
GENERATING STABLE MODULAR GRAPHS

STEFANO MAGGIOLO AND NICOLA PAGANI

Abstract. We present the program boundary, whose source files are available

at http://people.sissa.it/~maggiolo/boundary/. Given two natural num-

bers g and n satisfying 2g + n − 2 > 0, the program generates all genus g
stable graphs with n unordered marked points. Each such graph determines

the topological type of a nodal stable curve of arithmetic genus g with n un-

ordered marked points. Our motivation comes from the fact that the boundary
of the moduli space of stable genus g, n-pointed curves can be stratified by

taking loci of curves of a fixed topological type.

Contents

1. Introduction 1
2. Stable modular graphs 2
3. Description of the algorithm 3
4. The program generates all graphs 5
5. Description of the ranges 8
6. Performance 11
Acknowledgments 13
References 13

1. Introduction

Moduli spaces of smooth algebraic curves have been defined and then compact-
ified in algebraic geometry by Deligne and Mumford in their seminal paper [DM].
A conceptually important extension of this notion in the case of pointed curves was
introduced by Knudsen [K].

The points in the boundary of the moduli spaces of pointed, nodal curves with
finite automorphism group. These curves are called stable curves (or pointed stable
curves). The topology of one such curve is encoded in a combinatorial object, called
stable graph. The boundary of the moduli space admits a topological stratification,
made of loci whose points are curves with a fixed topological type and a prescribed
assignment of the marked points on each irreducible component.

The combinatorics of the stable graphs have been investigated in several papers
in algebraic geometry, for many different purposes (see for instance [GK, vOV1,
vOV2, Y3]). Our aim with this program is to provide a useful and effective tool
to generate all the stable graphs of genus g with n unordered marked points up to
isomorphism, for low values of g and n.

Date: March 2, 2011.

1

http://people.sissa.it/~maggiolo/boundary/

2 STEFANO MAGGIOLO AND NICOLA PAGANI

We construct an algorithm to generate all the stable graphs of genus g with n
unordered marked points. The algorithm uses the software nauty ([M]) to eliminate
isomorphic graphs from the list of graphs thus created. Since to check that two
stable graphs are isomorphic is computationally onerous, we try to generate a low
number of stable graphs, provided that we want at least one for every isomorphism
class. The algorithm generates recursively the vectors of genera, number of marked
points, number of loops, and the adjacency matrix. While it fills these data, it
checks the stability condition and the condition on the total genus as early as
possible, in order to minimize the time spent on the branches of the recursion that
do not lead to stable graphs. Some analysis of the algorithm’s performances can be
seen in Section 6.

Programs for enumerative computations on Mg,n have been implemented in
both Maple and Macaulay2 ([F, Y2, Y1]). Our program can be used, for example,
to improve the results of [Y3, Section 5], or to prove combinatorial results on the
moduli space of pointed stable curves with low genus (cfr. [BMS], for example
Corollary 5.3).

2. Stable modular graphs

From now on, we fix two natural numbers G and N such that 2G− 2 +N > 0.
For every K ∈ N+, we define K = {0, . . . ,K − 1} and ΣK to be the symmetric
group on the set K.

Definition 2.1.

• An undirected multigraph G is a couple (V,E) with V a finite set of vertices
and E a finite multiset of edges with elements in V × V/Σ2.
• The multiplicity of the edge (v, w) in E is denoted by mult(v, w).
• The total multiplicity of G, or its number of edges, is |E|: the cardinality of
E as a multiset.
• The degree of a vertex v is deg v := 2 mult(v, v) +

∑
w 6=v mult(v, w).

• A colored undirected multigraph is a multigraph with some additional data
attached to each vertex.

Definition 2.2. A stable graph of type (G,N) is a colored undirected multigraph
G = (V,E), subject to the following conditions.

(1) The color of a vertex v is given by a pair of natural numbers (gv, nv). The
two numbers are called respectively the genus and the number of marked
points of the vertex v.

