
Chapter 1

THE EQUATION OF MOTION

1.1 The asteroid multi-body problem

Given the point masses1 mi located at positions xi, with velocities ẋi, for i = 0, 1, . . . , S,
the accelerations ẍi due to the gravitational attraction between all bodies are given by the
equation of motion

mi ẍi =

S
∑

j 6=i,j=0

Gmj mi

x3
ij

(xj − xi) (1.1)

where xij = |xj − xi|. Let µi = Gmi be the gravitational masses, which are the only ones
considered in Celestial Mechanics2, then we can solve for the accelerations:

ẍi =

S
∑

j 6=i,j=0

µj

r3ij
(xj − xi). (1.2)

In our solar system, if the index 0 stands for the Sun, the first N positive indexes are for the
major planets, the last M for asteroids and other minor bodies (with S = N+M), and we have
that µ0 >> µj (j = 1, N) >> µk (k = N+1, S). In fact µj < 10−3 µ0 and µk < 5×10−10 µ0, thus
the ratios µi/µ0 are small parameters. As a consequence, it is convenient to use heliocentric
coordinates

ri = xi − x0 , ri = |ri| , rij = rj − ri = xj − xi , rij = |rij| = xij

then, assuming the masses of the asteroids are negligible to the point that they do not count
as sources of gravitational attraction, the equation of motion (1.2) becomes

r̈i =
N
∑

j 6=i,j=0

µj

r3ij
rij −

N
∑

k=1

µk

r3k
rk .

1Point masses are approximations for the gravity field of an extended body, represented by the attraction of
the total mass of the body concentrated in its center of mass. It can be shown that this approximation is good
enough for long range perturbations such as the ones acting on asteroids, see Section ??

2With the exception of tests for the violation of the equivalence principle (cite iau261).
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2 CHAPTER 1. THE EQUATION OF MOTION

for i = 1, S. By isolating in the right hand side the largest term, the one with µ0, we get

r̈i = −µ0

r3i
ri +

N
∑

j 6=i,j=1

µj

r3ij
rij −

N
∑

k=1

µk

r3k
rk . (1.3)

The three terms are the unperturbed 2-body acceleration, the direct perturbation and
the indirect perturbation. If the body i is a planet, the last sum contains also a k = i
term; it accounts for the fact that a heliocentric reference system is not an inertial one, that is
the Sun is accelerated by all the planets (but not by the asteroids, that is the corresponding
acceleration is neglected).

1.2 Equation of motion for the restricted problem

The above equation refers to the hypothesis that the orbits of N planets and M asteroids have
to be computed at once, which may indeed be the case in a numerical integration. However,
since the orbit of each asteroid does not depend at all upon where the other asteroids are, we
can develop the theory of a single asteroid perturbed by the planets (hence the title of this book
:-). If we are interested in computing only the orbit of the asteroid r = rN+1, then S = N + 1,
and we can indeed (because of the level of accuracy required) ignore the attraction from the
other asteroids3, the restricted problem has equation of motion

r̈ = −µ0

r3
r+

N
∑

i=1

µi

|ri − r|3 (ri − r)−
N
∑

i=1

µi

r3i
ri , (1.4)

where r = |r|: the direct and the indirect perturbations have sums of terms with the same
indices, one for each planet.

The restricted problem is a good approximation because the asteroid mass is small, however by
removing the terms with µN+1 in the equations of motion for the planets, the action-reaction
law by Newton is violated. In this way the asteroid does not contribute to the 10 classical
integrals of motion (energy, angular momentum, linear momentum and center of mass, see
Section 1.3) and the equation (1.4) has no exact integral.

The equation (1.4) of the restricted problem can be derived from the Lagrange formalism: let
the kinetic energy T , the gravitational potential U and the Lagrange function L be

T =
1

2
|ṙ|2 , U0 =

µ0

r
(1.5)

UDIR =

N
∑

j=1

µj

|rj − r|3 , UIND = −
N
∑

j=1

µj

rj
rj · r (1.6)

L(r, ṙ) = T + U = T + U0 + UDIR + UIND (1.7)

Then the restricted Lagrange equations are defined by the conjugate momentum vector p

p =
∂L

∂ṙ
=

∂T

∂ṙ
= ṙ , r̈ = ṗ =

∂L

∂r
=

∂U

∂r
. (1.8)

3This assumption may not be applicable in some extreme accuracy computation, such as the ones about
predictions of impacts of an asteroid with a planet.
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The Hamilton function is defined by the Legendre transform (cite?)

