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Part 1

Nonlinear Analysis



Chapter 1

Differential Calculus in Banach
Spaces

In this chapter, we generalise differential calculus on R™ to general Banach spaces X and )
and prove fundamental theorems such as the global inversion theorem. We will follow the
first section of the book [2] closely.

1.1 Introduction to the course

The main goal of this course is to introduce tools from analysis and topology to deal with
the existence, uniqueness and regularity of solutions to nonlinear problems such as

—Au= f(z,u) ifzeQ,
(1.1)
u(z) =0 if z € 0.

A possible approach to look for solutions u of (1.1) with some regularity (for example,
Holder C* () or Sobolev W?()), is to rewrite it as

u—T(u) =0,
where T is the operator defined by taking the inverse of the Laplace operator; namely,
T(v)(z) = (=)~ f(, v).

At this point, one can try to prove an appropriate fixed-point theorem that works under
some assumptions on the nonlinearity f and find a solution.

In this course, however, we are mainly interested in exploiting the variational structure
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of (1.1). Setting aside for the moment all regularity concerns, notice that

/(—Au)vdx:/Vu-Vvdx—]{ v@da
Q Q oo Ov

holds for all v € H}(Q). Since u ’89 = 0, we infer that

/(—Au)v dz = / Vu - Vvde.
Q Q

Therefore, if u is a solution of the nonlinear problem (1.1), then u satisfies

/ Vu-Vuvdr = / f(z, w)vdx for all v € Hy(9). (1.2)
Q Q

It remains to prove that we can always recover the identity (1.2) starting from the variational
framework. Let X := H}(Q2), endow it with the homogeneous norm

WM%ﬁ:lﬂVude

and define .
F(u) := / F(z, u)dzx, where F(z, u) = / f(z, s)ds.
Q 0

Finally, introduce the functional
L2
Glu) = 5llull% ~ Flu),

and notice that its directional derivative D,, is given by
D,G(u) = / Vu-Vudz — / OuF(x, u)vde.
Q Q

Since 0, F(z, uw) = f(x, u) by definition, we just "proved" that (1.2) is equivalent to the
fact that the first variation of G(u) is zero for all v € HZ ().

1.2 Fréchet and Gateaux derivatives

Throughout this section, the symbols X and ) will always denote two Banach spaces and,
unless otherwise stated, U will always be an open subset of X.

Definition 1.1 (F-differentiable). A map F : U — 9) is said to be (Fréchet) differentiable
at u € U if there exists a linear map A € £(X, 9)) such that

F(u+h) = F(u) + Ah + o(||h] x)- (1.3)

The map A is usually referred to as the (Fréchet) differential of F' at u and denoted by
either dF'(u) or F'(u).
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Proposition 1.2. Let F : U — Q) be Fréchet differentiable at some uw € U. Then

(1) the differential A of F at u is unique;
(2) the map F is continuous at u;

(8) the notion of differentiability does not depend on the choice of equivalent norms on
either X or ).

Proof. Let A # B € L(X,92) be two F-differentials. Then (1.3) yields

[Ah — Bh|ly = o(|[2]|x)- (1.4)
On the other hand, if A # B then there exists z¢g € X such that

a:= ||Azy — Bxglly # 0.

Take t € R, t # 0, and set x := txg € X. Then

a__ ||Azo — Bxolly _ [|[Az — Bzfly

lzollx llzollx [Ea[ES

)

and the left-hand side is a constant that does not depend on ¢, so taking the limit as ¢ goes
to zero leads to a contradiction of (1.4). O

Example 1.3. We now give a few explicit examples.

(a) The constant map F'(u) = c¢ is differentiable at all uw € X and its differential is the
identically zero map dF'(u) = 0.

(b) Let A € L£(X,9). Since
A(u+h) = Au+ Ah

we easily find that A is differentiable at all points and dA(u) = A. Furthermore, the
remainder o(||h||x) is exactly equal to zero.

(c) Let B: X x Q) — 3 be a bilinear continuous map. We have
B(u+ h, v+ k) = B(u, v) + B(h, v) + B(u, k) + B(h, k),
and using the continuity at the origin we find that

I1B(h, k)

5 < Il klly.
Then B is differentiable at all (u, v) € X x ) and the differential is given by
dB(u, v)[h, k] := B(h, v) + B(u, k).
(d) Let X be a Hilbert space with scalar product (-, —)x and consider the map

F(u) = (u, u)x = [|ull%-
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We can explicitly compute F' at u + h using the scalar product obtaining
F(u+h) = [[ull} +2(u, h)x + [l
It follows that F' is differentiable at all u € X and its differential is given by
dF(u)[h] := 2(u, h)x.

Proposition 1.4.

(1) Let F, G : U — 9 be F-differentiable at uw € U. Then for all a, b € R the map o F +bG
is also F'-differentiable at u and

d(aF +bG) = adF + bdG.

(2) Let F: U =Y and G : V C Y — 3 with F(U) C V. If F is F-differentiable at u € U
and G at F(u) € V, then G o F is also F-differentiable at u and

d(G o F)(u)[h] = dG(v) [dF (u)[A]] .
Definition 1.5. A map F : U — 2) belongs to C!(U, 9)) if it is differentiable in U and
Usur— dF(u) € L(X,9)

is a continuous mapping.

Notation. A map F' from a Banach space X to R is known as functional. If F' is differen-
tiable, then the differential belongs to the dual space

dF(u) € £(X, R) = X",

and thus, if X is a Hilbert space, an application of Riesz’s theorem shows that there exists
a vector VF(u) € X, called gradient of F at u, such that

dF(u)[h] = (VF(u), h)x for all h € X.

In the general framework of Banach spaces, the gradient is defined as the unique element
satisfying the identity

dF(u)[h] = (VF(u), h)x« x forall h € X,
where (-, —) here denotes the so-called duality coupling.

Definition 1.6. Let X be a Hilbert space and F' : U C X — X. We say that F is a
variational operator if there exists a functional J : U — R such that

F(u)=VJ(u) forallueU.

Definition 1.7 (G-differentiability). A map F': U — 9) is said to be Gdteauz-differentiable
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at u € U if there exists a linear map A € £(X, ) such that

F(u+th) — F(u) =0

- Ah. (1.5)

The map A, uniquely determined, is called G-differential of F' at u and it is usually indicated
with the symbol dgF(u).

Remark 1.8. A Fréchet-differentiable function is also Gateaux-differentiable, but the op-
posite is false. Indeed, G-differentiability is even weaker than standard continuity.

Example 1.9. Consider the function F : R? — R defined by
st 2 .

[M:| lf t # 0,

0 ift=0.

F(s, t):=

If we take the limit as ¢ — 0 along the path s = 1 (or any other constant), then F(s, t)
tends to zero. On the other hand, if we consider the parabola s = t? we find that

lim F(t2, t) = i,

t—0

which means that F' is not continuous in ¢ = 0, but it is Gateaux-differentiable at ¢ = 0.

Theorem 1.10. Let F: U — Q) be G-differentiable in U. Then
1F(u) = F(v)llp < sup{[ldeF(w)l : w € [u, v]}[u -]z (1.6)

where [u, v] :=={tu+ (1 —¢t)v : t€[0,1]} CU.

Proof. We can assume without loss of generality that F(u) # F(v). By Hahn-Banach
theorem, we can always find ¢ € 9%, ||| = 1, such that

(¢, F(u) = F(v))g. o = [I1F(u) = F(v)lp- (1.7)

Now let y(¢) := tu + (1 — t)v be a parametrisation of the segment [u, v] and consider the
function with domain [0, 1] given by

h(t) = (@, F(v(1)))g- o -
The curve 7 satisfies the relation
vt +71) =) + 17(u—v)
for all ¢, 7 € [0, 1] such that ¢ + 7 € [0, 1], so we can estimate the increment of h as

h(t+7) = h(t) _ <w Fy() +7(u—v)) - F(v(t))> .
T ’ 2*,9

T
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Now let 7 — 0 and use the G-differentiability of F' to find the following expression for the
derivative of h at t:

W (t) = (i, daF(tu+ (1 — )0)(u— )y y - (1.8)

Since h is a real-valued function with domain [0, 1], we can apply the mean-value theorem
to find 0 € (0, 1) such that the following holds:

Plug into this identity both (1.7) and (1.8). It turns out that
1F(w) = F(v)llp = h(1) = h(0) =
=h'(9) =
= (0, dF(Bu+ (1 0)0) (1 — v))y. o <

< Y]l [[deF(0u+ (1 = 0)v)l[lu — v]|x.
—~

=1

Finally, the point fu + (1 — 6)v belongs to [u, v] and the inequality (1.6) follows by taking
the supremum on both sides with respect to 6. O

Theorem 1.11. Let F : U — Q) be a G-differentiable map with G-differential
deF:U — L(X,9)
continuous at some ug € U. Then F is F-differentiable at ug and there results

dF(uO) = dGF(’LL())

Proof. First, define the map
R(h) := F(ug + h) — F(up) — dgF(uo)[h].

By assumption, the map R is G-differentiable in a small neighbourhood of u; more precisely,
it is sufficient to choose € in such a way that

Be(ug) CU
for the G-differentiability to hold on all B.. Moreover, its G-differential is given by
dgR(h)[k] = dgF(uo + h)[k] — daF (uo)[K].
Apply the mean-value property (1.6) with [u, v] = [0, k] to obtain

|R(h) — R(0) | < sup |[[daR(th)|l|A].
—~— te0, 1]
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Plug the formula that gives dgR in terms of dgF into this inequality to find an estimate
on the norm of R(h):

IR(R)| < e [da F(uo + th) — dg F'(uo)l/|[2]].

)

This proves the thesis because dyg F(up) is continuous by assumption, and hence the supre-
mum goes to zero as ||h|| becomes small:

llR]—0
—_—

sup ||[dgF(uo +th) — dgF (uo)l| 0.

telo, 1]

Therefore R(h) is a small-o of ||h||, and thus F' is F-differentiable at ug with F-differential
that coincides with the G-differential. O

We conclude this section with a couple of remarks. Let F' be a continuous function
defined on [a, b] taking values in a Banach space X, and set

B(t) = / F(€) de.

Exercise 1.1. Show that ® is a F-differentiable map whose differential coincides with F'(¢¢)
at all to € [a, b].

This can be done, for example, using the canonical identification between X and its dual
X*. In any case, it follows from Theorem 1.10 that

[@(t) = (s)|| < sup{[[F(&)I| : € € [s, t]} x (t = s),

and therefore, if F' is identically zero on [a, b], then ® is constant. This means that ® is, up
to a constant, the unique primitive of F' as it happens in the Euclidean setting.

Corollary 1.12. Let F € CY(U, Q) and suppose that [u, v] C U. Then the map
Fov:[0,1]3t— Ftu+ (1 —t)v) €

belongs to C1([0, 1], ) and the integral representation holds:

F(v) - F(u) :/O F/(tu+ (1 — t)o)[u — o] dt. (1.9)

1.3 Nemitski operators

In this section, we will introduce the notion of Nemitski operator and investigate specific
properties such as continuity, differentiability and its relation with

Gw) = llully ~ Flu)
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Definition 1.13 (Nemitski operator). Let f :  x R — R be a function. The Nemitski
operator associated to f is the map

A(Q, R) > ur— f(-, u(r)).

Here .# (2, R) denotes the set of all real-valued measurable maps defined on 2. The symbol
f will denote both the function and the associated operator.

The operator f sends M () in the set of real-valued functions defined on Q but, a priori,
we have no guarantee that f(-, u(-)) is measurable and, in general, it is not.

Definition 1.14. Let f : 2 xR — R be a function. We say that f satisfies the Carathéodory
condition if it satisfies the following properties:

(i) The map s — f(x, s) is continuous for almost every z € €.

(ii) The map =z — f(x, s) is measurable for all s € R.
Lemma 1.15. If f satisfies the Carathéodory condition, then the associated Nemitski oper-
ator takes values in A (Q, R), that is, the map
z— f(z, u(z))

is measurable for all u € A (2, R).

Proof. Let u € (2, R). There is a sequence of simple functions (x,)nen that converges
to u at almost every x € Q. From the Carathéodory condition it follows that

£, Xa()) is measurable and f(-, xn (") == (-, u(*) a.e. in Q.

In particular, the function f(-, u(-)) is almost everywhere the pointwise limit of a sequence
of measurable functions; we deduce that also f(u) is measurable. O

1.3.1 Continuity of Nemitski operators

Let p, ¢ > 1 and let f be a function satisfying the Carathéodory condition and the following
growth condition:
|f(x, 9)| < a+bls| (1.10)

where a and b are two positive constants.

Theorem 1.16. Suppose that 0 C R™ is an open bounded set. Then
f:LP(Q) = LYQ)

1S a continuous operator.
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Notice that the boundedness of € is not a strictly necessary condition, but rather it
makes the proof much simpler. For example, if @ = 0 in (1.10), then it is possible to prove
the statement with no assumption on 2. In any case, to prove this result, we now recall a
well-known technical lemma which will make it possible for us to apply Lebesgue’s dominated
convergence theorem below.

Lemma 1.17. Let (up)nen C LP() be a strongly convergent sequence and let uw € LP(2)
be its limit. Then there exists a subsequence (ng)ren and a function h € LP(SY) such that

U, ol o and [tin,, ()] < h(x) at almost every x € . (1.11)

Proof. The argument is completely standard. Indeed, one defines the sequence

J
= Z |u7’bk - u’ﬂk71|
k=1

and proves that v; converges to some v € LP(Q) positive. The only nontrivial point is how
to choose the function h, but it is not hard to verify that i := v + |u| works just fine. [

Proof of Theorem 1.106. First, notice that f(-, u(-)) € L4(Q) since (1.10) implies that
[f(w)]* Sq a® + 0 u(z)?,
and the function on the right-hand side belongs to L!(Q) by assumption. Now suppose that
n——+4oo

lun = ullLp (@) ——— 0.

By Lemma 1.17, we can always find a subsequence (ny)ren and a function h € LP(Q)
satisfying (1.11). It follows from the Carathéodory condition and (1.10) that

Fltny) 22 f(u) and | f(un, )| < a+ blh|T € LI(Q).
We can now apply Lebesgue’s dominated convergence theorem and infer that

I1f (uni) = F)| T /\funk — f(u)|?dz — 0.

Since any sequence u,, converging to u in LP(2) has a subsequence such that f(u,,) — f(u)
in L1($2), we conclude that f is a continuous operator. O

1.3.2 Differentiability of Nemitski operators

Let p > 2 and suppose that f has a partial derivative f, := 9, f satisfying the Carathéodory
condition and the following growth condition

|fs(z, 8)| <a-+ b\s\p_Q (1.12)
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for some positive constants a, b > 0. The previous result shows that fs is a bounded operator
from LP(Q2) to L"(), with
p

r= .
p—2
As a consequence, the function fs(u)vm defined by setting
fswv: x— fo(z, u(z))v(x),

satisfies the regularity condition fq(u)v € Lp,(Q), where p’ is the conjugate exponent of p;
namely,

1 1

4 - =

p p
Theorem 1.18. Let Q C R™ be an open bounded set. Suppose that p > 2, f satisfies the
Carathéodory condition and the following boundedness assumption:

|f(z, 0)] < C < 0.

Assume also that f has partial derivative fs that satisfies the Carathéodory condition and
the growth condition (1.12). Then the Nemitski operator

[ LP(Q) — L' ()
is F-differentiable on LP(Q), and its differential is given by
df (w)v] = fs(u)v. (1.13)
Proof. Start by integrating (1.12). Then we can find positive constants ¢, d > 0 such that
|f(z, s)] < c+d|s|Pt, (1.14)

from which it follows (using Theorem 1.16) that f is a continuous operator between LP((2)
and L?' (Q). We now claim that

w(u, v) = [[f(u+v) = f(u) = fs(w)o L ()
belongs to o(|[v||zr(q)). This would conclude the proof since it asserts that fs(u)v is the

F-differential so we can focus on proving the claim.

Step 1. The classical mean-value theorem applied to R 3 u — f(-, u) shows that

[f(u+v) = fu) = fs(wo] = Jow],

where

1
w(m) ::/0 [fs(xa U-i—f’l)) - fs(xv u)] dg



17 1.3. Nemitski operators

Using Hélder inequality we find that

w(u, v) < [[ollr@llwllz-),

where r = ~E5. It remains to prove that [|w|zrq) goes to zero as [[v]|Ls (o) becomes

increasingly smaller.

Step 2. Applying Fubini-Tonelli’s theorem we infer that

1
ol ey < / dz / Q€| flrs u+ €0) — fulz, W) <
1
d dz|fs(x, — Js\&y "=
g/o 5/9 2l fule, ut €0) — fulz, )

- / 1aCr () + €00) = Fus a5 e

The right-hand side goes to zero because, as observed earlier, the operator f; is continuous
from LP(Q2) to L"(2) and this concludes the proof. O

In the limit case, namely p = 2, the result is invalid and it can actually be proved that
f is only G-differentiable. The next proposition summarises it.

Proposition 1.19. Let Q@ C R™ be an open bounded set and suppose that both f and fs
satisfy the Carathéodory condition and the growth condition

|fs(z, s)| < C < .

Then the Nemitski operator f : L?(Q) — L*(Q) is continuous and G-differentiable, with
G-differential given by
def(u)v] = fs(u)v.

Moreover, if f is F-differentiable at some u € §, then we can always find measurable
functions a, b € A (Q, R) such that

[z, u(z)) = a(z) + b(z)u(z).

1.3.3 Potential operators

In this section, our goal is to introduce the notion of potential operator and exploit it to
prove that (1.1) is well-defined under mild assumptions on f.

Theorem 1.20 (Sobolev embedding). Let & C R™ be a bounded open set with Lipschitz

boundary and let k > 1 and 1 < p < oco. Then the following inclusions are continuous:

(a) If kp < n, then H*P(Q) — LI(Q) for all1 < q < e ok
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(b) If kp = n, then H*P?(Q) — L4(Q) for all g € [1, 00).

(c) If kp > n, then H*P?(Q) — C%(Q), where

k=2 ifk—2 <1,

n
p

a=41[0,1) ifk—2=1andp>1,

1 ifk—2>1.

Furthermore, the inclusions above are compact if we restrict the ranges of q and «:

(a) If kp < n, then H®*P(Q) < LI(Q) for all 1 < ¢ < g
(b)" If kp = n, then H*P(Q) << LI(Q) for all q € [1, ).
(c)" If kp > n, then H®P(Q) —— C°(Q).

Now let X := H}(Q) and let f be a function satisfying Carathéodory condition and the
growth condition

F(a, )| < a+bls)”, (1.15)
where 9
<2 g
n—2

if n > 3, and o > 0 arbitrary if n = 1 or n = 2. We proved in Theorem 1.16 that f is a
continuous operator between L2 (Q) and L?(Q) where

S 2n
1= n+2

It follows that
ueX = f(u) e LZ(Q),

and therefore, given v € X, we have that f(u)v € L'(Q2). We use Riesz’s representation
theorem to define a map N : X — X in such a way that N(u) is the unique element
satisfying the following identity:

(V. v)x = [ @ u@)o(e) do

We claim that IV is a continuous map. Indeed, by definition we have that

[N(u) = N(v)|| = sup {éﬁ@ﬂﬁ—f@ﬂﬂw@ﬁm}

llwllx<1

and thus, using the appropriate Sobolev embedding, we can infer that

IN@) = NS 1y w) = f o)l ap, o Nl
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Since f is continuous as an operator from L? (Q) to L%(Q), the right-hand side of the
inequality above converges to zero as soon as ||u — v||x — 0, and this proves the claim.

We are now ready to show that the growth condition (1.15) is a sufficient condition on
the nonlinearity f for its integral to be well-defined and, more so, differentiable.

Theorem 1.21. Let Q C R™ be an open bounded set and suppose that f satisfies the
Carathéodory condition and the growth condition (1.15). Then

D(u) := / F(z, u)dx
Q
is of class C' and its gradient coincides with N (u).

Proof. By integrating (1.15), we find a growth condition on F' which tells us that
|F(z, s)| < c+d|s|* (1.16)

for some positive constants ¢, d > 0. It follows that F(-, u(-)) belongs to L'(£2), and thus
its integral, ®(u), is well-defined, continuous and differentiable on X. Furthermore,

@' (u)[v] = ; f(@, u(z))v(z) dz,

and the right-hand side coincides with the element (N (u), v)z, which means that (by unique-
ness) ®’(u) must be N(u). O

Remark 1.22. If Q is an unbounded domain, then the same argument works if the growth
is adjusted to be compatible with embedding results valid for unbounded domains [5].

1.4 Higher derivatives and partial derivatives

Let F' € C(U, 9) be a function differentiable on some open subset U C X. We know that
the differential is a map between U and the space of linear operators, that is,

dF : U — L(X, D),

On the other hand, £(%, Q) is another Banach space and this means that it makes sense to
investigate the differentiability of this map.

Definition 1.23. A map F : U — 9) is said to be twice Fréchet differentiable at some
w* € U if dF is differentiable at v*. The second differential of F' at u* is the map defined as

d?F(u*) = dF'(u*).

If F is twice differentiable at all points of U we say that F' is twice differentiable in U.
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According to the definition above, the second differential d?F(u*) is a linear continuous
map between X and L(X, 9)), that is,

A’ F(u*) € L(X, L(X,D)).

