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What is this? This document contains (hastily written) notes for a mini-
course, held on the 4th of December 2024 during the Model Theory Workshop
at the EPFL in Lausanne. Most of the material follows very closely (parts of)
chapters 7 and 8 of [Hod93]; for the Random Graph, see also [Cam97]. Other
sources you can consult for model theory basics are [Poi00,TZ12,MT03,Mar02,
CK90,Kir19]. There are also notes of a course I gave some years ago [Men22].
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able at https://poisson.phc.dm.unipi.it/~mennuni/amalgamation_notes.
pdf. This version has been compiled on the 5th December 2024. To get the
source code click on the leftmost paper clip. The bibliography source file is in
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\chapter{Finitely generated (sub)structures}
Most of the material in this chapter is contained in~\cite[Chapter~7]{hodges}.
\section{What's an age again?}
\begin{question}
  Fix a countable structure $M$. How does the class $K$ of finitely generated substructures of $M$ look like?
\end{question}
These three properties of $K$ are clear:
\begin{enumerate}
\item $K$ is (at most) countable.
\item If $B\in K$ and $A\subseteq B$ is finitely generated, then $A\in K$.
\item\label{point:strgenclosed} If $A,B\in K$, then the generated substructure $\strgen{A,B}\in K$.
\end{enumerate}
Given a class $K$, we want to recognise whether $K$ is the class of substructures of some countable structure. Can we hope that the properties above give a characterisation? 

Well, property~\ref{point:strgenclosed} is problematic, as the notion of ``generated substructure'' depends on the ambient structure $M$, which, if we start from a class of finitely generated structures $K$, is not given. So it is better to replace it by a different statement. Moreover, it is convenient to close $K$ under isomorphism. This makes it a proper class, but makes certain things easier to state.\footnote{So for example one can say ``$A\in K$'' instead of ``$A$ is isomorphic to a structure in $K$''. On the other hand, ``$K$ is countable'' becomes ``$K$ is essentially countable'', so this is really a matter of taste. Anyway, everything can be translated with no issue to the setting where $K$ is a countable set, and not a proper class.} Let us start introducing some terminology.
\begin{defin}
A function $f\from A\to M$ is an \emph{embedding} of $L$-structures iff, for every atomic $L$-formula $\phi(\bla x0,n)$ and every $\bla a0,n\in A$, we have
\begin{equation}
  \label{eq:embdef}
  A\models \phi(\bla a0,n)\iff M\models \phi(f(a_0),\ldots, f(a_n))
\end{equation}  
\end{defin}
Note that this is a strengthening of the definition of homomorphism, that only requires $\then$.

\begin{exr}
If $f$ is an embedding, then~\eqref{eq:embdef} also holds for quantifier-free $\phi(\bla x0,n)$. Moreover, $f$ is injective.
\end{exr}


\begin{defin}
  If $M$ is an $L$-structure, we denote by $\age(M)$ the class of finitely generated $L$-structures that can be embedded in $M$.
\end{defin}
In other words, $A\in \age(M)$ if and only if $A$ is isomorphic to some finitely generated substructure of $M$.\footnote{In the alternative presentation, $\age(M)$ would have simply been the set of finitely generated substructures of $M$.}

\begin{defin}
  Let $K$ be a class of structures.
  \begin{enumerate}
  \item $K$ is \emph{essentially countable} iff it contains at most countably many isomorphism types.
  \item $K$ has the \emph{Hereditary Property} (HP) iff it is closed under finitely generated substructures and under isomorphism.
  \item $K$ has the \emph{Joint Embedding Property} (JEP) iff, whenever $B_0,B_1\in K$, there are $C\in K$ and embeddings $g_0\from B_0\to C$ and $g_1\from B_1\to C$, as in \Cref{fig:jep}.
  \end{enumerate}
\end{defin}
\begin{figure}
  \begin{center}
    \begin{tikzpicture}[scale=3]

  \node(b) at (1,0.5){$B_0$};
  \node(c) at (1,-0.5){$B_1$};
  \node(d) at (2,0){$C$};
\path[->, thick,  font=\scriptsize,>= angle 90]
(b) edge [dashed] node [above]  {$\exists g_0$} (d)
(c) edge [dashed] node [below]  {$\exists g_1$} (d)
;
\end{tikzpicture}
\end{center}
\caption{The Joint Embedding Property.}\label{fig:jep}
\end{figure}
Note that the JEP does not mention any ambient structure.
These properties are in fact enough to characterise ages.

\begin{thm}\label{thm:fraissebaby}
  Let $K$ be a class of finitely generated $L$-structures. There is a countable $M$ such that $K=\age(M)$ if and only if $K$ is essentially countable and has HP and JEP.
\end{thm}
\begin{proof}
Left to right, essential countability and the HP are clear, and so is JEP if one considers the structure generated by $B_0\cup B_1$.
  
Right to left, for each isomorphism type in $K$, fix a representative and list them as $(A_i \mid i<\omega)$.  Define $B_0=A_0$ and, inductively, let $B_{n+1}$ be some structure in $K$ containing both $B_n$ and $A_{n+1}$: this $B_{n+1}$ exists by the JEP. Let $M\coloneqq \bigcup_{i<\omega} B_i$. This is countable, and by construction $\age(M)\supseteq K$.  For the other inclusion, let $C\subseteq M$ be finitely generated.  Its generators must lie in some $B_n$, and since $B_n$ is a structure we have $C\subseteq B_n$. By HP we have $C\in K$, hence $\age(M)\subseteq K$.
\end{proof}




\section{Fraïssé's Theorem}

The $M$ constructed above is highly non-unique.
\begin{eg}
Let $L=\set{<}$ and let $K$ be the class of finite linear orders. Then $\age(\mathbb Z)=K=\age(\mathbb Q)$. In fact, for \emph{every} infinite linear order $M$, we have $K=\age(M)$.
\end{eg}

Can we single out a countable linear order that is, in some sense, \emph{the} ``limit'' of the class of finite linear orders? For example, something unique up to isomorphism. We will do this by defining a property that allows isomorphisms to be built inductively. To understand what's happening, let us put ages aside for a moment, and let us contemplate a classical proof.

\begin{defin}
  Let $L=\set{<}$, where $<$ is a binary relation symbol. The theory $\mathsf{DLO}$ of \emph{dense linear orders without endpoints} has the following axioms:
  \begin{enumerate}
  \item $<$ is a \emph{strict order}: an irreflexive, transitive relation;
  \item $<$ is \emph{linear}: $\forall x,y\; ((x<y)\lor (x=y)\lor (x>y))$; 
  \item $<$ has no \emph{endpoints}: it has no maximum and no minimum;
  \item $<$ is \emph{dense}: $\forall x,y\; \paren[\big]{(x<y)\implica (\exists z\; (x<z<y))}$.
  \end{enumerate}
\end{defin}
This theory is consistent, as, clearly,  $(\mathbb Q, <)\models \mathsf{DLO}$.

We will see a proof of the theorem below by \emph{back-and-forth}. Legend has it that the first back-and-forth proof was by Cantor, who invented the method to prove what follows. Except this is false, and Cantor managed to prove it by only going ``forth''. Also, I have no idea whether the proof below is the first proof by back-and-forth ever written, but nowadays it is usually the first one people see. Anyway, here is the proof.



\begin{thm}[Cantor]\label{thm:dlobaf}
  All countable dense linear orders with no endpoints are isomorphic (to $(\mathbb Q, <)$).
\end{thm}
\begin{proof}
  Let $(M,<)$ and $(N,<)$ be countable dense linear orders with no endpoints. Since they are dense (or, if you prefer, since they have no endpoints), $M$ and $N$ must both be infinite. Fix enumerations $(a_i)_{i<\omega}$ of $M$ and $(b_j)_{j<\omega}$ of $N$. We build an isomorphism $f\from M\to N$ inductively, by extending \emph{partial isomorphisms}.

  Start with $f_0$ being the empty function. If you prefer, $f_0$ is an isomorphism between the empty substructure of $M$ and the empty substructure of $N$. We inductively define $f_n$ in such a way that, for every $n\in \omega\setminus\set 0$,
  \begin{enumerate}
  \item $f_n\from A_n\to B_n$, where $A_n$ is a finite substructure of $M$ and $B_n$ is a finite substructure of $N$;
  \item $A_n\subseteq A_{n+1}$, $B_n\subseteq B_{n+1}$, and $f_n\subseteq f_{n+1}$;
  \item\label{point:fniso} $f_n$ is an isomorphism of $L$-structures;
  \item\label{point:dom} if $n=2m$, then $a_m\in A_n$;
  \item\label{point:cod} if $n=2m+1$, then $b_m\in B_n$.
  \end{enumerate}
  Suppose we manage to do this for every $n\in \omega$. If you think about it for $\approx 30$ seconds, you will realise that this is enough to conclude. But, to be more formal:

 Because $A_n\subseteq A_{n+1}$, the union $\bigcup_{n\in \omega}\operatorname{graph}(f_n)$  is the graph of a function, call it $f$, with domain a subset of $M$ and codomain $N$. In fact, by \Cref{point:dom} its domain is the whole $M$, and its  image is the whole of $N$ by \Cref{point:cod}. If $m<m'<\omega$, then $a_m, a_{m'}\in A_{2m'}$ and by \Cref{point:fniso} we have
  \begin{multline*}
    M\models a_m< a_{m'}\iff A_{2m'}\models a_m< a_{m'}\iff B_{2m'}\models f_{2m'}(a_m)< f_{2m'}(a_{m'})\\\iff  N\models f_{2m'}(a_m)< f_{2m'}(a_{m'})\iff N\models f(a_m)< f(a_{m'})
  \end{multline*}
 Therefore, $f\from M\to N$ is an isomorphism of $L$-structures.

