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In questo talk
Parleremo di: i Teoremi di Incompletezza di Gödel.

Perché esistono?
Cosa dicono, e come si dimostrano?
Epilogo

Disclaimer:
• È tutto un po’ romanzato.
• Molti dettagli verranno nascosti sotto il tappeto.
• Useremo un linguaggio più moderno di quello disponibile all’epoca.
• Vedremo versioni “moderne” dovute al lavoro non solo di Gödel: altri nomi sono

Rosser, Robinson, Tarski, e mi fermo ma ci sarebbe da citare tanta altra gente.

Interrompetemi e fate domande!
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Matematica sempre più astratta

• 2 + 2 = 4

• (a+ b)2 = a2 + 2ab+ b2

•
∫∞
0 sin(x)e−x dx = 1

2

• |N| = |Q| < |R| (vedi lezione seguente)
• Di quali di questi enunciati ci si può fidare?
• Sulla base di cosa?
• Hanno veramente un significato?
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Una possibile reazione (2020)
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Circa un secolo prima
• Nessuno mette in dubbio che 2 + 2 = 4, e pochi ne vogliono una dimostrazione.

• Però per cose meno evidenti una dimostrazione serve.
• Fra il 1600 e il 1900, i matematici iniziano ad usare “tecniche infinitarie” sempre

più forti.
• Per esempio: numeri infiniti e infinitesimi per definire e calcolare integrali e

derivate.
• Oppure, “insiemi infiniti sempre più grandi”.
• Ci si può fidare?
• Hanno senso?
• Posso usarli anche se “non ci credo”? Se uso “numeri infiniti” per dimostrare che

5 + 7 = 12, ho veramente dimostrato che 5 + 7 = 12?
• Facciamo un passo indietro, e vediamo più o meno come si fa una dimostrazione.
• Anzi, guardiamone una al contrario.
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Una dimostrazione al contrario
• “Ci sono chiavi RSA complesse quanto vuoi.”

• “Perché?”
• “Perché ci sono infiniti numeri primi.”
• “Perché?”

•
...

• (svariati estenuanti minuti dopo)

•
...

• “Perché?”
• “Perché (1 + 1) + 1 = 1 + (1 + 1).
• “Perché?”
• “Scusa, devo portare il pesce rosso a passeggio.”
• “Davvero?”
• “No. Alcune cose le prendiamo per buone e basta.”
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Fondare la matematica da zero
• Insomma, alcuni principi di base bisogna prenderli per buoni.

• Questi li chiamiamo assiomi.
• Poi, a partire dagli assiomi, dimostriamo cose via via più complesse.
• Già visto in geometria: assiomi di Euclide.
• Gli assiomi di Euclide non bastano per fare tutta la matematica.
• Scelta popolare: prendere come assiomi alcune proprietà di base degli insiemi.
• Esempio: “se due insiemi x, y hanno gli stessi elementi, allora x = y”.
• Primo tentativo: magari possiamo fondare la matematica su due assiomi:

1. se due insiemi x, y hanno gli stessi elementi, allora x = y;
2. per ogni proprietà P , esiste l’insieme delle cose che la soddisfano, {x : P (x)}.

• Esempio: l’insieme dei naturali pari è uguale a
{x : x è un naturale, e c’è un naturale y tale che x = y + y}.

• Questo primo tentativo ha dei problemi.
• Per cominciare: cosa è una proprietà?
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Cosa è una proprietà?
• Se come “proprietà” prendiamo quelle esprimibili in italiano abbiamo un

problema: il paradosso del mentitore.

• La proprietà “questa proprietà è falsa” è vera o falsa?
• Bisogna mettere su un linguaggio formale.
• Ce ne sono tanti. Useremo la logica del prim’ordine.
• In breve, un linguaggio del prim’ordine L è un insieme di simboli di costante,

funzione e relazione. Per esempio 1, +, <.
• Da questi simboli costruiamo le formule usando anche:

• Variabili (x, y, z, . . .).
• Parentesi ((, )).
• Uguaglianza (=).
• Connettivi logici: per esempio “non” (¬) e “se. . . allora” (→).
• Quantificatori: “esiste” (∃), “per ogni” (∀).

• Per esempio, se P (x, y) è la formula x = y · y, allora ∃x ∀y ¬P (x, y) dice “esiste
un numero che non è un quadrato”.

• Questa formula è vera “dentro N”, ma è falsa “dentro C”.
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• Variabili (x, y, z, . . .).
• Parentesi ((, )).
• Uguaglianza (=).
• Connettivi logici: per esempio “non” (¬) e “se. . . allora” (→).
• Quantificatori: “esiste” (∃), “per ogni” (∀).

