Surreal numbers, derivations and transseries

Vincenzo Mantova
Joint work with A. Berarducci
Scuola Normale Superiore, Pisa
Torino - 20 March 2015

Outline

(1) Surreal numbers
(2) Hardy fields and transseries
(3) Surreal derivations

Conway's games

A Game is a pair $L \mid R$ where L, R are (w.f.) sets of Games and
(1) L are the legal moves for Left (called left options);
(2) R are the legal moves for Right (called right options).

Go, chess, checkers can be interpreted as Games. ${ }^{1}$

Conway defined a partial order and a sum on Games.

He then noticed that some games behave as numbers.
I will omit the details of "numbers as Games" and directly jump to a more concrete description.

[^0]
Surreal numbers as strings

A surreal number $x \in$ No is a string of,+- of ordinal length.

Go on for all ordinals: $\omega:="+++\ldots ", \frac{1}{\omega}:="+--\ldots ", \ldots$ We get $\mathbf{O n} \subset \mathbf{N o}$, with $\alpha=\underbrace{+++\ldots}$ α times

Definition. x is simpler than y, or $x<_{s} y$, if x is a prefix of y.

Sum

Definition. Given L, R sets of numbers such that $L<R$, we say $x=L \mid R$ when x is simplest such that $L<x<R$.

For instance: $1=\{0\}|\{ \}, 2=\{0,1\}|\{ \}, \left.\frac{1}{2}=\{0\} \right\rvert\,\{1\} \ldots$
Note. For any $x \in$ No, we can write $x=L \mid R$ where $L \cup R$ is the set of the numbers strictly simpler than x.

Definition. If $x=\left\{x^{\prime}\right\}\left|\left\{x^{\prime \prime}\right\}, y=\left\{y^{\prime}\right\}\right|\left\{y^{\prime \prime}\right\}$, then their sum is

$$
x+y:=\left\{x^{\prime}+y, x+y^{\prime}\right\} \mid\left\{x^{\prime \prime}+y, x+y^{\prime \prime}\right\} .
$$

(Idea: we want $\left(x^{\prime}+y\right)<(x+y)<\left(x^{\prime \prime}+y\right) \ldots$)
Fact. (No,,$+<$) is an ordered abelian group.
$(\mathrm{On},+)$ is a monoid and + is the Hessenberg sum.

Product

(The sum: $x+y=\left\{x^{\prime}+y, x+y^{\prime}\right\} \mid\left\{x^{\prime \prime}+y, x+y^{\prime \prime}\right\}$.)

Definition. If $x=\left\{x^{\prime}\right\}\left|\left\{x^{\prime \prime}\right\}, y=\left\{y^{\prime}\right\}\right|\left\{y^{\prime \prime}\right\}$, their product is

$$
\begin{aligned}
& x \cdot y:=\left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime}\right\} \mid \\
& \mid\left\{x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} .
\end{aligned}
$$

(Idea: we want $\left.\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)>0,\left(x-x^{\prime \prime}\right)\left(y-y^{\prime \prime}\right)>0 \ldots\right)$

Fact. (No, $+, \cdot,<$) is a field containing \mathbb{R}.
$\left(\mathbf{O} \mathbf{n}^{>0}, \cdot\right)$ is a monoid and \cdot is the Hessenberg product.

No as field of Hahn series

Take some $R \supseteq \mathbb{R}$ and consider the Archimedean equivalence

$$
x \asymp y \leftrightarrow \frac{1}{n}|y| \leq|x| \leq n|y| \text { for some } n \in \mathbb{N}^{>0}
$$

Let $\Gamma<\left(R^{>0}, \cdot\right)$ be a group of representatives for \asymp.
Let $\mathbb{R}((\Gamma))$ be the field of Hahn series

$$
r_{0} \gamma_{0}+r_{1} \gamma_{1}+\cdots+r_{\omega} \gamma_{\omega}+\ldots
$$

where $r_{\alpha} \in \mathbb{R}, \gamma_{\alpha} \in \Gamma$, and $\left(\gamma_{\alpha}\right)_{\alpha<\gamma}$ decreasing.
Theorem (Hahn-Kaplansky). R embeds into $\mathbb{R}((\Gamma))$.
The monomials \mathfrak{M} are the "simplest \asymp-representatives" in $\mathrm{No}^{>0}$. Theorem (Conway). $(\mathfrak{M}, \cdot) \cong(\mathbf{N o},+)$ and $\mathbf{N o} \cong \mathbb{R}((\mathfrak{M}))$. Corollary. No is a real closed field (in fact, Set-saturated).

