## EXERCISES OF WEEK SIX

Exercise 1 (Check problems, 1,2,3 and 4 at page 59 of "Advanced Engineering Mathematics"). For each of the following equations, check whether they are exact or not. If they are exact, find an implicit solution

$$
\begin{align*}
& (2 x-1) d x+(3 y-7) d y=0  \tag{1}\\
& (2 x+y) d x-(x+6 y) d y=0  \tag{2}\\
& (5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y=0  \tag{3}\\
& (\sin y-y \sin x) d x+(\cos x+x \cos y-y) d y=0 \tag{4}
\end{align*}
$$

Moreover,

1. in (1), find all the solutions $y$ defined on $(-\infty,+\infty)$ such that

$$
y(x)>\frac{7}{3}
$$

for every $x$ in $(-\infty,+\infty)$
2. in (3): is there a solution $(y, I)$ such that $0 \in I$ and $y(0)=-1 / 2$ (you do not have to find this solution explicitly, just give a reason why this solution exists or not)
3. in (4), is there a solution such that $y(\pi)=\pi$ ?

## Solution.

(1) the equation is exact and an implicit solution is given by

$$
G(x, y)=x^{2}-x+\frac{3}{2} y^{2}-7 y+c
$$

(2) $\partial_{y} M=1 \neq-1=\partial_{x} N$, so it is not exact
(3) it is exact and an implicit solution is

$$
G(x, y)=\frac{5 x^{2}}{2}+4 x y-2 y^{4}+c
$$

(4) it is exact and an implicit solution is

$$
G(x, y)=x \sin y+y \cos x-\frac{y^{2}}{2}+c
$$

Now, let us address questions 1,2 and 3

1. We are looking for explicit solutions. A solution to $G(x, y(x))=0$ exists if the discriminant of the equation is non-negative, that is

$$
49-6\left(x^{2}-x+c\right) \geq 0
$$

for every $x$ real number. That is,

$$
6 x^{2}-6 x+6 c-49 \neq 0
$$

for every $x$. However, for any choice of $c$, the function attains positive values. So, a solution on $(-\infty,+\infty)$ does not exist.
2. A solution exists by the Implicit Function Theorem:

$$
\partial_{y} G(0,-1 / 2)=N(0,-1 / 2)=4 \cdot 0-8(-1 / 2)^{3}=1 \neq 0 .
$$

3. A solution exists by the Implicit Function Theorem:

$$
\partial_{y} G(\pi, \pi)=N(\pi, \pi)=\cos \pi+\pi \cos \pi-\pi=-1-\pi+\pi=-1 \neq 0
$$

Exercise 2. Check whether the following differential equation

$$
(1-y) \cos x+(2 y-1-\sin x) y^{\prime}=0
$$

is exact. Moreover, for every $0 \leq k \leq 3$ find a solution $y_{k}$ such that $y_{k}(0)=0$ and

$$
\int_{\pi / 2}^{13 \pi / 2} y_{k}(x) d x=2 k \pi
$$

Solution. We compare the partial derivatives of

$$
M=(1-y) \cos x, \quad N=2 y-1-\sin x
$$

We have

$$
\partial_{y} M=-\cos x=\partial_{x} N
$$

So, there is the chance to find $G$ such that $\partial_{x} G=M$ and $\partial_{y} G=N$. From

$$
(1-y) \cos x=\partial_{x} G
$$

we obtain

$$
G(x, y)=(1-y) \sin x+c(y)
$$

Then, from

$$
\partial_{y} G(x, y)=-\sin x+c^{\prime}(y)=2 y-1-\sin x
$$

we obtain $c^{\prime}(y)=2 y-1$, whence $c(y)=y^{2}-y+c$. Then

$$
G(x, y)=(1-y) \sin x+y^{2}-y+c
$$

Now, we consider explicit solutions to the differential equation. If $c=0$, we see that such solution should satisfy

$$
(1-y(x)) \sin x+y(x)^{2}-y(x)=0
$$

which can be written as

$$
(y(x)-1)(y(x)-\sin x)=0 .
$$

So, we can point out at least two solutions to the differential equation:

$$
\left(z_{1}=1,(-\infty,+\infty)\right), \quad\left(z_{2}=\sin x,(-\infty,+\infty)\right)
$$

Clearly,

$$
\int_{\pi / 2}^{13 \pi / 2} z_{2}=[-\cos x]_{\pi / 2}^{13 \pi / 2}=\cos \pi / 2-\cos 13 \pi / 2=0
$$

Since $z_{2}(0)=0$, we can choose

$$
y_{0}(x)=\sin x
$$

Clearly, $z_{1}$ satisfies

$$
\int_{\pi / 2}^{13 \pi / 2} z_{2}=6 \pi=3 \cdot 2 \pi
$$

which makes him a perfect candidate for $y_{3}$. Unfortunately, $y_{3}(0)$ is 1 and not 0 . However,

$$
z_{1}(\pi / 2)=z_{2}(\pi / 2)=1, \quad z_{1}^{\prime}(\pi / 2)=z_{2}^{\prime}(\pi / 2)=0 .
$$

So, through

$$
y_{3}(x):=\sin (x) \#_{\pi / 2} 1
$$

we obtain a solution such that $y_{3}(0)=0$, and on the interval $(\pi / 2,13 \pi / 2)$ is equal to 1. Then

$$
\int_{\pi / 2}^{13 \pi / 2} y_{3}=6 \pi
$$

The other solutions are

$$
y_{1}=(\sin x) \#_{9 \pi / 2} 1
$$

and

$$
y_{2}=(\sin x) \#_{5 \pi / 2} 1
$$

