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QUOTIENTS AND THE HOPF PROPERTY FOR ARTIN
GROUPS
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ABSTRACT. We prove that most Artin groups of large and hyperbolic type
are Hopfian, meaning that every self-epimorphism is an isomorphism. The
class covered by our result is generic, in the sense of Goldsborough-Vaskou.
Moreover, assuming the residual finiteness of certain hyperbolic groups with an
explicit presentation, we get that all large and hyperbolic type Artin groups
are residually finite. We also show that “most” quotients of the five-holed
sphere mapping class group are hierarchically hyperbolic, up to taking powers
of the normal generators of the kernels.

The main tool we use to prove both results is a Dehn-filling-like procedure for
short hierarchically hyperbolic groups (these also include e.g. non-geometric
3-manifolds, and triangle- and square-free RAAGs).

If T can find that kernel, audiences
will relate to me.
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INTRODUCTION

In this paper we study the class of short hierarchically hyperbolic groups, first intro-
duced in [Man24]. This family includes the mapping class group of the five-holed
sphere, extra-large Artin groups, fundamental groups of non-geometric 3-manifolds,
right-angled Artin groups without triangles and squares in their defining graphs,
and many others. More specifically, we develop what can be thought of as a Dehn
filling procedure for these groups, analogous to the relatively hyperbolic Dehn fill-
ing theorem [Osi07, GMO8], and in particular we construct hyperbolic quotients of
1



2 G. MANGIONI AND A. SISTO

those groups, and obtain applications. We now present the main one, relating to
the Hopf property for Artin groups, in the next subsection.

Hopf property for Artin groups. The motivation of our Dehn filling machinery
is to “lift” properties from the quotients to the groups themselves. Indeed, we
study when a group G within our class is Hopfian, meaning that every surjective
homomorphism G — G is an isomorphism. The requirements on G are satisfied
by “most” Artin groups of large and hyperbolic type, by which we mean that all
edge labels in the defining graph are at least 3 and there is no triangle whose labels
are all 3. The exact statement is Theorem 6.6, from which we extract some special
cases. First, recall that an Artin group is even if all edge labels in its defining graph
are even.

Theorem A. Let Ar be an even large-type Artin group. Then Ar is Hopfian.

For the second application, we say that an Artin group has a single odd component
if every two vertices in the defining graph are connected by a combinatorial path
with odd labels. This is a natural notion, as two generators of an Artin group are
conjugated if and only if the corresponding vertices are connected by an odd path
[Par97].

Theorem B. Let Ar be an Artin group of large and hyperbolic type with a single
odd component. Then Ar is Hopfian.

As explained in Remark 6.16, the aforementioned class of Artin groups is generic
in the sense of [GV23], so we obtain:

Corollary C. A generic Artin group is Hopfian.

The Corollary was also very recently obtained in [BMV24], where, by completely
different means, the authors identify two other classes which turn out to be generic
(see Remark 6.17 for a comparison between the families).

In [Bar24], Barak proved that all HHGs satisfying a technical condition are equa-
tionally Noetherian, hence Hopfian (see e.g. [GH19, Corollary 3.14 and Theorem
D] for the implication). The further requirement is, however, not satisfied by our
groups, as discussed in Remark 6.20.

Towards residual finiteness. It is widespread belief that all Artin groups are resid-
ually finite, hence Hopfian, though this is only known to hold for certain classes;
in fact, to the best of our knowledge, it is not known whether generic Artin groups
are residually finite (see Remark 6.19 for an overview). In Figure 9 we even exhibit
a four-generated Artin groups which is Hopfian by Theorem B but is not known to
be residually finite.

However, our Theorem 6.6 is proven by constructing “sufficiently many” hyperbolic
quotients, of which an explicit presentation is given in Remark 6.18. All hyperbolic
groups are Hopfian by e.g. [WR19, Corollary 6.13], and if our quotients were in
fact residually finite, then so would be our Artin groups. We summarise this in the
following:

Theorem D. Let Ar be an Artin group of large and hyperbolic type. Then Ar is
residually hyperbolic. Furthermore, if all the hyperbolic groups from Remark 6.18
are residually finite, then Ar is residually finite.
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In the same Remark 6.18, we relate residual finiteness of Ar to residual finiteness of
certain Shephard groups. This class, named after G. Shephard [?], generalises both
Coxeter and Artin groups, and graph products of cyclic groups, and has recently
been used to prove that, if I is triangle-free and contains no square all whose labels
are 2, then Ar is residually finite (see [?, Theorem GI).

Quotients of MCQi(SO,g)). Within mapping class groups, a handful are short
HHGs, including that of the five-holed sphere, which we focus on here. There are
various ways to take quotients of mapping class groups that yield hierarchically
hyperbolic groups, including quotients by powers of pseudo-Anosovs [BHS17a] and
quotients by powers of Dehn twists [BHMS20]. These quotients have been fur-
ther studied, in particularly exploiting hierarchical hyperbolicity to obtain quasi-
isometric and algebraic rigidity results [MS23, Man23]. They have also notably
been used to relate famous questions about profinite properties of mapping class
groups and profinite rigidity of certain 3-manifolds to residual finiteness of certain
hyperbolic groups [BHMS20, WS24].

In this context, we previously asked, roughly, whether given any finite collection
of elements of a mapping class group one can mod out suitable powers and obtain
a hierarchically hyperbolic group, see [MS23, Question 3]. We provide an almost
complete answer for MCG* (S 5):

Theorem E (see Theorem 7.3). Let S = S5, and let gi,...,q1 € MCGT(S).
Suppose that every partial pseudo-Anosov g; has no hidden symmetries. Then
there exists N € N — {0} such that, for all Ki,...,K; € Z — {0} we have that
MCG*H(S) (L gE Ny is hierarchically hyperbolic.

Here, not having hidden symmetries is a technical condition which only partial
pseudo-Anosovs can satisfy, see Definition 7.1. Unfortunately we needed this ad-
ditional requirement due to fine algebraic reasons, but we do not think that it is
necessary, and in fact we believe that there is now enough evidence to upgrade our
question to a conjecture:

Conjecture F. Let S be any surface of finite type, and let ¢1,...,¢9; € MCgi(S).
There exists N € N — {0} such that, for all K;,...,K; € Z — {0} we have that
MCG*(S)/{{gE N 1Y) is hierarchically hyperbolic.

To our knowledge, the conjecture is open already for quotients by suitable powers of
non-separating Dehn Twists. What makes the conjecture interesting is that tackling
it should lead to a more complete theory of Dehn fillings for hierarchically hyperbolic
groups. In turn, this should have many applications beyond those presented in
this paper and [BHMS20, WS24], and indeed we are currently working on further
applications of algebraic and algorithmic nature of the techniques we developed
here.

Dehn fillings of short HHGs.

Main result. Roughly, a short HHG contains specified subgroups which are Z-
central extensions of hyperbolic groups. We call cyclic directions the kernels of
these extensions (see Subsection 2.1 for the full definition of a short HHG). For the
five-holed sphere mapping class group, the specified extensions are curve stabilis-
ers, and cyclic directions are generated by Dehn twists. The only consequence of
hierarchical hyperbolicity that the reader should bear in mind for this Introduction



4 G. MANGIONI AND A. SISTO

is that a short HHG is hyperbolic if the list of specified subgroups is empty. Hence,
in order to make a short HHG “more hyperbolic”, the idea is to take a generator
of a cyclic direction and mod out a power of it, as such an element has “large”
centraliser and in a hyperbolic group this is allowed only if the element has finite
order. Our version of the Dehn filling theorem is the following:

Theorem G (see Theorem 4.1). Let G be a short HHG, and let g1,...,g9, be
generators of some of its cyclic directions. Then there exists M € N — {0} such
that, for all choices k; € Z — {0}, the quotient G = G/{{{gF™})y is a short HHG.

The Theorem in fact gives a natural short HHG structure on G, where the cyclic
directions are images of the cyclic directions of G that do not contain conjugates of
the g;. Thus, a particularly interesting case is where we take quotients by powers of
generators of all cyclic directions, hence obtaining a hyperbolic group. A refinement
of the above yields the following, which readily implies Theorem D. Recall that a
group G is fully residually P for some property P if, for every finite subset F' c G,
there exists a quotient G — G where F injects, and such that G enjoys P.

Corollary H (see Corollary 4.24). Short HHGs are fully residually hyperbolic.

Tools and techniques. The proof of Theorem G combines two approaches. Firstly,
as explored in [Man24], the hierarchical structure of a short HHG can be modified
by constructing suitable quasimorphisms on the specified Z-central extensions (see
Subsection 2.3 for further details). In Subsection 4.1 we take advantage of this
flexibility to make the structure of a short HHG “as compatible as possible” with
the quotient projection. Secondly, we adapt the machinery of rotating families,
first introduced in [Dahl8], to short HHGs. Mimicking arguments from [DHS21]
and [BHMS20], these tools allow one to lift certain combinatorial configurations
from the quotient G to the original group G. Each HHG axiom for G follows
from the corresponding statement for G, which is already hierarchically hyperbolic.
The most novel and difficult part of this construction, compared with [BHMS20]
and other papers, is that the HHS structure of the quotients involves quasilines
coming from the aforementioned quasimorphisms; therefore, new ideas are required
to construct suitable retractions onto those, as detailed in Subsection 4.3.4.

Comparison with known Dehn Filling results. In [BHMS20], the authors study quo-
tients of mapping class groups of arbitrary finite-type surfaces by suitably large
powers of all Dehn twists, which as mentioned above should be thought of as the
equivalent of what we call central directions. On the one hand, our Theorem G
applies to quotients by suitably large powers of any collection of central directions.
On the other, our techniques fail if we consider the quotient of a non-short map-
ping class group by large enough powers of some Dehn twists, such as only those
around non-separating curves. The problem is roughly as follows: in any reasonable
candidate HHS structure for the quotient, the image of a curve stabiliser will be a
product region, and therefore hierarchically hyperbolic itself. Now, if a curve does
not lie in the chosen collection, then the quotient image of its stabiliser will be a
Z-central extension, and by [HRSS23, Corollary 4.3] a necessary condition for it to
be hierarchically hyperbolic is that its Euler class is bounded. In the case of the
five-holed sphere, the quotient extension has hyperbolic base, and so is bounded by
[?]; however this is not necessarily true for surfaces of higher complexity.
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Motivated by this setup, in future work we will explore under which conditions a
quotient of a Z-central extension of a group G remains bounded [?].

A criterion for hopficity. The fundamental tool in our study of the Hopf property
for short HHGs is the following criterion (stated here in slightly simplified form),
whose proof is straightforward but for which we could not find a suitable reference:

Proposition I (see Lemma 5.3). Suppose that G has enough Hopfian quotients,
meaning that, for every surjective homomorphism ¢ : G — G and gy € G — {1},
there exists a quotient H of G, say with quotient map q such that:

b q(go) 7 1;

e H is Hopfian,

e ¢ induces a homomorphism : H — H.

Then G is Hopfian.

Now let G be a short HHG, and let ¢, gg be as above. If ¢ maps central directions
to central directions, then it induces a map of some hyperbolic (hence Hopfian
[WR19, Corollary 6.13]) Dehn filling quotient H, obtained by annihilating suitable
powers of all central directions, and by Corollary H we can also assume that go
survives in H. This is not always the case; however, ¢ often preserves “enough”
central directions, and the Dehn filling quotient by those directions will still be
“hyperbolic enough” to be Hopfian. More precisely, we shall make use of hopficity
of certain relatively hyperbolic groups [GH19] and the following fact, which we
highlight as it is of independent interest.

Theorem J (see Theorem 5.6). Let G be hyperbolic relative to Z-central extensions
of hyperbolic groups (including the case that G itself is such an extension). Then
G is Hopfian.

Future directions. It is natural to ask whether, using a version of our argument
or otherwise, one can in fact show that all short HHGs are Hopfian:

Question K. Are all short HHGs Hopfian? More ambitiously, are all HHGs Hop-
fian?

But in fact, this is already a major question in the context of Artin groups:
Question L. Are all large hyperbolic type Artin groups Hopfian?

Going one step further, given the connection to residual finiteness of certain hyper-
bolic groups, the following question could have important consequences:

Question M. Are all large hyperbolic type Artin groups residually finite?

Finally, we believe that there are many more examples of short HHGs, and in fact
we believe that the following question has a positive answer:

Question N. Is a random quotient of a short HHG, for a suitable notion of ran-
domness, again a short HHG?

Outline. Section 1 contains background on combinatorial hierarchically hyperbolic
groups, of which short HHGs are an instance. In Section 2 we describe the family
of short HHG, and collect results about them from [Man24]. The class of Dehn
filling quotients we consider is then made precise in Subsection 2.4.
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In Section 3 we adapt the machinery of rotating families from [Dahl8, DHS21]
to our quotients of interest. We then construct a short HHG structure for the
quotients in Section 4: see in particular Theorem 4.1, which is Theorem G from the
Introduction. As a by-product, in Subsection 4.5 we prove residual hyperbolicity
of short HHGs: see Corollary 4.24, which is Corollary H above.

Section 5 develops tools to study self-epimorphisms of short HHGs. A toy example
of how they are put into practice is presented in Subsection 5.5, where we prove
the Hopf property for certain HNN extensions of the direct product of Z and a free
group: see Example 5.18. The same techniques are then pushed further in Section 6,
where we prove that many Artin groups of large and hyperbolic type are Hopfian:
see Theorem 6.6 for the full statement, which encompasses both Theorems A and B.

In Section 7 we prove hierarchical hyperbolicity of many quotients of the five-holed
sphere mapping class group: see Theorem 7.3, which is Theorem E.

Acknowledgements. We are grateful to Oli Jones for suggesting an enlightening
way to shorten some proofs of the Hopf property. We also thank Giovanni Sartori
and Nicolas Vaskou for answering many questions about Artin groups.

1. COMBINATORIAL HHS

In this section we recall the definition of a combinatorial HHS and its hierarchically
hyperbolic structure, as first introduced in [BHMS20]. The reader might want to
refer to [BHMS20, Section 1], which contains discussion of all the various notions we
recall below. Also, the reader might find [?] useful, as in there it is explained how
to create a combinatorial HHS structure from an HHS structure (in many cases).

Definition 1.1 (Induced subgraph). Let X be a simplicial graph. Given a subset
S < X of the set of vertices of X, the subgraph spanned by S is the complete
subgraph of X with vertex set S.

Definition 1.2 (Join, link, star). Given disjoint simplices A, A’ of X, we let Ax A’
denote the simplex spanned by A o A0 if it exists. For each simplex A, the
link Lk(A) is the union of all simplices ¥ of X such that ¥ n A = and ¥« A is
a simplex of X. Observe that Lk(A) = & if and only if A is a maximal simplex.
The star of A is Star(A) :== Lk(A) » A, i.e. the union of all simplices of X that
contain A.

Definition 1.3 (X-graph, W-augmented graph). An X —graph is a graph YW whose
vertex set is the set of all maximal simplices of X.

For a simplicial graph X and an X-graph W, the W-augmented graph X"V is the
graph defined as follows:

e the 0-skeleton of Xt is X(0);

e if v,we X© are adjacent in X, then they are adjacent in X+";

e if two vertices in W are adjacent, then we consider o, p, the associated
maximal simplices of X, and in X" we connect each vertex of ¢ to each
vertex of p.

We equip W with the usual path-metric, in which each edge has unit length, and
do the same for X+,
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Definition 1.4 (Equivalence between simplices, saturation). For A, A’ simplices
of X, we write A ~ A’ to mean Lk(A) = Lk(A’). We denote the ~—equivalence
class of A by [A]. Let Sat(A) denote the set of vertices v € X for which there
exists a simplex A’ of X such that v € A’ and A’ ~ A, i.e.

(0)

Sat(A) = | (] &’
Ale[A]

We denote by & the set of ~—classes of non-maximal simplices in X.

Definition 1.5 (Complement, link subgraph). Let W be an X—graph. For each
simplex A of X, let C(A) be the induced subgraph of X" spanned by Lk(A)©,
which we call the augmented link of A. Also, let YA be the subgraph of X*W
induced by the set of vertices X(9) — Sat(A).

Note that C(A) = C(A’) whenever A ~ A’. (We emphasise that we are taking links
in X, not in Xt and then considering the subgraphs of YA induced by those
links.)

Definition 1.6 (Combinatorial HHS). A combinatorial HHS (X,W) consists of a
simplicial graph X and an X—graph W satisfying the following conditions:

(1) There exists n € N, called the complexity of X, such that any chain
Lk(A1) & --- & Lk(4;), where each A; is a simplex of X, has length
at most n;

(2) There is a constant ¢ so that for each non-maximal simplex A, the subgraph
C(A) is é—hyperbolic and (4, §)—quasi-isometrically embedded in YA, where
YA is as in Definition 1.5;

(3) Whenever A and ¥ are non-maximal simplices for which there exists a non-
maximal simplex I' such that Lk(I") € Lk(A) nLk(X), and diam(C(T")) = 4,
then there exists a simplex II which extends ¥ such that Lk(II) € Lk(A),
and all T as above satisfy Lk(I") € Lk(II);

(4) If v,w are distinct non-adjacent vertices of Lk(A), for some simplex A of
X, contained in W-adjacent maximal simplices, then they are contained in
W-adjacent simplices of the form A x X.

Definition 1.7 (Nesting, orthogonality, transversality). Let X be a simplicial
graph. Let A, A’ be non-maximal simplices of X. Then:

o [A]C [A']if Lk(A) € Lk(A');

o [A]L[A7 if Lk(A') € Lk(Lk(A)).
If [A] and [A'] are neither L-related nor C-related, we write [A]A[A'].

Definition 1.8 (Projections). Let (X, W, d,n) be a combinatorial HHS.
Fix [A] € & and define a map mja) : W — 2¢UAD as follows. Let

p:Ya — oAl
be the coarse closest point projection, i.e.

p(x) = {y € C([A]) : dy, (2,y) < dv, (2,C([A]) + 1}

Suppose that w is a vertex of W, so w corresponds to a unique simplex 3, of X.
Now, [BHMS20, Lemma 1.15] states that the intersection X,, n YA is non-empty
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and has diameter at most 1. Define
maj(w) = p(Xy N Ya).

We have thus defined a7 : W(0) — 2€UAD  If v, w € W are joined by an edge e of
W, then ¥, 3, are joined by edges in X", and we let

miay(e) = mia)(v) U maj(w).
Now let [A],[A'] € & satisfy [A]M[A'] or [A'] = [A]. Let
pla] = p(Sat(A') N Ya),
where p : YA — C([A]) is coarse closest-point projection.
Let [A] & [A']. Let p{ii] :C([A']) — C([A]) be defined as follows. On C([A]) nYa,
it is the restriction of p to C([A’]) n Ya. Otherwise, it takes the value (.

We are finally ready to state the main theorem of [BHMS20]:

Theorem 1.9 (HHS structures for X—graphs). Let (X, W) be a combinatorial
HHS. Then W is a hierarchically hyperbolic space with the structure defined above.
Moreover, let G be a group acting on X with finitely many orbits of subcomplexes
of the form Lk(A), where A is a simplex of X. Suppose moreover that the action
on mazximal simplices of X extends to an action on W, which is metrically proper
and cobounded. Then G is a HHG.

