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Di quali di questi enunciati ci si puo fidare?

Sulla base di cosa?
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Una possibile reazione (2020)
STOP DOING MATH

® NUMBERS WERE NOT SUPPOSED TO BE GIVEN NAMES

® YEARS OF COUNTING yet NO REAL-WORLD USE FOUND
for going higher than your FINGERS

® Wanted to go higher anyway for a laugh? We had a tool for
that: It was called “GUESSING”

® "Yes please give me ZERO of something. Please give me
INFINITY of it - Statements dreamed up by the utterly
Deranged

LOOK at what Mathematicians have been demanding your Respect
for all this time, with all the calculators & abacus we built for them
(This is REAL Math, done by REAL Mathematicians):

277?77 922272? 2222222222222227?

“Hello | would like €€ apples please”

They have played us for absolute fools
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Circa un secolo prima

Nessuno mette in dubbio che 2 + 2 = 4, e pochi ne vogliono una dimostrazione.
Pero per cose meno evidenti una dimostrazione serve.

Fra il 1600 e il 1900, i matematici iniziano ad usare “tecniche infinitarie” sempre
piu forti.

Per esempio: numeri infiniti e infinitesimi per definire e calcolare integrali e
derivate.

Oppure, “insiemi infiniti sempre piu grandi”.

Ci si puo fidare?

Hanno senso?

Posso usarli anche se “non ci credo”? Se uso “numeri infiniti” per dimostrare che
54 7 = 12, ho veramente dimostrato che 5 +7 = 127

Facciamo un passo indietro, e vediamo pitt 0 meno come si fa una dimostrazione.

Anzi, guardiamone una al contrario.
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Una dimostrazione al contrario
e “Ci sono chiavi RSA complesse quanto vuoi.”
e “Perché?”

® “Perché ci sono infiniti numeri primi.”

e “Perché?”

¢ (svariati estenuanti minuti dopo)

e “Perché?”

® “Perché (1+1)+1=14(1+1).

® “Perché?”

® “Scusa, devo portare il pesce rosso a passeggio.”
e “Davvero?”

e “No. Alcune cose le prendiamo per buone e basta.”
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funzione e relazione. Per esempio 1, +, <.
® Da questi simboli costruiamo le formule usando anche:
® Variabili (z,y,z2,...).
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Cosa € una proprieta?
Se come “proprietd” prendiamo quelle esprimibili in italiano abbiamo un
problema: il paradosso del mentitore.

La proprieta “questa proprieta € falsa” ¢ vera o falsa?

Bisogna mettere su un linguaggio formale.

Ce ne sono tanti. Useremo la logica del prim’ordine.

In breve, un linguaggio del prim’ordine L ¢ un insieme di simboli di costante,

funzione e relazione. Per esempio 1, +, <.
® Da questi simboli costruiamo le formule usando anche:
® Variabili (z,y,z2,...).
® Parentesi ((,)).
® Uguaglianza (=).
® Connettivi logici: per esempio “non” (—) e “se... allora” (—).
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Cosa & una proprieta?
Se come “proprietd” prendiamo quelle esprimibili in italiano abbiamo un
problema: il paradosso del mentitore.
La proprieta “questa proprieta € falsa” ¢ vera o falsa?
Bisogna mettere su un linguaggio formale.
Ce ne sono tanti. Useremo la logica del prim’ordine.
In breve, un linguaggio del prim’ordine L ¢ un insieme di simboli di costante,

funzione e relazione. Per esempio 1, +, <.
® Da questi simboli costruiamo le formule usando anche:
Variabili (z,y, z, .. .).
Parentesi ((,)).
Uguaglianza (=).
Connettivi logici: per esempio “non” (—) e “se... allora” (—).
Quantificatori: “esiste” (3), “per ogni” (V).
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® Se come “proprietd” prendiamo quelle esprimibili in italiano abbiamo un
problema: il paradosso del mentitore.
La proprieta “questa proprieta € falsa” ¢ vera o falsa?
Bisogna mettere su un linguaggio formale.
Ce ne sono tanti. Useremo la logica del prim’ordine.
In breve, un linguaggio del prim’ordine L ¢ un insieme di simboli di costante,
funzione e relazione. Per esempio 1, +, <.
® Da questi simboli costruiamo le formule usando anche:
Variabili (z,y, z, .. .).
Parentesi ((,)).
Uguaglianza (=).
Connettivi logici: per esempio “non” (—) e “se... allora” (—).
Quantificatori: “esiste” (3), “per ogni” (V).
® Per esempio, se P(x,y) é la formula = y - y, allora 3z Vy —P(x,y) dice “esiste
un numero che non é un quadrato”.
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Cosa & una proprieta?
® Se come “proprietd” prendiamo quelle esprimibili in italiano abbiamo un
problema: il paradosso del mentitore.
La proprieta “questa proprieta € falsa” ¢ vera o falsa?
Bisogna mettere su un linguaggio formale.
Ce ne sono tanti. Useremo la logica del prim’ordine.
In breve, un linguaggio del prim’ordine L ¢ un insieme di simboli di costante,
funzione e relazione. Per esempio 1, +, <.
® Da questi simboli costruiamo le formule usando anche:
Variabili (z,y, z, .. .).
Parentesi ((,)).
Uguaglianza (=).
Connettivi logici: per esempio “non” (—) e “se... allora” (—).
Quantificatori: “esiste” (3), “per ogni” (V).
® Per esempio, se P(x,y) é la formula = y - y, allora dice “esiste
un numero che non é un quadrato”.
° ¢ vera “dentro N”, ma ¢é falsa “dentro C”.
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® ]l problema, “dire cos’é una
proprieta” si risolve: per gli
insiemi, usiamo il linguaggio con
un simbolo di relazione “€”, che
vuol dire “appartiene a”.

® In altre parole, x € y vuol dire
“x & un elemento di y”.

® Per esempio, questa formula dice
“z ha al pitt un elemento”

Jy (Vz (zex)— (2= y)))
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Insomma problema risolto?

® ]l problema, “dire cos’é una
proprietd” si risolve: per gli
insiemi, usiamo il linguaggio con
un simbolo di relazione “€”; che
vuol dire “appartiene a”.

® In altre parole, x € y vuol dire
“x & un elemento di y”.

® Per esempio, questa formula dice
“z ha al pitt un elemento”

Jy (Vz ((z €x)—(z= y)))

\

“Ciao, sono Bertrand Russell, e qui ¢’é un secondo problema.”