Let us do this inductive construction then.  Suppose we have build an isomorphism  $f_{n-1}\from A_{n-1}\to B_{n-1}$ as above. 
 Write $A_{n-1}=\set{a_{i_0}<a_{i_1}<\ldots<a_{i_k}}$ and $B_{n-1}=\set{b_{j_0}<b_{j_1}<\ldots<b_{j_k}}$, and recall that for all $i\le k$ we have $a_i\in M$ and $b_i\in N$. If $n$ is even, say $n=2m>0$, we take care of the ``forth'' part, that is, we extend $f_{n-1}$ to $A_n\coloneqq A_{n-1}\cup{a_{m}}$.  We have four cases:
 \begin{enumerate}[label=\alph*)]
  \item If we already have $a_m\in A_{n-1}$, do nothing.  Or, more formally, set $A_{n}\coloneqq A_{n-1}$, $B_n\coloneqq B_{n-1}$, and $f_n\coloneqq f_{n-1}$.
 \item $a_m<a_{i_0}$. In this case, since $N$ has no endpoints, in particular it has no minimum, hence there must be some $b\in N$ with $N\models b< b_{i_0}$. Send $a_m$ to $b$. Or, more formally, put $A_n\coloneqq A_{n-1}\cup \set{a_{m}}$, $B_n\coloneqq B_{n-1}\cup \set{b}$, and $f_n\coloneqq f_{n-1}\cup \set{(a_m, b)}$.
 \item $a_m> a_{i_k}$. Similarly, $N$ has no maximum, so it contains some $b> b_{i_k}$ where to send $a_m$. Or, more formally,\ldots{} well, ok, you know what needs to be written here.
 \item There is $\ell <k$ with $M\models a_{i_{\ell}}< a_m< a_{i_{\ell+1}}$. Because $N$ is dense, there is $b\in N$ with $N\models b_{i_{\ell}}< b< b_{i_{\ell+1}}$. Send $a_m$ to $b$.
 \end{enumerate}
 This takes care of the ``forth'' part. The ``back'' part, that is, the odd stages of the construction, are handled in the same way, with the roles of $M$ and $N$ reversed; the only subtlety is that, for $n=1$, there are no $i_0, j_0$. In that case, we start by simply choosing the preimage of $b_0$ arbitrarily, e.g.\ we can take $f_1(a_0)=b_0$.
\end{proof}
\begin{co}\label{co:dlocomplete}
  $\mathsf{DLO}$ is a complete theory.
\end{co}
\begin{proof}
  Take any two models of $M_0$, $M_1$ of $\mathsf{DLO}$. By L\"owenheim--Skolem, each $M_i$ has a countable elementary substructure $N_i$. In particular, $M_i\equiv N_i$, hence, by \Cref{thm:dlobaf}, 
  \[
    M_0\equiv N_0\cong \mathbb Q\cong N_1\equiv M_1
  \]
\end{proof}
The proof of \Cref{thm:dlobaf} that we just saw has been the source of much inspiration; in fact, many of the things we will see are in a sense ``mined'' from it.

To begin with, when we run the proof above with $M=N$, we discover that every partial isomorphism of $(\mathbb Q,<)$  with finite domain can be extended to an element of $\aut(\mathbb Q)$. This property has a name. This is also a good point to introduce a weaker property.
\begin{defin}
  A structure $M$ is
  \begin{enumerate}
  \item \emph{ultrahomogeneous} iff, whenever $A,B$ are finitely generated substructures of $M$ and $f\from A\to B$ is an isomorphism, then there is $g\in \aut(M)$ such that $f=g\restr A$;
  \item \emph{weakly homogeneous} iff, whenever $A,B$ are finitely generated substructures of $M$ and $A\subseteq B$, then every embedding $f\from A\to M$ can be extended to an embedding $g\from B\to M$, as in \Cref{fig:whom}
  \end{enumerate}  
\end{defin}
\begin{figure}
  \begin{center}
    \begin{tikzpicture}[scale=2]
      \node(nw) at (0,1){$A$};
      \node(ne) at (1,1){$M$};
      \node (sw) at (0,2) {$B$};

      \path[->, thick,  font=\scriptsize,>= angle 90]
      (nw) edge node [above] {$f$} (ne)
      (sw) edge [dashed] node [above] {$\exists g$} (ne)
      (nw) edge node [left] {$\subseteq$} (sw)
      ;
    \end{tikzpicture}
  \end{center}
  \caption{Weak homogeneity.}\label{fig:whom}
\end{figure}
Back to classes of finitely generated structures, recall that we introduced JEP in order to substitute the notion of ``generated substructure'' in the absence of an ambient structure. In the definitions above, $A$ and $B$ interact as substructures of $M$, so we want a way to capture this. Let us cut to the chase.

\begin{defin}
  \begin{enumerate}
  \item A class $K$ of $L$-structures has the \emph{Amalgamation property} (AP) iff, whenever $A, B_0, B_1\in K$ and, for $i<2$, there are embeddings $f_i\from A\to B_i$, then there are $C\in K$ and embeddings $g_i\from B_i\to C$ such that $g_0\circ f_0=g_1\circ f_1$, as in \Cref{fig:ap}.

  \item A \emph{Fra\"iss\'e class} is a nonempty, essentially countable class of finitely generated $L$-structures, with $L$ a countable language, that has the HP, JEP, and AP.
\end{enumerate}
\end{defin}
\begin{figure}
  \begin{center}
    \begin{tikzpicture}[scale=3]
  \node(a) at (0,0){$A$};
  \node(b) at (1,0.5){$B_0$};
  \node(c) at (1,-0.5){$B_1$};
  \node(d) at (2,0){$C$};
  \node(comm) at (1,0){$\circlearrowright$};
\path[->, thick,  font=\scriptsize,>= angle 90]
(a) edge node [above]  {$f_0$} (b)
(a) edge node [below]  {$f_1$} (c)
(b) edge [dashed] node [above]  {$\exists g_0$} (d)
(c) edge [dashed] node [below]  {$\exists g_1$} (d)
;
\end{tikzpicture}
\end{center}
\caption{The Amalgamation Property.}\label{fig:ap}
\end{figure}

\begin{thm}[Fra\"iss\'e]
Let $M$ be a ultrahomogeneous structure with $\abs L,\abs M\le \aleph_0$. Then $\age(M)$ is a Fra\"iss\'e class. 

Conversely, if $L$ is countable and $K$ is a Fra\"iss\'e class, then there is an ultrahomogeneous $M$ with $\abs M\le \aleph_0$ and $\age(M)=K$. Such an $M$ is unique up to isomorphism.
\end{thm}
\begin{defin}
If $K$ is a Fra\"iss\'e class,  the $M$ costructed in the second part of Fra\"iss\'e's Theorem is called the \emph{Fra\"iss\'e limit} of $K$.
\end{defin}

\begin{lemma}\label{lemma:whomforth}
  Let $\abs{L},\abs C,\abs D\le \aleph_0$. Assume $\age(C)\subseteq \age(D)$. If $D$ is weakly homogeneous, then every embedding of a finitely generated substructure of $C$ into $D$ can be extended to an  embedding $C\to D$.
\end{lemma}
\begin{proof}
  Let $A\subseteq C$ be finitely generated and $f\from A\to D$ an embedding. Write $C$ as the union of a chain (that is, $A_n\subseteq A_{n+1}$) of finitely generated structures $\bigcup_{n<\omega} A_n$, where $A_0=A$. We extend the embedding $f_0\coloneqq f$  inductively. Start with $f_n\from A_n\to D$. To extend this to $f_{n+1}\from A_{n+1}\to D$, by weak homogeneity all we need to do is to find a substructure of $D$ isomorphic to $A_{n+1}$. Such a substructure exists because $\age(C)\subseteq \age(D)$. The union of the $f_n$ is the required embedding.
\end{proof}

\begin{rem}\label{co:universal}
  So, countable weakly homogeneous structures are \emph{universal}, in the sense that in the assumptions above there is an embedding $C\to D$ (just start with the structure generated in $C$ by $\emptyset$).
\end{rem}
\begin{noneg}
Even if $\age(\mathbb Z,<))=\age(\mathbb Q,<)$, we cannot embed $(\mathbb Q,<)$ into  $(\mathbb Z, <)$. In fact, the latter is not ultrahomogeneous.
\end{noneg}
\begin{lemma}\label{lemma:frlimunique}\*
  \begin{enumerate}
  \item Let $\abs L, \abs C, \abs D\le \aleph_0$. Suppose that $\age(C)=\age(D)$ and that both $C, D$ are ultrahomogeneous. For every $A\subseteq C$, every embedding $A\to D$ extends to an isomorphism $C\to D$. In particular, $C\cong D$.
  \item If $\abs L, \abs M\le\aleph_0$ and $M$, then $M$ is ultrahomogeneous if and only if it is weakly homogeneous.
  \end{enumerate}
\end{lemma}
\begin{proof}
  The previous lemma was proven by going ``only forth''. If we use the same strategy and go back and forth, we prove the first part of this lemma: write $C$ and $D$ as unions of chains, say $C=\bigcup_n C_n$, $D=\bigcup_n D_n$, starting with $C_0=A$ and, with the same arguments as above, ensure that $\dom f_{2n}\supseteq C_n$ and $\operatorname{im} f_{2n+1}\supseteq D_n$.