Remark 1.24. It is often useful to regard d?F(u*) as a bilinear map on X. This is possible
thanks to the one-to-one correspondence

52(:{7 Q.)) = ‘C(:{7 ‘C(:{7 Q.)))

Proof. Let A € L(X, L(%X,9)). We can associate to A, in a unique way, a bilinear operator
defined on X by setting
D 4(u, v) == A(u)[v].

Vice versa, given a bilinear map ® and h € X, it is easy to see that
k— ®(h, k)

is a continuous linear map from X to ). Therefore, we can associate to ® the uniquely

determined map
A:X25h+— ®(h, ) € L(X, D).

Notice that the one-to-one correspondence defined in this way is not only an isomorphism,
but also an isometry with respect to the operator norms:

IAllzx, 2z, 0)) = sup [[A(R)|lzx,9) =
[Ir]<1

= sup sup [[®(h, K)|| = (@[l z,(x, 9)-
[RESYETES

O

From now on, we will always identify d?F(u*) with the bilinear map given by the iso-
morphism described above. Furthermore, if F' is differentiable twice in U and

F"(u) := d?F(u)
is continuous, then we will say that F is of class C%(U, 9)).

Proposition 1.25. Let F': U — %) be a function that is twice differentiable at some v € U

and set
Fu(u) i= dF(u)[A]

for any fixed h € X. Then F}, is differentiable at u and

dFy,(u) = d*F(u)[h].
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Proof. Notice that Fj, is given by the composition
w2 AP (u) 2 dF(w)[h).

The conclusion follows from the usual chain rule property of the derivative operator. O

Lemma 1.26 (Schwarz). Let F : U — %) be a function that is twice differentiable at some
uweU. Then
F'(u) € L3(X, ),

which means that the second differential is a symmetric bilinear form.
Proof. Let h, k € X satisfying ||h||x + ||k]|x < € and set
Wh, k) :=Fu+h+k)— Flu+k)— F(u+h)+ F(u),
(&) = Fu+h+§) = F(u+§).
Observe that ¢ (h, k) = yn(k) — v,(0). For h fixed, consider the function
gh:BeCX—9

defined as follows:

gn(k) := 1 (h, k) — d*F(u)[h, k].

Since F is twice differentiable in u € U and d*>F(u)[h, -] is linear, we can apply Theorem
1.10 and obtain the following inequality:

4 (h, k) = A*F(w)[h, k]lly < ||kllxsup {|dyn(tk) — *F(w)[h, Jlle@,) @ t €0, 1]}

We now rewrite dvp(tk) as dF (u + h + tk) — dF(u + tk). Using the fact that F is twice
differentiable at u easily leads to

dF (u+ h+tk) — dF (u + th) = A®F(u)[h + tk] — d*F (u)[tk] + o(tk) + o(tk + h).
We now plug this into the inequality above and find that

[4(h, k) — d*F(u)[h, K|ly < IIkHanilggl llo(tk) + o(tk + h)||x <
- (1.17)
< e(lkllx + 2[|hllx) 1% 2,

provided that e (and thus |h||x + ||k|/x) is small enough. If we exchange the roles of h and
k, we easily find that

[ (h, k) — d*F(u)[k, hlly < e(llh]x + 2]kllx) 17 ], (1.18)
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since 1) is a bilinear symmetric form by definition. Combine (1.17) and (1.18) to get
|d*F (u)[h, k] — d*F(u)[k, h]lly < eQIIk[I% +2[12]% + 2]A]x[lk]lx) <
< 3e([[KlIZ + 1Rl13)

for € small enough. However d2F(u)[h, k] is homogeneous of degree two so the same in-
equality holds for all A and k. The arbitrariness of € concludes the proof. O

We can generalise all these notions and introduce the (n+1)th derivatives via an inductive
process. Let F': U — ) be a n-times differentiable function in u € U and recall that

FM (4) ;= d"F(u) € L, (X, D)

via the identification with multilinear maps. The (n + 1)th differential at u can be defined
as the differential of F(™); namely

A" F(u) == dF™ (u) € L,11(X, D).

We will say that F is of class C"(U, 9)) if F is n times differentiable in U and the nth
derivative is continuous.

Lemma 1.27. Let F : U — 9 be a function that is n times differentiable in U. Then
(h1, ..., hy) — d"F(u)[hq, ..., hy]

is a symmetric multilinear form.

1.4.1 Partial derivatives and Taylor’s formula

Let X and 2 be Banach spaces, fix (u*, v*) € X x 2) and consider the evaluation mappings:
o (u) == (u, v*) and 7« (v) := (u*, v).
The derivative of o, and 7,+ are easy to compute explicitly:
o :=doy : h— (h, 0),
T :=d7ry~ : k+— (0, k).

Definition 1.28. Let @ C X x ) be an open set and (u*, v*) € X x ). We say that a
function F': Q — 3 is differentiable at the point (u*, v*) with respect to w if

Fooy
is differentiable at u*. The linear map

d, F(u®, v*) := d(F o gy« ) (u™)
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is the partial derivative of F' with respect to u.

Definition 1.29. Let @ C X x 9 be an open set and (u*, v*) € X x ). We say that a
function F : Q — 3 is differentiable at the point (u*, v*) with respect to v if

F o1y»
is differentiable at v*. The linear map
dy F(u*, v*) := d(F o 1y»)(v")
is the partial derivative of F' with respect to v.

Proposition 1.30. Let F : Q — 3 be a differentiable map at the point (u*, v*) € Q. Then
F has partial derivatives with respect to u and v given by

d, F(u*, v*)[h] = dF(u*, v*)[o(h)],

In a similar fashion one can define higher partial derivatives. For example, if F' has
u-partial derivative at all (u, v) € @, we can define the map

F.(u, v) :==d,F(u, v).
Then the partial derivative d,, ,F(u*, v*) is the v-derivative of the map F),, namely
Fy o™, v*) = dyFy(u*, v*).

Theorem 1.31. Suppose that F : Q — 3 has both partial derivatives in a neighbourhood of
(u*, v*) € Q which are continuous at (u*, v*). Then F is differentiable at (u*, v*).

Remark 1.32. The statement of Lemma 1.26 can be easily generalised. Indeed, a straight-
forward computation shows that

dy, o F(u*, v*)[h, k] = d*F(u*, v*)[ch, Tk] =
= d®F(u*, v*)[rk, oh] =
=dy, F(u*, v*)[k, b,

which ultimately means that we can swap the order of the partial derivatives.

1.4.2 Taylor’s formula
Suppose that F € C™"(U, ), [u, v] C U and set y(t) := u + tv. Define

B(t) == F(y(1)).
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Then @ is a real-valued function defined on [0, 1], whose nth derivative is given by
o (1) = A F(y(1)[o, - ., v].
On the other hand, by Peano’s formula we find that

1

o™ (0) 4 1)

! _ \n—1g(n)
(n—1)! /0(1 £t (¢) dt.

If we plug the expression for ®(™)(¢) into this identity, we obtain the Taylor’s formula in the
more general contest of Fréchet differentiability.



Chapter 2

Local Inversion Theorems

In this chapter, we continue with our research toward the extension of differential calculus
to the abstract framework of Banach spaces. Recall that, for a function

F:R" - R",

being continuously differentiable with total derivative invertible at a point p (i.e., the Jaco-
bian determinant of F' at p is nonzero) is enough to infer that F' is locally invertible. The
first part of this chapter is devoted to proving the same statement replacing R™ with Banach
spaces X and 2). More precisely, we have:

Theorem A. Let F € C1(X, Q) with F/(u*) € Inv(X, 2). Then F is locally invertible at
u* with C*! inverse. Namely, there are neighbourhoods U of u* and V of F(u*) such that

(i) The restriction F |U : U — V is a homomorphism.
(ii) The inverse F'~! belongs to C1(V, X) and for all v € V there results
AP~ (v) = (F'(u)) 7",
where u = F~1(v).

(iii) If F belongs to C*(X, ), k > 1, then F~! € C*(X, Q).

In the second half of the chapter, we generalise a well-known result in Euclidean calculus:
the implicit function theorem. The following statement holds:

Theorem B. Let F € C¥(A x U, 9), k > 1. Suppose that
F(A\*, «") = 0 and that F,(\", u*) is invertible.
Then there are neighbourhoods © of A\* and U* of u* and a map g € C*(©, X) such that:

(i) For all A € O there results F(A, g(A)) = 0.
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(i) If (A, u) € © x U* is such that F(\, u) =0, then u = g(\).

(iii) If A € © and p = (A, g(A)), then

2.1 Local inversion theorem

In this section, we will always consider continuous maps from a Banach space X to another
Banach space ). With little effort, everything adapts to the case in which an open subset
replaces the whole space X.

Definition 2.1 (Inverse). Let A € £(X, ) be a continuous linear operator. We say that
A is invertible if there exists B € £(2), X) such that

BOA:Idx and AOB:IdQJ

The map B is unique and we will denote it, from now on, by A~!. The set of all invertible
continuous linear maps is denoted by

Inv(X%, ) :={4A € L(X,9) : Ais invertible}.

Theorem 2.2 (Closed Graph). A linear operator T between two Banach spaces (even
Fréchet spaces) is continuous if and only if it has closed graph G(T), where

G ={(z,y) : v € X, y=T(x)}.
Corollary 2.3. Let A € L(X,9) be an injective operator. If A has range (=image) equal
to 9, then A € Inv(X, Q).
The next result is standard in functional analysis. It asserts that the set Inv(X, 9)) is
open with respect to the operator norm.

Proposition 2.4. Let X and Q) be Banach spaces. Then the following hold:

(i) Let AcInv(X,9). Then T € L(X, Q) which satisfies

1

IT - Allgz,0) < 75—
D AT 22,2

(2.1)

also belongs to Inv(X, Q).

(it) The map J : Inv(X, Q) — L(Y, X), A A~ is smooth.

Proof. Tt follows by standard arguments; see [3]. O
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The continuity of J' is easy to deduce. Indeed, we know that .J is differentiable and its
differential is given by
dJ(A)B]=-A"1'oBoA™!,

which is a composition of continuous maps.

Definition 2.5 (Homomorphism). Let U and V be open subsets of X and 2). A map
F:U — V is a homomorphism if there exists G : V' — U such that

GoF(u)=u and FoG(v)=v

forallu € U and all v € V. We denote by Hom(U, V') the set of all homomorphisms between
Uand V.

Definition 2.6. A continuous map F' € C(X, ) is locally invertible at u* € X if there exist
neighbourhoods U of u* and V' of F(u*) such that

F € Hom(U, V).

The map G : V — U is called local inverse of F and it will be denoted by F~!.
Proposition 2.7. The following properties of local invertibility holds:
(a) If 1 € C(X,9) is locally invertible at u and Fy € C(2), 3) is locally invertible at
Fi(u), then Fy o Fy is locally invertible at w.

(b) If F is locally invertible at u, then it is locally invertible at any point in a small
neighbourhood of u.

The proof of these two properties is left to the reader to get acquainted with these new
notions. Before we can deal with the main result of this section, a remark is in order.

Remark 2.8. Suppose that F' is a locally invertible map at v* with inverse G. If F is
differentiable at u* and G at v* := F(u*), then

FOG:IdQJ, GOF:Idx

immediately implies that dF(u*) is invertible with inverse dG(v*).

Theorem 2.9 (Local Inverse). Let F € CY(X, Q) with F'(u*) € Inv(X,2). Then F is
locally invertible at u* with a C* inverse. Namely, there are neighbourhoods U of u* and V
of F(u*) =: v* satisfying the following properties:

(i) The restriction F ‘U : U — V is a homomorphism.
(ii) The inverse F~1 belongs to C*(V, X) and for all v € V there results
dF ! (v) = (F'(w)) 7",

where u = F~1(v).
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(iii) If, in addition, F belongs to C*(X, ), k > 1, then F~1 € C*(X, ).

Proof. We can always assume (compose with translations) that u* = F(u*) = 0. Moreover,
according to the transitivity property, we can discuss the local invertibility of the function

AoF,

where A is a linear continuous invertible map. We can choose A := [F’(0)]~! so that it will
be enough to prove the theorem for functions of the form

F=Idg + U,

where ¥ € C1(X, X) and ¥/(0) = 0.

Step 1. Since ¥’ is continuous, we can choose r > 0 such that

1
Ipllz <r = [¥'(P)x < 5

It follows from (1.6) that

[W(p) — ¥(q)[|x < sup{|[ ¥ (w)|| : w € [p, ql}llp —qllx <

< lp—qllx.

N |

which means that ¥ is a contraction and ||¥(p)||x < 3|lpllx for all p € Bx(0, r).

Step 2. Fix v € X and define the function
D, (u) :==v—TU(u).

It is not hard to see that @, is a contraction and, for all u € Bx(0, ) and all v € Bx(0, %),
it turns out that
[Po(w)llx < llvllx + W (u)]x <7

In particular, for [[v||x < §, the map ®, is a contraction which also maps Bx(0, r) into
itself. Thus it has a unique fixed point v € B, that satisfies the equation

u=v—U(u).
We can easily define a local inverse as

F~': Bx(0, g) — Bx(0, 1)
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by setting F~1(v) = u. To prove that F~! is continuous, let u = F~!(v) and w = F~1(2),
and notice that these are given by

u+ U(u) =,
w+ U(w) = z.
It is now easy to estimate the norm of u — w since
lu —wllx < [lv— 2]z + %Hu —wlx = IF7H(v) = F7(2)]lx < 2|lv - 2%,

and this means that F~! is not only continuous but, actually, Lipschitz-continuous. In

particular, letting V be the ball of radius 5 and U = Bx(0, ) N F~*(V), we finally obtain

F ’U € Hom(U, V).

Step 3. Recall that u = F~1(v), where u + ¥(u) = v. It follows that
F7l(v) =v -9 (F1(v)).

Since ¥(u) = o(||u||x) and F~! Lipschitz-continuous, we conclude that ¥(F~!(v)) belongs
to o(||v||x). This shows that F~! is differentiable at v = 0 and

dF~10) = Idx.

The differential of a translation is the translation itself; hence we can compute the differential
of F~! at any point using the relation

AP~ (v) = (F'(w))™".

The continuity follows from the fact that it is equal to the composition of continuous map-
pings; this is exactly as to say that F~1 € C1(X, X). O

Remark 2.10. The C*-regularity for F~! is obtained through an iterated application of
the argument above.

N.B. The assumption F € C1(X, 2)) cannot be removed, but we can drop injectivity if
both X and 2) are finite-dimensional spaces.

Example 2.11. Consider the nondecreasing function ¢ : R — R defined by

se| + 3]

S|

1
T An2>

S|

s+0(s?) ass—0.

This is a differentiable function with derivative at zero equal to 1, but it is not injective in
any neighbourhood of the origin.



30 2.1. Local inversion theorem

On the other hand, in the infinite-dimensional setting we can easily construct an example
of F ¢ CY(X, %) for which the local surjectivity fails.

Example 2.12. Let ¢ be as above. Let X =) = C%([-1, 1]), and consider the map
F:Xsur—pouecd.

Let v, € %) be the sequence defined by

1 t

v (t) = - + 3

It is easy to verify that ||v,|lec — 0 and v, ¢ F(X). Indeed, if we could find a sequence
up € X such that F(u,) = v, then one would find

But then

olun(t)) <+ ift <0,

and, using the monotonicity of ¢, we conclude that

(t)>1+ L

Up(t) > — + —

n  4n?
for t > 0, and

(t)<1 1

Up(t) < — — —

n  4n?

for t < 0. This would mean that u, is not continuous at ¢ = 0, and hence u, ¢ X: a
contradiction.

Remark 2.13. Notice that the F' in the previous example is differentiable at © = 0 with
F’(0) = Idg, but it is not of class C1(X, Q).

2.1.1 Applications to initial-value problems

In this section, we will motivate the need for a local invertibility theorem showing how it
can be applied to deal with both ODEs and PDEs analysis.

Example 2.14. We are interested in T-periodic solutions of the following ODE:
E(t) + g(z, &) = eh(t),
g€ CYR xR, R), h € C(R).

The framework will be the minimal one where every term in the ODE is well-defined in a
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strong sense, that is,
X={z€C*R,R) : z(t+7T) =z(t) forall t € R},

9 :={h e C(R, R) : h(t+T)=h(t) for all t € R},

and the map
F(x(t)) == &(t) + g(2(t), (1))

Assume that g(0, 0) = 0 - so the equation has the trivial solution if € is zero -. We wish to
apply the local invertibility result (Theorem 2.9) with «* = 0. Since

dF (z(t))[y(t)] = [g:(2(t), 2()y(t) + 9o (x(t), 2(£))5(8)] + §i(t),
we can compute it at x = 0,
dF(0)[y(t)] = ii(t) + ay(t) + by(t),

where a and b are determined by the values of the partial derivatives of g at the origin. By
Fredholm theory, the differential dF'(0) is invertible if and only if

§(t) + ay(t) +by(t) = 0

admits the trivial solution only. In this case, we can find €* > 0 and ¢ > 0 such that for all
€ < €* the initial ODE has a unique solution z with norm ||z]|« < .

Example 2.15. Let 2 C R™ be smooth and odd. Consider the boundary-value problem
Au—du+ud = h(z), ifzeQ,
u(z) =0, it x € 09
Let us consider the spaces of Holder-continuous/continuously differentiable functions
X:={uelC>*Q) : u|aQEO}7 9 = C%*(Q),

and the map
F(u) = Au+ \u — u®.

A simple computation shows that
dF(u)[v] = Av + \v — 3u?v,
which means that the differential at the origin is given by
dF(0)[v] = Av + Av.

If X # A\ (A) for all & € N, where {A; }ren are the eigenvalues of the A operator on €2, then
F’(0) is one-to-one from X to ). Consequently, the inverse [F”(0)]~*
and for each h € 9 with ||h||y < 6, there exists a unique solution u € X, small in norm, to

exists, is continuous
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the boundary problem.

Remark 2.16. In general, if u is a solution of
Au—du = h(zx), ifzeQ,
u(x) =0, if x € 092,
for h € C%<(Q), then there exists a constant C(n, 2) such that
[ull2, 0 < Cn, Q)(l[Allo, o + llulleo)- (2.2)

Removing the second term in the right-hand side is, morally, what happens when we apply
the local invertibility theorem.

Example 2.17. Let Q C R? be smooth, bounded and connected. Let v be a smooth
function on 9N taking values in R. If u is a smooth solution of

M(u) = Augzy + Buyy — 2uzuytzy = 0,
u ‘asz =7

where A = (1+u2) and B = (1+u32), then we say that u is a minimal surface with boundary
~. Let us consider the spaces of Holder-continuous functions

X:=0%%Q), 9:=0C(Q)xC**0N),

and the map
F(u) == (M(u), u ‘BQ).

It is easy to see that F is C'! and its differential is given by
dF(u)[v] = Avgg + Buyy —u(...),

which immediately leads to
dF(0)[v] = (Av, v |aﬂ)'

By elliptic regularity theory, the Dirichlet problem
Av =h(z), ifzeQ,
v(z) = p(z), if ze o,

admits a unique solution, provided that (h, ¢) € 9); in this case, v depends continuously
upon the initial data. Finally, a simple application of Theorem 2.9 shows that there are
neighbourhoods U and V of X and C% ®(99) respectively such that

v € V. = the system has a unique solution u € U,

and the correspondence v + u is C*.
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2.2 The implicit function theorem

We will now show that we can extend the range of applicability of the local inversion theorem
by merely adding an extra parameter. Namely, consider a map

F:AxU—9,

where U C X and A, the set of parameters, is a subset of a Banach space ¥.

Lemma 2.18. Let (\*, u*) € A x U. Suppose that the following properties hold:

(i) The function F is continuous and has u-partial derivative F, in A x U, which is also
continuous.

(ii) The linear operator F,,(A*, u*) is invertible.
Then the map ¥ : A x U = T x Q) given by
TN u) = (A, F(A u)) (2.3)

is locally invertible at (\*, u*) with a continuous inverse ®. Moreover, ® belongs to C' if

FeCYAxU, D).

The local invertibility of ¥ follows, essentially, from the same proof given for Theorem
2.9 so we will not repeat it.

Proof. Suppose that F € CY(A x U, Q) and let
A:=F\(A", u*) and B := F,(\", u")

be its partial derivatives. Clearly, the map ¥ belongs to C! and its derivative is explicitly
given by the following formula:

AT\, u)[E, v] = (€, A€ + Bv).

The equation
d\II(A*v U*>[£a ”U} = (773 ’U)

yields n = £ and, since B is invertible, we also infer that
Aln] + Blv] = v

has a unique solution, which we denote by v = B~(v — An). It follows that d¥(\*, u*) is
invertible and an application of Theorem 2.9 shows that ® is also C*. O

Remark 2.19. The function ¥ has an inverse ® in a neighbourhood @ xV of (A*, F(A\*, u*)),
which is given by
D(A, v) = (A, (A, v)). (2.4)
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The function ¢ : © x V' — X is determined as the unique solution to the following equation:
F(\ oA, v))=v forall A €O. (2.5)

Therefore ¢ is of class C' and its partial derivative can be easily found by differentiating
the identity above:

F\+Fy,opy=0, or = —[F,] ' Fy,
FuO@v:Idy @U:[Fu]_l'

Remark 2.20. The existence of a local inverse ® of ¥ can be obtained in a more general
setting, requiring that ¥ is only a topological space rather than a Banach space.