Perché? Cosa e come? Epilogo
0000000 e00000 00000000000 000

Il barbiere di Bertrand

® Chiamiamo Pg () la proprieta =(z € x). Cioé: z non ¢ un elemento di sé stesso.
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Il barbiere di Bertrand
® Chiamiamo Pg () la proprieta =(z € x). Cioé: z non ¢ un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non ¢ elemento di sé stesso, quindi Pg (B) ¢ vera.
¢ Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
* Quindi esiste I'insieme R = {z : Pg(z)} = {z : ~(z € x)}.
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Il barbiere di Bertrand
Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non ¢ elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) ¢ vera.
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Il barbiere di Bertrand
Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non ¢ elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste 'insieme ={x:-(rxex)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora . Quindi R € R.



Perché?
0000000 e00000

Il barbiere di Bertrand
Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non ¢ elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) ¢ vera. vuol dire che .
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma



Perché?
0000000 e00000

Il barbiere di Bertrand
Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non ¢ elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) ¢ vera. vuol dire che .
Se Pg(R) é vera, allora R ¢ uno degli z tali che Pg (x). Quindi
Ma Pg(R) ¢ la negazione di R € R. Quindi .
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® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
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Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
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Il barbiere di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa.
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Il barbiere di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) ¢ vera. vuol dire che .
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire
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Il barbiere di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme /7 = {z : Pg(x)} .
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.
Ma
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Il barbiere di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.
Ma . Quindi
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Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.
Ma tutti gli elementi z € R soddisfano —(z € x). Quindi ~(R € R).
Insomma, se Pg(R) ¢ falsa, allora Pg(R) ¢ vera. Quindi Pg(R) non ¢é falsa.
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Il barbiere di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.
Ma tutti gli elementi z € R soddisfano —(z € x). Quindi ~(R € R).
Insomma, se Pg(R) ¢ falsa, allora Pg(R) ¢ vera. Quindi Pg(R) non ¢é falsa.
Riassunto: (R € R) <> (=(R € R)). Questa ¢ una contraddizione.
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Il barbiere di Bertrand
Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.
® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg (A) ¢ falsa.
® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.

Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.

Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).

Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.

Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.

Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.

Ma tutti gli elementi z € R soddisfano —(z € x). Quindi ~(R € R).
Insomma, se Pg(R) ¢ falsa, allora Pg(R) ¢ vera. Quindi Pg(R) non ¢é falsa.
Riassunto: (R € R) <> (—(R € R)).

Quindi
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I di Bertrand

Chiamiamo Pg (z) la proprieta —(x € z). Cioé: x non & un elemento di sé stesso.

® Ad esempio: A = {13, A} ¢ un elemento di sé stesso, quindi Pg(A) ¢ falsa.

® Invece B = {13,{2}} non & elemento di sé stesso, quindi Pg (B) ¢ vera.
Stiamo assumendo: “per ogni proprieta P, esiste l'insieme {x : P(x)}".
Quindi esiste l'insieme R = {z : Pg(z)} = {z : (v € 2)}.
Chiediamoci se Pg(R) & vera. Pg(R) vuol dire che (R € R).
Se Pg(R) é vera, allora R ¢ uno degli x tali che Pg(x). Quindi R € R.
Ma Pg(R) ¢ la negazione di R € R. Quindi Pg (R) ¢ falsa.
Insomma, se Pg(R) ¢ vera, allora Pg (R) ¢ falsa. Quindi Pg (R) non ¢ vera.
Allora Pg (R) ¢ falsa. Questo vuol dire R € R.
Ma tutti gli elementi z € R soddisfano —(z € x). Quindi ~(R € R).
Insomma, se Pg(R) ¢ falsa, allora Pg(R) ¢ vera. Quindi Pg(R) non ¢é falsa.
Riassunto: (R € R) < (—(R € R)). Questa ¢ una contraddizione.
Quindi assumere che l'insieme {x : P(z)} esista per tutte le proprieta P nel
linguaggio {€} porta a una contraddizione.
Potreste aver sentito qualcosa di simile con un isola e un
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Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.
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sistema che permette di dimostrare cose false.

Questo ¢ gia male. Ma c’é di peggio.
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Questo, per quanto controintuitivo, & un fatto base di logica.
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Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.
® Russell: “da premesse false si pud dimostrare tutto”



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
® Russell:



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
® Russell:

® “Aggiungiamo 1 da entrambi i lati, otteniamo 2 = 1.7



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
® Russell:

® “Aggiungiamo 1 da entrambi i lati, otteniamo 2 = 1.7

® “L’insieme {io, il papa} ha 2 elementi.”
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000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
® Russell:
® “Aggiungiamo 1 da entrambi i lati, otteniamo 2 = 1.7
® “L’insieme {io, il papa} ha 2 elementi.”
® “Ma abbiamo detto che 2 = 1, quindi l'insieme {io, il papa} ha 1 elemento.”



Perché?
000000000000

Cose false e cosa farci

¢ [nsomma, se non ci stiamo attenti, rischiamo di fondare la matematica su un
sistema che permette di dimostrare cose false.

Questo ¢é gia male. Ma c¢’é di peggio.
® Se possiamo dimostrare cose false, allora possiamo dimostrare tutto.
DAVVERO TUTTO (vedi titolo).

Questo, per quanto controintuitivo, & un fatto base di logica.

® Facciamo un esempio, anche questo dovuto a Bertrand Russell.

® Russell: “da premesse false si pud dimostrare tutto”
® Studente: “assumendo 1 = 0, come dimostri di essere il papa”?
® Russell:
® “Aggiungiamo 1 da entrambi i lati, otteniamo 2 = 1.7
® “L’insieme {io, il papa} ha 2 elementi.”
® “Ma abbiamo detto che 2 = 1, quindi l'insieme {io, il papa} ha 1 elemento.”
® “Quindi io sono il papa.”



Perché? Cosa e come? Epilogo
0000000008000 00000000000 000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimostriamo cose false?



Perché? Cosa e come? Epilogo
0000000008000 00000000000 000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoh non dimOStriamO cose fa.lse? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)



Perché? Cosa e come?

Epilogo
0000000008000 000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”



Perché?
0000000008000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

Il Programma di Hilbert:

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”



Perché?
0000000008000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

\ 11 Programma di Hilbert:

® Mettiamo su un linguaggio formale in cui esprimere
tutti gli enunciati matematici. Chiamiamolo L.

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”
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0000000008000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

\ 11 Programma di Hilbert:

® Mettiamo su un linguaggio formale in cui esprimere
tutti gli enunciati matematici. Chiamiamolo L.
Spoiler: si puo fare in L = {€}.

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”



Perché?
0000000008000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

\ 11 Programma di Hilbert:

® Mettiamo su un linguaggio formale in cui esprimere
tutti gli enunciati matematici. Chiamiamolo L.
Spoiler: si puo fare in L = {€}.

