Seminario Geometria Algebrica B

Lorenzo Picinelli

8 luglio 2025

Ricordiamo che uno spazio anellato (X, \mathcal{O}_X) è il dato di X spazio topologico e \mathcal{O}_X fascio di anelli su X. Se \mathcal{F} è un fascio di gruppi abeliani (o anelli) su X e $U \subseteq X$ aperto, indicheremo con $\mathcal{F}(U) = \Gamma(U, \mathcal{F})$ il gruppo abeliano (o l'anello) delle sezioni continue di X su U.

Definizione 1 (Fascio di \mathcal{O}_X -moduli). Un \mathcal{O}_X -modulo \mathcal{F} (o fascio di \mathcal{O}_X -moduli) è un fascio di gruppi abeliani su X tale che

- 1. $\mathcal{F}(U)$ è un $\mathcal{O}_X(U)$ -modulo per ogni $U \subseteq X$ aperto
- 2. Le restrizioni sono compatibili con le moltiplicazioni per scalari, ossia per ogni coppia $V\subseteq U$ aperti di X abbiamo un diagramma commutativo

$$\begin{array}{ccc}
\mathcal{O}_X(U) \times \mathcal{F}(U) & \xrightarrow{\cdot} & \mathcal{F}(U) \\
r_{U,V} \downarrow & & \downarrow^{\rho_{U,V}} & & \downarrow^{\rho_{U,V}} \\
\mathcal{O}_X(V) \times \mathcal{F}(V) & \xrightarrow{\cdot} & \mathcal{F}(V)
\end{array}$$

Esempi. I fasci di gruppi abeliani sono fasci di \mathcal{O}_X -moduli per $\mathcal{O}_X = \mathbb{Z}$ fascio costante. \mathcal{O}_X è un fascio di \mathcal{O}_X -moduli. M varietà complessa e $E \to M$ fibrato olomorfo, il fascio $\mathcal{O}(E)$ è un fascio di \mathcal{O}_M -moduli.

Osserviamo che per ogni $x \in X$, la spiga \mathcal{F}_x eredita una struttura naturale di $\mathcal{O}_{X,x}$ -modulo. Dati i germi $s_x \in \mathcal{O}_{X,x}$, $f_x \in \mathcal{F}_x$ scegliamo s e f sezioni che li rappresentano e poniamo $s_x \cdot f_x = (sf)_x$. La compatibilità delle restrizioni garantisce che la definizione è ben posta, cioè che non dipende dalla scelta di s e f. Introduciamo ora la corrispondente nozione di morfismi.

Definizione 2 (Morfismi di fasci di \mathcal{O}_X -moduli). Siano \mathcal{F} e \mathcal{G} due \mathcal{O}_X -moduli. Un morfismo di \mathcal{O}_X -moduli è un morfismo di fasci di gruppi abeliani $\varphi: \mathcal{F} \to G$ tale che per ogni $U \subseteq X$ aperto la mappa $\varphi_U: \mathcal{F}(U) \to \mathcal{G}(U)$ indotta tra le sezioni è un omomorfismo di $\mathcal{O}_X(U)$ -moduli. Equivalentemente possiamo chiedere che il seguente diagramma commuti

$$\mathcal{O}_X(U) \times \mathcal{F}(U) \xrightarrow{\cdot \cdot} \mathcal{F}(U)
\downarrow^{\varphi_U} \qquad \qquad \downarrow^{\varphi_U}
\mathcal{O}_X(U) \times \mathcal{G}(U) \xrightarrow{\cdot \cdot} \mathcal{G}(U)$$

Successioni esatte. Consideriamo una successione di \mathcal{O}_X -moduli e morfismi di \mathcal{O}_X -moduli

$$\dots \longrightarrow \mathcal{F}_{i+1} \xrightarrow{\varphi_{i+1}} \mathcal{F}_i \xrightarrow{\varphi_i} \mathcal{F}_{i-1} \longrightarrow \dots$$

Diciamo che tale successione è esatta se per ogni $x \in X$ è esatta la successione di $\mathcal{O}_{X,x}$ -moduli data dalle spighe

$$\dots \longrightarrow \mathcal{F}_{i+1,x} \xrightarrow{\varphi_{i+1,x}} \mathcal{F}_{i,x} \xrightarrow{\varphi_{i,x}} \mathcal{F}_{i-1,x} \longrightarrow \dots$$