H(p, r) = p · ṙ− L =
1

2
|p|2 − U

and can be decomposed into an unperturbed portion H0 and a perturbation part ǫH1 with
small parameter ǫ ≃ Maxi(µi/µ0)

H = H0 + ǫH1 , H0 =
1

2
|p|2 − U0 , H1 = −UDIR + UIND

ǫ
. (1.9)

Thus equation (1.4), with its Lagrange and Hamilton equivalent, is the basic equation of motion
we are discussing in this book. However, we need to assume that also the equation of motion
for the planets, that is (1.3) for i = 1, N has been solved and the solution is available as a
function of time t. Since this is by no means a trivial assumption, we need first to discuss the
orbits of the planets. Thus in the following of this section we will give a general discussion
of the complete equation (1.3) for i = 1, N , that is for the planets, which is an autonomous

equation, that is it does not contain explicitly the time. Once the solution of the planetary
motions is substituted in (1.4), the equation is not autonomous any more; if the two equations
are considered together, they are autonomous.

1.3 First integrals for the planetary problem

To discuss the motion of the planets we have to return to the equations of motion in an inertial
reference system (1.1), restricted to N + 1 bodies (with S = N) and to find the corresponding
Lagrange function L, with kinetic energy T and gravitational potential U

T =
1

2

N
∑

i=0

mi|ẋi|2 , U =
∑

0≤i<j≤N

Gmimj

|xi − xj |
, L = T + U , (1.10)

where L is a function of all the positions xj and all the velocities ẋj . The momenta vectors
and Lagrange equations are

pj =
∂L
∂ẋj

= mjẋj , mjẍj = ṗj =
∂U
∂xj

. (1.11)

It is easy to check that this Lagrangian is invariant with respect to a group of symmetries,
namely the tranformations of the 3 dimensional space of each xi that are isometries. Let
R : R3 → R

3 be a linear map x 7→ Ax + d, with A a 3 × 3 matrix in the group O(3) of
orthogonal tranformations, that is A−1 = AT , and d a constant vector. If this transformation
is applied to the positions of all the N + 1 bodies, then all the distances rij are conserved,
and the length of the velocity vectors ṙi are conserved too; this implies that also the Lagrange
function is invariant

L(x0, . . . ,xN , ẋ0, . . . , ẋN ) = L(Ax0 + d, . . . , Axn + d, A ẋ0, . . . , A ẋN) .
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A 1–parameter group of symmetries of the Lagrange function L is a diffeomorphism F s of
the positions X = (x0, . . . ,xN) depending (in a differentiable way) upon a parameter s ∈ R so
that F s ◦ F z = F s+z and the Lagrange function is invariant:

L

(

F s(X),
d

dt
F s(X)

)

= L

(

F s(X),
∂F s

∂X
Ẋ

)

= L(X, Ẋ) .

F 0 is the identity transformation; we also assume the mixed derivatives ∂2F s/∂X∂s are contin-
uous. A local 1–parameter group of symmetries of the Lagrange function is defined by the same
properties for s in a neighborhood of 0. The main result we need is the Noether theorem,
stating that if the Lagrange function L admits a local 1–parameter group of symmetries F s

then

I(X, Ẋ) =
∂L

∂Ẋ
· ∂F

s(X)

∂s

∣

∣

∣

∣

s=0

(1.12)

is a first integral of the Lagrange equation (1.11).

To prove this, let us compute the change in L because of F s by a Taylor series expansion in s

L(F s(X),
d

dt
F s(X))− L(X, Ẋ) = s

[

∂L

∂X
· ∂F

s(X)

∂s

∣

∣

∣

s=0
+

∂L

∂Ẋ
· ∂

∂s

d

dt
F s(X)

∣

∣

∣

s=0

]

+O(s2) .

