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Esercizio 1. Si consideri un punto materiale P di massa unitaria soggetto ad una forza
centrale

F (x) = f(ρ)
x

ρ
, x ∈ R3 \ {0} , ρ = |x|

f(ρ) = ρe−2ρ − 1

ρ3

Si supponga che il momento angolare rispetto al centro di forze O sia diverso da zero
e si denoti con c la componente del momento angolare ortogonale al piano del moto.

1. Trovare il numero di orbite circolari al variare di c.

2. Calcolare l’energia potenziale efficace e tracciare il ritratto di fase nello spazio
delle fasi ridotto con coordinate (ρ, ρ̇) al variare di c.

3. Si consideri l’orbita con condizioni iniziali

x(0) = (1, 0, 0), ẋ(0) = (a, b, 0), a, b ∈ R.
Trovare tutti i valori di a e b per cui tale orbita è circolare.

Esercizio 2. Si consideri una lamina circolare C di massa m, centro B e raggio 2r. La
parte della lamina contenuta nel disco di centro B e raggio r ha densità costante tripla
rispetto al resto di C, anch’esso di densità costante. Si fissi ora un sistema di riferimento
Σ = Oxyz con asse Oz verticale ascendente. Una guida circolare di raggio R > 2r e
centrata in O ruota attorno all’asse Oz tenendosi sempre perpendicolare al piano Oxy.
La lamina C ruota senza strisciare all’interno di tale guida, rimanendo sempre nel piano
della guida. Si indichi con P il punto di contatto tra C e la guida, e con A uno dei due
punti in cui la guida interseca il piano Oxy.

Sia φ l’angolo misurato dall’asse Ox al segmento OA e sia α l’angolo misurato da
OA a OP (si veda la figura).
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1. Calcolare i momenti principali di inerzia di C rispetto al suo baricentro.

2. Calcolare la velocità angolare di C.

3. Calcolare l’energia cinetica di C.

Esercizio 3. In un piano verticale si fissi un sistema di riferimento Oxy con asse Oy
verticale ascendente e si consideri il sistema meccanico formato da un’asta omogenea
AC di massa m e lunghezza 2ℓ. L’estremo A dell’asta è collegato all’origine O da una
molla di costante elastica k > 0 e lunghezza a riposo nulla. Il sistema è soggetto alla
forza di gravità, di accelerazione g > 0 e rivolta verso il basso. Inoltre, il piano verticale
ruota attorno all’asse Oy con velocità angolare costante ω > 0.

Assumiamo che valgano le seguenti relazioni tra i parametri:

k

m
=

g

ℓ
= 2ω2.

Usando come coordinate lagrangiane x, y, ϑ, dove (x, y) sono le coordinate del punto
A e ϑ è l’angolo che l’asta AC forma con la direzione verticale (vedi figura),

x

y

O

ϑ

ωg

A
C

1. scrivere la lagrangiana del sistema;

2. trovare le configurazioni di equilibrio;

3. studiare la stabilità delle configurazioni con sinϑ ̸= 0.
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Esercizio 1.

1. Dalle ipotesi ho che c ̸= 0 e m = 1. Per trovare le orbite circolari, esplicito
l’equazione ρ̈ = 0

f(ρ) +
c2

ρ3
= 0 → ρe−2ρ +

c2 − 1

ρ3
= 0 → ρ4e−2ρ = 1− c2

Per capire il numero di soluzioni, conto il numero di intersezioni per ρ > 0 tra il
grafico della funzione g(ρ) = ρ4e−2ρ e la retta orizzontale h(ρ) = 1− c2.
Per la funzione g(ρ) vale che

lim
ρ→0+

g(ρ) = 0+, lim
ρ→+∞

g(ρ) = 0+

e che ha un unico punto stazionario (massimo) in

g′(ρ) = 4ρ3e−2ρ − 2ρ4e−2ρ = 0 → ρ = 2,

in cui la funzione vale g(ρ) = 16/e4 < 1. Perciò ho i seguenti casi:
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- se 0 < c2 < 1 − 16/e4 ∨ c2 ≥ 1 allora non ci sono intersezioni per ρ > 0 tra la
retta e la funzione g(ρ) (quindi nessuna orbita circolare).
- se c2 = 1−16/e4 allora c’è un’unica intersezione (quindi un’orbita circolare) con
ρ1 = 2.
- se 1−16/e4 < c2 < 1 allora ci sono due intersezioni (quindi due orbite circolari),
una per ρ1 < 2 e una per ρ2 > 2.

2. L’energia potenziale efficace è

Veff(ρ) = −
∫

f(ρ)dρ+
c2

2ρ2
=

1

2
e−2ρ

(
ρ+

1

2

)
+

c2 − 1

2ρ2
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i cui limiti agli estremi del dominio valgono

lim
ρ→0+

Veff(ρ) =


+∞ se c2 > 1

1/4 se c2 = 1

−∞ se c2 < 1

lim
ρ→+∞

Veff(ρ) =


0+ se c2 > 1

0+ se c2 = 1

0− se c2 < 1

Considerando i diversi numeri di punti stazionari di Veff (corrispondenti alle orbite
circolari trovate in precedenza), trovo i seguenti casi:

* si noti che il terzo ritratto può cambiare a seconda dell’altezza del punto di
massimo (qualsiasi scelta ai fini della risoluzione dell’esercizio andava bene).

