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Esercizio 1. Si consideri un punto materiale P di massa unitaria soggetto ad una forza
centrale

F<a:>=f<p>§, z e RO\ {0}, p=|a|
—2p _ i
f(p) = pe 7

Si supponga che il momento angolare rispetto al centro di forze O sia diverso da zero
e si denoti con ¢ la componente del momento angolare ortogonale al piano del moto.

1. Trovare il numero di orbite circolari al variare di c.

2. Calcolare 'energia potenziale efficace e tracciare il ritratto di fase nello spazio
delle fasi ridotto con coordinate (p, p) al variare di c.

3. Si consideri 'orbita con condizioni iniziali
xz(0) = (1,0,0), «(0) = (a,b,0), a,b eR.
Trovare tutti i valori di a e b per cui tale orbita e circolare.

Esercizio 2. Si consideri una lamina circolare C di massa m, centro B e raggio 2r. La
parte della lamina contenuta nel disco di centro B e raggio r ha densita costante tripla
rispetto al resto di C, anch’esso di densita costante. Si fissi ora un sistema di riferimento
Y = Oxyz con asse Oz verticale ascendente. Una guida circolare di raggio R > 2r e
centrata in O ruota attorno all’asse Oz tenendosi sempre perpendicolare al piano Ozxy.
La lamina C ruota senza strisciare all’interno di tale guida, rimanendo sempre nel piano
della guida. Si indichi con P il punto di contatto tra C e la guida, e con A uno dei due
punti in cui la guida interseca il piano Ozy.

Sia ¢ l'angolo misurato dall’asse Oz al segmento OA e sia a 'angolo misurato da

OA a OP (si veda la figura).
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1. Calcolare i momenti principali di inerzia di C rispetto al suo baricentro.
2. Calcolare la velocita angolare di C.

3. Calcolare I'energia cinetica di C.

Esercizio 3. In un piano verticale si fissi un sistema di riferimento Oxy con asse Oy
verticale ascendente e si consideri il sistema meccanico formato da un’asta omogenea
AC di massa m e lunghezza 2¢. L’estremo A dell’asta ¢ collegato all’origine O da una
molla di costante elastica £k > 0 e lunghezza a riposo nulla. Il sistema e soggetto alla
forza di gravita, di accelerazione g > 0 e rivolta verso il basso. Inoltre, il piano verticale
ruota attorno all’asse Oy con velocita angolare costante w > 0.

Assumiamo che valgano le seguenti relazioni tra i parametri:

k g 2
— == = 2w".
m ¥ w

Usando come coordinate lagrangiane z, y, 9, dove (x,y) sono le coordinate del punto
A e 9 ¢ I'angolo che I'asta AC' forma con la direzione verticale (vedi figura),

g Yy A
i N A0

1. scrivere la lagrangiana del sistema;
2. trovare le configurazioni di equilibrio;

3. studiare la stabilita delle configurazioni con sin ¥ # 0.



Esercizio 1.

1. Dalle ipotesi ho che ¢ # 0 e m = 1. Per trovare le orbite circolari, esplicito
I’equazione p =0

2 2

C cc—1
f(p)+;:O—>pe’2”+

e =0 ple=1-¢

Per capire il numero di soluzioni, conto il numero di intersezioni per p > 0 tra il
grafico della funzione g(p) = p*e~? e la retta orizzontale h(p) = 1 — %
Per la funzione g(p) vale che

lim g(p) =0%, lim g(p) =0

p—0+ p—+oo

_l’_

e che ha un unico punto stazionario (massimo) in
g'(p) =4p’e —2p'e™ =0 —=p=2,

in cui la funzione vale g(p) = 16/e* < 1. Percio ho i seguenti casi:
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-se 0 < c® <1—16/e*V c* > 1 allora non ci sono intersezioni per p > 0 tra la
retta e la funzione g(p) (quindi nessuna orbita circolare).
-se ¢ =1—16/¢" allora ¢’¢ un’unica intersezione (quindi un’orbita circolare) con
P1 = 2.
-se 1—16/e* < ¢® < 1 allora ci sono due intersezioni (quindi due orbite circolari),
una per p; < 2 e una per ps > 2.

