Surreal numbers, derivations and transseries

Vincenzo Mantova

Joint work with A. Berarducci

Scuola Normale Superiore, Pisa

Torino - 20 March 2015

1 Surreal numbers

2 Hardy fields and transseries

Conway's games

- A Game is a pair L|R where L, R are (w.f.) sets of Games and
 - 1 L are the legal moves for Left (called left options);
 - **2** *R* are the legal moves for **Right** (called **right options**).
- Go, chess, checkers can be interpreted as Games.¹

Conway defined a partial order and a sum on Games.

He then noticed that some games behave as *numbers*. I will omit the details of "numbers as Games" and directly jump to a more concrete description.

¹Ignoring draws, at least!

Surreal derivations

Surreal numbers as strings

A surreal number $x \in No$ is a string of +, - of ordinal length.

Definition. x is simpler than y, or $x <_{s} y$, if x is a prefix of y.

Sum

Definition. Given *L*, *R* sets of numbers such that L < R, we say x = L|R when x is *simplest* such that L < x < R.

For instance: $1 = \{0\}|\{\}, 2 = \{0,1\}|\{\}, \frac{1}{2} = \{0\}|\{1\}...$ Note. For any $x \in No$, we can write x = L|R where $L \cup R$ is the set of the numbers strictly simpler than x.

Definition. If $x = \{x'\}|\{x''\}$, $y = \{y'\}|\{y''\}$, then their sum is

$$x + y := \{x' + y, x + y'\} | \{x'' + y, x + y''\}.$$

(Idea: we want (x' + y) < (x + y) < (x'' + y)...)

Fact. (No, +, <) is an ordered abelian group. (On, +) is a monoid and + is the Hessenberg sum.

Surreal derivations

Product

(The sum:
$$x + y = \{x' + y, x + y'\}|\{x'' + y, x + y''\}$$
.)

Definition. If $x = \{x'\}|\{x''\}$, $y = \{y'\}|\{y''\}$, their **product** is

$$\begin{aligned} \mathbf{x} \cdot \mathbf{y} &:= \{ x'y + xy' - x'y', x''y + xy'' - x''y'' \} | \\ & |\{ x'y + xy'' - x'y'', x''y + xy' - x''y' \}. \end{aligned}$$

(Idea: we want (x - x')(y - y') > 0, (x - x'')(y - y'') > 0...)

Fact. (No, +, \cdot , <) is a field containing \mathbb{R} . (On^{>0}, \cdot) is a monoid and \cdot is the Hessenberg product.

No as field of Hahn series

Take some $R \supseteq \mathbb{R}$ and consider the **Archimedean** equivalence

$$\mathbf{x} \asymp \mathbf{y} \leftrightarrow \frac{1}{n} |\mathbf{y}| \le |\mathbf{x}| \le n |\mathbf{y}|$$
 for some $n \in \mathbb{N}^{>0}$.

Let $\Gamma < (R^{>0}, \cdot)$ be a group of representatives for \asymp . Let $\mathbb{R}((\Gamma))$ be the field of **Hahn series**

 $r_0\gamma_0 + r_1\gamma_1 + \cdots + r_\omega\gamma_\omega + \ldots$

where $r_{\alpha} \in \mathbb{R}, \gamma_{\alpha} \in \Gamma$, and $(\gamma_{\alpha})_{\alpha < \gamma}$ decreasing.

Theorem (Hahn-Kaplansky). *R* embeds into $\mathbb{R}((\Gamma))$.

The monomials \mathfrak{M} are the "simplest \asymp -representatives" in $\mathbf{No}^{>0}$. Theorem (Conway). $(\mathfrak{M}, \cdot) \cong (\mathbf{No}, +)$ and $\mathbf{No} \cong \mathbb{R}((\mathfrak{M}))$. Corollary. No is a real closed field (in fact, Set-saturated). Surreal numbers

Hardy fields and transseries 000000

Surreal derivations

Exponentiation

Definition (Kruskal-Gonshor). Given $x = \{x'\} \mid \{x''\}$, define

$$\begin{split} \exp(x) &:= \left\{ 0, \, \exp(x') \cdot [x - x']_n, \, \exp(x'')[x - x'']_{2n+1} \right\} | \\ &\quad | \left\{ \frac{\exp(x'')}{[x'' - x]_n}, \, \frac{\exp(x')}{[x' - x]_{2n+1}} \right\}, \end{split}$$

where *n* ranges in \mathbb{N} , $[y]_n := 1 + \frac{y}{1!} + \cdots + \frac{y^n}{n!}$, and $[y]_{2n+1}$ is to be considered only when $[y]_{2n+1} > 0$.