Somma diretta. Definiamo ora la somma diretta di \mathcal{O}_X -moduli, in particolare siamo interessati al caso finito. Siano \mathcal{F} e \mathcal{G} fasci di \mathcal{O}_X -moduli, osserviamo che il prefascio $\Gamma(\mathcal{F}) \oplus \Gamma(\mathcal{G}) = (U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U))$ è canonico in quanto lo sono $\Gamma(\mathcal{F})$ e $\Gamma(\mathcal{G})$ ed è sufficiente verificarlo sulle coordinate. Definiamo quindi $\mathcal{F} \oplus \mathcal{G} = \operatorname{Sheaf}(U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U))$ e per quanto osservato $(\mathcal{F} \oplus \mathcal{G})(U) = \mathcal{F}(U) \oplus \mathcal{G}(U)$. Se I è infinito in generale il prefascio somma diretta non è canonico e non vale l'uguaglianza $(\bigoplus_I \mathcal{F}_i)(U) = \bigoplus_I \mathcal{F}_i(U)$, da cui la necessità di fascificare.

Sezioni che generano. Sia \mathcal{O}_X^p la somma diretta $\mathcal{O}_X^{\oplus p}$. Se esiste un morfismo surgettivo di \mathcal{O}_X -moduli

$$\mathcal{O}_{X}^{p} \longrightarrow \mathcal{F}$$

diciamo che \mathcal{F} è finitamente generato come \mathcal{O}_X -modulo. In tal caso esistono sezioni globali $s_i \in \mathcal{F}(X)$ per cui $\mathcal{F}_x = \langle (s_1)_x, \dots, (s_p)_x \rangle_{\mathcal{O}_{X,x}}$ per ogni $x \in X$. Infatti un morfismo di \mathcal{O}_X -moduli $\varphi : \mathcal{O}_X \to \mathcal{F}$ determina una sezione globale $1 \in \mathcal{O}_X(X) \xrightarrow{\varphi_X} s \in \mathcal{F}(X)$ e viceversa poiché 1 genera $\mathcal{O}_X(X)$ come $\mathcal{O}_X(X)$ -modulo. Scegliendo come $s_i = \varphi_X(e_i)$ osserviamo che i germi $(s_i)_x = \varphi_x((e_i)_x)$ generano poiché φ_x è surgettiva.

Proposizione 1. Sia \mathcal{F} è un \mathcal{O}_X -modulo localmente finitamente generato con sezioni s_1, \ldots, s_p , definite in un intorno di $x \in X$, che generano la spiga \mathcal{F}_x . In un intorno di x si ha $\mathcal{F}_y = \langle (s_1)_y, \ldots, (s_p)_y \rangle_{\mathcal{O}_{X,y}}$.

Dimostrazione. Per quanto osservato esistono sezioni t_1, \ldots, t_q i cui germi generano ogni spiga \mathcal{F}_y in un intorno di x. Per ipotesi esistono a_{ij} sezioni di \mathcal{O}_X tali che

$$(t_i)_x = \sum_{j=1}^p (a_{ij})_x (s_i)_x$$

Ma allora per y abbastanza vicino

$$(t_i)_y = \sum_{j=1}^p (a_{ij})_y (s_i)_y$$

Definizione 3 (Fascio coerente su (X, \mathcal{O}_X)). Un fascio coerente \mathcal{F} su (X, \mathcal{O}_X) spazio anellato è un fascio di \mathcal{O}_X -moduli tale che

- 1. \mathcal{F} è localmente finitamente generato
- 2. Sia $U \subseteq X$ aperto e n naturale. Ogni morfismo di \mathcal{O}_X -moduli $f: \mathcal{O}_X^n|_U \to \mathcal{F}|_U$ ha nucleo ker f localmente finitamente generato

Diciamo che ker f è il sottofascio delle relazioni tra le sezioni $s_i = f(e_i)$ in $\mathcal{F}|_U$.

Proposizione 2. Sia $0 \to \mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{K} \to 0$ una successione esatta di \mathcal{O}_X -moduli. Se \mathcal{F} e \mathcal{K} sono coerenti anche \mathcal{G} lo è.