Definition 1.10. We will say that a group G satisfying the assumptions of Theo-
rem 1.9 is a combinatorial HHG.

2. DEFINITION AND RESULTS ON SHORT HHGSs

This Section recaps the definition and properties of short HHGs, as introduced in
[Man24|. The reader will probably find [Man24, Figure 1] useful to keep in mind.

Definition 2.1 (Blowup graph). Let X be a simplicial graph, whose vertices are
labelled by graphs {LU}UEY(O). The blowup of X, with respect to the collection
{L,}, is the graph X obtained from X by replacing every vertex v with the squid
Squid(v) = v # (L,)®. Two squids Squid(v) and Squid(w) span a join in X if and
only if v,w are adjacent in X, and are disjoint otherwise. In particular, there is a
Lipschitz retraction p: X — X mapping every Squid(v) to its tip v.

For every simplex A ¢ X, let A = p(A), which we call the support of A, and for
every v € A let A, = A n Squid(v). When describing a simplex A, we shall put
vertices belonging to the same A, in parentheses: for example, if the vertices of A
are {v,w,z}, where v, w € X and z € (L)@, then we denote A by {(v,z), (w)}.
Then, by inspection of the definition, one gets the following:

Lemma 2.2. Suppose that X is triangle-free, and that no component of X is a
single point. Then, given a simplex A of X, one of the following holds:

(1) A =g, and Lkx(A) = X;

(2) (Edge-type) A = {(v,x)}, where v € X
p~ ' Lkg(v);

(3) (Triangle-type) A = {(v,x),(w)}, where v,w € X are X -adjacent and
z € Ly, and Lkyx (A) = (Ly,)©;

© ond z € L,, and Lkx(A) =
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(4) A = {(v,x),(w,y)} is a mazimal simplex, where v,w € X9 are adjacent,
x €L, andy € L, and Lkx(A) = &.
(5) Lkx(A) is a vertez, or a non-trivial join. In particular diam(Lkx (A)) < 2.

2.1. Definition. Let G be a combinatorial HHG, whose structure comes from the
action on the combinatorial HHS (X, W). We say that G is short if it satisfies
Axioms (A)-(B)-(C) below.

Axiom A (Underlying graph). X is obtained as a blowup of some graph X, which
is triangle- and square-free and such that no connected component of X is a point.
Moreover, X is a G-invariant subgraph of X.

The above Axiom implies, in particular, that the G-action on X restricts to a
cocompact G-action on X.

Axiom B (Vertex stabilisers are cyclic-by-hyperbolic). For every v € Y(O) there is
an extension

0 —— Z, —— Stabg(v) LN H, —— 0

where H, is a finitely generated hyperbolic group and Z, is a cyclic, normal sub-
group of Stabg(v) which acts trivially on Lk(v). We call Z, the cyclic direction
associated to v.

Moreover, one requires that the family of such extensions is equivariant with respect

(0)

to the G-action by conjugation; in particular, Z,, = gZ,q ! for every ve X and

geGq.

Notation 2.3. For every v € Y(O), let £, be the domain associated to any triangle-
type simplex whose link is (L,)(®), and let U, be the domain associated to any
edge-type simplex supported on v.

Axiom C ((Co)bounded actions). For every v € Y(O), the cyclic direction Z,
acts geometrically on Cf, and with uniformly bounded orbits on C¢, for every
w € Lkx(v). In particular, Cl, is a quasiline if Z, is infinite cyclic, and uniformly
bounded otherwise.

We will denote a short HHG, together with its short structure, by (G, X).

Definition 2.4. A short HHG (G, X) is colourable if there exists a partition of the
vertices of X into finitely many colours, such that no two adjacent vertices share
the same colour, and the G-action on X descends to an action on the set of colours.

It is easily seen that the above property coincides with the more general notion
of colourability of a HHG, which requires the existence of a finite, G-invariant
colouring of the whole domain set (see e.g. [Bar24, Definition 4.15]).

2.2. Properties.

Remark 2.5. As a consequence of Lemma 2.2, if a simplex A € X is such that
the associated coordinate space C(A) is unbounded, then

[Al€ {5} v b} o0 Y iU}, o | Lk (v)|=o0

where S = [(J] is the E-maximal domain, and ¢, U, are defined as in Notation 2.3.
Furthermore, by how nesting and orthogonality are defined in a combinatorial HHS
(Definition 1.7), we see that:
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0,10, whenever v # w are adjacent in X, and are transverse otherwise;
Ly, LU,;

¢, © U, whenever v # w are adjacent in X;

If v has valence greater than one in X, and dx(v,w) = 2, then U, L.

If both v and w have valence greater than one in X, and dg(v,w) > 2,
then U, AU, .

We avoided describing the slightly more complicated relations involving U, when v
has valence one in X, as we shall not need them.

Remark 2.6. The main coordinate space CS = X 7" G-equivariantly retracts onto
the augmented support graph YJFW, obtained from X by adding an edge between
v and w if they belong to W-adjacent maximal simplices of X. In other words, CS
is G-equivariantly quasi-isometric to a graph with vertex set Y(O), which contains
X as a (non-full) G-invariant subgraph.

Similarly, for every v € Y(O), CU, is Stabg(v)-equivariantly quasi-isometric to the
augmented link Lk(v) ™, on which Z, acts trivially.

Short HHGs satisfy several strengthened versions of the bounded geodesic image
axiom, which we recall here.

Notation 2.7. Set pl, = pi;”’, which is defined as p%ﬁl]

triangle-type A = {(v, z), (w)} and A’ = {(v',2), (w')}.

for any two simplices of

Lemma 2.8 (Strong BGI, part 1 [Man24, Lemma 2.10]). Whenever u,v,w € Y(O),
if both py and pl, are defined and at least 2E-apart in Cl,,, then every geodesic
[u,v] € X st pass through Stars(w).

Similarly, whenever u,v,w € Lkx(2), if both p¥ and p}, are defined and at least
2E-apart in Cly,, then every geodesic [u,v] € Lks(2)™" must pass through w.

Notation 2.9. For every u,v,w € Y(O) such that u # w and v # v, if w has valence
greater than one in X set

dpi (w)+w (U, 0) = dpi(w)+w (P(P&U),P(Pffw» ,

where p: X — X is the retraction. If instead w has valence one then Lk(w) is a
point, and we set dpy_(w)+w (u,v) = 0.

Lemma 2.10 (Strong BGI, part 2 [Man24, Lemma 2.11]). Let w € Y(O). For every

u,v € Y(O) —{w}, if duiy (w)+w (u,v) = 2E, then every geodesic [u,v] < X must
pass through w.

Lemma 2.11 ([Man24, Lemma 2.15)). Let (G, X) be a short HHG. For every v €

Y(O), H, is hyperbolic relative to {p,(Zw)}we w, for any collection W of Stabg(v)-

orbit representatives of vertices in Lk (v).
2.3. Squid materials.

Notation 2.12. In what follows, X is a simplicial graph on which the finitely
generated group G acts cocompactly. Fix V = {v1,...,v;} a set of representa-
tives of the G-orbits of vertices in X; moreover, for every v; € V fix a collection
{h}vi(l), e hévi(l)} of representatives of the G-orbits of vertices of Lk+(v;), where
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every hg belongs to G. Whenever the dependence of some hzvi(j) on ¢ and j is
irrelevant, we denote hZ by h and v;(;) by v'. This way, every w € Lkx(v;) can be
expressed as w = ghv', for some g € Stabg(v;).

Fix any finite generating set S for G, such that S n Stabg(v;) generates Stabg(v;)
for every i, and let dg be the associated word metric. For every v; € V and every
g € G, if v = gv; then set P, = g Stabg(v;), which we shall call the product region
associated to v. Later we shall also need the following constant:

— Il — Jy—1
7= max ;| = maX‘(hi) ;
i i
where | - | denotes the norm in the word metric we fixed on G.

For the following definition, recall that a group G is weakly hyperbolic relative to
the collection of subgroups {A1, ..., Ag} if the coned-off graph of G with respect to
{A1,..., A} is hyperbolic.

Definition 2.13 (Squid materials). The following data define squid materials for
a finitely generated group G:

(1) G acts cocompactly on a simplicial graph X, called the support graph, which
is triangle- and square-free, and such that no connected component of X is
a single point.

(2) For every v e Y(O), its stabiliser is an extension
0 —— Z, —— Stabg(v) LLEN H, —— 0

where H, is a finitely generated hyperbolic group and Z, is a cyclic, normal
subgroup of Stabg(v) which acts trivially on Lk (v). The family of such
extensions is equivariant with respect to the G-action by conjugation.

(3) Whenever e = {v,w} is an edge of X, P Stabg(e) == Stabg(v) n Stabg(w)
contains {(Z,, Z,,» as a subgroup of finite index. Moreover, p,(Z,,) is qua-
siconvex in H,,.

(4) G is weakly hyperbolic relative to {Stabg(vi)}vev-

(5) For all v; € V for which Z,, is infinite, there exists a finite-index, normal
subgroup E,, of Stabg (v;), containing Z,, n F,, in its centre. Furthermore,
there is a homogeneous quasimorphism

¢’Ui: Evi g R)

which is unbounded on Z,, n E,, and trivial on Z,, n E,, for every vertex
w € Lk (v;). If instead Z,, is finite, we set E,, = Stabg(v;) and ¢, = 0.

(6) There exist a constant B > 0 and, for every v; € V, a coarsely Lipschitz,
coarse retraction

Gu,: G = 2P,
which we call gate. We require that, whenever w € Lk+(v;),
9, (Pw) S Np(Pu).

Furthermore, whenever d(v;, u) = 2, there exist g € Stabg(v;), h € G, and
v’ € V, as in Notation 2.12, such that

Gu; (Pu) - NB(gZhv’)-

As it turns out, admitting squid materials is equivalent to being a short HHG:
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Theorem 2.14. ([Man24, Theorem 3.10])£et G be a finitely generate group ad-
mitting squid materials, with support graph X. Then (G, X) is a short HHG, where

the cyclic direction associated to each v € X is (a finite-index subgroup of) Z,.

Proposition 2.15. ([Man24, Proposition 4.1]) A short HHG (G, X) admits squid
materials, whose support graph is X and whose extensions are those from Axiom B.

In particular we get:

Corollary 2.16 (Edge groups). Let (G, X) be a short HHG. Whenever {v,w} is
an edge of X, the edge group Stabg(v) nStabg(w) contains {Z,, Z) as a subgroup
of finite index.

2.4. Subgroups generated by large cyclic directions.

Notation 2.17 (Kernel of the projection). Let (G, X) be a colourable short HHG.

Let B = {s1,...,8.} C X9 be a (possibly non-maximal) collection of vertices
belonging to pairwise different G-orbits. For every ¢ = 1,...,r choose a non-zero
natural number M; € N — {0}, and for every v € G{s;} let I, = M, Z,.

From now on, we will focus on all normal subgroups of the form

N =UMZs,,..., M. Zs > = Ly veas-
B will be called the base of N.

Definition 2.18 (Deep enough quotient). Let N = (M;1Zq,,..., M. Z; ) be as
in Notation 2.17. We will say that a property of N, or of G/N, holds if N is deep
enough if there exists D € N — {0} such that the property holds whenever every M;
is a multiple of D.

Remark 2.19. Notice that, if A is deep enough, one can always assume that:
e Every finite I';, is trivial, or in other words B does not contain vertices with
bounded cyclic direction;
e Whenever v, w are X-adjacent, Z, commutes with I',, (this is because the
centraliser of Z, in Stabg(v) has index at most two);
e N lies in the normal subgroup Gg of G which acts trivially on the set of
colours of X.

3. ROTATING FAMILIES AND PROJECTION GRAPHS, REVISITED

In this Section, we prove that the machinery of composite projection systems, de-
vised in [Dahl8] and then developed further in [DHS21], can be adapted to study
quotients of colourable short HHGs by powers of cyclic directions. This allows us to
describe the quotient graphs X /A and 7+W /N, and the vertex stabilisers for the
induced G/N-action on X /N. The reader who is only interested in short HHGs is
advised to skip to the consequences which are gathered in Subsection 3.1. We first
recall some definitions from [Dah18].

Definition 3.1. [Dahl18, Definition 1.2] Let Y, be the disjoint union of finitely
many countable sets Yq,...,Y,,. A composite projection system on Y, consists of
e a constant 6 > 0;
e a family of subsets Act(y) c Y, for y € Y, (the active set for y) such
that Y;y) © Act(y), and such that x € Act(y) if and only if y € Act(x)
(symmetry in action),
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e and a family of functions djj : (Act(y) — {y})* — Ry, satisfying:

— Symmetry: d7(z,z) = dj(z,z) for z,z € Act(y) — {y};

— Triangle inequality: dj(w,z) < dj(w,2) +dj(2,z) for all w,z, 2 €
Act(y) — {y};

— Behrstock inequality: min{d}(z,z2),d](z,y)} < ¢ whenever both
quantities are defined;

— Properness: |{y € Y;,dj(z,2) > 0} < oo for all z,z € Y;;

— Separation: djj(z,z) < 6 for z € Act(y) — {y};

— Closeness in inaction: if x ¢ Act(z) then, for all y € Act(x) nAct(z2),
we have dj (z,2) < 0;

— Finite filling: for all Z c Y, there is a finite collection x; € Z such

that U; Act(z;) covers Ugez Act(x).
We will also require the following “uniform” version of the properness axiom:

Definition 3.2. A composite projection system on Y, is uniformly proper if there
exists a constant 7' > 0 such that |{y € Yy, d} (x,2) =2 T}| < oo for all z, 2 € Y.

Remark 3.3. As argued in the paragraph after [DHS21, Definition 1.1], one can
always replace each distance djj with a modified function dz : (Act(y)—{y})* —» Ry
which further satisfies the monotonicity property from [BBF15, Theorem 3.3]. The
new function dj differs from d™ by a uniformly bounded amount, depending only on
the composite projection system. Hence, all properties from Definitions 3.1 and 3.2
are satisfied by df,, up to a further additive constant. In particular, one can find
a constant £ > 0 such that, for all w,z,z € Act(y) — {y}, we have the following
“coarse” triangle inequality:

dj(w,x) < dj(w, z) + dyé(zyx) + K.

Definition 3.4. (Composite rotating family) Consider a composite projection sys-
tem Y, endowed with an action of a group G by isomorphisms, i.e. G acts on Yy,
preserving the partition Y, = | |", Y; (though possibly permuting the colours), in
such a way that Act(gy) = g Act(y) for all g € G and y € Y, and that, whenever
df (z, ) is defined, then dZ, (g2, gz) = df (z, 2) for all g € G.

A composite rotating family on (Y4, G), with rotation control ©,. > 0, is a family

of subgroups {I'y},cy, such that

o for all z € Y,, T, < Stabg(z), is an infinite group;

e I', acts by rotations around x (i.e. whenever y = z or y ¢ Act(z), the
subgroup I',, fixes y and dj), with

e proper isotropy (i.e. forall R > 0,y € Act(z), theset { € 'y, d%(y,vy) <
R} is finite);

e forall g€ G, and all z € Yy, we have 'y, = gl

o if z ¢ Act(z) then I',, and ', commute;

e for all i < m and for all z,y,z € Y;, if dyé(x7 z) < O, then

dyé(xvgz) 2 @rot
for all g e 'y — {1}.

Theorem 3.5 ([Dahl8, Theorem 2.2]). Let {T',}ev, be a composite rotating family
on (Y, G), and let N be the normal subgroup of G generated by I,. Suppose

VEY y
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that Act(z) = Yy for every z € Y. If the rotation control ©,..; is sufficiently large,
there exists a (possibly infinite) subset J < Y, such that
Nz % T,
veJ
Definition 3.6 (SCPG). Let G be a finitely generated group. A strong G-
composite projection graph is the data of:

e A hyperbolic graph § on which G acts by simplicial automorphisms, with
finitely many orbits of vertices;

A structure of a uniformly proper composite projection system on (9, on
which the induced action of G is by isomorphisms;

e A G-invariant subset Y, c S, which inherits the structure of a composite
projection system:;

A composite rotating family {I', },ev, with rotation control ©,.

Strong Bounded Geodesic Image: a constant C' € R, so that the following
holds. For each z,y,s € S so that ds(x,y) is defined and larger than C,
every geodesic [z,y] € S contains a vertex w such that ds(w, s) < C, and
either w = s or w ¢ Act(s). In particular, w is fixed by T';.

We shall denote a SCPG by the tuple (S,G, Yy, {I',}).

Remark 3.7 (Comparison with [DHS21]). The above is a slight variant of the
main Definition in [DHS21, Section 2]. There are two notable differences:

e In [DHS21] the authors require that, on every geodesic with large enough
projection on a vertex s, there is a vertex w which is fixed by I's and belongs
to Lks(s). The latter requirement is, in general, not met by short HHGs
(see Remark 3.8). However, what is actually needed in [DHS21] is that
w lies within uniform distance from s, which for us is part of the strong
bounded geodesic image assumption.

e Though the definition in [DHS21] involves a sub-projection complex Y7, on

which the composite rotating family is defined, all proofs there implicitly
assume that Y7, coincides with the whole projection complex. Nonetheless,
this does not invalid the consequences the authors get in [DHS21, Section
5], because for mapping class groups the composite rotating family is de-
fined on the whole projection complex.
In our setting, it is relevant that the composite rotating family Y, is not
defined on the whole S(9), because we want to be able to quotient by any col-
lection of cyclic directions. We establish a way to pass from the whole pro-
jection complex S(© to the sub-complex Yy in the Transfer-like Lemma 3.11
below, whose main ingredients are uniform properness (Definition 3.2) and
the fact that G acts cofinitely on S(©).

Remark 3.8 (From a short HHG to a SCPG). Let (G, X) be a colourable short

HHG. Let (X, W) be a short HHG structure for G, and let X be the augmented
support graph, which by Remark 2.6 is G-equivariantly quasi-isometric to the main

coordinate space CS. For every v € X we define Act(v) = X - Lk<(v), which
contains all vertices with the same colour as v since no two adjacent vertices of
X have the same colour. Furthermore, we set d7(z,y) = dy, (p%,p¥) whenever
the quantity is defined. It is easy to see that the above data define a uniformly
proper composite projection system, for some constant € depending on the short



SHORT HHG II 15

HHG structure: for example, uniform properness follows from the Distance Formula
[BHS19, Theorem 4.5]; closeness in inaction is [DHS17, Lemma 1.5]; finite filling
follows from the fact that X is triangle-free, etc. Moreover, the strong BGI property
for CS is Lemma 2.8, together with the fact that Lk(v) has uniformly bounded

diameter in X " by [DHS17, Lemma 1.5].

Now, G acts by isomorphisms on such composite projection system. Let B =
{s1,...,8-} be a base, and let N' = (M1 Zq,,..., M. Zs Yy = L\ vecn, as in Nota-
tion 2.17. As explained in Remark 2.19, if A/ is deep enough we can assume that
every I, is infinite, and that I, commutes with I',, whenever v, w are X-adjacent.
Set Y, = GB, with the induced set of colours. Using that each I',, acts coboundedly
on C/l,,, we see that the above data define a composite rotating family on Y,. More-
over, the rotation control ©,.,; can be made arbitrarily large by choosing sufficiently
large multiples M; (that is, by requiring that N is deep enough).

