dGF (u).

Remark 1.8. A Fréchet-differentiable function is also Gâteaux-differentiable, but the op-
posite is false. Indeed, G-differentiability is even weaker than standard continuity.

Example 1.9. Consider the function F : R2 → R defined by

F (s, t) :=


[

s2t

s4 + t2

]2

if t 6= 0,

0 if t = 0.

If we take the limit as t → 0 along the path s = 1 (or any other constant), then F (s, t)

tends to zero. On the other hand, if we consider the parabola s = t2 we find that

lim
t→0

F (t2, t) =
1

4
,

which means that F is not continuous in t = 0, but it is Gâteaux-differentiable at t = 0.

Theorem 1.10. Let F : U → Y be G-differentiable in U . Then

‖F (u)− F (v)‖Y ≤ sup {‖dGF (w)‖ : w ∈ [u, v]} ‖u− v‖X (1.6)

where [u, v] := {tu+ (1− t)v : t ∈ [0, 1]} ⊂ U .

Proof. We can assume without loss of generality that F (u) 6= F (v). By Hahn-Banach
theorem, we can always find ψ ∈ Y∗, ‖ψ‖ = 1, such that

〈ψ, F (u)− F (v)〉Y∗,Y = ‖F (u)− F (v)‖Y. (1.7)

Now let γ(t) := tu + (1 − t)v be a parametrisation of the segment [u, v] and consider the
function with domain [0, 1] given by

h(t) := 〈ψ, F (γ(t))〉Y∗,Y .

The curve γ satisfies the relation

γ(t+ τ) = γ(t) + τ(u− v)

for all t, τ ∈ [0, 1] such that t+ τ ∈ [0, 1], so we can estimate the increment of h as

h(t+ τ)− h(t)

τ
=

〈
ψ,

F (γ(t) + τ(u− v))− F (γ(t))

τ

〉
Y∗,Y

.
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Now let τ → 0 and use the G-differentiability of F to find the following expression for the
derivative of h at t:

h′(t) = 〈ψ, dGF (tu+ (1− t)v)(u− v)〉Y∗,Y . (1.8)

Since h is a real-valued function with domain [0, 1], we can apply themean-value theorem
to find θ ∈ (0, 1) such that the following holds:

h′(θ) = h(1)− h(0).

Plug into this identity both (1.7) and (1.8). It turns out that

‖F (u)− F (v)‖Y = h(1)− h(0) =

= h′(θ) =

= 〈ψ, dGF (θu+ (1− θ)v)(u− v)〉Y∗,Y ≤

≤ ‖ψ‖︸︷︷︸
=1

‖dGF (θu+ (1− θ)v)‖‖u− v‖X.

Finally, the point θu+ (1− θ)v belongs to [u, v] and the inequality (1.6) follows by taking
the supremum on both sides with respect to θ.

Theorem 1.11. Let F : U → Y be a G-differentiable map with G-differential

dGF : U −→ L(X, Y)

continuous at some u0 ∈ U . Then F is F -differentiable at u0 and there results

dF (u0) = dGF (u0).

Proof. First, define the map

R(h) := F (u0 + h)− F (u0)− dGF (u0)[h].

By assumption, the map R is G-differentiable in a small neighbourhood of u0; more precisely,
it is sufficient to choose ε in such a way that

Bε(u0) ⊂ U

for the G-differentiability to hold on all Bε. Moreover, its G-differential is given by

dGR(h)[k] = dGF (u0 + h)[k]− dGF (u0)[k].

Apply the mean-value property (1.6) with [u, v] = [0, h] to obtain

‖R(h)−R(0)︸︷︷︸
=0

‖ ≤ sup
t∈[0, 1]

‖dGR(th)‖‖h‖.
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Plug the formula that gives dGR in terms of dGF into this inequality to find an estimate
on the norm of R(h):

‖R(h)‖ ≤ sup
t∈[0, 1]

‖dGF (u0 + th)− dGF (u0)‖‖h‖.

This proves the thesis because dyGF (u0) is continuous by assumption, and hence the supre-
mum goes to zero as ‖h‖ becomes small:

sup
t∈[0, 1]

‖dGF (u0 + th)− dGF (u0)‖ ‖h‖→0−−−−→ 0.

Therefore R(h) is a small-o of ‖h‖, and thus F is F -differentiable at u0 with F -differential
that coincides with the G-differential.

We conclude this section with a couple of remarks. Let F be a continuous function
defined on [a, b] taking values in a Banach space X, and set

Φ(t) :=

∫ t

a

F (ξ) dξ.

Exercise 1.1. Show that Φ is a F -differentiable map whose differential coincides with F (t0)

at all t0 ∈ [a, b].

This can be done, for example, using the canonical identification between X and its dual
X∗. In any case, it follows from Theorem 1.10 that

‖Φ(t)− Φ(s)‖ ≤ sup{‖F (ξ)‖ : ξ ∈ [s, t]} × (t− s),

and therefore, if F is identically zero on [a, b], then Φ is constant. This means that Φ is, up
to a constant, the unique primitive of F as it happens in the Euclidean setting.

Corollary 1.12. Let F ∈ C1(U, Y) and suppose that [u, v] ⊂ U . Then the map

F ◦ γ : [0, 1] 3 t 7−→ F (tu+ (1− t)v) ∈ Y

belongs to C1([0, 1], Y) and the integral representation holds:

F (v)− F (u) =

∫ 1

0

F ′(tu+ (1− t)v)[u− v] dt. (1.9)

1.3 Nemitski operators

In this section, we will introduce the notion of Nemitski operator and investigate specific
properties such as continuity, differentiability and its relation with

G(u) =
1

2
‖u‖2X −F(u).
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Definition 1.13 (Nemitski operator). Let f : Ω × R → R be a function. The Nemitski
operator associated to f is the map

M (Ω, R) 3 u 7−→ f(·, u(·)).

Here M (Ω, R) denotes the set of all real-valued measurable maps defined on Ω. The symbol
f will denote both the function and the associated operator.

The operator f sendsM(Ω) in the set of real-valued functions defined on Ω but, a priori,
we have no guarantee that f(·, u(·)) is measurable and, in general, it is not.

Definition 1.14. Let f : Ω×R→ R be a function. We say that f satisfies the Carathéodory
condition if it satisfies the following properties:

(i) The map s 7→ f(x, s) is continuous for almost every x ∈ Ω.

(ii) The map x 7→ f(x, s) is measurable for all s ∈ R.

Lemma 1.15. If f satisfies the Carathéodory condition, then the associated Nemitski oper-
ator takes values in M (Ω, R), that is, the map

x 7−→ f(x, u(x))

is measurable for all u ∈M (Ω, R).

Proof. Let u ∈ M (Ω, R). There is a sequence of simple functions (χn)n∈N that converges
to u at almost every x ∈ Ω. From the Carathéodory condition it follows that

f(·, χn(·)) is measurable and f(·, χn(·)) n→+∞−−−−−→ f(·, u(·)) a.e. in Ω.

In particular, the function f(·, u(·)) is almost everywhere the pointwise limit of a sequence
of measurable functions; we deduce that also f(u) is measurable.

1.3.1 Continuity of Nemitski operators

Let p, q ≥ 1 and let f be a function satisfying the Carathéodory condition and the following
growth condition:

|f(x, s)| ≤ a+ b|s|
p
q (1.10)

where a and b are two positive constants.

Theorem 1.16. Suppose that Ω ⊂ Rn is an open bounded set. Then

f : Lp(Ω)→ Lq(Ω)

is a continuous operator.
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Notice that the boundedness of Ω is not a strictly necessary condition, but rather it
makes the proof much simpler. For example, if a = 0 in (1.10), then it is possible to prove
the statement with no assumption on Ω. In any case, to prove this result, we now recall a
well-known technical lemma which will make it possible for us to apply Lebesgue’s dominated
convergence theorem below.

Lemma 1.17. Let (un)n∈N ⊂ Lp(Ω) be a strongly convergent sequence and let u ∈ Lp(Ω)

be its limit. Then there exists a subsequence (nk)k∈N and a function h ∈ Lp(Ω) such that

unk
a.e. in Ω−−−−−−→ u and |unk(x)| ≤ h(x) at almost every x ∈ Ω. (1.11)

Proof. The argument is completely standard. Indeed, one defines the sequence

vj :=

j∑
k=1

|unk − unk−1
|

and proves that vj converges to some v ∈ Lp(Ω) positive. The only nontrivial point is how
to choose the function h, but it is not hard to verify that h := v + |u| works just fine.

Proof of Theorem 1.16. First, notice that f(·, u(·)) ∈ Lq(Ω) since (1.10) implies that

|f(u)|q .q aq + bq|u(x)|p,

and the function on the right-hand side belongs to L1(Ω) by assumption. Now suppose that

‖un − u‖Lp(Ω)
n→+∞−−−−−→ 0.

By Lemma 1.17, we can always find a subsequence (nk)k∈N and a function h ∈ Lp(Ω)

satisfying (1.11). It follows from the Carathéodory condition and (1.10) that

f(unk)
a.e. in Ω−−−−−→ f(u) and |f(unk)| ≤ a+ b|h|

p
q ∈ Lq(Ω).

We can now apply Lebesgue’s dominated convergence theorem and infer that

‖f(unk)− f(u)‖qLq(Ω) =

∫
Ω

|f(unk)− f(u)|q dx→ 0.

Since any sequence un converging to u in Lp(Ω) has a subsequence such that f(unk)→ f(u)

in Lq(Ω), we conclude that f is a continuous operator.

1.3.2 Differentiability of Nemitski operators

Let p > 2 and suppose that f has a partial derivative fs := ∂sf satisfying the Carathéodory
condition and the following growth condition

|fs(x, s)| ≤ a+ b|s|p−2 (1.12)
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for some positive constants a, b > 0. The previous result shows that fs is a bounded operator
from Lp(Ω) to Lr(Ω), with

r =
p

p− 2
.

As a consequence, the function fs(u)vm defined by setting

fs(u)v : x 7−→ fs(x, u(x))v(x),

satisfies the regularity condition fs(u)v ∈ Lp′(Ω), where p′ is the conjugate exponent of p;
namely,

1

p
+

1

p′
= 1.

Theorem 1.18. Let Ω ⊂ Rn be an open bounded set. Suppose that p > 2, f satisfies the
Carathéodory condition and the following boundedness assumption:

|f(x, 0)| ≤ C <∞.

Assume also that f has partial derivative fs that satisfies the Carathéodory condition and
the growth condition (1.12). Then the Nemitski operator

f : Lp(Ω) −→ Lp
′
(Ω)

is F -differentiable on Lp(Ω), and its differential is given by

df(u)[v] = fs(u)v. (1.13)

Proof. Start by integrating (1.12). Then we can find positive constants c, d > 0 such that

|f(x, s)| ≤ c+ d|s|p−1, (1.14)

from which it follows (using Theorem 1.16) that f is a continuous operator between Lp(Ω)

and Lp
′
(Ω). We now claim that

ω(u, v) := ‖f(u+ v)− f(u)− fs(u)v‖Lp′ (Ω)

belongs to o(‖v‖Lp(Ω)). This would conclude the proof since it asserts that fs(u)v is the
F -differential so we can focus on proving the claim.

Step 1. The classical mean-value theorem applied to R 3 u 7→ f(·, u) shows that

|f(u+ v)− f(u)− fs(u)v| = |vw|,

where

w(x) :=

∫ 1

0

[fs(x, u+ ξv)− fs(x, u)] dξ.
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Using Hölder inequality we find that

ω(u, v) ≤ ‖v‖Lp(Ω)‖w‖Lr(Ω),

where r = p
p−2 . It remains to prove that ‖w‖Lr(Ω) goes to zero as ‖v‖Lp(Ω) becomes

increasingly smaller.

Step 2. Applying Fubini-Tonelli’s theorem we infer that

‖w‖rLr(Ω) ≤
∫

Ω

dx

∫ 1

0

dξ|fs(x, u+ ξv)− fs(x, u)|r ≤

≤
∫ 1

0

dξ

∫
Ω

dx|fs(x, u+ ξv)− fs(x, u)|r =

=

∫ 1

0

‖fs(·, u(·) + ξv(·)− fs(·, u(·))‖rLr(Ω),

The right-hand side goes to zero because, as observed earlier, the operator fs is continuous
from Lp(Ω) to Lr(Ω) and this concludes the proof.

In the limit case, namely p = 2, the result is invalid and it can actually be proved that
f is only G-differentiable. The next proposition summarises it.

Proposition 1.19. Let Ω ⊂ Rn be an open bounded set and suppose that both f and fs
satisfy the Carathéodory condition and the growth condition

|fs(x, s)| ≤ C <∞.

Then the Nemitski operator f : L2(Ω) → L2(Ω) is continuous and G-differentiable, with
G-differential given by

dGf(u)[v] = fs(u)v.

Moreover, if f is F -differentiable at some u ∈ Ω, then we can always find measurable
functions a, b ∈M (Ω, R) such that

f(x, u(x)) = a(x) + b(x)u(x).

1.3.3 Potential operators

In this section, our goal is to introduce the notion of potential operator and exploit it to
prove that (1.1) is well-defined under mild assumptions on f .

Theorem 1.20 (Sobolev embedding). Let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary and let k ≥ 1 and 1 ≤ p ≤ ∞. Then the following inclusions are continuous:

(a) If kp < n, then Hk, p(Ω) ↪→ Lq(Ω) for all 1 ≤ q ≤ np
n−kp .
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(b) If kp = n, then Hk, p(Ω) ↪→ Lq(Ω) for all q ∈ [1, ∞).

(c) If kp > n, then Hk, p(Ω) ↪→ C0, α(Ω̄), where

α =


k − n

p if k − n
p < 1,

[0, 1) if k − n
p = 1 and p > 1,

1 if k − n
p > 1.

Furthermore, the inclusions above are compact if we restrict the ranges of q and α:

(a)′ If kp < n, then Hk, p(Ω) ↪→↪→ Lq(Ω) for all 1 ≤ q < np
n−kp .

(b)′ If kp = n, then Hk, p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1, ∞).

(c)′ If kp > n, then Hk, p(Ω) ↪→↪→ C0(Ω̄).

Now let X := H1
0 (Ω) and let f be a function satisfying Carathéodory condition and the

growth condition
|f(x, s)| ≤ a+ b|s|σ, (1.15)

where
σ ≤ n+ 2

n− 2
=: 2∗ − 1

if n ≥ 3, and σ > 0 arbitrary if n = 1 or n = 2. We proved in Theorem 1.16 that f is a
continuous operator between L2∗(Ω) and Lq(Ω) where

q ≥ 2n

n+ 2
.

It follows that
u ∈ X =⇒ f(u) ∈ L(2∗)′(Ω),

and therefore, given v ∈ X, we have that f(u)v ∈ L1(Ω). We use Riesz’s representation
theorem to define a map N : X → X in such a way that N(u) is the unique element
satisfying the following identity:

(N(u), v)X =

∫
Ω

f(x, u(x))v(x) dx.

We claim that N is a continuous map. Indeed, by definition we have that

‖N(u)−N(v)‖ = sup
‖w‖X≤1

{∫
Ω

[f(x, u)− f(x, v)]w(x) dx

}
,

and thus, using the appropriate Sobolev embedding, we can infer that

‖N(u)−N(v)‖ . ‖f(x, u)− f(x, v)‖
L

2n
n+2 (Ω)

‖w‖X.
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Since f is continuous as an operator from L2∗(Ω) to L
2n
n+2 (Ω), the right-hand side of the

inequality above converges to zero as soon as ‖u− v‖X → 0, and this proves the claim.

We are now ready to show that the growth condition (1.15) is a sufficient condition on
the nonlinearity f for its integral to be well-defined and, more so, differentiable.

Theorem 1.21. Let Ω ⊂ Rn be an open bounded set and suppose that f satisfies the
Carathéodory condition and the growth condition (1.15). Then

Φ(u) :=

∫
Ω

F (x, u) dx

is of class C1 and its gradient coincides with N(u).

Proof. By integrating (1.15), we find a growth condition on F which tells us that

|F (x, s)| ≤ c+ d|s|2
∗

(1.16)

for some positive constants c, d > 0. It follows that F (·, u(·)) belongs to L1(Ω), and thus
its integral, Φ(u), is well-defined, continuous and differentiable on X. Furthermore,

Φ′(u)[v] =

∫
Ω

f(x, u(x))v(x) dx,

and the right-hand side coincides with the element (N(u), v)X, which means that (by unique-
ness) Φ′(u) must be N(u).

Remark 1.22. If Ω is an unbounded domain, then the same argument works if the growth
is adjusted to be compatible with embedding results valid for unbounded domains [5].

1.4 Higher derivatives and partial derivatives

Let F ∈ C(U, Y) be a function differentiable on some open subset U ⊂ X. We know that
the differential is a map between U and the space of linear operators, that is,

dF : U −→ L(X, Y),

On the other hand, L(X, Y) is another Banach space and this means that it makes sense to
investigate the differentiability of this map.

Definition 1.23. A map F : U → Y is said to be twice Fréchet differentiable at some
u∗ ∈ U if dF is differentiable at u∗. The second differential of F at u∗ is the map defined as

d2F (u∗) := dF ′(u∗).

If F is twice differentiable at all points of U we say that F is twice differentiable in U .
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According to the definition above, the second differential d2F (u∗) is a linear continuous
map between X and L(X, Y), that is,

d2F (u∗) ∈ L(X, L(X, Y)).

Remark 1.24. It is often useful to regard d2F (u∗) as a bilinear map on X. This is possible
thanks to the one-to-one correspondence

L2(X, Y) ∼= L(X, L(X, Y)).

Proof. Let A ∈ L(X, L(X, Y)). We can associate to A, in a unique way, a bilinear operator
defined on X by setting

ΦA(u, v) := A(u)[v].

Vice versa, given a bilinear map Φ and h ∈ X, it is easy to see that

k 7−→ Φ(h, k)

is a continuous linear map from X to Y. Therefore, we can associate to Φ the uniquely
determined map

A : X 3 h 7−→ Φ(h, ·) ∈ L(X, Y).

Notice that the one-to-one correspondence defined in this way is not only an isomorphism,
but also an isometry with respect to the operator norms:

‖A‖L(X,L(X,Y)) = sup
‖h‖≤1

‖A(h)‖L(X,Y) =

= sup
‖h‖≤1

sup
‖k‖≤1

‖Φ(h, k)‖ = ‖Φ‖L2(X,Y).

From now on, we will always identify d2F (u∗) with the bilinear map given by the iso-
morphism described above. Furthermore, if F is differentiable twice in U and

F ′′(u) := d2F (u)

is continuous, then we will say that F is of class C2(U, Y).

Proposition 1.25. Let F : U → Y be a function that is twice differentiable at some u ∈ U
and set

Fh(u) := dF (u)[h]

for any fixed h ∈ X. Then Fh is differentiable at u and

dFh(u) = d2F (u)[h].
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Proof. Notice that Fh is given by the composition

u
dF−−→ dF (u)

Ih−→ dF (u)[h].

The conclusion follows from the usual chain rule property of the derivative operator.

Lemma 1.26 (Schwarz). Let F : U → Y be a function that is twice differentiable at some
u ∈ U . Then

F ′′(u) ∈ Ls2(X, Y),

which means that the second differential is a symmetric bilinear form.

Proof. Let h, k ∈ X satisfying ‖h‖X + ‖k‖X < ε and set

ψ(h, k) := F (u+ h+ k)− F (u+ k)− F (u+ h) + F (u),

γh(ξ) := F (u+ h+ ξ)− F (u+ ξ).

Observe that ψ(h, k) = γh(k)− γh(0). For h fixed, consider the function

gh : Bε ⊂ X −→ Y

defined as follows:
gh(k) := ψ(h, k)− d2F (u)[h, k].

Since F is twice differentiable in u ∈ U and d2F (u)[h, ·] is linear, we can apply Theorem
1.10 and obtain the following inequality:

‖ψ(h, k)− d2F (u)[h, k]‖Y ≤ ‖k‖X sup
{
‖dγh(tk)− d2F (u)[h, ·]‖L(X,Y) : t ∈ [0, 1]

}
.

We now rewrite dγh(tk) as dF (u + h + tk) − dF (u + tk). Using the fact that F is twice
differentiable at u easily leads to

dF (u+ h+ tk)− dF (u+ tk) = d2F (u)[h+ tk]− d2F (u)[tk] + o(tk) + o(tk + h).

We now plug this into the inequality above and find that

‖ψ(h, k)− d2F (u)[h, k]‖Y ≤ ‖k‖X sup
0≤t≤1

‖o(tk) + o(tk + h)‖X ≤

≤ ε(‖k‖X + 2‖h‖X)‖k‖X,

(1.17)

provided that ε (and thus ‖h‖X + ‖k‖X) is small enough. If we exchange the roles of h and
k, we easily find that

‖ψ(h, k)− d2F (u)[k, h]‖Y ≤ ε(‖h‖X + 2‖k‖X)‖h‖X, (1.18)
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since ψ is a bilinear symmetric form by definition. Combine (1.17) and (1.18) to get

‖d2F (u)[h, k]− d2F (u)[k, h]‖Y ≤ ε(2‖k‖2X + 2‖h‖2X + 2‖h‖X‖k‖X) ≤

≤ 3ε(‖k‖2X + ‖h‖2X)

for ε small enough. However d2F (u)[h, k] is homogeneous of degree two so the same in-
equality holds for all h and k. The arbitrariness of ε concludes the proof.

We can generalise all these notions and introduce the (n+1)th derivatives via an inductive
process. Let F : U → Y be a n-times differentiable function in u ∈ U and recall that

F (n)(u) := dnF (u) ∈ Ln(X, Y)

via the identification with multilinear maps. The (n+ 1)th differential at u can be defined
as the differential of F (n); namely

dn+1F (u) := dF (n)(u) ∈ Ln+1(X, Y).

We will say that F is of class Cn(U, Y) if F is n times differentiable in U and the nth
derivative is continuous.

Lemma 1.27. Let F : U → Y be a function that is n times differentiable in U . Then

(h1, . . . , hn) 7−→ dnF (u)[h1, . . . , hn]

is a symmetric multilinear form.

1.4.1 Partial derivatives and Taylor’s formula

Let X and Y be Banach spaces, fix (u∗, v∗) ∈ X×Y and consider the evaluation mappings:

σv∗(u) := (u, v∗) and τu∗(v) := (u∗, v).

The derivative of σv∗ and τu∗ are easy to compute explicitly:

σ := dσv∗ : h 7−→ (h, 0),

τ := dτu∗ : k 7−→ (0, k).

Definition 1.28. Let Q ⊂ X × Y be an open set and (u∗, v∗) ∈ X × Y. We say that a
function F : Q −→ Z is differentiable at the point (u∗, v∗) with respect to u if

F ◦ σv∗

is differentiable at u∗. The linear map

duF (u∗, v∗) := d(F ◦ σv∗)(u∗)
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is the partial derivative of F with respect to u.

Definition 1.29. Let Q ⊂ X × Y be an open set and (u∗, v∗) ∈ X × Y. We say that a
function F : Q −→ Z is differentiable at the point (u∗, v∗) with respect to v if

F ◦ τu∗

is differentiable at v∗. The linear map

dvF (u∗, v∗) := d(F ◦ τu∗)(v∗)

is the partial derivative of F with respect to v.

Proposition 1.30. Let F : Q→ Z be a differentiable map at the point (u∗, v∗) ∈ Q. Then
F has partial derivatives with respect to u and v given by

duF (u∗, v∗)[h] = dF (u∗, v∗)[σ(h)],

dvF (u∗, v∗)[k] = dF (u∗, v∗)[τ(k)].

In a similar fashion one can define higher partial derivatives. For example, if F has
u-partial derivative at all (u, v) ∈ Q, we can define the map

Fu(u, v) := duF (u, v).

Then the partial derivative du, vF (u∗, v∗) is the v-derivative of the map Fu, namely

Fu, v(u
∗, v∗) := dvFu(u∗, v∗).

Theorem 1.31. Suppose that F : Q→ Z has both partial derivatives in a neighbourhood of
(u∗, v∗) ∈ Q which are continuous at (u∗, v∗). Then F is differentiable at (u∗, v∗).