  For the second part, left to right is by extending to an automorphism and then restricting, and right to left is a special case of the first part with $C=D=M$.
\end{proof}
\begin{proof}[Proof of Fra\"iss\'e's Theorem]
For the first part, by \Cref{thm:fraissebaby} we only need to check the AP. Take an amalgamation problem $B_0\leftarrow A\to B_1$. If these three structures were actual substructures of $M$, and the maps were just inclusions, then we could simply solve this problem by taking the embeddings of the $B_i$ into $\strgen{B_0\cup B_1}$. But weak homogeneity allows to turn every amalgamation problem in $\age(M)$ into one of the nice form above!  So the first part is done.

  
For the second part, we proved that Fra\"iss\'e limits of a Fra\"iss\'e class are unique in \Cref{lemma:frlimunique}, so we are left to prove existence.
\begin{claim}
  There is a chain $(D_i:i<\omega)$ of structures in $K$ such that if $A\subseteq B\in K$ then, for every $i$ and every embedding $f\from A\to D_i$ there is $j>i$ and an embedding $g\from B\to D_j$ extending $f$.
\end{claim}
\begin{claimproof}This the AP plus some clever bookkeeping.
  Consider the pairs of structures $A\subseteq B\in K$. Define two such pairs to be isomorphic in the obvious way (hint: this involves a square commuting). List all isomorphism types of pairs in a  countable set $P$. Choose any bijection $\pi\from \omega^2\to \omega$ with the property that  $\pi(i,j)\ge i$.

  Start with $D_0\in K$  arbitrary. Inductively, suppose we have built $D_k$. List as $((f_{kj}, A_{kj}, B_{kj}\mid j<\omega))$ the triples given by a pair $(A,B)\in P$ and an embedding $f\from A\to D_k$. 

  In other words, after we have set up the $k$-th piece of the chain, we add to our ``list of tasks'' all the ``weak homogeneity problems'' involving it. We then use the bijection $\pi$ to know which of the problems we solve now, and the AP to actually solve it. That is, we use AP to find $D_{k+1}$ with the property that if $k=\pi(i,j)$ then $f_{ij}$ extends to an embedding $B_{ij}\to D_{k+1}$.
\end{claimproof}
Let $M\coloneqq \bigcup_{i<\omega}D_i$. By construction and the HP we have $\age(M)\subseteq K$. For the other inclusion, take $A\in K$. By the JEP, there is $B\in K$ where both $A$ and $D_0$ embed. By the Claim, the identity $D_0\to D_0$ extends to an embedding of $B$ into some $D_j$, hence in $M$, so $K\subseteq \age(M)$.

The Claim then gives us weak homogeneity, hence ultrahomogeneity by \Cref{lemma:frlimunique}.
\end{proof}

\section{Examples}
There's no shortage of examples of Fra\"iss\'e limits.
\begin{eg}
The class of finite linear orders, in the language $\set <$, is a Fra\"iss\'e class. Its limit is  $(\mathbb Q,<)$.
\end{eg}
\begin{eg}
  The class of finite graphs, in the language $\set E$, is a Fra\"iss\'e class. We will talk about its limit at length shortly. 
\end{eg}
\begin{eg}
  The class of finite groups, in the language $\set{\cdot, e, (-)\inverse}$, is Fra\"iss\'e. Its Fra\"iss\'e limit is known as \emph{Philip Hall's universal locally finite group}. This is not only ultrahomogeneous, but in fact every partial automorphism can be extended to an \emph{inner} automorphism.\footnote{Recall that an inner automorphism is one of the form $x\mapsto gxg\inverse$.} In other words, any two isomorphic finite subgroups are conjugate, and it follows that this group is simple. A direct construction can be obtained by starting with your favourite finite group $G_0$ with at least $3$ elements, then inductively using Cayley's Theorem to embed $G_n$ into  $G_{n+1}\coloneqq S_{\abs{G_n}}$, then taking the direct limit of this system. 
\end{eg}
\begin{exr}
  Which of the following classes are Fra\"iss\'e?
  \begin{enumerate}
  \item Triangle-free graphs.
  \item Graphs with no cycles.
  \item Finite $k$-uniform hypergraphs, that is, $k$-ary relations $R(\bla x1,k)$ that are irreflexive, that is, $R(\bla x1,k)$ implies that all $x_i$ are pairwise distinct, and symmetric, that is, if $R(\bla x1,k)$ holds and $\sigma$ is a permutation of $\set{1,\ldots, k}$ then $R\bla x{\sigma(1)},\sigma(k)$ also holds.
  \item Finite tournaments. A \emph{tournament} is a directed graph with no loops such that for every $x\ne y$ exactly one of $E(x,y)$ and $E(y,x)$ holds.
  \item Finite-dimensional vector spaces over a field $K$ with $\abs K\le \aleph_0$.
  \item Finitely generated abelian groups.
  \item Finitely generated torsion-free abelian groups.
  \item Finitely generated ordered abelian groups.
  \item Finite fields.
  \item Finite boolean algebras.
  \end{enumerate}
\end{exr}
\begin{exr}
  For those of the classes above that are Fra\"iss\'e, how does the Fra\"iss\'e limit look like?
\end{exr}
Let us look at an instance of the exercise above in depth.


\section{Case study: the Ra(n)do(m) Graph}
\begin{defin}
  The \emph{Random Graph}, or \emph{Rado graph}, is the Fra\"iss\'e limit of the class of finite graphs: binary, symmetric, irreflexive relations, in the language $\set{E}$ of graphs.
\end{defin}
\begin{rem}
The Random Graph $(M,E)$ has the \emph{Alice Restaurant Property}: whenever $U$, $V$ are disjoint finite subsets of $M$, there is $a\in M$ with an edge to every point of $U$ and to no point of $V$.
\end{rem}
\begin{proof}
  Let $B\coloneqq \strgen{U\cup V}$. Let $C$ be the graph obtained by adding to $B$ a vertex $c$ with the desired properties. As $\age(M)$ is the class of all finite graphs, we can use \Cref{lemma:frlimunique} to embed $C$ into $M$.
\end{proof}
\begin{rem}\label{rem:ARPFO}
  The Alice Restaurant Property is expressible by an infinite conjunction of first-order sentences in the language of graphs: for each $n$, write a sentence expressing the restriction of the property to $\abs U, \abs V\le n$.
\end{rem}
\begin{eg}\label{eg:diam2}
Every graph with the Alice Restaurant Property has diameter exactly $2$.
\end{eg}
In fact, we can say much more.
\begin{thm}
  Every countable graph with the Alice Restaurant Property is isomorphic to the Random Graph. In particular, the theory of the Random Graph is complete.
\end{thm}
\begin{proof}
  This is a back-and-forth argument, just like the proof of Cantor's theorem, with the Alice Restaurant Property replacing being dense without endpoints. If it does not sound obvious that it works, then it is a good exercise to spell out the details.

  Completeness is proven as in \Cref{co:dlocomplete}.\footnote{By the way, this trick is an instance of \emph{Vaught's test}: if $T$ has no finite models and has a unique model of some cardinality $\kappa\ge \abs L+\aleph_0$, then $T$ is complete. The proof is an easy corollary of the L\"owenheim--Skolem Theorem, and we essentially saw it in the proof of \Cref{co:dlocomplete}.}
\end{proof}
The Alice Restaurant Property is quite ubiquitous. As a witness to this, here are some constructions that return the Random Graph. 

\begin{exr}
  Recall that $V_\omega$ is the set of \emph{hereditarily finite sets}: those whose transitive closure is finite. Equivalently, start with $V_0=\emptyset$, let $V_{n+1}\coloneqq \mathscr P(V_n)$, let $V_\omega\coloneqq \bigcup_n V_n$. View this as a directed graph, where $a\mathrel{E}b$ iff $a\in b$. Symmetrise it, so now $a\mathrel{E}b$ iff $a\in b$ or $b\in a$. The resulting graph is the Random Graph.\footnote{Funny things happen if one looks at this kind of construction in non-well-founded set theories. See~\cite{ADHM} (and forgive me for the shameless self-advertising).}
\end{exr}

\begin{exr}
On the natural numbers, define $a \mathrel{E} b$ iff, when $b$ is written in base $2$, the $a$-th digit from the right is a $1$.\footnote{The least significant digit is the $0$-th digit.} Symmetrise the relation. The resulting graph is the Random Graph.
\end{exr}
\begin{exr}
  On the set of primes congruent to $1$ modulo $4$, set $p\mathrel{E}q$ iff $p$ is a square modulo $q$. This is once again the Random Graph.
\end{exr}
And in case you were wondering why the Random Graph is called that way\ldots
\begin{exr}\label{exr:rg}
  For every pair of distinct natural numbers, flip a coin (which heads with fixed probability $0<p<1$), independently. Put an edge between those numbers if and only if the coin heads. With probability $1$, the resulting graph is the Random Graph.
\end{exr}
\begin{proof}[Hint]
  How likely is the Alice Restaurant Property to fail?
\end{proof}
\begin{co}[$0$-$1$ law]\label{co:01law}
  Let $\phi$ be first-order sentence in the language $\set E$ of graphs. Then $\phi$ is true in almost all finite graphs or false in almost all finite graphs, in the sense that
  \[
    \lim_{n\to \infty}\frac{\abs{\set{\text{graphs on $\set{1,\ldots, n}$ that satisfy $\phi$}}}}{\abs{\set{\text{graphs on $\set{1,\ldots, n}$}}}}\in \set{0,1}
  \]
\end{co}
\begin{proof}
  As the theory $T_\mathrm{rg}$ of the Random Graph is complete, either $T_\mathrm{rg}\proves \phi$ or $T_\mathrm{rg}\proves \neg\phi$. Up to replacing $\phi$ by $\neg \phi$, assume $T_\mathrm{rg}\proves \phi$. By the Compactness Theorem, $\phi$ follows form the axioms of graphs (i.e.\ that $E$ is symmetric and irreflexive) plus finitely many instances of the Alice Restaurant Property (cf.~\Cref{rem:ARPFO}). We may assume that these instances say that the property holds for $\abs U, \abs V\le n$. The sentence saying this is true in almost all finite graphs (in the sense above; if it's not clear why, try doing \Cref{exr:rg}), hence so is $\phi$.
\end{proof}
\begin{rem}
  This applies to things that are expressible to \emph{first-order} sentences. For example, the property of being connected is not expressible this way; this is a standard compactness exercise. But note that almost all finite graphs have diameter $2$, by \Cref{co:01law} and \Cref{eg:diam2}, and of course this implies that they are connected.
\end{rem}