(2) G is connected.
(3) Its total genus, defined as

∑
v∈V gv + |E| − (|V | − 1), equals G.

(4) Its total number of marked points, defined as
∑
v∈V nv, equals N .

(5) Stability condition: deg v + nv ≥ 3 for every vertex v with gv = 0.

Notation 2.3. The number deg v + nv is often called the number of half edges
associated to the vertex v. Condition 5 can be rephrased in: for every vertex v of
genus 0, its number of half edges is at least 3.

Two stable graphs G = (V,E, g, n) and G′ = (V ′, E′, g′, n′) are isomorphic if
there is a bijection f : V → V ′ such that:

• mult(v, w) = mult(f(v), f(w)) for every v, w ∈ V ;
• gv = g′f(v) and nv = n′f(v) for every v ∈ V .

GENERATING STABLE MODULAR GRAPHS 3

Our task is to generate one stable graph for each isomorphism class.

Remark 2.4. Note that from the definition just given, we are working with an
unordered set of marked points. The output of the program are the boundary strata
of the moduli space of stable, genus g curves with n unordered points Mg,n/Σn.

3. Description of the algorithm

In this section we describe the general ideas of our algorithm. Let us first intro-
duce the notation we use in the program.

Notation 3.1. The set of vertices V will always be K, so that vertices will be
identified with natural numbers i, j, The multiplicity of the edge between i and
j will be denoted by ai,j : the symmetric matrix a is called the adjacency matrix of
the stable graph. For convenience, we will denote lj := aj,j : it is the vector whose
elements are the number of loops at the vertex j. For simplicity, we will consider
gj , nj , lj , ai,j to be defined also for i or j outside K, in which case their value is
always assumed to be 0.

Remark 3.2. In the following, we assume |V | > 1 in order not to deal with
degenerate cases. There are trivially G + 1 stable graphs of type (G,N) with one
vertex. Indeed, if there is exactly one vertex, the choice of the genus uniquely
determines the number of loops on it after Definition 2.2.

The program uses recursive functions to generate the data that constitute a stable
graph. In order, it generates the numbers gj , then the numbers nj , lj (the diagonal
part of the matrix a), and finally, row by row, a symmetric matrix representing a.

When all the data have been generated, it tests that all the conditions of Defi-
nition 2.2 hold, in particular that the graph is actually connected and satisfies the
stability conditions. Then it uses the software nauty [M] to check if this graph
is isomorphic to a previously generated graph. If this is not the case, it adds the
graph to the list of graphs of genus G with N marked points.

A priori, for each entry of g, n, l, and a the program tries to fill that position with
all the integers. This is of course not possible, indeed it is important to observe
here that each datum is bounded. From below, a trivial bound is 0, that is, no
datum can be negative. Instead, a simple upper bound can be given for each entry
of g by the number G, and for each entry of n by the number N . For l and a, upper
bounds are obtained from G using the condition on the total genus (Condition 2.2).

These bounds are coarse: Section 5 will be devoted to proving sharper bounds,
from above and from below. Also, we will make these bounds dynamical: for
instance assigning the value g0 > 0 clearly lowers the bound for gj , j > 0. The
improvement of these bounds is crucial for the performance of the algorithm. In
any case, once we know that there are bounds, we are sure that the recursion
terminates.

The algorithm follows this principle: we want to generate the smallest possible
number of couples of isomorphic stable graphs. To do so, we generalize the idea that
to generate a vector for every class of vectors of length K modulo permutations,
the simplest way is to generate vectors whose entries are increasing. The program

4 STEFANO MAGGIOLO AND NICOLA PAGANI

fills the data row by row in the matrix:

(1)

g0 g1 · · · gK−1
n0 n1 · · · nK−1
l0 l1 · · · lK−1
• a0,1 · · · a0,K−1

a1,0 •
. . .

...
...