Since this change in L is identically zero by hypothesis, the first order (in s) term must be zero:
by exchanging the derivatives d/dt and ∂/∂s

0 =
∂L

∂Ẋ
· d

dt

∂F s(X)

∂s

∣

∣

∣

s=0
+

∂L

∂X
· ∂F

s(X)

∂s

∣

∣

∣

s=0
= (by the Lagrange equation)

=
∂L

∂Ẋ
· d

dt

∂F s(X)

∂s

∣

∣

∣

s=0
+

d

dt

∂L

∂Ẋ

∂F s(X)

∂s

∣

∣

∣

s=0
=

d

dt

[

∂L

∂Ẋ
· ∂F

s(X)

∂s

∣

∣

∣

s=0

]

and the function defined in Eq. 1.12 is an integral.

Therefore Noether theorem applies to all the one parameter subgroups of the group of linear
isometries. The simplest case is that of the one parameter groups of translations, e.g. the
translations along one coordinate axis: F s(x) = x+ s eh, with eh the unit vector along the axis
xh, h = 1, 3. If equal translations are applied to all bodies, then the first integral described
by Neother’s theorem is

Ph =
N
∑

j=0

∂F s(xj)

∂s

∣

∣

∣

s=0
· pj = êh ·

N
∑

j=0

mj ẋj = êh ·P ,

that is the component along the axis h of the total linear momentum P. Thus P is a
3-vector integral, and the center of mass b0

b0 =
1

M0

N
∑

j=0

mjxj , M0 =
N
∑

j=0

mj (1.13)

moves with uniform velocity:

ḃ0 =
1

M0
P . (1.14)
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This leads to 3 scalar first integrals independent from time (the coordinates of ḃ0), plus 3
integrals dependent from time (the coordinates of b0 at some epoch).

Other one parameter subgroups of the group of isometries are the groups of rotations around
a fixed axis. If F s is the rotation by an angle of s radians around the unit vector v

∂F s(x)

∂s

∣

∣

∣

s=0
= v × x

and the corresponding integral is:

ch =

N
∑

j=1

∂F s(xj)

∂s

∣

∣

∣

s=0
· pj =

N
∑

j=1

(v × xj) · pj = v ·
N
∑

j=1

xj × pj = v ·
N
∑

j=1

mj(xj × ẋj) ,

namely, the component along v of the total angular momentum

c =

N
∑

j=1

xj × pj , (1.15)

which is also a 3-vector integral, that is another 3 scalar integrals, for a total of 9 integrals
deduced from the simmetry group of isometries.

The 10-th integral is the energy integral which can be computed as Hamilton function

H(p0, . . . ,pN ,x0, . . . ,xN) =

N
∑

j=0

pj · ẋj − L =
1

2

N
∑

j=0

|pj |2
mj

− U(x0, . . . ,xN) = E . (1.16)

It is well known (cite Poincaré) that besides these 10 integrals the N + 1 body problem, as
defined by either (1.10) or (1.16), has no other integrals.

Of course the Hamilton function defines the Hamilton equations, which are the equations of
motion as a function of the time variable (taken as independent variable); this can be described
by the expression H, t are conjugated variables. Similarly, other integrals can be taken as
Hamilton functions, and provide with the corresponding Hamilton equations the motion under
the action of one-parameter simmetry groups, e.g., ch is the Hamiltonian of the rotation around
the êh axis for h = 1, 3, with as independent variable the rotation angle s (in radians), that is
ch, s are also conjugated variables; also Ph,b0 · êh for h = 1, 3.

1.4 The 2-body problem

As the simplest example of the use of the first integrals to reduce the order of the equations
(1.11), and also for later reference, let us consider the 2-body problem with Lagrangian

L =
1

2
m0 |ẋ0|2 +

1

2
m1 |ẋ1|2 +

Gm0m1

|x1 − x0|
.

We can change coordinates by using, in place of x0,x1, the coordinates of the center of mass
and the relative position of x1 with respect to x0

b0 = ǫ1 x1 + (1− ǫ1)x0 , ǫ1 =
m1

m0 +m1
, b1 = x1 − x0 . (1.17)
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Then U(b1) = Gm0m1/b1, with b1 = |b1|; to write L as a function of b0,b1 we express ẋ0 and
ẋ1 as a function of ḃ0, ḃ1 and substitute in T

ẋ0 = ḃ0 − ǫ1ḃ1 , ẋ1 = ḃ0 + (1− ǫ1)ḃ1

2T = m0 |ẋ0|2 +m1 |ẋ1|2 = (m0 +m1) |ḃ0|2 +
m0m1

m0 +m1

|ḃ1|2

the mixed terms canceling. The Lagrange function as a function of the new coordinates is

