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Abstract

We develop a PDE-based approach to the min-max construction of nontrivial integer rectifiable
varifolds that are stationary with respect to anisotropic surface energies on closed Riemannian man-
ifolds, in codimension one. Specifically, we study the anisotropic analogue of the Allen—Cahn energy
and establish a Modica-type gradient bound for its critical points. Using this in conjunction with
certain estimates for stable solutions, we then prove that the energy densities of stable or bounded-
Morse-index critical points of its rescalings concentrate along an integer rectifiable varifold that is
stationary for the underlying anisotropic integrand. As a consequence, we construct a (possibly
singular) anisotropic min-max hypersurface via Allen-Cahn, obtaining an analogue of the result of
Hutchinson-Tonegawa in the anisotropic setting.

1 Introduction

The Allen—Cahn equation has become a central tool in the study of minimal hypersurfaces and related
variational problems in geometric analysis. Originally introduced by Allen and Cahn [6] as a diffuse-
interface model for phase transitions, this reaction-diffusion equation reads

W (u)

Ou — Au + >— =0
€

Here W denotes a double-well potential with global minima at +1, the prototypical example being
W (u) = (1 — u?)%. Modica and Mortola [45] observed that the associated energy functional

/ [EV;'Z + W(u)} , (1.1)

9

T'-converges, as the interfacial width parameter ¢ — 0, to the area functional of sets of finite perimeter.
This observation revealed a deep connection between the Allen—Cahn variational framework and the
theory of minimal hypersurfaces in geometric measure theory, as originally suggested by De Giorgi.

In particular, critical points of , that is, functions u satisfying

/
—eAu + WT(U) =0,

have been shown to concentrate on minimal hypersurfaces as € — 0. This phenomenon dates back to
the foundational work of Modica [44] and Sternberg [57], and has since developed into a well-established
field. We refer the reader to the surveys [46] 52 (9] for an overview.

Building on this idea and on the works of Ilmanen [34], Hutchinson and Tonegawa [33], Tone-
gawa [58], Tonegawa and Wickramasekera [60], and Wickramasekera [61], Guaraco [32] established an
existence theorem for closed minimal hypersurfaces in arbitrary closed Riemannian manifolds by adapt-
ing the mountain-pass construction to the Allen—Cahn functional . His work provided a PDE-based
alternative to the Almgren—Pitts min-max theory from [7, [51]. The Almgren—Pitts theory has had a
profound impact on geometric analysis and was later refined by Marques and Neves [40, 4] in their proof
of the Willmore conjecture, leading also to the recent resolution of Yau’s conjecture by Song [54]. On the
other hand, the PDE-based min-max theory has since been extended to a variety of settings and proved
capable of achieving more refined results which predated analogues in the Almgren—Pitts framework, such
as the multiplicity-one result of [14]. Collectively, these developments have established the Allen—Cahn



framework as a flexible and powerful analytic alternative to the Almgren—Pitts one, allowing geometric-
measure-theoretic ideas to be realized within a purely elliptic PDE setting, with promising analogues in
higher codimension: see [38, 35} [T, B9 [T11 56, [13] for the Ginzburg-Landau model with no magnetic field
and [50], 48] for the abelian Higgs model (as well as [55] [49] for slightly different settings).

Parallel to these isotropic developments, a significant body of work has emerged on minimal surfaces
with respect to anisotropic surface energies, which naturally arise in crystalline surface tension models,
capillarity problems, and in the modeling of interfaces between distinct materials. We refer to the
survey [24] for an overview of the theory of anisotropic minimal surfaces. The anisotropic area functional
generalizes the classical area by introducing a convex, one-homogeneous integrand depending on both
position and normal direction. While existence and regularity of minimizers for anisotropic energies are by
now well understood [8,[9] 18 211, 23], a satisfactory existence and regularity theory for stationary solutions
remains incomplete [5], 25, 26], due largely to the absence of a monotonicity formula for density ratios [3].
Allard [] conjectured the existence of closed anisotropic minimal hypersurfaces in closed Riemannian
manifolds, but an anisotropic counterpart of the Almgren—Pitts min-max theory had remained elusive
until recently. In [19, 22] De Philippis, the first-named author, and Li have now resolved this problem by
developing an anisotropic version of the Almgren—Pitts theory, proving the existence of closed anisotropic
minimal hypersurfaces with essentially optimal regularity in any closed Riemannian manifold.

The goal of the present paper is to provide a PDE-based alternative to the latter approach to the
anisotropic min-max construction. More precisely, we develop an anisotropic version of the isotropic
Allen—Cahn min-max construction by Guaraco [32]. Let (M™, g) be a closed Riemannian manifold with
n > 2. We consider a smooth even function

F:UT(M)— (0,00), F(x,v)=F(x,—v),
defined on the unit tangent bundle, and extend F' 1-homogeneously to the tangent bundle:
F:TM — [0,00), F(z,\v)=AF(z,v) for all A >0, (z,v) € TM.
We assume that F' is uniformly convex in directions orthogonal to the radial one, namely
D?F,(v)[w,w] > Mw|* for v € UT,(M) and w € T,M, w L v,

for all x € M, where F,, denotes the restriction of F' to T, M. The anisotropic surface area of an embedded
hypersurface =1 € M™ is defined by

F(S) = / F(z, vy) dHI (),
b
and the anisotropic Allen—-Cahn energy of a function v : M — R by

E.(u) ::/ {EF(x,Vu(x))z + W(u(z)) dvoly(z).
M

2 €

All the relevant assumptions on the double-well potential W will be recalled in f in Section
The energy functional E. has been recently investigated by Cicalese, Nagase, and Pisante [16], and the
associated parabolic equation has been the subject of an extensive literature [27, 28] [31], 37, [42]. Bouchitté
[12] proved in a more general framework that E. I'-converges to cw - F, where ey = fil VoW, We
provide a shorter proof of this I'-convergence in Theorem tailored for E.. We also remark that
in recent years there has been a growing literature on the I'-convergence to anisotropic perimeters of
heterogeneous variants of the Allen-Cahn energy functional in a periodic medium [I5} 17, 29].

On the contrary, nothing was known in the literature for the convergence of stable (or bounded-
Morse-index) critical points for E. to anisotropic minimal hypersurfaces, as e — 0; actually, as explained
in the body of the paper, in order to have a C? functional we need to perturb F slightly in the varia-
tional construction, although ultimately we still obtain critical points for the original E.. Establishing
this convergence is a crucial step to extend the isotropic min-max construction of Guaraco [32] to the
anisotropic Allen—Cahn framework. The main obstruction is the lack of a suitable monotonicity formula
in the anisotropic setting [3], which makes it a challenging task to prove that the limiting varifold has



no diffuse part, and in particular that it is rectifiable. For the isotropic Allen—-Cahn functional, the
monotonicity formula is deduced by a celebrated gradient bound proved by Modica [43]. Our first main
contribution is the following anisotropic version of Modica’s bound (see Theorem for the details).

Theorem 1.1. Let u: M — [—1,1] be a critical point of E.. Then

eF?%(Vu) < W (u)
2 - €

+O(M™, g, F). (1.2)

Compared to the isotropic counterpart, its proof is much more delicate due to the appearance of
additional terms when the Euler-Lagrange equation is differentiated, which need to be controlled by
exploiting convexity and homogeneity of F' at various places. An additional challenge is the lack of
effective bounds on the Hessian D?u away from {Vu = 0}, as globally u is guaranteed to belong only
to C1< for some a € (0,1); terms involving the Hessian naturally appear in the setting of inherently
non-autonomous integrands F' on closed manifolds.

Theorem is somewhat surprising: in the isotropic Allen—Cahn case, the validity of implies
the monotonicity formula [34] [33], which is known to fail in the anisotropic setting [3]. Hence, while (1.2)
remains valid, it no longer entails monotonicity. Nonetheless, Theorem [I.1] serves as a key ingredient in
proving our main result.

Theorem 1.2. There exists a nontrivial F-stationary integral (n — 1)-varifold V' in M, whose weight
ew ||V || arises as the limit, as € — 0, of the energy densities

€ 1
ee(ue) = iF(Vus)2 + EW(UE)

of suitable critical points u. of E., constructed via a min-mazx procedure.

Remark 1.3. While we exhibit such V' from the simplest mountain-pass construction, the analysis
contained in the present paper applies to any min-max scheme. We conjecture that, in fact, the energy
density of any sequence (u.) of critical points with bounded energy concentrates along an integral F-
stationary varifold as ¢ — 0, up to a subsequence, regardless of stability conditions.

While we do not attempt to develop any regularity theory beyond integrality of V', we hope to do
so in a future work, exploiting once again the stability of u.. It would also be interesting to investigate
analogues in codimension two or higher, e.g. by devising appropriate anisotropic versions of [50].

Below, we briefly discuss the proof strategy of Theorem[I.2] which is obtained combining Proposition
B8 with Theorem [T.2] and Theorem

First of all, we construct a family of min-max solutions (u.) satisfying uniform (in €) lower and upper
bounds of F.(u.) and with Morse index < 1 (up to a regularizing approximation of F'); see Proposition
Hence, the energy densities of u. will subconverge in the sense of measures to a finite Radon measure
pon M.

To encode the geometry of the level sets of u., we introduce the (n — 1)-varifolds V. in , which
heuristically are weighted averages of the level sets of u.. The weight measure ||V.||(7) can be bounded
above (up to a constant) with E(u.), and hence we can extract a subsequential limit Vp (as € — 0) with
[Voll < Cu. Moreover, using the Morse index bound of (the approximations of) u., we are also able to
deduce a local bound on the isotropic first variation of V; away from a finite set S: see Corollary To
this aim, we derive a diffuse version of the stability inequality for anisotropic minimal hypersurfaces, stated
in Theorem m This result parallels those obtained in the isotropic case by Padilla and Tonegawa [47]
and Tonegawa [58], although in our setting the PDE degenerates at points where Vu, = 0, as F? is not
C? at the zero section (unless F is a quadratic norm). To handle this, we perform our estimates first for
suitable smooth approximations of F2 (the same ones used to regularize E.) and then pass to the limit.

