
SOLUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. For each of the following differential equation, write a normal form and its
domain.

Also, check whether the function is a solution (Sol.) to the corresponding differential
equation (Eq.)

Sol. : (e2x , (0, 1)) Eq. : 4y′′(x)− y(x) = 0(1)

Sol. : (
√

1 − x, [0, 1]) Eq. : 2y(x)y′(x) = −1(2)

Sol. : (ex2/2, (−∞,+∞)) Eq. : y′(x)/x = y(x)(3)

Sol. : (x2, (−∞,+∞)) Eq. : y′(x) = 2
»

y(x).(4)

Solution.

(1) The normal form is F(x, y(x), y′(x), y′′(x)) = 0 where

F : R
4 → R, F(x, y, p1, p2) = 4p2 − y.

We have

4(e2x)′′ − e2x = 15e2x 6= 0.

Then (e2x , (0, 1)) is not a solution.

(2) The normal form is F(x, y(x), y′(x)) = 0 where

F : R
3 → R, F(x, y, p) = 2py + 1.

Since
√

1 − x is not derivable at x = 1, (
√

1 − x, [0, 1]) is not a solution.

(3) The normal form is F(x, y(x), y′(x)) = 0 where

F : (R − {0})× R × R → R, F(x, y, p) =
p

x
− y.

If x = 0, then

(0, y(0), y′(0))

does not belong to the domain of F. So, it is not a solution.

(4) The function F of the normal form is

F : R × [0,+∞)× R → R, F(x, y, p) = p − 2
√

y.

Then F(x, y(x), y′(x)) = 0 if and only if

2x = 2|x|
which is true only if x ≥ 0. Then (x2, (−∞,+∞) is not a solution.

�

Date: 2014, October 13.



Exercise 2. Integrate each of the following differential equations

y′(x) = y(x)(1 − y(x))(5)

y′(x) + 2xy2(x) = 0.(6)

Among the solutions of (5) find at least three solutions with existence interval R.
Among the solutions of (6) find at least one solution such that the existence interval is
not R.

Solution.

(5) Without integrating the equation, we can find two solutions defined on (−∞,+∞),
the constants

(y0(x) = 0, (−∞,+∞))

(y1(x) = 1, (−∞,+∞)).

We integrate the equation with the separable variables technique. Then, suppose
that y(x)(1 − y(x)) 6= 0 for every x. Then

y′(x)
y(x)(1 − y(x))

= 1.

That is
Ç

1

y(x)
− 1

y(x)− 1

å

y′(x) = 1.

Integrating, we obtain

ln |y(x)| − ln |y(x)− 1| = x + c

which we can write
∣

∣

∣

∣

∣

y(x)

y(x)− 1

∣

∣

∣

∣

∣

= ecex.

Now, we need to find an explicit solution. Let us consider the case there 0 < y < 1.
Then

y(x)

y(x)− 1
= dex

where d = −ec. Then

y(x) = − dex

1 − dex
.

Then, if we choose c = 0, or d = −1, we obtain the third solution on (−∞,+∞)
Ç

y(x) =
ex

1 + ex
, (−∞,+∞)

å

(6) the constant solution 0 is defined on (−∞,+∞). So, in order to find a solution
which is not defined on R we have to integrate the equation. We have

y′

y2
= −2x

whence

−1

y
= −x2 + c.

Then

yc(x) =
1

x2 − c
.
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If c ≥ 0, then the function above is not defined on all the real numbers. If we take
c = 0, we obtain

Ç

y0(x) =
1

x2
, (0,+∞)

å

.

�

Exercise 3. Let g and f be two derivable Lipschitz functions on the interval [0, 1]. Is
f g a Lipschitz function?

Solution. First, we check that a Lipschitz function on [0, 1] is bounded. In fact,

| f (x)| ≤ | f (x)− f (0)|+ | f (0)| ≤ | f (0)|+ L f |x| ≤ | f (0)|+ L f

where L f is the Lipschitz constant of f . Similarly, g is bounded by Lg + |g(0)|. Since f
and g are derivable,

|( f g)′(x)| = | f ′g(x) + f g′(x)| ≤ | f ′g(x)| + | f g′(x)|
≤ L f (Lg + |g(0)|) + Lg(L f + | f (0)|).