Theorem (Gonshor). exp is a monotone isomorphism exp : $(\mathbf{No}, +) \rightarrow (\mathbf{No}^{>0}, \cdot)$ and $\exp(x) \ge 1 + x$.

Surreal derivations

Monster model for $\mathbb{R}_{an,exp}$

Suppose f analytic at $r \in \mathbb{R}$ with $f(r+x) = a_0 + a_1x + a_2x^2 + \dots$ If ε is infinitesimal, we define (after Alling)

$$f(r+\varepsilon) := a_0 + a_1\varepsilon + a_2\varepsilon^2 + \dots$$

Theorem (van den Dries-Erlich). (No, +, \cdot , <, {f}_{f analytic}, exp) is an elem. extension of $\mathbb{R}_{an,exp}$.

By o-minimality and saturation, No is a monster model.

Surreal derivations

Hardy fields

Take a family \mathcal{F} of continuous functions $f : (u, \infty) \to \mathbb{R}$. Take the ring $H(\mathcal{F})$ of germs at ∞ : for each $f \in \mathcal{F}$,

$$[f] = \{g \in \mathcal{F} \mid g(x) = f(x) \text{ for all } x \text{ sufficiently large} \}.$$

Definition (Bourbaki). $H(\mathcal{F})$ is a **Hardy field** if:

- 1 it is a field;
- 2 it is closed under differentiation.

Fact. A Hardy field $H(\mathcal{F})$ is always ordered (given $f \in \mathcal{F}$, either f(x) > 0, f(x) < 0 or f(x) = 0 for all x sufficiently large).

Examples of Hardy fields

Some Hardy fields:

- (germs of) rational functions $H(\mathbb{R}(x))$;
- **2** rational functions, exp and log $H(\mathbb{R}(x, \exp(x), \log(x)));$
- **3** Hardy's field L of "logarithmico-exponential functions".

Given an expansion R of \mathbb{R} , we abbreviate with H(R) the ring of germs at ∞ of unary definable functions $\mathbb{R} \to \mathbb{R}$.

Fact. *R* is o-minimal if and only if H(R) is a Hardy field.

 $H(\mathbb{R}_{an,exp})$ is a Hardy field which is also an elem. ext. of $\mathbb{R}_{an,exp}$.

H-fields are an abstract version of Hardy fields. For simplicity, we work over \mathbb{R} .

Definition (Aschenbrenner-van den Dries). An H-field is an ordered field with a derivation D such that:

- 1) if $x > \mathbb{R}$, then D(x) > 0;
- **2** D(x) = 0 if and only if $x \in \mathbb{R}$.

Hardy fields are obviously *H*-fields.

 $H(\mathbb{R}_{an,exp})$ is an elem. ext. of $\mathbb{R}_{an,exp}$ which is also an *H*-field. It satisfies $D(\exp(f)) = \exp(f)D(f)$, $D(\arctan(f)) = \frac{D(f)}{1+f^2}$, ...

Transseries

 $H(\mathbb{R}_{an,exp})$ is an ordered field: it embeds into some $\mathbb{R}((\Gamma))$.

The field
$$\mathbb{R}((\Gamma))$$
 contains series such as
 $\log(\Gamma(t^{-1})) = \log(t) - \gamma t^{-1} + \sum_{n=2}^{\infty} q_n t^{-n}$.
This is a typical "transseries".

There are many notions of "field of transseries":

1 transseries by Dahn, Göring, Écalle;

- 2 "LE-series" by van den Dries, Macintyre and Marker;
- 3 "EL-(trans)series" by S. Kuhlmann, and Matusinski;
- **4** "grid-based transseries" by van der Hoeven;
- **5** "transseries" by M. Schmeling.