® Mettiamo su un “sistema per fare le dimostrazioni”:
delle regole che ci permettono di formalizzare come da
certi enunciati ne seguono altri. Chiamiamolo S.

“Ciao, sono David Hilbert e ho
un piano per toglierci da questo
imbarazzo.”
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0000000008000

Fondare la matematica da zero (ci riproviamo)

Riassumendo: numeri infiniti, insiemi, tutto molto bello, ma chi ci assicura che
usandoli non dimOStriamO cose false? (quindi davvero tutto, quindi che scriviamo dimostrazioni a fare?)

\ 11 Programma di Hilbert:

® Mettiamo su un linguaggio formale in cui esprimere
tutti gli enunciati matematici. Chiamiamolo L.
Spoiler: si puo fare in L = {€}.

® Mettiamo su un “sistema per fare le dimostrazioni”:
delle regole che ci permettono di formalizzare come da

certi enunciati ne seguono altri. Chiamiamolo S.
Spoiler: questo pure si puo fare; esempio:

A¥) ———— Ax)
(E(l ’;) ANBFAAB (E(l ’;) AANBFAAB
“Ciao, sono David Hilbert e ho (f AANBFB A ANBEA
un piano per toglierci da questo na) AANBFBAA

imbarazzo.”



Perché? Cosa e come? Epilogo
0000000000800 00000000000 000

Il Programma di Hilbert (continua)
Facciamo:
® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.



Perché?

Cosa e come? Epilogo
0000000000800 00000000000 000
Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

¢ Facciamo anche due liste di assiomi (“teorie”):



Perché?
0000000000800

Cosa e come?

Epilogo

Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

¢ Facciamo anche due liste di assiomi (“teorie”):

® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).



Perché?
0000000000800

Cosa e come?

Eplloso
Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

e Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

e Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).

® Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

e Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).

® Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.

® Sennod, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
Se queStO é un aSSiOIna dl T O 1NO. (se non chiediamo questo si pud “barare”)
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

e Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).

® Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.

® Sennod, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
Se queStO é un aSSiOIna dl T O 1NO. (se non chiediamo questo si pud “barare”)

Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

¢ Facciamo anche due liste di assiomi (“teorie”):

® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).

Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.

Senno, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
Se queStO é un aSSiOIna dl T O 1NO. (se non chiediamo questo si pud “barare”)

Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.
® Dimostriamo che Tt € completa: per ogni F', 0 Tiorte = F oppure Tiopte = —F.
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S

¢ Facciamo anche due liste di assiomi (“teorie”):

® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).

® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).

Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.

Senno, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
Se queStO é un aSSiOIna dl T O 1NO. (se non chiediamo questo si pud “barare”)

Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.

® Dimostriamo che Tt € completa: per ogni F', 0 Tiorte = F oppure Tiopte = —F.
® (gli assiomi di Tiorte li scegliamo con cura, cosi Tiote “dimostra tutte le cose vere”)
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.

¢ Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).
® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).
Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.
Senno, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
se questo é un assioma di 1" 0 NO. (se non chiediamo questo si pud “barare”)
Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.
® Dimostriamo che Tt € completa: per ogni F', 0 Tiorte = F oppure Tiopte = —F.
® (gli assiomi di Tiorte li scegliamo con cura, cosi Tiote “dimostra tutte le cose vere”)
® Dimostriamo che Tty te € coerente: non succede che Ty, o E F' e anche Ty H —F.
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Il Programma di Hilbert (continua)

Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.

¢ Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).
® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).
® Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.
Senno, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
se questo é un assioma di 1" 0 NO. (se non chiediamo questo si pud “barare”)
Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.
® Dimostriamo che Tt € completa: per ogni F', 0 Tiorte = F oppure Tiopte = —F.
® (gli assiomi di Tiorte li scegliamo con cura, cosi Tiote “dimostra tutte le cose vere”)
® Dimostriamo che Tty te € coerente: non succede che Ty, o E F' e anche Ty H —F.
¢ Tutto questo lo dimostriamo dentro Tyepole, di cui ci si puo fidare.
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Il Programma di Hilbert (continua)
Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.

¢ Facciamo anche due liste di assiomi (“teorie”):
® Una Ttote potente abbastanza da poterci fare dentro tutta la matematica, inclusi i
“numeri infiniti”’; per esempio una teoria degli insiemi (magari non quella di prima ®).
® Una con meno assiomi, Tygehole, che parli solo di N. Ci mettiamo assiomi di cui ci
fidiamo a occhi chiusi: per esempio, (1+1)+1=14 (1+1).
Se queste T riusciamo a scriverle con un numero finito di assiomi, bene.
Senno, bisogna almeno poter scrivere un’app che, dato un enunciato in L, ci dice
se questo é un assioma di 1" 0 NO. (se non chiediamo questo si pud “barare”)
Scriviamo T+ F' per dire che T, con le regole S, dimostra la formula F'.
® Dimostriamo che Tt € completa: per ogni F', 0 Tiorte = F oppure Tiopte = —F.
® (gli assiomi di Tiorte li scegliamo con cura, cosi Tiote “dimostra tutte le cose vere”)
® Dimostriamo che Tty te € coerente: non succede che Ty, o E F' e anche Ty H —F.
¢ Tutto questo lo dimostriamo dentro Tyepole, di cui ci si puo fidare.
e Ma allora ci possiamo fidare di tutta la matematica!



Perché? Cosa e come? Epilogo
0000000000080 00000000000 000

Il Programma di Hilbert (DLC extra-lusso)

Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.

® Una teoria Ttorte per fare tutta la matematica

® Una teoria Tqepole di cui ci fidiamo.

® App per sapere cosa € un assioma di Tyepole € di Ttorte-

® Dimostrazione in Tgebole che Tiorte € completa.

® Dimostrazione in Tgephole Che Tiorte € coerente.



Perché? oo
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Epilogo

Il Programma di Hilbert (DLC extra-lusso)

Facciamo:

® Un linguaggio formale L in cui scrivere tutta la matematica.
® Un “sistema per fare le dimostrazioni” S.

® Una teoria Ttorte per fare tutta la matematica

® Una teoria Tqepole di cui ci fidiamo.

® App per sapere cosa € un assioma di Tyepole € di Ttorte-

® Dimostrazione in Tgebole che Tiorte € completa.

® Dimostrazione in Tgephole Che Tiorte € coerente.

e Gia che ci siamo, facciamo anche vedere che Ty te € conservativa su Tyepole: tutte
le cose sui numeri naturali che dimostriamo usando reali, infiniti etc le possiamo
dimostrare anche senza.



Perché?