. . . • aK−2,K−1
aK−1,0 · · · aK−1,K−2 •

,

and generates only matrices whose columns are ordered. Loosely speaking, we mean
that we are ordering the columns lexicographically, but this requires a bit of care,
for two reasons:

• the matrix a needs to be symmetric; in the program we generate only the
strictly upper triangular part;
• the diagonal of a need not be considered when deciding if a column is

greater than or equal to the previous one.

Therefore, to be precise, we define a relation (order) for adjacent columns. Let
us call cj−1 and cj two adjacent columns of the matrix (1). They are said to be
equivalent if cj−1,i = cj,i for any i /∈ {j − 1 + 3, j + 3}. If they are not equivalent,
denote with i0 the minimum index such that i0 /∈ {j−1+3, j+3} and cj−1,i0 6= cj,i0 .
Then we state the relation cj−1 < cj if and only if cj−1,i0 < cj,i0 . We do not define
the relation for non-adjacent columns. We say that the data are ordered when the
columns are weakly increasing, that is if, for all j, either cj−1 is equivalent to cj or
cj−1 < cj .

To ensure that the columns are ordered (in the sense we explained before), the
program keeps track of divisions. We start filling the genus vector g in a non
decreasing way, and every time a value gj strictly greater than gj−1 is assigned,
we put a division before j. This means that, when assigning the value of nj , we
allow the algorithm to start again from 0 instead of nj−1, because the column cj is
already bigger than the column cj−1.

After completing g, we start filling the vector n in such a way that, within two
divisions, it is non decreasing. Again we introduce a division before j every time
we assign a value nj strictly greater than nj−1. We follow this procedure also for
the vector l.

Finally, we start filling the rows of the matrix a. Here the procedure is a bit
different. Indeed even if for the purpose of filling the matrix it is enough to deal
only with the upper triangular part, imposing the conditions that the columns are
ordered involves also the lower triangular part. A small computation gives that the
value of ai,j is assigned starting from:

0 if there are divisions before i and j

ai,j−1 if there is a division before i but not before j

ai−1,j if there is a division before j but not before i

max{ai,j−1, ai−1,j} if there are no divisions before i or j,

and we put a division before i if ai,j > ai−1,j and a division before j if ai,j > ai,j−1.

GENERATING STABLE MODULAR GRAPHS 5

We cannot conclude immediately that this procedure gives us all possible data
up to permutations as in the case of a single vector. This is because the transfor-
mation that the whole matrix undergoes when a permutation is applied is more
complicated: for the first three rows (the vectors g, n, l), it just permutes the
columns, but for the remaining rows, it permutes both rows and columns. Indeed,
to prove that the procedure of generating only ordered columns does not miss any
stable graph is the content of the following section.

4. The program generates all graphs

We want to prove the following result.

Proposition 4.1. The algorithm described in the previous section generates at least
one graph for every isomorphism class of stable graphs.

From now on, besides G and N , we also fix the number of vertices K, and focus
on proving that the algorithm generates at least one graph for every isomorphism
class of stable graphs with K vertices.

Notation 4.2. We have decided previously to encode the data of a stable graph
in a (K + 3 ×K) matrix G := (g, n, l, a) (cfr. (1)). We denote by A the set of all
such matrices, and byM the set of all (K + 3×K) matrices that are generated by
the algorithm described in the previous section.

We can assume that the graphs generated by the algorithm are stable, since we
explicitly check connectedness and stability. In other words, we can assume the
inclusion M ⊂ A. Hence, in order to prove Proposition 4.1, we will show that
every G ∈ A is in M up to applying a permutation of K. The idea is to give a
characterization (Lemma 4.5) of the property of being an element of M.

Recall first that the algorithm generates only matrices whose columns are or-
dered, as described in Section 3. More explicitly, if G = (g, n, l, a) ∈ A, then
G ∈M if and only if:

∀(i, j) : i 6∈ {j − 1, j},
gj−1 > gj does not happen,

nj−1 > nj ⇒ gj−1 < gj ,

lj−1 > lj ⇒ gj−1 < gj ∨ nj−1 < nj , and

ai,j−1 > ai,j ⇒ gj−1 < gj ∨ nj−1 < nj ∨ lj−1 < lj∨
∃i′ < i : i′ 6∈ {j − 1, j} ∧ ai′,j−1 < ai′,j .