By means of the Modica-type estimate in Theorem and another application of stability,
we can also control the weight ||[Vp]| from below with p on M \ S and, more importantly, we can prove
that Vy and yu are rectifiable: see Theorem A crucial ingredient in the proof of Theorem is to
show that the upper density ©"~1*(||Vy|,z) > 0 for ||Vy|-a.e. . This, combined with the local bound
on the isotropic first variation of Vp, provides the rectifiability of Vi and hence of won M\S, by Allard’s
rectifiability theorem [2 Section 5].



Our next step involves extracting an F-stationary varifold V' and, as a byproduct of the analysis,
showing that 4 is a rectifiable measure on all M, as stated in Theorem[7.2] This is achieved by analyzing
the stress-energy tensor 7. of u. defined in , and proving its convergence as € — 0 to a tensor-
valued measure T; whose divergence is controlled. A careful analysis of the directions of invariance of
the tangent measures of T provides the desired rectifiability of p, with an argument in the spirit of [20].
Also, writing du = 0 d(H" 'L X)), where ¥ C M is a rectifiable Borel set with o-finite H"~! measure and
0 :3 — (0,00), we show that the (n — 1)-dimensional varifold

0(x)

dV(z,v) = o)

S, (V) @A(H" LY (2)
is rectifiable and F-stationary, where v, 1 T, 3 is the unit normal.

Our candidate varifold claimed in Theorem H is c;‘,lV: we are just left to prove that O(z)

cw F(z,vg)
is an integer for H" !-a.e. 2 € ¥. This is done by a one-dimensional slicing argument in the normal
directions to . Fix a generic point zg € ¥ and assume v, = e, in a chart. On small cylinders of
the form B"~!(zo) X (—r,7), one rescales the functions u. to obtain limit profiles defined on Euclidean
cylinders with almost flat metric and almost autonomous integrand Fy,. Using the convergence of stress-
energy tensors, we show in the smallness of the tangential gradient 9, u. for i < n in an L? sense,
that is, the fact that u. is almost one-dimensional. Such smallness, combined with the Modica-type
inequality , is then proved to imply that E.(u.) is close to (F'(zg, e,,) times) a multiple of the energy
cw = Ll1 V2W of the heteroclinical solution, unless u. is essentially constant: see Lemma From
this, we deduce that along almost every normal line the energy of u. on that line converges to a multiple

#ﬁ%o) is an integer, as asserted in Theorem [7.10

of ew F(xg, e,). This in turn implies that
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2 Preliminaries

2.1 Terminology

Throughout the paper, we fix a smooth closed (i.e., compact and without boundary) n-dimensional
Riemannian manifold (M™, g) with n > 2. We note that the fixed background Riemannian metric plays
essentially no role in what follows, since it can be absorbed into the integrand. It is however useful in
order to fix a background volume form and to identify n-dimensional planes with their normals.

We assume the reader to be familiar with the standard notions in geometric measure theory [53],
and we adopt the following notation and conventions.

e UT(M): the unit tangent bundle of M, namely,
UT(M) :={(z,v) € TM : ||v||g, =1}
e G,_1(M): the unoriented hyperplane bundle of M, namely,
Gpo1(M) :={(z,T) :x € M, T is an (n — 1)-dimensional linear subspace of T,,M}.

By means of the background metric, we can identify G,,_1 (M) with UT(M)/ ~, where we have set
the equivalence relation (z,v) ~ (z, —v).

e O0*FE: the reduced boundary of a Caccioppoli set F.

e V(M) =V,_1(M™): the space of (n — 1)-varifolds on M, namely, the space of nonnegative Radon
measure on Gp,_1(M).



e [K]: the integral varifold of multiplicity one associated with an (n — 1)-rectifiable set K with
HHK) < co.

e |V]|: the weight of V' € V(M), i.e., the Radon measure on M associated with V.

2.2 Anisotropic energies

In the sequel, an anisotropic integrand will be a smooth function F : G,,—1(M) — (0,00). Note that,
according to the identification above, we can consider it as a function F' : UT'(M) — (0, 00), which is
an even function in the second variable. When no confusion arises, we will often switch between these
viewpoints without further comment. Also, for the fixed background metric g, we will just use the symbol
v| for |v]g, = \/gx(v,v) and H™~* for H2~'. Tt will also be useful to extend F 1-homogeneously in the
second variable as

F(z,v) = [v|F (:1: |Z> . F(z,0) =0.

We will always assume this extension has been made whenever we consider derivatives of F'.
We assume that F' is uniformly convex in directions orthogonal to the radial direction, namely

D?F,(v)[w,w] > Mw|* for v € UT,(M) and w € T, M, w 1 v

at all points z € M, where F, denotes the restriction of F' to T,,M. Note that, by 1-homogeneity of F,
the uniform convexity assumption gives

2
D?F, (v)[w,w] > A|’|L”U|| for v e T,M \ {0} and w € T, M, w L v (2.1)

and the 2-homogeneous function F? is automatically uniformly convex, namely
D?*(F%) > 2)\g, on T,M \ {0} (2.2)

in the sense of quadratic forms at each point © € M, up to possibly decreasing A > 0. Possibly further
decreasing A € (0,1), we can also assume that

M| < Fp(v) < % for all v € T, M. (2.3)

For a finite perimeter set E, we denote the anisotropic perimeter of E by

F(E):= /8*EF($7VI)d,Hn_1($>7

where here v, denotes the exterior measure-theoretic normal of . Actually, the assumption that F' is
even implies that the sign of the unit normal v, is irrelevant.

For a varifold V' € V(M), we define its F-anisotropic energy, and respectively its localized energy to
a Borel subset U C M, as

F(V) ::/ F(z,T)dV(z,T), and respectively F(V;U) ::/ F(z,T)dV(z,T),
Gr_1(M) Gn_1(U)

where G,,—1(U) is the restriction of the Grassmannian bundle to U. Note that, by the identification of the
(n — 1)-dimensional Grassmanian with the unit sphere, we can equivalently think an (n — 1)-dimensional
varifold as a measure on UT' (M) invariant under reflection (z,v) — (x, —v). In that case we will write

F(V)= / Fla,v)dV(z,v).
UT(M)
The first variation of the F-anisotropic energy is defined as

5FV(X) :

F((er)#V)

~ dtli=o



where V € V(M), X € CY(M,TM), and ¢, is the flow of X (i.e., 2t = X(¢;) and o = idas). Referring

to [20] for the general expression, here we record that when M = R"*! and F(z,v) is autonomous, i.e.,
independent of the spatial variable = (so that we can view it as an even function R"*! — R), we have
the following formula:

SpV(X) = / [F(v)divX — (DF(v), DX ") dV (z,v)

UT (M) (2.4)

= / (F(v)I —v® DF(v),DX)dV (z,v),
UT(M)

where DX T is the transpose of DX. For the general formula of 67V (X), one needs to add a term which
depends on D, F (see [20]). Back to the case of closed M, a varifold V' € V(M) is said to have bounded
F-anisotropic first variation if there exists C' > 0 such that for all X € C'(M,TM)

0FV(X)| < ClIX]| e~

Equivalently, an (n — 1)-varifold V' € V(M) has bounded F-anisotropic first variation if §V is a (T'M-
valued) Radon measure. We will say that V is F-stationary if §pV = 0. In the isotropic setting
F,(v) = |v|, we will simply write 6V to denote the first variation of a varifold V.

2.3 Anisotropic Allen—Cahn

We now generalize the Allen-Cahn energy to the anisotropic setting by letting

E.(u) := /M [EF(x,VQu(:v)) + W(t;(x)) dvoly(z),

where W is a fixed double-well potential vanishing at +1; we assume that W : R — [0, 00) is smooth with
W>0onR\ {x1}, W(*l)=0, W'(£1)>0, (VW)’'<—-c<0on(-1,1), (2.5)

as well as
—Cs <W'(s) <0on (—oo0,—1), 0<W'(s)<Cson (I,00), cs?<W(s)<Cs*onR\[-2,2], (2.6)

for two constants ¢, C > 0. Two standard choices are W(s) = % or W(s) = 1+ cos(ms), suitably
modified outside of the interval [—1,1]. The requirements on R\ [—1,1] are actually irrelevant in
the construction of critical points u, since we can always modify W on this set in order to satisfy them,
and the latter will imply that |u] < 1.
We will denote by
F(x,Vu(z))?

ec(u(z)) :=¢ 5 + W(u())

g

2.7)

the energy density of u : M — R with respect to F..
We observe that, although F? is smooth away from the zero section of T'M, it is in general only C*
on TM. Indeed, if F2? is C? at 0, then by Taylor expansion there exists a symmetric matrix @ such that

F2(v) = (Qu,v) + o(Jv[*).
From the 2-homogeneity of F2 we obtain

. F2(tv)
Fy(v) = lim =

= (Qu,v).

We deduce that F? is C? if and only if F, is the Euclidean norm up to linear changes of coordinates.
Having a C! functional will be enough for first-order considerations and in particular to check the Palais—
Smale condition. However, to give precise meaning to stability (or to Morse index bounds) of critical



points, it will be useful to consider smooth approximations Fy converging smoothly to F' away from the
zero section of TM, as § — 0; see also Remark [3.2] below.
To this aim, for each § € (0, 1), we define for every z € M

Gs(x,v) = (F7 *n5)(v) = (FF % 05)(0) and  Fs(z,v) := \/Gs(x,v),

where 7s is the standard radial mollifier supported in the ball Bs(0) C T, M = R"™ (using the metric g
for the latter identification). Note that Gs(z,v) > 0 as it is convex and even in v, which forces v = 0
to be the minimum point of Gs(z,-). Hence, F# is smooth, FZ — F? in C (T M) as § — 0, and for all
5 €(0,1)

Fs satisfies (2.2)—(2.3), with a smaller X > 0 uniform in § in place of A. (2.8)

In fact, the validity of for Fs, namely (X |v])? < Gs(z,v) < (Jv|/\)?, is immediate to check for
fixed ¢ (if |v| > 2 it follows from for F', while near the origin it follows from and smoothness
of Gs(x,-)), and its uniformity follows from the fact that Gs(z,v) = §2°Gy(z,v/5). As an immediate
consequence of (2.2), the differential of (Fs)2 is monotone, i.e.,

(D(Fy)2(v) — D(F5)2(w),0 — w) > 2X'|o — w]. (2.9)
We define the anisotropic Allen-Cahn energy associated with Fj as follows:

B /M [5F5(9”’V2“<x”2+w(‘;@” s,

As in (2.7), we denote by

Fy(z, Vu(x))® = W(u(z))
+
2 €
the energy density of u : M — R with respect to E, 5.

ees(u) :=¢

3 Existence of nontrivial solutions via min-max

The main purpose of this section is to check the Palais-Smale condition for the functional E, s and to
deduce the existence of nontrivial critical points for F..