Exponentiation

Definition (Kruskal-Gonshor). Given $x=\left\{x^{\prime}\right\} \mid\left\{x^{\prime \prime}\right\}$, define

$$
\begin{aligned}
& \exp (x):=\left\{0, \exp \left(x^{\prime}\right) \cdot\left[x-x^{\prime}\right]_{n},\right.\left.\exp \left(x^{\prime \prime}\right)\left[x-x^{\prime \prime}\right]_{2 n+1}\right\} \mid \\
& \left\lvert\,\left\{\frac{\exp \left(x^{\prime \prime}\right)}{\left[x^{\prime \prime}-x\right]_{n}}, \frac{\exp \left(x^{\prime}\right)}{\left[x^{\prime}-x\right]_{2 n+1}}\right\}\right.,
\end{aligned}
$$

where n ranges in $\mathbb{N},[y]_{n}:=1+\frac{y}{1!}+\cdots+\frac{y^{n}}{n!}$, and $[y]_{2 n+1}$ is to be considered only when $[y]_{2 n+1}>0$.

Theorem (Gonshor). exp is a monotone isomorphism $\exp :(\mathbf{N o},+) \xrightarrow{\sim}\left(\mathbf{N o}^{>0}, \cdot\right)$ and $\exp (x) \geq 1+x$.

Monster model for $\mathbb{R}_{\text {an, exp }}$

Suppose f analytic at $r \in \mathbb{R}$ with $f(r+x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$. If ε is infinitesimal, we define (after Alling)

$$
f(r+\varepsilon):=a_{0}+a_{1} \varepsilon+a_{2} \varepsilon^{2}+\ldots .
$$

Theorem (van den Dries-Erlich).
(No, $\left.+, \cdot,<,\{f\}_{f \text { analytic }}, \exp \right)$ is an elem. extension of $\mathbb{R}_{\text {an, } \exp }$.

By o-minimality and saturation, No is a monster model.

Hardy fields

Take a family \mathcal{F} of continuous functions $f:(u, \infty) \rightarrow \mathbb{R}$. Take the ring $H(\mathcal{F})$ of germs at ∞ : for each $f \in \mathcal{F}$,

$$
[f]=\{g \in \mathcal{F} \mid g(x)=f(x) \text { for all } x \text { sufficiently large }\}
$$

Definition (Bourbaki). $H(\mathcal{F})$ is a Hardy field if:
(1) it is a field;
(2) it is closed under differentiation.

Fact. A Hardy field $H(\mathcal{F})$ is always ordered (given $f \in \mathcal{F}$, either $f(x)>0, f(x)<0$ or $f(x)=0$ for all x sufficiently large).

Examples of Hardy fields

Some Hardy fields:
(1) (germs of) rational functions $H(\mathbb{R}(x))$;
(2) rational functions, exp and $\log H(\mathbb{R}(x, \exp (x), \log (x)))$;
(3) Hardy's field L of "logarithmico-exponential functions".

Given an expansion R of \mathbb{R}, we abbreviate with $H(R)$ the ring of germs at ∞ of unary definable functions $\mathbb{R} \rightarrow \mathbb{R}$.

Fact. R is o-minimal if and only if $H(R)$ is a Hardy field.
$H\left(\mathbb{R}_{\mathrm{an}, \exp }\right)$ is a Hardy field which is also an elem. ext. of $\mathbb{R}_{\mathrm{an}, \exp }$.

H-fields

H-fields are an abstract version of Hardy fields.
For simplicity, we work over \mathbb{R}.

Definition (Aschenbrenner-van den Dries). An H -field is an ordered field with a derivation D such that:
(1) if $x>\mathbb{R}$, then $D(x)>0$;
(2) $D(x)=0$ if and only if $x \in \mathbb{R}$.

Hardy fields are obviously H -fields.
$H\left(\mathbb{R}_{\text {an,exp }}\right)$ is an elem. ext. of $\mathbb{R}_{\text {an,exp }}$ which is also an H-field. It satisfies $D(\exp (f))=\exp (f) D(f), D(\arctan (f))=\frac{D(f)}{1+f^{2}}, \ldots$

Transseries

$H\left(\mathbb{R}_{\text {an, exp }}\right)$ is an ordered field: it embeds into some $\mathbb{R}((\Gamma))$.
The field $\mathbb{R}((\Gamma))$ contains series such as

$$
\begin{aligned}
& (1) \text { contains series such as } \\
& \log \left(\Gamma\left(t^{-1}\right)\right)=\log (t)-\gamma t^{-1}+\sum_{n=2}^{\infty} q_{n} t^{-n} \text {. } \\
& \text { ical "transseries". }
\end{aligned}
$$

This is a typical "transseries".
There are many notions of "field of transseries":
(1) transseries by Dahn, Göring, Écalle;
(2) "LE-series" by van den Dries, Macintyre and Marker;
(3) "EL-(trans)series" by S. Kuhlmann, and Matusinski;
(4) "grid-based transseries" by van der Hoeven;
(5) "transseries" by M. Schmeling.