Theorem 2.21 (Implicit Function). Let F € C*(A x U, ), k > 1, where A is a set
of parameters. Suppose that F(\*, u*) = 0 and F,(\*, u*) invertible. Then there exist
neighbourhoods © of \* and U* of u* and a map g € C*(©, X) such that:

(i) For all X € © there results F(\, g(A)) = 0.
(ii) If (A, u) € © x U* is such that F(\, u) =0, then u = g(\).

(%) If X € © and p = (X, g(N)), then
9N = —[Fu(p)] ™" o FA(p).

Proof. Let ¥ be the function defined by (2.3). Then ¥ is locally invertible at (A*, u*) and
satisfies
(A", u*) = (A, F(A5, u*)) = (A%, 0).

The local inverse ® satisfies (2.4) and it is rather easy to verify that ¢ is of class C*, provided
that F is C*. Setting

g(N) ==X, 0),
using (2.5) we are able to conclude that
F(\ g(\)=F(\ ¢\, 0)=0 foral e®.
This concludes the proof of (i). Now the assertion (ii) follows from the fact that ® is

one-to-one and (iii) has been proved already in the previous remark. O

2.2.1 Application to perturbed differential systems

Let f € CY(R xR xR™, R™) be a period solution (with respect to the middle variable), that
is, there exists a positive time T such that

fle, t+T, ) = f(e, t, x).
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Our goal is to investigate period solutions of the e-perturbed differential system

z(t) = f(e, t, x), (2.6)

which satisfies the following additional assumption: for e = 0 there exists a T-periodic
solution, which we will denote by y(¢). Consider the Cauchy problem

d(t) = f(67 t 05)7
a(0) = ¢.

Since f is differentiable, by Cauchy-Lipschitz theory we can always find a unique solution
a which is defined in a small neighbourhood of the initial value, that is, |§ — £*| < 6 with
&* = y(0). Moreover, we know that

O
Ale, t, &) := —
(6 t.6) = 5
is the n x n matrix solving the Cauchy problem
A= f(e t, a)A,

A(e, 0, €) = Idgn.

In what follows, we shall always denote by Ag(¢) the matrix A(0, ¢, £*).

Theorem 2.22. Under these assumptions, if A = 1 is not in the spectrum of Ag(t), then
there are § > 0 and & € C'((—4, 9)), £(0) = &* such that

le] <& = there exists a unique T-periodic solution of (2.6)..

Proof. The Cauchy problem (2.6), has a T-periodic solution if and only if there exists £ € R™
such that

ale, T, §) = €.
Thus, introducing the map F : R x R — R" defined by
F(67 5) = CK(€7 T7 g) - 67

we are led to solve the equation F(e, £) = 0. The function F' is C'! and, since a(0, t, £*) =
y(t) and y is T-periodic, it turns out that

F(0,€) =a(0,T,8) - & =y(T) - & =0.
We conclude applying Theorem 2.21 since
Fe(0, &%) = (0, T, ) —Id = Ap(t) — Id,

and the right-hand side is invertible because 1 is not in the spectrum of Ay(¢) by assumption.
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O

The autonomous case (in which f does not depend on t directly) is more delicate and
requires to work slightly more. Consider the system

:C(t) = f(ev x)a (27)

and notice that the period of a solution of (2.7) is, a priori, unknown. Let f(x) := f(0, x)
and assume that f € C1(R", R") satisfies the following property:

e =0 = (2.7) has a nonconstant T-periodic solution y = y(t).

Without loss of generality we can assume y(0) = 0.

Remark 2.23. It is important to notice that the previous theorem does not apply here
because 1 always belongs to the spectrum of Ag(7"). Indeed, Ay satisfies

Ao = f(y(1)) Ao,
Ap(0) = Idgn.

To see this, we differentiate the relation 4’ = f(y) and find that

and therefore, by setting v := 3/, we have v(t) # 0 for all ¢ and
v =1y
Let v* = v(0) and w(t) = Ag(t)v*. It follows that
w' = Aot = f(y(1) Ao(t)* = f'(y)w,
w(0) = v*.

By the uniqueness of the Cauchy problem, it must be that v(t) = w(t). In particular, there
results w(T) = w(0) and hence

Ao(T)o* = w(0) = v* = 1 € a(Ay(T)).

Theorem 2.24. Under these assumptions, if A = 1 is a simple eigenvalue for Ay(T), then
there are continuous maps h = h(e) and T = 7(€) such that

and (2.7) has a 7(e)-periodic solution y. satisfying y.(0) = h(e).



Chapter 3

(Global Inversion Theorems

The goal of this chapter is to find assumptions that allow us to extend the local inversion
theorem to the whole space. The main result states that this is possible provided that we
remove from domain and codomain the singular points:

Theorem A. Let I': M — N be a proper map. Suppose that Ny is simply connected and
My is arc-wise connected. Then F' is a global homeomorphism between My and Nj.

In the second half of the chapter, we show how can we apply this result to PDEs analysis
to determine the existence of solutions to some Dirichlet problems. We conclude with the
statement of the global inversion theorem that takes into account singularities.

Theorem B. Let F' € C?(X, 2) be a proper function and suppose that every u € ¥/ is an
ordinary singular point, the equation

Fu)=v

has a unique solution for all v € F(¥'), and X’ connected. Then there exist two open
connected subsets )y and ), such that

D =DoUY2 UF(X),

and it turns out that
0 ifwve @0,

] =491 ifveF(X),

2 if’UEQ‘JQ.
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3.1 The global inversion theorem

The goal of this section is to investigate minimal conditions under which a map F between
metric spaces, M and N, is a global homeomorphism.

Definition 3.1 (Proper). A continuous map F : M — N between metric spaces is proper
if the preimage
FYK)={ueM : Flu) € K}

of a compact set is also compact.

From now on, when we say that F' : M — N is proper, we will also assume that F' is
continuous with respect to the topology spaces (M, dps) and (N, dy).

Lemma 3.2. Let F: X — Y be a proper map between topological spaces and let' Y be locally
compact and Hausdorff. Then F is a closed map.

Proof. Let C be a closed subset of X. We will show that Y \ F(C) is open. For this, let
y € Y\ F(C) and take an open neighbourhood V' 5 y with compact closure. Then

F proper = F~1(V) compact in X.

Let E = CNF~Y(V). Then E is compact and by continuity so is F(E). Since Y is Hausdorff,
F(E) is closed. Now consider
U=V \F(E).

Then U is an open neighbourhood of y which is disjoint from F(C), and this proves that
F(C) is closed. O

Theorem 3.3. Let F': M — N be a proper locally invertible map. Then
N 3 v+ [v] = #F({v})

is finite and locally constant.

Proof. The singlet {v} is compact so its preimage via F is also compact. Since F~1({v})
must be discrete by the local invertibility theorem, we conclude that

F~'({v}) C M is discrete and compact,

which is possible if and only if it is finite. To show that the map is locally constant, fix
v € N and denote by {uy, ..., u,} the preimage F~1(v). By the local invertibility theorem
we can find open neighbourhoods U; 3 u; in M and V neighbourhood of v in IV such that

F eHom(U;, V) foralli=1,...,n.

It follows that
[w] >k forallweV.
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We now claim that there exists an open neighbourhood W C V of v such that [w] is
identically equal to k at all w € W. We argue by contradiction. If W does not exist, then

we can find
-~
{vj}jen CN and v; 7750

and a corresponding sequence of points p; € M such that
n
pj ¢ U Ui and F(p;)=v,.
i=1

Since F' is proper, we can find a subsequence jj, such that p;, converges to some p that does
not belong to | J;_; U;. The continuity of F proves the contradiction since

k oo
F(p;,) =21 F(p) = v.

@ f/ /ﬂ\is is @ (A/m}(/\cxwpft KQ/L l: L_\ui gomué ihble .

Ve

Cy

@ Lt > lh'.f 0 Courluesaute ru F vaf  Propea

Figure 3.1: Counterexamples to [v] finite and locally constant.

Corollary 3.4. Let F : M — N be a proper locally invertible map. If N is connected, then
[v] is globally constant.

Definition 3.5 (Singular). A point u € M is said to be singular for F if F is not locally
invertible at u and regular if it is not singular.

Denote by ¥ the set of all singular points in M and Y, the preimage F~1(F(X)). We
would like to work with regular points only, so we define My := M\ Xy and Ny := N\ F(Z).
Remark 3.6. The set X is closed, so both M, and Ny are open in M and N respectively.

An obvious consequence of the definitions of singular points and (M, Ny) is the following
theorem, which asserts that [v] is constant on connected components of Np.



40 3.1. The global inversion theorem

Theorem 3.7. Let F : M — N be a proper map. Then [v] is constant on every connected
component of Ng.

We are now ready to state the main result of this section. The assertion is rather intuitive,
but it will take us a considerable effort to prove it formally.

Theorem 3.8. Let F': M — N be a proper map. Suppose that Ny is simply connected and
My is arc-wise connected. Then F is a global homeomorphism between My and Ny.

Corollary 3.9. Let F : M — N be a proper locally invertible map. Suppose that N is
stimply connected and My is arc-wise connected. Then F € Hom(M, N).

The first step is to introduce and investigate the notion of "path that invert F' along
another path". Next, we show that this "inverse" is unique and also that everything can be
generalised to paths defined on [a, b]%.

Definition 3.10. Let M, N be as above and let ¢ : [a, b] = N be a continuous path. We
say that a path 6 : [a, b] = M inverts F along o if the following diagram commutes:

M F N
k[ ]/
a, b

Remark 3.11. Let v € M and v € N be such that F(u) = v and F|U € Hom(U, V),
where U and V are respectively neighbourhoods of 4 and v. Given a path

o:la, b)) — N, o(a)=v and o([a, b)) CV,
it is easy to see that the equation F(6(t)) = o(t) defines the unique path 6 that inverts F
along o satisfying the initial condition 6(a) = u.

Remark 3.12. Let o : [a, b)) =& N be a continuous path and suppose that there exists
¢ € (a, b) such that 0; inverts F along o ’[a d and 69 along o ’[C . with 61 (c) = 62(c). Then

01(t) ift € [a, c),
0(¢t) ==
05(t) iftec, bl
is a well-defined continuous path which inverts F' along the whole o.
Lemma 3.13. Let u* € My and v* = F(u*) € Ny. Then for any given path o : [0, 1] = N

with 0(0) = v* there exists a unique

95[0, 1}—>M0

*

that inverts F' along o satisfying the initial condition 6(0) = u*.

Proof. We first prove uniqueness, which is relatively easy, and then we exploit it to obtain
the existence.
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Uniqueness. We argue by contradiction. Let 6; and 6> be two such paths and let

= sup{s €[0,1] : 64 ‘[o,s] =0, |[0,s]}'

According to Remark 3.11, £ is well-defined and,, since u* € My, it is also strictly bigger
than zero. Moreover, by continuity one has that

01(§) = 02(¢)
so all it remains is to prove that £ = 1. Suppose that £ < 1 and set
u=~601(§) =02(&) and v=F(u).

Since F' is locally invertible in My, there are neighbourhoods U 3 u and V' 3 v such that
F ‘U € Hom(U, V). Now both paths are continuous so

01([¢; §+a]) U and 65([6, +a]) CU
for a small enough o > 0. Therefore

01 ’[0,&—}-&] =02 |[0,£+a]’

and this is a contradiction with the definition of £ as the supremum.
Existence. Let = be the set of all s € [0, 1] such that F' is invertible along o |[0 i, with
inverse given by

05 : [0, s] — My such that 6,(0) = u*, F(u*) = o(0).

We will show that E is both closed and open in [0, 1] in such a way it must coincide with
[0, 1] as it is nonempty.

(a) Let £ := supZE. As before £ > 0 and, by uniqueness, the resulting paths 6, must
coincide in the intersections of the intervals of definition. Let 6 be the function

0(s) :=0s(s) forall s €0, &).

Now let s, /* € be a sequence such that o(s,) — v. Since 0(s,) = F~1(o(s,)) and F
is proper, we find that (up to subsequences) we have

O(sp) = u, F(u)=n.

Now let U 5 uw and V' 5 V be neighbourhoods such that F’ |U € Hom(U, V). It m e N
is chosen in such a way that

O(sm) €U and o([sm, &) CV,

then F' can be inverted along o |[S ¢ by a path #; which coincides with 6 evaluated

]
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at s,,. Finally, the trick illustrated in Remark 3.12 allows us to conclude that = is
closed.

(b) The idea is more or less the same. If £ < 1, the path 6; introduced above can be
defined in an interval [s,,, £ + a], a > 0, which is absurd.

O

The next step is to pass from paths to 2-paths, namely continuous functions defined on
Q := [a, b]? and taking values in M or N.

Definition 3.14. Let M and N be as above and let o : Q — N be a 2-path. We say that
a 2-path 0 : Q — M inverts F' along o if the following diagram commutes:

M—F 4N

T
Q
Lemma 3.15. Let u* € My and v* = F(u*) € Ny. Then given any 2-path o : Q — N such
that o (0, 0) = v*, there exists a unique 2-path
0 : Q — My

that inverts F' along o satisfying the initial condition 6(0, 0) = u*.

Proof. We divide into two steps as before, starting from uniqueness which is once again
needed to prove existence.

Uniqueness. Let 6; and 6 be two such 2-paths and let (s, t) € Q. Define ¢, ¢» : [0, 1] —
My and ¢ : [0, 1] — Ny as follows:

¢1 ()\) = 91 ()\S, )\t),
(]52()\) = 92()\8, )\t),
P(A) = o(As, At).

Then ¢, and ¢, are paths that invert F' along 1, which means that by the 1-dimensional
result they must coincide. Letting A = 1 shows that

01(87 t) = 02(57 t),

and we conclude using the arbitrariness of (s, t) € Q.
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Existence. Consider the rectangle
Ry = [07 S] X [07 1] C Q7

and let = be the set of all s € (0, 1] such that there exists 05 : Ry — M, that inverts F

along the restriction o |, with 65(0, 0) = u*. Clearly, 0 € = since F' is invertible along

Rs
t—0(0, 1)

by Lemma 3.13. Let £ := supZ. As before £ > 0 and, by uniqueness, the resulting 2-paths
0, must coincide in the intersections of the intervals of definition. Let 6 be the function

0(z, t) :=0s(z, t) for all (z,t) € Rs.

Fix t € [0, 1]. Since F is invertible along the path s — o(s, t) with inverse s — ¢(s)
satisfying the initial condition ¢(0) = 6(0, ¢), by uniqueness we have

d(2)=6(z2,t) forall0<z<E.

If we set ¢(§) = v and o(&, ¢) = v, then we can find neighbourhood U > w and V' 3 v such
that F' ‘U € Hom(U, V). Then we can find a rectangle R’ centered at (&, t) and

0 :RNQ— M,

such that ¢’ inverts F along o RNQ with 6’(€, t) = u. Since 6 and 0’ coincide in (0, &), we

infer that 6 can be extended to all R’ N Q and by continuity to R¢ in such a way that

FobO=o0
holds at all points of R.. Moreover, { = 1 for otherwise we could cover the segment
{(&,t) : t € [0, 1]} with a family of rectangles R’, which would allow us to extend 6 to
Re4o for some positive a: a contradiction. O

Proof of Theorem 3.8. The map [v] is constant and > 1 for all v € Ny, which means that F'
is onto. We only need to show that

[v] =1 at all v € Np.

We argue by contradiction. Suppose that there are ug, u1 € My such that F(ug) = F(uy) =
v. Since My is arcwise connected, we can always find a continuous path 6 such that

0(0) =up and 6(1)=uy.

The image of 8, 0 = F 00, is a closed path in the simply connected space Ny and therefore
homotopic to a constant path. Namely, there exists a homotopy h € C(Q, Ny) which,
without loss of generality, we can require to satisfy

h0,t) =h(l,t) =v forall t € [0, 1.
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From Lemma 3.15 we infer that there exists a unique 2-path © € C(Q, Mj) that inverts F
along h, that is,
F(O(s, t)) = h(s, t).

In particular, from F(©(s, 0)) = h(s, 0) = o(s), we deduce that ©(s, 0) = 6(s) and hence
O(1,0) =6(1) = us.
On the other hand, from h(0, t) = h(1, t) = v, we can deduce that
F(©(0,t) = F(O(s, 1)) = F(O(1, 1)) = v.
In particular, the restriction of © to the set
I'= ({0} x [0, 1) U ([0, 1] x {1}) U ({1} x [0, 1])
is constant and, in particular, u; = (1, 0) = ©(0, 0) = ug. This is in contradiction with

ug # w1 so [v] must be equal to 1 at all v € Ny, which is what we wanted to prove. O

3.1.1 Global invertibility in PDEs analysis

Let © C R™ be an open bounded set with smooth boundary and consider the Dirichlet
problem
—Au(z) = p(u(z)) + h(z) ifzeQ,
(3.1)
u(zr) =0 if x € 002

Let (Ak)ken denote the sequence of eigenvalues of the laplacian —A subject to Dirichlet
boundary conditions and enumerate them in such a way that \; < Xy < ... and

lim )\k = Q.
k—o0
Theorem 3.16. Let p € CY(R, R) be a function of the form
p(s) = as+ b(s),

where |b(s)| < M. Suppose that one of the following holds:

(a) For all s € R
p'(s) =a+V(s) <.

(b) There exists k € N such that for all s € R

A <p'(s)=a+b(s) < Apy1-

Then for any h € C*(Q), a € (0, 1), there exists a unique u € C**(Q) solution of the
problem (3.1).
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Proof. Let X :=={u € C*>%(Q) : u |aQ =0} and 9 := C¥(Q). In view of Theorem 3.8, it is
sufficient to show that the map

F(u) := —Au —p(u)

is locally invertible at all w € X and proper.

Step 1. The differential of F' at w is the linear map defined by
dF(u)[v] := —Au —p'(w)v,
and thus F is locally invertible if and only if
—Au—p'(u)jv =0 < v=0.
We now consider the bilinear form defined by the differential of F' at u, namely
b: XXX =9, blu,v):=—Au—p'(u)v,
and we notice that b is continuous, that is,
[b(u, 0)] < Jlulll|v]|2-

If the assumption (a) holds, then it easily the coercivity of the bilinear form b and thus we
can apply Lax-Milgram theorem (see Theorem 3.17).

If, on the other hand, the assumption (b) holds, then we need to rely on a comparison
principle. First, consider the following eigenvalue problems:

—Av(z) — Mpv(x) = po(x) if z € Q,

u(z) =0 if x € 09,

—Av(z) — p(u)v(z) = w(z) ifxz e,

u(z) =0 if x € 09,

—Av(z) — Mpprv(x) = go(x) if z € Q,
u(z) =0 if x € 0Q.

The assumption (b) implies that
fig < fj < H;

for all 7 € N. However, we can compute these eigenvalues explicitly as

K = )‘j — )\k and ﬂj = >‘j — )\k+1»
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and hence we conclude that
o <0 and fr+1 > 0.

This shows that fi; # 0 for all 7 € N and, as an immediate consequence, that F' is locally
invertible.

Step 2. We now prove that F' is proper. Let h, — h in ) be a convergent sequence and
let (un)nen C X be such that

F(up) =h, forallneN.

Step 2.1 We claim that [lun[ly is bounded. If not, let v, := qz*4— and notice that it is
well-defined and solves (3.1) with right-hand side )
h = fin
l[unll

In particular, using that h(s) = as + b(s), we find that v, solves the problem
—Av, + av, = Uy,

where U, is uniformly bounded in L>°(£2) and, consequently, in every LP-space for 1 < p <
00. Since the operator given by
—A+a Idx

is invertible, we infer that v,, is bounded in W% P?(Q) for all p € [1, oo] and, by the Sobolev
embedding (see Theorem 1.20), the sequence v,, is also bounded in C*#(Q). By Ascoli-
Arzela, if 8 > «a, then

n—-+oo *
UVp —— U

in C»%(Q) and |[v*|ly = 1. On the other hand, the sequence U,, tends to zero in ) so v*

must also satisfy
—Av* + av* =0,

[o*lly = 1,

and this is clearly impossible because the unique solution of this equation is v* = 0, incom-
patible with the condition ||v*||y = 1.

Step 2.2. Since
—Aup(z) = pun(x)) + hn(x) ifz e,
i — A
un(x) =0 if x € 04,
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and both (up)nen and (hp)nen are bounded in ), we readily deduce that the sequence of
0., is bounded in ). A well-known result in regularity theory implies that

[unllx < C

and by Ascoli-Arzela we can find a subsequence (un, )ren that converges to some u* in the
topology C2(Q2). Finally, since 6,,, converges in 9), the elliptic regularity theory allows us
to conclude that u,, converges to u € X. O

To conclude this section, we recall the statement of the Lax-Milgram theorem in a more
general form in which we do not require b to be a bilinear form.

Theorem 3.17 (Lax-Milgram). Let H be a Hilbert space, and let a : H x H — R be a
function satisfying the following properties:

(1) a(0,v) =0 for allv € H and v — a(u, v) is linear for all u € H.
(2) For allv € H and all (u1, ug) € H x H it turns out that

|a(u1, v) = alug, V)| < Mlluy = uzll||v]].

(8) There exists a constant v > 0 such that

a(ur, up — ug) — a(ug, up — ug) > v|lug —ugl|*  for all (uy, ux) € H x H.