Thus the above data define a SCPG (YJFW,G,Y*,{FU}) whenever N is deep
enough. Notice that we could not have used the original definition from [DHS21].

Indeed, in our setting the hyperbolic graph is X (not X); furthermore, Lks-+w (s)
contains Lk+(s) but they might not coincide, and this means that there might be
vertices of Lkw+w (s) which are not fixed by T's.

Remark 3.9 (SCPG for augmented links). Analogously, for every v € Y(O), it N
is deep enough one can define a SCPG whose data are

(Lk(0) Y, Stabg (1), Y3, (T buevy )

where Y3 = GB n Lk(v). We stress that, since any two vertices w,w’ € Y}, are
always disjoint in Lkw(v), one has that Act(w) = Y% for every w € Y}. This
is relevant as then, by Lemma 3.5, the subgroup (I'y)wevy, which we shall later
denote by Ny, is a free product of (some of) the T'y,.

Standing assumption 3.10. For the rest of the Section, let (S, G,Y,,{I',}) be a
SCPG, and let N be the subgroup of G generated by {I',}yev, -

Lemma 3.11 (Transfer-like Lemma). There exists a constant B, depending only
on the composite projection graph S and on the action of G, with the following
property. For every x € SO and every i = 1,...,m there exists ti(x) € Y; such
that, for every y € Act(x) n Act(t;(z)), we have that A5 (x,t;(x)) < B.

Proof. Let x1,...,x; € Y, be a finite collection of representatives of the G-orbits.
For each of these points x; and for each colour ¢ = 1,...,m choose a point ¢;(x;) €
Y;. By uniform properness (Definition 3.2, together with Remark 3.3), there exists
a constant B such that
max sup dj(xj,ti(xj)) <B
BI yeAct(z;)nAct(t;(z;))

Now, for every x € Y, there exists j(z) < [ and an element g € G such that
r = g(x(zy). Moreover, since G acts on the set of colours, for every i = 1,...,m
there exists a unique i’ € {1,...,m} such that gty (v;c)) € Y;, and we can set
ti(x) = gty (x;(z)). Notice that, since G preserves projection distances,

sup A4 (2, ti(x)) = sup df (zj,tu(z;)) < B,
yeAct(z)nAct(t;(z)) yeAct(z;)nAct(ty (z;))
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and this concludes the proof. ([

Corollary 3.12 (cf. [DHS21, Corollary 1.8]). The following holds if the rotation
control O, is large enough. Let v € S© gnd w e Y,. If v is w-active, then
doy (v, ) > 0 for every v, € Ty, — {0}. In particular, v,v # v.

Proof. Let t = t;(,)(v). Since now ¢ and w lie in the same colour, we have that
dy (t, Ywt) > Opor. Then the coarse triangular inequality yields that d,,(v,y,v) >
Ot — 2B — 2k, and we can choose the rotation control so that the latter quantity
is greater than the constant € from Definition 3.1. (I

The following Lemma combines some properties from [DHS21, Section 3], which
only use that {I',},ev, is a composite rotating family on a composite projection
complex Y.

Lemma 3.13. There exist a constant X € R depending only on Y, a good ordering
of N which we call complexity, and an indexing i: N' — {1,...,m} such that the
following holds. For every v € N — {1} and every t € Yi(y), there exist s € Yy and
~vs € I's such that:

e v,y has strictly lower complexity than v;

o d4(t,7t) = O,0r/2 — N.
Proof. Set X = ©g/2+k, where « is the constant from Remark 3.3 and © is defined
in [DHS21, Remark 1.2 and Standing assumption 1.4] as ©g = 80 +2+3rx. We stress
that both 6 and x only depend on the composite projection system on Y, and on the
modified distance function from Remark 3.3. The good ordering is the lexicographic
ordering (a(7),n(7)), where the ordinal o and the integer n are defined in [DHS21,
Theorem 3.1 and Definitions 3.2 and 3.3]. The index i(y) = i(a(7)) is defined in
[DHS21, Theorem 3.1]. The statement about v and ¢ follows by combining the
second and the fourth bullet of [DHS21, Theorem 3.5]. O

Now set Ogport = Opot/2— N —2B — 2k, where B is the constant from the Transfer-
like Lemma 3.11.
Lemma 3.14 (Shortening pair). For ally e N — {1}, and all x € S\, there exist
a shortening pair (s,vs) (here s € Yy and vs € T's) so that vy has strictly lower
complexity than v, and either

(1) one between z and yx is s-inactive, or

(2> dsé(xvfyx) 2 Osnort-
Proof. Lett = t;(,)(z), defined as in the Transfer-like Lemma 3.11. By Lemma 3.13,
there exist s € Yy and ~5 € 'y such that v,v has strictly lower complexity, and
d4(t,yt) = O,0t/2 — N. Now, if one between x and vz is s-inactive we are done.
Otherwise, the (coarse) triangle inequality yields

df(a:,w:) > df(t,’y(t)) — 2B — 2K = Ogp0rt,

where we used that

df(z,t) < sup  df(x,t) < B,
veAct(xz)nAct(t)
and therefore also
df (yz,7t) < sup g (yz,yt) = sup  di(z,t) < B.
veAct(yx)nAct(yt v'eAct(xz)nAct(t)
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3.0.1. Lifting and projecting. From now on, let S/N be the graph whose vertices
and edges are N -orbits of vertices and edges in S, and let ¢: S — S/N be the quo-
tient projection. Notice that, a priori, we do not know whether S/ is simplicial.

Lemma 3.15. For each combinatorial path % in S/N starting at T, and any point
x in the preimage of T (henceforth: a lift of T), there exists a combinatorial path
i S so that q oy =7, which we call a lift of 5. Moreover, if ¥ is a geodesic, then
50 18 .

Proof. This follows from the fact that A acts simplicially on S, and that ¢ is
1-Lipschitz. (I

The following lemmas are the analogues of the results in [DHS21, Section 4], whose
proofs can be run verbatim in our setting. Indeed, they all rely only on [DHS21,
Corollary 3.6] (which is our Lemma 3.14), and the fact that, whenever z,y € S(©
have sufficiently large projection on some s € S(9), then every geodesic [x,y] con-
tains a point w which is fixed by 'y (which for us is a consequence of the strong
bounded geodesic image assumption). As an example, we provide a complete proof
of Lemma 3.17 below.

Definition 3.16. A k-gon in a metric graph A is a closed combinatorial path Q
made of k geodesic segments. In other words,

k1
Q= U [, Zig1],
i=0

where zq, ..., 2, € A9z =z and each [z;,2;11] is a geodesic path.

Lemma 3.17 (cf. [DHS21, Proposition 4.3]). For every k € N there exists a
constant O, (k) such that the following holds if the rotation control ©,..; is larger
than ©,e (k). For every k-gon Q < S/N there exists a k-gon Q < S such that
q(Q) = Q, which we call a lift of Q.

Proof. Let Q = Uf;ol [Zi, @i 1] Lift all segments of Q to a (possibly non-closed)
chain Uf:_ol [zi,zi+1]. Let v € N be such that yxo = zi. We proceed by induction
on the complexity of . If v = 1 then zy = x; and the chain is already an k-gon.
Otherwise, by Lemma 3.14 there exists a shortening pair (s,~s). If 2o is s-inactive,
then we can apply s to the whole chain, and we get a new chain with endpoints
xy = Ys®o = xp and x}, = 7syxo. Then we can conclude by induction, as 7,7y
has strictly lower complexity than . Similarly, if vx( is s-inactive, we can apply
751 to the whole chain, and we get a new chain with endpoints z{, = v; 'x¢ and
T}, = YsYxo = YZo. Again, the endpoints of the chain are such that x} = y,vxy,
and we conclude by induction.

Otherwise, we have that ds(xo, 720) = Osnort- If at least one x; is s-inactive, we can
apply 7s to the chain “after” z; (meaning, to all geodesics [z, z,+1] where i < j),
and again conclude by induction. Otherwise, by the coarse triangle inequality we get
that there exists some i € {0,...,k — 1} such that dg(x;, yzis1) = Osport/k — kk.
Notice that we can always choose O, large enough that the latter quantity is
greater than the constant C from the bounded geodesic image assumption. There-
fore, there exists w € [x;,x;4+1] such that either w = s or w is s-inactive. In both
cases 7, fixes w, and therefore one can change the lift of the chain “after” w (mean-
ing, one can apply 7, to [w, z;+1] and to all geodesics [z}, x;4+1] where i + 1 < j).
Again, the conclusion then follows by induction. O
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Corollary 3.18. if the rotation control O, is sufficiently large then S/N is a
simplicial graph.

Proof. First notice that S/N does not contain any non-trivial bigon B, because if
it did then we could invoke Lemma 3.17 and lift B it to a non-trivial bigon in the
simplicial graph S (the non-triviality of the lift follows from the fact that the two
edges would have different quotient projections). For the same reason, S/N cannot
contain any edge with the same endpoints, which we could see as a “monogon” and
lift to S. O

With the same techniques, one can prove the following two results:

Lemma 3.19 (cf. [DHS21, Proposition 4.3], “moreover” part). Let Q be a geodesic
quadrangle in S/N. If the geodesics [v1,w1], [V2, W2] of @ have lifts [v;, w;] so that
ds(vi,w;) < Opot/10 whenever the quantity is defined, then there exists a lift Q of
Q such that the lift [v!,w!] of [U;,W;] contained in Q is an N -translate of [v;, w;].

Lemma 3.20 (cf. [DHS21, Lemma 4.4]). Suppose that x,y € S'°) have the property
that ds(z,y) < ©,0t/10 whenever the quantity is defined. Then q|[, ) is isometric,
for any geodesic [x,y] = S.

Then we can finally prove the following:

Theorem 3.21 (cf. [DHS21, Theorem 2.1]). Let (S,G, Y4, {I',}) be a SCPG, and
let N be the subgroup of G generated by UveY* ,. If the rotation control ©,..; is
sufficiently large, then:

(1) S/N is d-hyperbolic, where & is any hyperbolicity constant for S;

(2) If the action of G on S admits a loxodromic element (resp. lozodromic
WPD), then so does the action of G/IN on S/N;

(3) If the action of G on S is non-elementary, then so is the action of G/N on
S/N.

Proof. First, one reproves the results from [DHS21, Section 4.3], which follow from
[DHS21, Proposition 4.3 and Lemma 4.4] (which are our Lemmas 3.17-3.20). Then
one can run the proof of [DHS21, Theorem 2.1], which is ultimately a consequence
of the (classical) Bounded Geodesic Image theorem and of the (uniform) properness
of the projection system. O

3.0.2. Other consequences. We gather here a collection of facts which are not used
in the above proof, but are relevant for our arguments on short HHG above.

Lemma 3.22 (cf. [DHS21, Proposition 4.8]). If the rotation control ©,q is suffi-
ciently large, then for any vertex v e S we have

Stabg (U) NN = <Fw N Stabg (U)>w€Y* = <Fw>weY*f(Act(v)7v)'

Proof. One can follow the proof of [DHS21, Proposition 4.8], which only uses the
existence of shortening pairs (which is Lemma 3.14) and [DHS21, Corollary 1.8]
(which is our Corollary 3.12). O

We conclude with two lemmas allowing us to inject certain finite configurations in
the quotient. First, a consequence of Lemma 3.20:
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Corollary 3.23. For any two distinct vertices v,w € SO there exists a constant
O,ot(v,w) such that, if the rotation control O, is greater than ©,.(v,w), then
T # W. As a consequence, for every finite set W € SO, there exists a constant
O,0t(W) such that, if the rotation control ©,. is greater than ©,. (W), then W
injects inside S©©) /N .

In the same spirit, we show that we can inject finite subsets of G in the quotient
group:

Lemma 3.24. For every g € G — {1} there exists a constant O,:(g) such that, if
the rotation control ©,, is greater than ©,.(g), then g ¢ N.

As a consequence, for every finite subset F' © G there exists a constant © ., (F')
such that, if Oror = Orot(F), then F injects in G/N .

Proof. Take an element y; € Y; for every colour i = 1,...,m. By uniform proper-
ness, there exists a constant M such that

_max sup ds(yi, 9yi) < M.

i=1,...,m seAct(y;)nAct{gy;)
Choose O,,:(g) such that O,,:(9)/2 — X > M, where X is the constant from
Lemma 3.13 which only depends on Y. Now let A/ have rotation control greater
than ©,,(g). If by contradiction g € A, then we can define its index i(g) €
{1,...,m}. By Lemma 3.13 we can then find s € Y, such that

M < Grot/2 -N< ds(yi(g)7gyi(g)) <M,
and this yields a contradiction. O

3.1. TL;DR. We gather here all consequences of the above discussion to our set-
ting. Recall that we have a colourable short HHG (G, X), whose structure comes
from the action on the combinatorial HHS (X, W) with HHS constant F, and we
are considering the quotient by a subgroup A, as in Notation 2.17.

3.1.1. The quotient support graph. Let (A, N) be either (X+W,N) or (Lksz(v) W, N,)

for some v € Y(O). Define A/N as the graph whose vertices and edges are N-orbits

of vertices and edges of A, and let ¢: A — A/N be the quotient projection. We
shall denote the N-orbit of a vertex v € A by [v].

Corollary 3.25 (of Corollary 3.18). A/N is simplicial.
Moreover, a plethora of subgraphs of A/N lift isometrically to A. For example:

Corollary 3.26 (of Lemma 3.15). For each combinatorial path 7 in A/N starting
at [v], and any point v in the preimage of [v] (henceforth: a lift of [v]), there exists
a combinatorial path in A so that q oy =7, which we call a lift of 7. Moreover, if
7 is a geodesic, then so is .

Furthermore, we can also lift geodesic k-gons:

Definition 3.27. A k-gon in a metric graph A is a closed combinatorial path @
made of k geodesic segments. In other words,

k—1
Q = U [xi7l'i+1],
=0

where z,...,zr € A 2 = 29 and each [z;,z;41] is a geodesic path.
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Corollary 3.28 (of Lemma 3.17). For every k € N the following holds if N is deep
enough. For every k-gon Q inside A/N there exists a k-gon Q inside A such that

q(Q) = Q. We say that Q is a lift of Q.

Now we focus our attention on A = X . Recall that X is a (non-full) G-invariant
subgraph of Y+W, as pointed out in Remark 2.6, so the quotient projection restricts
to a map X — X /N, which we shall still call g. As X/N is then a G/N-invariant
subgraph of Y+W/N , it is itself simplicial; furthermore, Corollary 3.28 implies
that, for every k € N, we can find A/ deep enough that every closed combinatorial
path ¥ € X/N of length at most k has a lift inside X. Then we summarise the
properties of X /A below:

Lemma 3.29. If N is deep enough, then:
o X/N is a triangle- and square-free simplicial graph, and none of its con-
nected components is a point.
e For every N -orbit [v] of a vertex v € Y(O), Lkx /n ([v]) = q(Lkx(v)).

Proof. We already noticed that X /N is simplicial. Furthermore, any non-degenerate
triangle or square in X /A" would lift to X if A/ is deep enough (notice that the lift
would again be non-degenerate, as its edges would have different quotient projec-
tions), and every vertex of X /N belongs to at least one edge, because this is true
in X. Moving to the second bullet, Corollary 3.28 implies that every edge {[v], [w]}
lifts to an edge {v,w}. O

3.1.2. Large rotations stabilising a verter. Given v € Y(O), we have the following
description of the elements of A/ which fix v:

Corollary 3.30 (of Lemma 3.22). If N is deep enough, then for every v € Y(O)
we have that N" n Stabg(v) = (I'y, |w € Starg(v) N GB).

As T, acts trivially on Lk<(v), we get that
Lk+(v) /(T | w € Stars(v) n GB) = Lkx(v) /N,
where
N,y = Ly |w € Lk (v) n GB).
Moreover, no two elements of Lk+(v) are adjacent, as X is triangle-free, so we get:

(©

Corollary 3.31 (of Lemma 3.5). If N is deep enough, then for any v e X ) there

evists J S Lksz(v)(©) such that N, has a free presentation

Ny = % T.
weJ

3.1.3. Uniform hyperbolicity of the quotients. By choosing N to be deep enough,
we can ensure that the quotient of the main coordinate space of (X, W) remains
hyperbolic, with the same hyperbolicity constant (which we bound by the HHS
constant E):

Corollary 3.32 (of Theorem 3.21, global version). If N is deep enough, then

YJFW/./\/ is E-hyperbolic. Furthermore, G/N acts acylindrically on YJrW/N', and
if G acts non-elementarily on X then so does G/N on Y+W/./\/'.
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By Remark 3.9, we can also establish a “local version” of the above result:

Corollary 3.33 (of Theorem 3.21, local version). If N is deep enough, then for

every v € X we have that Lk (v)*W /N, is E-hyperbolic.

3.1.4. Preserving finite data in the quotient.

Corollary 3.34 (of Lemmas 3.23 and 3.24). Let {wy,...,wx} C X be a finite

collection of vertices, and let F c G — {1} be a finite subset. If N is deep enough
then

o {wy,...,wg} injects in the quotient Y(O)/./\/;
o FnN =, so that F injects in the quotient G/N .

Combining the Corollary with the description of A,,, we get the following charac-
terisation of which cyclic directions survive in the quotient:

Lemma 3.35. The following holds whenever N is deep enough. For any v €
X - GB, we have that N n Z,, = {0}.

Proof. First, let F' = Z;, u ... U Z,,, where 21,...,x; are representatives of the
G-orbits of vertices with finite cyclic directions. By Corollary 3.34, we can choose
N deep enough so that it does not contain any conjugates of elements of F, so that
N intersects trivially every finite cyclic direction.

Thus it remains to show that N’ n Z, = {0} whenever v ¢ GB and Z, is infinite.
Notice first that N' n Z, < N n Stabg(v) = N,, as v does not belong to GB.
Since we assumed N to be deep enough to satisfy Remark 2.19, we have that Z,
commutes with I, for every w € Lkg(v), so N'n Z, must lie in the centre of
N,. Then Corollary 3.31 tells us that A, is a free product of (some) I'ys, and in
particular it has non-trivial centre if and only if N, = T, for some w € Lky(v).
In this case, it suffices to notice that Z, n ", < Z, n Z,, must be trivial, since Z,
acts geometrically on the quasiline C¢, while Z,, acts on it with uniformly bounded
orbits. (]

.1.5. The quotient extensions. Recall that, for every v € Y(O), we defined [v] €
XN as its N-orbit. Let Zpy = Zu/(Zo 0 N),

w

Lemma 3.36. For every v € Y(O) there is a commutative diagram of group ex-
tensions, where the vertical arrows are the restrictions of the quotient projection

G — G/N:

0 Zy Stabg(v) Po H, 1
0 7] Stabg([v]) —Ls H, /p,(N,) —— 0.

Consequently, Zp,) is a cyclic, normal subgroup of Stabg([v]) acting trivially on
Lkx/n([v]), and the collection of quotient extensions is equivariant with respect to
the G/N -action by conjugation.