2. L’energia potenziale efficace ¢

A 1 1 -1
o = — d _— = = —2p — J—



i cui limiti agli estremi del dominio valgono

lim Veg(p) =

p—0t
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Considerando i diversi numeri di punti stazionari di Vg (corrispondenti alle orbite
circolari trovate in precedenza), trovo i seguenti casi:
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* 81 noti che il terzo ritratto puo cambiare a seconda dell’altezza del punto di
massimo (qualsiasi scelta ai fini della risoluzione dell’esercizio andava bene).

. Dalle coordinate delle condizioni iniziali segue che il piano del moto dell’orbita e
Ozy. Su tale piano, so che ad ogni tempo vale

r = pép (& CU = pép + péé97

e che in questo caso all’istante iniziale €, = €; e €y = €,. Valutando le espressioni
sopra all’istante iniziale ottengo

p0)=1, p0)=a e p(0)(0) =b.

Per avere un’orbita circolare, deve valere p = 0 e f(p)+c?/p> = 0, dove in questo
caso ¢ = b. Dalla seconda equazione

P P l- Lt s oy

0)4e—2r(0)
p(0)°e = .

—1—

Percio le coppie (a, b) per avere un’orbita circolare sono (0, ¥<=1) e (0, —¥==1



Esercizio 2.

1. Posso vedere C come la somma di due dischi, uno di raggio 2r e densita costante
o e l'altro di raggio r e densita costante 20. La relazione tra m e o ¢

m = donr? 4+ 2omr? = 6omr?,

percio il primo disco ha massa (2/3)m, mentre il secondo (1/3)m. Considero il
sistema di riferimento B&n( riportato in figura e cosi definito: origine nel bari-
centro di C, asse O(C perpendicolare al piano della figura e gli altri due assi nel

piano della figura (per la simmetria della figura vanno bene due assi ortogonali
qualsiasi).

Essendo B il baricentro di C, e anche dei due dischi in cui ’ho scomposto, posso
calcolare i momenti principali di inerzia semplicemente sommando i due contributi

noti:
12 11 3
¢ = ng(2r)2 + ngTZ = ZlmTQ
3
]26 = ]lc = Zmr2

3
IS =1{ +I5 = §mr2

2. Per calcolare la velocita angolare di C, passo ad un sistema di riferimento in cui

il moto del disco e piano. Partendo dal sistema di riferimento ¥ = Oxyz, passo
al sistema X' = Oz'y’Z’, ottenuto tramite la rotazione elementare Rf. In questo
modo ho che €] = (A —O)/|A - O] e &}, = és.
Per costruzione, la velocita angolare di ' rispetto a ¥ & w’ = pé3. Calcolo ora
la velocita angolare di C in ¥’ tramite la formula fondamentale della cinematica
rigida. In tale sistema, il moto piano e la velocita angolare ¢ della forma w” =
w"é),. Inoltre, per ipotesi v, = 0 (velocita di P in ¥’ come punto solidale a C):

!/ / "t
vB:%—l—w é, x (B—P)
—&(R — 2r)sin €] + &(R — 2r) cos aéy = —w"2r sin a€] + w"2r cos aéy
R—2r
w// /

= ae
2r 2

Percio la velocita angolare del corpo rigido in ¥ sara la somma delle due

R—-2r R—2r . R—2r
aey = — asinpe; +
2r 2r

(r COS €y + pes

w=w +w' =pe;+

scritto nelle coordinate di ¥ (e, = R%(0,1,0)7).



3. Per calcolare I'energia cinetica utilizzo il teorema di Konig

1 1
T= §TTL|VB|2 Towr Ifw

In ¥ (attenzione, prima l'avevo calcolata in '), la velocita del baricentro ¢

vp = (R—2r)(—dsin a cos p—¢ cos asin ¢)é;+(R—2r)(—d& sin a sin ¢+¢ cos a cos ¢)€a+(R—21)d cos ae;

Per la parte rotazionale posso scegliere una base conveniente; infatti il valore del
prodotto scalare w-I$w & indipendente dalla scelta della base ortonormale. Scelgo
la base associata al sistema di riferimento Y'; in tale sistema I§ & costante, anche
se non Y’ non ¢ solidale al disco. Infatti, in X' il corpo rigido sta sul Oxz’z e la
matrice di inerzia in questo sistema e costantemente