Remark 1.32. The statement of Lemma 1.26 can be easily generalised. Indeed, a straight-
forward computation shows that

du, vF (u∗, v∗)[h, k] = d2F (u∗, v∗)[σh, τk] =

= d2F (u∗, v∗)[τk, σh] =

= du, vF (u∗, v∗)[k, h],

which ultimately means that we can swap the order of the partial derivatives.

1.4.2 Taylor’s formula

Suppose that F ∈ Cn(U, Y), [u, v] ⊂ U and set γ(t) := u+ tv. Define

Φ(t) := F (γ(t)).
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Then Φ is a real-valued function defined on [0, 1], whose nth derivative is given by

Φ(n)(t) = d(n)F (γ(t))[v, . . . , v].

On the other hand, by Peano’s formula we find that

Φ(1) = Φ(0) + · · ·+ 1

(n− 1)!
Φ(n)(0) +

1

(n− 1)!

∫ 1

0

(1− t)n−1Φ(n)(t) dt.

If we plug the expression for Φ(n)(t) into this identity, we obtain the Taylor’s formula in the
more general contest of Fréchet differentiability.



Chapter 2

Local Inversion Theorems

In this chapter, we continue with our research toward the extension of differential calculus
to the abstract framework of Banach spaces. Recall that, for a function

F : Rn → Rn,

being continuously differentiable with total derivative invertible at a point p (i.e., the Jaco-
bian determinant of F at p is nonzero) is enough to infer that F is locally invertible. The
first part of this chapter is devoted to proving the same statement replacing Rn with Banach
spaces X and Y. More precisely, we have:

Theorem A. Let F ∈ C1(X, Y) with F ′(u∗) ∈ Inv(X, Y). Then F is locally invertible at
u∗ with C1 inverse. Namely, there are neighbourhoods U of u∗ and V of F (u∗) such that

(i) The restriction F
∣∣
U

: U −→ V is a homomorphism.

(ii) The inverse F−1 belongs to C1(V, X) and for all v ∈ V there results

dF−1(v) := (F ′(u))−1,

where u = F−1(v).

(iii) If F belongs to Ck(X, Y), k > 1, then F−1 ∈ Ck(X, Y).

In the second half of the chapter, we generalise a well-known result in Euclidean calculus:
the implicit function theorem. The following statement holds:

Theorem B. Let F ∈ Ck(Λ× U, Y), k ≥ 1. Suppose that

F (λ∗, u∗) = 0 and that Fu(λ∗, u∗) is invertible.

Then there are neighbourhoods Θ of λ∗ and U∗ of u∗ and a map g ∈ Ck(Θ, X) such that:

(i) For all λ ∈ Θ there results F (λ, g(λ)) = 0.
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(ii) If (λ, u) ∈ Θ× U∗ is such that F (λ, u) = 0, then u = g(λ).

(iii) If λ ∈ Θ and p = (λ, g(λ)), then

g′(λ) = −[Fu(p)]−1 ◦ Fλ(p).

2.1 Local inversion theorem

In this section, we will always consider continuous maps from a Banach space X to another
Banach space Y. With little effort, everything adapts to the case in which an open subset
replaces the whole space X.

Definition 2.1 (Inverse). Let A ∈ L(X, Y) be a continuous linear operator. We say that
A is invertible if there exists B ∈ L(Y, X) such that

B ◦A = IdX and A ◦B = IdY.

The map B is unique and we will denote it, from now on, by A−1. The set of all invertible
continuous linear maps is denoted by

Inv(X, Y) := {A ∈ L(X, Y) : A is invertible} .

Theorem 2.2 (Closed Graph). A linear operator T between two Banach spaces (even
Fréchet spaces) is continuous if and only if it has closed graph G(T ), where

G(T ) = {(x, y) : x ∈ X, y = T (x)}.

Corollary 2.3. Let A ∈ L(X, Y) be an injective operator. If A has range (=image) equal
to Y, then A ∈ Inv(X, Y).

The next result is standard in functional analysis. It asserts that the set Inv(X, Y) is
open with respect to the operator norm.

Proposition 2.4. Let X and Y be Banach spaces. Then the following hold:

(i) Let A ∈ Inv(X, Y). Then T ∈ L(X, Y) which satisfies

‖T −A‖L(X,Y) <
1

‖A−1‖L(X,Y)
(2.1)

also belongs to Inv(X, Y).

(ii) The map J : Inv(X, Y)→ L(Y, X), A 7→ A−1, is smooth.

Proof. It follows by standard arguments; see [3].
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The continuity of J ′ is easy to deduce. Indeed, we know that J is differentiable and its
differential is given by

dJ(A)[B] = −A−1 ◦B ◦A−1,

which is a composition of continuous maps.

Definition 2.5 (Homomorphism). Let U and V be open subsets of X and Y. A map
F : U → V is a homomorphism if there exists G : V → U such that

G ◦ F (u) = u and F ◦G(v) = v

for all u ∈ U and all v ∈ V . We denote by Hom(U, V ) the set of all homomorphisms between
U and V .

Definition 2.6. A continuous map F ∈ C(X, Y) is locally invertible at u∗ ∈ X if there exist
neighbourhoods U of u∗ and V of F (u∗) such that

F ∈ Hom(U, V ).

The map G : V → U is called local inverse of F and it will be denoted by F−1.

Proposition 2.7. The following properties of local invertibility holds:

(a) If F1 ∈ C(X, Y) is locally invertible at u and F2 ∈ C(Y, Z) is locally invertible at
F1(u), then F2 ◦ F1 is locally invertible at u.

(b) If F is locally invertible at u, then it is locally invertible at any point in a small
neighbourhood of u.

The proof of these two properties is left to the reader to get acquainted with these new
notions. Before we can deal with the main result of this section, a remark is in order.

Remark 2.8. Suppose that F is a locally invertible map at u∗ with inverse G. If F is
differentiable at u∗ and G at v∗ := F (u∗), then

F ◦G = IdY, G ◦ F = IdX

immediately implies that dF (u∗) is invertible with inverse dG(v∗).

Theorem 2.9 (Local Inverse). Let F ∈ C1(X, Y) with F ′(u∗) ∈ Inv(X, Y). Then F is
locally invertible at u∗ with a C1 inverse. Namely, there are neighbourhoods U of u∗ and V
of F (u∗) =: v∗ satisfying the following properties:

(i) The restriction F
∣∣
U

: U → V is a homomorphism.

(ii) The inverse F−1 belongs to C1(V, X) and for all v ∈ V there results

dF−1(v) := (F ′(u))−1,

where u = F−1(v).
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(iii) If, in addition, F belongs to Ck(X, Y), k > 1, then F−1 ∈ Ck(X, Y).

Proof. We can always assume (compose with translations) that u∗ = F (u∗) = 0. Moreover,
according to the transitivity property, we can discuss the local invertibility of the function

A ◦ F,

where A is a linear continuous invertible map. We can choose A := [F ′(0)]−1 so that it will
be enough to prove the theorem for functions of the form

F = IdX + Ψ,

where Ψ ∈ C1(X, X) and Ψ′(0) = 0.

Step 1. Since Ψ′ is continuous, we can choose r > 0 such that

‖p‖X < r =⇒ ‖Ψ′(p)‖X <
1

2
.

It follows from (1.6) that

‖Ψ(p)−Ψ(q)‖X ≤ sup{‖Ψ′(w)‖ : w ∈ [p, q]}‖p− q‖X ≤

≤ 1

2
‖p− q‖X,

which means that Ψ is a contraction and ‖Ψ(p)‖X ≤ 1
2‖p‖X for all p ∈ BX(0, r).

Step 2. Fix v ∈ X and define the function

Φv(u) := v −Ψ(u).

It is not hard to see that Φv is a contraction and, for all u ∈ BX(0, r) and all v ∈ BX(0, r2 ),
it turns out that

‖Φv(u)‖X ≤ ‖v‖X + ‖Ψ(u)‖X ≤ r.

In particular, for ‖v‖X ≤ r
2 , the map Φv is a contraction which also maps BX(0, r) into

itself. Thus it has a unique fixed point u ∈ Br that satisfies the equation

u = v −Ψ(u).

We can easily define a local inverse as

F−1 : BX(0,
r

2
) −→ BX(0, r)
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by setting F−1(v) = u. To prove that F−1 is continuous, let u = F−1(v) and w = F−1(z),
and notice that these are given by u+ Ψ(u) = v,

w + Ψ(w) = z.

It is now easy to estimate the norm of u− w since

‖u− w‖X ≤ ‖v − z‖X +
1

2
‖u− w‖X =⇒ ‖F−1(v)− F−1(z)‖X ≤ 2‖v − z‖X,

and this means that F−1 is not only continuous but, actually, Lipschitz-continuous. In
particular, letting V be the ball of radius r

2 and U = BX(0, r) ∩ F−1(V ), we finally obtain

F
∣∣
U
∈ Hom(U, V ).

Step 3. Recall that u = F−1(v), where u+ Ψ(u) = v. It follows that

F−1(v) = v −Ψ(F−1(v)).

Since Ψ(u) = o(‖u‖X) and F−1 Lipschitz-continuous, we conclude that Ψ(F−1(v)) belongs
to o(‖v‖X). This shows that F−1 is differentiable at v = 0 and

dF−1(0) = IdX.

The differential of a translation is the translation itself; hence we can compute the differential
of F−1 at any point using the relation

dF−1(v) = (F ′(u))−1.

The continuity follows from the fact that it is equal to the composition of continuous map-
pings; this is exactly as to say that F−1 ∈ C1(X, X).

Remark 2.10. The Ck-regularity for F−1 is obtained through an iterated application of
the argument above.

N.B. The assumption F ∈ C1(X, Y) cannot be removed, but we can drop injectivity if
both X and Y are finite-dimensional spaces.

Example 2.11. Consider the nondecreasing function ϕ : R→ R defined by

ϕ(s) =


1
n , s ∈

[
1
n −

1
4n2 ,

1
n + 1

4n2

]
,

s+O(s2) as s→ 0.

This is a differentiable function with derivative at zero equal to 1, but it is not injective in
any neighbourhood of the origin.
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On the other hand, in the infinite-dimensional setting we can easily construct an example
of F /∈ C1(X, Y) for which the local surjectivity fails.

Example 2.12. Let ϕ be as above. Let X = Y = C0([−1, 1]), and consider the map

F : X 3 u 7−→ ϕ ◦ u ∈ Y.

Let vn ∈ Y be the sequence defined by

vn(t) :=
1

n
+

t

n2
.

It is easy to verify that ‖vn‖∞ → 0 and vn /∈ F (X). Indeed, if we could find a sequence
un ∈ X such that F (un) = vn, then one would find

ϕ(un(t)) =
1

n
+

t

n2
.

But then 
ϕ(un(t)) > 1

n if t > 0,

ϕ(un(t)) < 1
n if t < 0,

and, using the monotonicity of ϕ, we conclude that

un(t) ≥ 1

n
+

1

4n2

for t > 0, and

un(t) ≤ 1

n
− 1

4n2

for t < 0. This would mean that un is not continuous at t = 0, and hence un /∈ X: a
contradiction.

Remark 2.13. Notice that the F in the previous example is differentiable at u = 0 with
F ′(0) = IdX, but it is not of class C1(X, Y).

2.1.1 Applications to initial-value problems

In this section, we will motivate the need for a local invertibility theorem showing how it
can be applied to deal with both ODEs and PDEs analysis.

Example 2.14. We are interested in T -periodic solutions of the following ODE:
ẍ(t) + g(x, ẋ) = εh(t),

g ∈ C1(R× R, R), h ∈ C(R).

The framework will be the minimal one where every term in the ODE is well-defined in a
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strong sense, that is,

X :=
{
x ∈ C2(R, R) : x(t+ T ) = x(t) for all t ∈ R

}
,

Y := {h ∈ C(R, R) : h(t+ T ) = h(t) for all t ∈ R} ,

and the map
F (x(t)) := ẍ(t) + g(x(t), ẋ(t)).

Assume that g(0, 0) = 0 - so the equation has the trivial solution if ε is zero -. We wish to
apply the local invertibility result (Theorem 2.9) with u∗ = 0. Since

dF (x(t))[y(t)] = [gx(x(t), ẋ(t))y(t) + gẋ(x(t), ẋ(t))ẏ(t)] + ÿ(t),

we can compute it at x = 0,

dF (0)[y(t)] = ÿ(t) + aẏ(t) + by(t),

where a and b are determined by the values of the partial derivatives of g at the origin. By
Fredholm theory, the differential dF (0) is invertible if and only if

ÿ(t) + aẏ(t) + by(t) = 0

admits the trivial solution only. In this case, we can find ε∗ > 0 and δ > 0 such that for all
ε < ε∗ the initial ODE has a unique solution x with norm ‖x‖∞ < δ.

Example 2.15. Let Ω ⊆ Rn be smooth and odd. Consider the boundary-value problem
∆u− λu+ u3 = h(x), if x ∈ Ω,

u(x) = 0, if x ∈ ∂Ω.

Let us consider the spaces of Hölder-continuous/continuously differentiable functions

X :=
{
u ∈ C2, α(Ω̄) : u

∣∣
∂Ω
≡ 0
}
, Y := C0, α(Ω̄),

and the map
F (u) = ∆u+ λu− u3.

A simple computation shows that

dF (u)[v] = ∆v + λv − 3u2v,

which means that the differential at the origin is given by

dF (0)[v] = ∆v + λv.

If λ 6= λk(∆) for all k ∈ N, where {λk}k∈N are the eigenvalues of the ∆ operator on Ω, then
F ′(0) is one-to-one from X to Y. Consequently, the inverse [F ′(0)]−1 exists, is continuous
and for each h ∈ Y with ‖h‖Y < δ, there exists a unique solution u ∈ X, small in norm, to
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the boundary problem.

Remark 2.16. In general, if u is a solution of
∆u− λu = h(x), if x ∈ Ω,

u(x) = 0, if x ∈ ∂Ω,

for h ∈ C0, α(Ω), then there exists a constant C(n, Ω) such that

‖u‖2, α ≤ C(n, Ω)(‖h‖0, α + ‖u‖∞). (2.2)

Removing the second term in the right-hand side is, morally, what happens when we apply
the local invertibility theorem.

Example 2.17. Let Ω ⊆ R2 be smooth, bounded and connected. Let γ be a smooth
function on ∂Ω taking values in R. If u is a smooth solution ofM(u) := Auxx +Buyy − 2uxuyuxy = 0,

u
∣∣
∂Ω
≡ γ,

where A = (1+u2
y) and B = (1+u2

x), then we say that u is a minimal surface with boundary
γ. Let us consider the spaces of Hölder-continuous functions

X := C2, α(Ω̄), Y := C(Ω̄)× C2, α(∂Ω),

and the map
F (u) := (M(u), u

∣∣
∂Ω

).

It is easy to see that F is C1 and its differential is given by

dF (u)[v] = Avxx +Bvyy − u(. . . ),

which immediately leads to
dF (0)[v] = (∆v, v

∣∣
∂Ω

).

By elliptic regularity theory, the Dirichlet problem
∆v = h(x), if x ∈ Ω,

v(x) = ϕ(x), if x ∈ ∂Ω,

admits a unique solution, provided that (h, ϕ) ∈ Y; in this case, v depends continuously
upon the initial data. Finally, a simple application of Theorem 2.9 shows that there are
neighbourhoods U and V of X and C2, α(∂Ω) respectively such that

γ ∈ V =⇒ the system has a unique solution u ∈ U ,

and the correspondence γ 7→ u is C1.
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2.2 The implicit function theorem

We will now show that we can extend the range of applicability of the local inversion theorem
by merely adding an extra parameter. Namely, consider a map

F : Λ× U −→ Y,

where U ⊂ X and Λ, the set of parameters, is a subset of a Banach space T.

Lemma 2.18. Let (λ∗, u∗) ∈ Λ× U . Suppose that the following properties hold:

(i) The function F is continuous and has u-partial derivative Fu in Λ× U , which is also
continuous.

(ii) The linear operator Fu(λ∗, u∗) is invertible.

Then the map Ψ : Λ× U → T×Y given by

Ψ(λ, u) = (λ, F (λ, u)) (2.3)

is locally invertible at (λ∗, u∗) with a continuous inverse Φ. Moreover, Φ belongs to C1 if
F ∈ C1(Λ× U, Y).

The local invertibility of Ψ follows, essentially, from the same proof given for Theorem
2.9 so we will not repeat it.

Proof. Suppose that F ∈ C1(Λ× U, Y) and let

A := Fλ(λ∗, u∗) and B := Fu(λ∗, u∗)

be its partial derivatives. Clearly, the map Ψ belongs to C1 and its derivative is explicitly
given by the following formula:

dΨ(λ∗, u∗)[ξ, v] = (ξ, Aξ +Bv).

The equation
dΨ(λ∗, u∗)[ξ, v] = (η, v)

yields η = ξ and, since B is invertible, we also infer that

A[η] +B[v] = v

has a unique solution, which we denote by v = B−1(v − Aη). It follows that dΨ(λ∗, u∗) is
invertible and an application of Theorem 2.9 shows that Φ is also C1.

Remark 2.19. The function Ψ has an inverse Φ in a neighbourhood Θ×V of (λ∗, F (λ∗, u∗)),
which is given by

Φ(λ, v) = (λ, ϕ(λ, v)). (2.4)
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The function ϕ : Θ×V → X is determined as the unique solution to the following equation:

F (λ, ϕ(λ, v)) = v for all λ ∈ Θ. (2.5)

Therefore ϕ is of class C1 and its partial derivative can be easily found by differentiating
the identity above:

Fλ + Fu ◦ ϕλ = 0,

Fu ◦ ϕv = Id,

=⇒
ϕλ = −[Fu]−1Fλ,

ϕv = [Fu]−1.

Remark 2.20. The existence of a local inverse Φ of Ψ can be obtained in a more general
setting, requiring that T is only a topological space rather than a Banach space.

Theorem 2.21 (Implicit Function). Let F ∈ Ck(Λ × U, Y), k ≥ 1, where Λ is a set
of parameters. Suppose that F (λ∗, u∗) = 0 and Fu(λ∗, u∗) invertible. Then there exist
neighbourhoods Θ of λ∗ and U∗ of u∗ and a map g ∈ Ck(Θ, X) such that:

(i) For all λ ∈ Θ there results F (λ, g(λ)) = 0.

(ii) If (λ, u) ∈ Θ× U∗ is such that F (λ, u) = 0, then u = g(λ).

(iii) If λ ∈ Θ and p = (λ, g(λ)), then

g′(λ) = −[Fu(p)]−1 ◦ Fλ(p).

Proof. Let Ψ be the function defined by (2.3). Then Ψ is locally invertible at (λ∗, u∗) and
satisfies

Ψ(λ∗, u∗) = (λ∗, F (λ∗, u∗)) = (λ∗, 0).

The local inverse Φ satisfies (2.4) and it is rather easy to verify that ϕ is of class Ck, provided
that F is Ck. Setting

g(λ) := ϕ(λ, 0),

using (2.5) we are able to conclude that

F (λ, g(λ)) = F (λ, ϕ(λ, 0)) = 0 for all λ ∈ Θ.

This concludes the proof of (i). Now the assertion (ii) follows from the fact that Φ is
one-to-one and (iii) has been proved already in the previous remark.

2.2.1 Application to perturbed differential systems

Let f ∈ C1(R×R×Rn, Rn) be a period solution (with respect to the middle variable), that
is, there exists a positive time T such that

f(ε, t+ T, x) = f(ε, t, x).
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Our goal is to investigate period solutions of the ε-perturbed differential system

ẋ(t) = f(ε, t, x), (2.6)

which satisfies the following additional assumption: for ε = 0 there exists a T -periodic
solution, which we will denote by y(t). Consider the Cauchy problemα̇(t) = f(ε, t, α),

α(0) = ξ.

Since f is differentiable, by Cauchy-Lipschitz theory we can always find a unique solution
α which is defined in a small neighbourhood of the initial value, that is, |ξ − ξ∗| < δ with
ξ∗ = y(0). Moreover, we know that

A(ε, t, ξ) :=
∂α

∂ξ

is the n× n matrix solving the Cauchy problemȦ = fx(ε, t, α)A,

A(ε, 0, ξ) = IdRn .

In what follows, we shall always denote by A0(t) the matrix A(0, t, ξ∗).

Theorem 2.22. Under these assumptions, if λ = 1 is not in the spectrum of A0(t), then
there are δ > 0 and ξ ∈ C1((−δ, δ)), ξ(0) = ξ∗ such that

|ε| < δ =⇒ there exists a unique T -periodic solution of (2.6)ε.

Proof. The Cauchy problem (2.6)ε has a T -periodic solution if and only if there exists ξ ∈ Rn

such that
α(ε, T, ξ) = ξ.

Thus, introducing the map F : R× Rn → Rn defined by

F (ε, ξ) := α(ε, T, ξ)− ξ,

we are led to solve the equation F (ε, ξ) = 0. The function F is C1 and, since α(0, t, ξ∗) =

y(t) and y is T -periodic, it turns out that

F (0, ξ∗) = α(0, T, ξ∗)− ξ∗ = y(T )− ξ∗ = 0.

We conclude applying Theorem 2.21 since

Fξ(0, ξ
∗) = αξ(0, T, ξ

∗)− Id = A0(t)− Id,

and the right-hand side is invertible because 1 is not in the spectrum of A0(t) by assumption.
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The autonomous case (in which f does not depend on t directly) is more delicate and
requires to work slightly more. Consider the system

ẋ(t) = f(ε, x), (2.7)

and notice that the period of a solution of (2.7) is, a priori, unknown. Let f(x) := f(0, x)

and assume that f ∈ C1(Rn, Rn) satisfies the following property:

ε = 0 =⇒ (2.7) has a nonconstant T -periodic solution y = y(t).

Without loss of generality we can assume y(0) = 0.

Remark 2.23. It is important to notice that the previous theorem does not apply here
because 1 always belongs to the spectrum of A0(T ). Indeed, A0 satisfiesȦ0 = f ′(y(t))A0,

A0(0) = IdRn .

To see this, we differentiate the relation y′ = f(y) and find that

y′′(t) = f ′(y)y′,

and therefore, by setting v := y′, we have v(t) 6= 0 for all t and

v′ = f ′(y)v.

Let v∗ = v(0) and w(t) = A0(t)v∗. It follows thatw
′ = Ȧ0v

∗ = f ′(y(t))A0(t)v∗ = f ′(y)w,

w(0) = v∗.

By the uniqueness of the Cauchy problem, it must be that v(t) = w(t). In particular, there
results w(T ) = w(0) and hence

A0(T )v∗ = w(0) = v∗ =⇒ 1 ∈ σ(A0(T )).

Theorem 2.24. Under these assumptions, if λ = 1 is a simple eigenvalue for A0(T ), then
there are continuous maps h = h(ε) and τ = τ(ε) such that

h(0) = y(0), τ(0) = T,

and (2.7) has a τ(ε)-periodic solution yε satisfying yε(0) = h(ε).



Chapter 3

Global Inversion Theorems

The goal of this chapter is to find assumptions that allow us to extend the local inversion
theorem to the whole space. The main result states that this is possible provided that we
remove from domain and codomain the singular points:

Theorem A. Let F : M → N be a proper map. Suppose that N0 is simply connected and
M0 is arc-wise connected. Then F is a global homeomorphism between M0 and N0.

In the second half of the chapter, we show how can we apply this result to PDEs analysis
to determine the existence of solutions to some Dirichlet problems. We conclude with the
statement of the global inversion theorem that takes into account singularities.

Theorem B. Let F ∈ C2(X, Y) be a proper function and suppose that every u ∈ Σ′ is an
ordinary singular point, the equation

F (u) = v

has a unique solution for all v ∈ F (Σ′), and Σ′ connected. Then there exist two open
connected subsets Y0 and Y2 such that

Y = Y0 ∪Y2 ∪ F (Σ′),

and it turns out that

[v] =


0 if v ∈ Y0,

1 if v ∈ F (Σ′),

2 if v ∈ Y2.
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3.1 The global inversion theorem

The goal of this section is to investigate minimal conditions under which a map F between
metric spaces, M and N , is a global homeomorphism.