Proposition 3.1. The functional E. 5 is finite and of class C? on HY (M), with
1
DE. s(u)[v] = / [;D(Fg)i(Vu)[Vv] + 6W/(u)v} ,
M

DE.s(ulo.u] = [

9 1 1"
y {2D2(F5)i(VU)[V1},VU}] + EW (u)vw} .

Moreover, it satisfies the Palais—Smale condition: if u, € H'(M) is a sequence such that E. s(uy) is
bounded uniformly in k and DE. s(ux) — O strongly in H'(M) (note that DE. s(uy) € H*'(M)* =
HY(M)), then (ux) admits a strongly converging subsequence.

Proof. The finiteness of E. 5 follows from the quadratic growth of W, while the C? regularity and the
formulas for its derivatives are standard calculations. Since by (2.6]) and (2.8])

(F5)2(Vu) > N|Vul?, W(u) > clu|* - C,

given a sequence (uy) as in the statement, we immediately deduce that it is bounded in H'(M); by the
Rellich-Kondrachov compactness theorem, there exists u € H*(M) such that uy converges to u, weakly
in H'(M) and strongly in L?(M), along a subsequence. We observe that

lim DE. s(u)[ur, —u] = lim {;D(Fg)i(Vu)[Vuk — Vu] + %W’(u)(uk —u)| =0, (3.2)

k—o0 k—oo Jar



where for the first term on the right-hand side we use that D(F5)2(Vu) € L? (as |D(Fs)2(v)| < Clv|)
and Vuy — Vu — 0 in L2, while for the second term we use that |W'(u)| < Clu| +C € L? by (2.6 and
ug — u strongly in L2,
Since DE; s(ux) — 0 strongly in H' and wuy, is bounded in H?' uniformly in &, we deduce that
lim DE, s(ug)[ur —u] =0

k—o0
and hence
DE. s(ug)[ur —u] — DE. s(u)[ur, — u] — 0. (3.3)
Arguing again as for (3.2), we have W' (uy)(ur — u) — 0 in L', hence we deduce that

/M [D(F5)%(Vug)[Vug — Vu] — D(Fs)2(Vu)[Vug — Vau]] — 0.

Using ([2.9)), this implies that
/ |Vuy, — Vul? = 0,
M

and hence uj, — u strongly in H', as desired. O

Remark 3.2. The original functional E. is of class C'' and the previous proof still applies to show that
E. satisfies the Palais—Smale condition. On the other hand, F. cannot be used to give an immediate
meaning to stability or to a bound on the Morse index of critical points.

Proposition 3.3. Any critical point u of E. 5 is smooth and satisfies |u| < 1. Also, there exists a € (0,1)
depending only on F' such that, for every family of critical points (uc 5)sc(0,1) for the perturbed functionals
E. s with supg E. 5(ue 5) < 00, along a subsequence u. 5 converges in C1*(M) as § — 0 to a critical point

Ue = limu, 5 € CH(M)
6—0

for E., with E.(u.) = lims_,o E¢ 5(ue 5). Moreover, u. is smooth on the open set {|Vu.| # 0}.

Proof. For each u = u, s the Euler-Lagrange equation for the functional E. ; reads
div(a(Vu)) = e 2W' (u), (3.4)

where in local coordinates a(Vu) = ¢ 8;((Fs)2)(Vu)d;. Note that the vector field a is Lipschitz and, by
(2.9)), a is also monotone, in the sense that

(a(v) — a(w),v —w) > N|v—w|?, for all v,w € T, M.

The bound u < 1 readily follows by testing the integral form of with ¢ := (u — 1)* and using the
strict inequality 0 < W’ on (1,00) in . The bound u > —1 is obtained analogously. The fact that
u is smooth follows by expanding into a linear second-order elliptic PDE, using the fact that Fy is
smooth.
We can apply the results of [36], Chapter 4] to the PDE in divergence form to get the uniform
bound
uesllcre <C,

where C' may depend on € and the total energy E. s(ucs), but not on §, as sups Ee 5(ues) < co. By
Arzela—Ascoli, we deduce the existence of a subsequential limit u. in C™®, up to slightly decreasing «.
The limit . is thus a critical point of E.. The smoothness of u. on {Vu. # 0} follows by standard
Schauder theory, using that F' is smooth away from the zero section of T'M. O

Remark 3.4. In fact, any critical point . of E, is C1®, as one can see as follows: for a fixed small ball B,
we consider a minimizer u. s of E. s on B, with trace equal to u.|sp, and deduce that |ju. sl|c1.epy < C
on a smaller concentric ball B’. As § — 0, any subsequential limit in H'(B) must coincide with wu,, as
shown by the uniqueness result in [36, Section 4], showing that u. is C** on B’, and hence on M.



We are now ready to construct nontrivial critical points for E., satisfying uniform upper and lower
bounds on the energy, together with a stability property. By (2.8) and (2.3)), we deduce that the isotropic

Allen—Cahn energy
~ [Vul? | W(w)
B.(u) == e 2
(w) /M {a L=

(VM)E.(u) < E.5(u) < (N)2E.(u), forallue H'(M). (3.5)

satisfies

Letting
I:={y:[-1,1] = HY(M) : v continuous, y(—1) = —1, y(1) =1}

and defining the mountain-pass values

Ceq = nf max Fes(v(t), Ceo:=inf max FE-(y(t)

as in [32], we deduce from [32] Proposition 5.2] that

0 < liminfé. < limsupé. < oo.
e—0 e—0

Combining this with (3.5)), we conclude that there exist 0 < < 4’ and a small €9 > 0 such that
B<cs<pB forallde(0,1), €€ (0,ep).
We can now deduce the following.

Proposition 3.5. For e € (0,e) there exists a critical point u. for E., with

Eec(uc) € 8, 5]

Moreover, u. is a limit in CY*(M) of critical points u. s for E. 5 with Morse index < 1, along a sequence
6 — 0 depending on €.

Proof. The existence of critical points u. s with energy in [3, 5] and Morse index < 1 follows from classical
min-max theory on Banach spaces (see, e.g., [30, Chapter 10]). The convergence along a subsequence to
a critical point for E. now follows from Proposition [3.3 O

The main contribution of the present work is to show that, in such a situation (and even for more
general min-max problems), the energy density of u. concentrates along an integral F-stationary varifold.

4 I'-convergence of E. to F

As a preliminary result, in fact not needed in the next sections, we prove in this section that E. I'-
converges to cy - F, where cy = fil V2W is a positive constant depending only on W. This was
first proved by Bouchitté [12] in a more general framework. We provide a shorter proof in Theorem 4.1
tailored to E.. In the following we denote by 1g the indicator function of a set S, i.e., 1g =1 on S and
ls=0o0on M\ S.

Theorem 4.1. Given a sequence g — 0 and maps uy, € H*(M) with liminfy_,o E., (ur) < oo, there
exists a finite perimeter set S C M such that

up = lsg —lans
pointwise a.e. and in L*>(M) up to a subsequence, as well as
cw - F(S) < liminf B, (uy).
Conversely, given a finite perimeter set S C M, there exists a family of smooth maps (ue)eso with

|u€| S ]-7
U — lg — 1M\S

pointwise a.e. and in LP(M) for all p < 0o, and
E (u:) = ew - F(S).



Proof. Given a sequence (g, ux) as in the statement, we will write ¢ and u. in place of e and wuy, with
a slight abuse of notation. Up to a subsequence, we can assume that the liminf is a limit. Also, letting
Ve := min{max{u., —2}, 2}, note that by (2.6 we have

Es(vs) < Es(“e)y / |Ue - U6|2 < / ‘ue‘z < C/ W(“e) < Ce.
M {|ue|>2} M

Thus, we can assume without loss of generality that |u.| < 2, up to replacing u. with v..
Since |Vue| < A71F,(Vue), by Cauchy-Schwarz we have

/«&WWMWMSA*/\&W@gﬂﬂmggx*&wggc

for some constant C' > 0 independent of . Thus, letting H (¢ \/ s)ds and w,. := H(uc), we
have a uniform BV bound:

[ vy <
M

By the compact embedding BV (M) < L(M), up to a subsequence we can find wg € BV (M) such that
we — wp in L' and pointwise a.e., and thus also in L2(M), as |w.| < 2.
Since H : R — R is continuous and bijective and w. — wq pointwise a.e., we have

ue = H H(w.) — H ' (wo) =: ug pointwise a.e.,

and the limit ug takes values in 1 a.e. since
/ W(up) < liminf W(u.) = lim O(e) = 0.
M e—0 e—0

Moreover, S := {ug = 1} = {wo = H(1)} is a set of finite perimeter, as its indicator function is precisely

% € BV(M). The desired bound on the F-perimeter follows easily from the convexity of F' at

each € M: indeed, a straightforward adaptation of [I0, Theorem 2.38] to the Riemannian case gives

Vwg > e /
F, | —— ] d|Vwy| < liminf F,(Vw,
/M <|Vw0 [Viwol =0 Jp ( )

zliminf/ H' (ue)Fy(Vue)

e—0
= hmlnf/ W (ue ) Fr(Vue)
< liminf E, (u.).

e—0

This gives the desired conclusion, since

o wo—H(-1) Vw _ Vuw
VM_VH&—HFD_HQ—;FD_c;

H$:/w o (ve) AH™ (2 CW/ (Vm)awm

Conversely, given a set S C M of finite perimeter, by [0, Theorem 3.42] we can find a sequence of
smooth open sets S such that

and hence

H"(SEAS) — 0, Per(S) — Per(S),

where Per denotes the isotropic perimeter. Thus, by Reshetnyak’s continuity principle [I0, Theorem
2.39], we have the convergence of F-perimeters:

/ Fo(vy)dH" Y (z) — Fo(vy) dH" (z).
0Sk oS
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Thus, to prove the existence of a recovery sequence, we can just consider the case where S is a smooth
open set; the conclusion then follows by a standard diagonal argument. In this case, we consider the
one-dimensional heteroclinic solution U : R — R such that

U'=\2W(U), U®O0)=0, lim U(t)==+1

t—+oo
and we let
-1 for t < —2v
Uvt/(2y+1t)) forte (—2y,—7]
U,(t) == U(t) for t € [~7,7]
Ut/(2y —t)) fort e [y,27)
1 for t > 27.

