SOLUTIONS OF EXERCISES OF WEEK FOUR

Exercise 1. For each of the following differential equation, write a normal form and its domain.
Also, check whether the function is a solution (Sol.) to the corresponding differential equation (Eq.)

Sol. : $\left(e^{2 x},(0,1)\right)$
Eq. : $4 y^{\prime \prime}(x)-y(x)=0$
(2)

$$
\begin{equation*}
\text { Sol. }:(\sqrt{1-x},[0,1]) \tag{1}
\end{equation*}
$$

Eq. : $2 y(x) y^{\prime}(x)=-1$
(3)

Sol. : $\left(e^{x^{2} / 2},(-\infty,+\infty)\right)$
Eq. : $y^{\prime}(x) / x=y(x)$
(4)

Sol. : $\left(x^{2},(-\infty,+\infty)\right)$
Eq. : $y^{\prime}(x)=2 \sqrt{y(x)}$.
Solution.
(1) The normal form is $F\left(x, y(x), y^{\prime}(x), y^{\prime \prime}(x)\right)=0$ where

$$
F: \mathbb{R}^{4} \rightarrow \mathbb{R}, \quad F\left(x, y, p_{1}, p_{2}\right)=4 p_{2}-y .
$$

We have

$$
4\left(e^{2 x}\right)^{\prime \prime}-e^{2 x}=15 e^{2 x} \neq 0
$$

Then $\left(e^{2 x},(0,1)\right)$ is not a solution.
(2) The normal form is $F\left(x, y(x), y^{\prime}(x)\right)=0$ where

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, p)=2 p y+1
$$

Since $\sqrt{1-x}$ is not derivable at $x=1,(\sqrt{1-x},[0,1])$ is not a solution.
(3) The normal form is $F\left(x, y(x), y^{\prime}(x)\right)=0$ where

$$
F:(\mathbb{R}-\{0\}) \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad F(x, y, p)=\frac{p}{x}-y
$$

If $x=0$, then

$$
\left(0, y(0), y^{\prime}(0)\right)
$$

does not belong to the domain of F. So, it is not a solution.
(4) The function F of the normal form is

$$
F: \mathbb{R} \times[0,+\infty) \times \mathbb{R} \rightarrow \mathbb{R}, \quad F(x, y, p)=p-2 \sqrt{y}
$$

Then $F\left(x, y(x), y^{\prime}(x)\right)=0$ if and only if

$$
2 x=2|x|
$$

which is true only if $x \geq 0$. Then $\left(x^{2},(-\infty,+\infty)\right.$ is not a solution.

Exercise 2. Integrate each of the following differential equations

$$
\begin{gather*}
y^{\prime}(x)=y(x)(1-y(x)) \tag{5}\\
y^{\prime}(x)+2 x y^{2}(x)=0 \tag{6}
\end{gather*}
$$

Among the solutions of (5) find at least three solutions with existence interval \mathbb{R}. Among the solutions of (6) find at least one solution such that the existence interval is not \mathbb{R}.

Solution.
(5) Without integrating the equation, we can find two solutions defined on $(-\infty,+\infty)$, the constants

$$
\begin{aligned}
& \left(y_{0}(x)=0,(-\infty,+\infty)\right) \\
& \left(y_{1}(x)=1,(-\infty,+\infty)\right) .
\end{aligned}
$$

We integrate the equation with the separable variables technique. Then, suppose that $y(x)(1-y(x)) \neq 0$ for every x. Then

$$
\frac{y^{\prime}(x)}{y(x)(1-y(x))}=1
$$

That is

$$
\left(\frac{1}{y(x)}-\frac{1}{y(x)-1}\right) y^{\prime}(x)=1
$$

Integrating, we obtain

$$
\ln |y(x)|-\ln |y(x)-1|=x+c
$$

which we can write

$$
\left|\frac{y(x)}{y(x)-1}\right|=e^{c} e^{x}
$$

Now, we need to find an explicit solution. Let us consider the case there $0<y<1$. Then

$$
\frac{y(x)}{y(x)-1}=d e^{x}
$$

where $d=-e^{c}$. Then

$$
y(x)=-\frac{d e^{x}}{1-d e^{x}}
$$

Then, if we choose $c=0$, or $d=-1$, we obtain the third solution on $(-\infty,+\infty)$

$$
\left(y(x)=\frac{e^{x}}{1+e^{x}},(-\infty,+\infty)\right)
$$

(6) the constant solution 0 is defined on $(-\infty,+\infty)$. So, in order to find a solution which is not defined on \mathbb{R} we have to integrate the equation. We have

$$
\frac{y^{\prime}}{y^{2}}=-2 x
$$

whence

$$
-\frac{1}{y}=-x^{2}+c
$$

Then

$$
y_{c}(x)=\frac{1}{x^{2}-c} .
$$

If $c \geq 0$, then the function above is not defined on all the real numbers. If we take $c=0$, we obtain

$$
\left(y_{0}(x)=\frac{1}{x^{2}},(0,+\infty)\right) .
$$

Exercise 3. Let g and f be two derivable Lipschitz functions on the interval [0,1]. Is $f g$ a Lipschitz function?

Solution. First, we check that a Lipschitz function on $[0,1]$ is bounded. In fact,

$$
|f(x)| \leq|f(x)-f(0)|+|f(0)| \leq|f(0)|+L_{f}|x| \leq|f(0)|+L_{f}
$$

where L_{f} is the Lipschitz constant of f. Similarly, g is bounded by $L_{g}+|g(0)|$. Since f and g are derivable,

$$
\begin{aligned}
\left|(f g)^{\prime}(x)\right| & =\left|f^{\prime} g(x)+f g^{\prime}(x)\right| \leq\left|f^{\prime} g(x)\right|+\left|f g^{\prime}(x)\right| \\
& \leq L_{f}\left(L_{g}+|g(0)|\right)+L_{g}\left(L_{f}+|f(0)|\right) .
\end{aligned}
$$

Since $f g$ has bounded derivative on an interval, it is a Lipschitz function.
Exercise 4. Let y be a one-variable function which is 1 on the interval $(0,1)$ and 2 on the interval $(1,2)$. Is it Lipschitz?