• Per esempio, se P (x, y) è la formula x = y · y, allora ∃x ∀y ¬P (x, y) dice “esiste
un numero che non è un quadrato”.

• Questa formula è vera “dentro N”, ma è falsa “dentro C”.
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Insomma problema risolto?

• Il problema, “dire cos’è una
proprietà” si risolve

: per gli
insiemi, usiamo il linguaggio con
un simbolo di relazione “∈”, che
vuol dire “appartiene a”.

• In altre parole, x ∈ y vuol dire
“x è un elemento di y”.

• Per esempio, questa formula dice
“x ha al più un elemento”:

∃y
(
∀z

(
(z ∈ x) → (z = y)

))
“Ciao, sono Bertrand Russell, e qui c’è un secondo problema.”
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Il barbiere di Bertrand
• Chiamiamo P,(x) la proprietà ¬(x ∈ x). Cioè: x non è un elemento di sé stesso.

• Ad esempio: A = {13, A} è un elemento di sé stesso, quindi P,(A) è falsa.
• Invece B = {13, {2}} non è elemento di sé stesso, quindi P,(B) è vera.

• Stiamo assumendo: “per ogni proprietà P , esiste l’insieme {x : P (x)}”.
• Quindi esiste l’insieme R = {x : P,(x)} = {x : ¬(x ∈ x)}.
• Chiediamoci se P,(R) è vera.

P,(R) vuol dire che ¬(R ∈ R).
• Se P,(R) è vera, allora R è uno degli x tali che P,(x). Quindi R ∈ R.
• Ma P,(R) è la negazione di R ∈ R. Quindi P,(R) è falsa.
• Insomma, se P,(R) è vera, allora P,(R) è falsa. Quindi P,(R) non è vera.
• Allora P,(R) è falsa. Questo vuol dire R ∈ R.
• Ma tutti gli elementi x ∈ R soddisfano ¬(x ∈ x). Quindi ¬(R ∈ R).
• Insomma, se P,(R) è falsa, allora P,(R) è vera. Quindi P,(R) non è falsa.
• Riassunto: (R ∈ R) ↔ (¬(R ∈ R)). Questa è una contraddizione.
• Quindi assumere che l’insieme {x : P (x)} esista per tutte le proprietà P nel

linguaggio {∈} porta a una contraddizione.
• Potreste aver sentito qualcosa di simile con un isola e un barbiere.
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Cose false e cosa farci

• Insomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

• Questo è già male. Ma c’è di peggio.
• Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
• DAVVERO TUTTO (vedi titolo).
• Questo, per quanto controintuitivo, è un fatto base di logica.
• Facciamo un esempio, anche questo dovuto a Bertrand Russell.

• Russell: “da premesse false si può dimostrare tutto”
• Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
• Russell:

• “Aggiungiamo 1 da entrambi i lati, otteniamo 2 = 1.”
• “L’insieme {io, il papa} ha 2 elementi.”
• “Ma abbiamo detto che 2 = 1, quindi l’insieme {io, il papa} ha 1 elemento.”
• “Quindi io sono il papa.”
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Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimostriamo cose false?

(quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”

Il Programma di Hilbert:

• Mettiamo su un linguaggio formale in cui esprimere
tutti gli enunciati matematici. Chiamiamolo L.

Spoiler: si può fare in L = {∈}.

• Mettiamo su un “sistema per fare le dimostrazioni”:
delle regole che ci permettono di formalizzare come da
certi enunciati ne seguono altri. Chiamiamolo S.

Spoiler: questo pure si può fare; esempio:

(Ax)
A ∧B ⊢ A ∧B(El.∧)
A ∧B ⊢ B

(Ax)
A ∧B ⊢ A ∧B(El∧.)

A ∧B ⊢ A(In∧)
A ∧B ⊢ B ∧A
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Il Programma di Hilbert (continua)
Facciamo:
• Un linguaggio formale L in cui scrivere tutta la matematica.
• Un “sistema per fare le dimostrazioni” S.

• Facciamo anche due liste di assiomi (“teorie”):

• Una Tforte potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”; per esempio una teoria degli insiemi (magari non quella di prima ,).

• Una con meno assiomi, Tdebole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1 + 1) + 1 = 1 + (1 + 1).

• Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.
• Sennò, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice

se questo è un assioma di T o no. (se non chiediamo questo si può “barare”)

Scriviamo T ⊢ F per dire che T , con le regole S, dimostra la formula F .

• Dimostriamo che Tforte è completa: per ogni F , o Tforte ⊢ F oppure Tforte ⊢ ¬F .

