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Abstract. In this note we present the construction of a non-trivial continuous
function H from [0, 1] × [0, 1] to R such for each fixed t ∈ [0, 1] then Ht(x) =

H(x, t) maps [0, 1] ∩ Q to Q with at most one exception. In particular we

can construct the function H making it an homotopy between the zero map
(H0(x) = 0 for all x) and the identity (H1(x) = x for all x) such that Ht(x)

increases both in x and in t, and such that Ht(x) for fixed t is Lipschitz with

Lipschitz constant 1.
A little modification of this argument also provides a non-trivial homotopy

that at every time sends irrational numbers to irrational numbers, with at

most one exception.
In the beginning of this note we also show a funny and very simple example

of a non-trivial homotopy that sends rationals to to irrationals, with at most

one exception.

In this note we consider parametric functions H : [0, 1] × [0, 1] → R, that we
will see as function on the first argument ‘position’, the second argument being a
parameter ‘time’. While we work with the closed interval [0, 1] for both position and
time, all constructions can easily generalized to functions defined to all positions
and times while preserving the requested properties (e.g. by a reflection argument).

When such a function is required to map rationals to rationals (or irrationals to
irrationals) at every time t, it is immediate to see that Ht(x) = H(x, t) must be
constant while time varies for every x. But the problem is more complicated if we
allow one exception to exist.

We will give an answer to a few variants of the following problem:

Problem 1. Does there exist a function H : [0, 1]× [0, 1]→ R such that for every
t, the function Ht maps rationals to rationals, with at most one exception?

Additionally to this formulation, we will also consider the irrationals-to-irrationals
case and the rationals-to-irrationals case.

In facts, the only remaining case irrationals-to-rationals can easily seen to be
trivial: in facts every non-constant function on the interval assumes an interval
of irrational numbers, and since all-but-one irrationals must go to Q, the values
assumed on the rational numbers cannot provide such uncountable set of irational
images. This, such a function Ht(x) mush be constant in x for every t, and conse-
quently it must also be constant in t.

1. Rationals to irrationals case

In this section we provide a very simple example of a function sending all-but-one
rational numbers to irrationals number.

Just take (this example is automatically defined in R× R)

Ht(x) = et+x.

In facts, suppose that for fixed t, and for some rational numbers x, y we have
Ht(x), Ht(y) ∈ Q. Since theese values are both non-zero, their ratio Ht(x)/Ht(y)
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must also be a rational number, i.e. we have that ex−y ∈ Q. But if x − y = p/q,
we have taking the q-th power that also ep ∈ Q, and this is absurd because of the
transcendence of e.

2. Rationals to rationals case

First, it is easy to see that instead of working with Q we can equally work with
the diadic rational numbers D, the rationals of the form p/2k for some p, k ∈ Z (or
equivalently D = Z[1/2], for algebraists). In facts we have:

Lemma 1. It is possible to construct an homeomorphism µ : R → R such that Q
is mapped to D, and we can require additionally that µ([0, 1]) = [0, 1].

Proof. Exercise for the reader. �

We will now construct an homotopy Ht(x) that for every time that sends all-but-
one the x ∈ D ∩ [0, 1] to D, ad to get a function with the same property relatively
to Q we can just take µ−1(Ht(µ(x))).

We can now state the following:

Proposition 1. There exist function Ht(x) : [0, 1]× [0, 1]→ R such that for every
t ∈ [0, 1], then Ht(x) ∈ D for all x ∈ D × [0, 1], with at most one exception. The
example is such that H0(x) = x and H1(x) = x for every x ∈ [0, 1], and Ht(x) is a
Lipschitz function of x with Lipschitz constant 1 for every fixed t.

Proof. The idea of the contruction is based con the famous example of the ‘Devil’s
staircase’:

Figure 1. The ‘Devil’s staircase’ function.

This function is a continuous function that maps the unit interval to D, except
for the points in a Cantor set.

More precisely, let σn(x) be the sequence of functions inductively defined do
n ≥ 0 as

σ0(x) = 1[1/3,1](x),

σi(x) = σi−1(3x) + σi−1(3x+ 2/3) for i ≥ 1.
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Then s(x) can be defined as the pointwise limit of the series

s(x) =
∞∑

i=0

1
2i
σi(x).