Definition 3.1 (Proper). A continuous map F : M → N between metric spaces is proper
if the preimage

F−1(K) = {u ∈M : F (u) ∈ K}

of a compact set is also compact.

From now on, when we say that F : M → N is proper, we will also assume that F is
continuous with respect to the topology spaces (M, dM ) and (N, dN ).

Lemma 3.2. Let F : X → Y be a proper map between topological spaces and let Y be locally
compact and Hausdorff. Then F is a closed map.

Proof. Let C be a closed subset of X. We will show that Y \ F (C) is open. For this, let
y ∈ Y \ F (C) and take an open neighbourhood V 3 y with compact closure. Then

F proper =⇒ F−1(V̄ ) compact in X.

Let E = C∩F−1(V̄ ). Then E is compact and by continuity so is F (E). Since Y is Hausdorff,
F (E) is closed. Now consider

U = V \ F (E).

Then U is an open neighbourhood of y which is disjoint from F (C), and this proves that
F (C) is closed.

Theorem 3.3. Let F : M → N be a proper locally invertible map. Then

N 3 v 7−→ [v] := #F−1({v})

is finite and locally constant.

Proof. The singlet {v} is compact so its preimage via F is also compact. Since F−1({v})
must be discrete by the local invertibility theorem, we conclude that

F−1({v}) ⊂M is discrete and compact,

which is possible if and only if it is finite. To show that the map is locally constant, fix
v ∈ N and denote by {u1, . . . , un} the preimage F−1(v). By the local invertibility theorem
we can find open neighbourhoods Ui 3 ui in M and V neighbourhood of v in N such that

F ∈ Hom(Ui, V ) for all i = 1, . . . , n.

It follows that
[w] ≥ k for all w ∈ V .
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We now claim that there exists an open neighbourhood W ⊂ V of v such that [w] is
identically equal to k at all w ∈ W . We argue by contradiction. If W does not exist, then
we can find

{vj}j∈N ⊂ N and vj
j→+∞−−−−→ v

and a corresponding sequence of points pj ∈M such that

pj /∈
n⋃
i=1

Ui and F (pj) = vj .

Since F is proper, we can find a subsequence jk such that pjk converges to some p that does
not belong to

⋃n
i=1 Ui. The continuity of F proves the contradiction since

F (pjk)
k→+∞−−−−−→ F (p) = v.

⑦ This is e counterexample fee F ha locally invertible .TE
corset here

Z

e

②
.

Z
↳ ① This is a counterexample

for F not proper

Figure 3.1: Counterexamples to [v] finite and locally constant.

Corollary 3.4. Let F : M → N be a proper locally invertible map. If N is connected, then
[v] is globally constant.

Definition 3.5 (Singular). A point u ∈ M is said to be singular for F if F is not locally
invertible at u and regular if it is not singular.

Denote by Σ the set of all singular points in M and Σ0 the preimage F−1(F (Σ)). We
would like to work with regular points only, so we defineM0 := M \Σ0 and N0 := N \F (Σ).

Remark 3.6. The set Σ is closed, so both M0 and N0 are open in M and N respectively.

An obvious consequence of the definitions of singular points and (M0, N0) is the following
theorem, which asserts that [v] is constant on connected components of N0.
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Theorem 3.7. Let F : M → N be a proper map. Then [v] is constant on every connected
component of N0.

We are now ready to state the main result of this section. The assertion is rather intuitive,
but it will take us a considerable effort to prove it formally.

Theorem 3.8. Let F : M → N be a proper map. Suppose that N0 is simply connected and
M0 is arc-wise connected. Then F is a global homeomorphism between M0 and N0.

Corollary 3.9. Let F : M → N be a proper locally invertible map. Suppose that N is
simply connected and M0 is arc-wise connected. Then F ∈ Hom(M, N).

The first step is to introduce and investigate the notion of "path that invert F along
another path". Next, we show that this "inverse" is unique and also that everything can be
generalised to paths defined on [a, b]2.

Definition 3.10. Let M , N be as above and let σ : [a, b]→ N be a continuous path. We
say that a path θ : [a, b]→M inverts F along σ if the following diagram commutes:

M N

[a, b]

F

σ

θ

Remark 3.11. Let u ∈ M and v ∈ N be such that F (u) = v and F
∣∣
U
∈ Hom(U, V ),

where U and V are respectively neighbourhoods of u and v. Given a path

σ : [a, b] −→ N, σ(a) = v and σ([a, b]) ⊂ V,

it is easy to see that the equation F (θ(t)) = σ(t) defines the unique path θ that inverts F
along σ satisfying the initial condition θ(a) = u.

Remark 3.12. Let σ : [a, b] → N be a continuous path and suppose that there exists
c ∈ (a, b) such that θ1 inverts F along σ

∣∣
[a, c]

and θ2 along σ
∣∣
[c, b]

with θ1(c) = θ2(c). Then

θ(t) :=

θ1(t) if t ∈ [a, c),

θ2(t) if t ∈ [c, b],

is a well-defined continuous path which inverts F along the whole σ.

Lemma 3.13. Let u∗ ∈M0 and v∗ = F (u∗) ∈ N0. Then for any given path σ : [0, 1]→ N

with σ(0) = v∗ there exists a unique

θ : [0, 1] −→M0

that inverts F along σ satisfying the initial condition θ(0) = u∗.

Proof. We first prove uniqueness, which is relatively easy, and then we exploit it to obtain
the existence.
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Uniqueness. We argue by contradiction. Let θ1 and θ2 be two such paths and let

ξ := sup
{
s ∈ [0, 1] : θ1

∣∣
[0, s]
≡ θ2

∣∣
[0, s]

}
.

According to Remark 3.11, ξ is well-defined and„ since u∗ ∈ M0, it is also strictly bigger
than zero. Moreover, by continuity one has that

θ1(ξ) = θ2(ξ)

so all it remains is to prove that ξ = 1. Suppose that ξ < 1 and set

u = θ1(ξ) = θ2(ξ) and v = F (u).

Since F is locally invertible in M0, there are neighbourhoods U 3 u and V 3 v such that
F
∣∣
U
∈ Hom(U, V ). Now both paths are continuous so

θ1([ξ, ξ + α]) ⊂ U and θ2([ξ, ξ + α]) ⊂ U

for a small enough α > 0. Therefore

θ1

∣∣
[0, ξ+α]

≡ θ2

∣∣
[0, ξ+α]

,

and this is a contradiction with the definition of ξ as the supremum.

Existence. Let Ξ be the set of all s ∈ [0, 1] such that F is invertible along σ
∣∣
[0, s]

with
inverse given by

θs : [0, s] −→M0 such that θs(0) = u∗, F (u∗) = σ(0).

We will show that Ξ is both closed and open in [0, 1] in such a way it must coincide with
[0, 1] as it is nonempty.

(a) Let ξ := sup Ξ. As before ξ > 0 and, by uniqueness, the resulting paths θs must
coincide in the intersections of the intervals of definition. Let θ be the function

θ(s) := θs(s) for all s ∈ [0, ξ).

Now let sn ↗ ξ be a sequence such that σ(sn)→ v. Since θ(sn) = F−1(σ(sn)) and F
is proper, we find that (up to subsequences) we have

θ(sn)→ u, F (u) = v.

Now let U 3 u and V 3 V be neighbourhoods such that F
∣∣
U
∈ Hom(U, V ). If m ∈ N

is chosen in such a way that

θ(sm) ∈ U and σ([sm, ξ]) ⊂ V,

then F can be inverted along σ
∣∣
[sm, ξ]

by a path θ1 which coincides with θ evaluated
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at sm. Finally, the trick illustrated in Remark 3.12 allows us to conclude that Ξ is
closed.

(b) The idea is more or less the same. If ξ < 1, the path θ1 introduced above can be
defined in an interval [sm, ξ + α], α > 0, which is absurd.

The next step is to pass from paths to 2-paths, namely continuous functions defined on
Q := [a, b]2 and taking values in M or N .

Definition 3.14. Let M and N be as above and let σ : Q→ N be a 2-path. We say that
a 2-path θ : Q→M inverts F along σ if the following diagram commutes:

M N

Q

F

σ

θ

Lemma 3.15. Let u∗ ∈M0 and v∗ = F (u∗) ∈ N0. Then given any 2-path σ : Q→ N such
that σ(0, 0) = v∗, there exists a unique 2-path

θ : Q −→M0

that inverts F along σ satisfying the initial condition θ(0, 0) = u∗.

Proof. We divide into two steps as before, starting from uniqueness which is once again
needed to prove existence.

Uniqueness. Let θ1 and θ2 be two such 2-paths and let (s, t) ∈ Q. Define φ1, φ2 : [0, 1]→
M0 and ψ : [0, 1]→ N0 as follows:

φ1(λ) = θ1(λs, λt),

φ2(λ) = θ2(λs, λt),

ψ(λ) = σ(λs, λt).

Then φ1 and φ2 are paths that invert F along ψ, which means that by the 1-dimensional
result they must coincide. Letting λ = 1 shows that

θ1(s, t) = θ2(s, t),

and we conclude using the arbitrariness of (s, t) ∈ Q.
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Existence. Consider the rectangle

Rs = [0, s]× [0, 1] ⊂ Q,

and let Ξ be the set of all s ∈ (0, 1] such that there exists θs : Rs → M0 that inverts F
along the restriction σ

∣∣
Rs

with θs(0, 0) = u∗. Clearly, 0 ∈ Ξ since F is invertible along

t 7−→ σ(0, t)

by Lemma 3.13. Let ξ := sup Ξ. As before ξ > 0 and, by uniqueness, the resulting 2-paths
θs must coincide in the intersections of the intervals of definition. Let θ be the function

θ(z, t) := θs(z, t) for all (z, t) ∈ Rs.

Fix t ∈ [0, 1]. Since F is invertible along the path s 7→ σ(s, t) with inverse s 7→ φ(s)

satisfying the initial condition φ(0) = θ(0, t), by uniqueness we have

φ(z) = θ(z, t) for all 0 ≤ z < ξ.

If we set φ(ξ) = u and σ(ξ, t) = v, then we can find neighbourhood U 3 u and V 3 v such
that F

∣∣
U
∈ Hom(U, V ). Then we can find a rectangle R′ centered at (ξ, t) and

θ′ : R′ ∩Q −→M0

such that θ′ inverts F along σ
∣∣
R′∩Q with θ′(ξ, t) = u. Since θ and θ′ coincide in (0, ξ), we

infer that θ can be extended to all R′ ∩Q and by continuity to Rξ in such a way that

F ◦ θ = σ

holds at all points of Rξ. Moreover, ξ = 1 for otherwise we could cover the segment
{(ξ, t) : t ∈ [0, 1]} with a family of rectangles R′, which would allow us to extend θ to
Rξ+α for some positive α: a contradiction.

Proof of Theorem 3.8. The map [v] is constant and ≥ 1 for all v ∈ N0, which means that F
is onto. We only need to show that

[v] = 1 at all v ∈ N0.

We argue by contradiction. Suppose that there are u0, u1 ∈M0 such that F (u0) = F (u1) =

v. Since M0 is arcwise connected, we can always find a continuous path θ such that

θ(0) = u0 and θ(1) = u1.

The image of θ, σ = F ◦ θ, is a closed path in the simply connected space N0 and therefore
homotopic to a constant path. Namely, there exists a homotopy h ∈ C(Q, N0) which,
without loss of generality, we can require to satisfy

h(0, t) = h(1, t) = v for all t ∈ [0, 1].
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From Lemma 3.15 we infer that there exists a unique 2-path Θ ∈ C(Q, M0) that inverts F
along h, that is,

F (Θ(s, t)) = h(s, t).

In particular, from F (Θ(s, 0)) = h(s, 0) = σ(s), we deduce that Θ(s, 0) = θ(s) and hence

Θ(1, 0) = θ(1) = u1.

On the other hand, from h(0, t) = h(1, t) = v, we can deduce that

F (Θ(0, t)) = F (Θ(s, 1)) = F (Θ(1, t)) = v.

In particular, the restriction of Θ to the set

Γ = ({0} × [0, 1]) ∪ ([0, 1]× {1}) ∪ ({1} × [0, 1])

is constant and, in particular, u1 = Θ(1, 0) = Θ(0, 0) = u0. This is in contradiction with
u0 6= u1 so [v] must be equal to 1 at all v ∈ N0, which is what we wanted to prove.

3.1.1 Global invertibility in PDEs analysis

Let Ω ⊂ Rn be an open bounded set with smooth boundary and consider the Dirichlet
problem −∆u(x) = p(u(x)) + h(x) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

(3.1)

Let (λk)k∈N denote the sequence of eigenvalues of the laplacian −∆ subject to Dirichlet
boundary conditions and enumerate them in such a way that λ1 ≤ λ2 ≤ . . . and

lim
k→∞

λk =∞.

Theorem 3.16. Let p ∈ C1(R, R) be a function of the form

p(s) = as+ b(s),

where |b(s)| ≤M . Suppose that one of the following holds:

(a) For all s ∈ R
p′(s) = a+ b′(s) < λ1.

(b) There exists k ∈ N such that for all s ∈ R

λk < p′(s) = a+ b′(s) < λk+1.

Then for any h ∈ Cα(Ω̄), α ∈ (0, 1), there exists a unique u ∈ C2, α(Ω̄) solution of the
problem (3.1).
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Proof. Let X := {u ∈ C2, α(Ω̄) : u
∣∣
∂Ω
≡ 0} and Y := Cα(Ω̄). In view of Theorem 3.8, it is

sufficient to show that the map

F (u) := −∆u− p(u)

is locally invertible at all u ∈ X and proper.

Step 1. The differential of F at u is the linear map defined by

dF (u)[v] := −∆u− p′(u)v,

and thus F is locally invertible if and only if

−∆u− p′(u)v = 0 ⇐⇒ v = 0.

We now consider the bilinear form defined by the differential of F at u, namely

b : X× X→ Y, b(u, v) := −∆u− p′(u)v,

and we notice that b is continuous, that is,

|b(u, v)| ≤ ‖u‖X‖v‖X.

If the assumption (a) holds, then it easily the coercivity of the bilinear form b and thus we
can apply Lax-Milgram theorem (see Theorem 3.17).

If, on the other hand, the assumption (b) holds, then we need to rely on a comparison
principle. First, consider the following eigenvalue problems:−∆v(x)− λkv(x) = µv(x) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,

−∆v(x)− p′(u)v(x) = µ̃v(x) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,

−∆v(x)− λk+1v(x) = µ̂v(x) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

The assumption (b) implies that
µ̂j < µ̃j < µj

for all j ∈ N. However, we can compute these eigenvalues explicitly as

µj = λj − λk and µ̂j = λj − λk+1,
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and hence we conclude that
µ̃k < 0 and µ̃k+1 > 0.

This shows that µ̃j 6= 0 for all j ∈ N and, as an immediate consequence, that F is locally
invertible.

Step 2. We now prove that F is proper. Let hn → h in Y be a convergent sequence and
let (un)n∈N ⊂ X be such that

F (un) = hn for all n ∈ N.

Step 2.1 We claim that ‖un‖Y is bounded. If not, let vn := un
‖un‖Y and notice that it is

well-defined and solves (3.1) with right-hand side

h =
hn
‖un‖Y

.

In particular, using that h(s) = as+ b(s), we find that vn solves the problem

−∆vn + avn = Un,

where Un is uniformly bounded in L∞(Ω) and, consequently, in every Lp-space for 1 ≤ p <
∞. Since the operator given by

−∆ + a IdX

is invertible, we infer that vn is bounded in W 2, p(Ω) for all p ∈ [1, ∞] and, by the Sobolev
embedding (see Theorem 1.20), the sequence vn is also bounded in C1, β(Ω). By Ascoli-
Arzelà, if β > α, then

vn
n→+∞−−−−−→ v∗

in C1, α(Ω̄) and ‖v∗‖Y = 1. On the other hand, the sequence Un tends to zero in Y so v∗

must also satisfy −∆v∗ + av∗ = 0,

‖v∗‖Y = 1,

and this is clearly impossible because the unique solution of this equation is v∗ ≡ 0, incom-
patible with the condition ‖v∗‖Y = 1.

Step 2.2. Since 
−∆un(x) = p(un(x)) + hn(x)

:=θn

if x ∈ Ω,

un(x) = 0 if x ∈ ∂Ω,
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and both (un)n∈N and (hn)n∈N are bounded in Y, we readily deduce that the sequence of
θn is bounded in Y. A well-known result in regularity theory implies that

‖un‖X ≤ C

and by Ascoli-Arzelà we can find a subsequence (unk)k∈N that converges to some u∗ in the
topology C2(Ω̄). Finally, since θnk converges in Y, the elliptic regularity theory allows us
to conclude that unk converges to u ∈ X.

To conclude this section, we recall the statement of the Lax-Milgram theorem in a more
general form in which we do not require b to be a bilinear form.

Theorem 3.17 (Lax-Milgram). Let H be a Hilbert space, and let a : H × H → R be a
function satisfying the following properties:

(1) a(0, v) = 0 for all v ∈ H and v 7→ a(u, v) is linear for all u ∈ H.

(2) For all v ∈ H and all (u1, u2) ∈ H ×H it turns out that

|a(u1, v)− a(u2, v)| ≤M‖u1 − u2‖‖v‖.

(3) There exists a constant ν > 0 such that

a(u1, u1 − u2)− a(u2, u1 − u2) ≥ ν‖u1 − u2‖2 for all (u1, u2) ∈ H ×H.

Then for all F ∈ H∗ there exists a unique element u ∈ H such that

a(u, v) = F (v) for all v ∈ H,

and there exists a positive constant which only depends on ν such that

‖u‖ ≤ 1

c(ν)
‖F‖H∗ .

Remark 3.18. If a : H ×H → R is a bilinear form, then the condition (3) is equivalent to
saying that a is coercive.

3.2 Global inversion with singularities

In this section, we will study the global invertibility of maps when Σ does not satisfy the
assumptions of Theorem 3.8. For this it will be convenient to deal with C2-maps F : X→ Y,
where X and Y are Banach spaces, and replace Σ with a slightly larger set

Σ′ := {u ∈ X : F ′(u) /∈ Inv(X, Y)}.

Let F ∈ C2(X, Y) and u ∈ Σ′. We assume that the following hold:
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(A) The kernel of F ′(u) is one-dimensional and generated by φ ∈ X \ {0}. The range is
closed and has codimension one.

(B) There exists φ̃ ∈ X such that F ′′(u)[φ̃, φ] /∈ Ran(F ′(u)).

We say that a subset M of X is a C1-manifold of codimension one in X if for all u∗ ∈ M
there exist δ > 0 and a functional Γ : Bδ(u

∗)→ R of class C1 such that

M ∩Bδ(u∗) = {u ∈ Bδ(u∗) : Γ(u) = 0},

and Γ′(u∗) 6= 0.

Lemma 3.19. Suppose that for all u ∈ Σ′ the conditions (A) and (B) hold. Then Σ′ is a
C1-manifold of codimension one in X.

Definition 3.20. We say that u ∈ Σ′ is an ordinary singular point if (A) holds and

F ′′(u)[φ, φ] /∈ Ran(F ′(u)),

where φ is the element that generates the kernel (by (A)).

Lemma 3.21. Let u∗ be an ordinary singular point. Then there exist ε > 0 and a map
Ψ ∈ C1(Bε(u

∗), Y) such that

(i) Ψ′(u∗) ∈ Inv(X, Y);

(ii) Ψ(u) = F (u) for all u ∈ Σ′ ∩Bε(u∗).

Proof. First, notice that Σ′ ∩Bδ(u∗) = Γ−1(0). Let Ψ : Bδ(u
∗)→ Y be the map defined by

setting
Ψ(u) := F (u) + Γ(u)z.

Then Ψ is C1-regular, Ψ(u) coincides with F (u) for all u ∈ Σ′ ∩ Bδ(u∗) and its differential
is given by

Ψ′(u∗)u = F ′(u∗)u+ Γ′(u∗)(u)z.

Setting u = tφ+ w, we find that

Ψ′(u∗)u = F ′(u∗)w + tΓ′(u∗)(φ)z + Γ′(u∗)(w)z =

= F ′(u∗)w + t〈Ψ, F ′′(u∗)[φ, φ]〉z + 〈Ψ, F ′′(u∗)[w, φ]〉z.

Finally, observe that Ψ′(u∗)u = v has a unique solution when 〈Ψ, F ′′(u∗)[φ, φ]〉 6= 0; thus,
if u∗ is an ordinary singular point, the map Ψ′(u∗) is invertible.

Corollary 3.22. If every u ∈ Σ′ is an ordinary singular point, then F (Σ′) is a C1-manifold
of codimension one in Y.

Lemma 3.23. Let u∗ be an ordinary singular point with Ker(F ′(u∗)) = Rφ. Assume that

〈Ψ, F ′′(u∗)[φ, φ]〉 > 0,



49 3.2. Global inversion with singularities

and set v∗ := F (u∗). Then there are ε, σ > 0 such that the equation

F (u) = v∗ + sz for u ∈ Bε(u∗),

has two solutions for all 0 < s < σ and none for −σ < s < 0.

Theorem 3.24. Let F ∈ C2(X, Y) be a proper function. Assume that every u ∈ Σ′ is an
ordinary singular point, the equation

F (u) = v

admits a unique solution for all v ∈ F (Σ′), and Σ′ is connected. Then there are two open
connected subsets Y0 and Y2 of Y such that

Y = Y0 ∪Y2 ∪ F (Σ′),

and it turns out that

[v] =


0 if v ∈ Y0,

1 if v ∈ F (Σ′),

2 if v ∈ Y2.



Part II

Variational Methods



Chapter 4

Critical Points

In this chapter, we will investigate the notion of critical point and we will relate it with
extrema and, ultimately, solutions of PDEs problems.

4.1 Existence of extrema

Recall that a functional over a Banach space X is a continuous mapping J : X −→ R. We
say that z ∈ X is a local minimiser (resp. maximiser) of J if there exists a neighbourhood
U 3 z such that

J(z) ≤ J(u) for all u ∈ U (resp. J(z) ≥ J(u)).

If the above inequality is strict (except at u = z), then we say that u is a strict local
minimum (resp. maximum) of J . Moreover, if it turns out that

J(z) ≤ J(u) for all u ∈ X (resp. J(z) ≥ J(u)),

then we say that z is a global minimum (resp. maximum).

Remark 4.1. If z is a local minimum and J is differentiable at z, then it is easy to show
that it must be a stationary point, that is,

dJ(z) ≡ 0.

We will now give an existence result that concerns coercive and weakly lower semi-
continuous functionals, but, before we dig into it, let us recall a few notions.

Definition 4.2. A functional J ∈ C0(X, R) is coercive if

lim
‖u‖→+∞

J(u) = +∞,
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and weakly lower semi-continuous if for every sequence un ∈ X such that un ⇀ u one has

J(u) ≤ lim inf
n→+∞

J(un).

Lemma 4.3. Let X be a reflexive Banach space and let J be a coercive weakly lower semi-
continuous functional. Then there exists α ∈ R such that

J(u) ≥ α for all u ∈ X.

Theorem 4.4. Let X be a reflexive Banach space and let J be a coercive weakly lower
semi-continuous functional. Then J has a global minimum, that is,

∃z ∈ X : J(z) ≤ J(u) for all u ∈ X.

Moreover, if J is differentiable at z, then z is a stationary point of J .

Proof. The previous lemma asserts that m := infu∈X J(u) is finite. Let un be a minimising
sequence, which means that

un ∈ X, J(un)
n→+∞−−−−−→ m.

The coercivity of J implies that ‖un‖ ≤ R′ (equibounded), and thus un ⇀ z for some z ∈ X.
Since J is weakly lower semi-continuous, it turns out that

J(z) ≤ m =⇒ J(z) = m.

4.2 Some applications to PDEs

We now show how to apply the previous theoretical results to deal with (mainly) the Dirichlet
boundary value problem −∆u(x) = f(x, u(x)) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

(D)

First of all, let us consider the case that X is a Hilbert space and define the functional

J(u) =
1

2
‖u‖2 − Φ(u),

where for (D) we have Φ(u) :=
∫

Ω
F (x, u) dx and F (x, u) =

∫ u
0
f(x, s) ds.

