SOLUTIONS OF THE EXERCISES OF WEEK ONE

Exercise 1. Defining the set of the first 100,000 natural numbers as

 $A := \{1, 2, 3, \dots, 99999, 100000\}$

is ambiguous. How could we define the set above with the Axiom of Unrestricted Comprehension Schema (find p(n))?

Solution. We can use the UCCS Axiom with the property

$$p(n): 1 \le n \le 100000.$$

Then, there exists

$$A := \{n \mid p(n)\}.$$

Exercise 2. Draw a truth table for $\neg(\neg P)$.

Solution.

Р	$\neg P$	$\neg(\neg P)$
Т	F	Т
F	Т	F

Since the columns one and three coincide, *P* is equivalent to $\neg(\neg P)$.

Exercise 3. Can you show that the following sets are infinite?

- (a) $\mathbb{Z} \mathbb{N}$: relative integers which are not natural numbers
- (b) $\mathbb{Q} \mathbb{Z}$: rational numbers which are not relative integers
- (c) $\mathbb{R} \mathbb{Q}$: real numbers which are not rational numbers

Solution.

(a) for every $n \in \mathbb{N}$, we have

$$-n \in \mathbb{Z} - \mathbb{N}$$

then the set above is infinite

(b) for every $n \in \mathbb{N}$, we have

$$\frac{1}{n+1} \in \mathbb{Q} - \mathbb{Z}$$

then it is an infinite set (c) for every $n \in \mathbb{N}$

$$n\sqrt{2} \in \mathbb{R} - \mathbb{Q}$$

then it is an infinite set.

Exercise 4. We defined $E := \{S \mid \#S = \infty\}$. We know that $E \in E$. Starting from *E*, can you find another set E_* such that $E_* \in E_*$?

Date: 2014, March 5.

Solution. An example is given by

$$E_* := E - \{E\}.$$

We show that $E_* \in E_*$. Since $\#\{E\} = 1$ and $\#E = \infty$, we have $\#E_* = \infty$. Then (1) $E_* \in E$.

We already know that $E \in E$. Then $E \neq E - \{E\} = E_*$. Then E_* .

$$(2) E \neq$$

By (1) and (2), it follows that $E_* \in E - \{E\}$. Then $E_* \in E_*$.

Another example is given by

$$D := \{ S \mid \#S \ge 1 \}.$$

Since $\{3\} \in D$, the set *D* has at least one element. Then $\#D \ge 1$. Therefore, $D \in D$. \Box