For more on the Random Graph, see~\cite{cameronRandomGraph1997}, on which this section is based.
\section{Quantifier elimination}
How general are the things above? Is there anything special about graphs? Not really.
\begin{thm}[see {\cite[Theorem~7.4.1]{hodges}}]
  If $L$ is a finite language and $K$ is a Fra\"iss\'e class of \emph{uniformly locally finite structures}: that is, there is a function $f$ such that any $n$-generated structure in $K$ has size at most $f(n)$.\footnote{For example, this happens whenever the language has no function symbol.} Then, the theory of the Fra\"iss\'e limit of $K$ has a unique countable model.
\end{thm}
\begin{exr}
  The class of finite groups is not uniformly locally finite. Show that there are at least\footnote{Fun fact: there is no complete theory in a countable language with \emph{exactly} two countable models up to isomorphism.} two nonisomorphic countable model of the theory of its Fra\"iss\'e limit.
\end{exr}

Under the same assumptions, that theory has \emph{quantifier elimination}.


\begin{defin}
  A theory $T$ has \emph{quantifier elimination} iff, for every $n$ and every formula $\phi(\bla x1,n)$, there is a quantifier-free formula $\psi(\bla x1,n)$ such that
  \[
    T\proves \forall \bla x1,n\; (\phi(\bla x1,n)\leftrightarrow \psi(\bla x1,n))
  \]
\end{defin}
Note that this includes the case $n=0$, that is, sentences. To avoid pointless complications, we convene that the logic we are using has $0$-ary relational symbols $\top$ and $\bot$ that are always interpreted as ``true'' and ``false'' respectively.

What's the point of q.e.? Well, as trivial as it may sound, quantifier-free formulas are easier to understand than formulas with quantifiers. Well, at least if the language is simple enough (cf.~\Cref{fn:morleyisation}). But having a quantifier elimination result in a nice language allows us to understand \emph{definable sets}.
\begin{defin}
  A subset of a cartesian power of an $L$-structure $M$ is \emph{definable} iff it is the set of solutions of a formula. That is, $X\subseteq M^n$ is definable if and only if there is an $L$-formula $\phi(\bla x1,n)$ such that
  \[
    X=\set{(\bla a1,n)\in M^n\mid M\models \phi(\bla a1,n)}
  \]
\end{defin}
One similarly talks of sets definable with parameters from $A\subseteq M$, with the obvious meaning.

 The existential quantifier corresponds to a projection, and projections are tricky enough that even Lebesgue made a mistake with them.

So, for example, quantifier elimination in $\mathsf{DLO}$ implies that every definable subset of $\mathbb Q^n$ is a finite boolean combination of conditions of the form $x_i=x_j$ and $x_\ell<x_k$. For instance, in dimension $2$, definable sets, even with parameters, are just (finite) boolean combinations of vertical lines, horizontal lines, the diagonal, the above-diagonal, and vertical or horizontal half-planes.


How does one prove quantifier elimination? One way of proving it involves the AP. We said something above and will say something more later. Another way is the following; in practice, in many concrete cases both approaches boil down to verifying the same things.
\begin{thm}
  Let $T$ be a theory with following property: for every $M_0, N_0\models T$ there are $M\succeq M_0$ and $N\succeq N_0$ such that the family of all partial isomorphisms between $M$ and $N$ with finitely generated domain has the back-and-forth property. That is, if $f$ is such a map, $a\in M$, and $b\in N$, there are a partial isomorphisms $g,h$ extending $f$ with $a\in \dom(g)$ and $b\in \operatorname{im}(h)$.

  Then $T$ has quantifier elimination.
\end{thm}


These ideas can also be phrased in terms of the existence of winning strategies in certain games. Look for \emph{Ehrenfeucht--Fra\"iss\'e games} and their variants.


\chapter{Existentially closed structures}
Most of the material in this chapter is contained in~\cite[Chapter~8]{hodges}.
\section{Ordered abelian groups}
\begin{defin}
  An \emph{ordered abelian group} is a structure $(G,+,0,-,<)$ consisting of an abelian group plus a linear order such that $\forall x,y,z\; (x<y)\to (x+z)<(y+z)$.
\end{defin}
\begin{question}
  Is the class of finitely generated ordered abelian groups Fra\"iss\'e?
\end{question}
\begin{enumerate}
\item HP: sure.
\item JEP: as $\set{0}$ embeds in every ordered abelian group, it suffices to prove AP.
\item AP: this can be proven with a reasonable amount of effort. For a quite direct proof, see for example~\cite[Proposition~2.3]{hilsModeltheoryvalued}.
\end{enumerate}
Still, this class fails to be essentially countable.
\begin{exr}
  Show that there are uncountably many pairwise non-isomorphic $2$-generated ordered abelian groups.
\end{exr}

Still, having the AP does have its consequences. Let us drop the ``finitely generated'' assumption and change context.

\section{Existentially closed structures}

\begin{defin}
  \begin{enumerate}
  \item   Let $M\subseteq N$ be $L$-structures. We say that $M$ is \emph{existentially closed in $N$} iff: whenever $\phi(\bla x0,n,\bla y0,m)$ is quantifier-free and $\bla a0,m\in M$, if $N\models \exists \bla x0,n\;\phi(\bla x0,n, \bla a0,m)$ then  $M\models \exists \bla x0,n\;\phi(\bla x0,n, \bla a0,m)$.
  \item If $K$ is a class of $L$-structures, say closed under isomorphism\footnote{Otherwise, you need to start talking about embeddings.} we say that $M\in K$ is \emph{existentially closed in $K$} iff, whenever $M\subseteq N\in K$ then $M$ is existentially closed in $N$.
  \end{enumerate}
\end{defin}
The idea is: $M$ is existentially closed in $K$ if a solution to some quantifier-free formula, possibly with parameters, can be added in an extension, while staying in $K$, then there was already a solution in $M$.

\begin{question}
  Do these things exist?
\end{question}
Sure:
\begin{eg}
  A field is existentially closed\footnote{I.e., it is existentially closed in the class of fields. This abuse of terminology is quite standard and we will use it.} if and only if it is algebraically closed. 
\end{eg}
\begin{proof}
  To prove the nontrivial direction, one uses Rabinowitsch trick and some syntax manipulation to reduce to formulas stating that if a variety has a point in a larger field then it already has one, then applies (a form of) the Nullstellensatz.
\end{proof}
\begin{eg}
  A $\mathbb Q$-vector space is existentially closed if and only if it is nontrivial. Here the language is very important: the field is not part of the structure, but part of the language, and this makes being linearly independent not expressible.
\end{eg}
\begin{eg}
  A torsion-free abelian group is existentially closed if and only if it nontrivial and divisible. That is, if and only if it is a nontrivial $\mathbb Q$-vector space.
\end{eg}
\begin{eg}
  A graph is existentially closed if and only if it satisfies the Alice Restaurant Property. This is true almost by definition.
\end{eg}
Well, in fact:
\begin{eg}
  Let $\abs L\le \aleph_0$ and fix a Fra\"iss\'e class $J$. Let $K$ be the class of all structures (not necessarily countable) $M$ with $\age(M)\subseteq J$. Then the Fra\"iss\'e limit of $J$ is existentially closed in $K$.
\end{eg}


\begin{question}
  Do \emph{enough} of  these things exist? Also, is there a general method of construction?
\end{question}
Of course:
\begin{defin}
  A class of $L$-structures $K$ is \emph{inductive} iff it is closed under isomorphism and under unions of chains.
\end{defin}
\begin{exr}
  Being closed under unions of chains is equivalent to the (apparently more general) property of being closed under inductive limits (that is, limits along an upward directed system).
\end{exr}
\begin{thm}
  If $K$ is inductive, then for every $A\in K$  there is an existentially closed $B\in K$ with $A\subseteq B$.
\end{thm}
\begin{proof}
  This is bookkeeping: enumerate things in a sensible way, keep adding solutions, take unions at limit stages; being inductive ensures the last thing can be done.
\end{proof}

If $K$ is the class of models of a first-order theory, there is a very nice way to check whether it is inductive.
\begin{thm}[Chang--\L os--Suzsko]
  Let $T$ be an $L$-theory. Then $\Mod(T)$ is inductive if and only if $T$ has a $\forall\exists$-axiomatisation.\footnote{All that counts is alternations, but multiple consecutive $\forall$ or $\exists$ are allowed. For example, $\forall x\; \forall y\; \exists z\;\exists w\;\phi(x,y,z,w)$, with $\phi(x,y,z,w)$ quantifier-free, counts as a $\forall\exists$-sentence.}
\end{thm}
$\forall\exists$-axiomatisable theories are called \emph{inductive} for the reason above. 
\section{Q.e.\ via the AP}
\begin{defin}
  Given $T$, write $T_\forall$ for the set of its universal consequences. That is, those sentences $\phi$ where all quantifiers are $\forall$ and are all in the beginning of the formula, and such that $T\proves \phi$.
\end{defin}
Here is another standard fact:
\begin{thm}
  Models of $T_\forall$ are the same as substructures of models of $T$.
\end{thm}



\begin{thm}\label{thm:apqe}
  Let $T$ be an inductive theory. Assume that:
  \begin{enumerate}
  \item The class of existentially closed models of $T$ is \emph{elementary}, that is, of the form $\Mod(T')$, and\footnote{This assumption can be relaxed if one is happy to work in a different logic. An example of this is \cite{DM}. This is also another example of shameless self-advertising.}
  \item $\Mod(T_\forall)$ has the AP.
  \end{enumerate}
  Then $T'$ has quantifier elimination.
\end{thm}