Then for all F € H* there exists a unique element u € H such that
a(u, v) = F(v) forallve H,

and there exists a positive constant which only depends on v such that
1
c(v)

Remark 3.18. If a : H x H — R is a bilinear form, then the condition (3) is equivalent to
saying that a is coercive.

ull < —— 1 F |-

3.2 Global inversion with singularities

In this section, we will study the global invertibility of maps when ¥ does not satisfy the
assumptions of Theorem 3.8. For this it will be convenient to deal with C2-maps F : ¥ — ),
where X and %) are Banach spaces, and replace ¥ with a slightly larger set

Yi={ueX: F'(u) ¢ Inv(X, )}

Let F € C?(X,9) and u € X'. We assume that the following hold:
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(A) The kernel of F’(u) is one-dimensional and generated by ¢ € X\ {0}. The range is
closed and has codimension one.

(B) There exists ¢ € X such that F”(u)[, ¢] ¢ Ran(F’(u)).

We say that a subset M of X is a C'-manifold of codimension one in X if for all u* € M
there exist § > 0 and a functional T' : Bs(u*) — R of class C! such that

M 0 Bs(u*) = {u € Bs(u*) : T(u) = 0},

and I'(u*) # 0.

Lemma 3.19. Suppose that for all u € X' the conditions (A) and (B) hold. Then ¥/ is a
C'-manifold of codimension one in X.

Definition 3.20. We say that v € ¥/ is an ordinary singular point if (A) holds and

F(u)lg, ¢] ¢ Ran(F'(u)),
where ¢ is the element that generates the kernel (by (A4)).
Lemma 3.21. Let u* be an ordinary singular point. Then there exist € > 0 and a map
U € CY(Bc(u*), Q) such that
(1) U'(u*) e Inv(X, Q);
(i1) U(u) = F(u) for all u € &' N Be(u*).
Proof. First, notice that ¥’ N Bs(u*) = T'1(0). Let ¥ : Bs(u*) — 2) be the map defined by

setting
U(u) := F(u) + T'(u)z.

Then ¥ is C'-regular, ¥(u) coincides with F(u) for all u € ¥’ N Bs(u*) and its differential
is given by
U (u*)u = F'(u*)u+ T’ (u*)(u)z.

Setting u = t¢ + w, we find that
U (u*)u = F'(u*)w + T (u*) (@) z + TV (u*) (w)z =

= F'(u")w + (¥, F"(u")[o, ¢])z + (¥, F"(u")[w, ¢])z.

Finally, observe that ¥'(u*)u = v has a unique solution when (¥, F"(u*)[¢, ¢]) # 0; thus,
if u* is an ordinary singular point, the map ¥’(u*) is invertible. O

Corollary 3.22. If every u € ¥’ is an ordinary singular point, then F(X') is a Ct-manifold
of codimension one in ).

Lemma 3.23. Let u* be an ordinary singular point with Ker(F'(u*)) = Rp. Assume that

(W, F"(u)[¢, ¢]) > 0,
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and set v* ;= F(u*). Then there are €, o > 0 such that the equation
F(u) =v*"+sz forué€ B(u"),
has two solutions for all 0 < s < o and none for —o < s < 0.

Theorem 3.24. Let F € C?(X, Q) be a proper function. Assume that every u € X' is an
ordinary singular point, the equation

Flu)=v

admits a unique solution for all v € F(X'), and X' is connected. Then there are two open
connected subsets Yo and Yo of Y such that

D =VoUY2 UF(Y),

and it turns out that

0 ifveo,
=41 ifver),

2 ifUG@Q.
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Chapter 4

Critical Points

In this chapter, we will investigate the notion of critical point and we will relate it with
extrema and, ultimately, solutions of PDEs problems.

4.1 Existence of extrema

Recall that a functional over a Banach space X is a continuous mapping J : X — R. We
say that z € X is a local minimiser (resp. maximiser) of J if there exists a neighbourhood
U > z such that

J(z) < J(u) forall w e U (resp. J(z) > J(u)).

If the above inequality is strict (except at w = z), then we say that w is a strict local
minimum (resp. maximum) of J. Moreover, if it turns out that

J(z) < J(u) forall u € X (resp. J(z) > J(u)),

then we say that z is a global minimum (resp. maximum).

Remark 4.1. If z is a local minimum and J is differentiable at z, then it is easy to show
that it must be a stationary point, that is,

We will now give an existence result that concerns coercive and weakly lower semi-
continuous functionals, but, before we dig into it, let us recall a few notions.

Definition 4.2. A functional J € C°(X, R) is coercive if

lim  J(u) = 400,
llull—+o0
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and weakly lower semi-continuous if for every sequence u, € X such that u,, — u one has

J(u) < liminf J(uy,).

n—-+4oo

Lemma 4.3. Let X be a reflexive Banach space and let J be a coercive weakly lower semi-
continuous functional. Then there exists a € R such that

J(u) > a foralueX.

Theorem 4.4. Let X be a reflexive Banach space and let J be a coercive weakly lower
semi-continuous functional. Then J has a global minimum, that is,

JzeX : J(z) < J) foralluecX.

Moreover, if J is differentiable at z, then z is a stationary point of J.

Proof. The previous lemma asserts that m := inf,cx J(u) is finite. Let u,, be a minimising
sequence, which means that

up € X, J(up) Rimanclgy

The coercivity of J implies that ||u,|| < R’ (equibounded), and thus u,, — z for some z € X.
Since J is weakly lower semi-continuous, it turns out that

J(z) <m = J(z) =m.

4.2 Some applications to PDEs

We now show how to apply the previous theoretical results to deal with (mainly) the Dirichlet
boundary value problem

—Au(z) = f(x, u(x)) ifxeQ,
D)
u(z) =0 if z € 0.

First of all, let us consider the case that X is a Hilbert space and define the functional
Lo
J(w) = 5 llull” = (u),

where for (D) we have ®(u) := [, F(z, u)dz and F(z, u) = [ f(z, s)ds.

Theorem 4.5. Let J be defined as above and suppose that ® € C1(X, R) is weakly contin-
uous and satisfies
|®(u)] < a1 + azlul®
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with a1, as > 0 and a < 2. Then J achieves a global minimum at some z € X and there
holds J'(z) = 0, that is ®'(z) = z.

Proof. We have

1
J(w) = 2 llull* — a1 — azlull,

2

which means that for a < 2 the functional J is coercive. Since || - ||? is weakly lower

semi-continuous and @ is weakly continuous, we infer the existence from Theorem 4.4. [

Now consider (D) and assume that f is locally Holder-continuous and there exists a; €
L?(Q), ag > 0 and 0 < ¢ < 1 such that

(2, w)| < a1 (@) + aslul? (4.1)

for all (z, u) € Q x R. Set X := H}(Q) endowed with the usual homogeneous norm. Since
X is compactly embedded in L?(f2), one easily finds that

D(u) := A F(z, u)dx

is C1(X) and weakly continuous.

Theorem 4.6. Let f be locally Hélder-continuous and suppose that (4.1) holds. Then (D)
admits a solution.

Proof. Consider the functional

I = 3l = [ Pl wd.

and notice that its critical points are the solutions (in the weak sense) of (D). Using (4.1)
we readily find that
|@(u)] < aslull + agful| .

Since ¢ < 1 one infers that J is coercive on X. We know already that ® is weakly continuous,
and thus we apply the result above to infer the existence of a point z such that

J(2)=2—-9'(2) =0 = ¥'(2) =z,
giving us the desired solution of (D). O

Remark 4.7. We can prove that (4.1) can be replaced with the request that f(z, s)/s
tends to zero as |s| — oo, uniformly with respect to x.

Example 4.8. Consider the boundary value problem
—Au(z) = — f(u) ifzxeQ,

u(z) =0 if x € 09,
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where X is a given parameter and f : [0, c0) — R is locally Holder and satisfies

lim @ =0, lim M

u—0t U u—+oo U

= 400

We claim that (D) has a positive solution for any A > Ay, the first (smallest) eigenvalue of
the laplacian operator with DBC. First, notice that there exists £ := &\ > 0 such that

A= f(¢) and Au— f(u)>0
for all uw € (0, £). Let g) : R — R denote the function given by

0 ifu<0oru>E¢,
a(z) =
Au— flu) if0<u<é

Consider the auxiliary boundary value problem

—Au(z) = ga(u) ifz e,
(Dx)
u(z) =0 if x € 09,

and by the maximum principle, any nontrivial solution of (1,) is positive. Moreover, one
finds that u(z) € (0, &) for all z € Q, and hence is a positive solution of (D). Since gy is
locally Hélder-continuous and bounded, the theorem above applies to the functional

Ix(u) :== %HUHQ - )\/QGA(u) dz.

If A > A\ we claim that inf Jy is less than zero. To prove this, let ¢1 € X be positive in Q2
and satisfying
—Api(z) = hp1(@),  lerfz =1

For ¢ > 0 small, one has gy(tp1) = A1 — f(te1). Since f(u) is a small-o of u, we infer that
1
Dter) = 5 - M2 + o(t?),

which is strictly negative if we choose t to be small enough.



Chapter 5

Constrained Critical Points

In this chapter, we will investigate the notion of constrained critical point and we will relate
it with extrema and, ultimately, solutions of PDEs problems.

5.1 Introduction

Let J : X — R be a differentiable functional and let M be a smooth Hilbert submanifold.
A constrained critical point of J on M is a point z € M such that

d(J!M)(z) =0,

which is equivalent to
dJ(z)[v)] =0 forallveT,M.

Using the constrained gradient, we can say that a constrained critical point z of J on M
satisfies
(Vud(z),v) forallveT,M,

which allows us to affirm that J’(z) is orthogonal to T, M.

Remark 5.1. Let 7 : [0, 1] = M be any smooth curve such that v(0) = z and consider the
real-valued function ¢(t) := J o y(¢). Then

¢'(0) = J'(2)[y'(0)],

where 7/(0) belongs to T, M. Therefore, if z is a critical point of J constrained on M, then
t = 0 is a critical point of ®. Vice versa, z is a constrained critical point if

|7 (r(1)) = 0

for all C*-curves v with v(0) = 2.
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Suppose that M has codimension one, that is, there exists G : ¥ — R of class C'* such
that M = G=1(0). It follows that

X =T.M @ Span(VG(z)),

and by the Lagrange multiplier rule

et _ (VJ(), VG(2))
VJ(2) = A\VG(z) = A T

5.1.1 Nonlinear eigenvalues

Let Q C R™ be a smooth bounded set and assume that f satisfies (1.10). Set X := H}(Q)
and

O(u) := /QF(:L’, u) dz.

Define
M={ucX: ||[u)>-1=0}=G"10),

where G(u) := ||ul|? — 1. Tt follows that M is a C''-manifold since dG(u) = 2 and, if u is a
constrained critical point of ® on M, then necessarily

Vo(u) = = >\/

Vu-Vodr = / flz, wvde,
Q Q

and therefore u is a weak solution of the boundary value problem

“Mu(z) = f(z, u(z)) ifzeQ,
(5.1)
u(z) =0 if z € 0.

If f is homogeneous, then one can consider the scaling A7Ty that solves the same boundary
value problem with A = 1.

5.2 Natural Constraint

Let X be a Hilbert space and let J € C1(X, R). A C'-submanifold M is called a natural
constraint for J if there exists J € C1(X, R) such that every constrained critical point of .J
on M is a stationary point of J, that is,

Vud(u) < J'(u)=0.

An example of a natural constraint is the so-called Nehari manifold given by

M :={ue X\ {0} : (J'(u), u) =0}
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Proposition 5.2. Let J € C?(X, R) and suppose that the Nehari manifold M is nonempty.
Assume that the following conditions hold:

(1) There exists r > 0 such that M N B,(0) = @.
(ii) For all uw € M it turns out that d®J(u)[u, u] # 0.

Then M is a natural constraint for J with J = J.

Proof. Let G(u) := (J'(u), u) so that M = G~1(0), and notice that G is of class C! since
J is C2. Moreover, it is easy to see that

G/ (w)fu] = 42T (u) u, u] + dJT (w)u] = d>J(u)[u, u] # 0,
=0

which means that M is a C'-submanifold. Now if (V.J |, )(u) = 0, then
VJ(u) = AVG(u) = (VJ(u), u) = M(VG(u), u),

and now the right-hand side is different from zero for u € M, whereas the left-hand side
is zero by definition. It follows that A must be equal to zero, and thus M is a natural
constraint. O

5.2.1 Applications to PDEs analysis

Let ©© C R™ be an open bounded smooth set and consider the problem

—Au = |[ulP7tu, ifz e,
(5.2)
Ulpq =0

At some point, we will need to use Sobolev embedding theorem to conclude that the em-
bedding
LPTHQ) — H(Q)

is compact. Therefore, we must assume that 1 < p < 22, Let ¥ := H}(Q) endowed with

n—2
the homogeneous norm
ullx ::/ V| da.
Q

The variational formulation of the problem consists of finding critical points of the functional

1 1

The reader might check that J belongs to C? as an exercise (in the same way one proves
that it is C!), but what is important now is that J is unbounded on X. In fact, we have

o
i) = e
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since, if 7 is the eigenfunction of A1 (), then J(t¢) < 0 for some ¢ > 0 and hence taking
the limit we can infer that
lim J(tp1) = —oc.

t—+oo

Similarly, one can show that

sup J(u) = oo,
uexX

e.g., by taking w, (z) := sin(nx)x(x), where x is a cutoff function with support in €.

Proposition 5.3. The Nehari manifold

M= {u e X\ {0} : /Q|Vu|2dx = /Q |u|PT! dx}

is a natural constraint for J.
Proof. First, notice that

dJ(u)[v]:/Vu~Vvd:E—/ Ju[P~tuw de,
Q Q

so that G(u) := dJ(u)[u] is actually given by ||ul/% — Hu||’£ﬁ1(m, which means that a nonzero

u € X belongs to M if and only if

ul2 = / P+ d.

Using Sobolev embedding we can find a constant C} o such that
[ullp+1 < Cp, allullx-

Therefore, if u € M, then
1

1 1 p>1 1
lullz = lulpis < Cpallulf™ = Jully™ 2

p+l = >0,

p,

which means that the first point in Proposition 5.2 is verified with r equal to a negative
power of C), o. Now notice that

d*J(u)[v, w] = / Vw - Vudz —p/ |u|P~ wo dz,
Q Q
which immediately leads to

A2 (u)[u, u] = Jull - pllulli.

For u € M we obtain
d*J(u)[u, u] = (1 —p)|lull% #0

for p > 1, which means that M is a natural constraint for .J. O
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Remark 5.4. The functional is bounded from below on M since
1 1 1 1
J =({=--— 2> (- — 0.

We now claim that, if p < 2£2, then J | v Attains a minimum'

be a minimising sequence, weakly converging to some @. By compactness of the Sobolev

. To prove this, let u,
embedding, we have that
/ [P+ d 22t / a7+ da,
Q Q
Furthermore, taking into account that w, € M for all n € N, we can conclude that
/ |a|P™ dz = 1ir_£1 / |u, [T dz > r? = a #0.
Q n—-+0oo Q

There are now two cases we need to discuss separately.

We have ||u,||x — ||@]|x. Then @ € M and

1 1
T = (5= 557

is lower semi-continuous, and therefore @ is a minimiser for J on M.

We have limy, oo ||tn|/x > ||2||z. Then
Jal: = o lim frun 3,
for some p € (0, 1). But then
Wﬁ=ﬂ£&[ﬁm“%M=mwﬁr

If one takes v € (0, 1) such that v»~1 = p, then vii € M. But this leads to a
contradiction since @ is the limit of a minimising sequence.

1We will not prove it here, but the assertion is false when p is equal to the critical exponent.



Chapter 6

Deformations and Palais-Smale
Sequences

In this chapter we will investigate the existence of constrained critical points via special
deformations of the sublevels. The notion of Palais-Smale sequence is then introduced to
deal with the lack of compactness, replacing it with a much weaker condition.

6.1 Deformations of sublevels

Let J: U C X — R be a functional defined on a open subset U of a Banach space X and
let a € R. We denote by
X ={ueX: Ju)<a}

the a-sublevel of J on X. We now need to introduce a suitable notion of deformation, which
should make the investigation of critical points of J easier.

Definition 6.1 (Deformation). A deformation of A C X in X is a continuous map 7 €
C(A, X) which is homotopic to the identity. Namely, there exists a homotopy H such that

HO,u)=u, HQ,u)=n(u) foralluecX.

The idea behind deforming a set into another one is the following. Since a deformation
is a continuous map homotopic to the identity, we expect that A and n(A) have the same
topological properties.

More specifically, if [a, b] C R does not contain any critical point of J, then it can be
proved that under some assumptions on ¥ the sublevel X% can be deformed into X¢. On
the other hand, the presence of an obstacle is often (but not always) a consequence of the
existence in the given interval of a critical point.

Example 6.2. Let M be a compact hyper-surface in R™. Suppose that b is not a critical
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level for J on M and notice that
MP={zxeM: Jx)=>b}

is a smooth submanifold of M and at any point the vector —V s J(x) # 0. By compactness,
it turns out that

min |V J(z)| > C > 0,

zEMP

and hence we can deform M? into M®~¢, for € small enough, via the aforementioned gradient
vectors. Now, if there are no critical levels in [a, b], we can repeat the same process over
and over again, until we find that M® can be deformed into M®.

Remark 6.3. If ¢ is the minimum of J over M, then it must happen that M~ ¢ = @& while
Me<t¢ 4 &, which means that the topological properties change when passing through a
critical level.

To better understand the change of topological properties after crossing critical levels,
the following example is instructive.

Example 6.4. Let M be the 2-torus and let J(x, y, z) := z. The critical points of J on M
are the four points p; where the gradient of J is orthogonal to M. If we set

C; = Jﬁl(pi)a
we find the following diffeomorphisms:
T? if a > ¢y,

T2\ B, if c4 > a > cs,

M®*= St x[0,1] ifez>a> e,
B, if o >a > cq,
o] if a < cy.

6.2 The steepest descent flow

In this section, we will try to extend the procedure given above to the general case via flows
of differential equations and, in particular, the so-called steepest descent flow.

Given W € C%1(X, X) Lipschitz function defined on a Hilbert space X, let a(t, u) =: a(t)
denote the solution of the Cauchy problem

(6.1)
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The local existence theorem for Cauchy problems shows that, since the right-hand side is
Lipschitz, there exists a unique solution «(t, u) in a neighbourhood of ¢ = 0 that depends
continuously on the initial data in any compact subset of R. Let

(tu, t)

ur u

denote the maximal interval of existence given u € X. We would like to find sufficient
condition for the solution « to be globally defined for ¢ > 0, that is, ¢} = +oc.

Lemma 6.5. If t} < 400, then a(t, u) has no limit points ast /'t .

Proof. We argue by contradiction. If there exists v € X such that «(t, u) 7 v, then let 8
denote the solution of the Cauchy problem (6.1) with « = v. Then

3 is well-defined in a neighbourhood of t*, say (t7 —¢, tT +¢),

and therefore the function
alt,w) ifte(t,th),

B(t,v) ifteltt,tt +e),

is a solution of (6.1) with initial data u, defined in a strictly bigger interval than the maximal
one - which is obviously impossible -. O

Lemma 6.6. Let A C X be closed and suppose that ||W (u)]|| is uniformly bounded on A by a
positive constant C. Let u € A be such that a(t, u) € A for allt € [0, t]). Then t} = +oc.

Proof. Suppose that ¢t} < co. For all t;, t; € [0, t7) we have
ti t;
at;, u) — alt;, u) = / o' (s, u)ds = W(a(s, u))ds.
Since W is bounded on A, it turns out that
lee(tis u) = alty, w)|| < Clti — 1]
Therefore, as t;  t;F, the sequence a(t;, u) is Cauchy and thus converges to some point in

A in contradiction with the statement of the previous lemma. O

To introduce the steepest descent flow, we need to investigate the quantity —V s J(u).
More precisely, let us assume that there exists G € C1 (X, R) such that

M =G0) and G'(u) #0 for u € M.
Let J € C*1(X, R) be a functional and consider the function

_ (), G'(w))

ie@E ¢ W)
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which is well-defined in a neighbourhood of M, is of class C%! as required, and coincides
with =V J(u) for all w € M. The solution of (6.1) is called the steepest descent flow of
M and satisfies the following property:

a(0) e M < a(t)e M for all t € (t,, t}).

More precisely, we have

d / / —
SG(al) = (G (b)), o'(1)) =

= (G'(a(t), W(a(t)) =

N (< (1Ca) RACLC3) N
= (G (@(0), T (@(0) + S B (@), G o) =0,

which means that G(«(t)) is constant and thus
ueM <= Gu)=0 <= G(at)) =0 < alt,u) € M.
Lemma 6.7. Under the assumptions above, the steepest descent flow of J satisfies the
following properties:
(1) The function t — J(a(t, u)) is nonincreasing for t € [0, t;}).

(2) Fort, T €|0,t) we have
t
J(a(t, u)) — J(a(r, u)) = —/ 1V ar (s, w))||* ds. (6.2)
(3) If J is bounded from below on M, then t;} = oo for allu € M.

Proof. First, notice that

&J(a(t)) = —(J’(a(t)), VMJ(a(t))>7

so that d
aJ(Oé(t)) = — ||V J(a(t))|?

since Vs J(a) is the projection of J'(a) on T,, M. The first two properties follow easily from
this.