Theorem 4.5. Let J be defined as above and suppose that Φ ∈ C1(X, R) is weakly contin-
uous and satisfies

|Φ(u)| ≤ a1 + a2‖u‖α
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with a1, a2 > 0 and α < 2. Then J achieves a global minimum at some z ∈ X and there
holds J ′(z) = 0, that is Φ′(z) = z.

Proof. We have

J(u) ≥ 1

2
‖u‖2 − a1 − a2‖u‖α,

which means that for α < 2 the functional J is coercive. Since ‖ · ‖2 is weakly lower
semi-continuous and Φ is weakly continuous, we infer the existence from Theorem 4.4.

Now consider (D) and assume that f is locally Hölder-continuous and there exists a1 ∈
L2(Ω), a2 > 0 and 0 < q < 1 such that

|f(x, u)| ≤ a1(x) + a2|u|q (4.1)

for all (x, u) ∈ Ω× R. Set X := H1
0 (Ω) endowed with the usual homogeneous norm. Since

X is compactly embedded in L2(Ω), one easily finds that

Φ(u) :=

∫
Ω

F (x, u) dx

is C1(X) and weakly continuous.

Theorem 4.6. Let f be locally Hölder-continuous and suppose that (4.1) holds. Then (D)
admits a solution.

Proof. Consider the functional

J(u) =
1

2
‖u‖2 −

∫
Ω

F (x, u) dx,

and notice that its critical points are the solutions (in the weak sense) of (D). Using (4.1)
we readily find that

|Φ(u)| ≤ a5‖u‖+ a6‖u‖q+1.

Since q < 1 one infers that J is coercive on X. We know already that Φ is weakly continuous,
and thus we apply the result above to infer the existence of a point z such that

J ′(z) = z − Φ′(z) = 0 =⇒ Φ′(z) = z,

giving us the desired solution of (D).

Remark 4.7. We can prove that (4.1) can be replaced with the request that f(x, s)/s

tends to zero as |s| → ∞, uniformly with respect to x.

Example 4.8. Consider the boundary value problem−∆u(x) = λu− f(u) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,

(D)
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where λ is a given parameter and f : [0, ∞)→ R is locally Hölder and satisfies

lim
u→0+

f(u)

u
= 0, lim

u→+∞

f(u)

u
= +∞.

We claim that (D) has a positive solution for any λ > λ1, the first (smallest) eigenvalue of
the laplacian operator with DBC. First, notice that there exists ξ := ξλ > 0 such that

λξ = f(ξ) and λu− f(u) > 0

for all u ∈ (0, ξ). Let gλ : R→ R denote the function given by

gλ(x) :=

0 if u < 0 or u > ξ,

λu− f(u) if 0 ≤ u ≤ ξ.

Consider the auxiliary boundary value problem−∆u(x) = gλ(u) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,

(Dλ)

and by the maximum principle, any nontrivial solution of (Dλ) is positive. Moreover, one
finds that u(x) ∈ (0, ξλ) for all x ∈ Ω, and hence is a positive solution of (D). Since gλ is
locally Hölder-continuous and bounded, the theorem above applies to the functional

Jλ(u) :=
1

2
‖u‖2 − λ

∫
Ω

Gλ(u) dx.

If λ > λ1 we claim that inf Jλ is less than zero. To prove this, let ϕ1 ∈ X be positive in Ω

and satisfying
−∆ϕ1(x) = λ1ϕ1(x), ‖ϕ1‖2 = 1.

For t > 0 small, one has gλ(tϕ1) = λtϕ1− f(tϕ1). Since f(u) is a small-o of u, we infer that

Jλ(tϕ1) =
1

2
(λ1 − λ)t2 + o(t2),

which is strictly negative if we choose t to be small enough.
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Constrained Critical Points

In this chapter, we will investigate the notion of constrained critical point and we will relate
it with extrema and, ultimately, solutions of PDEs problems.

5.1 Introduction

Let J : X −→ R be a differentiable functional and let M be a smooth Hilbert submanifold.
A constrained critical point of J on M is a point z ∈M such that

d(J
∣∣
M

)(z) ≡ 0,

which is equivalent to
dJ(z)[v] = 0 for all v ∈ TzM.

Using the constrained gradient, we can say that a constrained critical point z of J on M

satisfies
〈∇MJ(z), v〉 for all v ∈ TzM,

which allows us to affirm that J ′(z) is orthogonal to TzM .

Remark 5.1. Let γ : [0, 1]→M be any smooth curve such that γ(0) = z and consider the
real-valued function φ(t) := J ◦ γ(t). Then

φ′(0) = J ′(z)[γ′(0)],

where γ′(0) belongs to TzM . Therefore, if z is a critical point of J constrained on M , then
t = 0 is a critical point of Φ. Vice versa, z is a constrained critical point if

d

dt

∣∣
t=0

J(γ(t)) = 0

for all C1-curves γ with γ(0) = z.
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Suppose that M has codimension one, that is, there exists G : X −→ R of class C1 such
that M = G−1(0). It follows that

X = TzM ⊕ Span(∇G(z)),

and by the Lagrange multiplier rule

∇J(z) = λ∇G(z) =⇒ λ =
〈∇J(z), ∇G(z)〉
‖∇G(z)‖2

.

5.1.1 Nonlinear eigenvalues

Let Ω ⊂ Rn be a smooth bounded set and assume that f satisfies (1.10). Set X := H1
0 (Ω)

and
Φ(u) :=

∫
Ω

F (x, u) dx.

Define
M = {u ∈ X : ‖u‖2 − 1 = 0} = G−1(0),

where G(u) := ‖u‖2 − 1. It follows that M is a C1-manifold since dG(u) ≡ 2 and, if u is a
constrained critical point of Φ on M , then necessarily

∇Φ(u) = λu =⇒ λ

∫
Ω

∇u · ∇v dx =

∫
Ω

f(x, u)v dx,

and therefore u is a weak solution of the boundary value problem−λ∆u(x) = f(x, u(x)) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

(5.1)

If f is homogeneous, then one can consider the scaling λ
1
p−1u that solves the same boundary

value problem with λ = 1.

5.2 Natural Constraint

Let X be a Hilbert space and let J ∈ C1(X, R). A C1-submanifold M is called a natural
constraint for J if there exists J̃ ∈ C1(X, R) such that every constrained critical point of J̃
on M is a stationary point of J , that is,

∇M J̃(u) ⇐⇒ J ′(u) = 0.

An example of a natural constraint is the so-called Nehari manifold given by

M := {u ∈ X \ {0} : 〈J ′(u), u〉 = 0}.
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Proposition 5.2. Let J ∈ C2(X, R) and suppose that the Nehari manifold M is nonempty.
Assume that the following conditions hold:

(i) There exists r > 0 such that M ∩Br(0) = ∅.

(ii) For all u ∈M it turns out that d2J(u)[u, u] 6= 0.

Then M is a natural constraint for J with J̃ ≡ J .

Proof. Let G(u) := 〈J ′(u), u〉 so that M = G−1(0), and notice that G is of class C1 since
J is C2. Moreover, it is easy to see that

G′(u)[u] = d2J(u)[u, u] + dJ(u)[u]

=0

= d2J(u)[u, u] 6= 0,

which means that M is a C1-submanifold. Now if (∇J
∣∣
M

)(u) = 0, then

∇J(u) = λ∇G(u) =⇒ 〈∇J(u), u〉 = λ〈∇G(u), u〉,

and now the right-hand side is different from zero for u ∈ M , whereas the left-hand side
is zero by definition. It follows that λ must be equal to zero, and thus M is a natural
constraint.

5.2.1 Applications to PDEs analysis

Let Ω ⊂ Rn be an open bounded smooth set and consider the problem−∆u = |u|p−1u, if x ∈ Ω,

u
∣∣
∂Ω
≡ 0.

(5.2)

At some point, we will need to use Sobolev embedding theorem to conclude that the em-
bedding

Lp+1(Ω) ↪→ H1
0 (Ω)

is compact. Therefore, we must assume that 1 < p < n+2
n−2 . Let X := H1

0 (Ω) endowed with
the homogeneous norm

‖u‖X :=

∫
Ω

|∇u|2 dx.

The variational formulation of the problem consists of finding critical points of the functional

J(u) =
1

2

∫
Ω

|∇u|2 dx− 1

p+ 1

∫
Ω

|u|p+1 dx.

The reader might check that J belongs to C2 as an exercise (in the same way one proves
that it is C1), but what is important now is that J is unbounded on X. In fact, we have

inf
u∈X

J(u) = −∞
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since, if ϕ1 is the eigenfunction of λ1(Ω), then J(tϕ) < 0 for some t > 0 and hence taking
the limit we can infer that

lim
t→+∞

J(tϕ1) = −∞.

Similarly, one can show that
sup
u∈X

J(u) =∞,

e.g., by taking un(x) := sin(nx)χ(x), where χ is a cutoff function with support in Ω.

Proposition 5.3. The Nehari manifold

M :=

{
u ∈ X \ {0} :

∫
Ω

|∇u|2 dx =

∫
Ω

|u|p+1 dx

}
is a natural constraint for J .

Proof. First, notice that

dJ(u)[v] =

∫
Ω

∇u · ∇v dx−
∫

Ω

|u|p−1uv dx,

so that G(u) := dJ(u)[u] is actually given by ‖u‖2X−‖u‖
p+1
Lp+1(Ω), which means that a nonzero

u ∈ X belongs toM if and only if

‖u‖2X =

∫
Ω

|u|p+1 dx.

Using Sobolev embedding we can find a constant Cp,Ω such that

‖u‖p+1 ≤ Cp,Ω‖u‖X.

Therefore, if u ∈M, then

‖u‖2X = ‖u‖p+1
p+1 ≤ Cp,Ω‖u‖

p+1
X

p>1
=⇒ ‖u‖p−1

X ≥ 1

Cp,Ω
> 0,

which means that the first point in Proposition 5.2 is verified with r equal to a negative
power of Cp,Ω. Now notice that

d2J(u)[v, w] =

∫
Ω

∇w · ∇v dx− p
∫

Ω

|u|p−1wv dx,

which immediately leads to

d2J(u)[u, u] = ‖u‖2X − p‖u‖
p+1
p+1.

For u ∈M we obtain
d2J(u)[u, u] = (1− p)‖u‖2X 6= 0

for p > 1, which means thatM is a natural constraint for J .
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Remark 5.4. The functional is bounded from below onM since

J
∣∣
M(u) =

(
1

2
− 1

p+ 1

)
‖u‖2X ≥

(
1

2
− 1

p+ 1

)
r > 0.

We now claim that, if p < n+2
n−2 , then J

∣∣
M attains a minimum1. To prove this, let un

be a minimising sequence, weakly converging to some ū. By compactness of the Sobolev
embedding, we have that ∫

Ω

|un|p+1 dx
n→+∞−−−−−→

∫
Ω

|ū|p+1 dx.

Furthermore, taking into account that un ∈M for all n ∈ N, we can conclude that∫
Ω

|ū|p+1 dx = lim
n→+∞

∫
Ω

|un|p+1 dx ≥ r2 =⇒ ū 6≡ 0.

There are now two cases we need to discuss separately.

(a) We have ‖un‖X → ‖ū‖X. Then ū ∈M and

J
∣∣
M(u) =

(
1

2
− 1

p+ 1

)
‖u‖2X

is lower semi-continuous, and therefore ū is a minimiser for J onM.

(b) We have limn→∞ ‖un‖X > ‖ū‖X. Then

‖ū‖2X = µ lim
n→∞

‖un‖2X,

for some µ ∈ (0, 1). But then

‖ū‖2X = µ lim
n→∞

∫
Ω

|un|p+1 dx = µ‖ū‖p+1.

If one takes ν ∈ (0, 1) such that νp−1 = µ, then νū ∈ M. But this leads to a
contradiction since ū is the limit of a minimising sequence.

1We will not prove it here, but the assertion is false when p is equal to the critical exponent.



Chapter 6

Deformations and Palais-Smale
Sequences

In this chapter we will investigate the existence of constrained critical points via special
deformations of the sublevels. The notion of Palais-Smale sequence is then introduced to
deal with the lack of compactness, replacing it with a much weaker condition.

6.1 Deformations of sublevels

Let J : U ⊂ X −→ R be a functional defined on a open subset U of a Banach space X and
let a ∈ R. We denote by

Xa := {u ∈ X : J(u) ≤ a}

the a-sublevel of J on X. We now need to introduce a suitable notion of deformation, which
should make the investigation of critical points of J easier.

Definition 6.1 (Deformation). A deformation of A ⊂ X in X is a continuous map η ∈
C(A, X) which is homotopic to the identity. Namely, there exists a homotopy H such that

H(0, u) = u, H(1, u) = η(u) for all u ∈ X.

The idea behind deforming a set into another one is the following. Since a deformation
is a continuous map homotopic to the identity, we expect that A and η(A) have the same
topological properties.

More specifically, if [a, b] ⊂ R does not contain any critical point of J , then it can be
proved that under some assumptions on X the sublevel Xb can be deformed into Xa. On
the other hand, the presence of an obstacle is often (but not always) a consequence of the
existence in the given interval of a critical point.

Example 6.2. Let M be a compact hyper-surface in Rn. Suppose that b is not a critical
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level for J on M and notice that

M b = {x ∈M : J(x) = b}

is a smooth submanifold of M and at any point the vector −∇MJ(x) 6= 0. By compactness,
it turns out that

min
x∈Mb

|∇MJ(x)| ≥ C > 0,

and hence we can deformM b intoM b−ε, for ε small enough, via the aforementioned gradient
vectors. Now, if there are no critical levels in [a, b], we can repeat the same process over
and over again, until we find that M b can be deformed into Ma.

Remark 6.3. If c is the minimum of J over M , then it must happen that M c−ε = ∅ while
M c+ε 6= ∅, which means that the topological properties change when passing through a
critical level.

To better understand the change of topological properties after crossing critical levels,
the following example is instructive.

Example 6.4. Let M be the 2-torus and let J(x, y, z) := z. The critical points of J on M
are the four points pi where the gradient of J is orthogonal to M . If we set

ci := J−1(pi),

we find the following diffeomorphisms:

Ma ∼=



T2 if a > c4,

T2 \Bϕ if c4 ≥ a > c3,

S1 × [0, 1] if c3 ≥ a > c2,

Bϕ if c2 ≥ a > c1,

∅ if a < c1.

6.2 The steepest descent flow

In this section, we will try to extend the procedure given above to the general case via flows
of differential equations and, in particular, the so-called steepest descent flow.

GivenW ∈ C0, 1(X, X) Lipschitz function defined on a Hilbert space X, let α(t, u) =: α(t)

denote the solution of the Cauchy problemα
′(t) = W (α(t)),

α(0) = u ∈ X.

(6.1)
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The local existence theorem for Cauchy problems shows that, since the right-hand side is
Lipschitz, there exists a unique solution α(t, u) in a neighbourhood of t = 0 that depends
continuously on the initial data in any compact subset of R. Let

(t−u , t
+
u )

denote the maximal interval of existence given u ∈ X. We would like to find sufficient
condition for the solution α to be globally defined for t > 0, that is, t+u = +∞.

Lemma 6.5. If t+u < +∞, then α(t, u) has no limit points as t↗ t+u .

Proof. We argue by contradiction. If there exists v ∈ X such that α(t, u) ↗ v, then let β
denote the solution of the Cauchy problem (6.1) with u = v. Then

β is well-defined in a neighbourhood of t+, say (t+ − ε, t+ + ε),

and therefore the function α(t, u) if t ∈ (t−, t+),

β(t, v) if t ∈ [t+, t+ + ε),

is a solution of (6.1) with initial data u, defined in a strictly bigger interval than the maximal
one - which is obviously impossible -.

Lemma 6.6. Let A ⊂ X be closed and suppose that ‖W (u)‖ is uniformly bounded on A by a
positive constant C. Let u ∈ A be such that α(t, u) ∈ A for all t ∈ [0, t+u ). Then t+u = +∞.

Proof. Suppose that t+u <∞. For all ti, tj ∈ [0, t+) we have

α(ti, u)− α(tj , u) =

∫ ti

tj

α′(s, u) ds =

∫ ti

tj

W (α(s, u)) ds.

Since W is bounded on A, it turns out that

‖α(ti, u)− α(tj , u)‖ ≤ C|ti − tj |.

Therefore, as ti ↗ t+u , the sequence α(ti, u) is Cauchy and thus converges to some point in
A in contradiction with the statement of the previous lemma.

To introduce the steepest descent flow, we need to investigate the quantity −∇MJ(u).
More precisely, let us assume that there exists G ∈ C1, 1(X, R) such that

M = G−1(0) and G′(u) 6= 0 for u ∈M.

Let J ∈ C1, 1(X, R) be a functional and consider the function

W (u) = −
[
J ′(u)− 〈J

′(u), G′(u)〉
‖G′(u)‖2

G′(u)

]
,
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which is well-defined in a neighbourhood of M , is of class C0, 1 as required, and coincides
with −∇MJ(u) for all u ∈ M . The solution of (6.1) is called the steepest descent flow of
M and satisfies the following property:

α(0) ∈M ⇐⇒ α(t) ∈M for all t ∈ (t−u , t
+
u ).

More precisely, we have

d

dt
G(α(t)) = 〈G′(α(t)), α′(t)〉 =

= 〈G′(α(t)), W (α(t))〉 =

= −〈G′(α(t)), J ′(α(t))〉+
〈G′(α(t)), J ′(α(t))〉
‖G′(α(t))‖2

〈G′(α(t)), G′(α(t))〉 = 0,

which means that G(α(t)) is constant and thus

u ∈M ⇐⇒ G(u) = 0 ⇐⇒ G(α(t)) = 0 ⇐⇒ α(t, u) ∈M.

Lemma 6.7. Under the assumptions above, the steepest descent flow of J satisfies the
following properties:

(1) The function t 7−→ J(α(t, u)) is nonincreasing for t ∈ [0, t+u ).

(2) For t, τ ∈ [0, t+u ) we have

J(α(t, u))− J(α(τ, u)) = −
∫ t

τ

‖∇M (α(s, u))‖2 ds. (6.2)

(3) If J is bounded from below on M , then t+u =∞ for all u ∈M .

Proof. First, notice that

d

dt
J(α(t)) = −〈J ′(α(t)), ∇MJ(α(t))〉,

so that
d

dt
J(α(t)) = −‖∇MJ(α(t))‖2

since ∇MJ(α) is the projection of J ′(α) on TαM . The first two properties follow easily from
this.

As for the third property, we argue by contradiction. Let u ∈ M with finite maximal
time and use (6.2) with τ = 0 to infer that

J(α(t))− J(u) = −
∫ t

0

‖∇M (α(s, u))‖2 ds.



64 6.2. The steepest descent flow

Since J is bounded from below on M , it follows that∫ t

0

‖∇M (α(s, u))‖2 ds ≤ a < +∞

for some positive constant a. Let ti ↗ t+u and recall that

‖α(ti)− α(tj)‖ ≤
∫ t

0

‖∇M (α(s, u))‖ ds.

Using Hölder inequality we find that

‖α(ti)− α(tj)‖ ≤
√
a|ti − tj |

1
2 ,

and therefore α(ti) is a Cauchy sequence, in contradiction with the previous lemma.

Remark 6.8. If J is C1 only, the steepest descent flow might not be defined. Luckily, we
can generalise the gradient vector field in such a way that Lemma 6.7 holds.

Definition 6.9 (Pseudo-gradient). Let J be a C1 functional. A pseudo-gradient vector
field for J on

X0 := {u ∈ X : ∇J(u) 6= 0}

is a C0, 1(X0, X) vector field V satisfying the following properties for all u ∈ X0:

‖V (u)‖ ≤ 2‖∇J(u)‖,

〈V (u), ∇J(u)〉 ≥ ‖∇J(u)‖2.
(6.3)

Remark 6.10. If such V exists, then Lemma 6.7 holds with the flow

α̇(t, u) = −V (α(t, u)).

Proposition 6.11. Let J ∈ C1(X, R). Then a pseudo-gradient vector field V always exists.

Proof. Fix u ∈ X0. Then there exists w(u) := w ∈ X such that

‖w‖ = 1 and 〈∇J(u), w〉 > 2

3
‖∇J(u)‖.

Now set
Ṽ (u) :=

3

2
‖∇J(u)‖w(u)

and notice that (6.3) holds since

‖Ṽ (u)‖ =
3

2
‖∇J(u)‖ < 2‖∇J(u)‖,

〈Ṽ (u), ∇J(u)〉 =
3

2
‖∇J(u)‖〈w(u), ∇J(u)〉 > ‖∇J(u)‖2.
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Since ∇J is continuous, we can find r := r(u) > 0 such that

‖Ṽ (u)‖ < 2‖∇J(z)‖,

〈Ṽ (u), ∇J(z)〉 > ‖∇J(z)‖2

hold for all z ∈ B(u, r). We can cover X0 with these balls, that is,

X0 =
⋃
u∈X0

B(u, r(u)),

and hence there exists a locally finite covering Ui := B(ui, r(ui)). Define

di(u) := dist(u, X \ Ui)

and denote Ṽ (ui) by Ṽi. Then

V (u) :=
∑
i

di(u)∑
j dj(u)

Ṽi

is a well-defined locally Lipschitz pseudo-gradient vector field.

6.3 Deformation and compactness

In this section, we will denote by M either a Hilbert space or a C1-submanifold of codimen-
sion one.

Lemma 6.12. Let J ∈ C1(M, R) and suppose that there exist c ∈ R and δ > 0 such that

‖∇MJ(u)‖ ≥ δ for all u such that J(u) ∈ [c− δ, c+ δ].

Then there exists η deformation in M such that

η(M c+δ) ⊂M c−δ.

Proof. Suppose first that J is bounded from below. By Lemma 6.7 the evolution above is
globally defined. Let T := 2

δ and set

η(u) := α(T, u).

It is easy to see that η is a deformation since (s, u) 7→ α(sT, u) is a homotopy between η
and the identity mapping. We now argue by contradiction so let u ∈M c+δ such that

J(α(T, u)) > c− δ.

Since J(α(·, u)) is decreasing, we easily infer that

J(α(t, u)) ∈ [c− δ, c+ δ]
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for all t ∈ [0, T ]. We now apply the assumption to conclude that

‖∇MJ(α(t, u))‖ ≥ δ for all t ∈ [0, T ].

We now use Lemma 6.7 again and obtain

J(α(T, u))− J(α(0, u))

=J(u)

= −
∫ T

0

‖∇MJ(α(s, u))‖ dx ≥ δ2T = 2δ,

from which we finally infer that

c− δ < J(α(T, u)) < c+ δ − 2δ = c− δ =⇒ absurd.

Now remove the assumption that J is bounded from below. Define

Ĵ(u) := h ◦ J(u),

where h ∈ C∞(R, R) is given, for example, by

h(s) =

s if s ≥ c− δ,

bounded below at all s ∈ R.

We conclude the proof using the argument above since Ĵ is bounded from below by con-
struction and also

{Ĵ ≤ a} = {J ≤ a}

for all a ≥ c− δ by construction.

Remark 6.13. If M is compact and c is not a critical level for J , then we can always find
a δ > 0 satisfying the assumption of Lemma 6.12.

Hint. Argue by contradiction.

Remark 6.14. Some kind of compactness is necessary even in finite-dimensional spaces.
We can easily find a counterexample with M = R; see Figure ??.

6.4 Palais-Smale sequences

In this section, we introduce a notion of compactness which is weaker than the usual one
but is rather useful when dealing with variational problems.

Definition 6.15. Let c ∈ R be a real number. We say that a sequence (un)n∈N ⊂ M is
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Palais-Smale at the level c, denoted by (un)n∈N ∈ (PS)c, if
f(un)

n→+∞−−−−−→ c,

grad f(un)
n→+∞−−−−−→ 0.

.

Definition 6.16. A functional J ∈ C1(M, R) is Palais-Smale at the level c if

∀(un)n∈N ∈ (PS)c, ∃(nk)k∈N : unk converges.

Remark 6.17. Let J ∈ C1(M, R).

(i) If J satisfies the Palais-Smale condition at the level c, then any (PS)c-sequence con-
verges (up to subsequences) to some u∗ ∈M such that

J(u∗) = c and ∇MJ(u∗) = 0,

which means that u∗ is a critical point (and thus c a critical level).