• (gli assiomi di Tforte li scegliamo con cura, così Tforte “dimostra tutte le cose vere”)

• Dimostriamo che Tforte è coerente: non succede che Tforte ⊢ F e anche Tforte ⊢ ¬F .
• Tutto questo lo dimostriamo dentro Tdebole, di cui ci si può fidare.
• Ma allora ci possiamo fidare di tutta la matematica!
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Il Programma di Hilbert (DLC extra-lusso)
Facciamo:
• Un linguaggio formale L in cui scrivere tutta la matematica.
• Un “sistema per fare le dimostrazioni” S.
• Una teoria Tforte per fare tutta la matematica
• Una teoria Tdebole di cui ci fidiamo.
• App per sapere cosa è un assioma di Tdebole e di Tforte.
• Dimostrazione in Tdebole che Tforte è completa.
• Dimostrazione in Tdebole che Tforte è coerente.

• Già che ci siamo, facciamo anche vedere che Tforte è conservativa su Tdebole: tutte
le cose sui numeri naturali che dimostriamo usando reali, infiniti etc le possiamo
dimostrare anche senza.

Giusto per stare più tranquilli.
• Ah, e che è tutto decidibile: scriviamo anche un’app che, dato un L-enunciato, ti

dice se è vero o falso.
• Insomma, una calcolatrice che sa risolvere tutti i problemi.
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34495 giorni fa, a Königsberg
• 34495 giorni fa (è il 1930), a Königsberg, c’è una conferenza di matematica.

(Königsberg è oggi Kaliningrad (Russia))

• C’è Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si può risolvere?

Secondo me perché non esistono!
Il programma sta andando bene, prima o poi saremo in grado di risolvere tutto.
Comunque ora vado in pensione, fate ammodino, xoxo.”

• 34493 giorni fa, a Königsberg,
durante una tavola rotonda nella
stessa conferenza:

• Lì per lì nessuno sembra farci
troppo caso, tranne John von
Neumann, che va a parlargli.

“Ciao, sono Kurt Gödel, e avrei dimostrato questa cosina.”
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Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gödel (versione moderna))
Siano L un linguaggio del prim’ordine e T una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti l’aritmetica di Robinson. Allora T è incompleta.

Teorema (Primo Teorema di Incompletezza di Gödel (detto male))
Se T è una teoria
• che “contiene abbastanza aritmetica”, (vediamo dopo)

• per cui si può fare un’app che ci dice se un’enunciato è un assioma oppure no, e
• che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora T non dimostra tutte le cose vere nei numeri naturali.

Teorema (Primo Teorema di Incompletezza di Gödel (detto malissimo))
Il programma di Hilbert non si può fare. Perlomeno non tutto.
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Esprimere abbastanza artimetica? Scrivere delle app?
Primo Teorema di Incompletezza di Gödel (detto male): Se T è una teoria
• che “contiene abbastanza aritmetica”,
• per cui si può fare un’app che ci dice se un’enunciato è un assioma oppure no, e
• che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora T non dimostra tutte le cose vere nei numeri naturali.

• Quanta aritmetica è “abbastanza aritmetica”?

• Basta che T abbia almeno questi assiomi (aritmetica di Robinson):

• ∀x (x+ 1 ̸= 0)

• ∀x∀y ((x+ 1 = y + 1) → (x = y))

• ∀y ((y ̸= 0) → (∃x x+ 1 = y))

• ∀x (x+ 0 = x)

• ∀x∀y (x+ (y + 1) = (x+ y) + 1)

• ∀x (x · 0 = 0)

• ∀x, y (x · (y + 1) = (x · y) + x)
• Se ci aggiungiamo anche assiomi per l’induzione otteniamo l’Aritmetica di Peano.
• Nel 1930 non esistevano computer né app.

Per avere una nozione precisa di
“calcolabile” c’è voluto qualche altro anno (Gödel, Church, Turing).
In un certo senso, i computer esistono perché un po’ di logici matematici
volevano sapere quanto in là andava il Teorema di Gödel.
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Dillo con un numero
• Il primo passo per dimostrare il Primo Teorema di Incompletezza è tradurre

tutto in numeri

: formule, dimostrazioni, app.