3 100
1% = Zmﬂ 020
00 1
Poiche €} = é3, le coordinate della velocita angolare w in ¥’ sono (0, (R;TZT)o'z, P).
Percio il contributo rotazionale all’energia cinetica e
1 3 3
5w Sw = Em(R —2r)%a® + gmr2gb2
Infine 'energia cinetica totale ¢ la somma dei due contributi
1 2.2, 22 92 3 2.9,3 5.9 1l 2.9 35 1 2 2 22
T = Em(R—Zr) (& +¢~ cos oz)—i—Em(R—Qr) a +§mr o = 1—6m(R—27") a“+m 3" + ém(R— 2r)° cos® a | ¢




Esercizio 3.
1. Scrivo le coordinate dei punti A e B (baricentro), e di P generico dell’asta

XA = T€1 + Y€
xp = (z+ {sind)e; + (y — LcosV)eq
xp = (z+rsind)e; + (y — rcosd)eq, 1€ (0,20)

L’energia cinetica dell’asta ¢

1
T = §m]v3\2 + §w-1w

dove I ¢ la matrice di inerzia dell’asta e o la sua velocita angolare. Per risultati
noti, so che @ = Jez e I33 = (1/3)ml?. Inoltre

vp = (& + L) cosV)e; + (§ + €0 sinv)e,

Percio I'energia cinetica totale ¢
1 . . . 1 ,
T = 5m(x'2 + %+ 29* + 2009 cos ) + 2090 sin ) + 6m€2192

L’energia potenziale ¢ la somma del contributo gravitazionale, elastico e centrifugo
(in questa configurazione Coriolis non da contributo al moto dell’asta sul piano)

1 1 20
V =mg(y — lcos?) + 51{(932 +9?) — 5/ Nw x xp|?dr
0

Calcolo a parte U'integrale (A ¢ la densita costante dell’asta)

e Lm , [* 2 L 5 o 4o o
—/ NMwxxpl?dr = = —w (x+rsind)“dr = —mw”(z°+20z sin 94— £* sin” )
2 J, 220% |, 2 3

Percio la lagrangiana finale ¢

1 4. . .
L=T-V= 3™ (52;2 + 92 + 54%92 + 2020 cos ¥ + 2@1951](119)

1 4
—mg(y — L cosv) — %k(ﬁ + %) + §mw2(x2 + 20z sind + 562 sin? 1)

2. Per trovare i punti di equilibrio, calcolo i punti stazionari della funzione V:

8—‘/ = kx — mw?z — mw?*¢sing = 0
4
50 = mglsind — mw?lx cos ¥ — gmwzﬁz sin cosv =0



Usando le ipotesi sui parametri, otteno

mw?x — mw*(sing = 0 r = {sind
2mw?l + 2mw?y = 0 = y=—/
2mw?(* sin ¥ — mw?lx cos Y — (4/3)mw?(? sin Y cos v sin?(2 — (7/3) cos) =0

le cui soluzioni sono
(r,y,9) = (0,—£,0), (0,—¢,m), (z",—£,97), (—z*,—L,—0")
con ¥* = arccos(6/7) e x* = (1/13/49.

. Per studiare la stabilita delle configurazioni di equilibrio con sin?d # 0, calcolo
prima la matrice hessiana di V'

2 1 0 —{cos
V”:—aavﬁ2:mw2 0 2 0
(z,y,7) —fcost 0 20%cost + Lwsind — (4/3)F%(cos® ¥ — sin? V)

e poi la valuto nel punto (z*,—¢,9*) ('altro punto da gli stessi risultati per
simmetria).

. 10 —(6/7)¢
V"= F) gy (e, —407) = muw® 0 2 0
(z,y,9) —(6/7)¢ 0 (*(199/147)

Questa matrice ha determinante positivo (det = 182/147¢* > 0) e anche i mi-
nori principali hanno determinante positivo; per il criterio di Sylvester sulle
matrici simmetriche reali tutti gli autovalori sono positivi. Quindi la configu-
razione (z*,—¢,9*) ¢ un punto di minimo di V' ed & stabile per il teorema di
Lagrange-Dirichilet. Lo stesso vale per il punto (—z*, —¢, —19*).