Dimostrazione. Assumiamo che localmente \mathcal{F} e \mathcal{K} siano generati rispettivamente da sezioni n_1, \ldots, n_q e s_1, \ldots, s_p . Per surgettività esistono sezioni s_i' di \mathcal{G} tali che $\beta(s_i') = s_i$. \mathcal{G} è localmente finitamente generato da $\alpha(n_1), \ldots, \alpha(n_q), s_1', \ldots, s_p'$. Siano t_1, \ldots, t_r sezioni di \mathcal{G} in un intorno di x, poiché \mathcal{K} è coerente esistono $f_j = (f_j^1, \ldots, f_j^r)$ sezioni di \mathcal{O}_U^r per $1 \leq j \leq h$, definite in un intorno di x, che generano le relazioni tra i $\beta(t_i)$. Poniamo $u_j = \sum_{i=1}^r f_j^i t_i$, poiché $\beta(u_j) = \sum_{i=1}^r f_j^i \beta(t_i) = 0$, si ha che $u_j \in \text{Im}(\alpha)$. Visto che α è iniettiva le relazioni tra gli u_j sono le stesse di quelle tra i v_j tali che $\alpha(v_j) = u_j$. Ma \mathcal{F} è coerente, dunque esistono $g_k = (g_k^1, \ldots, g_k^s)$ sezioni di \mathcal{O}_U^h per $1 \leq k \leq h$ che generano le relazioni tra gli u_j in un intorno di x. Verifichiamo che le sezioni di \mathcal{O}_U^r

$$\left(\sum_{j=1}^{s} g_k^j f_j\right)_{k=1,\dots,h} = \left(\sum_{j=1}^{s} g_k^j f_j^1, \dots, \sum_{j=1}^{s} g_k^j f_j^r\right)_{k=1,\dots,h}$$

generano le relazioni tra i t_i in un intorno di x. Come prima cosa osserviamo che sono effettivamente relazioni in quanto

$$\sum_{i,j} (g_k^j f_j^i) t_i = \sum_{i,j} g_k^j (f_j^i t_i) = \sum_j g_k^j u_j = 0$$

poiché ogni g_k è relazione per gli u_j . Sia $l=(l_1,\ldots,l_r)$ una relazione tra i t_i , a maggior ragione lo è tra i $\beta(t_i)$ e può quindi essere scritta come $l=\sum_{j=1}^s b_j f_j$. Osserviamo però che i $b=(b_1,\ldots,b_s)$ è una relazione per gli u_j , infatti

$$\sum_{i} b_{j} u_{j} = \sum_{i,j} b_{j} (f_{j}^{i} t_{i}) = \sum_{i,j} (b_{j} f_{j}^{i}) t_{i} = \sum_{i} l_{i} t_{i} = 0$$

ma allora $b_j = \sum_k c_k g_k^j$ e quindi

$$l_i = \sum_{j} b_j f_j^i = \sum_{j,k} c_k g_k^j f_j^i = \sum_{k=1}^h c_k \left(\sum_{j=1}^s g_k^j f_j^i \right)$$

e le relazioni generano.

Corollario 3. Somma diretta finita di fasci coerenti è coerente.

Lemma 4 (Lemma di Oka). Sia $U \subseteq \mathbb{C}^n$ aperto $e f : \mathcal{O}_U^p \to \mathcal{O}_U$ morfismo di \mathcal{O}_U -moduli, allora ker $f \ \dot{e}$ un \mathcal{O}_U -modulo localmente finitamente generato.

Dimostrazione. Siano f_1, \ldots, f_p le funzioni olomorfe tali che $f(s_1, \ldots, s_n) = s_1 f_1 + \ldots + s_p f_p$. Denotiamo con z_1, \ldots, z_n le coordinate di \mathbb{C}^n , a meno di cambiarle possiamo assumere di lavorare in un intorno dell'origine dove $f_1(0, z_n)$ non sia identicamente nulla e con f_i tali che $f_i(0) = 0$.

Procederemo per induzione su n, come prima cosa osserviamo che il caso n=0 è immediato: $\mathcal{O}_U = \mathbb{C}$ e $f_1 = c_1, \ldots, f_p = c_p$ costanti, allora $f: \mathbb{C}^p \longrightarrow \mathbb{C}$ è un'applicazione lineare che ha come nucleo un sottospazio di dimensione finita.