000000000000

Cosa e come? Epilogo

Il Programma di Hilbert (DLC extra-lusso)

Facciamo:

Un linguaggio formale L in cui scrivere tutta la matematica.
Un “sistema per fare le dimostrazioni” S.

Una teoria Ty te per fare tutta la matematica

Una teoria Tygepole di cui ci fidiamo.

App per sapere cosa € un assioma di Tgepole € di Trorte-
Dimostrazione in Tyepole che Ttorte € completa.

Dimostrazione in Tgepole che Tiorte € coerente.

Gia che ci siamo, facciamo anche vedere che Tioie € conservativa su Tyepole: tutte
le cose sui numeri naturali che dimostriamo usando reali, infiniti etc le possiamo
dimostrare anche senza. Giusto per stare piu tranquilli.



Perché?

000000000000

Il Programma di Hilbert (DLC extra-lusso)

Facciamo:

Un linguaggio formale L in cui scrivere tutta la matematica.
Un “sistema per fare le dimostrazioni” S.

Una teoria Ty te per fare tutta la matematica

Una teoria Tygepole di cui ci fidiamo.

App per sapere cosa € un assioma di Tgepole € di Trorte-
Dimostrazione in Tyepole che Ttorte € completa.

Dimostrazione in Tgepole che Tiorte € coerente.

Gia che ci siamo, facciamo anche vedere che Tioie € conservativa su Tyepole: tutte
le cose sui numeri naturali che dimostriamo usando reali, infiniti etc le possiamo
dimostrare anche senza. Giusto per stare piu tranquilli.

Ah, e che ¢ tutto decidibile: scriviamo anche un’app che, dato un L-enunciato, ti
dice se € vero o falso.



Perché?

000000000000

Il Programma di Hilbert (DLC extra-lusso)

Facciamo:

Un linguaggio formale L in cui scrivere tutta la matematica.
Un “sistema per fare le dimostrazioni” S.

Una teoria Ty te per fare tutta la matematica

Una teoria Tygepole di cui ci fidiamo.

App per sapere cosa € un assioma di Tgepole € di Trorte-
Dimostrazione in Tyepole che Ttorte € completa.

Dimostrazione in Tgepole che Tiorte € coerente.

Gia che ci siamo, facciamo anche vedere che Tioie € conservativa su Tyepole: tutte
le cose sui numeri naturali che dimostriamo usando reali, infiniti etc le possiamo
dimostrare anche senza. Giusto per stare piu tranquilli.

Ah, e che ¢ tutto decidibile: scriviamo anche un’app che, dato un L-enunciato, ti
dice se € vero o falso.

Insomma, una calcolatrice che sa risolvere tutti i problemi.



Perché? Cosa e come? Epilogo
0000000000008 00000000000 000

34495 giorni fa, a Konigsberg

® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.

(Kénigsberg é oggi Kaliningrad (Russia))



Perché? Cosa e come? Epilogo
0000000000008 00000000000 000

34495 giorni fa, a Konigsberg
® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg é oggi Kaliningrad (Russia))

e (C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si puo risolvere?



Perché? Cosa e come? Epilogo
0000000000008 00000000000 000

34495 giorni fa, a Konigsberg
® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg é oggi Kaliningrad (Russia))

e (C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
I m non si puo risolvere? ndo m rché non esistono!
oblema che non s 0 risolvere? Secondo me perché non esistono!



Perché?
0000000000008

34495 giorni fa, a Konigsberg

® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg & oggi Kaliningrad (Russia))

e (C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si puo risolvere? Secondo me perché non esistono!
Il programma sta andando bene, prima o poi saremo in grado di risolvere tutto.
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0000000000008

34495 giorni fa, a Konigsberg

® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg & oggi Kaliningrad (Russia))

e (C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si puo risolvere? Secondo me perché non esistono!
Il programma sta andando bene, prima o poi saremo in grado di risolvere tutto.
Comunque ora vado in pensione, fate ammodino, xoxo.”



Perché?
0000000000008

34495 giorni fa, a Konigsberg

® 34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg & oggi Kaliningrad (Russia))

e (C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si puo risolvere? Secondo me perché non esistono!
Il programma sta andando bene, prima o poi saremo in grado di risolvere tutto.
Comunque ora vado in pensione, fate ammodino, xoxo.”

® 34493 giorni fa, a Konigsberg,
durante una tavola rotonda nella
stessa conferenza:

v A

“Ciao, sono Kurt Gédel, e avrei dimostrato questa cosina.”



Perché?
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34495 giorni fa, a Konigsberg

34495 giorni fa (¢ il 1930), a Konigsberg, ¢’é una conferenza di matematica.
(Kénigsberg é oggi Kaliningrad (Russia))

C’¢ Hilbert che fa un discorso tipo: “Sapete perché nessuno ha ancora trovato un
problema che non si puo risolvere? Secondo me perché non esistono!

Il programma sta andando bene, prima o poi saremo in grado di risolvere tutto.
Comunque ora vado in pensione, fate ammodino, xoxo.”

34493 giorni fa, a Konigsberg,
durante una tavola rotonda nella
stessa conferenza:

Li per Ii nessuno sembra farci
troppo caso, tranne John von
Neumann, che va a parlargli.

v A

“Ciao, sono Kurt Gédel, e avrei dimostrato questa cosina.”



Perché? Cosa e come? Epilogo
0000000000000 00000000000 000

Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora T' é incompleta.
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Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti aritmetica di Robinson. Allora T' é incompleta.

Teorema (Primo Teorema di Incompletezza di Gédel (detto male))
Se T & una teoria

® che “contiene abbastanza aritmetica”, (vediamo dopo)



Perché? Cosa e come? Epilogo
0000000000000 00000000000 000

Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))
Siano L un linguaggio del prim’ordine e T" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora T' é incompleta.
Teorema (Primo Teorema di Incompletezza di Gédel (detto male))

Se T & una teoria

® che “contiene abbastanza aritmetica”, (vediamo dopo)

® per cui si puo fare un’app che ci dice se un’enunciato ¢ un assioma oppure no, e



Perché? Cosa e come? Epilogo
0000000000000 00000000000 000

Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria cocrente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora T' é incompleta.

Teorema (Primo Teorema di Incompletezza di Gédel (detto male))
Se T' & una teoria
® che “contiene abbastanza aritmetica”, (vediamo dopo)

® per cui si puo fare un’app che ci dice se un’enunciato ¢ un assioma oppure no, e
¢ che non dimostra DAVVERO TUTTO (non dimostra il falso),



Perché? Cosa e come? Epilogo
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Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora 7" ¢ incompleta.