Let us call a piece of data gj , nj , lj , or ai,j a breaking position if it does not
satisfy the condition above. Observe that a matrix G ∈ A has a breaking position
if and only if G is not an element of M.

We now introduce a total order on the set A of matrices G = (g, n, l, a). If G is
such a matrix, let v(G) be the vector obtained by juxtaposing the vectors g, n, l

6 STEFANO MAGGIOLO AND NICOLA PAGANI

and the rows of the upper triangular part of a. For example, if

G =

0 0 2 0
1 1 0 1
0 0 0 0
• 1 1 1
1 • 2 1
1 2 • 0
1 1 0 •

(with the same structure as (1)), then we define

v(G) := (0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0) .

Definition 4.3. If G,H ∈ A, we write G ≺ H if and only if v(G) is smaller than
v(H) in the lexicographic order. In this case we say that the matrix G is smaller
than the matrix H.

Note that this total order on the set of matrices must not be confused with the
partial order described in Section 3. From now on we will always refer to the latter
order on A.

Remark 4.4. If σ ∈ ΣK is a permutation and G = (g, n, l, a) is a graph, then
we can apply σ to the entries of the data of G, obtaining an isomorphic graph.
The action of σ on G is: (g, n, l, a) → (g′, n′, l′, a′) where g′j = gσ(j), n

′
j = nσ(j),

l′j = lσ(j) and a′i,j = aσ(i),σ(j). We denote this new matrix by σG. We write σi,j for
the element of ΣK that corresponds to the transposition of i, j ∈ K.

Now we are able to state the characterization we need to prove Proposition 4.1.

Lemma 4.5. Let G ∈ A; then G ∈M if and only if G is minimal in the set{
σj−1,jG | 0 < j < K

}
.

with respect to the order given in Definition 4.3.

Proof. We will prove that G is not minimal if and only if there is a breaking position.
Assume there is at least one breaking position in G. If there is one in g, n, or l,

it is trivial to see that transposing the corresponding index with the previous one
gives a smaller matrix. If this is not the case, let ai,j be a breaking position such
that ai′,j is not a breaking position whenever i′ < i (the position (i, j) is the first
breaking position of its column). We deduce that gj−1 = gj , nj−1 = nj , lj−1 = lj ,
and that for all i′ < i not in {j − 1, j}, we have ai′,j−1 = ai′,j . Let H := σj−1,jG;
the vectors g, n, and l (the first three rows) coincide in G and H.

• If j > i, the smallest breaking position is in the upper triangular part of a;
it is then clear that H ≺ G.
• If j < i, the smallest breaking position is in the lower triangular part; by

using the symmetry of the matrix a we again obtain H ≺ G (see the right
part of Figure 1).

Conversely, let j be such that H := σj−1,jG ≺ G. Then consider the first entry
(reading from left to right) of the vector v(G) that is strictly bigger than v(H).
This is a breaking position. Notice that if it occurs in the matrix a (equivalently,
in the last K rows), it is actually the first breaking position of its column. �

The proof of Proposition 4.1 follows arguing as in this example.

GENERATING STABLE MODULAR GRAPHS 7

i

j

? •

?
•

i

j

? •

?
•

Figure 1. The matrix a when the first breaking position (the
bullet) is ai,j with j > i (left) or j < i (right). When transposing
j−1 and j, the white and the diagonal-filled entries do not change.

Example 4.6. Let G0 := G ∈ A be the graph of the previous example:

G0 =

0 0 2 0
1 1 0 1
0 0 0 0

• 1 1 1
1 • 2 1
1 2 • 0
1 1 0 •

 .

This graph is stable but not in M because, for example, g2 > g3 implies that g3 is
a breaking position. Thus we apply the permutation σ2,3, obtaining the graph

G1 := σ2,3G0 =

0 0 0 2
1 1 1 0
0 0 0 0

• 1 1 1
1 • 1 2
1 1 • 0
1 2 0 •

 ≺ G0.