As for the third property, we argue by contradiction. Let u € M with finite maximal
time and use (6.2) with 7 = 0 to infer that

J(a(t)) = J(u) = —/O IV (als, w))]* ds.
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Since J is bounded from below on M, it follows that

t
/ IVar(a(s, u)[|?ds < a < +o0
0

for some positive constant a. Let ¢; /' ¢, and recall that

t
lee(ts) — ()l S/O [Var(a(s, w))| ds.
Using Hoélder inequality we find that
la(ts) — alty) || < Valt; — 517,

and therefore a(t;) is a Cauchy sequence, in contradiction with the previous lemma. O

Remark 6.8. If J is C! only, the steepest descent flow might not be defined. Luckily, we
can generalise the gradient vector field in such a way that Lemma 6.7 holds.

Definition 6.9 (Pseudo-gradient). Let J be a C! functional. A pseudo-gradient vector
field for J on
Xo:={ueX: VJ(u) #0}

is a C%1(Xg, X) vector field V satisfying the following properties for all u € X:
IV ()l <2V I,
(V(w), VJ(u) > VI ().
Remark 6.10. If such V exists, then Lemma 6.7 holds with the flow
a(t, u) = =V(a(t, u)).

Proposition 6.11. Let J € C1(X, R). Then a pseudo-gradient vector field V always exists.
Proof. Fix u € Xy. Then there exists w(u) := w € X such that
2
lwl =1 and (VJ(u), w) > §||VJ(u)||

Now set 3
V(u):= S IVI(W)llw(u)

and notice that (6.3) holds since

IVl = SIWJ(U)II <2[VJ)],

(V (), VI(u) = ;IIVJ(U)\KW(U)» VI () > [V (u)]*.
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Since VJ is continuous, we can find r := r(u) > 0 such that
V(W) <2V ()],
(V(u), VI(2)) > VI (2)]?

hold for all z € B(u, r). We can cover X with these balls, that is,

Xo= J Blu, r(u)),

ueXo

and hence there exists a locally finite covering U; := B(u;, r(u;)). Define
d;(u) := dist(u, X\ U;)

and denote V (u;) by V;. Then

d(u) ~
Vu):= —tV;
. Zj dj(u) "
is a well-defined locally Lipschitz pseudo-gradient vector field. O

6.3 Deformation and compactness

In this section, we will denote by M either a Hilbert space or a C'-submanifold of codimen-
sion one.

Lemma 6.12. Let J € C1(M, R) and suppose that there exist c € R and § > 0 such that
IVarJ(w)|| > 6 for all w such that J(u) € [c — 6, ¢+ d].
Then there exists n deformation in M such that

n(MC+5) C MC*(S.

Proof. Suppose first that J is bounded from below. By Lemma 6.7 the evolution above is
globally defined. Let T := % and set

n(u) := a(T, u).

It is easy to see that 7 is a deformation since (s, u) — «(sT, u) is a homotopy between 7
and the identity mapping. We now argue by contradiction so let v € M¢+% such that

J(a(T, u)) >c—24.
Since J(a(-, u)) is decreasing, we easily infer that

J(a(t, u)) € [c— 0, ¢+ 4]
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for all t € [0, T]. We now apply the assumption to conclude that
IVard(a(t, w))|| > 6 forall ¢t € [0, T.
We now use Lemma 6.7 again and obtain
T
J(a(T, w)) — J(a(0, u)) = —/ IV ar T (als, w))|| dz > 62T = 26,
— 0
=J(u)
from which we finally infer that
c—0<J(a(T,u)<c+0—20=c—3J = absurd.
Now remove the assumption that .J is bounded from below. Define
J(u) == hoJ(u),
where h € C*(R, R) is given, for example, by

s if s>c¢—9,
h(s) =
bounded below at all s € R.

We conclude the proof using the argument above since J is bounded from below by con-
struction and also
{/<a}={J<d}

for all a > ¢ — 0 by construction. O
Remark 6.13. If M is compact and ¢ is not a critical level for J, then we can always find
a 0 > 0 satisfying the assumption of Lemma 6.12.

Hint. Argue by contradiction. O

Remark 6.14. Some kind of compactness is necessary even in finite-dimensional spaces.
We can easily find a counterexample with M = R; see Figure 77.

6.4 Palais-Smale sequences

In this section, we introduce a notion of compactness which is weaker than the usual one
but is rather useful when dealing with variational problems.

Definition 6.15. Let ¢ € R be a real number. We say that a sequence (u,)neny C M is
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Palais-Smale at the level ¢, denoted by (up)nen € (PS)e, if

Flun) nooo, c,

n—-4oo

grad f(un) 0.

Definition 6.16. A functional J € C'(M, R) is Palais-Smale at the level c if
V(un)nen € (PS)e, I(nk)ken © Un, converges.

Remark 6.17. Let J € CY(M, R).

(i) If J satisfies the Palais-Smale condition at the level ¢, then any (PS).-sequence con-
verges (up to subsequences) to some u* € M such that

Jw*)=c and VpyJ(u*)=0,

which means that u* is a critical point (and thus ¢ a critical level).

(ii) The set
{zeM : J(z)=¢, VJ(z) =0}

is compact.

(iii) If J € C*(R", R) is bounded from below and coercive, then the Palais-Smale condition
at the level ¢ holds for all ¢. This is false in the infinite-dimensional setting!

Lemma 6.18. Let J € C'(M, R) be a functional satisfying the (PS),-condition at all
¢ € [a, b] and assume that there are no critical levels in the interval. Then there exists § > 0
such that
oc:= inf [[VJ(u)] >0,
ueJ (1)

where Is = [a — 6, b+ ).

Proof. We argue by contradiction. There is a decreasing sequence (0, )nen that converges
to 0, and a sequence (uy,)nen C M such that

IVJ(un)|| <6, and J(u,) € [a—bp, b+ 5,].

Now, up to subsequences, J(u,) — ¢ and VJ(u) — 0 and by the Palais-Smale condition we
know that (un)nen is precompact. Thus w,, converges to some «* which is a critical point
with J(u) € [a, b], and this is the sought contradiction. O

Lemma 6.19. Let J € C'(M, R) be a functional satisfying the (PS),-condition at some
noncritical level ¢ € R. Then there exist § > 0 and a deformation 1 such that

77(MC+6) C Me9.
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Lemma 6.20. Let J € C'(M, R) be a functional satisfying the (PS),-condition at all
¢ € la, b] and assume that there are no critical levels in the interval. Then there exists a

deformation n such that
n(M®) € M*.

Proof. Simply apply the previous result a finite number of times since [a, b], by compactness,
can be covered by a finite number of intervals of length 4. O

Theorem 6.21. Let J € CY(M, R), where M is a C'-submanifold of codimension one.
Suppose that J|M is bounded from below and suppose that it satisfies the Palais-Smale
condition at

m:= inf J(u) > —o0.
ueM

Then inf,ecpr J(u) is achieved.

Proof. We argue by contradiction. If m is not a critical value, then there exists € > 0 such

that the following holds:
J(@=9) is a deformation retract of J(@+¢).

But this is impossible since the first set is empty, while the second one is not. O

6.5 Application to a superlinear Dirichlet problem

In this section, we will exploit the theoretical results presented above to prove existence of
a positive solution to a class of superlinear Dirichlet boundary-value problems:

—Au(z) = f(u(z)) ifzeq,
(DSL)
u(z) =0 if x € 0.

We assume (2 to be a bounded domain in R and f € C?*(R, R) satisfies the following
assumptions: there exist a1, ag > 0 and p € (1, 2* — 1) such that

|f ()] < a1 + azlul?,
luf'(u)| < a1 + as|ul?, (6.4)
" ()] < a1 + azlul?.
Assume also that f(u) = uh(u), where h is a function satisfying the following assumptions:
h(su) < s*h(u) for some a > 0;

uh/(u) > 0 for all u # 0;
h(0) = 0;
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limy,—y oo h(u) = 400.

Example 6.22. The function h(u) = |u|P~! satisfies these properties and, indeed, we were
able to obtain existence in Section 5.2.1 looking for the minimum of

/ |u[PT! da
Q

on the manifold {u € H}(Q) : ull 22y = 1}

Theorem 6.23. Under these assumptions, the problem (DSL) has a positive solution.

The proof of this theorem will be attained through a sequence of technical lemmas,
mostly relying on the theoretical aspects presented in this chapter. However, before we get
to it, we need to introduce some notation. Namely, let X := Hg(Q) and denote by

(u, v) ::/Vu-Vvdx
Q

the standard scalar product and by || - || the norm on X. Set

F = [ s0s= [ seunas

@(u)/QF(u)dx/olds/Quf(su) dz,
W) = (' (u), u) = /Quf(u) dz.

Now notice that

(i) The functional ® and W respectively belong to C?(X, R) and C3(X, R). This follows
immediately from the regularity of f and the definitions above.
(ii) The functionals ® and ¥ are both weakly continuous.
(iii) The gradients V® and V¥ are compact operators. This follows from the compactness

of the Sobolev embedding (since p < 2*) and it implies the previous point.

The solutions of (DSL) are critical points of the following functional:

T = ¢l — @(u).

The idea is to use Nehari manifolds together with the results on critical points obtained in
this chapter. We thus introduce the natural functional

G(u) = (J'(u), u) = [|ul|* — ¥(u),
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and the C?-submanifold where G vanishes, that is,
M :={ue X\ {0} : G(u) =0}.

Our goal is to show that M is a natural constraint for J. In other words, we are looking
for a functional of class C?, J, such that

Vmd(u)=0and ue M < J'(u) =0.

We will then verify that J achieves a minimum on M, which ends up giving a solution to
the problem (DSL).

Lemma 6.24. The functional G belongs to C%(E, R). Furthermore:

(i) The set M is nonempty.
(ii) There exists p > 0 such that ||u|| > p for all u € M.

(iii) The scalar product (G'(u), u) is negative for all u € M.
Proof. The regularity of GG is an easy consequence of the regularity of .
(i) Take u € F, u > 0, with |lu| = 1. Then

G(tu) = t* — t2/ u?h(tu) dz.

Q
Using we find that
G(t
lim M =1,
t—0 2
while, employing the property , we obtain
G(t
lim (tu) = —00.
t—+oo t2

Putting these two together, we infer that there must be £ € (0, 0o) such that fu € M.

(ii) This property, despite its simplicity, requires a lot of work because having ||u| small
does not mean that the L°°-norm is also small (the embedding fails!).

Let ||u|| be sufficiently small. Our goal is to prove that G(u) > 0 so that u cannot
belong to M. First, take 6 > 0 and define

AS:={zeQ: |u(z) <6} and AS=0Q\ A%

We claim that the volume of A} cannot be "too big". Recall that by Poincaré’s
inequality we can always find a positive constant Cq such that

lullzr(@) < Callull.
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It follows that
[A2[0 < [[ullz1(a,) < |lullpr@) < Callull,

which means that the volume of A5 is bounded by

C
[As] < =5 .

We now employ Holder’s inequality to estimate the negative contribute to G(u) on
Aj. Namely, we have

[ w0 de < ul 17l 435

where
1 1 1
—+ =+ —=1
b1 P2 D3
We want ps > 1, so the idea is to take the maximum p; and ps possible. However, we

still need Sobolev embedding to estimate these terms with |lul|. Let

*

p1:=2" and py:=—.
p

It is easy to see that
1 1 1
R
P P2 2*

so p3 > 1 as desired. We also use (6.4) and to conclude that f(u) must satisfy a

slightly different estimate

[f ()] S Jul + |uf?

for |u| small enough. Then

1) < [ /Q (P + ) de] ™ <

S Ml + fl?

The right-hand side goes as ||u|| when ||u|| is sufficiently small (since p > 1) and
therefore we conclude that

<877 ul s

/Ag uf(u) dx

The estimate on A{ is even easier since

/A;‘ uf(u)dx /A(f u?h(u) dz

Fix 0 > 0 sufficiently small in such a way that Cq sup, e, s h(u) is less than i It

< Collul® sup h(u).
|u|€(0, 8)
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follows that 1
L 24 L
G(u) > |Jul® - §HUI|2 — 67w fJul* s,

and the right-hand side is positive when we take the limit as ||u|| — 0 since 2+ p% > 2.
In particular, there exists p > 0 such that for all u € B,(0) \ {0} we have G(u) > 0.

(iii) First, notice that for u € M we have
(G (), u) = 2]jull* — (¥'(u), u) =
— 2W(u) — (V' (w), u).

One also has that

20 (u) — (¥'(u), u) =2/Quf(u)dx— [/Quf(u)dx—l—/ngf’(u)dx} =

:/Qu%(u)dx—/uQ(h(u)Mh/(u))dx:

Q

- _/Qui*h'(u) da.

Since 0 ¢ M, using that holds for all u # 0 we conclude that the scalar product
must be negative.

O

It follows from (iii) that M is a submanifold of class C? of codimension one in E. Now
let J € C%(E, R) be defined as

Fu) = %‘I’(u) o).

Notice that this functional coincides with J on M, but it is more convenient to deal with it
since it is weakly continuous and its derivative is compact.

Lemma 6.25. The submanifold M 1is a natural constraint for J using j, that is,

Z2EM, VpJ(z) =0 = J'(2) =0.

Proof. If z is such a point, then there exists A € R such that

VJ(z) = A\VG(2) = (J(2), 2) = MVG(2), 2).
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On the other hand, we know that

so A must be equal to —%. Then

VG(z) = =V¥(z) + 2z,
Vi) = %\Il(z) _va(s),

and this immediately implies that V®(z) = z, which is completely equivalent to

VJ(z)=0.
O
Lemma 6.26. There exists Co > 0 such that J(u) > Cql|ul|? for all u € M.
Proof. We use the definition of ¥ and to infer that
_ 1 1 1
J(u) = 7/ wf(u)dx —/ ds/ uf(su)da = / ds/ [suf(u) —uf(su)] de =
2 Jo 0 Q 0 Q
1
:/ ds/ [su® (h(u) — h(su))] dz >
0 Q
1
> / s(1—s%) ds/ u2h(u) dz >
0 Q
> Ca/ u?h(u) dz = Cy||ul|?,
AL
—v(w)
where the last equality follows from the fact that u € M implies W(u) = |Jul|?. O

Lemma 6.27. Let (u;);en be a Palais-Smale sequence at level ¢ > 0 for J on M. Then

(i) ||ui|| is bounded and there exists u # 0 such that u;, — 4;

(i3) there exists k > 0 such that ||V J(u;)| > k.

Proof.
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(i) By definition
J(u;) ioteo, o

and using the previous result we also know that
T(us) > calluil®

0 |lu;]| is bounded and (u;);en converges weakly to some @ up to subsequences. To
prove that @ # 0, we notice that

weM = fuill = p = W(u) = [ui]? > .
But ¥ is weakly continuous so

U(a) > p> = u#0.

(ii) We argue by contradiction. Suppose that Vj(ui) — 0. The operator V.J is compact,
so we can conclude that

1

(VU(@), @) — U(a) = - /Q @ (7) da.

VJ(@)=0 = 0= 5

DN =

We know already that the right-hand side is strictly positive, so we obtained our
contradiction.

O

Lemma 6.28. The function j, restricted to M, satisfies the Palais-Smale condition at all
levels ¢ > 0.

Proof. Let (u;);eny be a Palais-Smale sequence at level ¢ and let @ be the weak limit of a
subsequence (u;, )xen. We have

VMJ(UZ‘) = VJ(Ui) - OéiVG(ui)»

where

o (V). VG(w))
' IVG(ui)>

We proved already that ||[VJ(u;)|| > k and it is easy to see that ||[VG(u;)|| < ¢, so taking
into account that

VMJ(UL) = VJ(’LLZ) —Qy VG(’U,Z),
—0 40 bounded

we must have |a;| > ¢ > 0. It follows that

VG(u) = — [VT(w) ~ VauT(w)] .

K2
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which easily translates to

1 —~ ~
2u; = VU(us) +— | VT (u3) = Voad ()

compact compact —0

and thus w;, converges strongly to u, concluding the proof. O

Proof of Theorem 6.25. Simply apply Theorem 6.21 replacing f with its positive part f+.
O



Chapter 7

Min-max Methods

In this chapter, we will discuss the existence of stationary point of a function J, defined on
a Hilbert space X, which can be found via different min-max procedures.

7.1 The mountain pass theorem

We proved that (DSL) admits a positive solution, provided that f satisfies certain assump-
tions including a growth condition

h(su) < s“h(u),

that holds at all point v € X. A natural question is whether or not we can prove a similar
result when the behaviour of f is only known at the origin and at infinity. To deal with this
problem, we consider the corresponding functional

7 = 5l = | P,

with || - || = || - |lx and X = H}(Q). It is easy to verify that u = 0 is a proper local minimum
for J since, assuming that f/(0) = 0, we have

F10)=0 = (J"(0)v, v)x = [[v]*.

On the other hand, if we assume that F(u) ~ |u[P™!, 1 < p < 22 then for any u € X that

n—27

is different from zero we find that

2
lim J(tu) = lim [];||u|2 7/ F(tu) dx] = —00.
oo Q

t—+o0 t—+
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In particular, the functional J is not bounded from below on X. We also notice that

sup J = +o00
x
since we can always consider a sequence of function ||u;|| — 400 with [, F(u;) dz uniformly

bounded. Now to fix the ideas, consider the model nonlinearity so that

1 1
Ttu) = 5 ull? — i+ /Q ufP+ da.

The real valued map t — J(tu) achieves its maximum at a unique point ¢t = ¢, > 0 and, as
expected, it is determined by the fact that

tu € M :={ue X\ {0} : (J'(u), u) =0},

where M is the natural constraint introduced many times before. If z is a critical point for
J, we know that J(z) is equal to the minimum value of J achieved on M, and thus

J(z) = min maxJ(tu).
uwex\{0} teR

The main goal of this section is to generalise this argument and to find optimal assumptions
that allow one to find critical points of a functional J via a max-min procedure.

In the sequel, to fix the notation, we will assume that J has a local minimum at v = 0,
but it is important to understand that this is a totally arbitrary choice.

(MP — 1) The functional J belongs to C*(X, R), J(0) = 0 and there are r, p > 0 such
that J(u) > p for all u € S,.

(MP — 2) There exists e € X with |le|| > r such that J(e) < 0.

We will show that these assumptions on the geometry of J are almost enough for the
existence of a saddle point. Let

Ii={yeC(0, 1], X) : 7(0) =0, (1) = e}
be the set of all continuous curves connecting 0 and e and notice that it is nonempty since
t— te

trivially belongs to I'. We define the MP level as

:= inf t)). .1
c erelmg%&ﬁ]J(v( ) (7.1)

If J is a functional that has the MP geometry, which means that it satisfies the two assump-
tions above, then it is easy to see that

vyel = ~([0,1]) NS, #8 = c> rreliépJ(u)Zp>0,
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so if we were to find a critical point u at the level ¢, we could immediately conclude that it
is not trivial (u # 0). The following result is due to Ambrosetti and Rabinowitz in 1973.

Theorem 7.1 (Mountain Pass). Let J be a functional satisfying (MP — 1) and (MP — 2).
Suppose that the Palais-Smale condition at the level ¢ given by (7.1) holds. Then

dzeX : J(z)=¢ VJ(z)=0
and z is nontrivial, that is, z # 0.

To prove this result, we first need a technical lemma which gives us the existence of a
particular deformation of the sublevels of J that keeps a good portion of them fixed.
Lemma 7.2. Let J € C1(X, R) and let ¢ € R be any noncritical value for J. Suppose that
the Palais-Smale condition at the level ¢ holds for J. Then there are § > 0 with ¢ — 2§ > 0
and n deformation in X such that:

(a) n(J*+0) € J0;

(b) 1 restricted to J°~2° coincides with the identity map.
Proof. Recall that J always admits a U-gradient flow V for J, that is defined at all points
u € X such that VJ(u) # 0, with the following properties:

Q) V)l < 2(VJ(u)ll;

(i) (V(w), VJ(u)x > [V J(u)|.

Let b € C%1(R*, R") be the Lipschitz function defined by setting

1 ifse(0,1],
b(s) :=
1 ifs>1.

Let Ac={ueX: Ju)€lc—09,c+d], B:={uecX : J(u) € (c—24, c+26)°} and define
the Lipschitz function from X to R given by

g(u) = dx(u, A) + dx(u, B)

€ [0, 1].

Notice that g is equal to zero if and only if u € B and equal to one if and only if u € A. We
can consider a slightly modified vector field as flow

V(u) = —g(wb([|V I ()|)V (u).

There are several vantages in replacing V' with V(u) First, it is well-defined everywhere
(even where the differential of J vanishes), the boundedness of b gives the global existence
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of n and it is locally Lipschitz. Consider the solution of

and notice that the following properties are satisfied:

(i) If u € B, the V(u) = 0 and thus a(t, u) = u at all times ¢ € RT.
(ii) The solution « is globally defined and ||V (u)|| < 2.

(iii) The function ¢ — J(«(t, u)) is non-increasing since

%J(a(t, u)) = =g(@)b(|[VI(a)[[){VJ(a), V(e))x <

< —g(@)b([VI (@) DIV I(a)]* < 0.
Now let > 0 be such that
J(u) € [c—6, c+ 6] = ||[VJ(u)| >3,
and suppose that ¢ —26 > 0. Let T' = % and define the deformation by setting
n(u) := a(T, u).