Teorema (Primo Teorema di Incompletezza di Gédel (detto male))

Se T & una teoria

® che “contiene abbastanza aritmetica”, (vediamo dopo)

® per cui si puo fare un’app che ci dice se un’enunciato ¢ un assioma oppure no, e
¢ che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora T non dimostra tutte le cose vere nei numeri naturali.



Perché? Cosa e come? Epilogo
0000000000000 00000000000 000

Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora T' é incompleta.

Teorema (Primo Teorema di Incompletezza di Gédel (detto male))

Se T' ¢ una teoria

® che “contiene abbastanza aritmetica”, (vediamo dopo)

® per cui si puo fare un’app che ci dice se un’enunciato ¢ un assioma oppure no, e
¢ che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora T non dimostra tutte le cose vere nei numeri naturali.

Teorema (Primo Teorema di Incompletezza di Godel (detto malissimo))

Il programma di Hilbert non si puo fare.



Perché? Cosa e come? Epilogo
0000000000000 00000000000 000

Il Primo Teorema di Incompletezza

Teorema (Primo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e 1" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti 'aritmetica di Robinson. Allora T' é incompleta.

Teorema (Primo Teorema di Incompletezza di Gédel (detto male))

Se T' ¢ una teoria

® che “contiene abbastanza aritmetica”, (vediamo dopo)

® per cui si puo fare un’app che ci dice se un’enunciato ¢ un assioma oppure no, e
¢ che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora T non dimostra tutte le cose vere nei numeri naturali.

Teorema (Primo Teorema di Incompletezza di Godel (detto malissimo))

Il programma di Hilbert non si puo fare. Perlomeno non tutto.



Perché? Cosa e come? Epilogo
0000000000000 0e000000000 000

Esprimere abbastanza artimetica? Scrivere delle app?
Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria
® che “contiene abbastanza aritmetica”,
® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),
allora T non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica”?



Perché? Cosa e come?

D000000000000 O®@000000000

Esprimere abbastanza artimetica? Scrivere delle app?

Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria
® che “contiene abbastanza aritmetica”,

® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora 7" non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica’?

® Basta che T abbia almeno questi assiomi (aritmetica di Robinson):
* Ve (r+0==x)
*Vavy (z+(y+1) = (z+y)+1)
vz (z-0=0)

° Vr(x+1+#0)
o VaVy (z+1=y+1) = (z=1y))

*Vy((y#0) = Brr+1=y)) * Vr,y(z-(y+1)=(z-y)+z)

Epilogo



Perché? Cosa e come? Epilogo

D000000000000 O®@000000000

Esprimere abbastanza artimetica? Scrivere delle app?

Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria
® che “contiene abbastanza aritmetica”,

® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora 7" non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica’?

® Basta che T abbia almeno questi assiomi (aritmetica di Robinson):
* Ve (r+0==x)

iAo o VoV (24 (y+1) = (z45) + 1)

° Vavy (z+1=y+1) = (x=y)) vz (z0=0)
0Vy((y;é0)—)(3l‘$+1:y>) Ony(l"(y+1):(m'y)+x)

® Se ci aggiungiamo anche assiomi per 'induzione otteniamo 1’ Aritmetica di Peano.



Perché? Cosa e come? Epilogo
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Esprimere abbastanza artimetica? Scrivere delle app?

Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria
® che “contiene abbastanza aritmetica”,

® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora 7" non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica’?

® Basta che T abbia almeno questi assiomi (aritmetica di Robinson):
° Vr(x+0=u2x)

iAo o VoV (24 (y+1) = (z45) + 1)

° Vavy (z+1=y+1) = (x=y)) vz (z0=0)
0Vy((y;é0)—)(3l‘$+1:y>) Ony(l"(y+1):(m'y)+x)

® Se ci aggiungiamo anche assiomi per 'induzione otteniamo 1’ Aritmetica di Peano.
e Nel 1930 non esistevano computer né app.



Cosa e come?
0®000000000

Esprimere abbastanza artimetica? Scrivere delle app?

Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria
® che “contiene abbastanza aritmetica”,

® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora 7" non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica’?

® Basta che T abbia almeno questi assiomi (aritmetica di Robinson):
° Vr(x+0=u2x)

iAo o VoV (24 (y+1) = (z45) + 1)

° Vavy (z+1=y+1) = (x=y)) vz (z0=0)
0Vy((y;é0)—)(3$$+1:y>) Ony(l"(y+1):(m'y)+x)

® Se ci aggiungiamo anche assiomi per 'induzione otteniamo 1’ Aritmetica di Peano.
® Nel 1930 non esistevano computer né app. Per avere una nozione precisa di
“calcolabile” ¢’¢ voluto qualche altro anno (Gédel, Church, Turing).



Cosa e come?
0®000000000

Esprimere abbastanza artimetica? Scrivere delle app?

Primo Teorema di Incompletezza di Godel (detto male): Se T' & una teoria

® che “contiene abbastanza aritmetica”,

® per cui si puo fare un’app che ci dice se un’enunciato € un assioma oppure no, e
® che non dimostra DAVVERO TUTTO (non dimostra il falso),

allora 7" non dimostra tutte le cose vere nei numeri naturali.

® QQuanta aritmetica ¢ “abbastanza aritmetica’?

® Basta che T abbia almeno questi assiomi (aritmetica di Robinson):
° Vr(x+0=u2x)

iAo o oy (o4 (g + 1) = (2 +9) + 1)

e VaVy ((z+1=y+1) = (z=y
v <<(;o> @ - ) S
® Vy ((y = (Frxx+1=y
*Vry(z-(y+1)=(z-y)+x)
® Se ci aggiungiamo anche assiomi per 'induzione otteniamo 1’ Aritmetica di Peano.
® Nel 1930 non esistevano computer né app. Per avere una nozione precisa di
“calcolabile” ¢’¢ voluto qualche altro anno (Gédel, Church, Turing).

In un certo senso, i computer esistono perché un po’ di logici matematici
volevano sapere quanto in 14 andava il Teorema di Godel.



Perché? Cosa e come? Epilogo
0000000000000 00e00000000 000

Dillo con un numero

e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri



Perché? Cosa e come? Epilogo
0000000000000 00®00000000 000

Dillo con un numero

e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri: formule, dimostrazioni, app.



Cosa e come?
00®00000000

Dillo con un numero
e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri: formule, dimostrazioni, app.
e Le formule sono delle speciali sequenze finite di simboli.



Cosa e come?
00®00000000

Dillo con un numero

e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri: formule, dimostrazioni, app.

e Le formule sono delle speciali sequenze finite di simboli.

