
2. SEPARABLE VARIABLES DIFFERENTIAL EQUATIONS

2.1. Functions with zero derivatives on intervals. In the next two proposition, we
characterize (two-variable) functions defined on (product of intervals) intervals with
zero (partial derivative) derivative.

Proposition 2.1. Let y : J → R be a derivable function on an interval such that y′(x) = 0
for every x ∈ J, then y is a constant function.

Proof. The proof of this fact follows from the Mean Value Theorem: let us fix x0 ∈ J.
Then, given x ∈ J,

[x0, x] ⊆ J

because J is an interval. There exists ϑ between x0 and x such that

y(x)− y(x0) = y′(ϑ)(x − x0) = 0.

Then y(x) = y(x0). In conclusion, for every x in J, y(x) = y(x0). Then y is a constant
function. �

An analogous result applies for partial derivatives:

Proposition 2.2. Let g : J1 × J2 → R be a continuous function, derivable with respect to x
on J1 × J2 such that ∂xg = 0. Then g does not depend on x.

Proof. For every y in J2, we consider x1 and x2 in J1. We define the function

h(t) := g(t, y).

By definition of partial derivative,

h′(t) = ∂xg(t, y) = 0.

Then, by Proposition 1, h is a constant function. Then

g(x1, y) = h(x1) = h(x2) = g(x2, y).

So, if we fix x0 in J1,
g(x, y) = g(x0, y) =: c(y).

For every (x, y). �

2.2. Order of a differential equation. Roughly, speaking the order of a differential
equation is the order of the highest derivative appearing on the differential equation.
When we are given explicitly a differential equation, it is not difficult to define its
order. For instance, the order of

x′′(t) = −
GM

|x(t)|3
x(t)

is two, while the order of
y′(x) = y(x)(1 − y(x))

is one. But we need to take more care when we define the order of an equation given
with a normal form. For example, in

(1) F(x, y(x), y′(x), y′′(x)) = 0.

we are tempted to infer that (1) is a second order differential equation. However, if

(2) F(x, y, p1, p2) = x − y − p1
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then we should say that the order is one. We notice that in (2) F does not depend on
the variable p2. Or, equivalently,

∂p2 F = 0,

according to Proposition 2.2. So, it seems reasonable to state that the order of a differ-
ential equation given in the form

F(x, y(x), . . . , y(n)) = 0

is n if F depends on pn. While, if it does not depend on pn, but depends on pn−1, then
the order is n − 1 and so on. The next definition gives a formalization of this process.

Definition 2.1 (Order of a differential equation). Given a function F of n + 2 variables,
the order of the differential equation

F(x, y(x), y′(x), . . . , y(n)(x)) = 0

is the highest natural number k such that ∂pk
F �= 0.

2.3. Initial value problems. A solution to the Initial Value Problem (IVP)

(IVP)

�

F(x, y(x), y′(x)) = 0
y(x0) = y0.

is a derivable function y : J → R, where J is in an interval such that x0 ∈ J.

A solution to an initial value problem does not necessarily exists and if exists, there
can be more than one. For example,

�

y′(x)2 + y(x) = 0
y(0) = 1.

does not have any solution because, if we substitute x = 0 and y(0) = 1 into the
equation, we obtain y′(0)2 + 1 = 0 which is not possible. The problem

�

y′(x) = 2
�

y(x)
y(0) = 0.

has two solutions which can be checked directly: (0, (−∞,+∞)) and (x2, [0,+∞)).

2.4. Separable variables differential equations. Given two functions h, g : R → R, a
separable variable differential equation is given by

(3) h(y(x))y′(x) = g(x)

and its normal form is
F(x, y, p) = h(y)p − g(x).

If g and h are continouous (or even just piece-wise continuous), then there are function
H and G such that

H′ = h, G′ = g.

We argue as follows: if there exists a solution (y, J) to (3), then this solution satisfies

d

dx
(H(y(x))− G(x)) = 0, x ∈ J.

Since J is an interval, we can apply Proposition 2.1. There exists a constant c ∈ R, such
that

(4) H(y(x))− G(x) = c, for every x ∈ J.
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At this, point, if H is invertible, we have

y(x) = H−1(c + G(x)).

Conversely, if (y, J) satisfies (4), it also satisfies (3). We can check this by taking the
derivative of (4).

2.5. Constant solutions. As we will see during the course finding all the solutions (or
even one solution) of a differential equation can be a hard task. Sometimes, however,
it is possible to find solutions with prescribed features. A very common exercise is
finding constant solutions to a given differential equation

(5) y′(x) = y(x)(1 − y(x)).

It is convenient to argue as follows: if (y = c, J) is a constant solution, then y′ = 0.
Thus,

0 = c(1 − c)

which implies that c = 0 or c = 1. Conversely,

(0, (−∞,+∞)), (1, (−∞,+∞))

are constant solutions to (5). There are only two constant solutions and, as we will be
able to check, there are a lot of solutions which are not constant.
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