(ii) The set
{z ∈M : J(z) = c, ∇J(z) = 0}

is compact.

(iii) If J ∈ C1(Rn, R) is bounded from below and coercive, then the Palais-Smale condition
at the level c holds for all c. This is false in the infinite-dimensional setting!

Lemma 6.18. Let J ∈ C1(M, R) be a functional satisfying the (PS)c-condition at all
c ∈ [a, b] and assume that there are no critical levels in the interval. Then there exists δ > 0

such that
σ := inf

u∈J−1(Iε)
‖∇J(u)‖ > 0,

where Iδ = [a− δ, b+ δ].

Proof. We argue by contradiction. There is a decreasing sequence (δn)n∈N that converges
to 0, and a sequence (un)n∈N ⊂M such that

‖∇J(un)‖ ≤ δn and J(un) ∈ [a− δn, b+ δn] .

Now, up to subsequences, J(un)→ c and ∇J(u)→ 0 and by the Palais-Smale condition we
know that (un)n∈N is precompact. Thus unk converges to some u∗ which is a critical point
with J(u) ∈ [a, b], and this is the sought contradiction.

Lemma 6.19. Let J ∈ C1(M, R) be a functional satisfying the (PS)c-condition at some
noncritical level c ∈ R. Then there exist δ > 0 and a deformation η such that

η(M c+δ) ⊆M c−δ.
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Lemma 6.20. Let J ∈ C1(M, R) be a functional satisfying the (PS)c-condition at all
c ∈ [a, b] and assume that there are no critical levels in the interval. Then there exists a
deformation η such that

η(M b) ⊆Ma.

Proof. Simply apply the previous result a finite number of times since [a, b], by compactness,
can be covered by a finite number of intervals of length δ.

Theorem 6.21. Let J ∈ C1(M, R), where M is a C1-submanifold of codimension one.
Suppose that J

∣∣
M

is bounded from below and suppose that it satisfies the Palais-Smale
condition at

m := inf
u∈M

J(u) > −∞.

Then infu∈M J(u) is achieved.

Proof. We argue by contradiction. If m is not a critical value, then there exists ε > 0 such
that the following holds:

J (α−ε) is a deformation retract of J (α+ε).

But this is impossible since the first set is empty, while the second one is not.

6.5 Application to a superlinear Dirichlet problem

In this section, we will exploit the theoretical results presented above to prove existence of
a positive solution to a class of superlinear Dirichlet boundary-value problems:−∆u(x) = f(u(x)) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

(DSL)

We assume Ω to be a bounded domain in Rn and f ∈ C2(R, R) satisfies the following
assumptions: there exist a1, a2 > 0 and p ∈ (1, 2∗ − 1) such that

|f(u)| ≤ a1 + a2|u|p,

|uf ′(u)| ≤ a1 + a2|u|p,

|u2f ′′(u)| ≤ a1 + a2|u|p.

(6.4)

Assume also that f(u) = uh(u), where h is a function satisfying the following assumptions:

(h1) h(su) ≤ sαh(u) for some α > 0;

(h2) uh′(u) > 0 for all u 6= 0;

(h3) h(0) = 0;
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(h4) limu→+∞ h(u) = +∞.

Example 6.22. The function h(u) = |u|p−1 satisfies these properties and, indeed, we were
able to obtain existence in Section 5.2.1 looking for the minimum of∫

Ω

|u|p+1 dx

on the manifold {u ∈ H1
0 (Ω) : ‖u‖L2(Ω) = 1}.

Theorem 6.23. Under these assumptions, the problem (DSL) has a positive solution.

The proof of this theorem will be attained through a sequence of technical lemmas,
mostly relying on the theoretical aspects presented in this chapter. However, before we get
to it, we need to introduce some notation. Namely, let X := H1

0 (Ω) and denote by

〈u, v〉 :=

∫
Ω

∇u · ∇v dx

the standard scalar product and by ‖ · ‖ the norm on X. Set

F (u) :=

∫ u

0

f(s) ds =

∫ 1

0

f(su)uds,

Φ(u) =

∫
Ω

F (u) dx =

∫ 1

0

ds

∫
Ω

uf(su) dx,

Ψ(u) = 〈Φ′(u), u〉 =

∫
Ω

uf(u) dx.

Now notice that

(i) The functional Φ and Ψ respectively belong to C2(X, R) and C3(X, R). This follows
immediately from the regularity of f and the definitions above.

(ii) The functionals Φ and Ψ are both weakly continuous.

(iii) The gradients ∇Φ and ∇Ψ are compact operators. This follows from the compactness
of the Sobolev embedding (since p < 2∗) and it implies the previous point.

The solutions of (DSL) are critical points of the following functional:

J(u) :=
1

2
‖u‖2 − Φ(u).

The idea is to use Nehari manifolds together with the results on critical points obtained in
this chapter. We thus introduce the natural functional

G(u) := 〈J ′(u), u〉 = ‖u‖2 −Ψ(u),
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and the C2-submanifold where G vanishes, that is,

M := {u ∈ X \ {0} : G(u) = 0} .

Our goal is to show that M is a natural constraint for J . In other words, we are looking
for a functional of class C2, J̃ , such that

∇MJ̃(u) = 0 and u ∈M ⇐⇒ J ′(u) = 0.

We will then verify that J̃ achieves a minimum on M, which ends up giving a solution to
the problem (DSL).

Lemma 6.24. The functional G belongs to C2(E, R). Furthermore:

(i) The setM is nonempty.

(ii) There exists ρ > 0 such that ‖u‖ ≥ ρ for all u ∈M.

(iii) The scalar product 〈G′(u), u〉 is negative for all u ∈M.

Proof. The regularity of G is an easy consequence of the regularity of Ψ.

(i) Take u ∈ E, u > 0, with ‖u‖ = 1. Then

G(tu) = t2 − t2
∫

Ω

u2h(tu) dx.

Using (h3) we find that

lim
t→0

G(tu)

t2
= 1,

while, employing the property (h4), we obtain

lim
t→+∞

G(tu)

t2
= −∞.

Putting these two together, we infer that there must be t̃ ∈ (0, ∞) such that t̃u ∈M.

(ii) This property, despite its simplicity, requires a lot of work because having ‖u‖ small
does not mean that the L∞-norm is also small (the embedding fails!).

Let ‖u‖ be sufficiently small. Our goal is to prove that G(u) > 0 so that u cannot
belong toM. First, take δ > 0 and define

Aδ1 := {x ∈ Ω : |u(x)| ≤ δ} and Aδ2 = Ω \Aδ1.

We claim that the volume of Aδ2 cannot be "too big". Recall that by Poincaré’s
inequality we can always find a positive constant CΩ such that

‖u‖L1(Ω) ≤ CΩ‖u‖.
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It follows that
|A2|δ ≤ ‖u‖L1(A2) ≤ ‖u‖L1(Ω) ≤ CΩ‖u‖,

which means that the volume of A2 is bounded by

|A2| ≤
CΩ

δ
‖u‖.

We now employ Hölder’s inequality to estimate the negative contribute to G(u) on
Aδ2. Namely, we have ∫

Aδ2

uf(u) dx ≤ ‖u‖p1‖f(u)‖p2 |Aδ2|
1
p3

where
1

p1
+

1

p2
+

1

p3
= 1.

We want p3 > 1, so the idea is to take the maximum p1 and p2 possible. However, we
still need Sobolev embedding to estimate these terms with ‖u‖. Let

p1 := 2∗ and p2 :=
2∗

p
.

It is easy to see that
1

p1
+

1

p2
=
p+ 1

2∗
< 1,

so p3 > 1 as desired. We also use (6.4) and (h4) to conclude that f(u) must satisfy a
slightly different estimate

|f(u)| . |u|+ |u|p

for |u| small enough. Then

‖f(u)‖p2 .
[∫

Ω

(|u|p2 + |u|pp2) dx

] 1
p2

.

. ‖u‖+ ‖u‖p.

The right-hand side goes as ‖u‖ when ‖u‖ is sufficiently small (since p > 1) and
therefore we conclude that ∣∣∣∣∣

∫
Aδ2

uf(u) dx

∣∣∣∣∣ . δ− 1
p3 ‖u‖2+ 1

p3 .

The estimate on Aδ1 is even easier since∣∣∣∣∣
∫
Aδ1

uf(u) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Aδ1

u2h(u) dx

∣∣∣∣∣ ≤ CΩ‖u‖2 sup
|u|∈(0, δ)

h(u).

Fix δ > 0 sufficiently small in such a way that CΩ sup|u|∈(0, δ) h(u) is less than 1
2 . It



72 6.5. Application to a superlinear Dirichlet problem

follows that
G(u) ≥ ‖u‖2 − 1

2
‖u‖2 − δ−

1
p3 ‖u‖2+ 1

p3 ,

and the right-hand side is positive when we take the limit as ‖u‖ → 0 since 2+ 1
p3
> 2.

In particular, there exists ρ > 0 such that for all u ∈ Bρ(0) \ {0} we have G(u) > 0.

(iii) First, notice that for u ∈M we have

〈G′(u), u〉 = 2‖u‖2 − 〈Ψ′(u), u〉 =

= 2Ψ(u)− 〈Ψ′(u), u〉.

One also has that

2Ψ(u)− 〈Ψ′(u), u〉 = 2

∫
Ω

uf(u) dx−
[∫

Ω

uf(u) dx+

∫
Ω

u2f ′(u) dx

]
=

=

∫
Ω

u2h(u) dx−
∫

Ω

u2(h(u) + uh′(u)) dx =

= −
∫

Ω

u3h′(u) dx.

Since 0 /∈ M, using (h2) that holds for all u 6= 0 we conclude that the scalar product
must be negative.

It follows from (iii) thatM is a submanifold of class C2 of codimension one in E. Now
let J̃ ∈ C2(E, R) be defined as

J̃(u) =
1

2
Ψ(u)− Φ(u).

Notice that this functional coincides with J onM, but it is more convenient to deal with it
since it is weakly continuous and its derivative is compact.

Lemma 6.25. The submanifoldM is a natural constraint for J using J̃ , that is,

z ∈M, ∇MJ̃(z) = 0 =⇒ J ′(z) = 0.

Proof. If z is such a point, then there exists λ ∈ R such that

∇J̃(z) = λ∇G(z) =⇒ 〈J̃(z), z〉 = λ〈∇G(z), z〉.
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On the other hand, we know that

〈J̃(z), z〉 =
1

2
〈Ψ(z), z)− 〈Φ(z), z〉 =

=
1

2
〈∇Ψ(z), z〉 −Ψ(z) =

= −1

2
〈∇G(z), z〉

so λ must be equal to − 1
2 . Then

∇G(z) = −∇Ψ(z) + 2z,

∇J̃(z) =
1

2
Ψ(z)−∇Φ(z),

and this immediately implies that ∇Φ(z) = z, which is completely equivalent to

∇J(z) = 0.

Lemma 6.26. There exists Cα > 0 such that J̃(u) ≥ Cα‖u‖2 for all u ∈M.

Proof. We use the definition of Ψ and (h1) to infer that

J̃(u) =
1

2

∫
Ω

uf(u) dx−
∫ 1

0

ds

∫
Ω

uf(su) dx =

∫ 1

0

ds

∫
Ω

[suf(u)− uf(su)] dx =

=

∫ 1

0

ds

∫
Ω

[
su2 (h(u)− h(su))

]
dx ≥

≥
∫ 1

0

s(1− sα) ds

∫
Ω

u2h(u) dx ≥

≥ Cα
∫

Ω

u2h(u) dx

=Ψ(u)

= Cα‖u‖2,

where the last equality follows from the fact that u ∈M implies Ψ(u) = ‖u‖2.

Lemma 6.27. Let (ui)i∈N be a Palais-Smale sequence at level c > 0 for J̃ onM. Then

(i) ‖ui‖ is bounded and there exists ū 6= 0 such that ui` ⇀ ū;

(ii) there exists k > 0 such that ‖∇J̃(ui)‖ ≥ k.

Proof.



74 6.5. Application to a superlinear Dirichlet problem

(i) By definition
J̃(ui)

i→+∞−−−−→ c,

and using the previous result we also know that

J̃(ui) ≥ cα‖ui‖2

so ‖ui‖ is bounded and (ui)i∈N converges weakly to some ū up to subsequences. To
prove that ū 6= 0, we notice that

ui ∈M =⇒ ‖ui‖ ≥ ρ =⇒ Ψ(ui) = ‖ui‖2 ≥ ρ2.

But Ψ is weakly continuous so

Ψ(ū) ≥ ρ2 =⇒ ū 6= 0.

(ii) We argue by contradiction. Suppose that ∇J̃(ui)→ 0. The operator ∇J̃ is compact,
so we can conclude that

∇J̃(ū) = 0 =⇒ 0 =
1

2
〈∇Ψ(ū), ū〉 −Ψ(ū) =

1

2

∫
Ω

ū3h′(ū) dx.

We know already that the right-hand side is strictly positive, so we obtained our
contradiction.

Lemma 6.28. The function J̃ , restricted toM, satisfies the Palais-Smale condition at all
levels c > 0.

Proof. Let (ui)i∈N be a Palais-Smale sequence at level c and let ū be the weak limit of a
subsequence (uik)k∈N. We have

∇MJ̃(ui) = ∇J̃(ui)− αi∇G(ui),

where

αi =
〈∇J̃(ui), ∇G(ui)〉
‖∇G(ui)‖2

.

We proved already that ‖∇J̃(ui)‖ ≥ k and it is easy to see that ‖∇G(ui)‖ ≤ c, so taking
into account that

∇MJ̃(ui)

→0

= ∇J̃(ui)

6→0

−αi∇G(ui)

bounded

,

we must have |αi| ≥ c > 0. It follows that

∇G(ui) =
1

αi

[
∇J̃(ui)−∇MJ̃(ui)

]
,
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which easily translates to

2ui = ∇Ψ(ui)

compact

+
1

αi

∇J̃(ui)

compact

−∇MJ̃(ui)

→0


and thus uik converges strongly to ū, concluding the proof.

Proof of Theorem 6.23. Simply apply Theorem 6.21 replacing f with its positive part f+.



Chapter 7

Min-max Methods

In this chapter, we will discuss the existence of stationary point of a function J , defined on
a Hilbert space X, which can be found via different min-max procedures.

7.1 The mountain pass theorem

We proved that (DSL) admits a positive solution, provided that f satisfies certain assump-
tions including a growth condition

h(su) ≤ sαh(u),

that holds at all point u ∈ X. A natural question is whether or not we can prove a similar
result when the behaviour of f is only known at the origin and at infinity. To deal with this
problem, we consider the corresponding functional

J(u) =
1

2
‖u‖2 −

∫
Ω

F (u) dx,

with ‖ · ‖ = ‖ · ‖X and X = H1
0 (Ω). It is easy to verify that u = 0 is a proper local minimum

for J since, assuming that f ′(0) = 0, we have

f ′(0) = 0 =⇒ 〈J ′′(0)v, v)X = ‖v‖2.

On the other hand, if we assume that F (u) ∼ |u|p+1, 1 < p < n+2
n−2 , then for any u ∈ X that

is different from zero we find that

lim
t→+∞

J(tu) = lim
t→+∞

[
t2

2
‖u‖2 −

∫
Ω

F (tu) dx

]
= −∞.
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In particular, the functional J is not bounded from below on X. We also notice that

sup
X
J = +∞

since we can always consider a sequence of function ‖ui‖ → +∞ with
∫

Ω
F (ui) dx uniformly

bounded. Now to fix the ideas, consider the model nonlinearity so that

J(tu) =
1

2
t2‖u‖2 − 1

p+ 1
|t|p+1

∫
Ω

|u|p+1 dx.

The real valued map t 7→ J(tu) achieves its maximum at a unique point t = tu > 0 and, as
expected, it is determined by the fact that

tu ∈M := {u ∈ X \ {0} : 〈J ′(u), u〉 = 0},

whereM is the natural constraint introduced many times before. If z is a critical point for
J , we know that J(z) is equal to the minimum value of J achieved onM, and thus

J(z) = min
u∈X\{0}

max
t∈R

J(tu).

The main goal of this section is to generalise this argument and to find optimal assumptions
that allow one to find critical points of a functional J via a max-min procedure.

In the sequel, to fix the notation, we will assume that J has a local minimum at u = 0,
but it is important to understand that this is a totally arbitrary choice.

(MP− 1) The functional J belongs to C1(X, R), J(0) = 0 and there are r, ρ > 0 such
that J(u) ≥ ρ for all u ∈ Sr.

(MP− 2) There exists e ∈ X with ‖e‖ > r such that J(e) ≤ 0.

We will show that these assumptions on the geometry of J are almost enough for the
existence of a saddle point. Let

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}

be the set of all continuous curves connecting 0 and e and notice that it is nonempty since

t 7−→ te

trivially belongs to Γ. We define the MP level as

c := inf
γ∈Γ

max
t∈[0, 1]

J(γ(t)). (7.1)

If J is a functional that has the MP geometry, which means that it satisfies the two assump-
tions above, then it is easy to see that

γ ∈ Γ =⇒ γ([0, 1]) ∩ Sr 6= ∅ =⇒ c ≥ min
u∈Sr

J(u) ≥ ρ > 0,
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so if we were to find a critical point u at the level c, we could immediately conclude that it
is not trivial (u 6= 0). The following result is due to Ambrosetti and Rabinowitz in 1973.

Theorem 7.1 (Mountain Pass). Let J be a functional satisfying (MP− 1) and (MP− 2).
Suppose that the Palais-Smale condition at the level c given by (7.1) holds. Then

∃z ∈ X : J(z) = c, ∇J(z) = 0

and z is nontrivial, that is, z 6= 0.

To prove this result, we first need a technical lemma which gives us the existence of a
particular deformation of the sublevels of J that keeps a good portion of them fixed.

Lemma 7.2. Let J ∈ C1(X, R) and let c ∈ R be any noncritical value for J . Suppose that
the Palais-Smale condition at the level c holds for J . Then there are δ > 0 with c− 2δ > 0

and η deformation in X such that:

(a) η(Jc+δ) ⊆ Jc−δ;

(b) η restricted to Jc−2δ coincides with the identity map.

Proof. Recall that J always admits a Ψ-gradient flow V for J , that is defined at all points
u ∈ X such that ∇J(u) 6= 0, with the following properties:

(i) ‖V (u)‖ ≤ 2‖∇J(u)‖;

(ii) 〈V (u), ∇J(u)〉X ≥ ‖∇J(u)‖2.

Let b ∈ C0, 1(R+, R+) be the Lipschitz function defined by setting

b(s) :=

1 if s ∈ (0, 1],

1
s if s ≥ 1.

Let A := {u ∈ X : J(u) ∈ [c− δ, c+ δ], B := {u ∈ X : J(u) ∈ (c− 2δ, c+ 2δ)c} and define
the Lipschitz function from X to R given by

g(u) :=
dX(u, B)

dX(u, A) + dX(u, B)
∈ [0, 1].

Notice that g is equal to zero if and only if u ∈ B and equal to one if and only if u ∈ A. We
can consider a slightly modified vector field as flow

Ṽ (u) := −g(u)b(‖∇J(u)‖)V (u).

There are several vantages in replacing V with Ṽ (u). First, it is well-defined everywhere
(even where the differential of J vanishes), the boundedness of b gives the global existence
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of η and it is locally Lipschitz. Consider the solution ofα
′(t) = Ṽ (α(t)),

α(0) = u,

and notice that the following properties are satisfied:

(i) If u ∈ B, the Ṽ (u) = 0 and thus α(t, u) = u at all times t ∈ R+.

(ii) The solution α is globally defined and ‖Ṽ (u)‖ ≤ 2.

(iii) The function t 7→ J(α(t, u)) is non-increasing since

d

dt
J(α(t, u)) = −g(α)b(‖∇J(α)‖)〈∇J(α), V (α)〉X ≤

≤ −g(α)b(‖∇J(α)‖)‖∇J(α)‖2 ≤ 0.

Now let δ > 0 be such that

J(u) ∈ [c− δ, c+ δ] =⇒ ‖∇J(u)‖ ≥ δ,

and suppose that c− 2δ > 0. Let T = 2
δ and define the deformation by setting

η(u) := α(T, u).

Then (b) trivially holds true, so we only need to check that η satisfies (a). For this, let
u ∈ Jc+δ and suppose that η(u) /∈ Jc−δ. It follows that

J(α(t, u)) ∈ [c− δ, c+ δ] for all t ∈ [0, T ],

and hence α(t, u) belongs to A for t in the same interval. Using the definition of g we infer
that

g(α(t, u)) = 1 for all t ∈ [0, T ],

so

J(η(u))− J(u) = −
∫ T

0

b(‖∇J(α(t, u))‖)〈∇J(α(t, u)), V (α(t, u))〉X dt ≤

≤ −
∫ T

0

b(‖∇J(α(t, u))‖)‖∇J(α(t, u))‖2 dt ≤

≤ −
∫ T

0

δ2 dt = −2δ,

and this gives a contradiction since

J(η(u)) ≤ J(u)− 2δ ≤ c+ δ − 2δ = c− δ =⇒ η(u) ∈ Jc−δ.



80 7.2. Application to the Dirichlet problem

Proof of Theorem 7.1. We argue by contradiction. Suppose that the MP level c is not
critical and let η be the deformation given by Lemma 7.2. Now notice that

0, e ∈ J0 =⇒ 0, e ∈ Jc−2δ =⇒ (γ ∈ Γ =⇒ η ◦ γ ∈ Γ) ,

so η associates a curve in Γ to any curve in Γ. Recall that

c = inf
γ∈Γ

max
t∈[0, 1]

J(γ(t)),

so for any δ > 0 we can find γ ∈ Γ such that

max
t∈[0, 1]

J(γ(t)) ≤ c+ δ.

The deformation η maps γ([0, 1]) into Jc−δ so

max
t∈[0, 1]

J(η ◦ γ(t)) ≤ c− δ,

and this is a contradiction since c is the infimum value and yet η ◦ γ ∈ Γ.

Remark 7.3. We cannot remove the assumption that J satisfies the Palais-Smale condition
at the MP level c. Indeed, it is easy to find a counterexample in R2 for which J has the MP
geometry but there are not critical points except for (0, 0). Namely, let

J(x, y) = x2 + (1− x)3y2,

and notice that (MP− 1) is satisfied with r = 1
2 and ρ = 1

32 , while (MP− 2) is satisfied
with e = (2, 2).

7.2 Application to the Dirichlet problem

In this section, we will exploit the theoretical results presented above to prove existence of
a positive solution to a class of Dirichlet boundary-value problems:−∆u(x) = f(u(x)) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω.

(D)

We assume Ω to be a smooth bounded domain in Rn and f a function satisfying the following
assumptions:

(f1) f is Carathéodory;

(f2) |f(x, u)| ≤ a+ b|u|p for some 1 < p < n+2
n−2 ;

(f3) lim|u|→0+
f(x, u)
|u| = λ ∈ R uniformly with respect to x ∈ Ω;
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(f4) there exists r > 0 and θ ∈ (0, 1
2 ) such that

0 < F (x, u) ≤ θuf(x, u) (7.2)

for all u with norm ‖u‖ ≥ R.

Lemma 7.4. If f satisfies the property (f4), then

F (u) ≥ 1

c
u

1
θ − c for all u ≥ R. (7.3)

Lemma 7.5. If λ < λ1(Ω), then (MP− 1) holds.

Proof. Fix ε := 1
2 (λ1 − λ) > 0. The assumptions on f allows us to find a constant A ∈ R

such that
F (x, u) ≤ 1

2
(λ+ ε)u2 +A|u|p+1.

Now integrate and use Sobolev embedding to infer that∣∣∣∣∫
Ω

F (x, u) dx

∣∣∣∣ ≤ 1

2
(λ+ ε)‖u‖2L2(Ω) +A‖u‖p+1

Lp+1(Ω) ≤

≤ 1

2
(λ+ ε)‖u‖2L2(Ω) +A′‖u‖p+1

so that the functional can be estimated by

J(u) ≥ 1

2
‖u‖2 −A′‖u‖p+1 − 1

2
(λ+ ε)‖u‖2L2(Ω).