Proof. Tt is easy to see that Stabg([v]) is the quotient projection of Stabg(v).
Furthermore, define a map pp,): Stabg([v]) — H,/p,(N,) by sending the coset
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g(N n Stabg(v)) to the coset p,(g)p.(N,), for every g € Stabg(v). This map is
well-defined, as

pu(N N Stabg(v)) = p, (T |w € {Stary(v)} N GB)) = pu(Ny),

and is a group homomorphism with kernel Z[,. Then one can easily see that
the above diagram commutes, using that both ' n Stabg(v) and Z, are normal in
Stabg(v), and all properties of the quotient extension follow from the corresponding
features of the top row of the diagram (the only thing worth stressing is that
Lks /5 ([v]) = q(Lkx(v)) by Lemma 3.29, so Z[,) acts trivially on Lkg,([v])). O

Next, we show that the quotient H,/p,(N,) is hyperbolic:

Lemma 3.37. If N is deep enough, then for everyv € X9 the quotient Hy /py(N)
is hyperbolic relative to the collection of cyclic subgroups {p,](Zw))}wlefwy, for
any collection [W] of Stabe([v])-orbit representatives of vertices in Lk ([v]).
In particular, Hy,/p,(Ny) is hyperbolic, and pr,)(Z[w)) is quasiconver in Hy /N, for
every [w] € Lks 5 ([v])-

Proof. Recall from Lemma 2.11 that H, is hyperbolic relative to the collection
{pv(Zw) }wew, for any collection W of Stabg(v)-orbit representatives of vertices in
Lk (v). Notice that p,(Ny) = Pu(l'w))weLky(v)ncs. Then by the relative Dehn
Filling Theorem [Osi07, Theorem 1.1] there exists a finite set F, ¢ H, — {1} such
that H,/p,(N,) is hyperbolic relative to

{po(Zw/(Zw " N ) wew = {p[’u](Z[’w])}[w]E[W]a

provided that p,(T'y) N F, = & for every w € W. This can always be arranged if
N is deep enough. O

4. A SHORT STRUCTURE FOR THE QUOTIENT

The main aim of this paper is to prove the following theorem, which roughly states
that the class of short HHGs is stable under taking quotients by large enough cyclic
directions. Recall Notation 2.17, where we defined normal subgroups of the form
N = (M;Z,), that is, generated by cyclic subgroups of the cyclic directions of a
short HHG.

Theorem 4.1. Let (G,X) be a short HHG, as in Definition 2.1, and let N be
the normal subgroup as in Notation 2.17. If N is deep enough, then (G/N, X /N)
is a short HHG, where the cyclic direction associated to each [v] € (X/N)©) is
(a finite-index subgroup of) Zp,) = Zy/(Zy n N). Furthermore, if v ¢ GB then
Z[v] =~ Z,.

Outline of the proof. In Subsection 4.1 we modify the short HHG structure for G, in
such a way that the kernel N acts with uniformly bounded orbits on the quasilines.
We then set X = X /A, which we prove to be the blowup of X /A in Lemma 4.4,
and we consider the X -graph )7\7, obtained from the (possibly non simplicial) graph
W/N by removing loop edges and double edges. Then we prove that (X, W) is a
combinatorial HHS. Here is where we verify each axiom from Definition 1.6:

e Axioms (1) and (3) both follow from the fact that X is a blowup.
e Axiom (2) is split between Subsections 4.3.3 and 4.3.4.
e Axiom (4) is Lemma 4.12.
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In Subsection 4.3.5 we notice that the G-action on X induces a G/N-action on X,
with finitely many orbits of links, and a geometric action on . Therefore ()A( , )7\/\)
is a combinatorial HHG structure for G/N. Furthermore, in Lemma 4.21 we check
that it is actually a short HHG structure, with the required cyclic directions. The
“furthermore” part of the statement is simply Lemma 3.35. (]

4.1. Preparing the structure above. We first need to tweak the short HHG
structure for G, to make it as “compatible” with N as possible. This will later
allow us to define a combinatorial HHG structure for G/N by taking the quotient
by N of the refined structure.

First, fix a short HHG structure for GG, coming from the action on the combinatorial
HHS (X, Wp). Applying Theorem 2.15 to (Xo, Wp) yields squid materials for G; in
particular, if we fix a collection V' of representatives for the G-orbits of vertices in
X, then for every v € V with infinite cyclic direction we get a finite-index, normal

subgroup E, of Stabg(v) which is contained in the centraliser of Z, in Stabg(v).

. —+W . . .
Furthermore, one can use the G-action on X Y046 build a strong composite projec-

tion graph, and let Ay be deep enough to satisfy all properties from Subsection 3.1
with respect to the fized SCPG. Later we shall choose a deeper subgroup N < N,

so to avoid confusion we shall denote by [v]o the Ny-orbit of a vertex v € x© , seen
as a vertex of X/Ny. Let Ep,), be the quotient projection of E, in G/Ny, which
is therefore a finite-index, normal subgroup of Stabg([v]o) where Z[,j, N Efy, is
central.

Lemma 4.2. In the setting above, suppose that v ¢ GB. Then there exists a
homogeneous quasimorphism ¥y, Epy), — R which is unbounded on Zp,), N Epy,
and trivial on Zp,), 0 Epy, for every [w]o € Lkg\([v]o)-

U]O

Proof. Since v ¢ GB, Lemma 3.35 tells us that Z[,), is still infinite. Furthermore, if
we choose a representative for every p,(E[,,)-orbit of conjugates of infinite cyclic
directions py(Z[w), N Epv],) We get a malnormal collection, as a consequence of
Lemma 3.37 and that peripheral subgroups of a relative hyperbolic structure are

weakly malnormal. Then the existence of the required quasimorphism is granted
by e.g. [HMS22, Lemma 4.4]. O

Now, we can precompose the quasimorphism ), : E[,), — R from Lemma 4.2
with the quotient projection E, — E,},. This gives a homogeneous quasimor-
phism v,: E, — R, which is unbounded on Z, n E, and trivial on Z,, n E,
whenever w € Lks(v). Most importantly, by construction v, also vanishes on the
intersection My N E,. Then replacing ¢, by 1, yields new squid materials for G,
and Theorem 2.14 then yields another short HHG structure (X, W) on G. Using

the G-action on YH/V, one can build another strong composite projection graph,
and let N/ < Ny be deep enough to satisfy all properties of Section 2.4 with respect
to the new SCPG.

Remark 4.3 (Why did we have to do all this?). Earlier we mentioned that we
wanted the short HHG structure to be “compatible” with the quotient. The huge
improvement when passing from (Xo, W) to (X, W) is that, for every v € x with
unbounded cyclic direction, N' n E, now acts with uniformly bounded orbits on
the quasiline L,, associated to v, as its construction involved collapsing the “coarse
level sets” of the quasimorphism 1, (see [Man24, Definition 3.12] for further details).
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This will be one of the key ingredients of the proof, in particular when we verify
that augmented links in the quotient are hyperbolic (see Lemma 4.15 below).

4.2. The candidate combinatorial structure. We now move to the description
of the combinatorial HHG structure for G/N. We first recall from [Man24] that the
underlying graph X of the short HHG structure for G, granted by Theorem 2.14,
is a blowup of X, where, given any v; € V and any g € G, the vertex v = gv; is
blown up to the squid over (L,)(?) = g Stabg (v;).

Now let X /N be the graph whose vertices and edges are A/-orbits of vertices and
edges in X. Notice that X /N is a full, simplicial subgraph of X /N

Lemma 4.4. The graph X /N is isomorphic to the blowup X of X /N with respect
to the family {Lp,) = L,/(N n Stabg ()} jex/n - In particular, X is simplicial.

Proof. Tt suffices to notice that, for every v € Y(O), pe (L), and n e N, np is
only adjacent to nv. In other words, each A/-translate of p belongs to a single edge,
and all these edges are in the same A -orbit. Then by definition X /A is the desired
blowup. O

Let p: X - X /N be the retraction mapping every squid to its apex. Given a
simplex Aof X , we shall call ﬁ(ﬁ) its support. We also denote a maximal simplex
of X by A([x],[y]), where [z] € (L[y), [y] € (L[w]), and [v], [w] are X /N-adjacent.
Given a simplex A of X, we will denote its projection to X as ﬁ, and we will say
that A is a lift of A. In particular, a lift of a maximal simplex A([z], [y]) is of the
form A(z,y), where x € [z] and y € [y]. Conversely:

Lemma 4.5. Let A(x,y) be a mazimal simplex of X. If N is deep enough, then
A = A([z], [y]) is a mazimal simplex of X.

Proof. Let v = p(x) and w = p(y). As X is a G-invariant subgraph of X, v and
2 cannot be in the same A -orbit, and similarly for all other pairs of vertices of
A where one is in X and the other is not. Moreover, if  and y are in the same
N-orbit, then so are v and w. Thus, it suffices to exclude that v and w are in the
same N -orbit, which is true as they must have different colours, and we assumed
N to be deep enough to preserve each colour. ([l

As every simplex of X can be completed to a maximal simplex, we get that:

Corollary 4.6. Every simplex A of X injects inside X. In particular, if a,be X©
are X -adjacent vertices, then their projections [a], [b] are distinct.

Definition 4.7 (W—edges). Let W be the X -graph where two maximal simplices
A([z], [y]), A([«'], [v']) are adjacent if and only if they admit lifts A(z, y), A(2,y")
which are adjacent in W.

In other words, W is obtained from W/N after collapsing double edges and loops,
in order to get a simplicial graph.

4.3. Checking the combinatorial HHG axioms. We now check that the pair
(X, W) is a combinatorial HHG structure for G. The leitmotiv will be that one is
often allowed to lift combinatorial configurations from X+ to X+"W. This way,

all properties of ()? , 17\7) can be deduced from the corresponding statements about
(X, W), which we already know to be a combinatorial HHG structure for G.
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For convenience, we recall the notion of a shortening pair, which will be a key
ingredient for our lifting strategy:

Corollary 4.8 (of Lemma 3.14). The following holds if N is deep enough. Let
(A, N) be either (Y+W,N) or (Lkg(v)™,N,) for some v € X9, There emists
a good ordering on N, called complexity, such that the minimum element is the
identity 1. Moreover, for all y € N — {1} and all z € A9, there exist a shortening
pair (s,7s) (here s € GBAA®) and v, € T,) so that vy has strictly lower complezity
than v, and either

(1) one between x and ~yx is fixzed by Ty, or
(2) ds(z,vyz) = 100E.

Remark 4.9 (Dependence on N). From now on, we shall say that a quantity is
depth-resistant if it does not depend on the choice of powers {Mj, ..., My} used
to define NV, as in Notation 2.17, but only on the fact that each M; is a multiple
of a large enough integer (that is, the quantity is the same for every deep enough
N). If we could prove that all constants in the proofs below were depth-resistant,
then the combinatorial structure ()A( , )7\/\) for G/N would be uniformly hierarchically
hyperbolic, i.e. the HHS constant would be depth-resistant. This is not the case,
but the only exception is that, whenever w € GB, the diameter of Ly, depends
on the index of I, inside Z,, (see Lemma 4.15). In other words, G/N will be a
relative HHG with uniform constants (see e.g. [Rus22, Definition 2.8]).

4.3.1. Finite complezity and intersection of links. As Xisa blowup of a triangle-
and square-free graph and none of its connected components is a single point,
one can argue exactly as in [Man24, Subsection 3.3.2] to get the first and third
requirements of Definition 1.6, with depth-resistant constants:

Corollary 4.10 (Verification of Definition 1.6.(1)). X has complexity at most 25.

Corollary 4.11 (Verification of Definition 1.6.(3)). Let X, A be non-mazimal sim-
plices of X, and suppose that there exists a mon-mazimal simplex T' such that
[ =[], [T] € [A] and diam(C(T")) = 3. Then there exists a non-mazximal simplex
IT which extends ¥ such that [II] E [A] and all T as above satisfy [I'] E [II].

4.3.2. Fullness of links.

Lemma 4.12 (Verification of Definition 1.6.(4)). Let A be a non-mazimal simplex
of X. Suppose that [a],[b] € Lk(ﬁ) are distinct, non-adjacent vertices which are
contained in W- adjacent ma:mmal szmplzces Ea, Eb Then there exist Wfadjacent
mazimal simplices I, 1, of X such that A « [a] € Il, and A * [b] < I,.

The following proof is prototypical of how to use Corollary 4.8, together with the
strong bounded geodesic image Lemma 2.8, in order to lift combinatorial configu-
rations from X+W to X+W.

Proof. Suppose first that p([a]) = p([a]) = [v]. Then [a], [b] € (L)) ?, as they
are not X-adjacent. Let a,b e X be W-adjacent lifts of [a] and [b]; moreover, let
v = p(a) and v' = p(b), which are W-adjacent as well and in the same A-orbit. By

Corollary 3.25, YJrW/N is simplicial, so v must be equal to v’ or YJrW/N would
have an edge with the same endpoints. This means that a and b belong to the
same (L,)®. Let A be a lift of A inside Lky(a) = Lkx(b). Then, as (X, W) is



26 G. MANGIONI AND A. SISTO

a combinatorial HHS, there exist W-adjacent maximal sunphces I1,, IT; such that
Axa € II, and Axb € II,. Thus, the required simplices H and Hb are the quotient
projections of II, and II,.

Thus suppose that p([a]) = [w] and p([b]) = [w'] are different. In particular [w]
and [w'] are not X /N-adjacent, or [a] and [b] would be joined by an edge of X.
This forces the support of A to be a single vertex [v], which is X /N-adjacent to
both [w] and [w']. Let [y] = X4 N (L[u,])(o)7 so that [a] is either [y] or [w], and
[v'] =%y n (L[w ])( ). Now take lifts y of [y] and 3’ of [3'] which are W-adjacent.
Let w = p(y), w" = p(y’), and let v € Lkg(w’) be a lift of [v]. There exists n € N
such that nw € Lk+(v). Hence the situation in X" is as in Figure (1) below.

nw

FIGURE 1. The full lines represent X-edges, while the dashed lines
represent WW-edges.

Our goal is to show that there exist W-adjacent lifts of [y] and [y'] which are also
X-adjacent to some lift of [v]. Then we will lift A to some A supported on v, and
we will conclude as above that [y] and [y'] belong to W-adjacent maximal simplices
containing A.

By Corollary 4.8, N is equipped with a good ordering, called complexity, whose
minimum element is the identity, so we proceed by induction on the complexity
of n. If n = 1 then w = nw, and both y and y’ are already X-adjacent to v.
Otherwise, let (s,7s) be a shortening pair, as in Corollary 4.8. Using ~,, we want
to replace some lifts, without breaking the configuration from Figure (1), in such
a way that the two new lifts of [w] are w and ysnw. Then we shall conclude by
induction, as ysn has strictly lower complexity than n by the defining properties of
a shortening pair.

There are some cases to consider, depending on how ~4 acts on our configuration.

e If v, fixes w, then we apply =5 to all lifts. As 7, acts by isometries on
X+W the configuration from Figure (1) is preserved; moreover, every lift
is mapped to a lift of the same point, as v, € N'. Now ~vsnw differs from
Ysw = w by ysn.

o If ~, fixes nw then nw = vsnw already differs from w by vsn. Then we
leave the configuration untouched.

o Otherwise, Corollary 4.8 implies that ds(w, nw) = 100E. If neither v nor w’
belonged to Stars(s), then dg(w,w’), ds(w’, v), and d,(v, nw) would all be
well-defined, and by triangle inequality at least one of them would be greater
than 33E. Without loss of generality, say ds(w,w’) = 33E. However this
would contradict the strong bounded geodesic image Lemma 2.8, because
the edge {w,w'} of X would be a geodesic disjoint from Stars(s).
Thus, suppose first that v, fixes v. If we apply vs to nw then v = ~ysv is
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again X-adjacent to y,nw, so we can replace the lifts without breaking the
configuration.

If instead v fixes w’, we apply s to both v and nw. This way vsv is still
X-adjacent to w’, and therefore to y'.

The proof of Lemma 4.12 is now complete. O

4.3.3. Hyperbolicity of augmented links. Let A be a simplex of X. We want to
show that Lk(ﬁ)“‘W is uniformly hyperbolic, in order to verify the first half of
Definition 1.6.(2). As Xisa blowup graph, we only need to focus on the cases
when Lk(A) is unbounded, listed in Lemma 2.2.

Firstly, Lk(@)*w retracts onto (Y/N)*VAV, which coincides with YH/V/N as, by
construction, two vertices [v], [w] € (X/N)(© are W-adjacent if and only if they
have W-adjacent lifts v,w € X . Then Corollary 3.32 tells us that XN s

FE-hyperbolic. Thus we get:

Lemma 4.13. Lk(@)JFW is hyperbolic, and the hyperbolicity constant is depth-
resistant.

We can argue similarly if A = {([v],[z])} is of edge-type. Indeed, Lk(ﬁ)J’VA\} re-
tracts onto (LkY/N([v]))+W = (Lks(v)™)/N,, and the latter is E-hyperbolic by
Corollary 3.33. Hence:

Lemma 4.14 (Edge-type). If A is of edge-type then Lk(A)JFVAv is hyperbolic, and
the hyperbolicity constant is depth-resistant.

We are now left with the triangle-type case, which we split into Lemmas 4.15

and 4.16. For every v € X get Ly} = Ly/(N n Stabg(v)). The definition does
not depend on the choice of v € [v], as nL, = Ly, for every n € N.

Lemma 4.15. The following holds if N is deep enough.
o If Zpy) is finite then Ly, is uniformly bounded, and the bound depends on
N

o If instead Z, is infinite, then the quotient map L, — L, is a Stabg(v)-
equivariant quasi-isometry, whose constants are depth-resistant. As a con-
sequence, Ly, is a quasiline on which Zy,) acts geometrically, while Zj,
acts with uniformly bounded orbits whenever [w] € Lk, ([v]).