Then (b) trivially holds true, so we only need to check that n satisfies (a). For this, let
u € J°t and suppose that n(u) ¢ J¢°. It follows that

J(a(t, u)) € [c—6,c+ 6] foralltel0, T],

and hence «(t, u) belongs to A for ¢ in the same interval. Using the definition of g we infer
that
gla(t,u)) =1 foralltel0,T],

SO T
J(n(u)) = J(u) = —/0 b(IV I (alt, u)) NV I (alt, w), V(a(t, u)))x dt <

IN

T
—/O b(IV I (axlt, W) DIV (alt, w))l|* dt <

T
—/ 62 dt = —26,
0

and this gives a contradiction since

IN

Jnu) < Ju) —20<c+6—-20=c—6 = n(u) € J°.
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Proof of Theorem 7.1. We argue by contradiction. Suppose that the MP level ¢ is not
critical and let n be the deformation given by Lemma 7.2. Now notice that

0,ecJ’ = 0,ecJ? — (yel = noyel),
so n associates a curve in I' to any curve in I'. Recall that

= inf t
¢= Inf max J(y(1)),

so for any § > 0 we can find v € I such that

) < ¢+ 6.
max J(y(t) < e+

The deformation 7 maps ([0, 1]) into J~? so

J t) <c—9
o (nox(t) <c—9,

and this is a contradiction since c is the infimum value and yet no~ € I'. O

Remark 7.3. We cannot remove the assumption that J satisfies the Palais-Smale condition
at the MP level c. Indeed, it is easy to find a counterexample in R? for which J has the MP
geometry but there are not critical points except for (0, 0). Namely, let

J($, y) = .132 + (1 - J")SyQa

and notice that (MP — 1) is satisfied with 7 = § and p = 35, while (MP — 2) is satisfied
with e = (2, 2).

7.2 Application to the Dirichlet problem

In this section, we will exploit the theoretical results presented above to prove existence of
a positive solution to a class of Dirichlet boundary-value problems:

—Au(x) = f(u(z)) ifzeq,
(D)
u(z) =0 if x € 00

We assume €2 to be a smooth bounded domain in R™ and f a function satisfying the following
assumptions:

f is Carathéodory;

|f(z, v)| < a+ blu|P for some 1 < p < 2EZ;

n—2’

(z, )

Lm0+ fIT\ = X € R uniformly with respect to z € €;
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there exists r > 0 and 6 € (0, %) such that
0< F(z, u) < Ouf(x, u) (7.2)
for all u with norm |lu|| > R.

Lemma 7.4. If f satisfies the property , then

F(u) > =u? —c for allu> R. (7.3)

ol

Lemma 7.5. If A < A1(Q), then (MP — 1) holds.

Proof. Fix € :=
such that

1(A1 — A) > 0. The assumptions on f allows us to find a constant A € R

F(z, u) < (A + e)u? + AluPT.

[N

Now integrate and use Sobolev embedding to infer that

/QF(JU, u) dz

1 1
< 5()\ +)lull72 (o) + A||UHE§+1(Q) <

1
< SO+ llullZa ) + A'lluP*!
so that the functional can be estimated by
Lo Nl L 2
J(w) 2 S llull” = A" = S (A + €l|ullze o).

We now recall that
2 1 2
||U||L2(Q) 2 N ]

SO
1 )\1 —A—¢€
J(u) > 5 | =) lull® = AfJu]P*,
2 A1
and the first term is multiplies a positive constant. O

Lemma 7.6. Under no extra assumpions (MP — 2) holds.
Proof. Let e € X smooth and positive on 2. Then for ¢t € R we have

J(te) = %t2||e||2 - /QF(:U, te)dzr >

v

1 to
§1f2||e||2 - (Cllellwm - d) Q] >

Y

1 1 o0
St lell® = Cat [l Loy + Ca =7 oo,
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Therefore, we can find 7 € Rt such that Te satisfies J(re) < 0 O

To apply the MP theorem, we only need to prove that J satisfies the Palais-Smale
condition at the level c. A standard argument shows that

(un)nen € (PS). for J = u,, bounded,

but the reader may try to prove this themselves as an exercise to get acquainted with the
notion of Palais-Smale.

Lemma 7.7. Under no extra assumpions, the functional J satisfies the Palais-Smale con-
dition at the level ¢ > 0.

Proof. First, we evaluate ® at u,, and decompose the integral in such a way that we can use
. Namely,

@(un):/ <RF(~T7 un)dx+/ F(z, up)da <

un >R

<Cqr,s+0 Un f (2, up) do <
un>R

< Céz) R, f + H/Qunf(m, un) dx <

sc&Jﬁf+9[lQVun2dx+ouwuw}7

where the last inequality follows from the definition of differentiable:

ollunl) = VI )] = [ [V de = [ w,f(a ).
Q Q
Since u,, is a Palais-Smale sequence, |J(u,)| < ¢ and hence
/ Vul? de < C + 20(up) < C'26 [/ Vul? dz + 0(||un||)} .
Q Q

Recalling that 26 < 1, this implies that

[ 1Vunf?do < C4 offunl).

Q

Now notice that p < Z—fg, so ® is weakly continuous and its differential is a compact

operator. From
VI (un)[v] = (un, v) = (VO(un), v),

we conclude that
VJ(un) = tp — VO(up).

Since u,, is Palais-Smale, u,, is bounded and hence we can find a subsequence u,,, converging
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weakly to some u. Furthermore,

and the first term V.J(u,,) converges strongly to zero, so by compactness V®(u,, ) must
converge strongly to V& (). O

This proves that J satisfies the Palais-Smale condition at the level ¢. We can finally

v

apply Theorem 7.1 and conclude that (D) admits a positive solution.

7.3 Linking theorems

Let & be a nonempty class of subsets A C X. Suppose that

c:= inf sup J(u) > —oo.
Ae%ueg ( )

The idea is that, if € is stable under deformations, we can do a sort of MP theorem for
which ¢ is a candidate min-max level.

Definition 7.8 (Link). Let A be a compact manifold with nonempty boundary and let
C C X be a subset. Consider the class of homotopies

A ={heCWN,X) : h’aNEidaN}-
We say that ON and C link if
hN)NC #@ forall he 2.
Example 7.9. The MP theorem is a linking-type theorem with C' = Sk and
N :={te : t €0, 1]}.

It is easy to verify that C and ON link using Bolzano’s theorem.

We will now investigate the linking property between slightly more complicated sets.
From now on, we will make use of degree theory and, in particular, of the homotopy
property. The reader that is not acquainted with it can find the formal construction and
the main properties in [1].

Proposition 7.10. Let X be a normed vector space and assume that X ==V & W with
V, W closed subspaces and dim(V') = k < co. Then

C:=W and N:={veV :|v]|<r}

link.
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Proof. Let h € 7 and let p : X — V be the projection associated to the direct sum. Then
b= poh: N —V

coincides with the identity on ON. It follows from degree theory that h vanishes at some
z € N that does not belong to the boundary, and hence

h(z)=0 = h(z) eVe=W =C.
[

Proposition 7.11. Let X be a normed vector space and assume that X ==V & W with
V, W closed subspaces and dim(V) = k < co. Given e € W and R > 0 define

C={weW : |w|]|<r
and
Ni={u=v+se:veV, |v| <R, sel0,1]}.
Then C' and ON link, provided that |le|| > .

Proof. Let h € 5 and let p : X — V be the projection associated to the direct sum. Identify
the manifold A with
N = By (0, R) x {se : s€ 0, 1]}

and define N
h(u) := (po h(u), [[h(u) —poh(u)|| —r).
We now evaluate it at the boundary ON:

h(v, s) = (v, [lell =) # (0, 0).

It follows that we can apply once again degree theory to find (v, s) € N such that E(u s)
vanishes. In particular,

poh(v+ se)
= h(v+se) e W and |[h(v+se)|=r,
(v + se) —poh(v+se)| =r

which means that h(v + se) € C, and this concludes the proof. O

We are now ready to generalise the MPT. Let X be a Hilbert space, J € C*(X, R) and
ON, C C X such that Ny and C link. Assume that

(J1) J is bounded from below on C, that is, p := inf,ecc J(u) > —o0;

(J2) p> B :=sup,con J ().
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Definition 7.12. The number

= inf Joh
¢i= inf sup Joh(u)

is called linking level associated to the function J.

Lemma 7.13. Suppose that Ny and C link. If (J1) holds, then c > p.

Proof. By definition, for each h € 5 the intersection h(N) N C is nonempty. Thus
sup J(h(u)) > inf J(u) = p.

weN uelC

Theorem 7.14. Suppose that the following assumptions hold:

(a) Ny and C link.
(b) (J1) and (J2) hold.

(¢) The functional satisfies the Palais-Smale condition at the linking level c.
Then c is a critical value, that is, there exists u € X such that J(u) = ¢ and VJ(u) = 0.

Proof. Notice that ¢ > p > . Suppose that c is not a critical value and use the deformation
lemma to find a continuous deformation n which satisfies

e 7(Jet9) C Je79 for § such that 8 < ¢ — J;

e 7(u) = u for all u € JP.

Now let h € J. It is easy to verify that n o h € 5 since it is composition of continuous
mappings and also

n(u) =uforallu e J° = n0h|aN=77|aN=idaN
since N’ C J?. Now let h € # be such that

sup J(h(u)) < ¢+ 6.

ueN
Then
sup J(noh(u)) < c— 4,
ueN
and this gives a contradiction since c is the infimum. This concludes the proof. O

We now present three easy consequences of the theory developed in this section, which
are incredibly interesting by themselves.
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Theorem 7.15. Let C be a manifold of codimension one in X and suppose that ug, uy are
points of X\ C belonging to two distinct connected components of X\ C. Let J € C*(X, R)
satisfy the following assumptions:

(L-a) infe J(u) > max{J(ug), J(u1)};

(L-b) J satisfies the Palais-Smale condition at the linking level c.

Then J has a critical point u at level ¢ and u # ug, uq.

Theorem 7.16. Let X =V & W, where V and W are closed subspaces and dim(V) < oo.
Suppose J € C1(X, R) satisfies:

(L-a) There exist v, p > 0 such that

J(w)>p  for allw e W with |w| =r.

(L-b) There exist R >0 and e € W, with ||e|| > r such that, letting
N={u=v+te:veV, ||v| <R, tel0,1]},

one has that
J(u) <0 for allu € ON.

If, in addition, J satisfies the Palais-Smale condition at the linking level ¢, then J has a
critical point @ at level ¢ > 0. In particular, u # 0.

Theorem 7.17. Let X =V & W, where V and W are closed subspaces and dim(V) < oo.
Suppose J € C1(X, R) satisfies:

(L-a) There exist p > 0 such that

J(w)>p forallweW.

(L-b) There exist r > 0, § < p such that
Jw) < B forallu eV with ||v| =r.

If, in addition, J satisfies the Palais-Smale condition at the linking level ¢, then J has a
critical point @ at level ¢ > 0.

7.3.1 Application of the saddle point theorem

Let ©Q be an open bounded subset of R™ with smooth boundary. Consider the Dirichlet
problem
—Au—du= f(z,u) ifzeQ,
(7.4)
u=0 if x € 0Q.
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Theorem 7.18. Suppose that

(i) X is not an eigenvalue of —A;
(ii) [ satisfies the Carathéodory condition;

(i5t) f is sublinear, that is, there is a < 1 such that

f(z, s)| < a+bls|.
Then (L-1) and (L-2) hold. Furthermore, the functional associated to the problem,

J(u) = / (|Vul? = Mu|?) dz — / F(z, u)dx,
Q Q
satisfies the Palais-Smale condition at any level. In particular, the linking level is critical.

Proof. By assumption, there exists k& € N such that A € (Ag, Agt1). If ¢; denotes the jth
eigenfunction, then we can take

V= Span<@17 HERR Spk>

In this case, W is the complementary subspace in X := H{(2). Notice that the quadratic
form

Q(u) = [Vul* = Aul®

is definite negative on V' and definite negative on W, and also that the sublinearity of f
together with the Sobolev embedding implies that

/QF(x7 u) dx

It follows that there exists v > 0 such that

< A+ Bllul|*,

weV = J(u) < —llul® + A+ Bllulott L2%, o,

which means that we can select R big enough in Theorem 7.16 for which (L-2) holds. In a
similar fashion, notice that

uweW = J(u) > 9|ul® = A~ Blu|**,

which means that p := infy J(u) > —oco. Since R is arbitrarily big, we can also require that
B < p and thus (L-1) holds as well.

Palais-Smale condition. Write u = uy + uyw. Then

VJ(uw)uy] = VQ(u)[uy] — /Qf(x, wuy do = 2Q(uy ) — /Q f(z, u)uy de.
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Let (un)nen be a Palais-Smale sequence. Then

VI (un)[(un)v] = o([lun]))

because VJ(u,)[(u,)y] converges to zero; on the other hand, the identity above suggests
that

VI (un)[(un)v] = 2Q((un)v) + O(1 + [[u] ).
Since @ < 0 on V, we can easily infer that
Mun)vI* < ollunll) + O + un['+).
In a similar fashion, we make the same computation on W and find that
M un)w l? < ollunl)) + O + [lun|9).

Therefore, any Palais-Smale sequence for the functional J is bounded in the || - ||x-norm.
For the compactness, notice that u,, bounded implies

Up, — U

and, using the fact that V is finite-dimensional, we also have that
k—oo  _
(unk)v — uy.

Moreover, we have

VJ(un)v] = /Q(Vun Vo — dugv)de — /Qf(x, U v dz,

which gives

/ Vuy, - Vodr = VJ (uy,)[v] +/ Aupv dx +/ f(z, up)vde.
Q Q Q

We conclude that the convergence is strong (up to subsequences) because the first addendum
converges to zero, while the other two are compact linear operators by Sobolev embedding
and sublinearity of f. O

Remark 7.19. If A = )\, then the existence of the solution is not guaranteed. Indeed, if
we consider the problem
—Au—du=p ifze,

u=>0 if x € 09,
then it is easy to verify that it does not admit any solution since u should be in the orthogonal

of the linear space generated by .

To conclude this section, we want to point out why any Palais-Smale sequence is bounded
is enough to infer that the functional J satisfies (PS)..
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Let 2 C R™ be a bounded set and let f be a function that satisfies the Carathéodory
condition and the growth condition

2
|f(z, s)| < A+ B|s]P forp< ZJ_F2 if n> 3.

Let F(z, u) := [ f(z, s)ds and ®(u) = [, F(z, u) dz. We claim that V& is compact as
an operator from X := H}(Q) to X.

Proof. Let u, be a bounded sequence in X weakly converging to some «. Then u,,, converges
strongly to @ in LP*1(Q) and by Nemitski theorem

f(z, up,) — f(x, @) strongly in L5 (Q).
This implies that [|[V®(u,, ) —V®(u)|| — 0 which is enough to infer that V® is compact. [
Corollary 7.20. Consider the Dirichlet problem
—Au = f(z,u) ifzeq,
u=0 if x € 092,

and the associated function J(u) = % [, |[Vu|? dz—®(u). Then the following properties hold:

(a) If u, converges weakly to @ and VJ(u,) — 0, then u,, converges strongly to .

(b) If Palais-Smale sequences at the level ¢ for J are bounded, then J satisfies the (PS).
condition.

7.3.2 Application of linking-type theorems

Theorem 7.21. Let € be a bounded subset of R™. Let f € F, with1 <p < "+2 5 forn >3,
and suppose that

o S 9)

im

s—0+ S

=\ forae x€Q,
for any A € R, and
1
Jr >, 0 € (0, 5) :0< F(x, u) <Ouf(x,u) forallxzeQ and all u > r.

Then the Dirichlet problem (7.4) admits a nontrivial solution.

Proof. We prove the result for the model problem

—Au =X u+ [uf~lu ifzeQ,
(7.5)
u=20 if x € 00
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Let X = H}(Q) and consider the associated functional

1 1 1 1
J(u) = 5”“”2 - 5)\“U||%2(Q)m||U||Z;+1(Q)-

If A < A1, then we have proved already (see [REF]) that the MPT is enough to infer the
existence of a nontrivial solution. So we can assume without loss of generality that

A <A< A

for some k > 1; the idea is to apply Theorem 7.16 with V' = Span(py, -+, ¢r) and W = V4,
the L? complement of V. Indeed, if w € W we can always write

w= Z aip;.
i=k+1
If [[w]| — 0, then
1 & A 1 A\
=33 o (1=55) + oll®) > 5 (1= 5 ) ol + ool

and the latter is always strictly positive since A < Ap41 by assumption. In particular, the
assumption (L —a) of Theorem 7.16 holds with r small enough. Now let V' be a finite-
dimensional subspace of X and v € V' be an element with unitary norm; it turns out that

R 1 1 B 1 ~p+1
J(tl)) = §t2 _ §>\2t2HU“%2(Q) — mtp-i_le“it*l(Qy

Since p > 1 and V finite-dimensional, it follows that we can always find ¢ > 0 big enough
such that the quantity above is strictly negative. In particular, we can find R > r and
e € W, |le|| = R, such that

[v+te]| > R = J(v+te) <0.

Then on the three sides of N given by {u = v+te : ||v]] = R}U{u = v+ Re} the functional
J is strictly negative. It remains to see what happens on the fourth side of ON, namely

{veV : || <R}

However, it is easy to verify that v = Zle a;p; gives ||v||2L2(Q) = 3% A7'a2; this implies

1=1""
that
[0l|72e) = A oIl
and hence
Jw)y <= (1= 2 )l <0
-2 Ak -7

This shows that (L — b) holds as well. The Palais-Smale condition is obtained in the same
way as Theorem 7.18 so we can apply Theorem 7.16 to conclude. O
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Remark 7.22. Notice that J |, > 0 strictly, so a solution corresponding to a critical point
at the level ¢ is necessarily nontrivial.

7.4 The Pohozaev identity

Let ©Q be an open bounded subset of R™ with smooth boundary. Consider the Dirichlet
boundary value problem with nonlinearity independent of x, that is,

—Au= f(u) ifzeq,
(7.6)
u =0 if x € 092,

and let F(u) = [, f o

Theorem 7.23 (Pohozaev). Let v denote the unit outer normal at 0). If u is any classical
solution of (7.6), then the following identity holds:

1 2
n/QF(u)ds:i/BQu (z- l/)do—i—T uf(u)dx (7.7)

Proof. Set O(z) := (x - Vu(z))Vu(x). Then

) ou 0 ou

Ju

= Au(z - Vu) + |Vul® + le—|Vu|2
Then an application of the divergence theorem shows that
/ Au(z - Vu) + |Vul? + L lei|Vu|2 dz = / (z-Vu)(Vu-v)do.
Q 24 O oQ

As for the boundary term, since u = 0 on 9 one has that Vu(z) = u,v and thus the above
equation becomes

J

Now set ©1(z) := 3|Vu|?z. Since its divergence is

Au(z - Vu) + |Vul? + leVu21 —/ (z - v)u? do.

9]

div®1:g|Vu|2 Zmz |Vu|2
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another application of the divergence theorem shows that

J

If we plug this into the previous identity we find that

n 2, 1 0 2 _1/ N2
2|Vu| + 2Zi:xzaxi\Vu| ] dz = 5 aﬂ(x v)us do.

n 1
/QAu(x -Vu)dr + (1 — 5) /Q |Vu|? dz = 5 /Em(x -v)u2 do. (7.8)

The first integral can easily be rewritten using the equation (7.6) of which u is a solution;
namely, we have

—/QAu(x-Vu)dx:/Qf(u)(x~Vu)dx:/Q§i:xia§£iwdx.

Integrating by parts we obtain

which implies that
/ Au(z - Vu)dz = n/ F(u)dz.
Q Q

Once again, using (7.6) we conclude that

/Q|Vu|2dx:/guf(u)dx,

which plugged into the identity (7.8) leads to the Pohozaev identity. O

An immediate consequence is that the growth of the nonlinearity f with exponent p <

+2
=
precise statement which follows from the Pohozaev identity:

cannot be eliminated if we want to find nontrivial solutions of (7.8). There is a more

Corollary 7.24. If Q is a star-shaped (w.r.t. the origin) domain in R™, then any smooth
solution of (7.8) satisfies

n—2

n/QF(u)dx— /Quf(u)dx>0.

In particular, if f(u) = |u|P~tu, then we find

—2
(irnz )/ [uf™ dz > 0,
p Q

. . +2
and hence u # 0 implies p < +15.




Chapter 8
Lusternik-Schnirelman Theory

In this chapter we aim to discuss the elegant theory of Lusternik and Schnirelman that
connects critical points of functionals on manifolds to topological properties of the latter.

8.1 Lusternik-Schnirelman category

Throughout this chapter, M will always denote a Hilbert space or a C'-submanifold mod-
elled on a Hilbert space.

Definition 8.1 (Contractible). Let X be a topological space. A set A C X is contractible
in X if the inclusion ¢ : A <— X is homotopic to a constant map. Namely, there exists

HeC([0,1] x A, X)
such that H(0, u) = v and H(1, u) = p for all u € A.

Definition 8.2 (Category). Let X be a topological space and A C X. The (L-S) category
of A with respect to X, denoted by cat(A4, X), is the least integer k£ € N such that

k
AC U A;,
i1

where each A; is closed and contractible in X. If such an integer does not exist, we set

cat(A, X) = oo and if A is empty we set cat(&, X) = 0.