3. Dalle coordinate delle condizioni iniziali segue che il piano del moto dell’orbita è
Oxy. Su tale piano, so che ad ogni tempo vale

x = ρêρ e ẋ = ρ̇êρ + ρθ̇êθ,

e che in questo caso all’istante iniziale êρ = ê1 e êθ = ê2. Valutando le espressioni
sopra all’istante iniziale ottengo

ρ(0) = 1, ρ̇(0) = a e ρ(0)θ̇(0) = b.

Per avere un’orbita circolare, deve valere ρ̇ = 0 e f(ρ)+ c2/ρ3 = 0, dove in questo
caso c = b. Dalla seconda equazione

ρ(0)4e−2ρ(0) = 1− b2 =⇒ b2 = 1− 1

e2
=⇒ b = ±

√
e2 − 1

e

Perciò le coppie (a, b) per avere un’orbita circolare sono (0,
√
e2−1
e

) e (0,−
√
e2−1
e

).
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Esercizio 2.

1. Posso vedere C come la somma di due dischi, uno di raggio 2r e densità costante
σ e l’altro di raggio r e densità costante 2σ. La relazione tra m e σ è

m = 4σπr2 + 2σπr2 = 6σπr2,

perciò il primo disco ha massa (2/3)m, mentre il secondo (1/3)m. Considero il
sistema di riferimento Bξηζ riportato in figura e cos̀ı definito: origine nel bari-
centro di C, asse Oζ perpendicolare al piano della figura e gli altri due assi nel
piano della figura (per la simmetria della figura vanno bene due assi ortogonali
qualsiasi).

Essendo B il baricentro di C, e anche dei due dischi in cui l’ho scomposto, posso
calcolare i momenti principali di inerzia semplicemente sommando i due contributi
noti:

IC1 =
1

4

2

3
m(2r)2 +

1

4

1

3
mr2 =

3

4
mr2

IC2 = IC1 =
3

4
mr2

IC3 = IC1 + IC2 =
3

2
mr2

2. Per calcolare la velocità angolare di C, passo ad un sistema di riferimento in cui
il moto del disco è piano. Partendo dal sistema di riferimento Σ = Oxyz, passo
al sistema Σ′ = Ox′y′z′, ottenuto tramite la rotazione elementare Rφ

3 . In questo
modo ho che ê′1 = (A−O)/|A−O| e ê′3 = ê3.

Per costruzione, la velocità angolare di Σ′ rispetto a Σ è ω′ = φ̇ê3. Calcolo ora
la velocità angolare di C in Σ′ tramite la formula fondamentale della cinematica
rigida. In tale sistema, il moto piano e la velocità angolare è della forma ω′′ =
ω′′ê′2. Inoltre, per ipotesi v

′
P = 0 (velocità di P in Σ′ come punto solidale a C):

v′
B =�

�v′
P + ω′′ê′2 × (B − P )

−α̇(R− 2r) sinαê′1 + α̇(R− 2r) cosαê′3 = −ω′′2r sinαê′1 + ω′′2r cosαê′3

ω′′ =
R− 2r

2r
α̇ê′2

Perciò la velocità angolare del corpo rigido in Σ sarà la somma delle due

ω = ω′ + ω′′ = φ̇ê3 +
R− 2r

2r
α̇ê′2 = −R− 2r

2r
α̇ sinφê1 +

R− 2r

2r
α̇ cosφê2 + φ̇ê3

scritto nelle coordinate di Σ (e′2 = Rφ
3 (0, 1, 0)

T ).
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3. Per calcolare l’energia cinetica utilizzo il teorema di Konig

T =
1

2
m|vB|2 +

1

2
ω · ICBω

In Σ (attenzione, prima l’avevo calcolata in Σ′), la velocità del baricentro è

vB = (R−2r)(−α̇ sinα cosφ−φ̇ cosα sinφ)ê1+(R−2r)(−α̇ sinα sinφ+φ̇ cosα cosφ)ê2+(R−2r)α̇ cosαê3

Per la parte rotazionale posso scegliere una base conveniente; infatti il valore del
prodotto scalare ω ·ICBω è indipendente dalla scelta della base ortonormale. Scelgo
la base associata al sistema di riferimento Σ′; in tale sistema ICB è costante, anche
se non Σ′ non è solidale al disco. Infatti, in Σ′ il corpo rigido sta sul Ox′z′ e la
matrice di inerzia in questo sistema è costantemente

IC0B =
3

4
mr2

1 0 0
0 2 0
0 0 1


Poichè ê′3 = ê3, le coordinate della velocità angolare ω in Σ′ sono (0, (R−2r)

2r
α̇, φ̇).