Chiamiamo z_n -polinomio un polinomio monico

$$z_n^d + a_{d-1}(z_1, \dots, z_{n-1})z_n^{d-1} + \dots + a_0(z_1, \dots, z_{n-1})$$

con a_i funzioni olomorfe in n-1 variabili tali che $a_i(0)=0$. Il teorema di preparazione di Weierstrass ci permette di scrivere $f_1=up_1$ in un intorno dell'origine con $u(0)\neq 0$ invertibile e p_1 uno z_n -polinomio di grado d, possiamo quindi assumere $f_1=p_1$. Applicando il teorema di divisione di Weierstrass, scriviamo

$$f_i = q_i p_1 + p_i$$

con $q_i(0) \neq 0$ invertibile e p_i degli z_n -polinomi di grado minore di d. Osserviamo che $(s_1,\ldots,s_p) \in \ker(f_1,\ldots,f_p)$ se e solo se $(s_1+q_2s_2+\cdots+q_ps_p,s_2,\ldots,s_p) \in \ker(p_1,\ldots,p_p)$ e abbiamo una bigezione tra gli insiemi dei generatori. Ci siamo ridotti al caso in cui f_1,\ldots,f_n sono z_n -polinomi di grado al più d.

Le sezioni $\sigma_i = -f_i e_1 + f_1 e_i$ appartengono a $\in \ker f$. Sia $g = \sum_{i=1}^p g_i e_i$ una relazione tra gli f_i , dal teorema di divisione di Weierstrass otteniamo

$$g = g_1 e_1 + \sum_{i=2}^{p} (q_i f_1 + r_i) e_i$$

in un intorno dell'origine. Sottraendo opportunamente si ha

$$g - \sum_{i=2}^{p} q_i \sigma_i = (g_1 + \sum_{i=2}^{p} q_i f_i)e_1 + r_2 e_2 + \dots r_p e_p$$

e possiamo assumere che g_2, \ldots, g_p siano z_n -polinomi di grado minore di d. Da $g_1f_1=-(g_2f_2+\ldots g_pf_p)$ segue che g_1f_1 è uno z_n -polinomio di grado al più 2d-2. Per $z_0=(z_1,\ldots,z_{n-1})$ fissato $(g_1f_1)(z_0)$ e $f_1(z_0)$ sono polinomi in z_n con rapporto una funzione olomorfa $g_1(z_0)$ che è a sua volta un polinomio in z_n . Poiché g_1 è una funzione olomorfa lo è anche la derivata

$$g_{1,d-2} = \frac{1}{(d-2)!} \frac{\partial^{d-2}}{\partial z_n^{d-2}} g_1$$

e $g_{1,d-2}(z_0)$ rappresenta è il coefficiente di testa di $g_1(z_0)$. Dunque $g_1'=g_1-g_{1,d-2}z_n^{d-2}$ è funzione olomorfa e $g_1'(z_0)$ è un polinomio in z_n a cui abbiamo

abbassato il grado. Procedendo analogamente si trovano $g_{1,d-2},\ldots,g_{1,0}$ funzioni olomorfe nelle variabili z_1,\ldots,z_{n-1} tali che

$$g_1 = g_{1,d-2}(z_1, \dots, z_{n-1})z_n^{d-2} + \dots + g_{1,0}(z_1, \dots, z_{n-1})$$

che è la scrittura di g_1 come z_n -polinomio.

Detto V la proiezione dell'intorno considerato sulle prime n-1 coordinate dobbiamo verificare la condizione sul nucleo della mappa

$$\psi : (\mathcal{O}_V[z_n]^{\leq d})^p \to \mathcal{O}_V[z_n]^{\leq 2d-2}$$
$$(r_1, \dots, r_p) \mapsto r_1 f_1 + \dots + r_p f_p$$

che è però il nucleo della mappa $\psi': \mathcal{O}_V^{pd} \to \mathcal{O}_V^{2d-2}$ tra i coefficienti. Per ipotesi induttiva ker ψ' è localmente finitamente generato, ma allora tali generatori e le σ_i generano ker f in un intorno dell'origine e abbiamo concluso.

Corollario 5 (Teorema di coerenza di Oka). \mathcal{O}_U^n è un fascio coerente.