Remark 8.3. The category of A coincide with the category of its closure. Moreover
cat(4, X) > cat(4,Y)

provided that AC X C Y.

Example 8.4.
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(i) The sphere S™~! is contractible in R™ so cat(S™~ !, R™) = 1. However, it is not

contractible in itself but can be covered by two closed hemispheres so cat(S™~1) = 2.

(ii) The sphere in a infinite-dimensional Hilbert space is always contractible so
cat(Sy, H) = 1.

The reader interested in this property might refer to [4].

(iii) The category torus 72 = S! x S C R3 in itself is equal to 3. It is easy to verify that
cat(T?) < 3 using Ay, Ag, Az as defined in Figure [REF].

The opposite inequality, however, is quite hard to obtain and we will only explain at
the end of the section how to use a general result to prove it.

Lemma 8.5. Let A, BC M.
(a) If A C B, then cat(A, M) < cat(B, M).
(b) cat(AU B, M) < cat(A, M) + cat(B, M).

(c) If A is closed and n € C(A, M) is a deformation, then

cat(4, M) < cat (m, /\/l) (8.1)

Proof. The only nontrivial assertion is (c). Let k := cat( (4), M) an assume that it is

finite (otherwise there is nothing to prove). Then

k
77(A) - U Cia
i=1
where C; is closed and contractible in M. Set
Ai = 71(01')

and observe that these are all closed because 7 is continuous. Moreover, each A; is con-
tractible because the composition of a contraction with 7 gives another contraction. Since

k
AC LJJLM7

i=1

we easily deduce that (8.1) holds. O

The strict inequality in (8.1) is possible to achieve. Indeed, let M = S* and A = S} the

hemisphere
St ={e" : 9|0, 27]}.

Let n(e*?) := H(1, 6), where
H(t, 0) = e (T
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is defined for all ¢ € [0, 1]. Then it is trivial to verify that cat(A, M) < cat (77(A), M)

Lemma 8.6. Let A C M be compact. Then the following properties hold:

(i) cat(A, M) < oo.

(i) There exists a neighbourhood Ua of A such that
cat(A, M) = cat (m, M)

Proof. Suppose first that cat(A, M) =1 and let H : [0, 1] x A — M be the contraction to
the constant map p. We would like to extend H to

S = ({0} x M) U ([0, 1] x A) U ({1} x M),
and this is easily achieved by setting
u if (¢, u) € {0} x M,
H(t, u) = H(t,u) if (t, u) € [0, 1] x A,
P if (¢, u) € {1} x M.

Since S is closed in Y := [0, 1] x M and H is continuous from S to M, we can use the
extension property to find a neighbourhood N of S in Y and a function H € C(N, M) such
that

H ‘ s =H.

Since [0, 1] x A is compact and the distance with Y \ N is strictly positive, we can easily
find a neighbourhood U4 of A in M such that

[0, 1] x U, C N.

It is easy to verify that Uyu is contractible in M using the contraction H appropriately
restricted to a subset of its domain. In particular,

cat(A, M) =1 = cat (m, M) =1

(i) Let ¢ € A Then above we proved that there exists a contractible neighbourhood U, of
category equal to one. Since we can always cover A with finitely many U,’s, we infer
that the category of A is finite.

(ii) Let k = cat(A, M) and let Ay, ---, Ay be the closed and contractible sets such that

k
Acl A
i=1

Observe that if we replace A; with AN A;, we can assume without loss of generality
that A;’s are also compact. Since cat(A;, M) = 1 we can find an open neighbourhood
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U; of A; such that
cat (UZ, ./\/l) =1

foreacht =1, --- , k. Let Uy := Ule U; and notice that Uy is an open neighbourhood
of A such that
cat (m, /\/l) > k.

Since Us C U, U;, we also get the opposite inequality and hence the equality holds.

O

Remark 8.7. It can be proved that the category satisfies the inequality
cat(M) > cup — length(M) + 1,
where the cup-length of M is defined by
cup — length(M) =sup{k e N : Jaq, -+, ap € M" s.t. aq U---Uay #0}.

If M is a smooth manifold, then by De Ram’s cohomology a; U - - - U ay, corresponds to the
A-product of differential forms. In particular

det Adz? #0

on the torus T2, so we obtain the bound cat(T?) > 3.

8.2 Lusternik-Schnirelman theorems

Let M be a Hilbert space or a C''-submanifold modelled on a Hilbert space. Define
cat g (M) :=sup {cat(4, M) : A C M is compact}

and introduce the corresponding class of sets that is preserved when we use deformations;

namely, let
Cp:={AC M : Ais compact and cat(A, M) > m}

for m < catg(M). Let J € C*(M, R) and define

Cm = Inf maxJ(u).
M AEC,, ueA (u)

The following properties follows from the definition immediately:

(a) The first level, ¢1, coincide with inf,epq J(w).

(b) The sequence of levels is increasing, that is,
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(c) For all m < catg (M) there results ¢, < co.
(d) If J is bounded from below on M, then all ¢,,,’s are finite.

Theorem 8.8. Let J € C1(M, R) be a functional bounded from below on M and satisfying
the Palais-Smale condition at all ¢ € R. Then J has at least catyx (M) critical points and
the following holds:

(1) For allm < catg (M), ¢, is a critical value for J.

(2) If there are integers q, m > 1 such that

C:=Cm = Cn+4+1 = " = Cm+q,
then cat(Z., M) > g+ 1.

Remark 8.9. The category of a finite set of points {p1, ..., py} in M is always equal to
one (if M is connected). Consequently, (2) gives us an even more precise information than
merely saying that there are infinite critical points at the level c.

Lemma 8.10 (Deformation). Let J € C*(M, R) be a functional bounded from below on
M and satisfying the Palais-Smale condition at all ¢ € R. Then for each U neighbourhood
of Z. there are § = 6(U) > 0 and a deformation n such that

U(MC+6 \ U) C Mc—5.

Proof. We claim that for each U neighbourhood of Z, there exists 6 > 0 such that
ug U and |J(u) —c| <5 = ||[VJ(alt, u))|| >25 forallte]0,1].

We argue by contradiction. Assume that there are sequences t;, € [0, 1] and uy ¢ U such
that

k— o0

1
|J(ug) —c| < z and ||VJ(a(ty, u))|| — 0.

Let t € [0, 1] be the limit (up to subsequences) of 5 and set vy, := «a(ty, ug). Then

1
J(wk) < J(ug) <c+ %
and, since J is bounded from below and satisfies the Palais-Smale condition, we find that
J(vi) converges to c. Passing to the limit the inequality above shows that

c= lim J(v) < lim J(ug) <e= lim (c+ 1),
k— o0 k—o0 k—o0 k
which means that J(uy) also converges to ¢, and hence it is enough to prove that uy, converges
to some z. We know that v, — z and the flow a(t, z) = z for all t € [0, 1]. We can go
backwards and obtain
Up = Ot(ftk, l/]c)7
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so by Cauchy’s theorem we infer that uy — z. Since z € Z. we find a contradiction because
uy, does not belong to U for all £ and Z,. is contained in U. The rest of the proof follows as
in Lemma 6.12. L]

Proof of Theorem 8.8. The assertion (1) follows from the deformation lemma in the same
fashion it did in the MPT. To prove (2) we argue by contradiction, i.e., we assume that

cat(Z., M) <q.

Since J satisfies the Palais-Smale condition, the critical set Z. is compact and hence there
exists an open neighbourhood U of Z, such that

cat (U, ./\/l) <gq.
By the second deformation Lemma 8.10, there are § > 0 and a deformation 7 such that
0 (M U) © M2,
Since ¢ = ¢m4q we can find an element A € Cj44 such that

supJ(u) <c+d = AC METS,
ucA

Set A" := A\ U. Then
cat (A', M) > cat (4, M) —cat (U, M) >m+q—q=m,

which means that A’ € C,,. Therefore, the image of A’ via 7 is contained in M°~° and,
using the properties of the category, we also have that

cat (n(4"), M) > m.
In particular, we have A’ € C,, and

sup J(u) < c¢—96,

but this is a contradiction with the very definition of c¢,,. O

Theorem 8.11. Let M be a Hilbert space or a C*-manifold and let J € C11(M, R) be
bounded from below. Suppose that there exists a € R such that the Palais-Smale condition
holds at all levels ¢ < a. Then

cat(M?) < oo.

Proof. Let Z = {VJ =0} and set Z* := M®N Z. The Palais-Smale condition implies that
Z% is compact and by Lemma 8.6 we can find an open neighbourhood U® of Z% such that

cat(U?, M) = cat(Z%, M) < co.
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We can assume without loss of generality that ||VJ(u)|| < 1 for all w € U,. Then there
exists V® C U?, neighbourhood of Z%, such that

d:=d(V*, 8U") > 0.

If a gradient flow of J exits V* and enters the complement of U, then this has to happen
in a time bigger than or equal to d. Observe that by (PS.) there is § > 0 such that

IV (u)l| =6

for all u € M®\ V. Let o' :=a —infyep J(u) and T > g—;. Recall that

d
— g (alt W) =~V (alt, w)|?,

and thus if o(t, u) never enters V', we would have

J(aft, u)) < J(u) —Té* <a—ad = in/{/l J(u),
ue

which is impossible. Now let tg =0<t; <--- < t,_1 <t, =T be such that

[ti —tic1| <

S

Given p € M, there must be ¢ € [0, T] such that «(t, p) € V* and an index 4 for which
[t —t;] < 4. Clearly
a(tiv u) € Uaa

so we can consider the sets
Ai={peM® : at;, p) e U}.
By what we proved above, M* C (JI'_; A; and therefore
cat(M*?) < ant(Ai, M?).
i=0

Since A; can be deformed in U® via 7); := «(t;, -), we use the properties of the category to
infer that

cat(M?) < ant(m(Ai), M*) < (n+ 1ecat(U?®, M?) < oo.
i=0

Corollary 8.12. If J is also bounded from above on M, then cat(M) is finite.

Corollary 8.13. Let J be bounded from below on M. Suppose that cat(M) = oo and that
(PS)a holds for all a < sup,c g J(u). Then

Cm 222 sup J(u),
ueM
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and hence J has infinitely many critical points.

Remark 8.14 (Relative category). Suppose that A, Y C M are closed. We define the
relative category catag,y (A) as the least integer k such that

k
i=0
where A; is closed and contractible for all = 1, ..., k in M and there exists a homotopy
h e C(]0, 1] x Ag, M) satisfying
(0, ) =ida,, h(1,-)€Y and h(t, )], €Y.
If Y is empty, then the definition coincides with the one of category of A in M.

Theorem 8.15. If J satisfies the Palais-Smale condition for all ¢ € [a, b] then there are at
least cat v, pqa (MP) critical points in the energy strip MV \ Me.

8.3 Application to PDEs theory

Let Q be a bounded smooth subset of R” and consider the Dirichlet-boundary problem

—Au=Xu+ f(u) ifzeQ,
u=0 if x € 092,
where A € (Mg, Ap41) for some k > 2. Assume that f is continuous and satisfies the following
properties:
(1) f is subcritical at ¢ = 0, which means that f(t) = O(|¢t|*) for some « > 1.

(2) If F(u) == [ f(s)ds, then
()

[t|—oo  t2

(3) The function ¢ — f(¢) is nonincreasing (thus F(t) < 0 for all € R) and F(t) = 0 if
and only if £ = 0.

Theorem 8.16. Under these assumptions, the Dirichlet-boundary problem admits at least
two solutions.

Proof. Let X := H(Q) and let us consider the associated functional

1 A
J(u) ::§/Q|Vu|2dxf5/§z\u|2dmf/ﬂF(u)dx.

The assumption (2) tells us that —F(u) > Mu? for all M € R when u is sufficiently big,
while in the complement (which is compact) we can always find a constant Cy; > 0 such
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that F(u) < Cpy. It follows that
—F(u) > Mu® —Cy for all u € R,

We plug this inequality into J and find that

1
I 2 g [ FunP s (3= 3) [ funf?as - culel
2 Q 2 Q

and this goes to 0o as |Ju,|lx — oo since we can always pick M > 3. In particular, the

functional J is coercive on X and hence it satisfies the Palais-Smale condition at all levels'.

Remark 8.17. The W-gradient decreases the value of J, so it is not restrictive to apply the
min-max theory to a suitable sublevel X*. We introduce this apparent complication because
we can collect more topological information as if we were in R™.

We now substitute X with the sublevel X<% := {u € X : J(u) < 0}, which is easy to see
that it is nonempty using (1):

1
J(t91) o 5 (= A2+ O(|t] ),
————
<0

where ¢, is an eigenfunction of the first eigenvalue A;. Now notice that C; is nonempty and
hence ¢; < 0 (since we are working in X<°) is a critical level and

2o #0.
We claim that Cy is nonempty. Let V := Span{p, ..., ¢x) and, for r small enough, notice
that

sup J(u) < 0.

SNV

If we can prove that the category of S, NV in X<0 is bigger than or equal to 2, we will be
able to conclude that Cy # @. Let my : X — V be the projection and let

my (u)

T = e Wl

be the normalized projection which is the identity on S,.NV. Suppose that cat(S,NV, X<%) =
1 and let A D S, NV be the closed contractible set such that

H(@0,)|,=1da and H(l,)=pex~’

for some contraction H. The assumption (3) gives us that my(u) = 0 if J(u) > 0, which
means that my (u) # 0 for all u € X<Y and the restriction

o (u) SNV

1This assertion is not trivial, but one can show that coercivity gives the bounedness of Palais-Smale
sequences and the subcriticality of f allows one to write VJ = Id + V®, where V® is a compact operator.
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is well-defined. We can consider the composition
mroH:[0,1] x A— S, NV,

which, restricted to [0, 1] x S, NV, gives a retraction of a (k — 1)-dimensional sphere to a
point in itself, and this is a contradiction as the sphere is non-contractible in itself. O

Remark 8.18. If ¢; = ¢o < 0, then there are infinitely many critical points at level ¢ since
the category of Z. is at least two.

Remark 8.19. If A\ € (A1, A2), then V = ¢1R and the same argument leads to S, NV =
SY = {4q}. The sublevels become disconnected, but it is still true that

cat({£q}, X<%) = 2.



Chapter 9

The Krasnoselski Genus

9.1 Introduction

Let F be a infinite-dimensional Hilbert space. We say that a subset ) C F is symmetric if
it is symmetric with respect to the origin of F, that is,

u€efN) = —ueil

Let T be the class of all the symmetric subsets A C E \ {0} which are closed in E \ {0}.

Definition 9.1 (Genus). Let A € T. The genus of A is the least integer number k € N
such that there exists ® : A — R* continuous, odd and such that

O(x) A0 for all z € A.

The genus of A is usually denoted by v(A). If such a number does not exist, we set y(A) = co
and, if A = @, we conventionally set v(A) = 0.

Remark 9.2. We can equivalently define the genus of A to be the least integer number
k € N such that there exists ® : A — R*\ {0} continuous and odd. The reason is that we
can always extend such a map to a continuous one taking values in R¥ using Dugundij’s
theorem and even/odd parts.

Remark 9.3. The definition of genus does not change if we require ® to be a function with
values in the sphere S*~! instead of R¥ \ {0} since we can compose with the projection
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Proof. Let k € N be any positive integer, and let
®:Sp(0,1) » R”

be a continuous odd map. The infinite-dimensional sphere contains the n-sphere S™(0, 1) C
R"*1: hence by Borsuk-Ulam theorem it follows that, for n > k,

0€®d(S"(0,1)) = 0€d(Sp(0,1)).

Since Sg(0, 1) contains every finite-dimensional sphere, for every k € N we can take n = k+1
and obtain that 0 is in the image. This shows that the genus is +oo. O

Remark 9.5. In a similar fashion, one proves that v(9§2) = n, where  C R™ is an open
bounded even subset such that 0 € 2. In particular,

(S =n.

Proof. Tt is easy to verify that v (0€Q2) < n. On the other hand, if
$:00 CR" — R¥

is a continuous odd map, then Borsuk-Ulam theorem implies that 0 € ® (9€) for every
k < n. It follows that
v(0Q) > N = ~(09) = N.

Lemma 9.6. The following properties hold:
(a) If A €T is finite and nonempty, then y(A) = 1.
(b) If ACR" and 0 ¢ A, then v(A) <n.
(c) If0 € A, then v(A) = +o0.
Proposition 9.7. Let A and B be elements of the class T.
(a) The set A is empty if and only if the genus v(A) is equal to 0.
(b) If ®: A — B is a continuous odd map, then y(A) < v(B). In particular,
ACB = y(4) <~(B).
(c¢) The genus is subadditive, that is,
A(AUB) <~(4) +1(B). (9.1)

(d) There is an open neighborhood U D A satisfying the following properties:

(1) The set is symmetric, that is, if u € U, then —u € U.
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(2) The origin is not contained in the closure of the set, that is, 0 ¢ U.
(8) The genus coincides with the one of the set A, that is,

7 (U) =~(4).
Proof. The first property is obvious.
(b) If ¥ : B — R*\ {0} is a continuous odd map, then the composition
Tod:A— RN\ {0}

is still continuous and odd. It follows that v(A) < ~(B).

(c) Let k, h € N be the least positive integers such that there are continuous odd maps
@y : A — R¥\ {0} and @5 : B — R"\ {0} respectively. Let

®,: AUB - R*
be the continuous odd extensions of ®; and ®, respectively to AU B. Then
wmy:Gﬂm%@mD;AuBakaww{@on

is a continuous odd map. Moreover, every point u € A U B belongs to either A or B
so its image cannot be equal to (0, 0).

(d) Let k =~(A). By Remark 9.3 there exists a continuous odd map
®: A S

The set A is closed in E and hence there exists a continuous odd function ® : E — RE,
which extends ®, but, a priori, 0 may be in its image. Thus

Uy = {ueE“i(u)’>;}

is the desired neighborhood of A.

9.2 Genus in calculus of variations

Suppose that ¥ C E, ¥ Hilbert or C''-submanifold, belongs to I'. In this section, unless
otherwise stated, every functional J : X — R is even and of class C1(X, R).

Proposition 9.8. Let a < b be real numbers. Assume that f : X — R satisfies (PS), at
every level ¢ € [a, b]. If there is a strict inequality

v (XY <y (X)),
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then there exists a critical value c € [a, b] for f.

Proof. We argue by contradiction. If there are no critical values in [a, b], then there is an
odd retraction 7 : ¥* — X2, and we conclude using Proposition 9.7. O

Notation. Let k& € N be a positive integer number such that 1 < k < (X). We denote by
v, the infimum of all the sublevels such that the genus is at least k, that is,

v =inf{ceR |y (X°) > k}.

It is possible that v (X°) > k is not satisfied for any real number ¢ € R. In this case, the
supremum of J is co and we set y = 00.

Lemma 9.9. Let 1 <k < ~(X).

(a) The sequence is increasing, that is,

inf J(u) =y <72 <o <y < sup J(u).
ueX ueXx

(b) If v € R and J satisfies (PS),, , then i is a critical value for the functional J. In

particular,
MmeER = 7 :IuIlGIleJ(u)
(¢) If Y& = Vkt1 = -+ = Yitn for some h > 1 and f satisfies (PS)%, then
Y(24,) = h+1,
where Z., 1is the set of all singular points of J at the level y. In particular, if 0 € Z,,,

then it is an infinite set.
Proof.

(a) The first identity follows from the fact that
v =inf{ceR [y(X°)>1}=inf{ceR |X°# 0} :;relgej(u)
Now notice that
{c€R [y (X) 2>k} D{c€R |7(X) > k+1},

from which it follows that v; < yx41 by taking the infimum of both sides.

(b) If v is not a critical level for J, then there are § > 0 and

ro Xy xR0
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odd retraction. By Proposition 9.7 we have
v (%'Yk‘f’é) < (ka*5) ,
but this is impossible since

Y(XET) <k —1<k <y (X7,

(c) First, notice that Z. is always a compact element of I'. Thus by Proposition 9.7 there
exists a symmetric open neighborhood U of Z,, such that

Uel and ~(U)=7(2,).

Then there are € > 0 and an odd retraction r : X7\ U — X7 ~¢, where the domain
is closed, belongs to I' and it satisfies the inclusion

xwte C (XFte\U)uU. (9.2)
By assumption k + h < v (X7%¢), and by the subadditivity of the genus, it follows
from (9.2) that
k+h <~ (X% <
<y (XN 7 () <

<y (@) +9(0) <

Sk—l—’—r)/(z’)’k)a
and this leads to the desired result.

O

Theorem 9.10 (Lusternik-Schnirelman). Let J : S*~! — R be an even functional of class
Cl. There are (at least) n pairs of critical points for J of the form

(—ui, ui) est 1t x s

9.3 Application to nonlinear eigenvalues

Let X be an infinite-dimensional Hilbert space and let J € C'(X) be an even functional
satisfying the following assumptions:

(i) J(0) =0, J(u) <0 for all u## 0 and sup,cx J(u) = 0.
(i) J is weakly continuous and V.J is compact.

(i) VJ(u) # 0 for all u € X.
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Theorem 9.11. Under these assumptions, the problem
VJ(u) = Au

has infinitely many solutions (fu, zr) with z, € S:={u € X : |ul2 =1} and p — 0.

Proof. To apply the general results with S, we need to prove that J | ¢ is bounded below
and J satisfies the Palais-Smale condition at all ¢ < 0.