Several notions of transseries

The various fields are slightly different from one another. For instance, *LE* embeds into *EL*, but *EL* contains also:

```
\log(x) + \log(\log(x)) + \log(\log(\log(x))) \dots
```

All of them are naturally models of the theory of $\mathbb{R}_{an,exp}$. They can be made into *H*-fields (with D(x) = 1 for (1)-(3)) such that D(exp(t)) = exp(t)D(t), $D(arctan(t)) = \frac{D(t)}{1+t^2}$, ...

Conj./Theorem (Aschenbrenner-van den Dries-van der Hoeven). *LE*-series are a model-companion of *H*-fields.

Surreal numbers as *H*-fields and transseries?

Theorem (Kuhlmann-Kuhlmann-Shelah). If Γ is a *set*, $\mathbb{R}((\Gamma))$ cannot have a global exp "compatible with the series structure". (We can close under either exp or "infinite sum", but not both).

But **No** is a class, and $No = \mathbb{R}((\mathfrak{M}))$ has a global exp.

Questions (Aschenbrenner, van den Dries, van der Hoeven, S. Kuhlmann, Matusinski...).

- **1** Can we give **No** a natural structure of *H*-field and such that $D(\exp(x)) = \exp(x)D(x)$, $D(\arctan(x)) = \frac{D(x)}{1+x^2}$, ...?
- **2** Can we give **No** a natural structure of transseries?

Van der Hoeven hinted at a candidate for (2). S. Kuhlmann and Matusinski made a conjecture for (1)-(2).

Surreal derivations

Definition. A surreal derivation is a D : **No** \rightarrow **No** such that:

- 1 Leibniz' rule: D(xy) = xD(y) + yD(x);
- **2** strong additivity: $D\left(\sum_{i\in I} a_i\right) = \sum_{i\in I} D(a_i);$
- **3** compatibility with exp: $D(\exp(x)) = \exp(x)D(x)$;
- **4** constant field \mathbb{R} : ker $(D) = \mathbb{R}$;
- **5** H-field: if $x > \mathbb{R}$ then D(x) > 0.

Let us try to construct D and see what happens...

Ressayre representation

Let \mathbb{J} be the ring of purely infinite numbers " $\mathbb{R}[[\mathfrak{M}^{>1}]]$ ".

Theorem (Gonshor). $exp(\mathbb{J}) = \mathfrak{M}$.

Since
$$\mathbf{No} = \mathbb{R}((\mathfrak{M}))$$
, for any $x \in \mathbf{No}$ we can write
 $x = r_0 e^{\gamma_0} + r_1 e^{\gamma_1} + \cdots + r_\omega e^{\gamma_\omega} + \cdots$
where $r_\alpha \in \mathbb{R}$ and $\gamma_\alpha \in \mathbb{J}$, with $(\gamma_\alpha)_{\alpha < \gamma}$ decreasing.

We call this the **Ressayre representation** of x.

Surreal derivations

Log-atomic numbers

First attempt using the Ressayre representation:

$$D(x) = D(r_0 e^{\gamma_0} + r_1 e^{\gamma_1} + \dots) = r_0 e^{\gamma_0} D(\gamma_0) + r_1 e^{\gamma_1} D(\gamma_1) + \dots$$

However, this is not inductive, in a very strong sense.

An $x \in \mathbf{No}$ is **log-atomic** if $\mathfrak{m}_0 := x \in \mathfrak{M}$ and $\mathfrak{m}_{i+1} := \log(\mathfrak{m}_i) \in \mathfrak{M}$ for all $i \in \mathbb{N}$. Let \mathbb{L} be their class ($\omega \in \mathbb{L}, \varepsilon_0 \in \mathbb{L}, \kappa_{\mathbf{No}} \subseteq \mathbb{L}...$).

The formula is not informative if $x = \mathfrak{m}_0$ is log-atomic:

$$D(\mathfrak{m}_0) = \mathfrak{m}_0 \cdot D(\mathfrak{m}_1) = \mathfrak{m}_0 \cdot \mathfrak{m}_1 \cdot D(\mathfrak{m}_2) = \cdots = ?$$

And log-atomic numbers are rather frequent: **Proposition** (Berarducci-M.). \mathbb{L} is the "class of levels" of **No**.