Since f g has bounded derivative on an interval, it is a Lipschitz function. �

Exercise 4. Let y be a one-variable function which is 1 on the interval (0, 1) and 2 on
the interval (1, 2). Is it Lipschitz?

Solution. It is not Lipschitz. In fact, on the sequences

xn := 1 − 1

2n
, x′n := 1 +

1

2n

we have
∣

∣

∣

∣

∣

y(xn)− y(x′n)
xn − x′n

∣

∣

∣

∣

∣

= n

which goes to infinity as n goes to infinity. �

Exercise 5. Check whether each of the following functions are Lipschitz or locally
Lipschitz (if it is locally Lipschitz, write explicitly what is r in Qr(x0, y0))

g1 : (0, 1)× (0, 1) → R, g1(x, y) = sin(1/x)(7)

g2 : R × [0, 4π] → R, g2(x, y) = | sin y|(8)

g3 : R × R → R, g3(x, y) = xy(1 − y)(9)

g4 : (1, 2) → R, g4(x) =
|x − 1|

x
.(10)

Solution.

(7) Since ∂xg is not bounded, g is not Lipschitz. However, it is locally Lipschitz. In
fact, given (x0, y0) in (0, 1)× (0, 1), we take

r := min{x0, 1− x0, y0, 1 − y0}/2.

Then, ∂yg = 0 and

|∂xg1(x, y)| =
∣

∣

∣

∣

∣

− 1

x2
sin

1

x

∣

∣

∣

∣

∣

≤ 2 max{x−1
0 , (1 − x0)

−1}

is bounded
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(8) g2 is not derivable on the domain of definition. However, it is derivable on the
intervals Ik := (kπ, (k + 1)π) for every 0 ≤ k ≤ 3. On each of these intervals

|∂yg2(x, y)| ≤ 1.

Then g2 is Lipschitz on Ik for every 0 ≤ k ≤ 3. Since g is continuous on [0, 4π], it is
Lipschitz. Then, is also locally Lipschitz.

(9) ∂xg3 = y(1 − y) is not bounded on R
2. Then g3 is not Lipschitz. However, it is

locally Lipschitz: given (x0, y0), we choose r = 1. Then

|∂xg3(x, y)| = |y(1 − y)| ≤ (|y0|+ 1)(|y0|+ 2)

and
|∂yg3(x, y)| = |x(1 − 2y)| ≤ (|x0|+ 1)(3 + 2|y0|).

(10) On the interval (1, 2), x − 1 > 0. Then

g4(x, y) =
x − 1

x
= 1 − 1

x
and ∂yg4 = 0 (bounded) and

∂xg4 =
1

x2
≤ 1.

Then g4 is a Lipschitz function.

�

Exercise 6. Let (y, (0, 1)) be a solution to the differential equation

y′(x) = y(x) sin y(x)

such that y(0) = π/2. Show that 0 < y(x) < π for every 0 ≤ x ≤ 1.

Solution. We see that there are two constant solutions

(y0 = 0, (0, 1)), (y1 = π, (0, 1)).

We write the equation as
y′(x) = f (y(x))

where f (y) = y sin y. The function is locally Lipy because

∂y f (x, y) = sin y + y cos y

is a locally bounded function. Since f it also continuous, it satisfies the hypotheses of
the Picard-Lindelöf Theorem.

We claim that y 6= y0 on (0, 1). In fact, suppose that there exists x∗ in (0, 1) such that
y(x∗) = y0. By the uniqueness of the Initial Value Problem, we should have y = 0 on
(0, 1). However, this is not possible, because y(0) = π/2.

Similarly, y 6= y1 on (0, 1). In fact, if y = y1 at some point, we had y = y1 = π on (0, 1),
which, again, contradicts y(0) = π/2.

Then, for every x ∈ (0, 1), we have y(x) 6= 0 and y(x) 6= π. We show that 0 < y(x) <
π: if there exist x0 such that y(x0) > π, then there exists x1 such that y(x1) because
y and continuous and y(0) < π. This contradicts the conclusions of the previous
paragraph. Similarly, y > 0 on (0, 1). �


