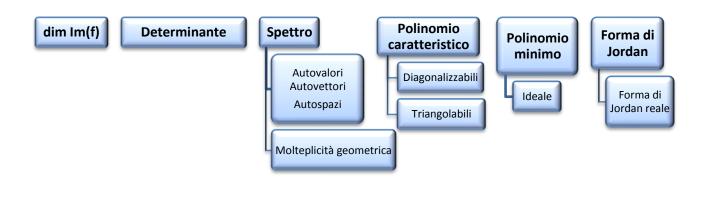
GAAL: Capitolo sulla relazione di Similitudine



Relazione di Coniugio o Similitudine:

Idea:

Capire quando due endomorfismi mi rappresentano la stessa trasformazione osservata da un sistema di riferimento (Base) distinto.

Studiamo:

$$\operatorname{Hom}(V,W)/_{\sim_{similitudine}}$$

Definizione (Endomorfismi coniugati):

$$f,g \in \operatorname{End}(V)$$
 si dicono coniugati $(f \sim g)$ se $\exists h \in \operatorname{GL}(V) | g = h \circ f \circ h^{-1}$

Definizione (Matrici simili):

Passando in coordinate: $A, B \in M(n, K)$ sono simili se $\exists P \in GL(n, K) | B = PAP^{-1}$

Proposizione equivalenza Matrici Omomorfismi:

V spazio vettoriale $\dim(V) = n, f, g \in \operatorname{End}(V)$.

I seguenti fatti sono equivalenti:

$$1-f\sim g$$

2- Comunque si scelga una base B di V $M_B(f)$ e $M_B(g)$ sono simili.

3-З
$$B$$
, B^I basi di $V \mid M_B(f) = M_{B^I}(g)$

1° Invariante: $\dim(\operatorname{Im}(f))$

È un invariante in quanto la relazione di similitudine è una particolare relazione DS.

2° Invariante: Determinante

Proprietà:

 $A \stackrel{.}{e} invertibile \leftrightarrow \det A \neq 0$

Formula del prodotto di Binet:

$$det(AB) = det A det B$$

Corollario:

$$\det A^{-1} = \frac{1}{\det A}$$

Sviluppo di Laplace:

$$\det_{\mathbf{n}} A = \sum_{k=1}^{n} (-1)^{i+x} a_{ik} (\det_{(\mathbf{n}-1)} A_{ik})$$

Formula di Cramer:

A invertibile, per individuare la soluzione $v \in K^n$ del sistema Ax = b è: $v_i = \frac{\det B_i}{\det A}$ dove B_i è la matrice ottenuta sostituendo b alla i-esima colonna.

Calcolo dell'inversa:

$$[A^{-1}]_{i,j} = (-1)^{i+j} \frac{\det A_{ij}}{\det A}$$

Definizione (Minore)

È una sottomatrice quadrata.

Osservazione:

B sottomatrice di $A \rightarrow \text{Rango } B \leq \text{Rango } A$

Osservazione:

Se un minore è invertibile allora le righe e le colonne che vi concorrono sono indipendenti.

Teorema (Caratterizzazione Rango):

Il rango è il massimo ordine dei minori invertibili.

Osservazione:

I minori principali sono le sottomatrici quadrate con un estremo nel posto (1,1).

Notazione:

Orlare un minore significa aggiungere una riga ed una colonna.

Criterio dei minori orlati:

Sia $A \in M(m,n)$; B = M(r); $\det B \neq 0$ allora: Se tutti i minori orlati hanno $\det = 0 \rightarrow \operatorname{Rango} A = r$

3

3° Invariante: Spettro

Idea: Cercare quei vettori per i quali la trasformazione è una dilatazione.

Definizione (Autovalore):

Sia $f: V \to V$, sono i λ per cui vale $\dim(\ker(f - \lambda \operatorname{Id})) \neq 0$.

Definizione (Spettro di f):

Spettro(f) = { $\lambda \in K \mid \lambda$ autovalore per f}

Proposizione:

$$f \sim g \rightarrow \text{Spettro}(f) = \text{Spettro}(g)$$

Specializzazione su $M_n(K)$:

$$Spettro(A) = \{\lambda \in K \mid \ker(A - \lambda \cdot Id) \neq 0\} \text{ ossia} \leftrightarrow \det(A - \lambda Id) = 0$$

Definizione (Autovettore relativo ad un autovalore):

Dato λ autovalore è un vettore $v \mid f(v) = \lambda v$

Definizione (f-invarianza):

W sottospazio di V; $f \in \text{End}(V)$ si dice f-invariante se $f(W) \subseteq W$

Proprietà varie:

 $f \in \operatorname{End}(\mathbb{R}^3) \to \exists \operatorname{piano} f$ -invariante.