L(b0,b1, ḃ0, ḃ1) =
1

2
M0 |ḃ0|2 +

1

2
M1 |ḃ1|2 +

GM0M1

b1

with M0 = m0 +m1 the total mass and M1 the reduced mass (harmonic mean):

M1 =
m0m1

m0 +m1

⇐⇒ 1

M1

=
1

m0

+
1

m1

. (1.18)

Then the Lagrange function L can be decomposed as the sum of two Lagrange functions
L = M0 L0(ḃ0) +M1 L1(b1, ḃ1), one containing only b0, the other containing only b1, and the
Lagrange equations decouple:

M0 b̈0 = 0 , M1 b̈1 =
∂U(b1)

∂b1
.

The first equation states that the center of mass moves with constant velocity along a straight
line, the second equation is the Kepler problem, with a particle of mass M1 attracted by a
fixed center of mass M0.

By repeating the same computations done for T , we find that also the angular momentum has
a simple expression in the (b0,b1) coordinates:

c = m0 x0 × ẋ0 +m1 x1 × ẋ1 = M0 b0 × ḃ0 +M1 b1 × ḃ1 .

When b0(t) = ḃ0 t+ b0(0) from eq. (1.14) is substituted, the b0 contribution is constant

c0 = b0 × ḃ0 =
1

M0
b0(0)×P , c = M0 c0 +M1 c1

and the contribution from b1 is c1 = b1 × ḃ1, the angular momentum per unit (reduced) mass
of x1 with respect to the center x0; c1 is also a vector first integral, thus b1, ḃ1 will lie for each
t in the orbital plane normal to c1.

The Laplace-Lenz vector and the energy integral

The 2-body problem has another vector integral, not occurring in the N +1 ≥ 3-body problem:
the Laplace-Lenz vector

e =
1

GM0
ḃ1 × c1 −

1

b1
b1 . (1.19)

This can be shown by using a reference frame formed by three orthogonal unit vectors, vz =
c1/c1 (with c1 = |c1|), vr = b1/b1, and vθ such that vr ×vθ = vz. If θ is the angle between the
vector vr and a fixed direction in the orbital plane, and r = b1, we have c1 = r2 θ̇ vz, and

GM0 e = −r2 ṙ θ̇ vθ + (r3 θ̇2 −GM0) vr . (1.20)
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Along the solutions we have the equations for the tangential and the radial acceleration

ċ1 = 0 =⇒ 2ṙθ̇ + r|θ̇|2 = 0 , r̈ = −GM0

r2
+

c21
r3

,

so that
GM0 ė = b̈1 × c1 −GM0 θ̇ vθ = −GM0 θ̇ (vr × vz + vθ) = 0 .

Thus e contains two integrals (not all independent from c1 because e · c1 = 0). We define the
true anomaly f as the angle between e and vr on the orbital plane, that is

e cos f = e · vr =
r3 θ̇2

GM0
− 1 =

c21
GM0 r

− 1

where r2θ̇ = c1 is the (scalar) angular momentum of b1 and is constant. From this the familiar
formula of a conic section

r =
c21/GM0

1 + e cos f

and the interpretation of the two additional two-body integrals as eccentricity e = |e|
and argument of pericenter ω, that is the angle of e (direction of pericenter) with a fixed
direction in the orbital plane, in such a way that θ = v + ω.

The eccentricity e is an integral depending upon angular momentum and energy. The energy
integral of the 2-body problem in (b0,b1) coordinates is

E(b0,b1, ḃ0, ḃ1) = M0 E0 +M1 E1 , E0 =
1

2
|ḃ0|2 , E1 =

1

2
|ḃ1|2 −

GM0

|b1|
and the eccentricity squared, computed from eq. (1.20), is

e2 = e · e =
r4 ṙ2 θ̇2 +

(

r3 θ̇2 −G M0

)2

G2 M2
0

= 1 +
2E1 c

2
1

G2 M2
0

.