Several notions of transseries

The various fields are slightly different from one another. For instance, $L E$ embeds into $E L$, but $E L$ contains also:

$$
\log (x)+\log (\log (x))+\log (\log (\log (x))) \ldots
$$

All of them are naturally models of the theory of $\mathbb{R}_{\text {an, exp }}$. They can be made into H-fields (with $D(x)=1$ for (1)-(3)) such that $D(\exp (t))=\exp (t) D(t), D(\arctan (t))=\frac{D(t)}{1+t^{2}}, \ldots$

Conj./Theorem (Aschenbrenner-van den Dries-van der Hoeven). $L E$-series are a model-companion of H -fields.

Surreal numbers as H-fields and transseries?

Theorem (Kuhlmann-Kuhlmann-Shelah). If Γ is a set, $\mathbb{R}((\Gamma))$ cannot have a global exp "compatible with the series structure". (We can close under either exp or "infinite sum", but not both).

But No is a class, and No $=\mathbb{R}((\mathfrak{M}))$ has a global exp.
Questions (Aschenbrenner, van den Dries, van der Hoeven, S. Kuhlmann, Matusinski...).
(1) Can we give No a natural structure of H-field and such that

$$
D(\exp (x))=\exp (x) D(x), D(\arctan (x))=\frac{D(x)}{1+x^{2}}, \ldots ?
$$

(2) Can we give No a natural structure of transseries?

Van der Hoeven hinted at a candidate for (2).
S. Kuhlmann and Matusinski made a conjecture for (1)-(2).

Surreal derivations

Definition. A surreal derivation is a $D: \mathbf{N o} \rightarrow$ No such that:
(1) Leibniz' rule: $D(x y)=x D(y)+y D(x)$;
(2) strong additivity: $D\left(\sum_{i \in I} a_{i}\right)=\sum_{i \in I} D\left(a_{i}\right)$;
(3) compatibility with $\exp : D(\exp (x))=\exp (x) D(x)$;
(4) constant field $\mathbb{R}: \operatorname{ker}(D)=\mathbb{R}$;
(5) H-field: if $x>\mathbb{R}$ then $D(x)>0$.

Let us try to construct D and see what happens...

Ressayre representation

Let \mathbb{J} be the ring of purely infinite numbers " $\mathbb{R}\left[\left[\mathfrak{M}^{>1}\right]\right]$ ".

Theorem (Gonshor). $\exp (\mathbb{J})=\mathfrak{M}$.

Since $\mathbf{N o}=\mathbb{R}((\mathfrak{M}))$, for any $x \in$ No we can write

$$
x=r_{0} e^{\gamma_{0}}+r_{1} e^{\gamma_{1}}+\cdots+r_{\omega} e^{\gamma_{\omega}}+\ldots
$$

where $r_{\alpha} \in \mathbb{R}$ and $\gamma_{\alpha} \in \mathbb{J}$, with $\left(\gamma_{\alpha}\right)_{\alpha<\gamma}$ decreasing.

We call this the Ressayre representation of x.

Log-atomic numbers

First attempt using the Ressayre representation:

$$
D(x)=D\left(r_{0} e^{\gamma_{0}}+r_{1} e^{\gamma_{1}}+\ldots\right)=r_{0} e^{\gamma_{0}} D\left(\gamma_{0}\right)+r_{1} e^{\gamma_{1}} D\left(\gamma_{1}\right)+\ldots
$$

However, this is not inductive, in a very strong sense.
An $x \in$ No is log-atomic if $\mathfrak{m}_{0}:=x \in \mathfrak{M}$ and $\mathfrak{m}_{i+1}:=\log \left(\mathfrak{m}_{i}\right) \in \mathfrak{M}$ for all $i \in \mathbb{N}$.
Let \mathbb{L} be their class $\left(\omega \in \mathbb{L}, \varepsilon_{0} \in \mathbb{L}, \kappa_{\text {No }} \subseteq \mathbb{L} \ldots\right)$.
The formula is not informative if $x=\mathfrak{m}_{0}$ is log-atomic:

$$
D\left(\mathfrak{m}_{0}\right)=\mathfrak{m}_{0} \cdot D\left(\mathfrak{m}_{1}\right)=\mathfrak{m}_{0} \cdot \mathfrak{m}_{1} \cdot D\left(\mathfrak{m}_{2}\right)=\cdots=?
$$

And log-atomic numbers are rather frequent: Proposition (Berarducci-M.). \mathbb{L} is the "class of levels" of No.