  These matters are very sensitive to the language. This only makes sense, as these notions are related to embeddings, and what counts as an embedding does depend on the language.  And so does quantifier elimination!\footnote{\label{fn:morleyisation} In fact, every $L$-theory has an \emph{expansion by definitions}, called its \emph{morleyisation}, that is $\forall\exists$ axiomatised and has quantifier elimination.  This theory is in a larger language, say $L'$ (hence, there's fewer embeddings), but every $L'$-formula is equivalent modulo it to some $L$-formula.}




\section{Q.e.\ in fields}
\begin{defin}
The \emph{language of rings} is $L_\mathrm{ring}\coloneqq\set{+,0,-,\cdot,1}$. The theory $\mathsf{ACF}$ of \emph{algebraically closed fields} is the $L_\mathrm{ring}$-theory with these axioms.
\begin{enumerate}
\item Axioms of fields.
\item For every $n\ge 2$, an axiom saying ``every monic polynomial of degree $n$ has a root''.
\end{enumerate}
\end{defin}
We already said that, for a field, being algebraically closed is the same as being existentially closed. Substructures of fields in $L_\mathrm{ring}$, that is, models of $T_\forall$, are the same as integral domains, and these can be amalgamated. Therefore, \Cref{thm:apqe} gives us:
\begin{thm}
  $\mathsf{ACF}$ has quantifier elimination in $L_\mathrm{ring}$.
\end{thm}
\begin{defin}
  Recall that, if $K\models \mathsf{ACF}$ a set $X\subseteq K^n$ is
  \begin{enumerate}
  \item \emph{Zariski closed} iff it is the set of zeroes of a family of polynomials;
  \item \emph{constructible} iff it is a finite boolean combination of Zariski closed sets.
  \end{enumerate}
\end{defin}
With this terminology, and keeping in mind that an existential quantifier corresponds to a coordinate projection, we get:
\begin{co}[Chevalley--Tarski]
If $K\models \mathsf{ACF}$ and $X\subseteq K^{n+1}$ is constructible, then its projection to $K^n$ is constructible.
\end{co}
This is false for Zariski closed sets: consider the formula $\exists x \; xy=1$.

Is $\mathsf{ACF}$ complete? No, as it does not decide whether $1+1=0$. But choosing the characteristic is the only obstruction.
\begin{thm}
  The completions of $\mathsf{ACF}$ are obtained by specifying the characteristic.
\end{thm}
\begin{proof}
  Fix $p$ either a prime or $0$. The only nontrivial thing to prove is that $\mathsf{ACF}_p$, obtained from $\mathsf{ACF}$ by saying that the characteristic is $p$ (for $0$, use infinitely may axioms: $1+1\ne 0$, $1+1+1\ne 0$\ldots), is complete. If you know about transcendence bases, you can prove this by Vaught's test.

  Instead, let us use quantifier elimination. Given $K,L\models \mathsf{ACF}_p$, consider the (unique) embedding of the prime field $F$ (either $\mathbb Q$ or $\mathbb F_p$) in them. Take a sentence $\phi$. By quantifier elimination, $\phi$ is equivalent modulo $\mathsf{ACF}$, hence modulo $\mathsf{ACF}_p$, to a quantifier-free sentence $\psi$. But if $A\subseteq B$, and $\psi$ is quantifier-free, then $A\models \psi\iff B\models \psi$. So we have\footnote{Note that $\psi$ will not in general be equivalent to $\phi$ in $F$.}
  \[
    K\models \phi\iff K\models \psi\iff F\models \psi\iff K\models \psi\iff K\models \phi
  \]
So every two models of $\mathsf{ACF}_p$ satisfy the same sentences. By the Completeness Theorem, $\mathsf{ACF}_p$ is complete.
\end{proof}

Elisabeth will tell you more about model theory of fields, and show you some very nice proofs exploiting what we have just seen.

Just to mention another instance of quantifier elimination in fields:
\begin{defin}
  The \emph{language of ordered rings} is $\set{+,0,-,\cdot,1,<}$. The theory $\mathsf{RCF}$ of \emph{real closed fields} is axiomatised by:
  \begin{enumerate}
  \item Axioms of fields.
  \item Addition is increasing, multiplication by positive numbers is increasing.
  \item Every positive element has a square root.
  \item Every polynomial of odd degree has a zero.
  \end{enumerate}
\end{defin}
There's several other characterisations, see~\cite{wikiRCF}

\begin{thm}
  $\mathsf{RCF}$ is complete, coincides with the theory of $\mathbb R$, and eliminates quantifiers in the language of ordered rings.
\end{thm}
\begin{defin}
If $K\models \mathsf{RCF}$ ,a set $X\subseteq K^n$ is  \emph{semialgebraic} iff it is a finite union of sets, each of which is the set of solutions of a finite system of polynomial equations and inequalities.
\end{defin}
\begin{co}[Tarski--Seidenberg]
  The projection of a semialgebraic set is semialgebraic.
\end{co}
\bibliography{bibliography}{}
\bibliographystyle{alpha}

\end{document}
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Chapter 1

Finitely generated
(sub)structures

Most of the material in this chapter is contained in [Hod93, Chapter 7].

1.1 What’s an age again?

Question 1.1.1. Fix a countable structure M . How does the class K of finitely
generated substructures of M look like?

These three properties of K are clear:

1. K is (at most) countable.

2. If B ∈ K and A ⊆ B is finitely generated, then A ∈ K.

3. If A,B ∈ K, then the generated substructure ⟨A,B⟩ ∈ K.

Given a class K, we want to recognise whether K is the class of substructures
of some countable structure. Can we hope that the properties above give a
characterisation?

Well, property 3 is problematic, as the notion of “generated substructure”
depends on the ambient structure M , which, if we start from a class of finitely
generated structures K, is not given. So it is better to replace it by a different
statement. Moreover, it is convenient to close K under isomorphism. This
makes it a proper class, but makes certain things easier to state.1 Let us start
introducing some terminology.

Definition 1.1.2. A function f : A → M is an embedding of L-structures iff,
for every atomic L-formula φ(x0, . . . , xn) and every a0, . . . , an ∈ A, we have

A ⊨ φ(a0, . . . , an) ⇐⇒ M ⊨ φ(f(a0), . . . , f(an)) (1.1)
1So for example one can say “A ∈ K” instead of “A is isomorphic to a structure in K”.

On the other hand, “K is countable” becomes “K is essentially countable”, so this is really a
matter of taste. Anyway, everything can be translated with no issue to the setting where K
is a countable set, and not a proper class.

1
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B0

B1

C

∃g0

∃g1

Figure 1.1: The Joint Embedding Property.

Note that this is a strengthening of the definition of homomorphism, that
only requires =⇒.

Exercise 1.1.3. If f is an embedding, then (1.1) also holds for quantifier-free
φ(x0, . . . , xn). Moreover, f is injective.

Definition 1.1.4. If M is an L-structure, we denote by Age(M) the class of
finitely generated L-structures that can be embedded in M .

In other words, A ∈ Age(M) if and only if A is isomorphic to some finitely
generated substructure of M .2

Definition 1.1.5. Let K be a class of structures.

1. K is essentially countable iff it contains at most countably many isomorph-
ism types.

2. K has the Hereditary Property (HP) iff it is closed under finitely generated
substructures and under isomorphism.

3. K has the Joint Embedding Property (JEP) iff, whenever B0, B1 ∈ K,
there are C ∈ K and embeddings g0 : B0 → C and g1 : B1 → C, as in
Figure 1.1.

Note that the JEP does not mention any ambient structure. These properties
are in fact enough to characterise ages.

Theorem 1.1.6. Let K be a class of finitely generated L-structures. There is
a countable M such that K = Age(M) if and only if K is essentially countable
and has HP and JEP.

Proof. Left to right, essential countability and the HP are clear, and so is JEP
if one considers the structure generated by B0 ∪B1.

Right to left, for each isomorphism type in K, fix a representative and list
them as (Ai | i < ω). Define B0 = A0 and, inductively, let Bn+1 be some
structure in K containing both Bn and An+1: this Bn+1 exists by the JEP. Let
M :=

⋃
i<ω Bi. This is countable, and by construction Age(M) ⊇ K. For the

other inclusion, let C ⊆M be finitely generated. Its generators must lie in some
Bn, and since Bn is a structure we have C ⊆ Bn. By HP we have C ∈ K, hence
Age(M) ⊆ K.

2In the alternative presentation, Age(M) would have simply been the set of finitely gener-
ated substructures of M .
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1.2 Fraïssé’s Theorem
The M constructed above is highly non-unique.

Example 1.2.1. Let L = {<} and let K be the class of finite linear orders.
Then Age(Z) = K = Age(Q). In fact, for every infinite linear order M , we have
K = Age(M).

Can we single out a countable linear order that is, in some sense, the “limit”
of the class of finite linear orders? For example, something unique up to iso-
morphism. We will do this by defining a property that allows isomorphisms to
be built inductively. To understand what’s happening, let us put ages aside for
a moment, and let us contemplate a classical proof.