If the energy of the relative motion E1 is negative, then e < 1 and the trajectory of b1 is an
ellipse with semimajor axis a; its relation with energy and angular momentum can be derived
from the equation above:

a =
q +Q

2
=

1

2

[

c21/GM0

1 + e
+

c21/GM0

1− e

]

=
GM0

−2E1
, (1.21)

where q, Q are the pericenter and apocenter distances, and the scalar angular momentum per
unit mass of the relative motion is

c1 =
√

GM0 a (1− e2) . (1.22)

1.5 Barycentric coordinates

The set of positions of the N + 1 bodies can be represented in different coordinates; we are
interested in the linear coordinate changes of the form

bi =
N
∑

j=0

aij xj , A = (aij), i, j = 0, N (1.23)
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where the matrix A is a function of the masses only. The purpose is to exploit the integrals
of the center of mass to reduce the number of equations, generalizing the results of the 2-body
case. A natural choice is to use the center of mass as b0, thus by (1.13) the first row of the
matrix A is

a0i =
mi

M0

, i = 0, N . (1.24)

The choice of the other bi, i = 1, N , is not as simple as in the 2-body case. Different choices
have different advantages, and can be used for different purposes. We shall review in this and
in the next section(s) the coordinate systems useful for the (N + 1)-body problem.

The barycentric coordinate system uses the fact that a reference system with a constant
velocity translation with respect to an inertial system is also inertial. Thus a reference system
with b0 = 0 as origin and barycentric positions bi = xi − b0 = xi for i = 1, N is inertial;
the equation of motion is the same as eq. (1.1). However, in this approach the barycentric
coordinates of mass index 0 (i.e. the Sun) are not dynamical variables, but are deduced from
the coordinates of the other bodies and b0, by eq. (1.13):

s = sB(b1, . . . ,bN) = x0 − b0 = −
N
∑

i=1

mi

m0

bi . (1.25)

The change to barycentric is not just a change of coordinates, but also a reduction of the
dimension of the problem: we write 3 differential equations less. The reduced equation of
motion is

mi b̈i =
Gm0 mi

|bi − s|3 (s− bi) +
N
∑

j 6=i,j=1

Gmj mi

|bj − bi|3
(bj − bi) i = 1, . . . , N (1.26)

and can be in conservative form

mj b̈j =
∂U(s,b1,b2, . . . ,bN)

∂bi

, j = 1, N ,

where the partial derivatives of the potential U have to be computed before substituting s =
sB(b1, . . . ,bN ). The integrals of energy and angular momentum have a less simple expression,
including the contributions from ṡ.

Barycentric coordinates are efficient to be used for numerical integrations4: only the 3N equa-
tions (1.26) have to be integrated, and the only additional computation to be performed at
each step is s according to (1.25). On the other hand, barycentric coordinates are seldom used
in analytical developments and in theoretical discussions, because of the lack of symmetry of
the equation and of the less simple expressions for the classical integrals. This is not a problem
because the computed orbit does not need to be used in barycentric coordinates: to change
back the output to heliocentric coordinates is the normal procedure.

4As an alternative approach, in a numerical integration it is possible to compute the full solution of eq. (1.1),
then use b0 = ḃ0 = 0 as accuracy check. Besides the small increase in efficiency, which is not important with
current computers, there are advantages in describing the general relativistic effects in barycentric coordinates,
although the very definition of barycenter has to be modified to remain an integral.
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1.6 Heliocentric Canonical Coordinates

To derive equation (1.3) from a single Lagrange (or Hamilton) function is not immediate, mostly
because of the asymmetric indirect term. To solve this, Poincaré invented the heliocentric

canonical coordinates (ri, miḃi), in which the positions are heliocentric and the linear mo-
menta are barycentric (cite laskar89). To show their properties, let us use a linear coordinate
change

ri =

N
∑

j=0

aijxj , A = (aij), i, j = 0, N

such that r0 = x0, that is a0j = δ0j and the others are heliocentric vectors: ri = xi − x0 for
i = 1, N , that is aij = δij − δ0j for j = 0, N (the notation δij stands for the Kronecker δ, δij = 1
if i = j, = 0 otherwise). To complete the transformation of the coordinates xi with a linear
change of the momenta miẋi such that the new coordinates are canonic (see later in Section
2.1), we need to use the matrix B

pi =
N
∑

j=0

bijmjẋj , B = (bij), i, j = 0, N

such that B = (A−1)T , that is b0j = 1 and bij = δij . Then p0 = P = M0ḃ0 is the linear
momentum integral. The other momentum vectors pi = miẋi, for i = 1, N , are barycentric.