• Le formule sono delle speciali sequenze finite di simboli.
• Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere

come codificare le sequenze finite.
• Per esempio, codifichiamo la formula (1 + 1) + 1 = 1 + (1 + 1) con un numero.
• In ASCII, il simbolo “1” corrisponde al numero 49.
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Perché? Cosa e come? Epilogo

Cosa è una dimostrazione?
• Una dimostrazione dell’enunciato F nella teoria T è una successione finita di

formule che inizia con assiomi di T , finisce con F e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

• Ma tanto le formule le sappiamo codificare coi numeri.
• E le successioni finite di cose che sappiamo codificare coi numeri, le sappiamo a

loro volta codificare coi numeri.
• Bisogna codificare anche gli assiomi di T . Se sono infiniti, non possiamo scriverli

tutti esplicitamente dentro un numero. Ma se c’è un app, possiamo codificare
con un numero il codice sorgente dell’app! (anche per le regole di dimostrazione “c’è un’app”)

• Fare questo richiede abbastanza lavoro e ci sono un bel po’ di dettagli da
controllare.

Ve li risparmio, ma il punto è:

Lemma
Se T è una “teoria che contiene abbastanza aritmetica”, allora c’è una formula
DT (x) tale che, per ogni n numero naturale, T ⊢ DT (n) se e solo se n codifica una
formula che ha una dimostrazione in T .
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• Quindi T ̸⊢ G, e G dice “T non mi dimostra”. Ma allora G è vera in N!
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Come si costruisce questa formula?

• Resta da fare: costruire una formula G tale che T ⊢ G ↔ ¬DT (⌜G⌝).

• Come G non possiamo prendere direttamente ¬DT (⌜G⌝).

• Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
⌜G⌝ spalmato fra vari esponenti.

• Da questo seguirebbe facilmente la contraddizione ⌜G⌝ > ⌜G⌝.

• Un trucco per risolvere il problema è prendere una G che dice:

¬DT (n) dove n è il risultato di un certo conto C

e scrivere un conto C che restituisce proprio ⌜G⌝.
• Se invece che in un linguaggio formale stessimo lavorando in italiano,

G avrebbe un aspetto del genere:
“, preceduta da sé stessa fra virgolette, non è dimostrabile.”, preceduta da sé

stessa fra virgolette, non è dimostrabile.
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Abbiamo dimostrato il Primo Teorema di Incompletezza?
(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti l’aritmetica di Robinson. Allora T è incompleta.

• Non del tutto. Abbiamo dimostrato la versione “detta male”: per ogni T [tale
che. . . ] c’è un’enunciato G vero in N che T non dimostra, cioè T ̸⊢ G.

• Per quella “enunciata bene” serve una formula R tale che T ̸⊢ R e T ̸⊢ ¬R.
• Il trucco (dovuto a Rosser) è scrivere una R che dice “se io ho una dimostrazione,

allora la mia negazione ne ha una più corta”.
• Provate a capire perché questa R funziona.
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• Il trucco (dovuto a Rosser) è scrivere una R che dice “se io ho una dimostrazione,

allora la mia negazione ne ha una più corta”.
• Provate a capire perché questa R funziona.
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E il Programma di Hilbert???

von Neumann, 34,419 giorni fa, 75 giorni dopo aver parlato con Gödel, gli scrive:

“Caro Kurt, sai cosa segue
dal tuo Primo Teorema di
Incompletezza?”

“Il mio Secondo Teore-
ma di Incompletezza; l’ho
giusto mandato a una ri-
vista, gli è arrivato 3
giorni fa.”



Perché? Cosa e come? Epilogo

E il Programma di Hilbert???

von Neumann, 34,419 giorni fa, 75 giorni dopo aver parlato con Gödel, gli scrive:

“Caro Kurt, sai cosa segue
dal tuo Primo Teorema di
Incompletezza?”

“Il mio Secondo Teore-
ma di Incompletezza; l’ho
giusto mandato a una ri-
vista, gli è arrivato 3
giorni fa.”



Perché? Cosa e come? Epilogo

Ma il sistema questo teorema lo sa dimostrare?
• Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:

“se T (soddisfa certe ipotesi ed) è coerente, allora non dimostra G”.

• Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T .

Cioè:

T ⊢ (¬DT (⌜0 = 1⌝))︸ ︷︷ ︸
“T è coerente”

→ ¬DT (G)︸ ︷︷ ︸
↔G

(∗)

• Hilbert voleva Tdebole ⊢ ¬DTforte
(⌜0 = 1⌝).