We now recall that
‖u‖2L2(Ω) ≥

1

λ1
‖u‖2

so
J(u) ≥ 1

2

(
λ1 − λ− ε

λ1

)
‖u‖2 −A′‖u‖p+1,

and the first term is multiplies a positive constant.

Lemma 7.6. Under no extra assumpions (MP− 2) holds.

Proof. Let e ∈ X smooth and positive on Ω. Then for t ∈ R we have

J(te) =
1

2
t2‖e‖2 −

∫
Ω

F (x, te) dx ≥

≥ 1

2
t2‖e‖2 −

(
t
1
θ

c
‖e‖Lθ(Ω) − c′

)
|Ω| ≥

≥ 1

2
t2‖e‖2 − CΩt

1
θ ‖e‖Lθ(Ω) + CΩ

t→+∞−−−−→ −∞.
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Therefore, we can find τ ∈ R+ such that τe satisfies J(τe) ≤ 0.

To apply the MP theorem, we only need to prove that J satisfies the Palais-Smale
condition at the level c. A standard argument shows that

(un)n∈N ∈ (PS)c for J =⇒ un bounded,

but the reader may try to prove this themselves as an exercise to get acquainted with the
notion of Palais-Smale.

Lemma 7.7. Under no extra assumpions, the functional J satisfies the Palais-Smale con-
dition at the level c > 0.

Proof. First, we evaluate Φ at un and decompose the integral in such a way that we can use
(f4). Namely,

Φ(un) =

∫
un≤R

F (x, un) dx+

∫
un≥R

F (x, un) dx ≤

≤ CΩ, R, f + θ

∫
un≥R

unf(x, un) dx ≤

≤ C ′Ω, R, f + θ

∫
Ω

unf(x, un) dx ≤

≤ C ′Ω, R, f + θ

[∫
Ω

|∇un|2 dx+ o(‖un‖)
]
,

where the last inequality follows from the definition of differentiable:

o(‖un‖) = ∇J(un)[un] =

∫
Ω

|∇un|2 dx−
∫

Ω

unf(x, un).

Since un is a Palais-Smale sequence, |J(un)| ≤ c and hence∫
Ω

|∇u|2 dx ≤ C + 2Φ(un) ≤ C ′′2θ
[∫

Ω

|∇u|2 dx+ o(‖un‖)
]
.

Recalling that 2θ < 1, this implies that∫
Ω

|∇un|2 dx ≤ C̃ + o(‖un‖).

Now notice that p < n+2
n−2 , so Φ is weakly continuous and its differential is a compact

operator. From
∇J(un)[v] = 〈un, v〉 − 〈∇Φ(un), v〉,

we conclude that
∇J(un) = un −∇Φ(un).

Since un is Palais-Smale, un is bounded and hence we can find a subsequence unk converging
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weakly to some ū. Furthermore,

unk = ∇J(unk) +∇Φ(unk),

and the first term ∇J(unk) converges strongly to zero, so by compactness ∇Φ(unk) must
converge strongly to ∇Φ(ū).

This proves that J satisfies the Palais-Smale condition at the level c. We can finally
apply Theorem 7.1 and conclude that (D) admits a positive solution.

7.3 Linking theorems

Let C be a nonempty class of subsets A ⊆ X. Suppose that

c := inf
A∈C

sup
u∈A

J(u) > −∞.

The idea is that, if C is stable under deformations, we can do a sort of MP theorem for
which c is a candidate min-max level.

Definition 7.8 (Link). Let N be a compact manifold with nonempty boundary and let
C ⊆ X be a subset. Consider the class of homotopies

H :=
{
h ∈ C(N , X) : h

∣∣
∂N ≡ id∂N

}
.

We say that ∂N and C link if

h(N ) ∩ C 6= ∅ for all h ∈H .

Example 7.9. The MP theorem is a linking-type theorem with C = SR and

N := {te : t ∈ [0, 1]}.

It is easy to verify that C and ∂N link using Bolzano’s theorem.

We will now investigate the linking property between slightly more complicated sets.
From now on, we will make use of degree theory and, in particular, of the homotopy
property. The reader that is not acquainted with it can find the formal construction and
the main properties in [1].

Proposition 7.10. Let X be a normed vector space and assume that X := V ⊕ W with
V, W closed subspaces and dim(V ) = k <∞. Then

C := W and N := {v ∈ V : ‖v‖ ≤ r}

link.
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Proof. Let h ∈H and let p : X→ V be the projection associated to the direct sum. Then

h̃ := p ◦ h : N −→ V

coincides with the identity on ∂N . It follows from degree theory that h̃ vanishes at some
z ∈ N that does not belong to the boundary, and hence

h̃(z) = 0 =⇒ h(z) ∈ V c = W = C.

Proposition 7.11. Let X be a normed vector space and assume that X := V ⊕ W with
V, W closed subspaces and dim(V ) = k <∞. Given e ∈W and R > 0 define

C := {w ∈W : ‖w‖ ≤ r,

and
N := {u = v + se : v ∈ V, ‖v‖ ≤ R, s ∈ [0, 1]}.

Then C and ∂N link, provided that ‖e‖ > r.

Proof. Let h ∈H and let p : X→ V be the projection associated to the direct sum. Identify
the manifold N with

N ∼= B̄V (0, R)× {se : s ∈ [0, 1]}

and define
h̃(u) := (p ◦ h(u), ‖h(u)− p ◦ h(u)‖ − r) .

We now evaluate it at the boundary ∂N :

h̃(v, s) = (v, ‖e‖ − r) 6= (0, 0).

It follows that we can apply once again degree theory to find (v, s) ∈ N such that h̃(v, s)

vanishes. In particular,p ◦ h(v + se)

‖h(v + se)− p ◦ h(v + se)‖ = r
=⇒ h(v + se) ∈W and ‖h(v + se)‖ = r,

which means that h(v + se) ∈ C, and this concludes the proof.

We are now ready to generalise the MPT. Let X be a Hilbert space, J ∈ C1(X, R) and
∂N , C ⊂ X such that N∂ and C link. Assume that

(J1) J is bounded from below on C, that is, ρ := infu∈C J(u) > −∞;

(J2) ρ > β := supu∈∂N J(u).
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Definition 7.12. The number

c := inf
h∈H

sup
u∈N

J ◦ h(u)

is called linking level associated to the function J .

Lemma 7.13. Suppose that N∂ and C link. If (J1) holds, then c ≥ ρ.

Proof. By definition, for each h ∈H the intersection h(N ) ∩ C is nonempty. Thus

sup
u∈N

J(h(u)) ≥ inf
u∈C

J(u) = ρ.

Theorem 7.14. Suppose that the following assumptions hold:

(a) N∂ and C link.

(b) (J1) and (J2) hold.

(c) The functional satisfies the Palais-Smale condition at the linking level c.

Then c is a critical value, that is, there exists u ∈ X such that J(u) = c and ∇J(u) = 0.

Proof. Notice that c ≥ ρ > β. Suppose that c is not a critical value and use the deformation
lemma to find a continuous deformation η which satisfies

• η(Jc+δ) ⊆ Jc−δ for δ such that β < c− δ;

• η(u) = u for all u ∈ Jβ .

Now let h ∈ H . It is easy to verify that η ◦ h ∈ H since it is composition of continuous
mappings and also

η(u) = u for all u ∈ Jβ =⇒ η ◦ h
∣∣
∂N = η

∣∣
∂N = id∂N

since N ⊂ Jβ . Now let h̃ ∈H be such that

sup
u∈N

J(h̃(u)) < c+ δ.

Then
sup
u∈N

J(η ◦ h̃(u)) < c− δ,

and this gives a contradiction since c is the infimum. This concludes the proof.

We now present three easy consequences of the theory developed in this section, which
are incredibly interesting by themselves.
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Theorem 7.15. Let C be a manifold of codimension one in X and suppose that u0, u1 are
points of X \C belonging to two distinct connected components of X \C. Let J ∈ C1(X, R)

satisfy the following assumptions:

(L-a) infC J(u) > max{J(u0), J(u1)};

(L-b) J satisfies the Palais-Smale condition at the linking level c.

Then J has a critical point ū at level c and ū 6= u0, u1.

Theorem 7.16. Let X = V ⊕W , where V and W are closed subspaces and dim(V ) <∞.
Suppose J ∈ C1(X, R) satisfies:

(L-a) There exist r, ρ > 0 such that

J(w) ≥ ρ for all w ∈W with ‖w‖ = r.

(L-b) There exist R > 0 and e ∈W , with ‖e‖ > r such that, letting

N = {u = v + te : v ∈ V, ‖v‖ ≤ R, t ∈ [0, 1]},

one has that
J(u) < 0 for all u ∈ ∂N .

If, in addition, J satisfies the Palais-Smale condition at the linking level c, then J has a
critical point ū at level c > 0. In particular, ū 6= 0.

Theorem 7.17. Let X = V ⊕W , where V and W are closed subspaces and dim(V ) <∞.
Suppose J ∈ C1(X, R) satisfies:

(L-a) There exist ρ > 0 such that

J(w) ≥ ρ for all w ∈W.

(L-b) There exist r > 0, β < ρ such that

J(u) ≤ β for all u ∈ V with ‖v‖ = r.

If, in addition, J satisfies the Palais-Smale condition at the linking level c, then J has a
critical point ū at level c > 0.

7.3.1 Application of the saddle point theorem

Let Ω be an open bounded subset of Rn with smooth boundary. Consider the Dirichlet
problem −∆u− λu = f(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω.
(7.4)
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Theorem 7.18. Suppose that

(i) λ is not an eigenvalue of −∆;

(ii) f satisfies the Carathéodory condition;

(iii) f is sublinear, that is, there is α < 1 such that

|f(x, s)| ≤ a+ b|s|α.

Then (L-1) and (L-2) hold. Furthermore, the functional associated to the problem,

J(u) =

∫
Ω

(|∇u|2 − λ|u|2) dx−
∫

Ω

F (x, u) dx,

satisfies the Palais-Smale condition at any level. In particular, the linking level is critical.

Proof. By assumption, there exists k ∈ N such that λ ∈ (λk, λk+1). If ϕj denotes the jth
eigenfunction, then we can take

V := Span〈ϕ1, . . . , ϕk〉.

In this case, W is the complementary subspace in X := H1
0 (Ω). Notice that the quadratic

form
Q(u) = |∇u|2 − λ|u|2

is definite negative on V and definite negative on W , and also that the sublinearity of f
together with the Sobolev embedding implies that∣∣∣∣∫

Ω

F (x, u) dx

∣∣∣∣ ≤ A+B‖u‖α+1.

It follows that there exists γ > 0 such that

u ∈ V =⇒ J(u) ≤ −γ‖u‖2 +A+B‖u‖α+1 ‖u‖→∞−−−−−→ −∞,

which means that we can select R big enough in Theorem 7.16 for which (L-2) holds. In a
similar fashion, notice that

u ∈W =⇒ J(u) ≥ γ‖u‖2 −A−B‖u‖α+1,

which means that ρ := infW J(u) > −∞. Since R is arbitrarily big, we can also require that
β < ρ and thus (L-1) holds as well.

Palais-Smale condition. Write u = uV + uW . Then

∇J(u)[uV ] = ∇Q(u)[uV ]−
∫

Ω

f(x, u)uV dx = 2Q(uV )−
∫

Ω

f(x, u)uV dx.
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Let (un)n∈N be a Palais-Smale sequence. Then

∇J(un)[(un)V ] = o(‖un‖)

because ∇J(un)[(un)V ] converges to zero; on the other hand, the identity above suggests
that

∇J(un)[(un)V ] = 2Q((un)V ) +O(1 + ‖u‖α+1).

Since Q < 0 on V , we can easily infer that

γ‖(un)V ‖2 ≤ o(‖un‖) +O(1 + ‖un‖1+α).

In a similar fashion, we make the same computation on W and find that

γ‖(un)W ‖2 ≤ o(‖un‖) +O(1 + ‖un‖1+α).

Therefore, any Palais-Smale sequence for the functional J is bounded in the ‖ · ‖X-norm.
For the compactness, notice that un bounded implies

unk ⇀ ū

and, using the fact that V is finite-dimensional, we also have that

(unk)V
k→∞−−−−→ ūV .

Moreover, we have

∇J(un)[v] =

∫
Ω

(∇un · ∇v − λunv) dx−
∫

Ω

f(x, un)v dx,

which gives ∫
Ω

∇un · ∇v dx = ∇J(un)[v] +

∫
Ω

λunv dx+

∫
Ω

f(x, un)v dx.

We conclude that the convergence is strong (up to subsequences) because the first addendum
converges to zero, while the other two are compact linear operators by Sobolev embedding
and sublinearity of f .

Remark 7.19. If λ = λk, then the existence of the solution is not guaranteed. Indeed, if
we consider the problem −∆u− λu = ϕk if x ∈ Ω,

u = 0 if x ∈ ∂Ω,

then it is easy to verify that it does not admit any solution since u should be in the orthogonal
of the linear space generated by ϕk.

To conclude this section, we want to point out why any Palais-Smale sequence is bounded
is enough to infer that the functional J satisfies (PS)c.
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Let Ω ⊂ Rn be a bounded set and let f be a function that satisfies the Carathéodory
condition and the growth condition

|f(x, s)| ≤ A+B|s|p for p <
n+ 2

n− 2
if n ≥ 3.

Let F (x, u) :=
∫ u

0
f(x, s) ds and Φ(u) =

∫
Ω
F (x, u) dx. We claim that ∇Φ is compact as

an operator from X := H1
0 (Ω) to X.

Proof. Let un be a bounded sequence in X weakly converging to some ū. Then unk converges
strongly to ū in Lp+1(Ω) and by Nemitski theorem

f(x, unk)→ f(x, ū) strongly in L
p+1
p (Ω).

This implies that ‖∇Φ(unk)−∇Φ(u)‖ → 0 which is enough to infer that ∇Φ is compact.

Corollary 7.20. Consider the Dirichlet problem−∆u = f(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω,

and the associated function J(u) = 1
2

∫
Ω
|∇u|2 dx−Φ(u). Then the following properties hold:

(a) If un converges weakly to ū and ∇J(un)→ 0, then unk converges strongly to ū.

(b) If Palais-Smale sequences at the level c for J are bounded, then J satisfies the (PS)c
condition.

7.3.2 Application of linking-type theorems

Theorem 7.21. Let Ω be a bounded subset of Rn. Let f ∈ Fp with 1 < p < n+2
n−2 for n ≥ 3,

and suppose that

lim
s→0+

f(x, s)

s
= λ for a.e. x ∈ Ω,

for any λ ∈ R, and

∃ r >, θ ∈ (0,
1

2
) : 0 < F (x, u) ≤ θuf(x, u) for all x ∈ Ω and all u ≥ r.

Then the Dirichlet problem (7.4) admits a nontrivial solution.

Proof. We prove the result for the model problem−∆u = λu+ |u|p−1u if x ∈ Ω,

u = 0 if x ∈ ∂Ω.
(7.5)
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Let X = H1
0 (Ω) and consider the associated functional

J(u) =
1

2
‖u‖2 − 1

2
λ‖u‖2L2(Ω)

1

p+ 1
‖u‖p+1

Lp+1(Ω).

If λ < λ1, then we have proved already (see [REF]) that the MPT is enough to infer the
existence of a nontrivial solution. So we can assume without loss of generality that

λk ≤ λ < λk+1

for some k ≥ 1; the idea is to apply Theorem 7.16 with V = Span〈ϕ1, · · · , ϕk〉 andW = V ⊥,
the L2 complement of V . Indeed, if w ∈W we can always write

w =

∞∑
i=k+1

aiϕi.

If ‖w‖ → 0, then

J(w) =
1

2

∞∑
i=k+1

a2
i

(
1− λ

λi

)
+ o(‖w‖2) ≥ 1

2

(
1− λ

λk+1

)
‖w‖2 + o(‖w‖2),

and the latter is always strictly positive since λ < λk+1 by assumption. In particular, the
assumption (L− a) of Theorem 7.16 holds with r small enough. Now let Ṽ be a finite-
dimensional subspace of X and ṽ ∈ Ṽ be an element with unitary norm; it turns out that

J(tṽ) =
1

2
t2 − 1

2
λ2t2‖ṽ‖2L2(Ω) −

1

p+ 1
tp+1‖ṽ‖p+1

Lp+1(Ω).

Since p > 1 and Ṽ finite-dimensional, it follows that we can always find t > 0 big enough
such that the quantity above is strictly negative. In particular, we can find R > r and
e ∈W , ‖e‖ = R, such that

‖v + te‖ ≥ R =⇒ J(v + te) < 0.

Then on the three sides of ∂N given by {u = v+te : ‖v‖ = R}∪{u = v+Re} the functional
J is strictly negative. It remains to see what happens on the fourth side of ∂N , namely

{v ∈ V : ‖v‖ ≤ R}.

However, it is easy to verify that v =
∑k
i=1 aiϕi gives ‖v‖2L2(Ω) =

∑k
i=1 λ

−1
i a2

i ; this implies
that

‖v‖2L2(Ω) ≥ λ
−1
k ‖v‖

2,

and hence
J(v) ≤ 1

2

(
1− λ

λk

)
‖v‖2 ≤ 0.

This shows that (L− b) holds as well. The Palais-Smale condition is obtained in the same
way as Theorem 7.18 so we can apply Theorem 7.16 to conclude.



91 7.4. The Pohozaev identity

Remark 7.22. Notice that J
∣∣
C
> 0 strictly, so a solution corresponding to a critical point

at the level c is necessarily nontrivial.

7.4 The Pohozaev identity

Let Ω be an open bounded subset of Rn with smooth boundary. Consider the Dirichlet
boundary value problem with nonlinearity independent of x, that is,−∆u = f(u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω,
(7.6)

and let F (u) =
∫ u

0
f(s) ds.

Theorem 7.23 (Pohozaev). Let ν denote the unit outer normal at ∂Ω. If u is any classical
solution of (7.6), then the following identity holds:

n

∫
Ω

F (u) ds =
1

2

∫
∂Ω

u2
ν(x · ν) dσ +

n− 2

2

∫
Ω

uf(u) dx. (7.7)

Proof. Set Θ(x) := (x · ∇u(x))∇u(x). Then

div Θ = ∆u(x · ∇u) +
∑
k

∂u

∂xk

∂

∂xk

(∑
i

xi
∂u

∂xi

)
=

= ∆u(x · ∇u) +
∑
k

(
∂u

∂xk

)2

+
∑
i, k

∂u

∂xk
xi

∂2u

∂xi∂xk
=

= ∆u(x · ∇u) + |∇u|2 +
1

2

∑
i

xi
∂

∂xi
|∇u|2.

Then an application of the divergence theorem shows that∫
Ω

[
∆u(x · ∇u) + |∇u|2 +

1

2

∑
i

xi
∂

∂xi
|∇u|2

]
dx =

∫
∂Ω

(x · ∇u)(∇u · ν) dσ.

As for the boundary term, since u = 0 on ∂Ω one has that ∇u(x) = uνν and thus the above
equation becomes∫

Ω

[
∆u(x · ∇u) + |∇u|2 +

1

2

∑
i

xi
∂

∂xi
|∇u|2

]
dx =

∫
∂Ω

(x · ν)u2
ν dσ.

Now set Θ1(x) := 1
2 |∇u|

2x. Since its divergence is

div Θ1 =
n

2
|∇u|2 +

1

2

∑
i

xi
∂

∂xi
|∇u|2,
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another application of the divergence theorem shows that∫
Ω

[
n

2
|∇u|2 +

1

2

∑
i

xi
∂

∂xi
|∇u|2

]
dx =

1

2

∫
∂Ω

(x · ν)u2
ν dσ.

If we plug this into the previous identity we find that∫
Ω

∆u(x · ∇u) dx+ (1− n

2
)

∫
Ω

|∇u|2 dx =
1

2

∫
∂Ω

(x · ν)u2
ν dσ. (7.8)

The first integral can easily be rewritten using the equation (7.6) of which u is a solution;
namely, we have

−
∫

Ω

∆u(x · ∇u) dx =

∫
Ω

f(u)(x · ∇u) dx =

∫
Ω

∑
i

xi
∂F (u)

∂xi
dx.

Integrating by parts we obtain∫
Ω

∑
i

xi
∂F (u)

∂xi
dx = −n

∫
Ω

F (u) dx,

which implies that ∫
Ω

∆u(x · ∇u) dx = n

∫
Ω

F (u) dx.

Once again, using (7.6) we conclude that∫
Ω

|∇u|2 dx =

∫
Ω

uf(u) dx,

which plugged into the identity (7.8) leads to the Pohozaev identity.

An immediate consequence is that the growth of the nonlinearity f with exponent p <
n+2
n−2 cannot be eliminated if we want to find nontrivial solutions of (7.8). There is a more
precise statement which follows from the Pohozaev identity:

Corollary 7.24. If Ω is a star-shaped (w.r.t. the origin) domain in Rn, then any smooth
solution of (7.8) satisfies

n

∫
Ω

F (u) dx− n− 2

2

∫
Ω

uf(u) dx > 0.

In particular, if f(u) = |u|p−1u, then we find(
n

p+ 1
− n− 2

2

)∫
Ω

|u|p+1 dx > 0,

and hence u 6= 0 implies p < n+2
n−2 .



Chapter 8

Lusternik-Schnirelman Theory

In this chapter we aim to discuss the elegant theory of Lusternik and Schnirelman that
connects critical points of functionals on manifolds to topological properties of the latter.

8.1 Lusternik-Schnirelman category

Throughout this chapter,M will always denote a Hilbert space or a C1-submanifold mod-
elled on a Hilbert space.

Definition 8.1 (Contractible). Let X be a topological space. A set A ⊂ X is contractible
in X if the inclusion ι : A ↪→ X is homotopic to a constant map. Namely, there exists

H ∈ C
(
[0, 1]×A, X

)
such that H(0, u) = u and H(1, u) = p for all u ∈ A.

Definition 8.2 (Category). Let X be a topological space and A ⊂ X. The (L-S) category
of A with respect to X, denoted by cat(A, X), is the least integer k ∈ N such that

A ⊆
k⋃
i=1

Ai,

where each Ai is closed and contractible in X. If such an integer does not exist, we set
cat(A, X) =∞ and if A is empty we set cat(∅, X) = 0.

Remark 8.3. The category of A coincide with the category of its closure. Moreover

cat(A, X) ≥ cat(A, Y )

provided that A ⊂ X ⊂ Y .

Example 8.4.
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(i) The sphere Sm−1 is contractible in Rm so cat(Sm−1, Rm) = 1. However, it is not
contractible in itself but can be covered by two closed hemispheres so cat(Sm−1) = 2.

(ii) The sphere in a infinite-dimensional Hilbert space is always contractible so

cat(SH , H) = 1.

The reader interested in this property might refer to [4].

(iii) The category torus T 2 = S1 × S1 ⊂ R3 in itself is equal to 3. It is easy to verify that
cat(T 2) ≤ 3 using A1, A2, A3 as defined in Figure [REF].

The opposite inequality, however, is quite hard to obtain and we will only explain at
the end of the section how to use a general result to prove it.

Lemma 8.5. Let A, B ⊂M.

(a) If A ⊂ B, then cat(A,M) ≤ cat(B,M).

(b) cat(A ∪B,M) ≤ cat(A,M) + cat(B,M).

(c) If A is closed and η ∈ C(A,M) is a deformation, then

cat(A,M) ≤ cat
(
η(A),M

)
. (8.1)

Proof. The only nontrivial assertion is (c). Let k := cat
(
η(A),M

)
an assume that it is

finite (otherwise there is nothing to prove). Then

η(A) ⊂
k⋃
i=1

Ci,

where Ci is closed and contractible inM. Set

Ai := η−1(Ci)

and observe that these are all closed because η is continuous. Moreover, each Ai is con-
tractible because the composition of a contraction with η gives another contraction. Since

A ⊂
k⋃
i=1

Ai,

we easily deduce that (8.1) holds.

The strict inequality in (8.1) is possible to achieve. Indeed, letM = S1 and A = S1
+ the

hemisphere
S1

+ = {eıθ : θ ∈ [0, 2π]}.