Solution. It is not Lipschitz. In fact, on the sequences

$$
x_{n}:=1-\frac{1}{2 n}, \quad x_{n}^{\prime}:=1+\frac{1}{2 n}
$$

we have

$$
\left|\frac{y\left(x_{n}\right)-y\left(x_{n}^{\prime}\right)}{x_{n}-x_{n}^{\prime}}\right|=n
$$

which goes to infinity as n goes to infinity.
Exercise 5. Check whether each of the following functions are Lipschitz or locally Lipschitz (if it is locally Lipschitz, write explicitly what is r in $Q_{r}\left(x_{0}, y_{0}\right)$)

$$
\begin{align*}
& g_{1}:(0,1) \times(0,1) \rightarrow \mathbb{R}, \quad g_{1}(x, y)=\sin (1 / x) \tag{7}\\
& g_{2}: \mathbb{R} \times[0,4 \pi] \rightarrow \mathbb{R}, \quad g_{2}(x, y)=|\sin y| \tag{8}\\
& g_{3}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad g_{3}(x, y)=x y(1-y) \tag{9}\\
& g_{4}:(1,2) \rightarrow \mathbb{R}, \quad g_{4}(x)=\frac{|x-1|}{x} \tag{10}
\end{align*}
$$

Solution.

(7) Since $\partial_{x} g$ is not bounded, g is not Lipschitz. However, it is locally Lipschitz. In fact, given $\left(x_{0}, y_{0}\right)$ in $(0,1) \times(0,1)$, we take

$$
r:=\min \left\{x_{0}, 1-x_{0}, y_{0}, 1-y_{0}\right\} / 2 .
$$

Then, $\partial_{y} g=0$ and

$$
\left|\partial_{x} g_{1}(x, y)\right|=\left|-\frac{1}{x^{2}} \sin \frac{1}{x}\right| \leq 2 \max \left\{x_{0}^{-1},\left(1-x_{0}\right)^{-1}\right\}
$$

is bounded
(8) g_{2} is not derivable on the domain of definition. However, it is derivable on the intervals $I_{k}:=(k \pi,(k+1) \pi)$ for every $0 \leq k \leq 3$. On each of these intervals

$$
\left|\partial_{y} g_{2}(x, y)\right| \leq 1
$$

Then g_{2} is Lipschitz on I_{k} for every $0 \leq k \leq 3$. Since g is continuous on $[0,4 \pi]$, it is Lipschitz. Then, is also locally Lipschitz.
(9) $\partial_{x} g_{3}=y(1-y)$ is not bounded on \mathbb{R}^{2}. Then g_{3} is not Lipschitz. However, it is locally Lipschitz: given $\left(x_{0}, y_{0}\right)$, we choose $r=1$. Then

$$
\left|\partial_{x} g_{3}(x, y)\right|=|y(1-y)| \leq\left(\left|y_{0}\right|+1\right)\left(\left|y_{0}\right|+2\right)
$$

and

$$
\left|\partial_{y} g_{3}(x, y)\right|=|x(1-2 y)| \leq\left(\left|x_{0}\right|+1\right)\left(3+2\left|y_{0}\right|\right)
$$

(10) On the interval $(1,2), x-1>0$. Then

$$
g_{4}(x, y)=\frac{x-1}{x}=1-\frac{1}{x}
$$

and $\partial_{y} g_{4}=0$ (bounded) and

$$
\partial_{x} g_{4}=\frac{1}{x^{2}} \leq 1
$$

Then g_{4} is a Lipschitz function.

Exercise 6. Let $(y,(0,1))$ be a solution to the differential equation

$$
y^{\prime}(x)=y(x) \sin y(x)
$$

such that $y(0)=\pi / 2$. Show that $0<y(x)<\pi$ for every $0 \leq x \leq 1$.
Solution. We see that there are two constant solutions

$$
\left(y_{0}=0,(0,1)\right), \quad\left(y_{1}=\pi,(0,1)\right) .
$$

We write the equation as

$$
y^{\prime}(x)=f(y(x))
$$

where $f(y)=y \sin y$. The function is locally Lipy because

$$
\partial_{y} f(x, y)=\sin y+y \cos y
$$

is a locally bounded function. Since f it also continuous, it satisfies the hypotheses of the Picard-Lindelöf Theorem.
We claim that $y \neq y_{0}$ on $(0,1)$. In fact, suppose that there exists x_{*} in $(0,1)$ such that $y\left(x_{*}\right)=y_{0}$. By the uniqueness of the Initial Value Problem, we should have $y=0$ on $(0,1)$. However, this is not possible, because $y(0)=\pi / 2$.
Similarly, $y \neq y_{1}$ on $(0,1)$. In fact, if $y=y_{1}$ at some point, we had $y=y_{1}=\pi$ on $(0,1)$, which, again, contradicts $y(0)=\pi / 2$.
Then, for every $x \in(0,1)$, we have $y(x) \neq 0$ and $y(x) \neq \pi$. We show that $0<y(x)<$ π : if there exist x_{0} such that $y\left(x_{0}\right)>\pi$, then there exists x_{1} such that $y\left(x_{1}\right)$ because y and continuous and $y(0)<\pi$. This contradicts the conclusions of the previous paragraph. Similarly, $y>0$ on $(0,1)$.