Using the exponential decay of U’ and of W (U) at infinity, it is easy to check that, as v — oo, we have
¥

[ wrerwoy=oee), [
R\[=71]

-

¥
(U2 /2 + W(U)] = / VIV — e
-
Then, taking § > 0 small and writing Bs(95) as a disjoint union of geodesics of the form
{€p(t) == exp,(tvy) | t € (—0,0)}
as p ranges in 05, we can define

%A%mw:w(dﬁ%ﬁ.

As long as 2v - emaxpeas Fp(vp) < 6, we can extend this to a smooth map u., : M — [—1,1] by
Uey = —10on S\ Bs(0S) and u. 5 :=1on (M \ S)\ Bs(0S). We observe that

Ve (b(t) = U’,Y <5Fpt(Vp)> EE;ZEZ)) +olltl/e) = U’/Y (EF;(VP)) Elif)?;)p) +oh),

where the error term comes from differentiation of F' o v at the nearest-point projection p; note that
|U;| < C and that both sides vanish when [t| > 2veF),(1,). Moreover,

(Ve 4| (p(t)) < Ce e ™ for veF,(vp) < |t| < 0

and similarly
W (ue~)(Lp(t)) < Ce™ 7 for yeF,(vp) < |t| < 6.

Thus, we have

/ [€F s 0) (Vite /2 4+ €W (e ) (6, () dt = O(e™),
{veFp(vp)<|t|<d}

for a possibly different ¢ > 0, as the integrand is nonzero only on an interval of size O(ve). Hence,
E.(u-y) = (1+0()) / / [eFy, 1) (Ve r)? /2 + 7 W (ue )] (6 () dt dH™ " (p) + O(e™).
08 J{|t|<yeFp(vp)}

Since
t

sz(t)(vus,'y(gp(t))) =(1+ 0(6))6710:; <5F;D(Vp)

by the previous expansion, we deduce that

) +o0)

1 / t 2 1 t n—1
Ee(uey) = (1+0(6))/8S /{|t<'vst(vp)} [2607 (an(up)> +-W(0,) <€Fp(yp))] dt dH" " (p)
+0(y%) + 0(e™),

11



as long as ve < 1. By a simple change of variables, we get

Ec(uey) = (14 0(9)) /as Fy(vp) dH" ™ (p) - /W [(U5)?/2+ W(U,)] + O(v%) + O(e™).

-

This converges to F(S) as we let € — 0, then 7 — oo and 6 — 0. By a diagonal argument, the conclusion
follows. O

5 A generalization of Modica’s bound

The following pointwise bound for critical points u of the isotropic Allen—Cahn

IVl W)
2 T«
was first proved by Modica [43] in the Euclidean setting. This is the fundamental tool used in deriving
a sharp monotonicity formula in the isotropic case [34, [33].

In the anisotropic setting, we obtain an analogous bound; as expected, it no longer yields a mono-
tonicity formula. Nonetheless, it will be a crucial ingredient in the proof of rectifiability of the limit of
the energy densities.

From now on up to the end of the paper, given a map v : M — R, when evaluating F(x, Vu(x))
with a slight abuse of notation we will look at Vu as a vector field in the tangent bundle Vu : M — TM,
and use the compact expression F'(Vu) in place of F(-, Vu(-)).

Theorem 5.1. Letting u: M — [—1,1] be a critical point of E., we have

F(Vu) < e '2W(u) + C,

where C' depends only on M"™,g and F. As a consequence,

eF?%(Vu) < W (u)
2 - €

+C

for a possibly different C = C(M™, g, F).

Proof. Recall that, by Proposition and Remark away from {Vu = 0}, u is smooth and we can
expand the Euler-Lagrange equation (3.4)) as

Aijaiju = 672W/(U) + O(V’U,),

where the coefficients A% (x) are essentially the second derivatives of F2/2 at Vu; more precisely, in any
coordinate chart we have

AT = g g9y (F2/2)(Vu) = g% "™ [F (V) 0pm F (V) + 0¢F (V)0 F (V)]

where when differentiating F' and F? we use the convention that 9y F denotes the partial derivative along
Ok = % €T, M of F,, = F|p,u, at any given € M (and similarly for higher-order derivatives and for
F?). The error term is a function G(x, Vu), with G(x,v) smooth away from {v = 0} and 1-homogeneous

in v, so that |%| < Coplv|t 181,
We would like to show that

F(Vu) — e '/2W (u) < A
everywhere, where A > 0 will be chosen later. To do this, consider a maximum point Z for the difference
¢ = F(Vu) — e '/2W (u),

and assume by contradiction that {(Z) > A, so that in particular Vu(z) # 0, and thus u is smooth
around &, as well as |u(2)| < 1. We now choose a coordinate system centered at &, with ¢;;(0) = d;; and
0rgi;(0) =0, as well as

Vu(0) = |Vu(0)|ey.

12



Since A% is positive definite, we have
A9 [F(Vu) — ey/2W (w)](2) = AY9,;¢ (&) < 0.
We now compute that at £ = 0 we have
0ij[F(Vu) — e 1/2W (u)] = 9[g" 0L F (Vu)djeu — e~ (V2W) (u)dju + O(Vu))
= O F(Vu)9i0udjpu + O F (Vu)dijru — e~ H(V2W) ()0 ju
— e HV2W) (w)diudju + O(Vu) + O(D*u),

where the error terms come from differentiating F' in the spatial variable at least once.
Once we multiply by A% and sum over i, j, we get

-3 W’(U)Q

I+ AY9,F(Vu)dpu —
K (V)i — & 2W (u)

— e Y V2W) (u)F2(Vu) < O(e™'Vu) + O(D?u), (5.1)

where we omit the sum over 4, j and we set
I:= Aijﬁng(Vu)aiguﬁjku
and we used the Euler-Lagrange equation and the fact that
AY9;udju = D*(F?/2)(Vu)[Vu, Vu] = F?(Vu),

since F? is 2-homogeneous.
We rewrite the second term of (5.1) as

8k(Aij8iju)8kF(Vu) — 8kA”8kF(Vu)8wu
= e 2W" (u) 0 ud F (V) — 050(F? /2) (V) Oeudp F (V) 0y (u) + O(Vu) + O(D?u),

where we used again the Euler-Lagrange equation and we expanded dy A% using the chain rule. Since F
is 1-homogeneous, at & we have
OudpF(Vu) = F(Vu).

Moreover, since V((Z) = 0, at & we have
Oreudp F(Vu) = 0g[F(Vu)] + O(Vu) = e 29py/2W (u) + O(Vu) = e L (V2W) (u)dpu + O(Vu),
giving
050 (F2/2) (V) Ogudi, F (V) dij (u) = e~ (V2W) (w)Dijo (F2/2) (V) Opudyj (u) + O(D?u),

thanks to the fact that 0;;,(F?/2) is (—1)-homogeneous, so that |9;;¢(F?/2)(Vu)| < C|Vu|~!. Also,
since 0;;(F?/2) is 0-homogeneous, we have

0i0(F? /2)(Vu)dpu = 0.
In summary, at & we get
A9y F(Vu)0yjpu = e W (u) F(Vu) + O(D?u).
Thus, (5.1]) becomes

s W)

—2yx71
I+ e “W"(u)F(Vu) —¢ TR0

— e (WV2W) (W) F2(Vu) < O(e~'Vu) + O(D?u).
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Now [ is nonnegative, since it is the trace of the product of two positive semidefinite matrices; in
fact, by (2.1) and the fact that D?F (v)[v,-] = 0 for v # 0 (by 0-homogeneity of DF,), we have

I .= AijaMF(vu)aiguajku
= tr((D?*F)(D*uAD?u))
A
>
~ [Vl
2

> ——tr
~ [V

tr((I — el ® ) (D*uAD?u))

(I = e, @ e)(D*u)?)

n n—1

)\2
> T 2 2 ol

i=1 j=1

where we repeatedly used the fact that tr(AB) > tr(A’B’) if A> A’ > 0 and B > B’ > 0. Moreover, by
the Euler-Lagrange equation, the lower bound A™ > X, and the estimate |W’| < Cv/W (as W” (1) > 0),
we have
Opnul <C > 0iul + O(Vu) + Ce /W (u). (5.2)
(i,5)#(n.n)

By the assumption that e71\/W (u) < F(Vu) at #, the estimate (5.2) in turn implies that at 2
Opnul <C > 95u + O(e™' V).
(i:5)#(n,m)
Thus, by Cauchy’s inequality, we can absorb the term O(D?u), getting
I+ 0(D*u) > —C|Vu| — Ce™HVu| > ~Ce ' F(Vu)
at 2, where C' depends on the implied constant in O(D?u). We deduce that

-3 W’(u)2

=217 _
e “W"(w)F(Vu) — ¢ TV (a)

— e Y V2W) (u) F%(Vu) < Ce L F(Vu). (5.3)

Since W = (V2W)" - V2W + (I;VV;,)Q, we can rewrite (5.3) as

(W)
2W

—e T (V2W) () F(Vu)[F(Vu) —e7'/2W ()] + [F(Vu) —e'V2W ()] < —I + O(e™'Vu)

at &; recalling that —(v/2W)” > ¢ > 0 by (2.5, we reach

L (W')?

ce L F(Vu)[F(Vu) — e '2W (u)] + ¢ ST

[F(Vu) — e 1/2W (u)] < Ce ' F(Vu).

