Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography

Involutions on Zilber fields

Vincenzo Mantova

Scuola Normale Superiore di Pisa

Logic Colloquium Barcelona – July 12th, 2011

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0		00	0	O	0
Outline					

1 Exponential fields

2 Axiomatizations and Schanuel's Conjecture

- **3** Automorphisms and topologies
- **4** Very few details

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
●		00	0	O	○
Exponential	fields				

Definition

An exponential field, or E-field, is a structure

 $(K, 0, 1, +, \cdot, E)$

where $(K, 0, 1, +, \cdot)$ is a field, and the following equation holds

 $E(x+y)=E(x)\cdot E(y).$

- \mathbb{C}_{exp} (undecidable, interprets Peano's Arithmetic).

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0	•00	00	0	0	○
Schanuel's	Conjecture				

A special role in the model-theoretic study is played by a long standing conjecture in transcendental number theory.

Conjecture (Schanuel)

For any $z_1, \ldots, z_n \in \mathbb{C}$ linearly independent over \mathbb{Q} ,

$$\operatorname{tr.deg.}_{\mathbb{Q}}(z_1,\ldots,z_n,e^{z_1},\ldots,e^{z_n}) \geq n.$$

If Schanuel's Conjecture holds at least for $z_1, \ldots, z_n \in \mathbb{R}$, then the first order theory of $\mathbb{R}_{e\times p}$ is decidable [1].

On the other hand, \mathbb{C}_{exp} defines $(\mathbb{Z}, +, \cdot)$, hence it is always undecidable. First order theory may not be sufficient.

Zilber looked for (uncountably) categorical axioms in $\mathcal{L}_{\omega_1,\omega}(Q)$.

Properties of \mathbb{C}_{exp} :

 $(\mathsf{ACF}_0\)\ \mathbb{C}$ is an algebraically closed field of characteristic 0.

(E) exp is a homomorphism exp : $(\mathbb{C}, +) \to (\mathbb{C}^{\times}, \cdot)$.

(LOG) exp is surjective.

(STD) ker(exp) = $2\pi i\mathbb{Z}$ (needs $\mathcal{L}_{\omega_1,\omega}$).

Conjectures on \mathbb{C}_{exp} : (SP) tr.deg. $_{\mathbb{Q}}(\overline{z}, exp(\overline{z})) \ge \text{lin.d.}_{\mathbb{Q}}(\overline{z})$ (Schanuel's Property).

(SEC) every "rotund" variety contains a generic solution $(\overline{z}, \exp(\overline{z}))$.

Another property of \mathbb{C}_{exp} :

(CCP) every "rotund" variety of "depth 0" contains at most countably many generic solutions $(\overline{z}, \exp(\overline{z}))$ (needs Q).

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0	00●	00	0	O	0
Zilber's cate	egoricity resi	ult			

Theorem (Zilber, 2005 [2])

The axioms are uncountably categorical.

We call "Zilber field", or \mathbb{B}_E , the unique model of cardinality 2^{\aleph_0} .

The conjecture becomes the following.

Conjecture (Zilber, 2005 [2])

 \mathbb{C}_{exp} is isomorphic to \mathbb{B}_{E} .

Involutions on Zilber fields

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0		●0	0	0	0
Automorphi	sms				

Definition

An *involution* of K_E is an automorphism $\sigma : K_E \to K_E$ s.t. $\sigma^2 = \text{Id.}$

 $\mathbb{C}_{\mathsf{exp}}$ has one involution, complex conjugation.

- It is the unique known automorphism of \mathbb{C}_{exp} .
- exp is continuous in the induced topology.
- exp is the unique continuous exponential (up to constants).

If $\mathbb{B}_E \cong \mathbb{C}_{exp}$, \mathbb{B}_E would have an involution as well.

Theorem (M., 2011)

1 There is an involution σ on \mathbb{B}_E (such that $\mathbb{B}^{\sigma} \cong \mathbb{R}$).

2 There are $2^{2^{\aleph_0}}$ non-conjugate involutions on \mathbb{B}_E .

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0		⊙●	0	O	0
Problems in	our proof				

Unfortunately, what we found is different from complex conjugation.

- the solutions $(\overline{z}, E(\overline{z}))$ of rotund varieties are *dense*;
- hence, E is not continuous;
- moreover, the restriction E_{iB^σ} is not increasing.

This is also in contrast with the fact that on $\mathbb{C}_{e\times p}$ the solutions $(\overline{z}, e\times p(\overline{z}))$ of rotund varieties of "depth 0" are isolated.

Remark. We are not refuting Zilber's conjecture: *other* involutions can still be such that E is continuous.

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0		00	●	O	0
The constru	uction				

We start from K and $\sigma: K \to K$, and we build E. For instance, $K = \mathbb{C}$ and σ the complex conjugation.

For any *E*, we know that $\sigma \circ E = E \circ \sigma$ if and only if

1
$$E(\mathbb{R}) \subset \mathbb{R}_{>0};$$

2
$$E(i\mathbb{R}) \subset \mathbb{S}^1(\mathbb{C}).$$

Hence, we build E on \mathbb{C} by 'back-and-forth', while respecting the restrictions **1**, **2**. We can easily obtain an E satisfying all of the axioms except (CCP).

In order to build E with (CCP), we add dense sets of solutions to rotund varieties (destroying continuity).

Exponential fields 0	Axiomatizations	Automorphisms	Details 0	Summary ●	Bibliography 0
Summary					

Zilber produced a sentence ψ in $\mathcal{L}_{\omega_1,\omega}(Q)$ which is uncountably categorical, and conjecturally an axiomatization of \mathbb{C}_{exp} . Its unique model in cardinality 2^{\aleph_0} is called \mathbb{B}_E .

Looking for an analogue of complex conjugation, we found that

- There are $2^{2^{\aleph_0}}$ involutions on \mathbb{B}_E .
- One of them is such that $\mathbb{B}^{\sigma} \cong \mathbb{R}$.
- However, E is not continuous w.r.t. them.

Thanks for your attention!

Exponential fields	Axiomatizations	Automorphisms	Details	Summary	Bibliography
0		00	0	O	●
Bibliography	/				

Angus Macintyre and A. J. Wilkie. On the decidability of the real exponential field. In *Kreiseliana*, pages 441–467. A K Peters, Wellesley, MA, 1996.

Boris Zilber.

Pseudo-exponentiation on algebraically closed fields of characteristic zero.

Annals of Pure and Applied Logic, 132(1):67-95, 2005. doi:10.1016/j.apal.2004.07.001.