Let η(eıθ) := H(1, θ), where
H(t, θ) = eı(t+1)θ
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is defined for all t ∈ [0, 1]. Then it is trivial to verify that cat(A,M) < cat
(
η(A),M

)
.

Lemma 8.6. Let A ⊂M be compact. Then the following properties hold:

(i) cat(A,M) <∞.

(ii) There exists a neighbourhood UA of A such that

cat(A,M) = cat
(
UA,M

)
.

Proof. Suppose first that cat(A,M) = 1 and let H : [0, 1]×A→M be the contraction to
the constant map p. We would like to extend H to

S := ({0} ×M) ∪ ([0, 1]×A) ∪ ({1} ×M),

and this is easily achieved by setting

H(t, u) :=


u if (t, u) ∈ {0} ×M,

H(t, u) if (t, u) ∈ [0, 1]×A,

p if (t, u) ∈ {1} ×M.

Since S is closed in Y := [0, 1] ×M and H is continuous from S to M, we can use the
extension property to find a neighbourhood N of S in Y and a function H̃ ∈ C(N,M) such
that

H̃
∣∣
S
≡ H.

Since [0, 1] × A is compact and the distance with Y \ N is strictly positive, we can easily
find a neighbourhood UA of A inM such that

[0, 1]× Ua ⊆ N.

It is easy to verify that UA is contractible in M using the contraction H̃ appropriately
restricted to a subset of its domain. In particular,

cat(A,M) = 1 =⇒ cat
(
UA,M

)
= 1.

(i) Let q ∈ A Then above we proved that there exists a contractible neighbourhood Uq of
category equal to one. Since we can always cover A with finitely many Uq’s, we infer
that the category of A is finite.

(ii) Let k = cat(A,M) and let A1, · · · , Ak be the closed and contractible sets such that

A ⊆
k⋃
i=1

Ai.

Observe that if we replace Ai with A ∩ Ai, we can assume without loss of generality
that Ai’s are also compact. Since cat(Ai,M) = 1 we can find an open neighbourhood
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Ui of Ai such that
cat
(
Ui,M

)
= 1

for each i = 1, · · · , k. Let UA :=
⋃k
i=1 Ui and notice that UA is an open neighbourhood

of A such that
cat
(
UA,M

)
≥ k.

Since UA ⊂
⋃k
i=1 Ui, we also get the opposite inequality and hence the equality holds.

Remark 8.7. It can be proved that the category satisfies the inequality

cat(M) ≥ cup− length(M) + 1,

where the cup-length ofM is defined by

cup− length(M) = sup {k ∈ N : ∃α1, · · · , αk ∈M∗ s.t. α1 ∪ · · · ∪ αk 6= 0} .

IfM is a smooth manifold, then by De Ram’s cohomology α1 ∪ · · · ∪αk corresponds to the
∧-product of differential forms. In particular

dx1 ∧ dx2 6= 0

on the torus T2, so we obtain the bound cat(T2) ≥ 3.

8.2 Lusternik-Schnirelman theorems

LetM be a Hilbert space or a C1-submanifold modelled on a Hilbert space. Define

catK(M) := sup {cat(A,M) : A ⊆M is compact}

and introduce the corresponding class of sets that is preserved when we use deformations;
namely, let

Cm := {A ⊆M : A is compact and cat(A,M) ≥ m}

for m ≤ catK(M). Let J ∈ C1(M, R) and define

cm := inf
A∈Cm

max
u∈A

J(u).

The following properties follows from the definition immediately:

(a) The first level, c1, coincide with infu∈M J(u).

(b) The sequence of levels is increasing, that is,

c1 ≤ c2 ≤ · · · ≤ ck ≤ · · ·



97 8.2. Lusternik-Schnirelman theorems

(c) For all m ≤ catK(M) there results cm <∞.

(d) If J is bounded from below onM, then all cm’s are finite.

Theorem 8.8. Let J ∈ C1(M, R) be a functional bounded from below onM and satisfying
the Palais-Smale condition at all c ∈ R. Then J has at least catK(M) critical points and
the following holds:

(1) For all m ≤ catK(M), cm is a critical value for J .

(2) If there are integers q, m ≥ 1 such that

c := cm = cm+1 = · · · = cm+q,

then cat(Zc,M) ≥ q + 1.

Remark 8.9. The category of a finite set of points {p1, . . . , pN} inM is always equal to
one (ifM is connected). Consequently, (2) gives us an even more precise information than
merely saying that there are infinite critical points at the level c.

Lemma 8.10 (Deformation). Let J ∈ C1(M, R) be a functional bounded from below on
M and satisfying the Palais-Smale condition at all c ∈ R. Then for each U neighbourhood
of Zc there are δ = δ(U) > 0 and a deformation η such that

η(Mc+δ \ U) ⊆Mc−δ.

Proof. We claim that for each U neighbourhood of Zc there exists δ̄ > 0 such that

u /∈ U and |J(u)− c| ≤ δ̄ =⇒ ‖∇J(α(t, u))‖ ≥ 2δ̄ for all t ∈ [0, 1].

We argue by contradiction. Assume that there are sequences tk ∈ [0, 1] and uk /∈ U such
that

|J(uk)− c| ≤ 1

k
and ‖∇J(α(tk, u))‖ k→∞−−−−→ 0.

Let t̄ ∈ [0, 1] be the limit (up to subsequences) of tk and set νk := α(tk, uk). Then

J(νk) ≤ J(uk) ≤ c+
1

k

and, since J is bounded from below and satisfies the Palais-Smale condition, we find that
J(νk) converges to c. Passing to the limit the inequality above shows that

c = lim
k→∞

J(νk) ≤ lim
k→∞

J(uk) ≤ c = lim
k→∞

(c+
1

k
),

which means that J(uk) also converges to c, and hence it is enough to prove that uk converges
to some z. We know that νk → z and the flow α(t, z) = z for all t ∈ [0, 1]. We can go
backwards and obtain

uk = α(−tk, νk),
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so by Cauchy’s theorem we infer that uk → z. Since z ∈ Zc we find a contradiction because
uk does not belong to U for all k and Zc is contained in U . The rest of the proof follows as
in Lemma 6.12.

Proof of Theorem 8.8. The assertion (1) follows from the deformation lemma in the same
fashion it did in the MPT. To prove (2) we argue by contradiction, i.e., we assume that

cat(Zc,M) ≤ q.

Since J satisfies the Palais-Smale condition, the critical set Zc is compact and hence there
exists an open neighbourhood U of Zc such that

cat
(
U,M

)
≤ q.

By the second deformation Lemma 8.10, there are δ > 0 and a deformation η such that

η
(
Mc+δ \ U

)
⊆Mc−δ.

Since c = cm+q we can find an element A ∈ Cm+q such that

sup
u∈A

J(u) ≤ c+ δ =⇒ A ⊆Mc+δ.

Set A′ := A \ U . Then

cat (A′,M) ≥ cat (A,M)− cat
(
U,M

)
≥ m+ q − q = m,

which means that A′ ∈ Cm. Therefore, the image of A′ via η is contained in Mc−δ and,
using the properties of the category, we also have that

cat (η(A′),M) ≥ m.

In particular, we have A′ ∈ Cm and

sup
A′

J(u) ≤ c− δ,

but this is a contradiction with the very definition of cm.

Theorem 8.11. Let M be a Hilbert space or a C1, 1-manifold and let J ∈ C1, 1(M, R) be
bounded from below. Suppose that there exists a ∈ R such that the Palais-Smale condition
holds at all levels c ≤ a. Then

cat(Ma) <∞.

Proof. Let Z = {∇J = 0} and set Za :=Ma ∩ Z. The Palais-Smale condition implies that
Za is compact and by Lemma 8.6 we can find an open neighbourhood Ua of Za such that

cat(Ūa, Ma) = cat(Za, Ma) <∞.
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We can assume without loss of generality that ‖∇J(u)‖ ≤ 1 for all u ∈ Ua. Then there
exists V a ⊂ Ua, neighbourhood of Za, such that

d := d(V̄ a, ∂Ua) > 0.

If a gradient flow of J exits V a and enters the complement of Ua, then this has to happen
in a time bigger than or equal to d. Observe that by (PSc) there is δ > 0 such that

‖∇J(u)‖ ≥ δ

for all u ∈Ma \ V a. Let a′ := a− infu∈M J(u) and T > a′

δ2 . Recall that

− d

dt
J(α(t, u)) = −‖∇J(α(t, u))‖2,

and thus if α(t, u) never enters V a, we would have

J(α(t, u)) < J(u)− Tδ2 < a− a′ = inf
u∈M

J(u),

which is impossible. Now let t0 = 0 < t1 < · · · < tn−1 < tn = T be such that

|ti − ti−1| ≤
d

2
.

Given p ∈ Ma, there must be t̄ ∈ [0, T ] such that α(t̄, p) ∈ V a and an index i for which
|t̄− ti| ≤ d

2 . Clearly
α(ti, u) ∈ Ua,

so we can consider the sets

Ai = {p ∈Ma : α(ti, p) ∈ Ua}.

By what we proved above,Ma ⊆
⋃n
i=0Ai and therefore

cat(Ma) ≤
n∑
i=0

cat(Ai,Ma).

Since Ai can be deformed in Ua via ηi := α(ti, ·), we use the properties of the category to
infer that

cat(Ma) ≤
n∑
i=0

cat(ηi(Ai),Ma) ≤ (n+ 1)cat(Ua,Ma) <∞.

Corollary 8.12. If J is also bounded from above onM, then cat(M) is finite.

Corollary 8.13. Let J be bounded from below on M. Suppose that cat(M) =∞ and that
(PS)a holds for all a < supu∈M J(u). Then

cm
m→∞−−−−→ sup

u∈M
J(u),
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and hence J has infinitely many critical points.

Remark 8.14 (Relative category). Suppose that A, Y ⊆ M are closed. We define the
relative category catM,Y (A) as the least integer k such that

A ⊆
k⋃
i=0

Ai,

where Ai is closed and contractible for all i = 1, . . . , k inM and there exists a homotopy
h ∈ C([0, 1]×A0,M) satisfying

h(0, ·) = idA0
, h(1, ·) ∈ Y and h(t, ·)

∣∣
Y
∈ Y.

If Y is empty, then the definition coincides with the one of category of A inM.

Theorem 8.15. If J satisfies the Palais-Smale condition for all c ∈ [a, b] then there are at
least catMb,Ma(Mb) critical points in the energy stripMb \Ma.

8.3 Application to PDEs theory

Let Ω be a bounded smooth subset of Rn and consider the Dirichlet-boundary problem−∆u = λu+ f(u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω,

where λ ∈ (λk, λk+1) for some k ≥ 2. Assume that f is continuous and satisfies the following
properties:

(1) f is subcritical at t = 0, which means that f(t) = O(|t|α) for some α > 1.

(2) If F (u) :=
∫ u

0
f(s) ds, then

lim
|t|→∞

F (t)

t2
= −∞.

(3) The function t 7→ f(t) is nonincreasing (thus F (t) ≤ 0 for all ∈ R) and F (t) = 0 if
and only if t = 0.

Theorem 8.16. Under these assumptions, the Dirichlet-boundary problem admits at least
two solutions.

Proof. Let X := H1
0 (Ω) and let us consider the associated functional

J(u) :=
1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

|u|2 dx−
∫

Ω

F (u) dx.

The assumption (2) tells us that −F (u) ≥ Mu2 for all M ∈ R when u is sufficiently big,
while in the complement (which is compact) we can always find a constant CM > 0 such
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that F (u) ≤ CM . It follows that

−F (u) ≥Mu2 − CM for all u ∈ R.

We plug this inequality into J and find that

J(un) ≥ 1

2

∫
Ω

|∇un|2 dx+

(
M − λ

2

)∫
Ω

|un|2 dx− CM |Ω|

and this goes to ∞ as ‖un‖X → ∞ since we can always pick M > λ
2 . In particular, the

functional J is coercive on X and hence it satisfies the Palais-Smale condition at all levels1.

Remark 8.17. The Ψ-gradient decreases the value of J , so it is not restrictive to apply the
min-max theory to a suitable sublevel Xa. We introduce this apparent complication because
we can collect more topological information as if we were in Rn.

We now substitute X with the sublevel X<0 := {u ∈ X : J(u) < 0}, which is easy to see
that it is nonempty using (1):

J(tϕ1) 't→0+

1

2
(λ1 − λ)︸ ︷︷ ︸

<0

t2 +O(|t|α+1),

where ϕ1 is an eigenfunction of the first eigenvalue λ1. Now notice that C1 is nonempty and
hence c1 < 0 (since we are working in X<0) is a critical level and

Zc1 6= ∅.

We claim that C2 is nonempty. Let V := Span〈ϕ1, . . . , ϕk〉 and, for r small enough, notice
that

sup
Sr∩V

J(u) < 0.

If we can prove that the category of Sr ∩ V in X<0 is bigger than or equal to 2, we will be
able to conclude that C2 6= ∅. Let πV : X→ V be the projection and let

πr(u) := r
πV (u)

‖πV (u)‖X

be the normalized projection which is the identity on Sr∩V . Suppose that cat(Sr∩V, X<0) =

1 and let A ⊇ Sr ∩ V be the closed contractible set such that

H(0, ·)
∣∣
A
≡ IdA and H(1, ·) ≡ p ∈ X<0

for some contraction H. The assumption (3) gives us that πV (u) = 0 if J(u) ≥ 0, which
means that πV (u) 6= 0 for all u ∈ X<0 and the restriction

πr(u)
∣∣
Sr∩V

1This assertion is not trivial, but one can show that coercivity gives the bounedness of Palais-Smale
sequences and the subcriticality of f allows one to write ∇J = Id + ∇Φ, where ∇Φ is a compact operator.



102 8.3. Application to PDEs theory

is well-defined. We can consider the composition

πr ◦H : [0, 1]×A→ Sr ∩ V,

which, restricted to [0, 1] × Sr ∩ V , gives a retraction of a (k − 1)-dimensional sphere to a
point in itself, and this is a contradiction as the sphere is non-contractible in itself.

Remark 8.18. If c1 = c2 < 0, then there are infinitely many critical points at level c since
the category of Zc is at least two.

Remark 8.19. If λ ∈ (λ1, λ2), then V = ϕ1R and the same argument leads to Sr ∩ V ∼=
S0 = {±q}. The sublevels become disconnected, but it is still true that

cat({±q}, X<0) = 2.



Chapter 9

The Krasnoselski Genus

9.1 Introduction

Let E be a infinite-dimensional Hilbert space. We say that a subset Ω ⊂ E is symmetric if
it is symmetric with respect to the origin of E, that is,

u ∈ Ω =⇒ −u ∈ Ω.

Let Γ be the class of all the symmetric subsets A ⊆ E \ {0} which are closed in E \ {0}.

Definition 9.1 (Genus). Let A ∈ Γ. The genus of A is the least integer number k ∈ N
such that there exists Φ : A→ Rk continuous, odd and such that

Φ(x) 6= 0 for all x ∈ A.

The genus of A is usually denoted by γ(A). If such a number does not exist, we set γ(A) =∞
and, if A = ∅, we conventionally set γ(A) = 0.

Remark 9.2. We can equivalently define the genus of A to be the least integer number
k ∈ N such that there exists Φ : A → Rk \ {0} continuous and odd. The reason is that we
can always extend such a map to a continuous one taking values in Rk using Dugundij’s
theorem and even/odd parts.

Remark 9.3. The definition of genus does not change if we require Φ to be a function with
values in the sphere Sk−1 instead of Rk \ {0} since we can compose with the projection

π(x) :=
x

|x|
.

Lemma 9.4. Let E = L2(Rd) and let A = SE(0, 1) be the unit sphere in L2. Then

γ(A) = +∞.
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Proof. Let k ∈ N be any positive integer, and let

Φ : SE(0, 1)→ Rk

be a continuous odd map. The infinite-dimensional sphere contains the n-sphere Sn(0, 1) ⊂
Rn+1; hence by Borsuk-Ulam theorem it follows that, for n > k,

0 ∈ Φ (Sn(0, 1)) =⇒ 0 ∈ Φ (SE(0, 1)) .

Since SE(0, 1) contains every finite-dimensional sphere, for every k ∈ N we can take n = k+1

and obtain that 0 is in the image. This shows that the genus is +∞.

Remark 9.5. In a similar fashion, one proves that γ(∂Ω) = n, where Ω ⊂ Rn is an open
bounded even subset such that 0 ∈ Ω. In particular,

γ(Sn−1) = n.

Proof. It is easy to verify that γ (∂Ω) ≤ n. On the other hand, if

Φ : ∂Ω ⊆ Rn −→ Rk

is a continuous odd map, then Borsuk-Ulam theorem implies that 0 ∈ Φ (∂Ω) for every
k < n. It follows that

γ (∂Ω) ≥ N =⇒ γ (∂Ω) = N.

Lemma 9.6. The following properties hold:

(a) If A ∈ Γ is finite and nonempty, then γ(A) = 1.

(b) If A ⊆ Rn and 0 /∈ A, then γ(A) ≤ n.

(c) If 0 ∈ A, then γ(A) = +∞.

Proposition 9.7. Let A and B be elements of the class Γ.

(a) The set A is empty if and only if the genus γ(A) is equal to 0.

(b) If Φ : A→ B is a continuous odd map, then γ(A) ≤ γ(B). In particular,

A ⊆ B =⇒ γ(A) ≤ γ(B).

(c) The genus is subadditive, that is,

γ(A ∪B) ≤ γ(A) + γ(B). (9.1)

(d) There is an open neighborhood U ⊃ A satisfying the following properties:

(1) The set is symmetric, that is, if u ∈ U , then −u ∈ U .
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(2) The origin is not contained in the closure of the set, that is, 0 /∈ Ū .
(3) The genus coincides with the one of the set A, that is,

γ
(
Ū
)

= γ(A).

Proof. The first property is obvious.

(b) If Ψ : B → Rk \ {0} is a continuous odd map, then the composition

Ψ ◦ Φ : A→ Rk \ {0}

is still continuous and odd. It follows that γ(A) ≤ γ(B).

(c) Let k, h ∈ N be the least positive integers such that there are continuous odd maps
Φ1 : A −→ Rk \ {0} and Φ2 : B −→ Rh \ {0} respectively. Let

Φ̃i : A ∪B → Rk

be the continuous odd extensions of Φ1 and Φ2 respectively to A ∪B. Then

Ψ(u) :=
(

Φ̃1(u), Φ̃2(u)
)

: A ∪B → Rk × Rh \ {(0, 0)}

is a continuous odd map. Moreover, every point u ∈ A ∪ B belongs to either A or B
so its image cannot be equal to (0, 0).

(d) Let k = γ(A). By Remark 9.3 there exists a continuous odd map

Φ : A→ Sk−1.

The set A is closed in E and hence there exists a continuous odd function Φ̃ : E → Rk,
which extends Φ, but, a priori, 0 may be in its image. Thus

UA :=

{
u ∈ E

∣∣∣∣ ∣∣∣Φ̃(u)
∣∣∣ > 1

2

}
is the desired neighborhood of A.

9.2 Genus in calculus of variations

Suppose that X ⊂ E, X Hilbert or C1-submanifold, belongs to Γ. In this section, unless
otherwise stated, every functional J : X→ R is even and of class C1(X, R).

Proposition 9.8. Let a < b be real numbers. Assume that f : X → R satisfies (PS)c at
every level c ∈ [a, b]. If there is a strict inequality

γ (Xa) < γ
(
Xb
)
,
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then there exists a critical value c ∈ [a, b] for f .

Proof. We argue by contradiction. If there are no critical values in [a, b], then there is an
odd retraction r : Xb → Xa, and we conclude using Proposition 9.7.

Notation. Let k ∈ N be a positive integer number such that 1 ≤ k ≤ γ(X). We denote by
γk the infimum of all the sublevels such that the genus is at least k, that is,

γk := inf {c ∈ R | γ (Xc) ≥ k } .

It is possible that γ (Xc) ≥ k is not satisfied for any real number c ∈ R. In this case, the
supremum of J is ∞ and we set γk =∞.

Lemma 9.9. Let 1 ≤ k ≤ γ(X).

(a) The sequence is increasing, that is,

inf
u∈X

J(u) = γ1 ≤ γ2 ≤ · · · ≤ γk ≤ sup
u∈X

J(u).

(b) If γk ∈ R and J satisfies (PS)γk , then γk is a critical value for the functional J . In
particular,

γ1 ∈ R =⇒ γ1 = min
u∈X

J(u).

(c) If γk = γk+1 = · · · = γk+h for some h ≥ 1 and f satisfies (PS)γk , then

γ (Zγk) ≥ h+ 1,

where Zγk is the set of all singular points of J at the level γk. In particular, if 0 ∈ Zγk ,
then it is an infinite set.

Proof.

(a) The first identity follows from the fact that

γ1 := inf {c ∈ R | γ (Xc) ≥ 1} = inf {c ∈ R | Xc 6= ∅} = inf
u∈X

J(u).

Now notice that

{c ∈ R | γ (Xc) ≥ k } ⊇ {c ∈ R | γ (Xc) ≥ k + 1} ,

from which it follows that γk ≤ γk+1 by taking the infimum of both sides.

(b) If γk is not a critical level for J , then there are δ > 0 and

r : Xγk+δ → Xγk−δ
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odd retraction. By Proposition 9.7 we have

γ
(
Xγk+δ

)
≤ γ

(
Xγk−δ

)
,

but this is impossible since

γ
(
Xγk−δ

)
≤ k − 1 < k ≤ γ

(
Xγk+δ

)
.

(c) First, notice that Zc is always a compact element of Γ. Thus by Proposition 9.7 there
exists a symmetric open neighborhood U of Zγk such that

Ū ∈ Γ and γ
(
Ū
)

= γ (Zγk) .

Then there are ε > 0 and an odd retraction r : Xγk+ε \U → Xγk−ε, where the domain
is closed, belongs to Γ and it satisfies the inclusion

Xγk+ε ⊆
(
Xγk+ε \ U

)
∪ Ū . (9.2)

By assumption k + h ≤ γ (Xγk+ε), and by the subadditivity of the genus, it follows
from (9.2) that

k + h ≤ γ
(
Xγk+ε

)
≤

≤ γ
(
Xγk+ε \ U

)
+ γ

(
Ū
)
≤

≤ γ
(
Xγk−ε

)
+ γ

(
Ū
)
≤

≤ k − 1 + γ (Zγk) ,

and this leads to the desired result.

Theorem 9.10 (Lusternik-Schnirelman). Let J : Sn−1 → R be an even functional of class
C1. There are (at least) n pairs of critical points for J of the form

(−ui, ui) ∈ Sn−1 × Sn−1.

9.3 Application to nonlinear eigenvalues

Let X be an infinite-dimensional Hilbert space and let J ∈ C1(X) be an even functional
satisfying the following assumptions:

(i) J(0) = 0, J(u) < 0 for all u 6= 0 and supu∈X J(u) = 0.

(ii) J is weakly continuous and ∇J is compact.

(iii) ∇J(u) 6= 0 for all u ∈ X.
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Theorem 9.11. Under these assumptions, the problem

∇J(u) = λu

has infinitely many solutions (µk, zk) with zk ∈ S := {u ∈ X : ‖u‖2 = 1} and µk → 0.

Proof. To apply the general results with S, we need to prove that J
∣∣
S
is bounded below

and J satisfies the Palais-Smale condition at all c < 0.

Step 1. This follows from the weak continuity of J . The reader might try to work out the
details by herself as an exercise.

Step 2. Let un be a Palais-Smale sequence at the level c < 0. The weak continuity of J
implies (up to subsequences, which we ignore here) that

un ⇀ u and J(u) = c =⇒ u 6= 0.

Now notice that ∇MJ(uk) = ∇J(uk)− 〈∇J(uk), uk〉uk and

〈∇J(uk), ∇MJ(uk)〉 = ‖∇J(uk)‖2 − [〈∇J(uk), uk〉]2 ,

and by compactness of the gradient we have ∇J(uk)→ ∇J(u) strongly. Then

0 = ‖∇J(u)‖2 − [〈∇J(uk), uk〉]2 =⇒ 〈∇J(u), u〉 6= 0,

and since 〈∇J(uk), uk〉 → 〈∇J(u), u〉, we can find k sufficiently large such that

uk =
1

〈∇J(uk), uk〉
[∇J(uk)−∇MJ(uk)]

is well-defined. This shows that uk → u strongly and concludes the proof.