Now a3,2 is a breaking position; applying σ1,2, we obtain

G2 := σ1,2G1 =

0 0 0 2
1 1 1 0
0 0 0 0

• 1 1 1
1 • 1 0
1 1 • 2
1 0 2 •

 ≺ G1.

This introduces a new breaking position at a3,1, so we apply the transposition σ0,1:

G3 := σ0,1G2 =

0 0 0 2
1 1 1 0
0 0 0 0

• 1 1 0
1 • 1 1
1 1 • 2
0 1 2 •

 ≺ G2.

The graph G3 is finally in M and indeed no transposition can make it smaller.

Proof of Proposition 4.1. Recall that we have to prove that for every G ∈ A, there
is a permutation σ ∈ ΣK such that σG ∈M.

So, let G0 = G ∈ A. If G ∈ M, then we are done; otherwise, G does not
satisfy the condition of Lemma 4.5, hence there is a transposition σj−1,j such that
G1 = σj−1,jG0 ≺ G0.

The iteration of this process comes to an end (that is, we arrive to a matrix in
M) since the set {

σG | σ ∈ ΣK
}

is finite. �

8 STEFANO MAGGIOLO AND NICOLA PAGANI

5. Description of the ranges

In Section 3 we have introduced the algorithm, by describing the divisions. In
this section we introduce accurate ranges for the possible values of g, n, l and a.

We will deduce from the conditions of Definition 2.2 some other necessary condi-
tions that can be checked before the graph is defined in its entirety. More precisely,
every single datum is assigned trying all the possibilities within a range that de-
pends upon the values of G and N , and upon the values of the data that have
already been filled. The conditions we describe in the following are not the only
ones possible; we tried other possibilities, but heuristically the others we tried did
not give any improvement.

The order in which we assign the value of the data is g, n, l, and finally the
upper triangular part of a row after row.

Notation 5.1. Suppose we are assigning the i-th value of one of the vectors g, n
or l, or the (i, j)-th value of a. We define the following derived variables emax, c
and p1 that depend upon the values that have already been assigned to g, n, l, a.

We let emax be the maximum number of edges that could be introduced in the
subsequent iterations of the recursion, and c be the number of couples of (different)
vertices already connected by an edge. We let p1 be the number of vertices z
to which the algorithm has assigned gz = 0. Note that the final value of p1 is
determined when the first genus greater than 0 is assigned, in particular the final
value of p1 is determined at the end of the assignment of the values to the vector
g. On the other hand, c starts to change its value only when the matrix a begins
to be filled.

After the assignment of the i-th value, the derived values emax, c and p1 are then
updated according to the assignment itself.

Notation 5.2. When deciding g, n, or l, we let n
(2)
i be the minimum between 2

and the number of half edges already assigned to the i-th vertex. This is justified
by the fact that we know that, when we will fill the matrix a, we will increase by
one the number of half edges at the vertex i in order to connect it to the rest of the

graph. Hence, whenever gi = 0, n
(2)
i is the number of stabilizing half edges at the

vertex i: one half edge is needed to connect the vertex to the rest of the graph, and
then at least two more half edges are needed to stabilize the vertex. When deciding
ai,j , it is also useful to have defined hi, the total number of half edges that hit the
i-th vertex. Finally, we define

Gi :=
∑
i′<i

gi′ , Ni :=
∑
i′<i

ni′ ,

N (2) :=
∑
gi′=0

n
(2)
i′ , N

(2)
i :=

∑
i′<i
gi′=0

n
(2)
i′ ;

Li :=
∑
i′<i

li′ , Ai,j :=
∑

i′<i∨j′<j

ai′,j′ .

We are now ready to describe the ranges in which the data can vary. We study
subsequently the cases of g, n, l and a, thus following the order of the recursions
of our algorithm. Each range is described by presenting a first list of general
constraints on the parameters and then by presenting a second list containing the
actual ranges in the last line.