<u>Definizione (Autospazio relativo ad un autovalore):</u>

$$V_{\lambda} = \{ v \in V \mid f(v) = \lambda v \}$$

Lemma:

 $\forall \lambda \text{ autovalore } ; V_{\lambda} \grave{e} f\text{-invariante.}$

Definizione (Molteplicità geometrica)

$$\mu_{\lambda} = \dim V_{\lambda}$$

Proposizione:

$$f \sim g \rightarrow \mu_{\lambda}(f) = \mu_{\lambda}(g) \ \forall \ \lambda \in \text{Spettro}$$

Proposizione (Autospazi in somma diretta):

Siano $\lambda_1, \dots, \lambda_n$ autovalori distinti per f, allora $V_{\lambda_1} \oplus V_{\lambda_2} \oplus \dots \oplus V_{\lambda_n}$

Idea:

Gli autovettori relativi ad autovalori distinti sono linearmente indipendenti.

4° Invariante: Polinomio caratteristico

Idea:

Costruire il determinante come un polinomio le cui radici sono tutti e soli gli autovalori dell'endomorfismo.

Definizione (Polinomio caratteristico):

$$P_A(x) = \det(A - x \cdot \mathrm{Id}) \in K[x]$$

Osservazione:

 $\lambda \in \text{Spettro } A \leftrightarrow \lambda \text{ è radice di } P_A(x)$

Corollario:

Lo Spettro *A* ha al più *n* elementi.

Proprietà:

$$P_A(x) = (-1)^n x^n \pm \operatorname{traccia}(A) t^{x-1} + \dots \pm \det A$$

Corollario:

La traccia è un invariante per similitudine.

Definizione (Molteplicità aritmetica di un autovalore):

 m_{λ} è il grado dell'autovalore λ come radice del polinomio.

Osservazione:

La somma delle molteplicità aritmetiche è uguale ad n.

Rapporto m_{λ} , μ_{λ} :

$$1 \le \dim V_{\lambda} = \mu_{\lambda} \le m_{\lambda} \le n$$

5° Invariante: Polinomio minimo

Teorema di Hamilton-Cayley:

L'endomorfismo f è radice del suo polinomio caratteristico.

Il polinomio minimo divide il polinomio caratteristico e hanno gli stessi fattori irriducibili.

Proposizione:

Se
$$g \sim f \rightarrow \forall p(t) \in K[t]$$
 vale $p(g) \sim p(f)$

Definizione (Ideale di un endomorfismo f):

$$I(f) = \{ p(t) \in K[t] \mid p(f) = 0 \}$$

Osservazione:

È un invariante per similitudine.

Osservazione (Caratterizzazione):

Sia
$$a_f: (K[t]. +, \cdot) \to (\operatorname{End}(V), +, \circ) \mid a_f(p(t)) = p(f)$$

Allora $I(f) = \ker(a_f)$

Definizione (Polinomio minimo):

È un polinomio $q_f(t) \in I(f)$ di grado minimo.

Equivalente: È il generatore monico dell'ideale.

Proposizione:

$$q_f(t)$$
 polinomio minimo $\rightarrow \forall p(t) \in I(f)$ vale $q_f(t)|p(t)$

Osservazione:

Gli autovalori di f sono radici del suo polinomio minimo.

Osservazione:

Se un endomorfismo è diagonalizzabile il suo polinomio minimo ha tutti i coefficienti 1.

Individuazione del polinomio minimo:

Dato
$$P_f(x) = (x - a_1)^{m_1} \dots (x - a_k)^{m_k}$$

Sappiamo che $q_f(x)=(x-a_1)^{r_1}\dots(x-a_k)^{r_k}$ con $r_i\leq m_i$ ed è il più piccolo che annulli l'endomorfismo, in pratica ridotte le scelte al polinomio caratteristico bisogna provare a ridurre selettivamente i fattori.