Step 3. Finally, γ(S) =∞ implies that there are zk ∈ S critical points such that

J(zk)→ sup
u∈S

J(u) = 0.

Since zk is a constrained critical point, we can always find µk such that ∇J(zk) = µkzk,
and clearly it is given explicitly by

µk = 〈∇J(zk), zk〉.

Finally ∇J(zk) converges strongly to zero and zk weakly to zero, so µk → 0 and this
concludes the proof.

Theorem 9.12. Let f be a Carathéodory function which is odd with respect to the second
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variable and that satisfies the p-growth

|f(x, s)| ≤ a+ b|s|p,

where 1 < p < n+2
n−2 . Then the problem−λ∆u = f(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω,

has infinitely many solutions (µk, zk) with zk ∈ S := {u ∈ X : ‖u‖2 = 1} and µk ↘ 0.

9.4 Multiple critical points of even unbounded function-
als

Let E be a Hilbert space, J ∈ C1(E, R) a functional and define

E+ := {u ∈ E : J(u) ≥ 0}.

We now introduce two assumptions on J that allows us, in some sense, to bypass the
unboundedness both from above and below. These are similar to the ones necessary for the
MPT, but the second one is “stronger”:

(i) There are positive constants r, ρ > 0 such that J(u) > 0 for all u ∈ Br \ {0} and
J(u) ≥ ρ for all u ∈ Sr. Furthermore, J(0) = 0.

(ii) For any m-dimensional subspace Em ⊂ E, Em ∩ E+ is bounded.

Let E∗ be the class of maps h ∈ C(E, E) which are odd homeomorphisms such that
h(B̄1) ⊂ E+. Notice that

hr(u) := ru =⇒ hr ∈ E∗,

where r is given by (i), so the class we introduced is never empty. Define

A := {A ⊆ E \ {0} : A is closed and even} ,

Γm := {A ∈ A : A is compact and γ(A ∩ h(S)) ≥ n for all h ∈ E∗} .

Lemma 9.13. Let J ∈ C1(E, R) be an even functional that satisfies (i) and (ii). Then the
following properties hold:

(1) Γm 6= ∅ for all m;

(2) Γm+1 ⊂ Γm;

(3) if A ∈ Γm and U ∈ A, with γ(U) ≤ q < m, then A \ U ∈ Γm−q;
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(4) if η is an odd homeomorphism in E such that η−1(E+) ⊂ E+, then η(A) ∈ Γm
whenever A ∈ Γm.

Proof.

(1) By (ii) there exists R > 0 such that

Em ∩ Ep ⊂ B̄R ∩ Em =: BmR .

We claim that BmR ∈ Γm. Let h ∈ E∗ and notice that h(B1) ⊂ E+ implies

Em ∩ h(B1) ⊂ BmR .

It follows that Em ∩ h(S) ⊂ SmR ∩ h(S) and, since one has the inclusion BmR ∩ h(S) ⊂
Em ∩ h(S), we infer that

BmR ∩ h(S) = Em ∩ h(S).

Since h is an odd homeomorphism, then Em ∩ h(B1) is a symmetric neighbourhood
Ω of the origin. It is also easy to check that

∂Ω = ∂(Em ∩ h(B1))

is contained in Em ∩ h(S). Then

γ(BmR ∩ h(S)) = γ(Em ∩ h(S)) ≥ γ(∂Ω) = m,

which means that BmR ∈ Γm.

(2) This follows immediately from the monotonicity property of the genus.

(3) The set A \ U ∈ A is compact and satisfies the identity

A \ U ∩ h(S) = A ∩ h(S) \ U.

Using the properties of the genus we infer that

γ
(
A \ U ∩ h(S)

)
= γ

(
A ∩ h(S) \ U

)
≥ γ(A ∩ h(S))− γ(U) ≥ m− q,

and this concludes the proof.

(4) Let A ∈ Γm and notice that A′ := η(A) is also compact. Our goal is to prove that for
all h ∈ E∗ it turns out that

γ(A′ ∩ h(S)) ≥ m.

It is easy to verify that A′ ∩h(S) = η
[
A ∩ η−1(h(S))

]
. Since η−1(E+) ⊂ E+, we infer
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that η−1 ◦ h belongs to E∗ and hence

γ (A′ ∩ h(S)) = γ
(
η
[
A ∩ η−1(h(S))

])
≥ γ

(
A ∩ η−1(h(S))

)
≥ m.

Remark 9.14. The condition η(E+) ⊂ E+ is natural if one thinks that deformations η are
usually induced by the Ψ-gradient flow.

Theorem 9.15. Let Γm be as above and set bm := infA∈Γm maxu∈A J(u). Suppose that
J ∈ C1(E) satisfies (i) and (ii).

(1) For all m ∈ N it turns out that bm+1 ≥ bm ≥ ρ > 0.

(2) If the Palais-Smale condition holds at the level bm, then bm is critical.

(3) If the Palais-Smale condition holds at all levels c > 0 and b = bm = · · · = bm+q for
some q ≥ 1, then

γ (Zb) ≥ q.

Proof.

(1) Let r be given by (i) and let hr ∈ E∗ be the map defined above. If A ∈ Γm, then

γ(A ∩ h(S)) ≥ m for all h ∈ E∗

and, since hr ∈ E∗, we must have A∩Sr 6= ∅ which means that bm ≥ ρ for all m ∈M.

(2) This assertion is proved in the usual way.

(3) By the properties of the genus, we know that there exists an open neighbourhood U
of Zb such that γ(U) = γ(Zb). Recall that we can always find an odd deformation η
such that η−1(E+) ⊂ E+ and a positive δ such that

J(η(u)) ≤ b− δ for all u ∈ Jb+δ \ U.

By definition of bm+q, there is A ∈ Γm+q with supA J(u) < b + δ. We proved above
that A \ U also belongs to Γm+q and thus

A′ := η
(
A \ U

)
∈ Γm+q−q = Γm.

This leads to a contradiction because η(A′) ⊂ Jb−δ and the genus of Jb−δ is necessarily
strictly less than m.
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9.4.1 Application to nonlinear problems

Let Ω ⊂ Rn be a bounded set and consider the problem−∆u = f(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω.

Suppose that f is a function of with respect to the second variable which satisfies the
Carathéodory condition and the p-growth condition

|f(x, u)| ≤ a+ b|u|p,

where 1 < p < n+2
n−2 . Suppose also that there are λ < λ1(Ω) such that

f(x, u) = λu+O(|u|1+α)

for some α > 1 and θ ∈ (0, 1
2 ) for which

F (x, u) ≤ θuf(x, u) for |u| ≥ r.

Remark 9.16. The latter condition implies that

F (x, u) ≥ c|u| 1θ + c′,

where 1
θ is always strictly bigger than 2.

Proof of (ii). Consider the functional

J(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx,

let Hm be a m-dimensional subspace and notice that Hm ∩ S is compact in H1
0 (Ω). We

claim that there exists a positive δ := δ(Hm) such that

|{x ∈ Ω : |u(x)| ≥ δ| ≥ δ for all u ∈ Hm ∩ S.

If this were not true, then we could find a sequence δn → 0 and a sequence un ∈ Hm ∩ S
such that

|{x ∈ Ω : |un(x)| ≥ δn| ≤ δn for all u ∈ Hm ∩ S.

But then un would converge to 0 ∈ S in H1
0 (Ω) and this is absurd because un has norm

equal to one. Now notice that, if we set Ωu := {|u| ≥ δ}, then

J(tu) =
t2

2
−
∫

Ωu

F (x, u) dx−
∫

Ω\Ωu
F (x, u) dx ≤ t2

2
− |Ωu|(c|tδ|

1
θ + c′) + c′′|Ω|.

Since the right-hand side goes to −∞ as t→∞ (as 1
θ > 2) uniformly with respect to u, we

immediately infer that (ii) holds.
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We can exploit the same argument in combination with linking-type results to infer the
existence of infinitely many critical points for linking geometry of even functionals.

Setting. Let H = V ⊕ W be a Hilbert space with dimV < ∞ and W = V ⊥. Let
J ∈ C1(H, R) be an even functional that satisfies (ii) and the linking conditions

(a) J(0) = 0;

(b) there are r, ρ > 0 such that

J(u) > 0 for all u ∈ (Br(0) \ {0}) ∩W,

and
J(u) ≥ ρ for all u ∈ Sr ∩W.

Let H := {h ∈ C(H, H) : h odd homeomorphism s.t. h(B1) ⊆ H+ ∪ B̄r} and let

Γ̃m := {A ∈ A : A is compact and γ(A ∩ h(S)) ≥ m for all h ∈ H} ,

where A is the class of closed even sets disjoint from {0}.

Lemma 9.17. Under these assumptions, the following assertions hold:

(a) Γ̃m 6= ∅ for all m.

(b) Γ̃m+1 ⊂ Γ̃m for all m.

(c) If A ∈ Γ̃m and U ⊂ A satisfies γ(U) ≤ q < m, then A \ U ∈ Γ̃m−q.

(d) If η is a odd homeomorphism such that η
∣∣
{J≤0} is the identity and η(H+) ⊆ H+, then

η(Γ̃m) ⊆ Γ̃m.

Proof. The linking conditions (a) and (b) implies that, given Hm finite-dimensional vector
space, there exists R > 0 such that

H+ ∩Hm ⊆ BR ∩Hm =: BmR .

Taking R large enough, we can also require that (H+ ∪Br) ∩Hm ⊆ BnR. By definition, we
have the inclusion

BnR ⊇ h(B1) ∩Hm

for all h ∈ H, which gives us a set that contains (in the interior) the origin in Hm and
whose boundary has genus greater than or equal to m. This shows (a), while (b) and (c)

are similar to Lemma 9.13. For (d) we need to check that

η−1 (h(B1)) ⊆ H+ ∩Br.
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Let u ∈ B1, ν = η−1 ◦ h(u) and h ∈ H. Then η(ν) = h(u) ∈ H+ ∪ Br and there are two
possibility to consider. If

η(ν) ∈ H+,

then ν ∈ H+. If, on the other hand, η(ν) /∈ H+, then η(ν) = ν /∈ H+ using the property
that η is the identity where J is nonpositive. In both cases

ν = η−1 ◦ h(u) ∈ H+ ∪Br,

and, since η−1 ◦ h is an odd homeomorphism, η−1 ◦ h ∈ H provided that h ∈ H.

Theorem 9.18. Let Γm be as above and set b̃m := infA∈Γ̃m
maxu∈A J(u). Suppose that

J ∈ C1(E) satisfies (a), (b) and (ii).

(1) For all m ∈ N it turns out that b̃m+1 ≥ b̃m ≥ ρ > 0.

(2) If the Palais-Smale condition holds at the level b̃m, then b̃m is critical.

(3) If the Palais-Smale condition holds at all levels c > 0 and b̃ = b̃m = · · · = b̃m+q for
some q ≥ 1, then

γ
(
Zb̃
)
≥ q.

We can use this theorem to prove that the problem−∆u = λu+ |u|p−1u if x ∈ Ω,

u = 0 if x ∈ ∂Ω,

admits infinitely many solutions uj with J(uj)→∞ for all λ ∈ R.
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Chapter 10

Geodesics on Riemannian
Manifolds

10.1 Introduction

Let (Mn, g) be a compact Riemannian manifold. We first start by defining closed curves
γ : S1 →M that belong to the Sobolev class H1(S1, M). Recall that

C∞(S1, M) ⊂ H1(S1, M) ⊂ C(S1, M),

and closed curves in the smaller space are well-defined. We say that γ ∈ H1(S1, M) if γ is
absolutely continuous and ∫

g(ċ, ċ) <∞.

It is easy to verify that H1(S1, M) is a Hilbert manifold (i.e., a separable topological
manifold modeled on a Hilbert space rather than a Euclidean space). The manifold structure
is induced by charts of the form

c̄ ∈ C∞(S1, M) c̄?(TM),

where TM is the tangent bundle of M and c̄? is the pullback via c̄. Given c ∈ H1(S1, M),
we can always find c̄ ∈ C∞(S1, M) and X ∈ H1(S1, TM) such that

c(t) = expc̄(t)X(t)

since Sobolev-regular curves can always be approximated in L∞ via smooth ones. Further-
more, if ϕc̄ is the above chart and d̄ is a smooth curve close to c (in L∞), then

ϕd̄ ◦ ϕ−1
c̄



117 10.2. Critical points

is a diffeomorphism between Hilbert spaces, which gives the differential structure of the
manifold.

Theorem 10.1. The inclusion H1(S1, M) ↪→ C(S1, M) is a homotopy equivalence.

Tangent vectors. Let c(t) = expc̄(t)X(t) be a curve, X section of class H1, and consider

cε(t) = expc̄(t) (X(t) + εY (t)) .

Then
d

dε

∣∣∣
ε=0

cε(t)

is a tangent vector to c(t), which means that Y is a vector field along the curve c. We can
thus define TcH1(S1, M) as the set of all vector fields Y along c such that∫

gc(t)(Y, Y ) <∞ and
∫
gc(t)(∇ċY,∇ċY ) <∞

Definition 10.2. Let c ∈ Λ(M) be a curve. The energy is defined by

E(c) :=
1

2

∫
S1

gc(t)(ċ(t), ċ(t)) dt.

Theorem 10.3. The functional E is C1 over Λ(M) and it satisfies the Palais-Smale con-
dition at all levels. Furthermore,

dE(c)[Y ] =

∫
S1

gc(t)(ċ(t),∇ċ(t)Y (t)) dt

and, if c and Y are smooth, then integrating by parts

dE(c)[Y ] = −
∫
S1

gc(t)(∇ċ(t)ċ(t), Y (t)) dt.

Remark 10.4. By regularity theory, critical points are smooth geodesics.

10.2 Critical points

Proposition 10.5. There exists ε(M, g) := ε > 0 such that the only critical points c of E
with energy E(c) ≤ ε are constant curves. Moreover

{E ≤ 0}

is a deformation of {E ≤ ε}.

Hint. For ε small, the length of the curve is
√
ε and thus small. The thesis is a consequence

of Gauss lemma.
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To study critical points, we need to distinguish two cases since the fundamental group
of M , π1(M), plays a critical role here.

(i) If π1(M) 6= 0, then Λ(M) has a nontrivial component Θ. We claim that

cΘ := inf
c∈Θ

E(c) > 0.

This is a consequence of the result above because Θ is nontrivial and if cΘ was equal
to zero then the curve could be deformed to a trivial one (contradiction).

Since E satisfies the Palais-Smale condition, we easily obtain a nontrivial geodesic at
the level cΘ.

(ii) If M is simply connected, we start by recalling a few facts in differential geometry.

Theorem 10.6. If π1(M) = 0, then πk(Λ(M)) ∼= πk(M)⊕ πk+1(M) for all k ∈ N.

Proposition 10.7. If π1(M) = 0, then πk(M) ∼= Hk(M) where k is the least integer
such that πk(M) 6= 0.

As a consequence of these two facts, we can always find k ∈ N such that πk(Λ(M)) 6= 0.
Let Ξ ⊆ πk(Λ(M)) and let f ∈ Ξ be a nontrivial curve. Consider

H = {h : Sk → Λ(M) : h is homotopic to f}

and
cf := inf

h∈H
sup
x∈Sk

E(h(x)) > 0,

once again by contradiction. The Palais-Smale condition gives a nontrivial geodesic
at the level cf .
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Allen-Cahn Energy

In 1977, Modica and Mortola considered the problem of diffuse interfaces. For example,
metal alloys with a mixture of phases ±1 perfectly separated whose evolution can be de-
scribed by the mean curvature of the surface.

11.1 Introduction

We consider a double-well potential energy, namely a function W (u) such that

W (u) ' (1− u2)2

4
,

which admits two global minima and a local maximum between them. It is easy to verify
that we have

min
u

∫
Ω

W (u) dx = 0

is attained by any function u that takes only the values ±1. However, functions of this type
can be very “wild” and hence it makes sense to consider a slightly more regular functional,

Eε(u) :=
ε

2

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

W (u) dx,

which can be easily proved to penalize oscillating functions.

Example 11.1. Let Ω = R. Then critical points of Eε(·) satisfy the equation

−εu′′ + 1

ε
W ′(u) = 0

and, when ε is small, the transition between the phase 1 and the phase −1 is smooth and it
has order ε. Let v ∈ H1(R) be a function such that v(a) = −1 and v(b) = 1 for some a < b.
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Then
2xy ≤ x2 + y2 =⇒ ε

2
(v′)2 +

1

ε
W (v) ≥

√
2W (v)v′,

which immediately leads to the estimate

Eε(v) ≥ 2

∫ 1

−1

√
2W (s) ds =: CW .

The quantity CW is called minimal transition energy and the equality holds if and only if

v′ =
√

2W (v),

but this is impossible (check!) if a and b are finite.

Before we can investigate what happens when Ω is a subset of Rn, n ≥ 2, we need to
recall a few definitions from geometric measure theory.

Definition 11.2 (Caccioppoli Perimeter). Let E ⊂ Ω be a set. The perimeter of E relative
to Ω is defined as

Per(E,Ω) := sup
Φ∈C∞c (Ω)

∫
Ω

χE(x)div(Φ)(x) dx,

where χE is the characteristic function of E.

The next result holds even assuming less regularity on the boundary of E, but for our
purposes this is more than enough.

Theorem 11.3. Let E ⊂ Ω be a set with smooth boundary. Then

Per(E,Ω) = |∂E ∩ Ω|.

Theorem 11.4 (Modica-Mortola). Let Ω be an open subset of Rn and E ⊆ Ω be a set with
finite relative perimeter. Let fn be a sequence of functions such that

‖fn − gE‖L1(Ω)
n→∞−−−−→ 0,

where

gE(x) :=

{
1 if x ∈ E,
−1 if x ∈ Ω \ E.

Then the following lim inf inequality holds

lim inf
n→∞

Eεn(fn) ≥ CWPer(E,Ω),

where εn → 0. Moreover, there exists a sequence fn as above such that the opposite inequality
holds, namely

lim sup
n→∞

Eεn(fn) ≤ CWPer(E,Ω).

Remark 11.5. The result above can also be translated in terms of Γ-convergence as follows:
the sequence of functionals Eεn(·) Γ-converges to CWPer(·,Ω).
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11.2 Variational structure of Eε

Let (M, g) be a n-dimensional compact Riemannian manifold and let u ∈ H1(M). The
Sobolev embedding

H1(M) ↪→ L2∗(M),

where 2∗ := 2n
n−2 , gives meaning to the integral∫

M

W (u) dV

when n ≤ 4 (although n = 4 is delicate since we lose compactness of the embedding
H1(M) ↪→ L4(M)), but for n ≥ 5 the integral is not well-defined.

Lemma 11.6. Every solution of class C2(M) of the equation

−ε∆u+
1

ε
W ′(u)

has the property u(x) ∈ [−1, 1] for all x ∈ M . Furthermore, unless u is identically equal to
either 1, −1 or 0, it has to change sign.

Proof. Suppose that maxx∈M u(x) > 1 and let x0 denote a point where u attains its maxi-
mum value. Then ∇u(x0) < 0 yields

0 <
1

ε
W ′(u(x0)) = ∇u(x0) < 0,

butW ′(u(·)) is negative in [−1, 1] only, and this gives the sought contradiction. Now assume
that u is a solution to

−ε∆u+
1

ε
W ′(u)

not identically 0, −1 or 1 and that does not change sign. Then W ′(u) < 0 and does not
vanish so

0 =
1

ε2

∫
M

W ′(u) dV < 0

gives, once again, a contradiction.

Now define a slightly different potential energy which is subcritical, namely a function
W ∗ that satisfies the following properties:

(i) W ∗ ≡W on [−2, 2] and (W ∗)′ > 0 in [2,∞);

(ii) W ∗(u) = W ∗(−u) and W ∗(u) = Au2 in [4,∞) for some positive constant A.

We can define the modified energy by setting

E∗ε (u) :=
1

2
ε

∫
M

|∇u|2 dV +
1

ε

∫
M

W ∗(u) dV,
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and it is easy to see that critical points are classical C2 solutions of the equation

−ε∆u+
1

ε
(W ∗)′(u)

and Lemma 11.6 can be immediately extended. Another advantage of using E∗ε over Eε is
that the integral ∫

M

W ∗(u) dV

is always well-defined because outside of (−4, 4) the potential is quadratic.

Proposition 11.7. The function E∗ε : H1(M) → R is of class C1, coercive and satisfies
the Palais-Smale condition.

Proof. The regularity follows from the general theory of Nemitski operators. The coercivity
is also easy because

W ∗(u) ≥ 1

c
u2 − c

for some positive constant c, and hence

E∗ε (u =≥ min

{
1

2
ε,

1

cε

}
‖u‖2H1(M) −

c

ε
·Vol(M)

goes to infinity as soon as |u‖H1(M) →∞. Finally, the coercivity gives the boundedness of
Palais-Smale sequences (standard) and then we use compactness (as usual) to conclude.

11.3 Mountain pass solutions

Let Γ = {γ : [0, 1]→ H1(M) : γ(0) = −1, γ(1) = 1} be the set of all admissible curves and
define the mountain-pass level

cε := inf
γ∈Γ

sup
t∈[0,1]

E∗ε (γ(t)).

Since we would like to find a nontrivial solution at the limit for ε → 0+, the first step is
proving that cε does not go to zero as ε does.

Lemma 11.8. There exists c > 0 independent of ε such that cε ≥ c.

To prove this lemma, we first need to present a technical result (of which we will only
sketch the proof) due to De Giorgi.

Lemma 11.9. Suppose that there are a < b and δ > 0 such that

min {|{u < a}|, |{u < b}|} > δ.

Then there exists a constant C = C(δ,M) > 0 such that

C(b− a) ≤
√
|{a ≤ u ≤ b}|‖∇u‖L2(M).
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Proof. Consider the isoperimetrical profile defined by setting

I(t) := inf{Per(Ω,M) : |Ω| = t, Ω ⊆M}.

It is not hard to see that I(t) is continuous, even around Vol(M)
2 and strictly positive except

for t = 0 and t = Vol(M). For t ∈ (a, b) let

Ωt := {u ≤ t}

and notice that Vol(Ωt) ∈ (δ,Vol(M) − δ) so it stays away from zero. In particular, there
exists a constant C > 0 such that

I(Vol(Ωt)) ≥ C for all t ∈ (a, b).

Now recall that ∫
M

f dV =

∫ maxu

minu

dt

∫
{u=t}

f

|∇u|
dV

by the coarea formula, which in turn implies

C(b− a) ≤
∫ b

a

Per(Ωt,M) dt =

∫
{a≤u≤b}

|∇u|dV

with f = |∇u|. Applying Hölder inequality yields the conclusion.

Proof of Lemma 11.8. Suppose cε → 0 as ε→ 0+. Then there exists h ∈ Γ such that

max
t∈[0,1]

E∗ε (h(t)) ≤ cε + ε.

Select t such that
∫
M
h(t) dV = 0 and let a ∈ (0, 1), W (u) ≥ ca > 0 on [−a, a]. Notice that

caVol({−a ≤ u ≤ a}) ≤ ε(cε + ε)

so 0 =
∫
M
udV ≤ aVol({u ≥ a})− aVol({u ≤ −a}) + ε(cε+ε)

ca
,

Vol(M) ≤ Vol({u ≥ a}) + Vol({u ≤ −a}) + ε(cε+ε)
ca

.

It follows that

Vol({u ≥ a}) ≥ a

2
Vol(M)− ε(cε + ε)

ca
>
a

3
Vol(M) =: δ

for ε small enough and, in a similar fashion, we can prove the same estimate for Vol({u ≤
−a}) in place of Vol({u ≥ a}). Therefore, the exists a positive constant c > 0 such that

0 < 2ac ≤
√

Vol({−a ≤ u ≤ a})‖∇u‖L2(M) ≤
√

2

ca
(cε + ε),
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which gives

cε + ε ≥ 2ac√
2c−1
a

=⇒ cε ≥
2ac√
2c−1
a

,

a contradiction with cε → 0 as ε→ 0+.
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