GENERATING STABLE MODULAR GRAPHS 9

5.1. Range for gi. When the algorithm is deciding the value of gi, we have the
following situation:

• emax = G−Gi +K − 1 by Condition 3;
• amongst the emax edges, there are necessarily K − 1 non-loop edges (to

connect the graph); these K − 1 edges give one half edge for each vertex,
whereas we can choose arbitrarily where to send the other K−2 half edges;
conversely, the 2(emax − K + 1) half edges of the remaining edges can be
associated to any vertex; therefore, the maximum number of half edges (not
counting those that are needed to connect the graph) is 2emax −K +N =
2(G−Gi) +K − 2 +N ;
• we need 2p1 half edges to stabilize the genus 0 vertices, since one half edge

comes for free from the connection of the graph.

We use the following conditions to limit the choices we have for gi:

(1) since g is the first vector to be generated, there is no division before i, hence

gi ≥ gi−1;

remember that gj = 0 whenever j 6∈ K;
(2) we need at least K−1 non-loop edges, hence (using the fact that

∑
j≥i gj ≥

(K − i)gi)

emax ≥ K − 1

⇒ G−Gi − (K − i)gi +K − 1 ≥ K − 1

⇒ (K − i)gi ≤ G−Gi ;

(3) in order to stabilize the p1 vertices of genus 0 (using the fact that one
stabilizing half edge comes for free by connection) we must have

2p1 ≤ 2emax −K +N

⇒ 2p1 ≤ G−Gi − (K − i)gi −K +N

⇒ (K − i)gi ≤ G−Gi −K +N − 2p1 .

5.2. Range for ni. When deciding ni, we have the following situation:

• as before, emax = G−GK +K − 1 ≥ K − 1, and the maximum number of
half edges still to be assigned is 2emax −K +N −Ni − ni = 2(G−GK) +
K − 2 +N −Ni − ni;

• we need 2p1 −N (2)
i − n(2)i half edges to stabilize the first p1 vertices;

• if gi = 0, we need 2(i+ 1)−N (2)
i −n

(2)
i more half edges to stabilize the first

i+ 1 vertices.

The following conditions define then the ranges for the possible choices for ni:

(1) if there is not a division before i (that is, if gi = gi−1), then we require
ni ≥ ni−1; otherwise, just ni ≥ 0;

(2) we cannot assign more than N marked points, hence (where we treat the
case of gi = 0 in a special way)

Ni + ni ≤ N
⇒ ni ≤ N −Ni
⇒ (p1 − i)ni ≤ N −Ni if moreover gi = 0.

10 STEFANO MAGGIOLO AND NICOLA PAGANI

(3) if gi = 0, for the purpose of stabilizing the first i+ 1 curves we cannot use
marked points anymore, therefore we have

2(i+ 1)−N (2)
i − n(2)i ≤

(
2(G−GK) +K − 2

)
⇒ n

(2)
i = min(2, ni) ≥ −

(
2(G−GK) +K − 2) + (2(i+ 1)−N (2)

i

)
⇒

{
impossible if RHS > 2

ni ≥ RHS otherwise.

5.3. Range for li. When deciding li, this is the situation:

• emax = G−GK − Li − li + K − 1 ≥ K − 1, and the maximum number of
half edges still to assign is 2emax −K = 2(G−GK − Li − li) +K − 2;

The conditions on li are then the following:

(1) if there is not a division before i, then we require li ≥ li−1; otherwise, just
li ≥ 0;

(2) we need at least K − 1 non-loop edges, hence

emax ≥ K − 1

⇒ G−GK − Li − li +K − 1 ≥ K − 1

⇒ li ≤ G−GK − Li ;

(3) let z be the index of the genus 0 vertex with the least number of stabilizing
half edges such that z < i; it already has nz +2lz half edges, but we cannot
use loops anymore to stabilize it; hence,

max(0, 2− nz − 2lz) ≤ G−GK − Li − li +K − 1

⇒ li ≤ G−GK − Li +K − 3 + nz + 2lz

(4) assume gi = 0; if li > 0, we are adding to the i-th vertex 2−n(2)i stabilizing
half edges, and to stabilize the p1 genus 0 vertices, we need to have

2p1 −N (2) −
(
2− n(2)i

)
≤ 2emax −K

⇒ 2p1 −N (2) −
(
2− n(2)i

)
max(0, 2−mi) ≤ 2(G−GK − Li − li +K − 1)−K

⇒ 2li ≤ 2(G−GK − Li) +K +N (2) − n(2)i − 2pi .