Proof. If Z,, is finite then L, was already bounded. Thus assume that Z,, is infinite,
so that L, is a quasiline on which Z, acts geometrically. If Z, "N # {0}, then L, is
bounded. Thus suppose instead that Z, n V' = {0}. Recall that, in Subsection 4.1,
we constructed a quasimorphism v, : E, — R which is trivial on N nE,. Aseach E,
has finite index in Stabg(v), we can assume that A is deep enough that every Ty, is
contained in E, whenever w € Stars(v) nGB, so that N'nStabg(v) = NnE,. Now,
by Remark 4.3, every subgroup of F, on which v, vanishes (such as A" n Stabg(v))
acts with uniformly bounded orbits on L,. Thus, the quotient map L, — L, is a
Stabg (v)-equivariant quasi-isometry, whose constants are depth-resistant. O

Lemma 4.16 (Triangle-type). The following holds if N is deep enough. Let A=
{([v], [=]), ([w])} be of triangle-type. Then there is a Stabg([w])-equivariant quasi-
isometry Lk(ﬁ)+W — Ly, whose constants are depth-resistant.
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Proof. Let A = {(v,z), (w)} be any lift of A. By [Man24, Lemma 3.34], for every
we X there is a Stabg (w)-equivariant (K, K)-quasi-isometry L,, — Lk(A)*,

for some uniform constant K > 0. Moreover Ly, = L./(N n Stabg(w)), so it
suffices to show that Lk(A)*W = (Lk(A)*YWY) /(N n Stabg(w)), as this shall imply

the existence of a Stabg ([w])-equivariant (K, K)-quasi-isometry Lk(ﬁ)+W = Ly
It is clear that the quotient projection of Lk(A) is contained in Lk(ﬁ)7 and that
if y,y' € Lk(A) are W-adjacent then their projections [y], [y'] are ﬁ\/—adjacent by
construction. Conversely, let [y], [v'] € Lk(ﬁ) be W-adjacent. Lift [y] to y € Lk(A),
and lift [¢'] to some 3’ which is W-adjacent to y. Let n € A" be such that y' € nw.
Then we must have that nw = w, or w and nw would be W-adjacent and there
would be an edge in the simplicial graph X /A connecting [w] to itself. Thus
y' € Lk(A) as well, and we are done. O

4.3.4. Quasi-isometric embeddings. We move on to show that the augmented link
of a simplex A of X is quasi-isometrically embedded in Y3, thus proving the second

~

part of Axiom (2). Again, we look at all possible shapes of Lk(A), according to
Lemma 2.2. If Lk(A) has diameter at most 2, or if A = (&, then clearly C(A) is
quasi-isometrically embedded in Y3. Then we only need to deal with the following
cases:

~

e A = {([v],[z])} of edge-type, where [v] has valence greater than one in
X/N;
o A= {([v], [z]),([w])} of triangle-type.

Lemma 4.17 (Edge-type). The following holds if N is deep enough. LeLﬁ =
{([v], [z])} be a simplex of edge-type, where [v] has valence greater than one in X /N .
Then there exists a coarsely Lipschitz retraction from Yz = p~"(X /N — {[v]}) T

to Lk(A)JFVAV, whose constants are depth-resistant.

Proof. The retraction p maps Yi onto (X/N — {w]H ™" and Lk(A)*" onto
ka/N([v])JrW, so it is enough to build a retraction

p: (XN = {[w]}) ™ = Lig (o) 7.

For every [u] € (X/N — {[v]})®, pick any geodesic 7 in (X/N)TW from [u] to its
closest point inside Lks\([v]), and let o([u]) be the endpoint of such geodesic.
Notice that [v] does not belong to 7. Indeed, suppose that this is not the case, and
let [t] be the vertex of 7 which comes right before [v]. If [t] and [v] are (X/N)-
adjacent, then we would contradict the fact that v connects [u] to the closest point

in Lkg,\([v]). If instead [¢] and [v] are W-adjacent, then [?] is also W-adjacent to
some [w] € Lkx 5 ([v]), and we could find a path from [u] to [w] which is shorter
than 7, again finding a contradiction.

Now we want to show that ¢ is both coarsely well-defined and coarsely Lipschitz,
for some depth-resistant constants. Let [u], [u'] € (X/N — {[v]})(?) be such that
d(y/N)m([u], [¢/]) <1, and let 7 (resp. 7') be a geodesic from [u] (resp. [v']) to
Lk / w([v]). The configuration in Figure (2) is therefore a geodesic pentagon inside

(Y/./\/)*VAV, which by Corollary 3.28 we can lift to X it N s deep enough.
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FIGURE 2. The pentagon inside (X /A )+W, where the full lines

represent X /N -edges, the dashed lines are geodesics of (X /N )*VAV,
and the dash-and-dot line means that d(Y/N)JrW([u], [«]) < 1. The

. . L =+ . .
configuration lifts to a pentagon inside X ~°, with vertices
v,w,u,u’,w.

Let «y (resp. ') be the lift of 7 (resp. 7'), with endpoints u and w € o([u]) (resp.
u’ and w’ € g([«']). Notice that neither v nor 4 contain any lift of [v], as pointed
out above. Let v be the lift of [v] which is adjacent to both w and w'.

Now we claim that dpj_(,)+w (w,w") < 6E, which then implies that o([u]) and
o([u']) are 6E-close in ka/N([v])JrW. Indeed, if dp_(y)+w (w,w") > 6E, then by
triangle inequality one between dpy_(v)+w (w, ), dri(v)+w (u, u'), and dpy oy +w (v, w')
is at least 2E. But this contradicts the strong bounded geodesic image, Lemma 2.10,
as neither v nor 4’ can pass through v. (I

The proof in the triangle-type case is similar, but to build the retraction we need
something more sophisticated than a geodesic, which we call an approach path. Our
notion should be compared with its homonym from [BHMS20, Definition 8.36].

Lemma 4.18 (Triangle-type). The following holds if N is deep enough. Let A=
{([v], [z]), ([w])} be a simplex of triangle-type. There exists a coarsely Lipschitz
retraction

Q[w]: YA - Lk(ﬁ)+w,

whose constants are depth-resistant.

o +W
Proof. First notice that Yz = ((L[w])(o) up HX/N - Stary//\/—([w])) . Now,
for every [y] € (L[w])(o) set or.]([y]) = [y]. For every [u] € (Y/N—Stary//v([w]))(o)
we define the value of the retraction on Squid([u]) as follows. Pick a geodesic 7 in
xt /N from [u] to [w]. Let [r] € ¥ be the last point before [w].
(1) Suppose first that [r] ¢ Lk ([w]), ie. the last edge of 7 is a W-
edge. Then choose any [y] € (L) which is W-adjacent to [r], and
set o[,1(Squid([u])) = [y]. Moreover, let X be the subpath of 7 between [u]
and [r]. What we get is the configuration in Figure (3), which we call an
approach path of type W.
(2) Suppose instead that [r] € Lks/\([w]), and let [t] be the last point of 7
before [r]. There exists [a] € Lkx )\ ([r]) which is within distance 1 from
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First, we prove that both types of approach paths lift to X", meaning that all
vertices and geodesics involved in the definition admit lifts which are arranged in

G. MANGIONI AND A. SISTO

[t] inside YJFW/N ([a] might be [t] itself, if the edge of 7 between [t] and
[r] comes from X/N). Notice that [a] # [w], because otherwise [t] would
be Y+W/N -adjacent to [w] and this would contradict the fact that 7 is a
geodesic. Now pick a geodesic from [a] to [w] inside Lk, (D)™, and let
[b] be the second-to-last point of such geodesic. Then [b] is W-adjacent to
[w], and therefore also to some [y] € (L[w])(o), so we set op,](Squid([u])) =
[y]. For further reference, let 7j; be the subpath of 7 from [u] to [t], and
let 7, be the subgeodesic from [a] to [b] inside Lk, A ([P, We get the

configuration in Figure (4), which we call an approach path of type X.

FIGURE 3. An approach path of type WW. Here the full arc is an
edge of X , the dashed lines are W\—edges, and the dash-and-dot
line is a geodesic inside Y+W/J\f , which does not intersect
Stary([u)).

FIGURE 4. An approach path of type X. Here the full arcs repre-
sent edges of X ; the dashed lines are W—edges; the black dash-and-
dot lines are geodesics inside x™ /N; and the red dash-and-dot
line is a geodesic inside Lk, A ([ ™. It will be relevant that 77,
does not intersect Stars\-([w]).

the same configuration.

Claim 4.19. An approach path of type W lifts to X V.

Proof of Claim 4.19. Lift 5 to a geodesic v € Y+W, with endpoints u € [u] and
r € [r]. Then there exists y € [y] which is W-adjacent to r, by how W—edges are
defined, and set w = p(y). Then the configuration is as in Figure (3) (notice that
w and r are not X-adjacent, or their projections [w] and [r] would be adjacent as
well).

Claim 4.20. An approach path of type X lifts to XV,
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Proof of Claim 4.20. Let nm X be a lift of 7y, with endpoints v € [u] and
t € [t]. By Corollary 3.28, we can lift the triangle with vertices [r], [a],[t] to a

triangle in X with vertices r € [7],a € [a],t’ € [t], and up to the action of N we
can assume that ¢ = t. Now, by Lemma 3.26 we can lift 77, to a geodesic inside
Lk~ (r), with endpoints a and b € [b]. Let y € [y] be W-adjacent to b, let w = p(y),
and let ' = nr € Lk (w) be a lift of [r], for some n € N/. The whole configuration
is as in Figure (5).

FIGURE 5. The (unclosed) lift of an approach path of type X.

If n = 1, then » = 7/, and the configuration we get is a lift of the subgraph in
Figure (4). Otherwise, we proceed by induction on the complexity of n. Let (s,~s)
be a shortening pair, as in Corollary 4.8. We want to replace some lifts from
Figure (4), without breaking the configuration, in such a way that the new lifts of
[r] will differ by ~n, which has strictly less complexity than n.

o If v, fixes r then we apply 75 to all lifts from Figure (5).

o If v, fixes v’ then ' = y4nr already differs from r by ~vsn, so we do nothing.

e Otherwise, ds(r,r') = 100E. Arguing as in Lemma 4.12, the strong bounded
geodesic image 2.8 tells us that vs must fix either b or w. If vyw = w, then
we just replace r’ by v,r’, which is still X-adjacent to w and therefore to
y. If instead ~,b = b, then we apply v, to 7, w, and y. Notice that v,y is
still W-adjacent to b = v4b. In both cases, after the replacement r and 47’
differ by vsn.

Proceeding by induction, we can find lifts such that r = r/, as required. O

Finally, we shall prove with a single argument that the map o is both coarsely
well-defined and coarsely Lipschitz with depth-resistant constants. Let [u],[u'] €
(X/N — Starg . ([w]))(” be such that dix/aryew ([u], [w']) < 1, and consider two
approach paths, one from [u] to [w] and one from [u'] to [w']. Let uw € [u] and
u' € [u'] be such that dw+w(u,u’) < 1. Now lift both approach paths, starting
from w and ', respectively, to get the configuration from Figure (6), where both w
and w’ = nw belong to [w] and n € N. To illustrate the process, we assume that
the path starting at u is of type X, while the path starting at u’ is of type W (the
two other cases are dealt with analogously).

We split the argument into two steps.

Step 1: gluing w to w’. We first prove that we can change the lifts, without
breaking the configuration from Figure (6), until w = w’. This will again be a
combination of Corollary 4.8 and the strong bounded geodesic image Lemma 2.8.

We proceed by induction on the complexity of n. If n = 1 then we have nothing
to prove; otherwise, let (s,s) be a shortening pair, as in Corollary 4.8, so that vsn
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FIGURE 6. Two lifts of approach paths starting at X - -adjacent

vertices. The blue path is a concatenation of three geodesics of
—+W
X .

has strictly less complexity than n. We want to replace the lifts in such a way that
the two new lifts of [w] differ by ~4n, in order to conclude by induction.

If v, fixes w, we apply 7, to the whole diagram. If 7, fixes w’ then we do nothing,
as w' = vy,w' already differs from w by v4n.

Otherwise, we have that ds(w,w’) = 100E. Now look at the blue path from Fig-

ure (6), which is a concatenation of three geodesics of X 1f there is a point z
on the blue path such that d(z,s) <1, then 75z = z and we can apply 7, to w’,
', and the subpath of the blue path between z and 7’. The new blue path is again
a concatenation of three geodesics, since we did not change its projection to X /N
and therefore is still a lift of three geodesics. Then we can conclude by induction.

We are left with the case when dg(w,w’) = 100F, but no point on the blue path be-
longs to Star(s). In particular, by the strong bounded geodesic image Lemma 2.8,
the distances ds(w’, "), ds(r", u'), ds(u', w), ds(u, t) are all well-defined and bounded
above by 2FE. Moreover, the triangle inequality yields

ds(w,t) = dg(w,w') — ds(w',7") — ds(r', ') — ds(u',u) — ds(u, t) = 92E.

If r ¢ Stars(s) then by triangle inequality one between ds(w,r) and d,(r,t) would
be at least 46F > 2F, again contradicting the strong bounded geodesic image
Lemma 2.8. Hence v, must fix . Furthermore, if no point on the red path 7
belongs to Stars(s), then by triangle inequality one between dg(w,a), ds(a,b), and
ds(b,t) would be greater than 30E > 2E. This would again contradict the strong
bounded geodesic image Lemma 2.8, either inside Lks(r) ™"V (in the first two cases)

or inside Y+W (in the last case). Then let k € 1y be fixed by vs. If we apply s to
everything beyond r and k (meaning, to w’, ¢/, the blue path, and the subpath of
72 between k and b), then we do not break the configuration, and we can conclude
by induction.

Step 2: bounding d; (y,y’). After the previous step, our configuration looks as
in Figure (7):

Our final goal is to show that dr (y,¥’) is bounded in terms of E. This will then
imply that dp,;(y,y’) as well is bounded in terms of the depth-resistant constant
E, concluding the proof.
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FiGURE 7. Now the lifts of both approach paths terminate at w.

Firstly, we argue that y' < p’;;. Indeed, with our Notation 2.7, pful was defined as
p{ii], where A’ = {(s',2’), (+")} is any simplex of triangle-type containing 7’ but no
point in (L,)(®). Moreover, by Definition 1.8, p{ii] = p(Sat(A’) n Ya) 2 p(r') is
obtained by applying the coarse closest point projection p: YA — C(A) to r/, which
is W-adjacent (that is, adjacent in Ya) to y'. Similarly, y S p, so it suffices to
bound the distance d,, (b, ).

Now, notice that no point on the red path 7, is X-adjacent to w, as 7 < Lkw(r)

and X is triangle-free. Moreover, recall that by construction no point on the blue
path belongs to Stars(w). Thus both the red and the blue path have well-defined
projections on L,,. Now, by the triangle inequality

du(b,7") < du(b, @) + du(a, t) + du(t, u) + duw(u,v') + du(u, ).
The first term is at most 2F, by the strong bounded geodesic image Lemma 2.8,
applied inside Lksz(r)™". All other terms are at most 2E each, again by strong

BGI applied inside X™. Thus dy(b, ") < 10E, and this concludes the proof of
Lemma 4.18. U

4.3.5. G/N-action. The G-action on X induces a G/N action on )/(\', which has
finitely many G/N-orbits of links of simplices, and this action extends to W, as
each edge of W lifts to some edge of W.

Moreover, if one fixes a generating set S for G, there is a G-equivariant (K, K)-
quasi-isometry f := Cay (G,S) — W, for some K depending on S. By taking the
quotient by N, we get a G/N-equivariant map

f = Cay (GIN,SN) — W,
which is again a (K, K)-quasi-isometry (notice that K is depth-resistant). Then

()’(\' , W) is a combinatorial HHG structure for G/N, in view of the “moreover” part
of Theorem 1.9.

4.4. The quotient is short(er). To conclude the proof of Theorem 4.1, we finally
check that the combinatorial structure for G/N, coming from the action on (X, W),

is short:

Lemma 4.21. G/N admits a short HHG structure (G/N,X/N), whose central
extensions are defined as in Lemma 3.36.

Proof. Axiom (A) is clear, as X is a blowup of X/N by Lemma 4.4, and by
Lemma 3.29 the latter is triangle- and square-free with no connected components
which are points. Moreover, Axiom (B) is a combination of Lemmas 3.36 and 3.37.
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Regarding Axiom (C), the properties of the action on Cl[,; = Ly, were proved in
Lemmas 4.15 and 4.16. ([

4.5. Residual hyperbolicity.

Definition 4.22. We say that N' = (T'1,...,Tx)) is a full kernel if, for every

(0 . . . . .
vE X( ), there exists ¢ such that I'; is conjugated into Z,,.

Corollary 4.23. If N is a full, deep-enough kernel, then G/N is hyperbolic. Fur-
thermore, if G is not virtually cyclic and the main coordinate space CS is unbounded,
then G/N is also non-elementary hyperbolic.

Proof. Since N is full, every cyclic direction Z[, for the quotient is bounded, and
therefore so is every Cf[,). Then Remark 2.5 shows that no two orthogonal do-
mains in the structure have unbounded coordinate spaces, so G/A is hyperbolic by
[BHS21, Corollary 2.16].

In the “furthermore” setting, [BHS17b, Corollary 14.4] implies that G acts non-

elementarily on C.S, and therefore on X, Then Lemma 3.32 tells us that G/N
still acts non-elementarily on YJFW /N, whenever N is deep enough. (Il

Recall that a group G is fully residually P for some property P if, for every finite
subset F' © G, there exists a quotient G — G where F' injects, and such that G
enjoys P.

Corollary 4.24. A short HHG G is fully residually hyperbolic. If moreover G is
not virtually cyclic and the main coordinate space CS' is unbounded, then G is fully
residually non-elementary hyperbolic.

Proof. Fix a finite set F ¢ G — {1}, and let N be a full kernel. By Lemma 3.34,
we can choose N to be deep enough that F' injects in G/N. Furthermore, since N
is full, by Corollary 4.23 we have that G/AN is hyperbolic (and non-elementary in
the “moreover” setting). O

Corollary 4.25. If all hyperbolic groups are residually finite then all short HHG
are residually finite.

5. HOPF PROPERTY FROM CENTRAL QUOTIENTS

Recall that a group G is Hopfian, or has the Hopf property, if every surjective
homomorphism ¢: G — G is an isomorphism. In this Section we develop some
tools to study self-epimorphisms of short HHGs, with the aim of then proving the
Hopf property for most large hyperbolic type Artin groups. We expect that one
could treat other short HHGs similarly, and indeed in Subsection 5.5 we prove the
Hopf property of certain HNN extensions of free groups.

5.1. A criterion. First of all, we state a simple criterion for a group to be Hopfian;
this basically “extracts” the Hopf property for a group from the Hopf property for
some of its quotients.

Definition 5.1. We say that a group G has enough Hopfian quotients if the follow-
ing holds. For every surjective homomorphism ¢ : G — G and non-trivial go € G
there exists a quotient H of G, say with quotient map ¢, and n > 1 such that:

e q(go) # 1,
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e H is Hopfian,
e the iterated ¢™ of ¢ induces a homomorphism ¢ : H — H, which is neces-
sarily surjective.

Remark 5.2. Note that the third bullet holds if and only if ¢"(ker(q)) < ker(g).
Lemma 5.3. If G has enough Hopfian quotients then it is Hopfian.

Proof. Given a surjective homomorphism ¢ and gg # 1 we have to argue that ¢(go)
is non-trivial. In the setting of Definition 5.1, this will follow if we show that ¢™(go)
is non-trivial. But we have 1¢(¢(go)) # 1, and therefore ¢™(go) # 1, as required. O

5.2. Preliminary lemmas on central extensions.

Lemma 5.4. Let G be a short HHG, and let H < G be a subgroup isomorphic to
a Z-central extension 1 - Z - H - K — 1.

(1) If K is infinite then H is virtually contained in Stabg(v) for some v € X
(2) If moreover K is not virtually cyclic then Z is virtually contained in Z,.