Step 1. This follows from the weak continuity of J. The reader might try to work out the
details by herself as an exercise.

Step 2. Let u, be a Palais-Smale sequence at the level ¢ < 0. The weak continuity of J
implies (up to subsequences, which we ignore here) that

U, = u and J(u)=c¢ = u#0.
Now notice that Vi J(ug) = VJ (uk) — (VJ (ug), ug)uy and
(VT (ur), Vo (ur)) = [V (ur) || = (VT (ug), ue))?,
and by compactness of the gradient we have V.J(uy,) — V.J(u) strongly. Then
0=[VJ@W)® = (VI (ux), ux))* = (VJ(u), u) #0,

and since (VJ(ug), ur) = (VJ(u), u), we can find k sufficiently large such that

1

(), ) [VJ(ug) — Vad (ug)]

Uk =

is well-defined. This shows that ui — u strongly and concludes the proof.

Step 3. Finally, v(S) = oo implies that there are z; € S critical points such that

J(z) — sup J(u) = 0.
ues

Since zj is a constrained critical point, we can always find ug such that VJ(z) = w2k,
and clearly it is given explicitly by

e = (VJ(zk), 2k)-

Finally VJ(z) converges strongly to zero and z; weakly to zero, so pp — 0 and this
concludes the proof. O

Theorem 9.12. Let f be a Carathéodory function which is odd with respect to the second
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variable and that satisfies the p-growth

|f(z, s)| < a+0bls|”,

where 1 < p < Z—i‘% Then the problem

“Au = f(z,u) ifxeq,
u=0 if © € 09,

has infinitely many solutions (ug, zr) with z;, € S :={u € X : |lull2 = 1} and px N\ 0.

9.4 Multiple critical points of even unbounded function-
als

Let E be a Hilbert space, J € C1(E, R) a functional and define
Ei:={ueFE : Ju) >0}

We now introduce two assumptions on J that allows us, in some sense, to bypass the
unboundedness both from above and below. These are similar to the ones necessary for the
MPT, but the second one is “stronger”:

(i) There are positive constants 7, p > 0 such that J(u) > 0 for all v € B, \ {0} and
J(u) > p for all u € S,. Furthermore, J(0) = 0.

(ii) For any m-dimensional subspace E™ C E, E™ N E is bounded.

Let E* be the class of maps h € C(FE, E) which are odd homeomorphisms such that
h(B;) C E,. Notice that
hr(u) :==ru = h, € E*,

where r is given by (i), so the class we introduced is never empty. Define

A:={ACFE\{0} : Aisclosed and even},

Ty :={Ae€A: Aiscompact and y(ANh(S)) >n forall h € E*}.

Lemma 9.13. Let J € CY(E, R) be an even functional that satisfies (i) and (ii). Then the
following properties hold:

(1) Ty £ @ for all m;
(2) I—‘m—i-l - Fm;

(3) if A€y, and U € A, with v(U) < g <m, then A\U € T',_g;
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(4) if n is an odd homeomorphism in E such that n~'(Ey) C Ey, then n(A) € Ty,
whenever A € T',,.

Proof.

(1) By (ii) there exists R > 0 such that
E™NE,C BrNE™=: BY.
We claim that B € T',,. Let h € E* and notice that h(B;) C EL implies
E™Nh(By) C BY.

It follows that E™ Nh(S) C S NA(S) and, since one has the inclusion B NA(S) C
E™ N h(S), we infer that
BE Nh(S)=E™Nh(S).

Since h is an odd homeomorphism, then E™ N h(B;) is a symmetric neighbourhood
Q of the origin. It is also easy to check that

o =0(E™ Nh(By))
is contained in E™ N h(S). Then
V(B O (S)) = A(E™ O R(S)) > 4(09) = m,
which means that B € I'y,.

(2) This follows immediately from the monotonicity property of the genus.

(3) The set A\ U € A is compact and satisfies the identity
A\NUNKS)=ANhK(S)\U.

Using the properties of the genus we infer that
7(A\Uﬂh(S)> :W(Amh(S)\U>

> (ANR(S) =~1(U) 2m —q,
and this concludes the proof.

(4) Let A € T, and notice that A" := n(A) is also compact. Our goal is to prove that for
all h € E* it turns out that
A4 NR(S)) = m.

It is easy to verify that A’ Nh(S) =n[ANn~t(k(S))]. Since n™'(E4) C E,, we infer
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that n~! o h belongs to E* and hence
(A NR(S)) =~ (n[ANy~ (A(S))])

>y (Ann H(R(S))) > m.

O

Remark 9.14. The condition n(Ey) C E4 is natural if one thinks that deformations 7 are
usually induced by the W-gradient flow.

Theorem 9.15. Let I, be as above and set by, = inf scr,, max,ca J(u). Suppose that
J € CY(E) satisfies (i) and (ii).

(1) For all m € N it turns out that by,+1 > by, > p > 0.

(2) If the Palais-Smale condition holds at the level b,,, then by, is critical.

(8) If the Palais-Smale condition holds at all levels ¢ > 0 and b = b,, = -+ = bpypq for
some q > 1, then

7(2) > q.
Proof.

(1) Let r be given by (i) and let h, € E* be the map defined above. If A € T',,, then
YANhA(S)) >m forall h € E*

and, since h, € E*, we must have AN S, # & which means that b, > p for all m € M.
(2) This assertion is proved in the usual way.

(3) By the properties of the genus, we know that there exists an open neighbourhood U
of 2 such that v(U) = v(Z2}). Recall that we can always find an odd deformation 7
such that n~1(ET) C E* and a positive § such that

J(n(u)) <b—6 forallue JT\U.

By definition of by,44, there is A € 'y, with sup, J(u) < b+ . We proved above
that A\ U also belongs to I'y,44 and thus

A =n (m) €lmtg—q =Tm-

This leads to a contradiction because n(A’) C J*~° and the genus of J*~? is necessarily
strictly less than m.
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9.4.1 Application to nonlinear problems

Let 2 C R™ be a bounded set and consider the problem
—Au = f(z,u) ifzeq,
u =0 if x € 99Q.

Suppose that f is a function of with respect to the second variable which satisfies the
Carathéodory condition and the p-growth condition

(2, w)] < a+bluf,
where 1 < p < Z—'_"g Suppose also that there are A < A1(Q2) such that
f(x, u) = du+ O(|ul' )
for some o > 1 and 6 € (0, 3) for which
F(z,u) <Ouf(x, u) for |u|>r.
Remark 9.16. The latter condition implies that
F(x, u) > cluls + ¢,

where % is always strictly bigger than 2.
Proof of (ii). Consider the functional

1
J(u) = 3/, |Vul? dz — A F(x, u)dex,

let H™ be a m-dimensional subspace and notice that H™ N S is compact in H(2). We
claim that there exists a positive ¢ := 6(H™) such that

{xeQ :|u(x)| > > forallue H"NS.

If this were not true, then we could find a sequence §,, — 0 and a sequence u,, € H™ NS
such that
{x e Q : |up(z)] >0, <6, forallue H"NS.

But then wu,, would converge to 0 € S in H}(Q) and this is absurd because u, has norm
equal to one. Now notice that, if we set Q,, := {|u| > 0}, then

2 2
J(tu):;—/ F(x, u)dxf/ F(z, u)dx < 57\Qu|(c|t§|%+c’)+c"|§2|.
Q ON\Qy

Since the right-hand side goes to —oco as t — oo (as % > 2) uniformly with respect to u, we
immediately infer that (ii) holds. O



113 9.4. Multiple critical points of even unbounded functionals

We can exploit the same argument in combination with linking-type results to infer the
existence of infinitely many critical points for linking geometry of even functionals.

Setting. Let H = V @ W be a Hilbert space with dimV < oo and W = V*. Let
J € CY(H, R) be an even functional that satisfies (ii) and the linking conditions

() J(0) = 0;
(b) there are r, p > 0 such that
J(u) >0 forall ue (B-(0)\{0})NnW,

and
Ju)>p forallue S, NW.

Let H:={h € C(H, H) : h odd homeomorphism s.t. h(B;) C Hy U B,} and let
T,,:={A€A: Ais compact and y(ANh(S)) > m for all h € H},

where A is the class of closed even sets disjoint from {0}.

Lemma 9.17. Under these assumptions, the following assertions hold:

(a) Ty # @ for all m.

(b) ferl - fm for all m.

(¢c) If ATy, and U C A satisfies v(U) < g < m, then A\ U € fm,q.

(d) Ifn is a odd homeomorphism such that 7 ’{JSO} is the identity and n(Hy) C Hy, then

N(Tm) C T

Proof. The linking conditions (a) and (b) implies that, given H™ finite-dimensional vector
space, there exists R > 0 such that

H,NH™C BrnNH™ =: BY.

Taking R large enough, we can also require that (H, U B,) N H™ C B%. By definition, we
have the inclusion
B D h(By)NH™

for all h € H, which gives us a set that contains (in the interior) the origin in H™ and
whose boundary has genus greater than or equal to m. This shows (a), while (b) and (¢)
are similar to Lemma 9.13. For (d) we need to check that

n~ " (h(B1)) € Hi N B,.
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Let u € By, v =n"'oh(u) and h € H. Then n(v) = h(u) € Hy U B, and there are two
possibility to consider. If

77(1/) € H+7

then v € H.. If, on the other hand, n(v) ¢ Hy, then n(v) = v ¢ H, using the property
that 7 is the identity where J is nonpositive. In both cases

v=n"toh(u) € H,  UB,,

1

and, since 7! o h is an odd homeomorphism, n~! o h € H provided that h € H. O

Theorem 9.18. Let T',, be as above and set b,, := ianefm maxyeca J(u). Suppose that
J € CY(E) satisfies (a), (b) and (ii).

(1) For all m € N it turns out that l~7m+1 > by > p > 0.

(2) If the Palais-Smale condition holds at the level b, then by, is critical.

(3) If the Palais-Smale condition holds at all levels ¢ > 0 and b = by, = -+ = byiq for
some q > 1, then

We can use this theorem to prove that the problem
—Au = u+|ulP~lu ifreq,
u=0 if x € 09,

admits infinitely many solutions u; with J(u;) — oo for all A € R.
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Chapter 10

(zeodesics on Riemannian
Manifolds

10.1 Introduction

Let (M™,g) be a compact Riemannian manifold. We first start by defining closed curves
v : St — M that belong to the Sobolev class H*(S!, M). Recall that

Cc>(S', M) c H'(S', M) c C(S*, M),

and closed curves in the smaller space are well-defined. We say that v € H*(S!, M) if v is

/g(c'7 ¢) < oo.

It is easy to verify that H'(S', M) is a Hilbert manifold (i.e., a separable topological
manifold modeled on a Hilbert space rather than a Euclidean space). The manifold structure

absolutely continuous and

is induced by charts of the form
ce C®(SY, M)~ & (TM),

where T'M is the tangent bundle of M and & is the pullback via & Given ¢ € H(S*, M),
we can always find ¢ € C>°(S*, M) and X € H(S*, TM) such that

c(t) = expy) X (1)

since Sobolev-regular curves can always be approximated in L*° via smooth ones. Further-
more, if o is the above chart and d is a smooth curve close to ¢ (in L>), then

Pg0 Pz
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is a diffeomorphism between Hilbert spaces, which gives the differential structure of the
manifold.

Theorem 10.1. The inclusion H'(S*, M) — C(S, M) is a homotopy equivalence.

Tangent vectors. Let c(t) = exp,y) X(t) be a curve, X section of class H*', and consider
ce(t) = expe(y) (X(t) + €Y (1))

Then
d
de
is a tangent vector to ¢(t), which means that Y is a vector field along the curve ¢. We can
thus define T.H' (S, M) as the set of all vector fields Y along ¢ such that

ce(t)

e=0

/ gen (YY) < 0o and / Goity (VoY YY) < o

Definition 10.2. Let ¢ € A(M) be a curve. The energy is defined by

1

B =5 [ e, ar

Theorem 10.3. The functional E is C* over A(M) and it satisfies the Palais-Smale con-
dition at all levels. Furthermore,

aE@[Y) = |

@ gc(t)(é(t>7 vc'(t)Y(t>) de

and, if ¢c and Y are smooth, then integrating by parts
AB@Y] = = [ gu(Tacc(t) Y (1) e

Remark 10.4. By regularity theory, critical points are smooth geodesics.

10.2 Ceritical points

Proposition 10.5. There exists e(M,g) := € > 0 such that the only critical points ¢ of E
with energy E(c) < e are constant curves. Moreover

{E<0)

is a deformation of {E < €}.

Hint. For e small, the length of the curve is /¢ and thus small. The thesis is a consequence
of Gauss lemma. O
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To study critical points, we need to distinguish two cases since the fundamental group
of M, m (M), plays a critical role here.

(i)

If 7 (M) # 0, then A(M) has a nontrivial component ©. We claim that

co = ;ggE(c) > 0.

This is a consequence of the result above because O is nontrivial and if cg was equal
to zero then the curve could be deformed to a trivial one (contradiction).

Since F satisfies the Palais-Smale condition, we easily obtain a nontrivial geodesic at
the level ceo.

If M is simply connected, we start by recalling a few facts in differential geometry.

Theorem 10.6. If 11 (M) =0, then m(A(M)) & 7, (M) @ 71 (M) for all k € N.

Proposition 10.7. If 71 (M) = 0, then 7 (M) = Hi (M) where k is the least integer
such that 7 (M) # 0.

As a consequence of these two facts, we can always find k& € N such that 7, (A(M)) # 0.
Let 2 C 7 (A(M)) and let f € E be a nontrivial curve. Consider

H ={h:S¥ = A(M) : h is homotopic to f}

and

cr:= inf sup E(h(z)) >0,

= juf, sup B(h(z)
once again by contradiction. The Palais-Smale condition gives a nontrivial geodesic
at the level cy.



Chapter 11
Allen-Cahn Energy

In 1977, Modica and Mortola considered the problem of diffuse interfaces. For example,
metal alloys with a mixture of phases +1 perfectly separated whose evolution can be de-
scribed by the mean curvature of the surface.

11.1 Introduction

We consider a double-well potential energy, namely a function W (u) such that

(1—u?)

W (u) ~ TR

which admits two global minima and a local maximum between them. It is easy to verify
that we have

min/ W(u)dx =0
v Ja

is attained by any function u that takes only the values =1. However, functions of this type
can be very “wild” and hence it makes sense to consider a slightly more regular functional,

1
Ee(u) ::§/§2|Vu|2dx+z/QW(u)dx,

which can be easily proved to penalize oscillating functions.

Example 11.1. Let Q = R. Then critical points of E.(-) satisfy the equation
" 1 !/
—eu + -W'(u) =0
€

and, when € is small, the transition between the phase 1 and the phase —1 is smooth and it
has order e. Let v € H'(R) be a function such that v(a) = —1 and v(b) = 1 for some a < b.
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Then

20y < 22+ = g(v’)2 + -W(v) > 2W (v)0/,
€

which immediately leads to the estimate

E.(v) > 2/11 V2W (s)ds =: Cyy.
The quantity Cyy is called minimal transition energy and the equality holds if and only if
v = /2W(v),
but this is impossible (check!) if @ and b are finite.

Before we can investigate what happens when (2 is a subset of R™, n > 2, we need to
recall a few definitions from geometric measure theory.

Definition 11.2 (Caccioppoli Perimeter). Let E C  be a set. The perimeter of E relative
to Q is defined as

Per(E,Q) := sup /XE(x)div(@)(x) dz,
PeC () JQ

where xg is the characteristic function of F.

The next result holds even assuming less regularity on the boundary of E, but for our
purposes this is more than enough.

Theorem 11.3. Let E C 2 be a set with smooth boundary. Then
Per(E,Q) = |0E N Q)|.

Theorem 11.4 (Modica-Mortola). Let 2 be an open subset of R™ and E C Q be a set with
finite relative perimeter. Let f,, be a sequence of functions such that

n—

I fn = 9Ell21(0) =0,

where

(z) = 1 ifx ek,
T ren\ B

Then the following liminf inequality holds

liminf E. (f,) > CwPer(E,Q),
n—oo
where €, — 0. Moreover, there exists a sequence f, as above such that the opposite inequality
holds, namely
limsup E. (f,) < CwPer(E,Q).

n— oo

Remark 11.5. The result above can also be translated in terms of I'-convergence as follows:
the sequence of functionals ., (-) I'-converges to Cy Per(-, ).
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11.2 Variational structure of E.

Let (M,g) be a n-dimensional compact Riemannian manifold and let u € H'(M). The
Sobolev embedding
HY(M) — L* (M),

where 2* := %, gives meaning to the integral

/M W) dV

when n < 4 (although n = 4 is delicate since we lose compactness of the embedding
HY(M) < L*(M)), but for n > 5 the integral is not well-defined.

Lemma 11.6. Every solution of class C?(M) of the equation
1 !/
—eAu+ —W'(u)
€

has the property u(x) € [—1,1] for all x € M. Furthermore, unless u is identically equal to
either 1, —1 or 0, it has to change sign.

Proof. Suppose that max,eps u(x) > 1 and let z¢ denote a point where u attains its maxi-
mum value. Then Vu(zg) < 0 yields

0< %W’(u(zo)) — Vu(zo) < 0,

but W’ (u(-)) is negative in [—1, 1] only, and this gives the sought contradiction. Now assume
that v is a solution to 1
—eAu+ -W'(u)
€

not identically 0, —1 or 1 and that does not change sign. Then W'(u) < 0 and does not
vanish so

1
0:3/ W' (u)dV < 0
M

€

gives, once again, a contradiction. O

Now define a slightly different potential energy which is subcritical, namely a function
W™ that satisfies the following properties:

(i) W* =W on [-2,2] and (W*)" > 0 in [2, c0);

(i) W*(u) = W*(—u) and W*(u) = Au? in [4,00) for some positive constant A.
We can define the modified energy by setting

1 1
Ef(u) == §€/M |Vul?dV + E/M W*(u)dV,
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and it is easy to see that critical points are classical C? solutions of the equation
1 *\/
—eAu+ —(W*)'(u)
€
and Lemma 11.6 can be immediately extended. Another advantage of using E} over E. is

that the integral
/ W*(u)dV
M

is always well-defined because outside of (—4,4) the potential is quadratic.

Proposition 11.7. The function Ef : H*(M) — R is of class C*, coercive and satisfies
the Palais-Smale condition.

Proof. The regularity follows from the general theory of Nemitski operators. The coercivity
is also easy because

1
W*(u) > Eu2 —c

for some positive constant ¢, and hence
« (11 9 c
Ee (U =2 min {26, cg} Hu”Hl(M) - E . VOI(M)

goes to infinity as soon as |u|| w1 (m) — oo. Finally, the coercivity gives the boundedness of
Palais-Smale sequences (standard) and then we use compactness (as usual) to conclude. [

11.3 Mountain pass solutions

Let I'={y:[0,1] = H' (M) : v(0) = —1, v(1) = 1} be the set of all admissible curves and
define the mountain-pass level

ce := inf sup EX(y(t)).
V€L tef0,1]

Since we would like to find a nontrivial solution at the limit for ¢ — 0T, the first step is
proving that c. does not go to zero as e does.

Lemma 11.8. There exists ¢ > 0 independent of € such that c. > c.

To prove this lemma, we first need to present a technical result (of which we will only
sketch the proof) due to De Giorgi.

Lemma 11.9. Suppose that there are a < b and § > 0 such that
min {|{u < a}|,[{u < b}|} > 6.

Then there exists a constant C = C(§, M) > 0 such that

Cb—a) < vHa<u<b}|[VullL2(m)-
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Proof. Consider the isoperimetrical profile defined by setting
I(t) := inf{Per(Q, M) : || =t, Q C M}.

It is not hard to see that I(t) is continuous, even around M and strictly positive except
for t =0 and ¢t = Vol(M). For ¢ € (a,b) let

Q= {u <t}

and notice that Vol(€;) € (6, Vol(M) — §) so it stays away from zero. In particular, there
exists a constant C' > 0 such that

I(Vol(€)) > C for all t € (a,b).

max u f
Fav = / at / J_qv
/M min u {u=t} ‘VU|

by the coarea formula, which in turn implies

Now recall that

b

Clb—a) < / Per(Q, M) dt — / V| dV
a {a<u<b}
with f = |Vu|. Applying Holder inequality yields the conclusion. O

Proof of Lemma 11.5. Suppose ¢, — 0 as ¢ — 07. Then there exists h € " such that

E*(h(t)) < c. +e.
e c(h(t) <cete

Select t such that [, h(t)dV =0 and let a € (0,1), W(u) > ¢, > 0 on [—a,a]. Notice that
coVol({—a <u <a}) <elce+e)
S0
0= [,,udV <aVol({u > a}) — aVol({u < —a}) + E(Céi:re),
Vol(M) < Vol({u > a}) + Vol({u < —a}) + et
It follows that

e(ce +€)
Ca

Vol({u > a}) > gvol(M) - > %VOI(M) =5

for € small enough and, in a similar fashion, we can prove the same estimate for Vol({u <
—a}) in place of Vol({u > a}). Therefore, the exists a positive constant ¢ > 0 such that

2
0 <2ac< \/Vol({fa <u < a})|[Vullpeary < ”c (ce +€),

a
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which gives

2ac 2ac
Ce >

_— = _—,
V2! T V2!

a contradiction with ¢. — 0 as e — 0. O

Cet+e€2>
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