® Bisogna scegliere come codificare i simboli



Cosa e come?
00®00000000

Dillo con un numero

e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri: formule, dimostrazioni, app.

e Le formule sono delle speciali sequenze finite di simboli.

® Bisogna scegliere come codificare i simboli (per esempio, in ASCII)



Cosa e come?
00®00000000

Dillo con un numero

e [l primo passo per dimostrare il Primo Teorema di Incompletezza & tradurre
tutto in numeri: formule, dimostrazioni, app.

e Le formule sono delle speciali sequenze finite di simboli.

® Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.

“(” corrisponde a 40, “)” a 41, “+7 a 43, “=" a “61".



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.

“(” corrisponde a 40, “)” a 41, “4+” a 43, “=" a “61”. Scriviamo (7 = 40.



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.

“(” corrisponde a 40, “)” a 41, “4+” a 43, “=" a “61”. Scriviamo (7 = 40.

La formula (1+1)+1=1+ (14 1) ha 15 caratteri.



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.

“(” corrisponde a 40, “)” a 41, “4+” a 43, “=" a “61”. Scriviamo (7 = 40.

La formula (1+1)+1=1+ (14 1) ha 15 caratteri. Prendiamo i primi 15
numeri primi, e mettiamo ad esponente le codifiche dei caratteri.

2 3r1‘|'5r+‘|'7711'117)1'13r+1'17r11'19r:1.231‘11.291—_;'_—\'317(—\'3771‘\'417_’_‘\'431‘11'47‘)1

l_(—\ .



Cosa e come?
00®00000000

Dillo con un numero

Il primo passo per dimostrare il Primo Teorema di Incompletezza é tradurre
tutto in numeri: formule, dimostrazioni, app.

Le formule sono delle speciali sequenze finite di simboli.

Bisogna scegliere come codificare i simboli (per esempio, in ASCII) e scegliere
come codificare le sequenze finite.

Per esempio, codifichiamo la formula (1 4+ 1) +1 =1+ (1 + 1) con un numero.
In ASCII, il simbolo “1” corrisponde al numero 49.

“(” corrisponde a 40, “)” a 41, “4+” a 43, “=" a “61”. Scriviamo (7 = 40.

La formula (1+1)+1=1+ (14 1) ha 15 caratteri. Prendiamo i primi 15
numeri primi, e mettiamo ad esponente le codifiche dei caratteri.

21‘(1.3r1‘|'5r+‘|'7r1‘|'11r)1'13r+1'17r11'19r:1.231‘11.291—_;'_—\'31r(—\'37rl—\'417_’_1'431‘11'47—)1
piu esplicitamente:

940 349 43 49 141 1343 {749 961 . 9349  9gd3 . 3740 3749 4143 . 4349 474l



Perché? Cosa e come?
0000000000000 000@0000000
Cosa € una dimostrazione?

¢ Una dimostrazione dell’enunciato F' nella teoria T' é una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

Epilogo



Cosa e come?
000®0000000

Cosa & una dimostrazione?

¢ Una dimostrazione dell’enunciato F' nella teoria T' é una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

e Ma tanto le formule le sappiamo codificare coi numeri.



Cosa e come?
000®0000000

Cosa & una dimostrazione?

¢ Una dimostrazione dell’enunciato F' nella teoria T' & una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

e Ma tanto le formule le sappiamo codificare coi numeri.

® E le successioni finite di cose che sappiamo codificare coi numeri, le sappiamo a
loro volta codificare coi numeri.



Cosa e come?
000®0000000

Cosa & una dimostrazione?

Una dimostrazione dell’enunciato F' nella teoria T' é una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

Ma tanto le formule le sappiamo codificare coi numeri.

E le successioni finite di cose che sappiamo codificare coi numeri, le sappiamo a
loro volta codificare coi numeri.

Bisogna codificare anche gli assiomi di T'. Se sono infiniti, non possiamo scriverli
tutti esplicitamente dentro un numero. Ma se ¢’¢ un app, possiamo codificare
con un numero il codice sorgente dell’app! (anche per le regole di dimostrazione “c’¢ un’app”)



Cosa e come?
000®0000000

Cosa & una dimostrazione?

Una dimostrazione dell’enunciato F' nella teoria T' é una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

Ma tanto le formule le sappiamo codificare coi numeri.

E le successioni finite di cose che sappiamo codificare coi numeri, le sappiamo a
loro volta codificare coi numeri.

Bisogna codificare anche gli assiomi di T'. Se sono infiniti, non possiamo scriverli
tutti esplicitamente dentro un numero. Ma se ¢’¢ un app, possiamo codificare
con un numero il codice sorgente dell’app! (anche per le regole di dimostrazione “c’¢ un’app”)
Fare questo richiede abbastanza lavoro e ci sono un bel po’ di dettagli da
controllare.



Cosa e come?
000®0000000

Cosa & una dimostrazione?

¢ Una dimostrazione dell’enunciato F' nella teoria T' é una successione finita di
formule che inizia con assiomi di T, finisce con F' e nel mezzo ha formule
ottenute da quelle prima tramite certe regole.

e Ma tanto le formule le sappiamo codificare coi numeri.

® E le successioni finite di cose che sappiamo codificare coi numeri, le sappiamo a
loro volta codificare coi numeri.

¢ Bisogna codificare anche gli assiomi di T'. Se sono infiniti, non possiamo scriverli
tutti esplicitamente dentro un numero. Ma se ¢’¢ un app, possiamo codificare
con un numero il codice sorgente dell’app! (anche per le regole di dimostrazione “c’¢ un’app”)

¢ Fare questo richiede abbastanza lavoro e ci sono un bel po’ di dettagli da
controllare. Ve li risparmio, ma il punto é:

Lemma

Se T' & una “teoria che contiene abbastanza aritmetica”’, allora c¢’¢ una formula

Dy (x) tale che, per ogni n numero naturale, T+ Dp(n) se e solo se n codifica una
formula che ha una dimostrazione in 7.
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T’ & una teoria coerente tale che [...] allora
T non dimostra tutte le cose vere nei numeri naturali.
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T’ & una teoria coerente tale che [...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:
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Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:
® (G non ¢ dimostrabile in T
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77.
® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:

® (¢ non ¢ dimostrabile in T
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).

(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77
® Piu precisamente, tale che

® Vediamo dopo come si puo fare, ma intanto:

® (G non é dimostrabile in 7.
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).
(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
® Ma per costruzione
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora

T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:

® (G non é dimostrabile in 7.
® Supponiamo per assurdo che . Per il Lemma T + D¢ ("G™).
(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
® Ma per costruzione

® Quindi
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora

T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:

® (G non é dimostrabile in 7.