We can consider the sets

E1 = [0, 1],

E1/2 = [0, 1/3] ∪ [2/3, 1],

E1/4 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1],
. . .

E1/2i =
1
3
E1/2i−1 ∪ (

2
3

+
1
3
E1/2i−1), for i ≥ 1.

It is easy to check that outside of E1/2i , for i ≥ 0, the function s(x) takes values
in 1

2i Z. If we call C the Cantor set defined as

C =
∞⋂

i=0

E1/2i ,

then outside of C the function s(x) takes values in D.
Note also that given s(x) the set E1/2i can be defined as the closure of the set

s−1(R \ 1
2i

Z),

and it is easy to check that this set is a union of intervals outside of which s(x)
takes values in the set

0,
1
2i
,

2
2i
,

3
2i
, . . . , 1

and that at the extremals of each interval the value of the function differs of precisely
1/2i.

Let’s remark this little but important observarion, i.e. that E1/2i is the union
of disjoit intervals, and that in any of them, [a, b] say, s(x) moves from k/2i to
(k+ 1)/2i for some integer k, and in [a, b] it takes values that are all in the interval
[k/2i, (k+1)/2i] (this is obvious considering that s(x) is monotonically increasing).

In the following we will work with functions different from s(x), but that share
with this function the existence of unions of intervals with the same properties as
the E1/2i .

The construction now proceeds inductively in the following way: put s0(x) = 0
and s1(x) = s(x). After having defines su(x) and sv(x) with u, v ∈ 1

2i Z and such
that |u − v| = 1/2i we will be able to define s(u+v)/2(x), and we will end with a
function su(x) for each u ∈ D.

Supposing that we defined the function su(x) for a diadic rational u ∈ D, for
i ≥ 0 we define E1/2i(su) to be

E1/2i(su) = s−1
u (R \ 1

2i
Z),

similarly to what could be done for s(x).
At every stage in the construction we will grant the following properties:
(1) E1/2i(su) is a disjount union of closed intervals such that in each interval

the function su(x) grows monotically from a number of the form k/2i to
one of the form (k + 1)/2i for some integer k;

(2) if u, v are elements of 1
2i Z that differ of 1/2i for some i, i.e. are of the form

k/2i, (k+ 1)/2i for some non-negative integers k, i, then the sets E1/2i(su)
and E1/2i(sv) have empty intersection;
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(3) for u, v defined in the same way, the following estimate holds:

‖su − sv‖∞ ≤
1
2i

;

(4) have additionally that su(t) ≤ sv(t) for each t if u < v.
Note that out definition of the pair of functions s0(t) and s1(t) satisfies all the

properties 1,2,3,4.
Now lets define s(u+v)/2(t), supposing that we have already defined su(t), sv(t)

satisfying all above properties. Let u < v be k/2i, (k+ 1)/2i for some non-negative
integers k, i.

Since E1/2i(su) and E1/2i(sv) are disjoint by property 2, the complementary of
the union of these sets is a disjoint union of open intervals. In each of these open
intervals, (a, b) say, su and sv are constant and the values they assume are either
equal, or differ precisely by 1/2i (thanks to property 3).

Let [a`, b`] for ` = 1, . . . ,m be the finite set of disjoint closed intervals that are
the union of E1/2i+1(su) and E1/2i+1(sv). In each of these sets [a`, b`] precisely one
of su or sv grows of 1/2i+1, and in each of these intervals we will define s(u+v)/2 to
be constant chosing its value in the following way:

• su(a`) = sv(a`) and sv(a`) grows of 1/2i+1, we take the value equal to
sv(a`).
• su(a`) + 1/2i+1 = sv(a`) and sv(a`) grows of one more 1/2i+1, we take the

value sv(a`).
• su(a`) + 1/2i = sv(a`) and su(a`) grows of 1/2i+1, we take the value equal

to su(b`).
• su(a`) + 1/2i+1 = sv(a`) and su(a`) grows of 1/2i+1, we take the value

equal to su(b`).
In this way we have defined s(u+v)/2 with a constant value in all the intervals