(5) assume gi = 0; after deciding li, we still have emax edges to place, and
each of them can contribute with one half edge to the stabilization of the
i-th vertex; moreover, one of these half edges is already counted for the
stabilization; hence

ni + 2li + (emax − 1) ≥ 2

⇒ ni + 2li +G−GK − Li − li +K − 1− 1 ≥ 2

⇒ li ≥ 4− ni −G+GK + Li −K .

5.4. Range for ai,j. When deciding ai,j , this is the situation:

• earlier in Notation 5.2, we observed that for the purpose of filling the vectors
g,n and l we could consider a genus 0 vertex stabilized when it had at least
two half-edges (since the graph is going to be connected eventually). When
assigning the values of a, the stability condition goes back to its original
meaning, i.e. each vertex has at least 3 half edges.

GENERATING STABLE MODULAR GRAPHS 11

• emax = G−GK − LK −Ai,j +K − 1;
• we have already placed edges between c couples of different vertices;

Here are the constraints that ai,j must satisfy:

(1) if there is not a division before i, then we require ai,j ≥ ai−1,j ; otherwise,
just ai,j ≥ 0;

(2) if there is not a division before j, then we require ai,j ≥ ai,j−1;
(3) we need at least K−2−c (if positive) edges to connect the graph, because if

ai,j > 0, c will increase by 1 (this estimate could be very poor, but enforcing
the connectedness condition in its entirety before completing the graph is
too slow), hence:

emax − ai,j ≥ max(0,K − 2− c)
⇒ ai,j ≤ G−GK − LK −Ai,j +K − 1−max(0,K − 2− c) ;

(4) ai,j contributes with at most max(0, 3−hi)+max(0, 3−hj) stabilizing half
edges; hence, to stabilize the p1 genus 0 vertices, we need

3p1 −
∑
gi′=0

min(3, ni + 2li)−
(
max(0, 3− hi) + max(0, 3− hj)

)
≤ 2(emax − ai,j)

⇒ 3p1 −
∑
gi′=0

min(3, ni + 2li)−
(
max(0, 3− hi) + max(0, 3− hj)

)
≤

≤ 2(G−GK − LK −Ai,j +K − 1− ai,j)
⇒ 2ai,j ≤ 2(G−GK − LK −Ai,j +K − 1)− 3p1+

+
∑
gi′=0

min(3, ni + 2li) + max(0, 3− hi) + max(0, 3− hj) .

(5) if j = K − 1 (that is, if this is the last chance to add half edges to the i-th
vertex), then we add enough edges from i to K − 1 in order to stabilize the
vertex i; moreover, if up to now we did not place any non-loop edge on the
vertex i, we impose ai,K−1 > 0.

ai,K−1 > 0 if ai,j = 0 forall 1 < j < K − 1,

ai,K−1 ≥ 3− hi if gi = 0.

6. Performance

The complexity of the problem we are trying to solve is intrinsically higher
than polynomial, because already the amount of data to generate increases (at
least) exponentially with the genera and the number of marked points. We also
observed an exponential growth of the ratio between the time required to solve
an instance of the problem and the number of graphs generated. Anyway, our
program is specifically designed to attack the problem of stable graphs, and it can
be expected to perform better than any general method to generate graphs applied
to our situation.

We present here some of the results obtained by testing our program on an
Intel R© CoreTM2 Quad Processor Q9450 at 2.66 GHz. The version we tested is not
designed for parallel processing, hence it used only one of the four cores available.