Definition 1.2.2. Let L = {<}, where < is a binary relation symbol. The
theory DLO of dense linear orders without endpoints has the following axioms:

1. < is a strict order : an irreflexive, transitive relation;

2. < is linear : ∀x, y ((x < y) ∨ (x = y) ∨ (x > y));

3. < has no endpoints: it has no maximum and no minimum;

4. < is dense: ∀x, y
(
(x < y)→ (∃z (x < z < y))

)
.

This theory is consistent, as, clearly, (Q, <) ⊨ DLO.
We will see a proof of the theorem below by back-and-forth. Legend has it

that the first back-and-forth proof was by Cantor, who invented the method to
prove what follows. Except this is false, and Cantor managed to prove it by only
going “forth”. Also, I have no idea whether the proof below is the first proof by
back-and-forth ever written, but nowadays it is usually the first one people see.
Anyway, here is the proof.

Theorem 1.2.3 (Cantor). All countable dense linear orders with no endpoints
are isomorphic (to (Q, <)).

Proof. Let (M,<) and (N,<) be countable dense linear orders with no end-
points. Since they are dense (or, if you prefer, since they have no endpoints),
M and N must both be infinite. Fix enumerations (ai)i<ω of M and (bj)j<ω

of N . We build an isomorphism f : M → N inductively, by extending partial
isomorphisms.

Start with f0 being the empty function. If you prefer, f0 is an isomorphism
between the empty substructure of M and the empty substructure of N . We
inductively define fn in such a way that, for every n ∈ ω \ {0},

1. fn : An → Bn, where An is a finite substructure of M and Bn is a finite
substructure of N ;

2. An ⊆ An+1, Bn ⊆ Bn+1, and fn ⊆ fn+1;

3. fn is an isomorphism of L-structures;

4. if n = 2m, then am ∈ An;

5. if n = 2m+ 1, then bm ∈ Bn.
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Suppose we manage to do this for every n ∈ ω. If you think about it for ≈ 30
seconds, you will realise that this is enough to conclude. But, to be more formal:

Because An ⊆ An+1, the union
⋃

n∈ω graph(fn) is the graph of a function,
call it f , with domain a subset of M and codomain N . In fact, by Item 4
its domain is the whole M , and its image is the whole of N by Item 5. If
m < m′ < ω, then am, am′ ∈ A2m′ and by Item 3 we have

M ⊨ am < am′ ⇐⇒ A2m′ ⊨ am < am′ ⇐⇒ B2m′ ⊨ f2m′(am) < f2m′(am′)

⇐⇒ N ⊨ f2m′(am) < f2m′(am′) ⇐⇒ N ⊨ f(am) < f(am′)

Therefore, f : M → N is an isomorphism of L-structures.
Let us do this inductive construction then. Suppose we have build an iso-

morphism fn−1 : An−1 → Bn−1 as above. Write An−1 = {ai0 < ai1 < . . . < aik}
and Bn−1 = {bj0 < bj1 < . . . < bjk}, and recall that for all i ≤ k we have ai ∈M
and bi ∈ N . If n is even, say n = 2m > 0, we take care of the “forth” part, that
is, we extend fn−1 to An := An−1 ∪ am. We have four cases:

a) If we already have am ∈ An−1, do nothing. Or, more formally, set An :=
An−1, Bn := Bn−1, and fn := fn−1.

b) am < ai0 . In this case, since N has no endpoints, in particular it has no
minimum, hence there must be some b ∈ N with N ⊨ b < bi0 . Send am
to b. Or, more formally, put An := An−1 ∪ {am}, Bn := Bn−1 ∪ {b}, and
fn := fn−1 ∪ {(am, b)}.

c) am > aik . Similarly, N has no maximum, so it contains some b > bik
where to send am. Or, more formally,. . . well, ok, you know what needs
to be written here.

d) There is ℓ < k with M ⊨ aiℓ < am < aiℓ+1
. Because N is dense, there is

b ∈ N with N ⊨ biℓ < b < biℓ+1
. Send am to b.

This takes care of the “forth” part. The “back” part, that is, the odd stages
of the construction, are handled in the same way, with the roles of M and N
reversed; the only subtlety is that, for n = 1, there are no i0, j0. In that case,
we start by simply choosing the preimage of b0 arbitrarily, e.g. we can take
f1(a0) = b0.

Corollary 1.2.4. DLO is a complete theory.

Proof. Take any two models of M0, M1 of DLO. By Löwenheim–Skolem, each
Mi has a countable elementary substructure Ni. In particular, Mi ≡ Ni, hence,
by Theorem 1.2.3,

M0 ≡ N0
∼= Q ∼= N1 ≡M1

The proof of Theorem 1.2.3 that we just saw has been the source of much
inspiration; in fact, many of the things we will see are in a sense “mined” from
it.

To begin with, when we run the proof above with M = N , we discover that
every partial isomorphism of (Q, <) with finite domain can be extended to an
element of Aut(Q). This property has a name. This is also a good point to
introduce a weaker property.
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A M

B

f

∃g
⊆

Figure 1.2: Weak homogeneity.

A

B0

B1

C⟳

f0

f1

∃g0

∃g1

Figure 1.3: The Amalgamation Property.

Definition 1.2.5. A structure M is

1. ultrahomogeneous iff, whenever A,B are finitely generated substructures
of M and f : A → B is an isomorphism, then there is g ∈ Aut(M) such
that f = g ↾ A;

2. weakly homogeneous iff, wheneverA,B are finitely generated substructures
of M and A ⊆ B, then every embedding f : A → M can be extended to
an embedding g : B →M , as in Figure 1.2

Back to classes of finitely generated structures, recall that we introduced JEP
in order to substitute the notion of “generated substructure” in the absence of an
ambient structure. In the definitions above, A and B interact as substructures
of M , so we want a way to capture this. Let us cut to the chase.

Definition 1.2.6. 1. A class K of L-structures has the Amalgamation prop-
erty (AP) iff, whenever A,B0, B1 ∈ K and, for i < 2, there are embeddings
fi : A→ Bi, then there are C ∈ K and embeddings gi : Bi → C such that
g0 ◦ f0 = g1 ◦ f1, as in Figure 1.3.

2. A Fraïssé class is a nonempty, essentially countable class of finitely gen-
erated L-structures, with L a countable language, that has the HP, JEP,
and AP.

Theorem 1.2.7 (Fraïssé). LetM be a ultrahomogeneous structure with |L|, |M | ≤
ℵ0. Then Age(M) is a Fraïssé class.

Conversely, if L is countable and K is a Fraïssé class, then there is an
ultrahomogeneous M with |M | ≤ ℵ0 and Age(M) = K. Such an M is unique
up to isomorphism.
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Definition 1.2.8. If K is a Fraïssé class, the M costructed in the second part
of Fraïssé’s Theorem is called the Fraïssé limit of K.

Lemma 1.2.9. Let |L|, |C|, |D| ≤ ℵ0. Assume Age(C) ⊆ Age(D). If D is
weakly homogeneous, then every embedding of a finitely generated substructure
of C into D can be extended to an embedding C → D.

Proof. Let A ⊆ C be finitely generated and f : A → D an embedding. Write
C as the union of a chain (that is, An ⊆ An+1) of finitely generated structures⋃

n<ω An, where A0 = A. We extend the embedding f0 := f inductively. Start
with fn : An → D. To extend this to fn+1 : An+1 → D, by weak homogeneity
all we need to do is to find a substructure of D isomorphic to An+1. Such
a substructure exists because Age(C) ⊆ Age(D). The union of the fn is the
required embedding.

Remark 1.2.10. So, countable weakly homogeneous structures are universal,
in the sense that in the assumptions above there is an embedding C → D (just
start with the structure generated in C by ∅).

Non-Example 1.2.11. Even if Age(Z, <)) = Age(Q, <), we cannot embed
(Q, <) into (Z, <). In fact, the latter is not ultrahomogeneous.

Lemma 1.2.12.

1. Let |L|, |C|, |D| ≤ ℵ0. Suppose that Age(C) = Age(D) and that both
C,D are ultrahomogeneous. For every A ⊆ C, every embedding A → D
extends to an isomorphism C → D. In particular, C ∼= D.

2. If |L|, |M | ≤ ℵ0 and M , then M is ultrahomogeneous if and only if it is
weakly homogeneous.

Proof. The previous lemma was proven by going “only forth”. If we use the
same strategy and go back and forth, we prove the first part of this lemma:
write C and D as unions of chains, say C =

⋃
n Cn, D =

⋃
nDn, starting with

C0 = A and, with the same arguments as above, ensure that dom f2n ⊇ Cn and
im f2n+1 ⊇ Dn.

For the second part, left to right is by extending to an automorphism and
then restricting, and right to left is a special case of the first part with C = D =
M .

Proof of Fraïssé’s Theorem. For the first part, by Theorem 1.1.6 we only need
to check the AP. Take an amalgamation problem B0 ← A→ B1. If these three
structures were actual substructures of M , and the maps were just inclusions,
then we could simply solve this problem by taking the embeddings of the Bi into
⟨B0 ∪B1⟩. But weak homogeneity allows to turn every amalgamation problem
in Age(M) into one of the nice form above! So the first part is done.

For the second part, we proved that Fraïssé limits of a Fraïssé class are
unique in Lemma 1.2.12, so we are left to prove existence.

Claim 1.2.13. There is a chain (Di : i < ω) of structures in K such that if
A ⊆ B ∈ K then, for every i and every embedding f : A → Di there is j > i
and an embedding g : B → Dj extending f .
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Proof of the Claim. This the AP plus some clever bookkeeping. Consider the
pairs of structures A ⊆ B ∈ K. Define two such pairs to be isomorphic in the
obvious way (hint: this involves a square commuting). List all isomorphism
types of pairs in a countable set P . Choose any bijection π : ω2 → ω with the
property that π(i, j) ≥ i.