This contradicts the fact that F(Vu) —e~1/2W (u) > A, once we take A large enough that cA > C. O

6 Uniform bounds for stable solutions

In this section we derive bounds on the second fundamental form of level sets for stable solutions u. s
with respect to E. s and consequently for limits w. thereof. Moreover we obtain lower density bounds
for the energy. Since F? is not of class C?, in many statements we will replace it with the perturbed
integrands F? already considered earlier, in order to make sense of stability. Let us start with a simple
observation.
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Proposition 6.1. There exists p = p(M™, g, F) > 0 large enough such that the following holds. Given
xg € M, we identify T,,M = R™ isometrically, so that the restriction (Fs)z, = F6|TIOM gives an
autonomous integrand Fs : R" — [0,00). If a constant @ € [—1,1] is a stable critical point for

Ey5(u) == / [Fg(VU)Q/Q + W(u)]
B,(0)

on the Euclidean ball B,(0) C R™, then w € {—1,1}.
Proof. Indeed, assume by contradiction that uy € (—1,1). For any n € C!(B,(0)), stability gives

92 .
| DA 2090, 90+ W @) 2 0.
B,(0)
Since W' (u) = W/(£1) = 0 and W"(£1) > 0, we must have [u] <1 — ¢ for some ¢ > 0. Also, using again
the fact that W’ (@) = 0, we have
W (@) = 2(VW)" (@)W ().
Using (2.5)), we see that —W"(w) > ¢ for a possibly different ¢ > 0. We deduce that

2 2 2 2
¢ /B e /B DA(E 2019 V) < O /B 1V (6.1)

for all n € C1(B,). This is impossible once we take p > 0 large enough. O

The following are useful consequences.

Lemma 6.2. Given v > 0, there exist constants ¢ > 0 and €9 > 0, depending on v and (M", g, F), such

that
V2W (u)|Vu| > ce™!
BPE (17)

whenever |u(p)| < 1 —7, for any stable critical point u : B,e(p) = R of E. 5, provided that € € (0, o).

Proof. Arguing by contradiction, dilating the domain by a factor e~!, assume that

V2W (i) |Viie| — 0

B¢
for a sequence of rescaled functions u., defined on rescaled geodesic balls B,(,E) and stably critical for
E4 5., for some 6. € (0,1). Since ¢ — 0, the rescaled metrics converge to the Euclidean one.
Since u. is uniformly C*® on B/(j), for any p’ € (0, p) (see Proposition and its proof), once we

identify each Bgs) with the Euclidean ball B,(0), these solutions converge in Clloc, along a subsequence, to
a critical point g : B,(0) = [—1,1] for Ey 5,, where §p := lim._,o d. € [0,1]. Here the limit energy E s,
involves the autonomous integrand F),,, where pg = lim._gp.. Also, |tu(0)| = lim._q |ue(pe)] < 1—7

and
/ o, VoG Vol =0
B,(0

so that Vi vanishes on the open set {@y € (—1,1)}. We deduce that g is a constant value in [—1 +
v, 1 —~]. If 69 > 0, then ug is also stable and we can immediately apply Proposition to reach a
contradiction.

If 6o = 0, we can still derive an inequality like : namely, for ¢ small enough, depending on

spt(n), we can write
c/ < C/ Vil
Bés) B‘(,E)

by exploiting the stability of 4. and using the fact that W"”(a.) — W (4y) < —c < 0 locally uniformly.
In the limit we get ¢ [, n*> < C [, |Vn|?, for all n € C}(B,), which is again impossible by our choice of
p P

p in the proof of Proposition making (6.1]) fail. O
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Lemma 6.3. There exist constants ¢ > 0 and g9 > 0, depending on (M", g, F), such that

/ eFs(Vu)? > c/ W)
Bz (p) By.(p) €

for any stable critical point u : Ba,(p) — R of E. 5, provided that pe < min{r,eq}.

Proof. Arguing by contradiction, assume that a stable solution wu. satisfies the reverse inequality for
arbitrarily small ¢,e > 0. Since we can cover B,(p) by a family of balls B,.(x) C Bs,(p) with bounded
overlap, we can find a sequence of stable solutions u. (with ¢ — 0) and points z. € M such that

/B%E(%)EF(V%)2 < cg/ M, (6.2)

Bps(xs) €

with c¢. — 0.
We can rescale u. to functions ., defined on rescaled geodesic balls Béz) converging to the Euclidean
ball B,(0). As in the previous proof, we have 4. — g in C} . up to a subsequence. Since

/ Vi |? < c/ F(Vi)? <Cec. | W) =0,
BSY) BSY) B(®)

in the limit we deduce that @ is constant on By, (0).

If . is critical and stable for E, 5. with d¢ := lim._,0 d. > 0, then g is critical and stable for £ s,,
so that Proposition gives g € {£1}; if instead dp = 0, we can reach the same conclusion by arguing
exactly as in the previous proof.

Now, recalling that W"(£1) > 0, we can fix v € (0,1) such that

—sgn(s)W/()(1 — |s]) = de(1 — s])? 2 (1 — 5%)* for |s| € [1 - ,1],
while, for a possibly different ¢ > 0, we also have
c(1 —5*)? <W(s) <C(1—s%)? for|s| <1.
Since |@g| = 1, we have |G| € [1 —7,1] on Bé‘;)/2 eventually.

Let us take a cut-off function ¢, € C} (Bg;)ﬂ)’ equal to 1 on B,(f) and with |[Ve.| < 4p~!. Assuming

for instance that 4. > 1 — ~ on the ball B:E,Z)/z and testing the Euler-Lagrange equation (3.4) with

©2(1 — 1), we find

BS)

_/B(E) QW' (i) (1 — i) :/ (ac(Viie), V(p2(1 — 12))),
2p
for suitable a. : TM — TM with |a.(v)| < C|v|. Applying Young’s inequality, we deduce that

—/ éwmmrwasaw/
ngj Bg;

|Vﬁ5|2—|—a/ %0?(1 _a6)2

) B

2p

for an arbitrarily small o > 0. Using the fact that 4. € [1 — «, 1] on the support of ¢., we deduce that

6/ (1 —a2)? SC(U)/ IVﬁs|2+0/ (1 — 1e)?,
B B B
2p 2p

2p

and thus, taking o := ¢/2, we get

| pa-zpsc[ wap,
B B

2p 2p
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or alternatively

/ awayr<c [ Fva)
B

éi) Bé?
Thus, we have
W(i.)> <C F(Vi)?,
B B
which contradicts (6.2]). The case 4. € [-1,—1 + 7] is analogous. O

We record here a diffuse version of the stability inequality for F-stationary hypersurfaces, similar to
the one obtained for the isotropic Allen—Cahn [47], first for stable critical points of E. 5. We will then
let & — 0 to derive a consequence for critical points u. of E. which are limits u, = lims_,o uc s of stable
critical points of E s.

Theorem 6.4. Assume that u is a stable critical point for E. s on an open set U C M. Then we have
[ S <F(T0? < 00) [ ecstw)
U U

where 11, (x) denotes the second fundamental form of the level set {u = u(x)} if Vu(z) # 0, and it is set
to be zero on {Vu = 0}.

Proof. Since ug is stable on U, for any ¢ € C?(U) a straightforward computation shows that
B w"
/ [A?@-wajso + (Qu‘s)wz} >0,
U £

where as above AY = g g1 9y, (F2/2)(Vu), and Oy (F2 /2) denotes the second derivative of (F2/2)|z, s
along 0y, 0y, € T, M, at any given z € M.

Since |Vu| is Lipschitz, by a standard approximation argument we can plug ¢|dus| in place of ¢,
obtaining

W”(u)

2

/ [<p2 (Agj8i|Vu|6j|Vu| + Vu2> + AY 90850\ Vu)? + 2Agj<p|Vu|8ig08j|Vu|} >0. (6.3)
U

Next, testing criticality with p?Au, we have
-~ w’
[ ooz meniean + 0] <o
U
Writing 9;(p?Au) = p2g*0j0u + ¢[O(Vu) + O(D?u)], with implied constants depending on ¢, and

noting that
O [0i(F5 /2)(Vu)] = gP10;(FF /2) (V) Oy,

after an integration by parts and relabeling of indices we obtain
/U {@QAgjg“aikuajeu + @2@|Vu|2 + e 2HV(e?), V(W(u)))]
= [ #lovu) + 0(vwo(*u)

and hence

W// (u)

/ [‘PzAngkéaikuajeu‘f"PQ =
U

|Vu|2] = / 7! O(ec(u)) + ¢ - O(Vu)O(D*u)]. (6.4)
U
Subtracting (6.3]) from (6.4)), we get

[ ¢34 oty - 0V uips|Vul) < Co) [ [ exlw) + plVal Dl
U U
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We now absorb the last error term: fixing a point p € M where Vu(p) # 0 and choosing a chart centered
at p, with g;;(p) = di5, Okgij(p) =0, and Vu(p) = |Vu(p)|0n, as in (5.2)) we observe that

Onnu(p)l <C Y 9yul,
(i-3)2 )

while the integrand in the left-hand side is equal to ¢? times

n n—1

Afsj [0ikudjru — Oipudjpul > N Z Z [Oikeu]?.

1=1 k=1

On the other hand, the same term equals Aéjaikuajku >\ EZk:l |0;rul? at a.e. point where |Vu| = 0.
Thus, by Cauchy’s inequality, we reach the bound

[ ¢4716" vadyen - 2,vul;[Vul <€) [ etw), (6.5)
U

for a possibly larger C(ip).