The simplest pre-derivation $\partial_{\mathbb{L}}$

Start with a
$$D_{\mathbb{L}} : \mathbb{L} \to \mathbf{No}^{>0}$$
. Axioms (1)-(5) imply
 $\log(D_{\mathbb{L}}(\lambda)) - \log(D_{\mathbb{L}}(\mu)) < \frac{1}{k} \max\{\lambda, \mu\}$ for all $\lambda, \mu \in \mathbb{L}, k \in \mathbb{N}^{>0}$.

Call pre-derivation a function satisfying the above inequality.

Proposition (Berarducci-M.). The "simplest" pre-derivation is

$$\partial_{\mathbb{L}}(\lambda) := \exp\left(-\sum_{\substack{\alpha \in \mathbf{On} \\ \exists n : \exp_n(\kappa_{-\alpha}) > \lambda}} \sum_{i=1}^{\infty} \log_i(\kappa_{-\alpha}) + \sum_{i=1}^{\infty} \log_i(\lambda)\right).$$

"Simplest" refers to the simplicity relation \leq_s . $\kappa_{-\alpha}$ are the κ -numbers of S. Kuhlmann and Matusinski.

Surreal derivations

Let us make inductive the formula

$$D(x) = D(r_0e^{\gamma_0} + r_1e^{\gamma_1} + \dots) = r_0e^{\gamma_0}D(\gamma_0) + r_1e^{\gamma_1}D(\gamma_1) + \dots$$

Proposition (Berarducci-M.). No $R : \mathbf{No} \rightarrow \mathbf{On}$ satisfies

1
$$R(x) = 0$$
 if $x \in \mathbb{L} \cup \mathbb{R}$;

2) otherwise, $R(x) = R(\sum_{\gamma} r_{\gamma} e^{\gamma}) > R(\gamma)$ for $r_{\gamma} \neq 0$.

Theorem (Berarducci-M.). There is $R : \mathbf{No} \rightarrow \mathbf{On}$ such that

1
$$R(x) = 0$$
 if $x \in \mathbb{L} \cup \mathbb{R}$;

2 $R(x) = R(\sum_{\gamma} r_{\gamma} e^{\gamma}) \ge R(\gamma)$ for $r_{\gamma} \ne 0$, and if the equality holds then γ is *minimal* such that $r_{\gamma} \ne 0$ (and $r_{\gamma} = \pm 1$).

Extending $\partial_{\mathbb{L}}$ to ∂ : **No** \rightarrow **No**

Using the inequalities of $\partial_{\mathbb{L}}$ and the properties of *R*: **Theorem** (Berarducci-M.). ∂ is a surreal derivation.

Proposition. ∂ sends infinitesimals to infinitesimals. Using Rosenlicht "asymptotic integration" and Fodor's lemma: **Theorem.** ∂ is surjective (every number has an anti-derivative).

No as a field of transseries

In the PhD thesis of Schmeling:

T4. For all sequences $\mathfrak{m}_i \in \mathfrak{M}$, with $i \in \mathbb{N}$, such that

$$\mathfrak{m}_i = \exp(\gamma_{i+1} + r_{i+1}\mathfrak{m}_{i+1} + \delta_{i+1})$$

we have eventually $r_{i+1} = \pm 1$ and $\delta_{i+1} = 0$.

Theorem (Berarducci-M.). **No** satisfies T4, and therefore it is a field of transseries as defined by Schmeling. This is roughly van der Hoeven's conjecture.

Theorem (Fornasiero). Every model of the theory of $\mathbb{R}_{an,exp}$ embeds "initially" in **No** (hence the image is truncation-closed). Therefore, the models have a structure of (Schmeling) transseries.

Open questions

- 1 Complete van der Hoeven's picture.
- 2 Relationship with LE, EL, ...
- **3** Differential equations solved in (No, ∂) ?
- ④ Pfaffian functions?
- **5** Elementary extension of *LE*?
- 6 Transexponential functions?
- 7 ...

Thanks for your attention