® Supponiamo per assurdo che T'+ G. Per il Lemma
(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dlmostrazwne inT.)

® Ma per costruzione T+ G + =Dz ("G™).
® Quindi T+ =Dz ("G").

® Ma avevamo anche
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora

T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:

® (¢ non ¢ dimostrabile in T
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).

(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
Ma per costruzione T+ G < = Dr("G™).

Quindi

Ma avevamo anche

Quindi
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La vendetta del mentitore

Primo Teorema di Incompletezza di Gédel (detto male): Se T' & una teoria tale che |[...] allora

T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

® Vediamo dopo come si puo fare, ma intanto:

® (¢ non ¢ dimostrabile in T
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).

(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
Ma per costruzione T+ G < = Dr("G™).

Quindi T+ —-D¢("G™).

Ma avevamo anche T'F D (TG™).

Quindi T' é incoerente.
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora
T non dimostra tutte le cose vere nei numeri naturali.

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

Vediamo dopo come si puo fare, ma intanto:

G non ¢ dimostrabile in T'.
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).

(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
Ma per costruzione T+ G < = Dr("G™).

Quindi T+ —-D¢("G™).

Ma avevamo anche T'F D (TG™).

Quindi T' & incoerente. Ma abbiamo assunto che non lo fosse.

Quindi TV G, e G dice “T non mi dimostra”.
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La vendetta del mentitore

Primo Teorema di Incompletezza di Godel (detto male): Se T' ¢ una teoria coerente tale che |[...] allora

® Per dimostrare il Primo Teorema di Incompletezza, il trucco € scrivere una
formula G che dice “io non sono dimostrabile in 77

® Piu precisamente, tale che T G <> = Dp("G").

Vediamo dopo come si puo fare, ma intanto:

G non ¢ dimostrabile in T'.
® Supponiamo per assurdo che T+ G. Per il Lemma T F Dr("G7).

(Lemma: T F Dp(n) se e solo se n codifica una formula che ha una dimostrazione in T'.)
Ma per costruzione T+ G < = Dr("G™).

Quindi T+ —-D¢("G™).

Ma avevamo anche T'F D (TG™).

Quindi T' & incoerente. Ma abbiamo assunto che non lo fosse.

Quindi T ¥/ G, e G dice “T non mi dimostra”’. Ma allora
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Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").
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Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").

¢ Come G non possiamo prendere direttamente =Dz ("G™).

Epilogo
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0000000000000 00000800000 000

Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").
¢ Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
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Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").
¢ Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
® Da questo seguirebbe facilmente la contraddizione "G > "G
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Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").
¢ Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
® Da questo seguirebbe facilmente la contraddizione "G > "G

e Un trucco per risolvere il problema é prendere una G che dice:

= Dr(n) dove n ¢ il risultato di un certo conto C
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Come si costruisce questa formula?

® Resta da fare: costruire una formula G tale che T+ G <> =Dz ("G™").
¢ Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
® Da questo seguirebbe facilmente la contraddizione "G > "G

e Un trucco per risolvere il problema é prendere una G che dice:
= Dr(n) dove n ¢ il risultato di un certo conto C

e scrivere un conto C' che restituisce proprio "G™.
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Come si costruisce questa formula?

Resta da fare: costruire una formula G tale che T'F G < - D ("G™).
Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
® Da questo seguirebbe facilmente la contraddizione "G > "G

Un trucco per risolvere il problema ¢ prendere una G che dice:
= Dr(n) dove n ¢ il risultato di un certo conto C

e scrivere un conto C' che restituisce proprio "G™.

Se invece che in un linguaggio formale stessimo lavorando in italiano,
G avrebbe un aspetto del genere:
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Come si costruisce questa formula?

Resta da fare: costruire una formula G tale che T'F G < - D ("G™).
Come G non possiamo prendere direttamente =Dz ("G™).

® Infatti, nella codifica con i caratteri ad esponente, dovrebbe contenere il suo codice
TG spalmato fra vari esponenti.
® Da questo seguirebbe facilmente la contraddizione "G > "G

Un trucco per risolvere il problema ¢ prendere una G che dice:
= Dr(n) dove n ¢ il risultato di un certo conto C

e scrivere un conto C' che restituisce proprio "G™.

Se invece che in un linguaggio formale stessimo lavorando in italiano,
G avrebbe un aspetto del genere:

“ preceduta da sé stessa fra virgolette, non é dimostrabile.”, preceduta da sé
stessa fra virgolette, non é dimostrabile.
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Abbiamo dimostrato il Primo Teorema di Incompletezza?

(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora T' ¢ incompleta.

Epilogo
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Abbiamo dimostrato il Primo Teorema di Incompletezza?

(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T" una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora T' é incompleta.

® Non del tutto. Abbiamo dimostrato la versione “detta male™ per ogni T [tale
che...| ¢’¢ un’enunciato G vero in N che T" non dimostra, cio¢ T' i/ G.
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Abbiamo dimostrato il Primo Teorema di Incompletezza?

(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T" una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora T' é incompleta.

® Non del tutto. Abbiamo dimostrato la versione “detta male™ per ogni T [tale
che...] ¢’¢ un’enunciato G vero in N che T non dimostra, cio¢ T' i G.

® Per quella “enunciata bene” serve una formula R tale che T/ R e T i/ —R.
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Abbiamo dimostrato il Primo Teorema di Incompletezza?

(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T" una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora T' é incompleta.

® Non del tutto. Abbiamo dimostrato la versione “detta male™ per ogni T [tale
che...] ¢’¢ un’enunciato G vero in N che T non dimostra, cio¢ T' i G.

® Per quella “enunciata bene” serve una formula R tale che T/ R e T i/ —R.

e Il trucco (dovuto a Rosser) ¢ scrivere una R che dice “se io ho una dimostrazione,
allora la mia negazione ne ha una pit corta”.
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Abbiamo dimostrato il Primo Teorema di Incompletezza?

(o almeno: lo avremmo dimostrato se avessimo fatto tutti i dettagli che ho saltato?)

Primo Teorema di Incompletezza: Siano L un linguaggio del prim’ordine e T" una L-teoria coerente,
ricorsivamente assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora T' é incompleta.

® Non del tutto. Abbiamo dimostrato la versione “detta male™ per ogni T [tale
che...] ¢’¢ un’enunciato G vero in N che T non dimostra, cio¢ T' i G.

® Per quella “enunciata bene” serve una formula R tale che T/ R e T i/ —R.

e Il trucco (dovuto a Rosser) ¢ scrivere una R che dice “se io ho una dimostrazione,
allora la mia negazione ne ha una pit corta”.

® Provate a capire perché questa R funziona.