Let As denote the section of TM ® T'M with components Af;j (in a coordinate chart), which (using

the metric g) we can recast as a positive definite (1,1)-tensor As > X'I. On {Vu # 0}, letting v := %7

we observe that the integrand on the left-hand side can be written more compactly as
GAtr(HA:H) (g — v @ v*) > N tr(H?*(g —v* @ v*)), H := D*u.
Given a point p and selecting a coordinate chart as above, writing e¢; := 0;, for i = 1,...,n — 1 we have

n—1

[TLu(ed)|> =D 0w, e5)* = 9]

j=1
at p, as the tangent space of the level set is spanned by {e1,...,e,—1}, while e, = v. Moreover

H(e;) — H(e;,v)v

81'1/ =

so that for all j =1,...,n — 1 we have

Thus,

n—1

L, P = >

i,5=1

We deduce that
/ P11, 2IVal? < O tr((HAH) (g — v* @ 1)),
U

The claim now follows from (6.5]). O

Now, given a critical point u. for the energy E., we define the (n — 1)-dimensional varifold V. to be
the measure on the Grassmannian bundle G := G,,_1 (M) given by

V.(f) = / VW () [V | - F(Po,) dvol,, (6.6)
{Vu-#0}

for any f € C°(@), where P,_(z) := (Vu.(z))* € G is the tangent plane to the level set {u. = u.(x)} at
x. Here we make a slight abuse of notation: we write f(P,_(z)) in place of f(z, P,_(x)).

18



Remark 6.5. If almost all level sets {u. = A} are regular then, viewing them as the (n — 1)-varifolds
[{ue = A}], we have

- /_ VAP [{ue = M

by the coarea formula. In other words, in this case V. is simply a weighted average of the level sets of u..

Further, given a sequence of critical points (u.) with ¢ — 0 and

hrsn_}(r)lf E.(u:) < 00, (6.7)

we can assume that the liminf is a limit (up to a subsequence) and define the measure

dp = 21_% ec(ue) dvolg,

namely g is the limit of the energy densities in duality with C°(M), up to a subsequence.

Corollary 6.6. Assuming (6.7), up to a subsequence we can extract a limit varifold VO, with weight
Vol < Cp.

If moreover each us. = lims_,o uc 5, for a suitable sequence (ues)s of critical points for E. s with Morse
index < m independently of €,0, then there exists a finite set of points S, with #S < m, such that any
p € S admits a neighborhood U where the isotropic first variation §Vy satisfies

|6V0|(U) < C(U).

The sequence § = d;, — 0 used in the limit v, = lims_,o u s is allowed to depend on e. In the last
part of the statement, C(U) denotes a finite constant which may depend on all data (in particular, on
U).

Proof. The total weight of V. on an open set U C M equals

12l = /U VAW ()| V| < C /U ec(u2),

by Cauchy—Schwarz and the bound |Vu.|? < A™2F(Vu,.)?, showing the first claim.

Now assume that v, = lims_,ou.s and that each u. s is stable on U. Then, recalling that the
convergence is in CV*(M) and that the integrand defining V. contains the weight |Vu|, which vanishes
on the complement of {Vu # 0}, it is straightforward to check that in the sense of varifolds

V. =lim V. 5.

5—0

Now, since uc s is smooth, we can apply Remark [6.5 to say that f/e,(; is a weighted average of its level
sets. By subadditivity of the first variation, we have

37.6l0) < [ VWO 15T{ues = M) A
:/1 \/2W()\)/ |Hy, | dH" ™" dA
-1 {

u5,5=k}ﬁU
§C/ [TLu, 5 |\/2W (te,5)| Ve s,
U

where we denoted by H,, ; the mean curvature of the level set and used again the coarea formula. Since
trivially

/ e W (ues) < B g(uesg) < C,
M
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from Theorem and Cauchy—Schwarz we get
|6V2sl(U) < CU).
By lower semicontinuity of the first variation, we deduce that
BV-I(U) < T n 5725/ (U) < C(U), (63)

and thus : ~
6Vol(U) < liminf |6V (U) < C(U).
e—

The conclusion is standard: for every €, 9, let S 5, be the set of points p such that u. 5 is unstable
on B,(p). By Vitali’s covering lemma, there exists a subcollection S; 5. such that the balls B, (p) with
p € SL;, are disjoint, giving in particular #S. 5, < m, and such that u. s is stable on B,(g) unless

qe€ UpeS;‘M Bs,(p). The desired set is obtained by taking a limit of S ;. in the Hausdorff topology as
0 — 0, then as e — 0, and finally as r — 0 (along subsequences). O

We are now in a position to prove the following. In fact, later on we will just use the consequence
(6.10), even if the rectifiability of Vj will simplify the argument. Later, V{ will be replaced by a more

appropriate varifold V, directly tied to the anisotropic first variation; the latter will be shown to be (cw
times) integer rectifiable on all of M.

Theorem 6.7. On M\ S we have R
cu < Vol < Cp

and the density of Vi satisfies

0" (7], ) = lim 1V21(Br(@)

r—0 rn—1

€ (0,00) (6.9)

at ||Vol|-almost every = € M\ S (or equivalently at pi-a.e. x € M\ S), and hence Vy is rectifiable on
M\ S. As a consequence, 11 is a rectifiable measure on M\ S and

0< O (j1,2) <O (n,w) <00 for pra.e. w € M\S, (6.10)

where O 1(pu, 2) == liminf, g “(5[;@) and ©O"~1*(u, x) := limsup,_, “(ﬁf;(f)),

Proof. While the upper bound |Vo|l < Cp was already obtained (on all of M), we claim that the lower
bound [|Vg|| > ¢ on M\ S follows from (6.9). Indeed, given p € S, let us fix a ball B, (p) C U, where
U is the neighborhood given by the previous result. First of all, by Theorem we have

[ce F(Vu)?* — CeF(Vu)] > c/ eF(Vu)? — Or",
Bar(p)

1Vel(Bar(p)) > ¢ /B VATV 2 /

Bar(p)

thanks to the uniform C* bound F(Vu.) < Ce™!, which again follows from Theorem [5.1
By Lemma which applies since u, ¢ is stable on U by construction (for €, and in turn §, small
enough), we deduce that

1Vell(Bar(p) > / ec(uz) — Cr™,

B (p)

and hence in the limit ¢ — 0 we get ||Vo|(Bar(p)) > cu(B,(p)) — Cr". Approximating r from below, we
deduce

IVoll(Bar(p) = cu(Br(p)) — Cr™.

Assuming that ||Vp||(B,(p)) > ¢(p)r™~* for any r > 0 small enough, we can then find 7 > 0 as small as
we want and such that

IVoll(B2r(p)) > elp)r™ =", [IVoll(Br(p)) > 47" Vol (B2r (p)).

20



We then have 7 = o(||Vol|(B,(p))), and thus

IVoll(Br(p)) = 4~ Voll(Bzr(p) = cu(Br(p)),

from which the bound || Vg > cu follows, thanks to Besicovitch’s differentiation theorem.

To show the second part of the statement, it suffices to show that ©@"~1*(||[Vg]|,z) > 0 for ||[Vp]-a.e.
z: indeed, we already proved in Corollary m that the varifold V; has locally bounded (isotropic) first
variation in M \ S, so that here its rectifiability follows by Allard’s classical rectifiability criterion [2]

Section 5], which gives (6.9). Finally, (6.10) is now clear on M \ S.
To check that ©"~1*(||Vyll,z) > 0 for ||Vp|l-a.e. x, let us fix U as above, and fix U’ C U and 19 > 0
such that Ba,,(z) C U for all x € U’. Given v > 0, we let G, , denote the set of points € U’ such that

_ IV(B. (@)
v

for all r € (0,7¢). Since |§V.|(U) < C(U) by (6-8), a simple application of Besicovitch’s covering lemma
gives

uc(z)| <1 =27, [6Ve|(Br(x)) (6.11)

VW Ge) < CON + [ VI (00 V|

U/ {jue|>1-27}

We claim that the last term vanishes in the limit €, — 0. Indeed, testing the Euler-Lagrange equation
(3.4) with A — u. we have

/ e W (o) (N — ) < C/ e|Vu.|? < CE.(u.) < C;
M M

choosing A € (—1,1) to be the maximum point of W{_y 1; (recall that VIV is assumed to be strictly
concave on [—1,1]), we have (A — s)W'(s) > 0 for all s € [-1,1], and actually

(A= s)W'(s) > —csgn(s)W'(s) > cy/W(s) for |s| € [1 —2v,1]
for v > 0 small enough, as W"(£1) > 0. We infer that

/ e/ () < C,
{lue|>1-2~}

and thus, since /W (s) < C(1 —|s|) on [-1,1] (again as W"(£1) > 0),
/ e W(u.) < Cy. (6.12)
{lue[>1-2~}
By Theorem [5.1] and the last two bounds, we have shown that

/ VIV () [V | < C e W () + /W ()] < Cy + Ce.
{lue|>1-2v} {lue|>1-2~}
In summary, we deduce that there exists a small vy > 0 such that

IVel(U'\ Gepy) < CU)(y +e)

for all v € (0,7p) and € > 0 small. B
Up to a subsequence, let Go ., denote the Hausdorff limit of the closures G. -, along a subsequence
¢ — 0 depending on v € (0,79). We claim that

0" ([ Ta,) > 0
at each x € Gy . Indeed, thanks to (6.11), we can apply [53, Theorem 17.6] to the varifold V. with a = 1;

note that here we use geodesic balls rather than Euclidean ones, but the proof still carries through. Hence
we obtain B

[Vell(Bpe ()
(pe)=1

IVEll(B: ()

s p ) >c(y)>0
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for any = € G, , and r € (pe, 79), thanks to Lemma which applies as Bje(z) C U and |u. s(x)| < 1—7
for § small enough, by (6.11]). Thus, we also have

Vol (B (x))

Tnfl

Z2c(7)>0
for any x € Gy . Finally, we have

IVl (U \ Go,y) < liminf |V2[(U"\ Ge ) < C(U)n.