The simplest pre-derivation $\partial_{\mathbb{L}}$

Start with a $D_{\mathbb{L}}: \mathbb{L} \rightarrow \mathbf{N o}^{>0}$. Axioms (1)-(5) imply
$\log \left(D_{\mathbb{L}}(\lambda)\right)-\log \left(D_{\mathbb{L}}(\mu)\right)<\frac{1}{k} \max \{\lambda, \mu\}$ for all $\lambda, \mu \in \mathbb{L}, k \in \mathbb{N}^{>0}$.
Call pre-derivation a function satisfying the above inequality.
Proposition (Berarducci-M.). The "simplest" pre-derivation is

$$
\partial_{\mathbb{L}}(\lambda):=\exp \left(-\sum_{\substack{\alpha \in \mathbf{O} \\ \text { ヨn: } \exp \left(\kappa_{n}-\alpha\right)>\lambda}} \sum_{i=1}^{\infty} \log _{i}\left(\kappa_{-\alpha}\right)+\sum_{i=1}^{\infty} \log _{i}(\lambda)\right) .
$$

"Simplest" refers to the simplicity relation \leq_{s}.
$\kappa_{-\alpha}$ are the κ-numbers of S . Kuhlmann and Matusinski.

Ranks

Let us make inductive the formula

$$
D(x)=D\left(r_{0} e^{\gamma_{0}}+r_{1} e^{\gamma_{1}}+\ldots\right)=r_{0} e^{\gamma_{0}} D\left(\gamma_{0}\right)+r_{1} e^{\gamma_{1}} D\left(\gamma_{1}\right)+\ldots
$$

Proposition (Berarducci-M.). No R : No $\rightarrow \mathbf{O n}$ satisfies
(1) $R(x)=0$ if $x \in \mathbb{L} \cup \mathbb{R}$;
(2) otherwise, $R(x)=R\left(\sum_{\gamma} r_{\gamma} e^{\gamma}\right)>R(\gamma)$ for $r_{\gamma} \neq 0$.

Theorem (Berarducci-M.). There is $R: \mathbf{N o} \rightarrow \mathbf{O n}$ such that
(1) $R(x)=0$ if $x \in \mathbb{L} \cup \mathbb{R}$;
(2) $R(x)=R\left(\sum_{\gamma} r_{\gamma} e^{\gamma}\right) \geq R(\gamma)$ for $r_{\gamma} \neq 0$, and if the equality holds then γ is minimal such that $r_{\gamma} \neq 0$ (and $r_{\gamma}= \pm 1$).

Extending $\partial_{\mathbb{L}}$ to $\partial:$ No \rightarrow No

(1) if $x \in \mathbb{L}, \partial(x):=\partial_{\mathbb{L}}(x)$; if $x \in \mathbb{R}, \partial(x):=0$.
(2) $\partial_{0}(x):=\sum_{R(\gamma)<R(x)} r_{\gamma} e^{\gamma} \partial(\gamma)$.
(3) if there is a (unique!) γ such that $r_{\gamma} \neq 0$ and $R(\gamma)=R(x)$,
(1) $\Delta_{0}(x):=r_{\gamma} e^{\gamma} \partial_{0}(\gamma)$,
(2) $\Delta_{n+1}(x):=r_{\gamma} e^{\gamma} \Delta_{n}(\gamma)$.
otherwise $\Delta_{n}(x):=0$.
(4) $\partial(x):=\partial_{0}(x)+\sum_{n} \Delta_{n}(x)$.

Using the inequalities of $\partial_{\mathbb{L}}$ and the properties of R :
Theorem (Berarducci-M.). ∂ is a surreal derivation.
Proposition. ∂ sends infinitesimals to infinitesimals.
Using Rosenlicht "asymptotic integration" and Fodor's lemma:
Theorem. ∂ is surjective (every number has an anti-derivative).

No as a field of transseries

In the PhD thesis of Schmeling:
T4. For all sequences $\mathfrak{m}_{i} \in \mathfrak{M}$, with $i \in \mathbb{N}$, such that

$$
\mathfrak{m}_{i}=\exp \left(\gamma_{i+1}+r_{i+1} \mathfrak{m}_{i+1}+\delta_{i+1}\right)
$$

we have eventually $r_{i+1}= \pm 1$ and $\delta_{i+1}=0$.
Theorem (Berarducci-M.). No satisfies T4, and therefore it is a field of transseries as defined by Schmeling.
This is roughly van der Hoeven's conjecture.

Theorem (Fornasiero). Every model of the theory of $\mathbb{R}_{\text {an, }}$ exp embeds "initially" in No (hence the image is truncation-closed). Therefore, the models have a structure of (Schmeling) transseries.

Open questions

(1) Complete van der Hoeven's picture.
(2) Relationship with $L E, E L, \ldots$
(3) Differential equations solved in (No, ∂)?
(4) Pfaffian functions?
(5) Elementary extension of $L E$?
(6) Transexponential functions?
(7)...

Thanks for your attention

[^0]: ${ }^{1}$ Ignoring draws, at least!