To perform the reduction to 3N differential equation, we assume that the coordinates xi had
already been translated in such a way that b0 = 0 for all time t, thus also ḃ0 = 0 = p0. Then
the momentum vectors pi = miẋi, for i = 1, N , are barycentric, and r0 = s = x0 is given by
a formula similar, but not the same as (1.25), because it is a function of heliocentric position
vectors:

sH(r1, . . . , rN) = −
N
∑

i=1

mi

M0

ri (1.27)

The Lagrange function L = T + U in the coordinates (ri, ṙi) has to have the same value as the
one in the (xi, ẋi) coordinates: for the kinetic energy

T =
1

2

N
∑

i=0

mi|ẋi|2 =
1

2

N
∑

i=1

mi|ṙi + ṡ|2 + 1

2
m0|ṡ|2 , (1.28)

and by replacing ṡ with the value constrained by (1.27)

ṡH(ṙ1, . . . , ṙN) = −
N
∑

j=1

mj

M0
ṙj (1.29)

we get T = T (ṙ1, . . . , ṙN); we could check that

pi =
∂L
∂ṙi

= mi (ṙi + ṡH)

as claimed. U it has the same expression in the heliocentric coordinates, since xi−xj = ri−rj.
Thus it is possible to derive the Lagrange equations and check that they are the same as (1.3):
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by collecting together the direct attraction from the Sun and the indirect term from the same
planet being attracted:

r̈i = −µ0 + µi

r3i
ri +

N
∑

j 6=i,j=1

µj

r3ij
rij −

N
∑

k 6=i,k=1

µk

r3k
rk . (1.30)

[TBC: computations checking this from (laskar89 pages 7-8), but the notations are different]

The improvement (with respect to the conventional heliocentric variables) is in the Hamiltonian
formulation. Since T is quadratic homogeneous in ṙi, the Legendre transform is simply

H =
N
∑

i=1

pi · ṙi − L = T − U

that is the value of the Hamiltonian is the total energy. To espress the quantity T as a function
of the pi we substitute in T given by (1.28) the relationships

pi = mi(ṙi + ṡH) ,

N
∑

i=1

pi = −m0ṡH

(the first is a consequence of pi = miẋi, the second of the constraint ḃ0 = 0): we get

T (p1, . . . ,pN) =
1

2

N
∑

i=1

|pi|2
mi

+
1

2m0

∣

∣

∣

∣

∣

N
∑

i=1

pi

∣

∣

∣

∣

∣

2

=
1

2

N
∑

i=1

|pi|2
[

1

mi

+
1

m0

]

+
∑

1≤i<j≤N

pi · pj

m0

,

(1.31)
which is convenient because of the especially simple expression (just a sum of scalar products
of the pi vectors) for the indirect term, which has been moved in the T part. The Hamilton
equations are

ṗi = −∂H
∂ri

= −∂U
∂ri

, ṙi =
∂H
∂pi

=
∂T
∂pi

; (1.32)

these equations can be shown to be again equivalent to the second order equation (1.3), with
the indirect part arising from the kinetic energy rather than from the potential [TBC].

To decompose the Hamilton function into an unperturbed part H0 and a perturbation H1

H0 = T0 − U0 =
1

2

N
∑

i=1

|pi|2
[

1

mi

+
1

m0

]

−
N
∑

i=1

G(m0 +mi)

ri
(1.33)

H1 = T1 − U1 =
∑

1≤i<j≤N

pi · pj

m0
−

∑

1≤i<j≤N

Gmimj

|xi − xj |
. (1.34)

The angular momentum integral

The heliocentric canonical coordinates have another advantage in an especially simple expres-
sion for the angular momentum integral: by starting from the expression of c in barycentric
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coordinates, then by using (1.27) and (1.29)

c =

N
∑

i=0

xi ×mi ẋi = sH ×m0 ṡH +

N
∑

i=1

+sH ×mi ẋi +

N
∑

i=1

ri ×mi ẋi

= sH ×
[

N
∑

i=1

mi ẋi +m0 ṡH

]

+
N
∑

i=1

ri ×mi ẋi ,

where the portion between square brackets is just M0 ḃ0 = 0, thus

c =

N
∑

i=1

ri ×mi ẋi =

N
∑

i=1

ri × pi . (1.35)

Note that it would be the same if the sum was to include i = 0, since p0 = 0.