Proof. If K is infinite, then the centraliser of any element of H is not virtually
cyclic. Therefore, H cannot contain any element acting loxodromically on the top-
level hyperbolic space for G (since this action is acylindrical, by [BHS17b, Corollary
14.4]). By the Omnibus subgroup theorem [DHS17, Theorem 9.20], combined with
our description of the unbounded domains in a short HHG (Remark 2.5), we get
the required conclusion for (1).

Towards proving (2), let Hy be a finite-index subgroup of H contained in Stabg(v).
The group Hy = Hy/(Hy n Z,) embeds in a hyperbolic group, and either Z is
virtually contained in Z,,, or H; has infinite centre. The latter can only happen if
H, is virtually cyclic, but then K would also be virtually cyclic, which is not possible
under our assumption. Therefore Z is virtually contained in Z,,, as required. (I

We will also need the following support lemma. Recall that a group extension
1> 7> H— H/Z — 1 is virtually trivial if there exists a finite-index subgroup
H’' < H and a group retraction H' — H' n Z.

Lemma 5.5. Let1 - Z — H — H/Z — 1 be a non-virtually-trivial extension, and
let ¢ : H — K be a surjective homomorphism whose kernel intersects Z trivially.
Then the extension 1 — ¢(Z) - K — K/p(Z) — 1 is non-virtually-trivial.

Proof. If the latter central extension was virtually trivial then we would have a
virtual retraction to ¢(Z), which we could then use to construct a virtual retraction
of H onto Z. O

5.3. Certain relatively hyperbolic groups are Hopfian.

Theorem 5.6. Let G be hyperbolic relative to Z-central extensions of hyperbolic
groups (including the case that G itself is such an extension). Then G is Hopfian.

Proof. First we note that if a group H is hyperbolic relative to subgroups which are
virtually a direct product of Z and a hyperbolic group (for short, virtual products),
then it is Hopfian. Indeed, the peripheral subgroups are equationally Noetherian by
[WR19, Corollary 6.13] for hyperbolic groups and [Val21, Theorem E] plus [BMR97,
Theorem 1] for finite extensions of direct products of hyperbolic groups, so that H
is Hopfian by [GH19, Corollary 3.14 and Theorem D].
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We now proceed by induction on the number k of peripheral subgroups which are
not virtual products (for short, twisted), the case k = 0 being what we discussed
above.

Suppose that the statement holds when there are at most k twisted peripheral
subgroups, and consider G having k + 1 twisted peripheral subgroups. Fix a self-
epimorphism ¢ of G and gy # 1. We will use the criterion provided by Lemma 5.3,
constructing a quotient H which will be hyperbolic relative to Z-central extensions
of hyperbolic groups with & twisted peripheral subgroups.

We first claim that, up to passing to a power of ¢, there is some twisted peripheral
P, with cyclic direction generated by zp, and some positive integer Np such that
(j)(zgp) is conjugated into <zgp>. Indeed, let P be any twisted peripheral. If ¢(zp)
is a torsion element then we can take Np to be its order; thus we can assume that, for
any twisted peripheral P, we have that ¢(zp) has infinite order. In this case, ¢(P)
is a Z-central extension, and we claim that it cannot be an extension of a virtually
cyclic group. Indeed, any such extension is virtually trivial, so this would contradict
Lemma 5.5. Since G is a short HHG by [Man24, Proposition 5.3, we are now in a
position to apply Lemma 5.4 to ¢(P), and conclude that it is virtually contained
in a conjugate P’ of some peripheral subgroup, which must be twisted itself (again
as a consequence of Lemma 5.5). Moreover, P’ n ¢(zp)P'¢(zp)~! contains the
infinite subgroup {¢(zp)) N P, therefore ¢(zp) € P’ or we would contradict almost
malnormality of peripheral subgroups. Notice also that the centraliser of ¢(zp) in
P’ which contains ¢(P) n P, cannot be virtually Abelian; hence ¢(zp) must be
contained in the centre of P’.

Considering the directed graph with vertices the twisted peripherals and a directed
edge from P to P’ with ¢(P) virtually contained in a conjugate of P’, we see that,
up to passing to an iterated of ¢ (which is allowed by Lemma 5.3) there exists a
twisted peripheral P such that ¢(P) is virtually contained in a conjugate of P.
Moreover, ¢(zp) is virtually contained in the relevant conjugate of the centre of P.

Therefore, by the relatively hyperbolic Dehn filling theorem, there exists Np € N+
such that the group H = G/{{zB")) is hyperbolic relative to

e virtual products and k twisted peripheral subgroups (coming from periph-
erals of G), and
e the hyperbolic group P/{{zN")).

Moreover, we can choose Np in such a way that the image of go in H in non-trivial.
Note that we can drop the subgroups from the second bullet from the list of pe-
ripherals, so that H is hyperbolic relative to virtual products and at most k twisted
peripheral subgroups, and it is therefore Hopfian by induction. Furthermore, the
fact that ¢(25") is conjugate into (zp" ) ensures that ¢ induces a homomorphism of
H, so that we checked all conditions from Lemma 5.3, and the proof is complete. [J

5.4. The product region graph.

Definition 5.7. Let G be a short HHG with support graph X. Let X be the full
subgraph of X spanned by all vertices v with Z,, infinite. The product region graph
of G, denoted by PR(G), is the simplicial graph whose vertex set is (X ) /G, and
Wher/e two vertices are adjacent if and only if they admit adjacent representatives
in X .
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Remark 5.8. The product region graph has the following interpretation. The
vertices are conjugacy classes of vertex stabilisers (which are HHS product regions),
and two vertices are adjacent if there exist conjugacy representatives that intersect
along an edge group.

Definition 5.9. A short HHG (G, X) has central cyclic directions if, for every
vE Y(O), either Z, is finite or it lies in the centre of Stabg(v) whenever v € X
In other words, whenever Z, is infinite, Stabg(v) is a Z-central extension of a

hyperbolic group.

Lemma 5.10. If a short HHG (G, X) has discrete product region graph then it is
hyperbolic relative to {Stabg(v)}vev, where V is a collection of G-orbit representa-
tives of the vertices with unbounded cyclic directions. In particular, if G furthermore
has central cyclic directions then it is Hopfian by Theorem 5.6.

Proof. The product region graph of (G, X) being discrete is equivalent to no two
vertices v of the support graph X with infinite Z, being connected to each other.
Let (X, W) be a combinatorial HHG structure for G, where X is a blowup of X.
With the aim of using [Rus22, Theorem 4.3], we now modify the HHS structure,
by removing various bounded domains. Namely, we only keep the following:

e The maximal domain S;

(0)

e Foreveryv e X of valence greater than one, the domain U, = Lk({(v, z)});

e For every v € Y(O) for which L, is infinite, the domain /¢,;

e For every v € X for which L, is infinite, the domain I, := [X] corre-
sponding to the simplex 3 = {(v)}. Notice that I, contains both ¢, and U,
and has no orthogonal domain.

Let Speep © 6 be the G-invariant subset containing the above domains. Notice
that, in view of Remark 2.5, every U € & — Gjp has bounded coordinate space.
By inspection of the definition of a HHS, see e.g. [BHS19, Definition 1.1], removing
these domains can only affect the existence of containers and the validity of the
large link axiom, so we must check that both still hold:

Containers: By inspection of Remark 2.5, combined with the fact that the product
region graph is discrete, the only pairs of orthogonal domains in Gjeep are of the

(0)

form U, and ¢,, for v € X of valence greater than one and with unbounded
cyclic direction. Thus, whenever U and V' are both nested in some T' € Ggep, the
container for U inside T is V, and vice versa.

Large links: Let U € Gy, which is not E-minimal, and let 2,2’ € G. We want
to prove that, if one sets N = 2Edy(z, 2') + 2E, there exist {T1,...,Tin]} S Greep
properly nested in U and such that, whenever V' € Gjeep is properly nested in U
and dy (z,2") > E, then V E T; for some i.

We first notice that, if U contains only finitely many domains with unbounded
coordinate spaces, then the large link axiom holds trivially (possibly after enlarging
the HHS constant E). In particular, this happens if U = I,, as it only contains /4,
and possibly U,,.

Moreover, suppose that U only contained E-minimal domains, already in & (this
is the case if U = U,). Then the large link axiom for & produces a collection
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{T1,...,Tin} € 6, and one can simply intersect such collection with Gyeep to get
the required property.

The only case which is not covered by the above is when U = S is the maximal
domain. Let T = {T1,...,Tin1} S & the collection granted by the large link axiom
for &. If T C Gpeep we have nothing to prove; otherwise let T € T — Gpeep. If
N0 V' € Gpeep is properly nested in 17" we can simply remove 7" from the collection;
otherwise we need to replace T' with some finite collection inside Gjeep. Suppose
that T = [A] for some simplex A € X. There are several cases to consider,
according to the shape of A for which [A] ¢ Ggeep. In what follows, let {v,w} be
an edge of X containing A, and let = € (L,)(®) and y € (L,,).

e Suppose that A = {(v)}, where v has bounded cyclic direction. If there
exists V' € Gjeep which is nested in 7', then V EU,,. If U, € Gjeep then we
replace T' by U,; otherwise Lk (v) = {w}, so that V' can only be ¢,,, and
we replace 1" by £,,.

e Suppose that A = {(z)}. Again, if there exists V € Gyeep which is nested
in T, then V E U,, and we can argue as above.

e Suppose that A = {(v,z)}, so that T = U,. As T ¢ Sjeep, we must have
that Lk (v) = {w}, so the only V' € Gjeep which is nested in T'is V' = £,,,.
Thus we replace T by £,,.

e Suppose that A = {(v,w)}. The only unbounded domains which are nested
in T can be ¢, and ¢,,, so we can replace T' by {{,, %} N Speep.

e Suppose that A = {(v,y)}. The only unbounded domain which is nested
in T can be £,, so we can replace T by /,,.

e Finally, if A = {(z,y)} then no V € & is nested in T, so we can simply
remove the latter.

This concludes the verification of the large link axiom.

It is now readily seen that the HHG structure (G, Spccp) has isolated orthogonality
in the sense of [Rus22], specifically isolated by the set of domains {I,} as above.
The desired conclusion follows from [Rus22, Theorem 4.3]. O

Definition 5.11. A short HHG (G, X) has clean intersections if, for every X-
adjacent vertices v, w, the edge group Stabg(v) nStabg(v) coincides with {(Z,,, Z,,>.

Definition 5.12. We say that a short HHG has stable product regions if the follow-
ing strengthening of Lemma 5.4 holds for G. Let H < G be a subgroup isomorphic
to a Z-central extension 1 - Z — H — K — 1, and suppose that H is virtually
contained in some Stabg(v).

(1) If K is infinite then Stabg(v) actually contains H. If, in addition, K is not
virtually cyclic then Z is contained in Z,.
(2) There exists I, depending on G only, such that if K is finite then H has an
index-< I subgroup contained in Stabg(v).
Definition 5.13. Let (G, X) be a short HHG, let P = Stabg(v) for some v € Y(O),
and let ¢: G — G be a homomorphism. P is always restrained with respect to ¢
if, for every k € N, either:

e ¢*(P) is a Z-central extension of a non-elementary hyperbolic group, or
e ¢*(P) is virtually Z2, and virtually contained in an edge group.
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Lemma 5.14. Let (G,X) be a colourable short HHG with stable product regions
and clean intersections. Let gy € G — {1}, let ¢: G — G be a homomorphism,
and let P; = Stabg(v;) be always restrained vertex stabilisers with respect to ¢, for
i=1,...,7. Then there exists a kernel N, as in Notation 2.17, such that:

M (N) <N for some M € Nag;

Zy, "N # {1} for everyi=1,...,r;
g0 ¢ N;

e G/N is a colourable short HHG.

Remark 5.15. Notice that, in the above Lemma, the product region graph of
G/N injects in the graph obtained from PR(G) after removing the open stars of
the vertices corresponding to vy,...,v,.

Now, suppose that G has central cyclic directions. In view of the above discussion,
if removing all always restrained stabilisers makes PR(G) discrete, then G/N is
Hopfian by Lemma 5.10. In other words, the quotient G/A satisfies all requirements
of our criterion, Lemma 5.3.

Proof of Lemma 5.14. We proceed by induction on r, the base case r = 0 being
trivial. For the inductive step, let N’ be a kernel satisfying the statement, for
the collection {Py, ..., P._1}. Up to replacing ¢ by a power, we can assume that
d(N') < N'. Set P = P,, and choose a generator z of Z,.. As P is always restrained,
we are in one of the three situations below.

(1) Suppose first that ¢*(z") € N’ for some k,n € N and n # 0. Then set
N = (N, z™)), which is preserved by ¢*. Working in the short HHG G/N”, we
see that, up to replacing n by a non-trivial multiple, we can assume that gg ¢ N,
and that G/N is again a colourable short HHG.

(2) Suppose now that, for every k € N, ¢*(P) is a Z-central extension of a hyperbolic
group. By stability of product regions, this means that ¢*(P) is conjugated into
some vertex stabiliser Qx; moreover ¢(Qy) is again a Z-central extension of a non-
elementary hyperbolic group, as it contains ¢*+!(P), and the stability assumption
implies that the ¢-image of the centre of Q) is conjugated into the centre of Q1.
Now, there are finitely many cyclic directions up to conjugation, so we can find
n € N. g and a cyclic direction Z’ such that ¢"({z)) < Z’, and ¢"(Z’) is conjugated
inside Z’. Notice that both {z) nor Z’ intersect N trivially, as this case was covered
by point (1). Then set N' = ((N”, 2, tZ’)y, which is preserved by ¢™ for any choice
of t € Noy. Again, one can choose ¢ in such a way that go ¢ NV, and that G/N is a
colourable short HHG.

(3) Finally, suppose that there exists ko € N~g such that ¢*(P) is virtually Z? and is
virtually contained in some Ey, for every k = kqg. Without loss of generality, we can
replace ¢ by ¢*° and assume that kg = 1. Recall that every E}, is the intersection
of two vertex stabilisers, so the stability of product regions implies that ¢*(P) is
actually a finite-index subgroup of Ej. In turn, this means that E} is virtually
72, s0o ¢(Ey) < Exy1. As in point (2), the existence of finitely many edge groups
allows one to find n € N, and an edge group E’ = Stabg(v) n Stabg(w) such that
both ¢™(P) and ¢"™(E’) are conjugated inside E’. As G has clean intersections,
E' = {Z,,Zy), so for every t € Nvg the subgroup tE' = {tZ,,tZ, is preserved
by ¢™ (up to conjugation). Then set N' = (N, 2!, tE’)), which is preserved by ¢™
(notice that ¢™(z!) is conjugated inside tE’). If, say, Z, already intersected N, we



40 G. MANGIONI AND A. SISTO

choose t in such a way that tZ, < N, and similarly for Z,,. Then again a suitable
choice of t grants the required properties of the quotient. ([

5.5. Hopf property for admissible HNN extensions. Before focusing on Artin
groups, we provide an easy example of how one can establish the Hopf property for
certain short HHG, which will serve as a blueprint for many arguments in the next
Section. The additional hypotheses we will assume on the short HHG rule out the
difficulties that appear for Artin groups. We start with a general Lemma.

Lemma 5.16. Let G be a finitely generated group, and let ¢: G — G be a surjective
homomorphism. Then ¢ induces an automorphism of the abelianisation G of G.

Proof. G is a finitely generated Abelian group, so it is Hopfian (as it is residually
finite, for instance). O

Proposition 5.17. Let (G, X) be a short HHG with central cyclic directions. Sup-
pose that:

o All vertex stabilisers are conjugate;
e The image of a vertex stabiliser in G has torsion-free rank at least 3;
e The image of a cyclic direction in G has infinite order.

Then G is Hopfian.

Proof. Let ¢: G — G be a surjective homomorphism, and let go € G — {1}. In
order to apply our criterion, Lemma 5.3, we must produce a Hopfian quotient H
of G, such that the image of g is non-trivial, and that some iterate of ¢ induces a
self-epimorphism of H.

Let P = Stabg(v) for some v € Y(O), and let {(z) be its cyclic direction. As z has
infinite order in G, {#(2)) is infinite cyclic; furthermore, since the image of P in
G has torsion-free rank at least three, the same must be true for ¢(P), which
means that the latter must be a Z-central extension of a non-elementary hyperbolic
group. In turn, Lemma 5.4 implies that {¢(z)) is virtually contained in some cyclic
direction, which is conjugated to {z) by assumption. Hence, up to post-composing
¢ by an inner automorphism, we can assume the existence of some n € N.y and
m € Z — {0} such that ¢(z") = 2™.

We now claim that n divides m. Let ¢: G* — G be the induced map, and let Z
be the image of z in the abelianisation. Since ¢ maps the torsion subgroup to itself,
and the latter does not contain Z, up to taking a further quotient we can assume
that G ~ Z" for some r € No(. Choose a base eq,...,e, of Z" such that Z = ke,
for some k € N-g. Then mke; = mz = ¢(nz) < nkZ", hence n divides m.

The above discussion implies that ¢(z™) < (2™}, so ¢ induces an automorphism of
H = G/{{z"E)) for every K € N. Since there is a unique conjugacy class of cyclic
directions, Corollary 4.24 grants the existence of some K such that H is hyperbolic
(hence Hopfian), and go survives in H, as required. O

Just to give a concrete example for the Proposition:

Example 5.18. Let k > 4, and let Gy = Z x F}, where the centre is generated by
z € Z and the free factor has a basis eq,...,ep. Let Hy = {(z,e1) and Hy = {z,w),
where w is some word in Fy, such that w ¢ {a, [F}, F)]). Consider the HNN extension
G: Go#y, where 1p: Hy — Hy maps z to w and e; to 2. It is easy to see that G is the
fundamental group of an admissible graph of groups (see e.g. [HRSS23, Definition
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2.13]), and therefore it admits a short HHG structure with support graph the Bass-
Serre tree, as argued in [Man24, Subsection 2.3.3]. One can check that G satisfies
the requirements of Proposition 5.17.

6. HOPF PROPERTY FOR ARTIN GROUPS

The goal of this section is to prove Theorem 6.6 about the Hopf property for Artin
groups. We will use our “Dehn filling” quotients to do so. We start with some basic
definitions.

Definition 6.1. Let I' be a simplicial graph, with edge set E, and let m: E — N3,
be a labelling of the edges of I' with positive integers greater than or equal to 2.
Recall that the Artin group Ar is the group with the following presentation:

Ar = O | prod(a, b, map) = prod(b, a,ma) ¥{a, b} € E,

where mq, = m({a,b}) and prod(u,v,n) denotes the prefix of length n of the
infinite alternating word uvuvuv. ...
An Artin group Ar is of large type if all edge labels are at least 3, and it is of
hyperbolic type if, for every triangle with vertices a, b, ¢ inside I', the sum of the
inverses of the edge labels is strictly less than one:
1 1

+—+
Map Mpe Mac

<1

Definition 6.2 (Odd components). Given a labelled graph T', we say that two
vertices a,b are in the same odd component if there exists a combinatorial path
between them, all whose edges have odd labels (i.e. if a and b are in the same
connected component after we remove all even edges). The odd component graph,
denoted I'p¢, is the simplicial graph whose vertices are odd components, and where
two odd components C, C’ are adjacent if there exist vertices a € C, a’ € C' which
are joined by an even edge.