[a`, b`], and note that in each of these intervals the pairs of functions su, s(u+v)/2

and s(u+v)/2, sv satisfy the required properties 3, 4.
Now, we can connect the values of s(u+v)/2 in b` and a`+1 making it constant

in a neighborhood of b`, a`+1, and connecting the two values with a small ‘Devil’s
staircase’. Since all the closed intervals that make up E1/2i+1(su) and E1/2i+1(su)
are ‘jumped over’ defining s(u+v)/2 to be constant with value in 1

2i+1 Z in an open
neighborhood, it is trivial to verify that the pairs su, s(u+v)/2 and s(u+v)/2, sv satisfy
property 2. And of course 1 is also satisfied.

To proceed with the construction, note that there is no harm in the above defi-
nition of s(u+v)/2 if we additionally require it to be locally constant in some neigh-
borhood of a closed set K with empty interior, when defining it in the interval
(b`, a`+1) we just have to find a closed interval contained in (b`, a`+1) and in the
complementary of K, and put there the small ‘Devil’s staicase’.

Now let’s call K(su) the set

K(su) =
∞⋂

i=0

E1/2i(su),

and note that outside of this closed set with empty interior, an su as constructed
above always takes values in D. If we constructed su making it locally constant on
a neighborhood of the closed set K with empty interior, the we have K∩K(su) = ∅.

Now let’s enumerate the elements of D ∩ [0, 1] in the following way:

0, 1,
1
2
,

1
4
,

3
4
,

1
8
,

3
8
,

5
8
,

7
8
,

1
16
, . . . ,

and let dr be the r-th element of D ∩ [0, 1] in this ordering, for r ≥ 1.
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We already defined s0, s1, supposing now that we have defined sdr
for r =

1, . . . , p− 1, we can define sdp
taking it locally constant in a neighborhood of

p⋃
r=1

K(sdr
),

which is a closed set with empty interior.
In this way we can inductively define su for each u ∈ D, and note that if we

put Ht(x) = sx(t) this function is Lipschitz with Lipschitz constant 1 for fixed t by
property 4, and it is continuous in t for each fixed x. Consequently it is continuous
as function from (D ∩ [0, 1]) × [0, 1] to R, and can be extended to a function from
[0, 1]× [0, 1] to R.

Note that but construction K(su)∩K(sv) = ∅ for each distinct u, v ∈ D ∩ [0, 1],
an these are precisely the values of t where respectively su and sv may take values
outside of D. Consequently for each t no two su, sv can both take values outside of
D, and this means that Ht(x) for fixed t will map D ∩ [0, 1] to D with at most one
exception.

We also have that H0(x) = 0 and H0(x) = x for each x ∈ [0, 1], and the proof is
complete. �

Making the union of the K(su) defined above over all u ∈ D∩ [0, 1], we have the
following

Corollary 1. The set of t such that Ht(x) is not mapping all x ∈ D ∩ [0, 1] to
D ∩ [0, 1] is a rare set, in the sense of Baire’s theorem.

Proof. Trivial. �

We also have the following:

Corollary 2. There exist a function J : [0, 1]× [0, 1]→ R such that for fixed t the
function Jt(x) maps all the elements outside of D outside of D, with at most one
exception.

Of course we can say the same with Q instead of D operating as explained above.

Proof. The Ht(x) that we constructed above is weakily monotonic in x, and Lips-
chitz with Lipschitz constant 1. Consequently, the function H̃t(x) = Ht(x) + x is
strictly monotonic, its inverse is Lipschitz with Lipschitz constant 1, and for each
t maps bijectively the interval [0, 1] to an interval [0, α] for some α ≥ 1.

Furthermore, H̃t is againg mapping D ∩ [0, 1] to D with at most one exception.
Now for each t we can define Jt to be the inverse of H̃t, it is defined on the interval
[0, 1] and continuous. To each x /∈ D mapped to D correspond to an x ∈ D ∩ [0, 1]
mapped outside of D by H̃t, so the can be at most one exception, and we are
done. �

Scuola Normale Superiore di Pisa - Piazza dei Cavalieri, 7 - 56126 Pisa
E-mail address: maurizio.monge@gmail.com

5