However, when computing a specific graph, the program needs to keep in the
memory only the graphs with the same values in the vectors g, n, l. This allows
us to neglect memory usage, but also shows that we can assign the computations

12 STEFANO MAGGIOLO AND NICOLA PAGANI

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20

T
im

e
(s

)

N

g=0
g=1
g=2
g=3
g=4
g=5
g=6
g=7
g=8

Figure 2. Logarithm of time needed to compute all stable graphs
of type (G,N).

G N Time (s) # stable graphs
0 18 392 847,511
1 14 539 1,832,119
2 10 147 1,282,008
3 7 117 1,280,752
4 5 459 2,543,211
5 3 606 2,575,193
6 1 226 962,172
7 0 681 1,281,678

Table 1. For small G, the maximum N such that all stable graphs
of type (G,N) can be computed in less than 15 minutes.

of stable graphs with prescribed g, n, l to different cores or cpus, thus having a
highly parallelized implementation of the program.

In Table 1 we list, for each genus G, the maximum number of marked points N
for which we can compute all the stable graphs of type (G,N) under 15 minutes.

In Figure 2 we show all the couples (G,N) that we computed against the time
needed; the lines connect the results referring to the same genus. From this plot it
seems that, for fixed G, the required time increases exponentially with N . However,
we believe that in the long run the behaviour will be worse than exponential.

More benchmarks and up-to-date computed results are available at boundary’s
webpage, http://people.sissa.it/~maggiolo/boundary/.

http://people.sissa.it/~maggiolo/boundary/

GENERATING STABLE MODULAR GRAPHS 13

Acknowledgments

Both the authors want to acknowledge their host institutions, sissa and kth.
The second author was partly supported by the Wallenberg foundation. Both
authors were partly supported by prin “Geometria delle varietà algebriche e dei
loro spazi di moduli”, by Istituto Nazionale di Alta Matematica.

References

[BMS] S. Busonero, M. Melo, and L. Stoppino, On the complexity group of stable curves,
arXiv:0808.1529.

[DM] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst.

Hautes Études Sci. Publ. Math. 36 (1969), 75–109.

[F] C. Faber, Maple program for computing Hodge integrals, available at

http://math.stanford.edu/~vakil/programs/.
[GK] E. Getzler and M. Kapranov, Modular Operads, Compositio Math. 110 (1998), no. 1, 65–126

[arXiv:dg-ga/9408003].

[K] F. Knudsen, Projectivity of the moduli space of stable curves II. The stacks Mg,n, Math.

Scand. 52 (1983), 161–199.
[M] B. D. McKay, nauty, available at http://cs.anu.edu.au/people/bdm/nauty/.

[vOV1] M. A. van Opstall and R. Veliche, Maximally symmetric stable curves, Michigan Math.

J. 55 (2007), no. 3, 513–534 [arXiv:math/0603061].
[vOV2] M. A. van Opstall and R. Veliche, Maximally symmetric stable curves II,

arXiv:math/0608799.

[Y1] S. Yang, Intersection numbers on M̄g,n, Journal of Software for Algebra and Geometry, 2
(2010) 1–5.

[Y2] S. Yang, Maple program for computing integrals on Mg,n, available by request from author
stpyang@math.kth.se.

[Y3] S. Yang, Calculating intersection numbers on moduli spaces of pointed curves,
arXiv:0808.1974.

http://arxiv.org/abs/0808.1529
http://math.stanford.edu/~vakil/programs/
http://arxiv.org/abs/dg-ga/9408003
http://cs.anu.edu.au/people/bdm/nauty/
http://arxiv.org/abs/math/0603061
http://arxiv.org/abs/math/0608799
mailto:stpyang@math.kth.se
http://arxiv.org/abs/0808.1974

	1. Introduction
	2. Stable modular graphs
	3. Description of the algorithm
	4. The program generates all graphs
	5. Description of the ranges
	6. Performance
	Acknowledgments
	References