Since ||Vo|| has positive density at all points in U €(0,49) 90,v and we can cover M \ S with countably
many such U’, the statement follows. Note that the subsequence € — 0 defining Go , depends on ~, but
this is irrelevant. O

7 Stress-energy tensor and integrality of the limit varifold

Given u. : M — R critical for E., a straightforward computation using inner variations shows that, for
any vector field X € C*(M,TM), denoting by DX the (1,1)-tensor given by the Levi-Civita connection,
we have

| @px)= [ oEvapix), (71)
M M
where Ty is the stress-energy tensor, namely the (1, 1)-tensor given by

T. :=e.(uc)I — eVu. @ D(F?/2)(Vu,), (7.2)

with D(F?/2)(Vu.) € T;M denoting the differential of F2/2 = (F?/2)|r,m (viewed as a function
T, M — R) at Vu(z), for any given 2 € M; the error term comes from the fact that F?> depends on .
In the sequel, it is useful to consider the map

v® DF(v)
C =] - —7

F(v) Fo)
where v € T M is a unit vector. We observe that

T. = [ee(ue) o EF(Vuﬁ)Q]I + EF(VUE)QCF(Va)a Ve 1= |§Za|

on {Vu, # 0},

while we let v, := 0 and Cr(ve) := 0 on {Vu, = 0}. We have the trivial bound
IT.| < Cec(ue).
Assuming (6.7)), let Ty be a limit of the measures T, dvoly, up to a subsequence.

Proposition 7.1. The limit Ty has the form
dTy = ((1 — NI+ NA) du + d€,

where X : M — [0,1] and the measure § satisfies |{| < C'voly, while for p-a.e. x the tensor A(x) belongs
to the (compact) convexr hull

Co:=co({Cp(v) : v €T, M, |v|=1}).
Proof. Indeed, we have
Te = [(1 = X)L + ACp(ve)]ec(ue) + &,

where
eF(Vu.)?

Ae = mm{ e (o)

71} e [0.1) (7:3)
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and defined to be zero on {e.(u.) = 0}, and
£ = —(eF(Vue)? — ec(u)) T + (eF(Vu.)? — ec(u.)) T Cp(ve).

Crucially, by the generalization of Modica’s bound, namely Theorem we have e F(Vu.)? —e.(u:) < C
pointwise, and thus

&l < C.
Since (1 — A)I + A\.Cr(v.) € co({I} UC,) at any given x € M, it follows that
dTy = Bdu + de,
where ¢ is the limit of & dvoly and B(x) € co({1} UC,) a.e., as desired. O

Theorem 7.2. Assuming that u. = lims_oucs is a limit of critical points for E. s with Morse index
< 'm, then the measures Ty and p are rectifiable. In fact, we have

)\:0, A(.T) :CF<VQJ)

for a suitable unit vector v, € T,M, at p-a.e. x € M. Furthermore, writing du = 0 d(H" LX) for
a suitable rectifiable Borel set ¥ C M with o-finite H"~! measure and 6 : ¥ — (0,00), the (n — 1)-
dimensional varifold

0(56) v n—1 T
7F(uw)6y"’( )@dH" T LE)(x)

is rectifiable and F-stationary, and v, is H" '-a.e. the unit normal to ¥ (unique up to sign).

dV(z,vt) =

It follows from the formula for V' that its anisotropic energy is
FV)=uM), FV;U)=uU) forall U C M Borel.

Proof. We observe that p-a.e. x € M is an approximate continuity point of A and A, and moreover by
Theorem satisfies

0 <Oy (p,a) <O 1 (n,x) < oo, (7.4)
provided that x ¢ S. In this case, thanks to Proposition any blow-up Ty of Ty at any such point

xog € M will be of the form }
dTy = Bdp,

where

B=(1-X)I+ X Cr,, (v)da(v) (7.5)
§n—1

is a constant matrix given by a suitable Ay € [0,1] and a probability measure o on S"7!, and ji is a
blow-up of p at zg. Indeed, ¢ disappears in the blow-up, as [£|(B,(z0)) = o(r"~ 1) = o(u(B,(z0))),
thanks to the fact that u(B,(x¢)) > c¢r™~! for r small. Note that a blow-up defined on R" exists also
when xg € S, in which case i = dg.

As guaranteed by (or by i = dp), the measure ji cannot be a constant multiple of the Lebesgue
measure on T, M = R", as ©77!(i,0) > 0. On the other hand, implies

Ty, DX)| < C / X dps;
M

given Y € C}(R™,R™), we can plug X (p) := >_i", Y (r~texp ! (p))ei(p), extended to zero outside the
domain of exp, !, for a fixed orthonormal frame {e;}?; defined near x( inducing the chosen identification
Tpo M = R™. Letting r — 0, we deduce that

(To, DY) =0 forall Y € C}(R",R").

Taking Y of the form Y = v, we then see that fi is invariant along BTv. Since /i is not a multiple
of the Lebesgue measure, we deduce that

ker(B) # {0}.
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Let then vy € ker(B) be a unit vector. Recalling (7.5)), we see that

0= <DF10 (Vo), Bl/0> = (1 - )‘O)F:Do (1/0) + )\0 /Sni1 <DF10 (Vo), CFzO (Z/)V0> dOé(l/). (76)

By 1-homogeneity and convexity of Fj,, we have that
DFZL’O(V)[V] = F(V)v DFIO(V)[I/] = FEO(V) + DFZI?O(V)[VI - V] < FOEO(V/)

and, since F' is even, it also holds that |DF,, (v)[v]| < Fi,(vo) and |DF,, (vo)[v]| < Fy,(v). Hence, we

obtain that
DFy, (v)[vo]

F(v)
Plugging (7.7) in (7.6), we deduce that A\g = 1. Moreover, since F,, is strictly convex along non-radial

directions, ((7.7) can be an equality only when v = +uy.
Thus, « is concentrated on {£vp} so that, using again that F is even, we obtain

g X DFIO (Vo)
F(zo)

(DFy,(v0), Cr,, (Vo) = Fry(v0) — DF, (v)[v] > 0. (7.7)

B:A(.’Eo)zl—

For the same reason, ker(B(z¢)) = span{vp} and thus the image of BT is 3. Hence, fi is invariant along
the hyperplane vg-.

We cannot have xg € S, since otherwise we would have i = Jp, a contradiction with the invariance of
fi along v5-. Hence, u(S) = 0 and the conclusion follows from the rectifiability of y proved in Theorem [6.7]
since for generic ¢ any blow-up must be a constant multiple of H" ! L vs(x0)*, yielding vg = +vs(x0).

The F-stationarity of V is equivalent to the fact that Ty is divergence-free. O

Remark 7.3. The previous proof generalizes the atomic condition found in [20, Definition 1.1], which in
codimension one characterizes convex integrands F' that are strictly convex along non-radial directions:
see [20, Theorem 1.3]. In fact, we could avoid appealing to the rectifiability of ||Vo|| and rely just on
(6.10): once we reach Ag = 0, the rectifiability of u follows from [20, Lemma 2.2].

Remark 7.4. We observe that

. 2 1 € 2 1 " —
lim M(EF(VuE) —e(u))t = lim y <2F(Vu5) — 5W(u5)) =0. (7.8)

Indeed, any weak limit v of the integrand (as a measure) satisfies v < Cp, as well as v < C'vol, by
Theorem Since the measures p and vol, are mutually singular, we deduce that v = 0 and hence
(7.8). In particular, we also have

&E=0.
Remark 7.5. Recalling the definition of A; from ([7.3)), on the compact set

G = {co({I}UC,) |z € M}
we can consider the positive measures
AVe(z,Z) := 535(1)(Z)65(u5)(:c) dvoly(z),

where
T ('T) — & (x)
€e (us) ()

(the last equality holding on {e.(u.) > 0}), and a subsequential limit V. Letting 7 : G — M denote the
canonical projection and considering the disintegration of dVy(z, Z) = o, (Z) ® du(x) with respect to m,
let Vj denote the G-valued measure on M given by replacing each probability measure «, with its center
of mass, namely

Be(z) := (1 = Ae(2))] + A (2)Cr(ve(x)) =

dVy(x) == Zy dp(x), Z,:= / Z do (7).
1(x)
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oo

In particular, since V. — Vj and V! = (T, — &) dvoly, — T as & — 0 by Remark we deduce that
Vy = To. Exactly the same argument used in the previous proof then shows that the disintegration a,
of Vj consists of a Dirac mass at p-a.e. x € M, i.e., Vo = V up to identifying Cp(v) with v+,

It is straightforward to check that, if we have a sequence of measures Wj, — W, in é, then W, — W/_.

We are now left to prove that c;[,lV is actually an integral varifold, or equivalently

0(z)
CwF(Ua:)

where we recall that cy = f_ll V2W (t) dt.

We can fix a p-generic point g, so that we can assume zo € S as u(S) = 0, holds at g, and
1 has an approximate tangent plane at x(; as seen in the previous proof, we can also assume that p and
To blow up to

eN, for|V| —ae. z,

0-H"'Lvt, 0CE, (v) - H' vt
respectively, where v = v, and 6 = 0(z). Further, by (7.8)) and (6.12]) we have

1 +
limsup/ ee(ue) < limsup/ 2W (us) + limsup/ <6F(Vu8)2 — W(u5)> < Chy.
{luc|>1-2} {lucl>1-27} M \2 €

e—0 e—0 e—0

Hence, an application of Besicovitch’s covering lemma shows that, for a constant C' which may depend
on the point xg, we can also assume that

lim sup ec(ue) < Cyu(Br(z0)) < Cyr"~t for all 7 € (0,1). (7.9)

€0 /Br(wo)ﬂ{lua|>1“/}
We choose coordinates so that zo = 0 and the weak tangent plane is (6 times)
P:={zeR": 2" =0}

By a diagonal argument, we can replace (u.) with a sequence of critical points, defined on larger and
larger balls Bg_(0) endowed with metrics g. converging to the Euclidean one and integrands F¢ — F,,
such that

ee(us)dr — 0dH" P,

as well as
T.dx — 0Cp,, (en) dH" 'L P.