Remark 6.3. A result of Paris [Par97, Corollary 4.2] states that two standard
generators are conjugate if and only if they lie in the same odd component, and
this is why odd components will be relevant.

Remark 6.4 (Short HHG structure). In [HMS22], the authors produce a combina-
torial HHG structure (X, W) for Ar which, as noticed in [Man24], is a short HHG
structure. Here we point out some of its properties.

e Fix a representative vertex for every odd component, and let V' be the union
of such vertices. Let H be the collection of all cyclic subgroups generated
by either a standard generator s € V, or by the centre z,, of a standard
dihedral subgroup A, = {a,b), for every two I'-adjacent a,b. For every
H € H, let N(H) be its normaliser. Then X is a blowup of the commutation
graph Y, whose vertices are the cosets of the N(H), and two cosets g N (H)
and hIN(H') are adjacent if and only if gHg~! commutes with hH’h~!. By
[HMS22, Lemma 3.10], Y is connected if so is the defining graph T

e By construction, Y is bipartite, as two different conjugates of the standard
generators never commute, nor do two different conjugates of centres of
Dihedral subgroups. This gives an Ap-invariant colouring of Y.

e In [HMS22, Lemmas 2.27 and 2.28], the authors describe N(H) as follows:
it H = {a) then N(H) = C(a) is the centraliser of a, which is the di-
rect product of {a) and a finitely generated free group; if H = (2,4, then
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N(H) = Agp is the corresponding Dihedral subgroup, which is a central ex-
tension with kernel {z,;y and quotient a free product of two cyclic groups.

For the next definition, recall that a leaf of a simplicial graph is an edge with an
endpoint of valence one, which we call the tip of the leaf. A leaf in I is said to be
even or odd according to its edge label.

Definition 6.5 (Hanging component). A hanging component is an odd component
C which is a leaf of 'pc. A hanging component C' is broad if |C| > 1. A hanging
component is a needle if C = {v} is a single vertex, and v is a (necessarily even)
leaf of T'.

We devote the rest of the Section to the proof of the following:

Theorem 6.6. Let Ar be an Artin group of large and hyperbolic type, such that
every hanging component is either broad or a needle. Then every surjective homo-
morphism ¢: Ar — Ar is an isomorphism.

Outline of the proof. Firstly, it is enough to consider the case where I' is connected,
since a free product of (finitely many, finitely generated) Hopfian groups is Hopfian
by [DN70, Theorem 1.1]. Thus we are in the setting of Subsection 6, and Ar is a
short HHG. We can also assume that |[I'| > 3, as Z and Dihedral Artin groups are
known to be residually finite and therefore Hopfian. The proof is then split between
Propositions 6.11 to 6.15, depending on the number of odd components of I'. [

f c 4 8
4 3 3 4
p 8
8 6
d 3 e

FIGURE 8. There are three hanging components in this graph:
{d,e} is broad, {f} is a needle, and {g} is what we forbid in The-
orem 6.6.

6.1. Pruning leaves. Recall that, if p € T© is the tip of an even leaf, then
its centraliser is the Z2 subgroup generated by p and the centre of the Dihedral
Apg corresponding to the leaf (see e.g. [CMV23, Corollary 34]). In particular
C(p) < Apq, so the product region associated to p is somewhat redundant. This is
made clearer in the next Lemma.

Lemma 6.7. Let Ar be an Artin group of large hyperbolic type. Suppose that T’
is connected and has at least three vertices. There exists a short HHG structure
(Ar, X), where X is the full subgraph of the commutation graph whose vertices are
cosets of normalisers of
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e centres of standard Dihedral parabolics, or
e cyclic subgroups generated by standard generators which are not the tips of
even leaves.

Proof. Let Y be the commutation graph, let p be the tip of an even leaf {p,q}
of I'. For every g € Ar, the coset gN({p)) is only adjacent to gA,, in Y, and is
therefore a vertex of valence one of the commutation graph. Now let X be the full,
Ar-invariant subgraph of Y defined above, which is still triangle- and square-free,
as so is Y, and none of its connected components is a point.

Now, by Proposition 2.15, Apr admits squid materials with support graph Y, which
we can restrict to X by forgetting the data associated to the cosets gN ({(p)). It is
easily seen that the restriction gives squid materials for Ar, as all the requirements
of Definition 2.13 are already satisfied in the bigger graph Y. The only non-trivial
observation is that point (4) still holds. Indeed, Ar is weakly hyperbolic relative
to the collection

{Aab} {a,prerr YU {N(C)}eer© -
However N ({(p)) is contained inside A,,, so Ar is also weakly hyperbolic relative to

{Aab} {a,pyer@ Y {N(C)}eer© | Lip(c)>1-
Then Theorem 2.14 yields the required short HHG structure (Ar, X). g

6.2. Some properties to check. We now argue that the short structure (Ar, X)
defined above fits the framework of Subsection 5.4. For the rest of the Section, by
vertex stabiliser we will always mean the stabiliser of a vertex of X, with respect
to the action of Ar. Firstly, by inspection of vertex stabilisers, we see that cyclic
directions are central, Definition 5.9. Next, an easy observation, which we prove
for completeness:

Lemma 6.8. (Ar, X) has clean intersections, in the sense of Definition 5.11.

Proof. Let {v,w} be an edge of X. Up to the action of the group, we can assume
that v = Agp is a standard Dihedral and w = C(a) is the centraliser of a. To
prove that C'(a) N Agp = {a, z4p), it is enough to notice that (C'(a) N Agp)/{ay must
centralise the non-trivial projection of z4, to the free group C(a)/{a). O

Finally, we move to stability of product regions:
Lemma 6.9. (Ar, X) has stable product regions, in the sense of Definition 5.12.

Proof. Let H < Ar be a subgroup isomorphic to a Z-central extension of the form
1—- 27— H — K — 1, and suppose that H is virtually contained in Stab4,.(v) for
some v € X,

(1) First, we assume that K is infinite, and we want to show that Stab 4. (v) actually
contains H. Indeed, up to conjugation, Stab 4. (v) is either a standard Dihedral A,
or the centraliser C(a) of a standard generator a. In the first case, H is contained
in Stab . (v) because parabolics are root-closed by [CMV23, Theorem D]. In the
second case, any element h of H is contained in some subgroup H' of H isomorphic
to Z2, since Ar is torsion-free (parabolics being root-closed implies this), and H' has
a finite-index subgroup H{, contained in C(a). We have that H| needs to contain a
non-trivial power a* of a, for otherwise it would embed in the free group C(a)/{a).
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Since H' is Abelian, it is contained in the centraliser C(a*). By [Par97, Corollary
5.3], this coincides with C(a), so that H', whence h, is contained in C(a).

Now assume in addition that K is not virtually cyclic, so that Lemma 5.4 tells us
that Z is virtually contained in Z,,, and we claim that Z < Z,,. If Stab4,.(v) = C(a)
then Hy; = H/({a) n H) embeds in a free group and is not virtually cyclic (as
otherwise H would be virtually Z?). This means that H; must have trivial centre,
that is, Z must be contained in <{a). If instead Stab4.(v) = Agp, then [MV23,
Remark 3.6.(2)] tells us that a proper root of z4 has cyclic centraliser, and then
again we must have that Z < (zgp).

(2) Finally, suppose that K is finite, and we claim that there exist I € N, only
depending on T, such that H has an index-< I subgroup contained in Stabg(v).
Since parabolics are root-closed, it suffices to consider the case where Stab 4. (v) is
the centraliser of some standard generator a. As the ambient group Ar is torsion-
free, H must be infinite cyclic (see e.g. [Mac96, Lemma 3.2]). Therefore, we have
to show that, given an element g € Ar which has a power contained in C(a), then
g has in fact a uniform power contained in C(a). Let n € N.g be such that g"
is contained in C(a), which in turn means that a € C(g™). Notice that, if C(g")
coincides with C(g), then g € C(a) and we are done; so suppose that this is not
the case. Centralisers of elements of large-type Artin groups are analysed in detail
in [MV23, Section 3], see in particular [MV23, Remark 3.6]. An inspection of all
the various possibilities reveals that, if C(g") strictly contains C(g), then g lies
in a conjugate of a dihedral subgroup Ap., and g™ belongs to the centre of such
conjugate. For simplicity, we can assume that g is contained in Ay, as opposed to
a conjugate. We now argue that in this case C(g") = Ay, coincides with C(g?) for
some uniform I, which suffices for our purposes. We have that g maps to a torsion
element of Ap./Z(Ap:), which has bounded torsion as it is a free product of cyclic
groups. Therefore, a uniform power of g maps to the trivial element of Ap./Z(Apc),
that is, said uniform power is contained in the centre of Ap. and its centraliser is
Ay, as required. O

6.3. Proof of Theorem 6.6. We finally move to the core of the argument, which
we split into three subcases, according to whether I' has one, two, or at least three
odd components. We start with an observation.

Remark 6.10 (Abelianisation of an Artin group). Let Ar be an Artin group.
The abelianisation A% of Ar is the free Abelian group with one generator for
every odd component, and the abelianisation map sends each standard generator
to its component. In particular, both standard generators and centres of Dihedrals
have non-trivial image in the abelianisation, so Lemma 5.16 implies that, for every
epimorphism ¢: Ar — Ar, their ¢-images must have infinite order.

Now, let P be a vertex stabiliser, and we look at its image inside A%". If P is
conjugated to a standard Dihedral subgroup Ap., then its image has rank 1 if b
and c¢ are in the same odd component, and 2 otherwise. If instead P is conjugated
to the centraliser C(a) of some standard generator, then the rank of C'(a) in the
abelianisation is

e 2 if a belongs to a hanging component;

e at least 3 otherwise.
This is because C(a) contains some conjugate of zp. for every dihedral Ap. where b
is in the same odd component as a and c is not.
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6.3.1. One odd component.

Proposition 6.11. Let Ar be a large Artin group of hyperbolic type. Assume
further that T is a connected graph on at least three vertices, and has a single odd
component. Then Ar is Hopfian.

Proof. Let ¢ be an epimorphism, and let gy € ker ¢ — {1}. Our goal is to produce
a Hopfian quotient A, — G where the image of go is non-trivial, and such that ¢
induces a map on G. Then we will conclude by Lemma 5.3. The crucial feature of
this case is that all standard generators are conjugate. This means that, given any
a € T removing the class of @ makes the product region graph PR(A,) discrete.
Since ¢™(a) has infinite order for every n € N, ¢™(C(a)) is a Z-central extension,
say with base B,,. There are three possibilities, A, B, and C below, depending
on the isomorphism type of B,,. The second scenario is furthermore split into two
possibilities, B1 and B2.

A. Suppose first that B,, is always non-elementary. In this case C(a) is always
restrained with respect to ¢, and by Remark 5.15 we get a Hopfian quotient G
satisfying the requirements.

B1. Suppose now that B, is definitely virtually cyclic. By Lemma 6.9, ¢™(C/(a))
must be contained in some P = Stabg(v). If ¢"(C(a)) is always virtually contained
in an edge group then C(a) is always restrained, and we conclude as above. Oth-
erwise, up to replacing ¢ by an iterated, assume that ¢(C(a)) is virtually Z? but is
not contained in an edge group, so there exists a unique P containing ¢(C(a)).

Suppose first that P is conjugate to C(a). Up to composition with an inner
automorphism, we can actually assume that H = ¢(C(a)) € C(a). We have
¢(H) < ¢(C(a)) < H. For ¢ = ¢|y: H —» H and Hy a finite-index subgroup of
H isomorphic to Z* let Hy = (\;50% "(Ho). It is readily checked that H is 4-
invariant, whence ¢-invariant. We claim that H; is a finite-index subgroup of Hy,
which in turn implies that H; is isomorphic to Z2. This is because the index of each
¥~ (Hyp) in H is at most the index of Hy in H, and since there are only finitely many
subgroups of H of index bounded by a given constant, the intersection defining H;
is actually equal to a finite intersection of finite-index subgroups. Furthermore,
H needs to contain a non-trivial power a® (for otherwise it would embed in the
hyperbolic group C(a)/{a)); pick k > 0 minimal. We can find g such that {g,a"}
is a basis of H; = Z?. By [Man24, Proposition 4.5], there exist p € N+, q € Z and
a short HHG structure in which ¢’ == gPa? spans a cyclic direction. Furthermore,
by [Man24, Remark 4.6] we can in fact assume that ¢ = 0, as all virtually cyclic
subgroups of the free group C(a)/{a) are cyclic.

We have that ¢g*P lies in H;, and together with ak’? it generates kpH;. Since
¢(Hy) < Hy we have that ¢(((gM*», aM¥Pyy) < ((gMkP aMF*PY) for any integer
M. By Theorem 4.1, for a suitable M the quotient G := AF/<<ngp,aMk2p>> is a
colourable short HHG, where the image of go is non-trivial. Moreover, as PR(G)
is obtained by removing the class of a from PR(Ar), G is Hopfian by Lemma 5.10,
so G satisfies the requirements.

B2. In the same setting as above, suppose now that ¢(C(a)) is conjugate into a
(unique) Dihedral parabolic P. Up to conjugation, we can assume that P = A,
for some I'-adjacent generators b, c. We now argue that ¢(Ar) is contained in Ay,
thus contradicting the surjectivity of ¢. Say that C(a) is the stabiliser of the vertex
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v € X. For any vertex w of X adjacent to v we have that P, = Staba.(w) is a
conjugate of a dihedral group, and the centraliser of a generator z,, of its centre.
Since z,, has infinite-order image in the abelianisation, it maps under ¢ to a non-
trivial element of Ap..

Notice that ¢(z,) is not a power of either b or c. If this was not true, say without
loss of generality that ¢(z,,) = b* for some non-trivial k € Z. Then ¢(a) would lie
in the centraliser of b* inside Ay, which is the edge group <{b, zp.). If ¢(a”) € {b)
for some r = 0, then the whole ¢(C(a)) would lie in (b, zpc), as every element of
#(C(a)) must centralise ¢(a). If instead ¢(a) ¢ (b), then ($(a), ¢(zw)) = Z* would
coarsely coincide with ¢(C(a)). In both cases, one would contradict the fact that
#(C(a)) is not virtually contained in an edge group. As ¢(z,) is not a power of
either b or ¢, by [MV23, Remark 3.6]) its centraliser is entirely contained in Ape.
Hence ¢(P,,), which centralises ¢(z,,), is contained in Ap..

Now, given a vertex v’ of X adjacent to w, P, = Stabg(v') contains z,, so ¢(P,)
contains a point in A,. which is not a power of either b or ¢. Moreover, P, is a
conjugate of C'(a), and as such its image must be contained in a conjugate of Ap..
As the intersection of Ap. and one of its conjugates is either trivial, the whole Ay,
or coincides with either (b) or {c¢), we must have that in fact ¢(P,) is contained
in Ap.. We can then proceed inductively on the distance in X from a, and as the
support graph X is connected (see Subsection 6) we eventually get that ¢ maps
every vertex stabiliser @) into Ay, as required.

C. Suppose finally that B, is definitely finite. Up to replacing ¢ by a power, we
can assume that ¢(C(a)) is virtually infinite cyclic. We first claim that, for every
two [-adjacent vertices ¢ and d, ¢(a) and ¢(z.q) have a non-trivial common power.
Indeed, first consider b € Lk, (a). The fact that ¢(C(a)) is virtually Z ensures that
¢(a) and ¢(zep) have a non-trivial common power. In turn, as ¢(C(b)) is conjugated
to ¢(C(a)) and contains ¢(zqp), the same must hold for ¢(b) and ¢(z4p). Iterating
this procedure, we eventually get that, for each z.q4, there exist N.q, M4 such that
d(2Net) = p(aMea), that is, ¢(z*a=Mea) = 1. We can in fact take multiples to
ensure that all M.q4 coincide, say M.y = M. For Nxg = <<z§iN”da_KM>> we have
d(Nk) < Nk, so ¢ induces a homomorphism of A(K) = Ar/Nk. We claim that
we can choose K so that A(K) is a Z-central extension of a hyperbolic group (hence
Hopfian by Theorem 5.6) and the image of go in it is non-trivial. If this is true then
G = A(K) satisfies all requirements.

In order to do so, we consider the auxiliary group A’(K) = Ar/{Nx,a¥). Since
N, My = (BN oKMYy by Theorem 4.1, for suitable values of K, A’(K) is
an HHG; furthermore, from the description of its structure, it is clear that A’(K)
has bounded orthogonality, and is therefore a hyperbolic group by e.g. [BHS21,
Corollary 2.14]. We can further arrange that the image of gy is non-trivial in
A'(K), and therefore also in its extension A(K). We are left to prove that the
natural projection A(K) — A’(K) is a Z-central extension. By construction, the
kernel is normally generated by the image of a®* in A(K), so in turn it suffices
to prove that said image commutes with a generating set of A(K). The reason for
this is that A(K) is obtained from Ar by imposing the relations zglNCd = afM,
As z.q commutes with ¢, the relations make a®* commute with all the standard
generators, as required. O



SHORT HHG II 47

6.3.2. At least three odd components. We consider now the general case, postponing
the study of Artin groups with two odd components as it is more involved and reuses
some techniques from this paragraph.

Proposition 6.12. Let Ar be a large Artin group of hyperbolic type, where T is
a connected graph on at least three vertices. Suppose that I' has at least three odd
components, and every hanging component is either broad or a needle. Then Ar is
Hopfian.

Proof. As usual, given an epimorphism ¢, we want to find a collection of always
restrained vertex stabilisers whose removal makes PG(Ar, X) discrete, and then
conclude by Lemma 5.14. Let (1, ..., Cy be the hanging components of I', and let

Tcore be the subgraph of I' spanned by all other odd components.

In view of Remark 6.10, if P is a vertex stabiliser for the action on X, then its
image in the abelianisation of Ar has rank at least 3 if and only if P is conjugated
to C(a) for some a € T¢ype. For any such P, ¢(P) must be a Z-central extension of
a non-elementary hyperbolic group, as its projection to A%’ must have rank at least
3; moreover ¢(P) < @ for some stabiliser ), and the projection of @ to A% must
have rank at least 3 as well. This, together with stability of product regions, implies

that, for every a € Fﬁﬂle, ¢(a) is conjugated into {b) for some b € Fﬁ?re. Notice that

the above argument also tells us that C(a) is always restrained for every a € Fg?,)m.

Now consider the retraction
r=Ar - Ac, *...* Ac,,

defined by mapping every generator in I'¢... to the identity and all other generators
to themselves. This map is well-defined, because any edge connecting I'.oe to any
hanging component is even; furthermore, ¢ induces a self-epimorphism ¢ of the
quotient, because ker(r) is normally generated by FE?),E. Notice that, by Proposi-
tion 6.11 plus the aforementioned [DN70, Theorem 1.1], the quotient is Hopfian, so
¢ is an isomorphism. Now, 7 is injective on every Dihedral Ay, where b and ¢ belong
to the same hanging component, thus ¢(A.) must be a Z-central extension of a
non-elementary hyperbolic group because its r-projection 7(¢(Ap.)) = ¢(r(Ape)) is
again isomorphic to Ap.. As this argument works for every iterate of ¢, we get that
every Dihedral in a hanging component is always restrained.