Osservazione:

L'esponente di un fattore del polinomio minimo è inoltre l'indice di nilpotenza dell'autospazio generalizzato associato a quell'autovalore costruiamo quindi la seguente successione di autospazi generalizzati:

$$\ker(A - \lambda \cdot \mathrm{Id}) \subseteq \ker(A - \lambda \cdot \mathrm{Id})^2 \subseteq \cdots \subseteq \ker(A - \lambda \cdot \mathrm{Id})^r$$

Dove $\dim \ker(A - \lambda \cdot \operatorname{Id}) = \mu_{\lambda} \operatorname{e} r \leq n$ esponente del fattore del polinomio minimo $|\dim(A - \lambda \cdot \operatorname{Id})^r = m_{\lambda}$

Categoria: Endomorfismi diagonalizzabili

Definizione:

 $f \in \operatorname{End}(V)$ è diagonalizzabile se $\exists B$ base di autovettori per f.

Allora
$$M_B(f) = \begin{pmatrix} \lambda_1 & & \\ & \dots & \\ & & \lambda_n \end{pmatrix} \operatorname{con} \lambda_i$$
 autovalori.

Notazione:

 $D(V) = \{\text{matrici diagonalizzabili}\}$

Osservazione:

Per le matrici diagonalizzabili il polinomio caratteristico è un invariante completo.

Condizioni diagonalizzabilità:

 $P_f(t)$ è completamente fattorizzabile $\underline{e} \ \forall \ \lambda_i$ vale $m_{\lambda_i} = \mu_{\lambda_i}$

Corollario:

Se $\exists n$ autovalori distinti per f questo è diagonalizzabile.

Proprietà:

 $A, B \in M_n(K)$ diagonalizzabili sono simultaneamente diagonalizzabili $\leftrightarrow AB = BA$

8

A è diagonalizzabile $\leftrightarrow A^t$ è diagonalizzabile.

f diagonalizzabile, W f-invariante $\rightarrow f_{|W}$ diagonalizzabile

 $q_f(t)$ libero da quadrati $\rightarrow f$ diagonalizzabile

Ogni S(n) è diagonalizzabile (Teorema spettrale).

Ogni isometria di un piano iperbolico è diagonalizzabile.

Categoria: Endomorfismi triangolabili

Definizione:

ione:
$$f \in \operatorname{End}(V) \text{ si dice triangolabile se } \exists B \text{ base di } V \mid M_B(f) = T = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{n,n} \end{pmatrix}$$

Notazione:

$$T(V) = \{\text{matrici triangolabili}\}$$

Condizioni triangolabile:

$$f \in T(V) \leftrightarrow B$$
 base a bandiera f -invariante.
 $f \in T(V) \leftrightarrow P_f(x)$ è completamente fattorizzabile ossia $\sum m_{\lambda} = n$

Osservazione:

Se K è algebricamente chiuso allora ogni matrice è triangolabile.

Definizione (Bandiera):

Una bandiera di sottospazi associati alla base B è una successione:

$$\{0\} \subseteq \operatorname{Span}(v_1) \subseteq \operatorname{Span}(v_1, v_2) \subseteq \cdots \subseteq \operatorname{Span}(B)$$

Osservazione:

Una bandiera è *f*-invariante se ogni sottospazio della bandiera è invariante.

Proprietà:

 $A, B \in T(V)$ sono simultaneamente triangolabili solo se AB = BA

$$A \in T(V) \rightarrow \exists P \in O(n) \mid P^{-1}AP = P^tAP = T$$

B a bandiera per A, con G. Schmidt ottengo B' a bandiera e ortogonale.

Forma di Jordan:

Idea:

È un invariante completo per la relazione di similitudine.

Una matrice di Jordan è formata da singoli blocchi di Jordan affiancati per autovalore comune.

Definizione (Blocco di Jordan):

$$J_{4,\lambda} = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

È una matrice quadrata bi diagonale con l'autovalore lungo la diagonale e 1 nella sovra diagonale.

Osservazione:

Per ogni autovalore possono esserci più blocchi di Jordan:

Numero blocchi di Jordan:

Il numero di blocchi di Jordan associati all'autovalore λ è la molteplicità geometrica μ_{λ}

Dimensione dei blocchi:

L'indice di nilpotenza (Il grado del polinomio minimo) mi assicura l'esistenza di almeno un blocco di quella dimensione e che non ne esistano di dimensioni maggiori.

Osservazione:

Queste due informazioni bastano quasi sempre ad individuare la forma di Jordan di una matrice, nel caso ciò non sia sufficiente è necessario calcolarsi la base di Jordan.