E il Programma di Hilbert?
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E il Programma di Hilbert?

Sy

_LASCIA PERDERE "% | MAIL RESTO
" LACOMPLETEZZA |L0 FACCIAMO, VERO?

. “& MAILRESTO .
L0 FACCIAMO, VERDD
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E il Programma di Hilbert???

von Neumann, 34,419 giorni fa, 75 giorni dopo aver parlato con Gdodel, gli scrive:

“Caro Kurt, sai cosa segue
dal tuo Primo Teorema di
Incompletezza?”
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E il Programma di Hilbert???

von Neumann, 34,419 giorni fa, 75 giorni dopo aver parlato con Gdodel, gli scrive:

“II mio Secondo Teore-
ma di Incompletezza; I’ho
giusto mandato a una ri-
vista, gli & arrivato 3
giorni fa.”

“Caro Kurt, sai cosa segue |
dal tuo Primo Teorema di
Incompletezza?”’

Epilogo
000
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Ma il sistema questo teorema lo sa dimostrare?

® Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
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Ma il sistema questo teorema lo sa dimostrare?

® Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:

“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
¢ Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro 7'.
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Ma il sistema questo teorema lo sa dimostrare?

® Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.

¢ Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

TH(=Dpr("0=17") - -Dr(G)
————
“T & coerente” G
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Ma il sistema questo teorema lo sa dimostrare?

® Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.

¢ Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

T+ (—\ DT('_O = 1—')) — ﬁDT(G)
————
“T & coerente” G

e Hilbert voleva Tyepole - — DTforte(,_O = 1—').
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

T+ (—\ DT('_O = 1—')) — ﬁDT(G)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(,_O = 1—').
Dato che Tyepole dovrebbe avere meno assiomi di Tfypie, NE Seguirebbe
Taebole F 7 Dy ("0 = 17).
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

T (=Dr("0=17)) - =2 Dr(G) (*)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(,_O = 1—').

Dato che Tyepole dovrebbe avere meno assiomi di Tfypie, NE Seguirebbe
Taebole F 7 D7y, (0 = 17).

Ma per (x), allora Tgepole - = D1y (G)-
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

T (=Dr("0=17)) - =2 Dr(G) (*)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(,_O = 1—').

Dato che Tyepole dovrebbe avere meno assiomi di Tfypie, NE Seguirebbe
Tacbole - 7 D700 (T0 = 17).

Ma per (x), allora Tgepole - = D1y (G)-

Che ¢ equivalente a G. Quindi Tyepole F G.
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

TH(=Dpr("0=17") - -Dr(G) (%)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(,_O = 1—').

Dato che Tyepole dovrebbe avere meno assiomi di Tite, N seguirebbe
Taebole - 7 D10, (T0 = 17).

Ma per (x), allora Tgepole - = D1y (G)-

Che ¢ equivalente a G. Quindi Tyepole F G.

Ma il Primo Teorema di Incompletezza dice che Tyephole V¥ G!
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

TH(=Dpr("0=17") - -Dr(G) (%)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(’_O = 1—').

Dato che Tyepole dovrebbe avere meno assiomi di Tite, N seguirebbe
Taebole - 7 D10, (T0 = 17).

Ma per (x), allora Tgepole - = D1y (G)-

Che ¢ equivalente a G. Quindi Tyepole F G.

Ma il Primo Teorema di Incompletezza dice che Tyephole V¥ G!

Quindi, ci sono brutte notizie per Hilbert: se Tyehole € coerente, allora non
dimostra di essere coerente.
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Ma il sistema questo teorema lo sa dimostrare?

Se guardiamo il Primo Teorema di Incompletezza da un altro angolo, dice:
“se T' (soddisfa certe ipotesi ed) & coerente, allora non dimostra G”.
Controllando i dettagli con (molta) cura, si scopre che si riesce a rifare la
dimostrazione vista prima dentro T'. Cioé:

TH(=Dpr("0=17") - -Dr(G) (%)
————
“T & coerente” G

Hilbert voleva Tyepole F — DTforte(’_O = 1—').

Dato che Tyepole dovrebbe avere meno assiomi di Tite, N seguirebbe
Taebole - 7 D10, (T0 = 17).

Ma per (x), allora Tgepole - = D1y (G)-

Che ¢ equivalente a G. Quindi Tyepole F G.

Ma il Primo Teorema di Incompletezza dice che Tyephole V¥ G!

Quindi, ci sono brutte notizie per Hilbert: se Tyehole € coerente, allora non
dimostra di essere coerente. Figuriamoci se dimostra la coerenza di Tiyte!
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Il Secondo Teorema di Incompletezza

Abbiamo appena dimostrato il:

Teorema (Secondo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e T" una L-teoria coerente, ricorsivamente
assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora 1T non dimostra la
sua coerenza.
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Il Secondo Teorema di Incompletezza

Abbiamo appena dimostrato il:

Teorema (Secondo Teorema di Incompletezza di Gédel (versione moderna))
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Il Secondo Teorema di Incompletezza

Abbiamo appena dimostrato il:

Teorema (Secondo Teorema di Incompletezza di Gédel (versione moderna))

Siano L un linguaggio del prim’ordine e T una L-teoria cocrente, ricorsivamente
assiomatizzata, e che interpreti I’aritmetica di Robinson. Allora 1T non dimostra la
sua coerenza.

In altre parole abbiamo visto come si dimostra che 71" non dimostra che non puo
dimostrare tutto. A meno che 7" non dimostri DAVVERO TUTTO.
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Beh, qualcosa ¢ comunque stato fatto. Per esempio, di “numeri infiniti e
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® Per il Secondo Teorema di Incompletezza, nessuna teoria ricorsivamente
assiomatizzabile coerente dell’aritmetica dimostra la sua coerenza.
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N.B.: per il Secondo Teorema di Incompletezza, se qualcuno ci riesce, allora ha
dimostrato che ZFC ¢ incoerente!

Se questo dovesse succedere siride-tantis il consenso € che una modificazione
minore di ZFC dovrebbe risolvere il problema.

Riguardo il Primo Teorema di Incompletezza, nel caso di ZFC, é venuto fuori che
vari enunciati “naturali” sono indimostrabili e irrefutabili. (assumendo che ZFC sia coerente)

Ne vedrete uno esplicito in un’altra lezione in questi giorni.
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Hilbert voleva scrivere un’app che decidesse se un enunciato matematico € vero.
Una conseguenza dei Teoremi di Incompletezza é che questo non si puo fare: la
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condannata ad essere talmente lenta da essere inutilizzabile.

Ma pure questa é un’altra storia.

Grazie per 'attenzione!
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