Percio il contributo rotazionale all’energia cinetica è

1

2
ω · ICBω =

3

16
m(R− 2r)2α̇2 +

3

8
mr2φ̇2

Infine l’energia cinetica totale è la somma dei due contributi

T =
1

2
m(R−2r)2(α̇2+φ̇2 cos2 α)+

3

16
m(R−2r)2α̇2+

3

8
mr2φ̇2 =

11

16
m(R−2r)2α̇2+m

(
3

8
r2 +

1

2
m(R− 2r)2 cos2 α

)
φ̇2

α x'

z'

ξ

η

OB
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Esercizio 3.

1. Scrivo le coordinate dei punti A e B (baricentro), e di P generico dell’asta

xA = xe1 + ye2

xB = (x+ ℓ sinϑ)e1 + (y − ℓ cosϑ)e2

xP = (x+ r sinϑ)e1 + (y − r cosϑ)e2, r ∈ (0, 2ℓ)

L’energia cinetica dell’asta è

T =
1

2
m|vB|2 +

1

2
ϖ · Iϖ

dove I è la matrice di inerzia dell’asta e ϖ la sua velocità angolare. Per risultati
noti, so che ϖ = ϑ̇e3 e I33 = (1/3)mℓ2. Inoltre

vB = (ẋ+ ℓϑ̇ cosϑ)e1 + (ẏ + ℓϑ̇ sinϑ)e2

Perciò l’energia cinetica totale è

T =
1

2
m(ẋ2 + ẏ2 + ℓ2ϑ̇2 + 2ℓẋϑ̇ cosϑ+ 2ℓẏϑ̇ sinϑ) +

1

6
mℓ2ϑ̇2

L’energia potenziale è la somma del contributo gravitazionale, elastico e centrifugo
(in questa configurazione Coriolis non dà contributo al moto dell’asta sul piano)

V = mg(y − ℓ cosϑ) +
1

2
k(x2 + y2)− 1

2

∫ 2ℓ

0

λ|ω × xP |2dr

Calcolo a parte l’integrale (λ è la densità costante dell’asta)

1

2

∫ 2ℓ

0

λ|ω×xP |2dr =
1

2

m

2ℓ
ω2

∫ 2ℓ

0

(x+r sinϑ)2dr =
1

2
mω2(x2+2ℓx sinϑ+

4

3
ℓ2 sin2 ϑ)

Perciò la lagrangiana finale è

L = T − V =
1

2
m

(
ẋ2 + ẏ2 +

4

3
ℓ2ϑ̇2 + 2ℓẋϑ̇ cosϑ+ 2ℓẏϑ̇ sinϑ

)
−mg(y − ℓ cosϑ)− 1

2
k(x2 + y2) +

1

2
mω2(x2 + 2ℓx sinϑ+

4

3
ℓ2 sin2 ϑ)

2. Per trovare i punti di equilibrio, calcolo i punti stazionari della funzione V :
∂V

∂x
= kx−mω2x−mω2ℓ sinϑ = 0

∂V

∂y
= mg + ky = 0

∂V

∂ϑ
= mgℓ sinϑ−mω2ℓx cosϑ− 4

3
mω2ℓ2 sinϑ cosϑ = 0
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Usando le ipotesi sui parametri, otteno
mω2x−mω2ℓ sinϑ = 0

2mω2ℓ+ 2mω2y = 0

2mω2ℓ2 sinϑ−mω2ℓx cosϑ− (4/3)mω2ℓ2 sinϑ cosϑ

=⇒


x = ℓ sinϑ

y = −ℓ

sinϑ(2− (7/3) cosϑ) = 0

le cui soluzioni sono

(x, y, ϑ) = (0,−ℓ, 0), (0,−ℓ, π), (x∗,−ℓ, ϑ∗), (−x∗,−ℓ,−ϑ∗)

con ϑ∗ = arccos(6/7) e x∗ = ℓ
√
13/49.

3. Per studiare la stabilità delle configurazioni di equilibrio con sinϑ ̸= 0, calcolo
prima la matrice hessiana di V

V ′′ =
∂2V

∂(x, y, ϑ)2
= mω2

 1 0 −ℓ cosϑ
0 2 0

−ℓ cosϑ 0 2ℓ2 cosϑ+ ℓx sinϑ− (4/3)ℓ2(cos2 ϑ− sin2 ϑ)


e poi la valuto nel punto (x∗,−ℓ, ϑ∗) (l’altro punto dà gli stessi risultati per
simmetria).

V ′′ =
∂2V

∂(x, y, ϑ)2
(x∗,−ℓ, ϑ∗) = mω2

 1 0 −(6/7)ℓ
0 2 0

−(6/7)ℓ 0 ℓ2(199/147)


Questa matrice ha determinante positivo (det = 182/147ℓ2 > 0) e anche i mi-
nori principali hanno determinante positivo; per il criterio di Sylvester sulle
matrici simmetriche reali tutti gli autovalori sono positivi. Quindi la configu-
razione (x∗,−ℓ, ϑ∗) è un punto di minimo di V ed è stabile per il teorema di
Lagrange-Dirichilet. Lo stesso vale per il punto (−x∗,−ℓ,−ϑ∗).
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