At this point, removing centralisers of core vertices and Dihedrals contained in
hanging components is still not enough to make the product region graph discrete,
so we need to find more always restrained stabilisers. By inspection of PR(Ar, X),

it is enough to prove the following:

Claim 6.13. Let a,b,c € IO be such that a € FE?,)M, b,c are adjacent vertices in
the same hanging component, and a is adjacent to b. Then Aqyp is always restrained.

Proof of Claim 6.13. By contradiction, up to passing to an iterated of ¢, assume
that ¢(Agp) is virtually Z? and is not contained in an edge group (notice that ¢(Aqup)
cannot be virtually cyclic, as the image of A, in the abelianisation is isomorphic
to Z?). By stability of product regions, there exists some vertex stabiliser P,
say with centre generated by 2, such that ¢(As) < P. Since we already know
that ¢(a) is contained in the centre of some vertex stabiliser, we must have that
¢(a) € (z). Moreover, ¢(b) cannot belong to any edge group E < P, as otherwise
d(Aap) = {P(a), (b)) < E as well. Thus ¢(ze), which commutes with ¢(b) and is
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contained in a centre, must belong to {(z). This contradicts the fact that a and z.
are non-commensurable in the abelianisation, so their ¢-images cannot lie in the
same cyclic subgroup. O

The proof of Proposition 6.12 is now done. (I

6.3.3. Two odd components. We finally move to the case where I' has two odd
components, which are therefore both hanging components. According to their
shapes, we split the Proposition into two sub-lemmas.

Proposition 6.14. Let Ar be a large Artin group of hyperbolic type, where I is a
connected graph on at least three vertices. Suppose that I' has two odd components,
one of which is a needle. Then Ar is Hopfian.

Proof. Pick a self-epimorphism ¢, and let go € ker ¢ — {1}. Again, the goal is to
find a quotient A, — G satisfying the requirements of Lemma 5.3. Let C and C’
be the two odd components, and assume without loss of generality that |C| > 1.
As C' is a needle, the only vertex of C’, call it b, is adjacent to a unique vertex
a € C. Now, if C(a) is always restrained, then Lemma 5.14 produces a Hopfian
quotient with the required properties (notice that, as b is a leaf, its centraliser is
not a vertex of X, so removing C(a) makes PR(Ar, X) discrete).

Thus suppose that C'(a) is not always restrained. Up to replacing ¢ with a power, we
can assume that ¢(C(a)) is virtually Z? but not contained in an edge group (notice
that ¢(C(a)) cannot be virtually cyclic, as the image of C'(a) in the abelianisation
is isomorphic to Z2). By stability of product regions, ¢(C(a)) must be contained
in a unique vertex stabiliser P. Furthermore, we claim that the whole component
C' is mapped inside P. Indeed, let a’ € C be connected to a by an odd edge. Then
#(Aqe) < P, as it must centralise ¢(z,,) which lies in a non-edge Z? subgroup
of P. But then, since a is conjugated to a’ by an element of A,., we get that
#(C(a’)) < P as well, and it is again a virtually Z? subgroup not contained in any
edge group. As C is an odd component, any two vertices are connected by a path
with odd labels, so we get that ¢(a”) € P for every a” € C.

Similarly, notice that ¢(Ay) < P as well, as it must be contained in the cen-
traliser of ¢(zq4) < ¢(C(a)). But this violates surjectivity, as then ¢(Ar) is totally
contained in P. O

Proposition 6.15. Let Ar be a large Artin group of hyperbolic type, where I' is a
connected graph on at least three vertices. Suppose that T' has two odd components,
which are both broad. Then Ar is Hopfian.

Proof. Let C = {ay,...,a;} and C' = {by,...,b.} be the odd components, let ¢
be an epimorphism, and let gg € ker ¢ — {1}. Again, if both C(a;) and C(b;) are
always restrained, then we can invoke Remark 5.15 and conclude. So suppose that
C(aq) is not always restrained, so there exists a vertex stabiliser P, say with centre
generated by z, such that ¢(C(ay)) is a virtually Z? subgroup of P not contained
in any edge group. Arguing as in Proposition 6.14, one gets that ¢(C) < P, and
¢(Aap;) < P for every 4, j such that a; and b; are joined by an even edge. We now
consider three scenarios, A, B, and C, depending on the shape of ¢(C'(b1)).

A. Suppose first that ¢(C(b1)) is a Z-central extension of a non-elementary hy-
perbolic group, so b; must be sent inside some centre. As standard generators
have primitive image in the abelianisation while centres of dihedrals do not, we can
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assume up to conjugation that ¢(b1) = by or ¢(b1) = ay. In the former case, ¢
preserves the normal closure of C’, so it induces a self-map ¢ of the quotient Ac,
obtained by retracting onto C. Then one can run the proof of Proposition 6.12
verbatim, to get that Ar has “enough” always restrained vertex stabilisers.

In the latter case, ¢?(C(b1)) < ¢(C(ay)) < P. It now matters what P is, taking
into account that it cannot be an odd dihedral as ¢(C(a;)) must map to Z? in the
abelianisation. If P is a conjugate of C(b;) then we can argue as above, with ¢?
replacing ¢. If instead P is conjugated to Q € {C(a1), Aq;p,}, up to composing ¢
with a conjugation we can assume that P = @, and in particular ¢(P) < P. Then
we have that:

o $°(C) < 9(P) < Py

o ¢?(C") < P, because ¢?(C(b1)) < ¢(C(ay)) is contained in a Z? subgroup

which is not an edge group.

Hence ¢?(Ar) < P, violating surjectivity.

B. Suppose now that ¢(C(by)) is virtually Z2, but not contained in an edge
group. Since ¢(C(by)) contains ¢(z4,p, ), which belongs to the non-edge Z? sub-
group ¢(C(a1)) of P, we must have that ¢(C(b1)) < P. Then again, using that
@(C(b1)) is not contained in an edge group, we get that ¢(C’) < P, which combined
with ¢(C) < P violates surjectivity.

C. Suppose finally that ¢(C(b1)) is a finite-index subgroup of an edge group. As
above, since ¢(C(by)) contains ¢(zq,p,) we must have that ¢(C(b1)) < P. We now
consider the possible conjugacy types of P.

e Suppose first that P is conjugated to C(a1), and up to composing ¢ with
an inner automorphism we can indeed assume that P = C(ay). Then
¢*(C(b)) < ¢(C(a)) < P is a non-edge, virtually Z? subgroup, and again
this implies that ¢(C”") < P, contradicting surjectivity.

e Suppose now that P is conjugated to some dihedral, which must be of the
form Aq,5, (again because any other dihedral has cyclic image in A%?). Pick
by € C" which is connected to b; by an odd edge. Then ¢(zp,p,) € P, and as
parabolics are root closed we must have that ¢(b1b2) € P. Hence ¢(C(b2)),
which is obtained by conjugating ¢(C(b1)) by ¢(b1b2), is also nested in the
subgroup P. Proceeding this way, we eventually get that ¢(C’) < P, and
once more ¢ could not be surjective.

e The only case left is when P is conjugated to C(b;), and again we can
indeed assume that P = C(b;) up to composing ¢ with a conjugation. Say

C(by) = Stabg(v) for some v € X9, As ¢(C(b1)) lies in some edge group,
there must be some w € Lk (v) such that, if we set @) = Stabg(w), then
#(C(b1)) < C(by) N Q. Since X is bipartite, @ must be conjugated to a
dihedral, so the same trick as above shows that ¢(C") < Q. If we show that
6(Q) < C(by) then ¢3(C") < C(by), and ¢*(C) < H(C(br)) < C(by). This
would then again contradict surjectivity.

To prove that ¢(Q) < C(by), we first notice that the image of @ in the
abelianisation must have rank 2, or it could not contain ¢(C(b1)); hence
there exists 7, j such that @ is conjugated to A,p,. In turn, since ¢(Aq,p;) <
C(by), there must be some P’, which is a conjugate of C(b1), such that
#(Q) < P'. But ¢(Q) contains ¢?(C(by)), which is virtually Z? and lies
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inside ¢(C(b1)) < C(by). As X is bipartite, any two different conjugates
of C(by) intersect along a virtually cyclic subgroup, so we must have that
P' = C(by1), as required.

This concludes the proof of Proposition 6.15, and in turn of Theorem 6.6. (]

6.4. Comments and previous results.

Remark 6.16 (Generic Artin groups are Hopfian). In [GV23], Goldsborough and
Vaskou devised a model of random Artin groups, where, given a complete graph
on n vertices, each edge label is chosen with uniform probability from the set
{0,2,..., f(n)}, for some non-decreasing divergent function f: N — N. A property
of Artin groups is generic if there exists a function fy: N — N such that, for every
choice of function f > fy, the property holds with probability approaching 1 as
n — 400. In the same paper, the authors prove that the class of extra-large Artin
groups is generic. Moreover, let p(n) = e(n)/f(n), where e(n) is the cardinality of
odd numbers in the set {00,2,..., f(n)}. For any choice of f, the probability that a
random Artin group has a single odd component is the same as the probability that
a random (unlabelled) graph on n vertices, where each edge exists with probability
p(n), is connected. Such probability is known to approach 1 as n — +00 (see e.g.
[ER61]); hence, as our Theorem 6.6 applies to XL Artin groups with a single odd
component, we get that a generic Artin group is Hopfian, thus proving Corollary C
from the Introduction.

Remark 6.17 (Other generic classes). In [BMV24], Blufstein, Martin, and Vaskou
established the Hopf property for large hyperbolic type Artin groups which are
either free-of-infinity (the defining graph is complete) or XXXL (all edge labels are
at least 6). Both classes are generic, in the sense of Remark 6.16. Figure 9 provides
examples of Artin groups covered by our result, by theirs, and by none of them.
We stress that the techniques from [BMV24] are very different from ours, as they
involve a full description of all homomorphisms between groups in their families;
this also allows them to determine when such groups are co-Hopfian (every injective
homomorphism is an isomorphism).

6 5 4
7 6 7 7 |6 7 Z e
7 7 7

FI1GURE 9. From left to right, an Artin group which is Hopfian by
[BMV24] (it is XXXL), an Artin group which is Hopfian by our
Theorem 6.6 (it has a single odd component), and an Artin group
which is not covered by either methods. Notice that none of these

Artin groups is known to be residually finite (see Remark 6.19
below).

Remark 6.18 (Explicit residual hyperbolicity). As a special case of Corollary 4.25,
if all hyperbolic groups are residually finite, then every Artin group Ar of large and
hyperbolic type is residually finite, hence Hopfian. On the one hand, it is common
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belief that there exists a non-residually finite hyperbolic group. On the other,
the proof of Corollary 4.24 shows that it would suffice that “enough” hyperbolic
quotients of Ar are residually finite, namely those with the following presentation,
for a suitable choice of N:

<I‘(O) |Vee o, V{a,b} € E, prod(a,b, ma) = prod(b,a,ma), ¢ = (ab)™=oN = 1),
An intermediate quotient, falling in the family of Shephard groups, is the following;:
S = <F(0) | Vee o, V{a,b} € E, prod(a,b, ma) = prod(b,a,mgy), ¢V = 1).

The latter groups were studied in [?], where the author proved that, if " is triangle-
free and large type, then S is residually finite for all large enough N (see [?,
Corollary F]). In turn, this is used in [?, Theorem G] to prove that the corresponding
Artin group Ar is residually finite (notice that this now follows easily from the fact
that every g € Ar survives in some S&, as a consequence of Corollary 4.24).

Remark 6.19 (Overview on residual finiteness for Artin groups). Few classes of
Artin groups are known to be residually finite, among which:

e Artin groups whose defining graph is triangle-free and contains no square
whose edge labels are all 2 (this is the full statement of the aforementioned
[?, Theorem GJ);

e even Artin groups of FC type (including RAAGs, see [BGMPP19));

e spherical Artin groups (because they are linear, by e.g. [CW02] or [Dig03));

e certain 2-dimensional Artin groups, including most Artin groups on three
generators and even XXXL Artin groups on graphs admitting a “partial
orientation” (see [Jan22]);

o ‘“forests” of residually finite parabolic subgroups (see [?] for details).

Remarkably, none of the above families is generic in the sense of [GV23].

Remark 6.20 (Equational Noetherianity?). Barak [Bar24] recently established
that, if G is a colourable, strictly acylindrical HHG, then G is equationally Noe-
therian, hence Hopfian by e.g. [GH19, Corollary 3.14 and Theorem D]. For our
purposes, the only consequence of strict acylindricity to keep in mind is that, for
every U € G, its stabiliser acts acylindrically on CU, as a corollary of [?, Theorem
6.3]; in particular, if CU is unbounded, then Stabg(U) is either virtually cyclic or
acylindrically hyperbolic.

In our setting, it is clear that an Artin group Ar of large and hyperbolic type is
colourable, as it is colourable as a short HHG. However, if I" has at least one edge,
then the short HHG structure is not strictly acylindrical, as the centraliser of a
vertex has infinite centre and is therefore not acylindrically hyperbolic.

7. QUOTIENTS OF THE FIVE-HOLED SPHERE MAPPING CLASS GROUP

Let S = Sp 5 be a five-punctured sphere, and let MCG* (S) be its extended mapping
class group, which is a short HHG as pointed out in [Man24, Subsection 2.3.1].
Our last theorem proves that almost every way of adding finitely many relations to
MC’Qi(S) results in a hierarchically hyperbolic group, up to stabilising by taking
sufficient powers of the relators. This provides an almost complete answer to [MS23,
Question 3], in the case of a five-punctured sphere.

We first need a definition to clarify the class of quotients that our result encom-
passes.
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Definition 7.1. Let G be a short HHG. An element g € G has no hidden symme-

tries if g stabilises some vertex v € Y(O), the image g € Stabg(v)/Z, has infinite
order, and every virtually cyclic subgroup containing g is cyclic.

Example 7.2. Let v be a curve on S = Sy 5, let a, 8 be disjoint from ~, and let
Ta,Tg, T~ be the associated Dehn twists. Let Y be the connected component of S —v
which is homeomorphic to Sp 4, let p be the puncture of Y coming from -, and let ¢
be the puncture which is separated from p by both a and 5. For example, by [FM12,
Proposition 3.19], the quotient Stabycgt (s)(7)/{7) is an index two overgroup of
MCGH (Y, {p}), that is, the subgroup of MCGT (V) spanned by all elements that
fix the puncture p. Let i € MCG* (Y, {p}) be an orientation-preserving involution
that swaps « and § (for example, ¢ could be a rotation of angle 7 around the axis
passing through p and ¢). We now claim that the element g = TaTg ! has a hidden
symmetry. In fact, igi™! = 757, = g}, s0 (g,iy = Z x Z/2Z is virtually Z but
not cyclic. This example should make the terminology clearer, as an axis for g is
“flipped” by the conjugation by 1.

Theorem 7.3. Let S = Sy, and let g1,...,9; € MCG*(S). Suppose that, for
all i, if g; is a partial pseudo-Anosov then it has no hidden symmetries. Then
there exists N € N — {0} such that, for all K1,...,K; € Z — {0}, we have that
MCG*H(S) [ gE N VY is hierarchically hyperbolic.

Proof. Given gi1,...,q; € ./\/ngir(S)7 it suffices to prove the statement replacing
each g; with gX for some K # 0. Therefore, as a consequence of Nielsen-Thurston
classification (see [FM12, Corollary 13.3]), up to conjugation we can assume that
each g; is of one of the following types:

(1) A power of the Dehn twist 7, around a fixed curve ~;

(2) A power of a multitwist with associated multicurve {v, 8}, for a fixed curve
8 which is disjoint from ~;

(3) A partial pseudo-Anosov without hidden symmetries, supported on the
unique component Y of § — v which is homeomorphic to Sp 4;

(4) A pseudo-Anosov.

In particular, every g; has infinite order. Up to taking further powers, we can make
the following modifications to the collection of elements under consideration:

e Suppose that two elements are commensurable up to conjugation, say for
simplicity of notation ¢g; and go. Then, up to taking a common power of
all the elements in our collection, we can find g € G and integers a, b such
that g; = ¢® and go is conjugate to g°. We can then replace g; and go
with g9¢4(@)  without changing the subgroup normally generated by the
collection.

e Similarly, another configuration that we would like to “simplify” is where
two elements of type (3) have commensurable images in Y, say again that
the two elements are g1 and go. Up to taking powers of all elements, and
replacing go with a conjugate, this means that there exists g € G of type
(3) such that g; = g% and g2 = ngi, for some integers a, b, c. The subgroup
{91, g2y coincides with (77, g°7!) for some integers 7, s, t, since any subgroup
of Z? = (., gy is of that form. We can then replace g1, g» with 7 and g7t
and then possibly repeat the procedure in the previous bullet if the new
collection contains commensurable elements.
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Now, assume first that there are no elements of type (2). By [Man24, Proposi-
tion 4.3], there exists a colourable short HHG structure for MCG *(S) where every
g; of type (4) generates a cyclic direction, up to taking a suitable power. Further-
more, by [Man24, Proposition 4.5], we can also assume that every element of type
(3) has a power that generates a cyclic direction. This is because, whenever g; is
a partial pseudo-Anosov, every virtually cyclic subgroup containing the restriction
of g; to the interior of Y is cyclic, as g; has no hidden symmetries; so we are in the
context of [Man24, Remark 4.6]. Then Theorem 4.1 ensures that we can find some
integer N > 0 such that MCGT(S)/{{{gX*"})) is a short HHG, and in particular
hierarchically hyperbolic.

We now assume that there are elements of type (2), say ¢1 = T,‘Y’Tﬁb, for some non-
zero integers a,b. As any two elements of type (2) are commensurable, we can in
fact assume that g; is the only element of type (2).

Consider some choice of integers N # 0 and K;. If some element, say go, is of the
form 7, set d = ged(aKy,bK1,cKy), and set d = ged(aKy,bK;) otherwise. Since

75 is conjugate to 7, we have that N = ((g" F*)) < <<T$N7géVK2, g BB Let
G and Gy be the quotients of MCG*(S) by the first and second group respectively,
so that, similarly to above, G5 is a short HHG if we choose N suitably. In fact, G
is hyperbolic because we modded out all cyclic directions. Also, by the inclusion
of kernels, we have a surjective homomorphism ¢: G; — Go, and the kernel is

normally generated by the image 7 of T,CYlN in Gy.

We claim that 7 is a central element of GG;. To see this, using that all Dehn twists

are conjugate (in the mapping class groups of Sp 4, as well as of Sp5), we first

dN _d’

notice that there exists an integer d’ such that A contains Ty T4 5 for any curve

a disjoint from «. In terms of Gy, this implies that 7 coincides with the image of
dl

7, %, and in particular 7 commutes with the image of the half-twist around a or

any curve disjoint from «. Varying «, the images of said half-twists generate G1, so
that 7 commutes with a generating set of G1, and is therefore central. Hence G is
a central extension of a hyperbolic group, and therefore it is a HHG by [HRSS23,

Corollary 4.3], as required. O
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