Decomposizione primaria dei Sottospazi generalizzati su \mathbb{C}^n :

$$V^I(\lambda_1) \oplus ... \oplus V^I(\lambda_k) = \mathbb{C}^n$$
 Con $V^I(\lambda_i) = \ker(A - \lambda_i I)^{\min}$ con min il primo per cui si annulla. $\ker(A - \lambda_i)^1 \subseteq \ker(A - \lambda_i)^2 \subseteq \cdots \subseteq \ker(A - \lambda_i)^{\min}$ Si può ottenere dal polinomio minimo.

Proprietà:

1- dim
$$V'(\lambda_i) = \mu_{\lambda_i}$$

- 2- Sono sottospazi invarianti.
- 3- La restrizione ha solo l'autovalore λ_i .

Osservazione:

Quindi sommando tutti i vettori che mi decompongono in questo modo \mathbb{C}^n ottengo una base nilpotente.

Studiare Jordan, esempio:

$$A = \begin{pmatrix} -1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \end{pmatrix} \in M(5, C)$$

Cerco il Polinomio caratteristico individuando righe o colonne più facili:

$$P_A(t) = \det(A - TI) = t^3(1 - t)^2$$

Da questo ricavo gli autovalori e ne calcolo la molteplicità algebrica:

$$\lambda_1 = 0$$
 , $\mu_a(0) = 3$

$$\lambda_2 = 1$$
 , $\mu_a(1) = 2$

Cerco di capire se è diagonalizzabile, per fare questo calcolo la dimensione dell'autospazio; posso cercare gli autovettori o posso sfruttare:

$$\dim V_{(0)} = 5 - \text{Rk}(A) \le \mu_a(0) = 3$$
, $\text{Rk}(A) \le 2$

Calcolando:

$$Rk(A) = 4 \rightarrow \dim V_{(0)} = 5 - 4 = 1$$

Siccome non coincidono le molteplicità la matrice non è diagonalizzabile.

Studio la successione dei nuclei:

 $\ker A \subseteq \ker A^2 \subseteq \ker A^3$ mi fermo a 3 perché è la molteplicità algebrica di 0.

Siccome $\dim \ker A = 1$ allora $\dim \ker A^2 - \frac{2}{3}$; non può essere 1 perché A non è nilpotente.

Calcolo A^2 e da quello dim ker $A^2 = 5 - \text{Rk}(A^2) = 2$

Scrittura di una base dei $\ker A^i$:

Essendo dim ker A=1 e allora $\{e_2-e_5\}$ è una base di ker A

In A^2 osservo che $e_2-e_5=0$ dunque una base di $\ker A^2$ è $\{e_2-e_5\,,\,e_1-e_3\}$

In A^3 la dim $\ker A^3=3$ e dunque una base di $\ker A^3$ è $\{e_2-e_5$, $\ e_1-e_3$, $e_1\}$

Riassumendo: $V^I(0) = \operatorname{Span}(e_2 - e_5, e_1 - e_3, e_1)$ e adesso ho che:

 $A_{|V^I(0)} \in End(V^I(0)$, nilpotente di cui è facile calcolare una base di Jordan.

Ricavo a ritroso una base di Jordan:

Sapendo $\ker A^3 = \ker A^2 \oplus w_3$ con supplementare $w_3 = \operatorname{Span}(e_1)$. Si fa l'immagine di e_3 , ossia:

 $(A-0I)e_1=e_3-e_1$ Dal punto di vista teorico è perché se prendo l'immagine dei vettori del supplementare sono vettori che vanno a 0 dopo <u>esattamente</u> 3 volte.

Adesso itero: $\ker A^2 = \ker A \oplus w_2$ e $w_2 = \operatorname{Span}(e_3 - e_1)$. Calcolo $Ae_3 - Ae_1 = e_2 - e_5$

La **BASE DI JORDAN** per $End(V^I(0))$ nilpotente è:

$$\{e_2 - e_5; e_3 - e_1; e_1\}$$

Alla stessa maniera ricavo che #blocchi = $\dim V(1) = 5 - \text{Rk}(A - I) = 1$

E come prima calcolo $\ker(A-I)^2 = \ker(A-I) \oplus U$ con $U = \operatorname{Span}(e_4 + e_5)$ che con l'immagine $= -e_2$ Dunque una base per $V^I(1)$ di Jordan è $\{-e_2; e_4 + e_5\}$

Collegandole: $S = \{e_2 - e_5; e_3 - e_1; e_1; -e_2; e_4 + e_5\}$ che è una **BASE DI JORDAN.**