Remark 7.6. Since the new sequence u,. is obtained by rescaling a sequence of critical points on a closed
manifold, the pointwise bound ([1.2) still holds. Actually, we have

eF(Vu.)?/2 <e 'W(u.) +c., ¢ —0, (7.10)

since if the new u. is obtained by rescaling a function u., from the original sequence then the constant
C in (1.2)) becomes Ce’ /e = C/p, where p is the (larger and larger) dilation factor.

Moreover, using ([7.9) and another diagonal argument, we can even assume that

lim sup ee(u:) < Cy (7.11)

e—0 /B10(0)F‘|{|U521—'Y}

for any v € {27% | k € N}, and hence for all v € (0,1).
Let n > 0 and S; := {|ve — e,| > n}, where v, = % is defined using the metric g., while v — e,
is computed using the Euclidean metric. Then Remark namely the fact that

0B, (x)(Z)ec(ue)(x) dvoly(x) = dVe(x, Z) — dVy(x, Z) = 5CF1'0 (en)(Z) d(@’H"i1 L P)(x),
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gives
/ e-(uz) = Va(m ™ (B1o(0) N1 S.)) — 0,

On the other hand, on Bio(0) \ S: we have |Qjus| < Cn|Vu.| < CnF(Vu.) for i < n. Hence, for all
i=1,...,n—1 we have

limsup/ |ojuc]? < limsup/ £|Osuc|? +limsup/ |loju.|? < 6’772/(€F2(Vu6)7
B10(0) B1o(0)NSe B1o(0)\S.

e—0 e—0 e—0

so that

lim £|Ouc|* = 0. (7.12)
e—0 BIO(O)

Let us fix a nonnegative cut-off function x € C1((—1,1)), equal to 1 on (—1/2,1/2).
Lemma 7.7. There exist Borel sets E. C B}(0) such that
L YE.) =0

and, for any sequence of points p. € B?_l(O) \ E.,

/ x(a™)ee (ue(pe, ™)) da™ — 6.
{pE}X[—l,l]

Proof. We test (7.1 with a vector field of the form ype;, where p € C}(B} *(0)) and j =1,...,n — 1.
We get

[ ctwdstee) = [ 0 DEDTuVe + ol |[Tlleo)
BP(0) B(0)

where the error term comes from the ambient metric g., which converges to the Euclidean one as € — 0,
and the error term in (7.1]), which is also negligible in the limit £ — 0, as F*® converges to the autonomous
integrand F, . By (7.12)), letting

be the integral on the slice, we then have

/ N fsaj90
BY7(0)

for a vanishing sequence o. — 0, as ¢ — 0. The conclusion then follows from Allard’s strong constancy
lemma [5, Theorem 1.(4)], once we recall that

< o[Vl co

fedr — 0dx

as measures on B} 1(0). O
We have the following simple result in R™, for autonomous F'.

Lemma 7.8. Given A >0 and v € (0,1), there exists 6(A,~y, F)) > 0 such that either
| >1-Cy on {0} x (~R, R)

or the energy on the slice

1
/ e1(u) € U (kew — Cky?, kew + Chy?) (7.13)
Fen) Jioyx(—r,R) REN{0)
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for any critical point
u: B 10) x (-R,R) - R

of the energy Ey, provided that R € (0,A], |u| <1, F(Vu)? < W(u) +~2,

li 1—~.1
Jim [u(0,8)] € [1 =7, 1],

and

diul? < 6.
/B Z|u|<

=L)X (— R.R) ;=

In other words, if u is almost constant along the first n — 1 coordinate directions, then its energy is
close to (F(ey) times) a multiple of the energy cy = Lll V2W of the heteroclinical solution, unless u
is essentially constant. In the statement, C' is a universal constant depending just on W, on which the
other constants tacitly depend as well.

Proof. Assuming for every § > 0 we have a counterexample u® : B}~ '(0) x (—Rs, Rs) — R, in the limit
d — 0 (up to a subsequence) we get a one-dimensional function u(x) = U(z™) critical for E, defined on
B 1(0) x (=R, R) for a limiting R = lims_,o Rs € [0, A]; we can assume that R > 0 since otherwise the
first conclusion for u® trivially holds, thanks to the Lipschitz bound on u® (implied by the assumption
F(Vu®)? < W(ud) +~?).

Note that we can pass to the limit the Euler-Lagrange equation and also

lim e1 ud —/ e1(u),
00 J{0}x (~Rs,Rs) {0} x(~R,R)

thanks to the same Lipschitz bound and Proposmlonn7 Wthh upgrades it to convergence in Cl '*. Since
u is one-dimensional, it is smooth and satisfies

U:(-R,R) =R, F2e,)U"=W'(U).

Thus, & := F?(e,)(U’)?/2 — W(U) is constant; actually, it is bounded by C+? in absolute value: this
follows from the uniform convergence u® — u and from equicontinuity, which give

hm |u(0,t)] = (P_I}r(l)t_lg:r}% [ud(0,)| € [1 —,1]

and thus lim; 5 W (u)(0,t) < C+?2, as well as the fact that F(Vu)? < W(u) ++2.

The solution U can be extended to all of R and, by classical theory of Newtonian systems (viewing
—W(U) as the potential energy), its extension is periodic if £ < 0, constant or heteroclinic if £ = 0 (i.e.,
either U = %1 or it is monotone, with limits +1 at infinity), or divergent if £ > 0 (i.e., goes to £oo

V2w (U)+2¢

T Flen)
|[U| > 2). Here we are assuming that ~ is small enough, so that the steady state in (—1, 1), corresponding
to the maximum point for W{_; ), is not one of the possibilities.

at infinity, since U’ = with constant sign; recall that the right-hand side is ~ +|U| for

In the second and third cases, U is monotone; applying the elementary inequality 0 < a+b—2vab <
la — b| with a := F?(e,)(U’)?/2 and b := W(U), we see that

R
/ 1(u) = / Flen) V2V O] + 0(?), (7.14)
{0}x(=R,R) -R

from which the claim follows: either |U| > 1 —+ or holds with k = 1, thanks to a simple change
of variables and the boundary condition |U(£R)| € [1 — 7, 1].

If instead we are in the first case where £ < 0, then we can divide [-R, R] into N > 1 consecutive
intervals [tj,t;41] where U is monotone, for j =0,..., N — 1, such that t, = —R, ty = R, and

Ut;) e W (=€) forallj=1,...,N—1
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(as U'(tj) = 0 and hence £ = —W (U (t;)) for these j). Using again (7.14) and writing

R N-1 ot
/ CWEGIEDS / Flea) VWD)
_ =0 t;

the claim follows again from the monotonicity of U on each interval, together with the fact that U(t;) €
W=1(=¢€) forces |U(t;)| € [1 — C, 1], as —€ € [0,C~?] and W is nearly quadratic around £1. Thus, the
claim must also hold for u° eventually, a contradiction. O

Remark 7.9. Clearly, the same also holds on a small geodesic ball in M, rescaled to have unit size.
Indeed, on such rescaled ball, the metric is close to the Euclidean one and F' is almost autonomous.

We are finally ready to prove integrality of the limit varifold V built in Theorem which reduces
to the following statement thanks to the blow-up reduction.

Theorem 7.10. We have FL@) € cwN.
o (En

Proof. Let us fix v € (0,1) small and recall that, since by assumption the limit of the energy densities is
supported on P, we have

/ (1 = y(@™))ew () (@) dz — 0. (7.15)
Bi10(0)

Using the previous bounds, we can find p. € BJ""!(0) such that

1
/ (1= x(t))ea(ue)(per t) dt — 0,

—1
thanks to ([7.15)), as well as
1
/ x(Dee(ue) (per t) dt — 0

-1
by virtue of Lemma [7.7]

n—1
1
prre /B > [9jucl> =0 (7.16)

2 (pe) x[—1,1] j=1

by (7.12) and the standard weak-(1,1) maximal bound, and finally

1
timsup [ 13-y (el (s ) ()0, 6t < O (7.17)
-1

e—0

thanks to ([7.11)), where Cy := C is the constant appearing in Lemma
We write {t € (—1,1) : |uc|(pe,t) <1 —7} = Uj\/:sl I; as a union of disjoint open intervals. Since
W(ue) > e(y) > 0 on {Jus| <1 —~}, we have

1

S0 [ Wyt <€) [ calpat)dt < C)e = A

-1

This implies that, for € small enough, x(t) vanishes for t € Iy U Iy; in order to study
1 1
6 = lim x(t)es(ue)(pe,t) dt = lim ee(ue)(pe, t) dt,
e—=0 ) _4 e—=0 ) _4

we can then look at the intermediate intervals I; for j = 1,..., N — 1. We can now apply Lemma [7.§]
(and Remark to each of the cylinders

B Ype) x I;, je{l,...,N—1},
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dilated by a factor ¢!, so that the dilated function becomes critical for F;. The assumptions of this
lemma hold eventually, thanks to the bound e7*|I;| < A, the bound (7.10)), the fact that

lue(pe,t)| € [1 —,1] for t € DI},

and ([7.16)).
We deduce that either |u.(pe,t)| € [1 — Cyv,1] for all t € I; or

1
Fi/ ec(ue)(pe,t) € U (kew — Ckv?, kew + Cky?).
zo(en) J1, kEN\{0}

In particular, in the second case we have %@) J; ec(uc)(pe,t) > cw /2 (provided v is small enough).
o en) JI;

Since the energy on the full slice {p.} x [—1,1] is at most 26, we deduce that there is an upper bound C
for the number of such intervals of the second kind, independent of ~.

Recalling ((7.17)), we arrive at

1 /1 1
ee(Ue)(pe,t dtzi/ ee (e )(pe,t) dt = n.c +O'Y y
Fyo(en) J -1 (ue)( ) Fyo(en) [—1,1\(JoUIN) (ue)( ) v ™

for some n. € N, with an implied constant independent of €,~. Since

0 , 1 ! .
Fan) = b Fte | <00 = i 010,

we obtain that the distance of FL(E) from ¢y N is bounded by O(«). Since v was arbitrary, we reach
zg(En
the conclusion. O
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