Start with D0 ∈ K arbitrary. Inductively, suppose we have built Dk. List
as ((fkj , Akj , Bkj | j < ω)) the triples given by a pair (A,B) ∈ P and an
embedding f : A→ Dk.

In other words, after we have set up the k-th piece of the chain, we add to
our “list of tasks” all the “weak homogeneity problems” involving it. We then
use the bijection π to know which of the problems we solve now, and the AP
to actually solve it. That is, we use AP to find Dk+1 with the property that if
k = π(i, j) then fij extends to an embedding Bij → Dk+1.

claim

Let M :=
⋃

i<ωDi. By construction and the HP we have Age(M) ⊆ K. For
the other inclusion, take A ∈ K. By the JEP, there is B ∈ K where both A and
D0 embed. By the Claim, the identity D0 → D0 extends to an embedding of B
into some Dj , hence in M , so K ⊆ Age(M).

The Claim then gives us weak homogeneity, hence ultrahomogeneity by
Lemma 1.2.12.

1.3 Examples
There’s no shortage of examples of Fraïssé limits.

Example 1.3.1. The class of finite linear orders, in the language {<}, is a
Fraïssé class. Its limit is (Q, <).

Example 1.3.2. The class of finite graphs, in the language {E}, is a Fraïssé
class. We will talk about its limit at length shortly.

Example 1.3.3. The class of finite groups, in the language {·, e, (−)−1}, is
Fraïssé. Its Fraïssé limit is known as Philip Hall’s universal locally finite group.
This is not only ultrahomogeneous, but in fact every partial automorphism can
be extended to an inner automorphism.3 In other words, any two isomorphic
finite subgroups are conjugate, and it follows that this group is simple. A direct
construction can be obtained by starting with your favourite finite group G0

with at least 3 elements, then inductively using Cayley’s Theorem to embed Gn

into Gn+1 := S|Gn|, then taking the direct limit of this system.

Exercise 1.3.4. Which of the following classes are Fraïssé?

1. Triangle-free graphs.

2. Graphs with no cycles.

3. Finite k-uniform hypergraphs, that is, k-ary relations R(x1, . . . , xk) that
are irreflexive, that is, R(x1, . . . , xk) implies that all xi are pairwise dis-
tinct, and symmetric, that is, if R(x1, . . . , xk) holds and σ is a permutation
of {1, . . . , k} then Rxσ(1), . . . , xσ(k) also holds.

3Recall that an inner automorphism is one of the form x 7→ gxg−1.
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4. Finite tournaments. A tournament is a directed graph with no loops such
that for every x ̸= y exactly one of E(x, y) and E(y, x) holds.

5. Finite-dimensional vector spaces over a field K with |K| ≤ ℵ0.

6. Finitely generated abelian groups.

7. Finitely generated torsion-free abelian groups.

8. Finitely generated ordered abelian groups.

9. Finite fields.

10. Finite boolean algebras.

Exercise 1.3.5. For those of the classes above that are Fraïssé, how does the
Fraïssé limit look like?

Let us look at an instance of the exercise above in depth.

1.4 Case study: the Ra(n)do(m) Graph
Definition 1.4.1. The Random Graph, or Rado graph, is the Fraïssé limit of the
class of finite graphs: binary, symmetric, irreflexive relations, in the language
{E} of graphs.

Remark 1.4.2. The Random Graph (M,E) has the Alice Restaurant Property :
whenever U , V are disjoint finite subsets of M , there is a ∈M with an edge to
every point of U and to no point of V .

Proof. Let B := ⟨U ∪V ⟩. Let C be the graph obtained by adding to B a vertex
c with the desired properties. As Age(M) is the class of all finite graphs, we
can use Lemma 1.2.12 to embed C into M .

Remark 1.4.3. The Alice Restaurant Property is expressible by an infinite
conjunction of first-order sentences in the language of graphs: for each n, write
a sentence expressing the restriction of the property to |U |, |V | ≤ n.

Example 1.4.4. Every graph with the Alice Restaurant Property has diameter
exactly 2.

In fact, we can say much more.

Theorem 1.4.5. Every countable graph with the Alice Restaurant Property
is isomorphic to the Random Graph. In particular, the theory of the Random
Graph is complete.

Proof. This is a back-and-forth argument, just like the proof of Cantor’s the-
orem, with the Alice Restaurant Property replacing being dense without end-
points. If it does not sound obvious that it works, then it is a good exercise to
spell out the details.

Completeness is proven as in Corollary 1.2.4.4

4By the way, this trick is an instance of Vaught’s test : if T has no finite models and
has a unique model of some cardinality κ ≥ |L| + ℵ0, then T is complete. The proof is an
easy corollary of the Löwenheim–Skolem Theorem, and we essentially saw it in the proof of
Corollary 1.2.4.
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The Alice Restaurant Property is quite ubiquitous. As a witness to this,
here are some constructions that return the Random Graph.

Exercise 1.4.6. Recall that Vω is the set of hereditarily finite sets: those whose
transitive closure is finite. Equivalently, start with V0 = ∅, let Vn+1 := P(Vn),
let Vω :=

⋃
n Vn. View this as a directed graph, where a E b iff a ∈ b. Sym-

metrise it, so now a E b iff a ∈ b or b ∈ a. The resulting graph is the Random
Graph.5

Exercise 1.4.7. On the natural numbers, define a E b iff, when b is written
in base 2, the a-th digit from the right is a 1.6 Symmetrise the relation. The
resulting graph is the Random Graph.

Exercise 1.4.8. On the set of primes congruent to 1 modulo 4, set p E q iff p
is a square modulo q. This is once again the Random Graph.

And in case you were wondering why the Random Graph is called that
way. . .

Exercise 1.4.9. For every pair of distinct natural numbers, flip a coin (which
heads with fixed probability 0 < p < 1), independently. Put an edge between
those numbers if and only if the coin heads. With probability 1, the resulting
graph is the Random Graph.

Hint. How likely is the Alice Restaurant Property to fail?

Corollary 1.4.10 (0-1 law). Let φ be first-order sentence in the language {E}
of graphs. Then φ is true in almost all finite graphs or false in almost all finite
graphs, in the sense that

lim
n→∞

|{graphs on {1, . . . , n} that satisfy φ}|
|{graphs on {1, . . . , n}}|

∈ {0, 1}

Proof. As the theory Trg of the Random Graph is complete, either Trg ⊢ φ
or Trg ⊢ ¬φ. Up to replacing φ by ¬φ, assume Trg ⊢ φ. By the Compact-
ness Theorem, φ follows form the axioms of graphs (i.e. that E is symmetric
and irreflexive) plus finitely many instances of the Alice Restaurant Property
(cf. Remark 1.4.3). We may assume that these instances say that the property
holds for |U |, |V | ≤ n. The sentence saying this is true in almost all finite graphs
(in the sense above; if it’s not clear why, try doing Exercise 1.4.9), hence so is
φ.

Remark 1.4.11. This applies to things that are expressible to first-order sen-
tences. For example, the property of being connected is not expressible this
way; this is a standard compactness exercise. But note that almost all finite
graphs have diameter 2, by Corollary 1.4.10 and Example 1.4.4, and of course
this implies that they are connected.

For more on the Random Graph, see [Cam97], on which this section is based.

5Funny things happen if one looks at this kind of construction in non-well-founded set
theories. See [AHM23] (and forgive me for the shameless self-advertising).

6The least significant digit is the 0-th digit.
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1.5 Quantifier elimination

How general are the things above? Is there anything special about graphs?
Not really.

Theorem 1.5.1 (see [Hod93, Theorem 7.4.1]). If L is a finite language and K
is a Fraïssé class of uniformly locally finite structures: that is, there is a function
f such that any n-generated structure in K has size at most f(n).7 Then, the
theory of the Fraïssé limit of K has a unique countable model.

Exercise 1.5.2. The class of finite groups is not uniformly locally finite. Show
that there are at least8 two nonisomorphic countable model of the theory of its
Fraïssé limit.

Under the same assumptions, that theory has quantifier elimination.

Definition 1.5.3. A theory T has quantifier elimination iff, for every n and
every formula φ(x1, . . . , xn), there is a quantifier-free formula ψ(x1, . . . , xn) such
that

T ⊢ ∀x1, . . . , xn (φ(x1, . . . , xn)↔ ψ(x1, . . . , xn))

Note that this includes the case n = 0, that is, sentences. To avoid point-
less complications, we convene that the logic we are using has 0-ary relational
symbols ⊤ and ⊥ that are always interpreted as “true” and “false” respectively.

What’s the point of q.e.? Well, as trivial as it may sound, quantifier-free
formulas are easier to understand than formulas with quantifiers. Well, at least
if the language is simple enough (cf. Footnote 5). But having a quantifier elim-
ination result in a nice language allows us to understand definable sets.

Definition 1.5.4. A subset of a cartesian power of an L-structureM is definable
iff it is the set of solutions of a formula. That is, X ⊆ Mn is definable if and
only if there is an L-formula φ(x1, . . . , xn) such that

X = {(a1, . . . , an) ∈Mn |M ⊨ φ(a1, . . . , an)}

One similarly talks of sets definable with parameters from A ⊆M , with the
obvious meaning.

The existential quantifier corresponds to a projection, and projections are
tricky enough that even Lebesgue made a mistake with them.

So, for example, quantifier elimination in DLO implies that every definable
subset of Qn is a finite boolean combination of conditions of the form xi = xj and
xℓ < xk. For instance, in dimension 2, definable sets, even with parameters, are
just (finite) boolean combinations of vertical lines, horizontal lines, the diagonal,
the above-diagonal, and vertical or horizontal half-planes.