• Dato che Tdebole dovrebbe avere meno assiomi di Tforte, ne seguirebbe
Tdebole ⊢ ¬DTdebole

(⌜0 = 1⌝).
• Ma per (∗), allora Tdebole ⊢ ¬DTdebole

(G).
• Che è equivalente a G. Quindi Tdebole ⊢ G.
• Ma il Primo Teorema di Incompletezza dice che Tdebole ̸⊢ G!
• Quindi, ci sono brutte notizie per Hilbert: se Tdebole è coerente, allora non

dimostra di essere coerente. Figuriamoci se dimostra la coerenza di Tforte!
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Il Secondo Teorema di Incompletezza

Abbiamo appena dimostrato il:

Teorema (Secondo Teorema di Incompletezza di Gödel (versione moderna))
Siano L un linguaggio del prim’ordine e T una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti l’aritmetica di Robinson. Allora T non dimostra la
sua coerenza.

In altre parole abbiamo visto come si dimostra che T non dimostra che non può
dimostrare tutto. A meno che T non dimostri DAVVERO TUTTO.
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Il mondo dopo i Teoremi di Incompletezza
• Dai Teoremi di Gödel, molta gente ha tratto conclusioni affrettate.

• Tipicamente cose tipo “la mente umana è più potente di qualunque computer”.
• Non ne discuteremo, comunque i Teoremi di Gödel non dicono questo.
• Una cosa che molti si dimenticano quando enunciano i Teoremi di Gödel è

l’ipotesi “si deve poter scrivere un’app che riconosce gli assiomi”.
• Questa ipotesi è cruciale

: la collezione di tutte le formule vere in N è completa e
coerente. Ma non è ricorsivamente assiomatizzabile.

• E il programma di Hilbert?
• Beh, qualcosa è comunque stato fatto. Per esempio, di “numeri infiniti e

infinitesimi” si può parlare in maniera rigorosa.
• Si chiama analisi non-standard, e in sostanza permette di ragionare “come

Newton e Leibniz”: senza ε e δ ma con veri infinitesimi. Rigorosamente.
• Ma questa è un’altra storia.
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Ma quindi della matematica ci possiamo fidare?
• Per il Secondo Teorema di Incompletezza, nessuna teoria ricorsivamente

assiomatizzabile coerente dell’aritmetica dimostra la sua coerenza.

• Questo non vieta a nessuno di dimostrarla in sistemi più forti!
• Oggi, di solito si formalizza la matematica in una teoria chiamata ZFC.
• È una teoria degli insiemi, e dimostra che l’Aritmetica di Peano è coerente.
• Ma ZFC non dimostra che ZFC è coerente. . .
• . . . o perlomeno nessuno è riuscito a dimostrare dentro ZFC che ZFC è coerente.
• N.B.: per il Secondo Teorema di Incompletezza, se qualcuno ci riesce, allora ha

dimostrato che ZFC è incoerente!
• Se questo dovesse succedere si ride tantis il consenso è che una modificazione

minore di ZFC dovrebbe risolvere il problema.
• Riguardo il Primo Teorema di Incompletezza, nel caso di ZFC, è venuto fuori che

vari enunciati “naturali” sono indimostrabili e irrefutabili. (assumendo che ZFC sia coerente)

• Ne vedrete uno esplicito in un’altra lezione in questi giorni.
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E quella storia della decidibilità?
• Hilbert voleva scrivere un’app che decidesse se un enunciato matematico è vero.

• Una conseguenza dei Teoremi di Incompletezza è che questo non si può fare: la
teoria di (N,+, ·) “è indecidibile”.

• Insomma, non si può fare un’app che risolve tutta l’aritmetica.
• Figuriamoci una che risolve tutta la matematica!
• Però, se ne possono fare alcune che ne risolvono dei pezzi.
• Per esempio, se ne può fare una che risolve tutta la “geometria algebrica”.
• Più precisamente: la teoria di (C,+, ·) è decidibile (Tarski).
• In un certo senso, i numeri complessi sono “più facili” dei numeri naturali.
• Ma per C, c’è fisicamente un’app? Da dove la scarico?
• Si può scrivere

, ma si può anche dimostrare che ogni app del genere è
condannata ad essere talmente lenta da essere inutilizzabile.
Ma pure questa è un’altra storia.

Grazie per l’attenzione!
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teoria di (N,+, ·) “è indecidibile”.
• Insomma, non si può fare un’app che risolve tutta l’aritmetica.
• Figuriamoci una che risolve tutta la matematica!
• Però, se ne possono fare alcune che ne risolvono dei pezzi.
• Per esempio, se ne può fare una che risolve tutta la “geometria algebrica”.
• Più precisamente: la teoria di (C,+, ·) è decidibile (Tarski).
• In un certo senso, i numeri complessi sono “più facili” dei numeri naturali.

• Ma per C, c’è fisicamente un’app? Da dove la scarico?
• Si può scrivere

, ma si può anche dimostrare che ogni app del genere è
condannata ad essere talmente lenta da essere inutilizzabile.
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