How does one prove quantifier elimination? One way of proving it involves
the AP. We said something above and will say something more later. Another
way is the following; in practice, in many concrete cases both approaches boil
down to verifying the same things.

7For example, this happens whenever the language has no function symbol.
8Fun fact: there is no complete theory in a countable language with exactly two countable

models up to isomorphism.
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Theorem 1.5.5. Let T be a theory with following property: for every M0, N0 ⊨
T there are M ⪰M0 and N ⪰ N0 such that the family of all partial isomorph-
isms between M and N with finitely generated domain has the back-and-forth
property. That is, if f is such a map, a ∈ M , and b ∈ N , there are a partial
isomorphisms g, h extending f with a ∈ dom(g) and b ∈ im(h).

Then T has quantifier elimination.

These ideas can also be phrased in terms of the existence of winning strategies
in certain games. Look for Ehrenfeucht–Fraïssé games and their variants.





Chapter 2

Existentially closed structures

Most of the material in this chapter is contained in [Hod93, Chapter 8].

2.1 Ordered abelian groups
Definition 2.1.1. An ordered abelian group is a structure (G,+, 0,−, <) con-
sisting of an abelian group plus a linear order such that ∀x, y, z (x < y) →
(x+ z) < (y + z).

Question 2.1.2. Is the class of finitely generated ordered abelian groups Fraïssé?

1. HP: sure.

2. JEP: as {0} embeds in every ordered abelian group, it suffices to prove
AP.

3. AP: this can be proven with a reasonable amount of effort. For a quite
direct proof, see for example [Hil, Proposition 2.3].

Still, this class fails to be essentially countable.

Exercise 2.1.3. Show that there are uncountably many pairwise non-isomorphic
2-generated ordered abelian groups.

Still, having the AP does have its consequences. Let us drop the “finitely
generated” assumption and change context.

2.2 Existentially closed structures
Definition 2.2.1. 1. LetM ⊆ N be L-structures. We say thatM is existen-

tially closed in N iff: whenever φ(x0, . . . , xn, y0, . . . , ym) is quantifier-free
and a0, . . . , am ∈ M , if N ⊨ ∃x0, . . . , xn φ(x0, . . . , xn, a0, . . . , am) then
M ⊨ ∃x0, . . . , xn φ(x0, . . . , xn, a0, . . . , am).

2. If K is a class of L-structures, say closed under isomorphism1 we say that
M ∈ K is existentially closed in K iff, whenever M ⊆ N ∈ K then M is
existentially closed in N .

1Otherwise, you need to start talking about embeddings.

13
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The idea is: M is existentially closed in K if a solution to some quantifier-
free formula, possibly with parameters, can be added in an extension, while
staying in K, then there was already a solution in M .

Question 2.2.2. Do these things exist?

Sure:

Example 2.2.3. A field is existentially closed2 if and only if it is algebraically
closed.

Proof. To prove the nontrivial direction, one uses Rabinowitsch trick and some
syntax manipulation to reduce to formulas stating that if a variety has a point in
a larger field then it already has one, then applies (a form of) the Nullstellensatz.

Example 2.2.4. A Q-vector space is existentially closed if and only if it is
nontrivial. Here the language is very important: the field is not part of the
structure, but part of the language, and this makes being linearly independent
not expressible.

Example 2.2.5. A torsion-free abelian group is existentially closed if and only
if it nontrivial and divisible. That is, if and only if it is a nontrivial Q-vector
space.

Example 2.2.6. A graph is existentially closed if and only if it satisfies the
Alice Restaurant Property. This is true almost by definition.

Well, in fact:

Example 2.2.7. Let |L| ≤ ℵ0 and fix a Fraïssé class J . Let K be the class
of all structures (not necessarily countable) M with Age(M) ⊆ J . Then the
Fraïssé limit of J is existentially closed in K.

Question 2.2.8. Do enough of these things exist? Also, is there a general
method of construction?

Of course:

Definition 2.2.9. A class of L-structures K is inductive iff it is closed under
isomorphism and under unions of chains.

Exercise 2.2.10. Being closed under unions of chains is equivalent to the (ap-
parently more general) property of being closed under inductive limits (that is,
limits along an upward directed system).

Theorem 2.2.11. If K is inductive, then for every A ∈ K there is an existen-
tially closed B ∈ K with A ⊆ B.

Proof. This is bookkeeping: enumerate things in a sensible way, keep adding
solutions, take unions at limit stages; being inductive ensures the last thing can
be done.

2I.e., it is existentially closed in the class of fields. This abuse of terminology is quite
standard and we will use it.
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If K is the class of models of a first-order theory, there is a very nice way to
check whether it is inductive.

Theorem 2.2.12 (Chang–Łos–Suzsko). Let T be an L-theory. Then Mod(T )
is inductive if and only if T has a ∀∃-axiomatisation.3

∀∃-axiomatisable theories are called inductive for the reason above.

2.3 Q.e. via the AP

Definition 2.3.1. Given T , write T∀ for the set of its universal consequences.
That is, those sentences φ where all quantifiers are ∀ and are all in the beginning
of the formula, and such that T ⊢ φ.

Here is another standard fact:

Theorem 2.3.2. Models of T∀ are the same as substructures of models of T .

Theorem 2.3.3. Let T be an inductive theory. Assume that:

1. The class of existentially closed models of T is elementary, that is, of the
form Mod(T ′), and4

2. Mod(T∀) has the AP.

Then T ′ has quantifier elimination.

These matters are very sensitive to the language. This only makes sense,
as these notions are related to embeddings, and what counts as an embedding
does depend on the language. And so does quantifier elimination!5

2.4 Q.e. in fields

Definition 2.4.1. The language of rings is Lring := {+, 0,−, ·, 1}. The theory
ACF of algebraically closed fields is the Lring-theory with these axioms.

1. Axioms of fields.

2. For every n ≥ 2, an axiom saying “every monic polynomial of degree n has
a root”.

We already said that, for a field, being algebraically closed is the same as
being existentially closed. Substructures of fields in Lring, that is, models of T∀,
are the same as integral domains, and these can be amalgamated. Therefore,
Theorem 2.3.3 gives us:

3All that counts is alternations, but multiple consecutive ∀ or ∃ are allowed. For example,
∀x ∀y ∃z ∃w φ(x, y, z, w), with φ(x, y, z, w) quantifier-free, counts as a ∀∃-sentence.

4This assumption can be relaxed if one is happy to work in a different logic. An example
of this is [DM24]. This is also another example of shameless self-advertising.

5 In fact, every L-theory has an expansion by definitions, called its morleyisation, that
is ∀∃ axiomatised and has quantifier elimination. This theory is in a larger language, say
L′ (hence, there’s fewer embeddings), but every L′-formula is equivalent modulo it to some
L-formula.
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Theorem 2.4.2. ACF has quantifier elimination in Lring.

Definition 2.4.3. Recall that, if K ⊨ ACF a set X ⊆ Kn is

1. Zariski closed iff it is the set of zeroes of a family of polynomials;

2. constructible iff it is a finite boolean combination of Zariski closed sets.

With this terminology, and keeping in mind that an existential quantifier
corresponds to a coordinate projection, we get:

Corollary 2.4.4 (Chevalley–Tarski). If K ⊨ ACF and X ⊆ Kn+1 is construct-
ible, then its projection to Kn is constructible.

This is false for Zariski closed sets: consider the formula ∃x xy = 1.
Is ACF complete? No, as it does not decide whether 1+1 = 0. But choosing

the characteristic is the only obstruction.

Theorem 2.4.5. The completions of ACF are obtained by specifying the char-
acteristic.

Proof. Fix p either a prime or 0. The only nontrivial thing to prove is that ACFp,
obtained from ACF by saying that the characteristic is p (for 0, use infinitely
may axioms: 1 + 1 ̸= 0, 1 + 1 + 1 ̸= 0. . . ), is complete. If you know about
transcendence bases, you can prove this by Vaught’s test.

Instead, let us use quantifier elimination. Given K,L ⊨ ACFp, consider
the (unique) embedding of the prime field F (either Q or Fp) in them. Take
a sentence φ. By quantifier elimination, φ is equivalent modulo ACF, hence
modulo ACFp, to a quantifier-free sentence ψ. But if A ⊆ B, and ψ is quantifier-
free, then A ⊨ ψ ⇐⇒ B ⊨ ψ. So we have6

K ⊨ φ ⇐⇒ K ⊨ ψ ⇐⇒ F ⊨ ψ ⇐⇒ K ⊨ ψ ⇐⇒ K ⊨ φ

So every two models of ACFp satisfy the same sentences. By the Completeness
Theorem, ACFp is complete.

Elisabeth will tell you more about model theory of fields, and show you some
very nice proofs exploiting what we have just seen.

Just to mention another instance of quantifier elimination in fields:

Definition 2.4.6. The language of ordered rings is {+, 0,−, ·, 1, <}. The theory
RCF of real closed fields is axiomatised by:

1. Axioms of fields.

2. Addition is increasing, multiplication by positive numbers is increasing.

3. Every positive element has a square root.

4. Every polynomial of odd degree has a zero.

There’s several other characterisations, see [Wik]

Theorem 2.4.7. RCF is complete, coincides with the theory of R, and elimin-
ates quantifiers in the language of ordered rings.

6Note that ψ will not in general be equivalent to φ in F .
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Definition 2.4.8. If K ⊨ RCF ,a set X ⊆ Kn is semialgebraic iff it is a finite
union of sets, each of which is the set of solutions of a finite system of polynomial
equations and inequalities.

Corollary 2.4.9 (Tarski–Seidenberg). The projection of a semialgebraic set is
semialgebraic.
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