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Abstract

We develop a PDE-based approach to the min-max construction of nontrivial integer rectifiable
varifolds that are stationary with respect to anisotropic surface energies on closed Riemannian man-
ifolds, in codimension one. Specifically, we study the anisotropic analogue of the Allen–Cahn energy
and establish a Modica-type gradient bound for its critical points. Using this in conjunction with
certain estimates for stable solutions, we then prove that the energy densities of stable or bounded-
Morse-index critical points of its rescalings concentrate along an integer rectifiable varifold that is
stationary for the underlying anisotropic integrand. As a consequence, we construct a (possibly
singular) anisotropic min-max hypersurface via Allen–Cahn, obtaining an analogue of the result of
Hutchinson–Tonegawa in the anisotropic setting.

1 Introduction

The Allen–Cahn equation has become a central tool in the study of minimal hypersurfaces and related
variational problems in geometric analysis. Originally introduced by Allen and Cahn [6] as a diffuse-
interface model for phase transitions, this reaction-diffusion equation reads

∂tu−∆u+
W ′(u)

ε2
= 0.

Here W denotes a double-well potential with global minima at ±1, the prototypical example being
W (u) = 1

4 (1− u2)2. Modica and Mortola [45] observed that the associated energy functional∫ [
ε
|∇u|2

2
+

W (u)

ε

]
, (1.1)

Γ-converges, as the interfacial width parameter ε → 0, to the area functional of sets of finite perimeter.
This observation revealed a deep connection between the Allen–Cahn variational framework and the
theory of minimal hypersurfaces in geometric measure theory, as originally suggested by De Giorgi.

In particular, critical points of (1.1), that is, functions u satisfying

−ε∆u+
W ′(u)

ε
= 0,

have been shown to concentrate on minimal hypersurfaces as ε → 0. This phenomenon dates back to
the foundational work of Modica [44] and Sternberg [57], and has since developed into a well-established
field. We refer the reader to the surveys [46, 52, 59] for an overview.

Building on this idea and on the works of Ilmanen [34], Hutchinson and Tonegawa [33], Tone-
gawa [58], Tonegawa and Wickramasekera [60], and Wickramasekera [61], Guaraco [32] established an
existence theorem for closed minimal hypersurfaces in arbitrary closed Riemannian manifolds by adapt-
ing the mountain-pass construction to the Allen–Cahn functional (1.1). His work provided a PDE-based
alternative to the Almgren–Pitts min-max theory from [7, 51]. The Almgren–Pitts theory has had a
profound impact on geometric analysis and was later refined by Marques and Neves [40, 41] in their proof
of the Willmore conjecture, leading also to the recent resolution of Yau’s conjecture by Song [54]. On the
other hand, the PDE-based min-max theory has since been extended to a variety of settings and proved
capable of achieving more refined results which predated analogues in the Almgren–Pitts framework, such
as the multiplicity-one result of [14]. Collectively, these developments have established the Allen–Cahn
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framework as a flexible and powerful analytic alternative to the Almgren–Pitts one, allowing geometric-
measure-theoretic ideas to be realized within a purely elliptic PDE setting, with promising analogues in
higher codimension: see [38, 35, 1, 39, 11, 56, 13] for the Ginzburg–Landau model with no magnetic field
and [50, 48] for the abelian Higgs model (as well as [55, 49] for slightly different settings).

Parallel to these isotropic developments, a significant body of work has emerged on minimal surfaces
with respect to anisotropic surface energies, which naturally arise in crystalline surface tension models,
capillarity problems, and in the modeling of interfaces between distinct materials. We refer to the
survey [24] for an overview of the theory of anisotropic minimal surfaces. The anisotropic area functional
generalizes the classical area by introducing a convex, one-homogeneous integrand depending on both
position and normal direction. While existence and regularity of minimizers for anisotropic energies are by
now well understood [8, 9, 18, 21, 23], a satisfactory existence and regularity theory for stationary solutions
remains incomplete [5, 25, 26], due largely to the absence of a monotonicity formula for density ratios [3].
Allard [4] conjectured the existence of closed anisotropic minimal hypersurfaces in closed Riemannian
manifolds, but an anisotropic counterpart of the Almgren–Pitts min-max theory had remained elusive
until recently. In [19, 22] De Philippis, the first-named author, and Li have now resolved this problem by
developing an anisotropic version of the Almgren–Pitts theory, proving the existence of closed anisotropic
minimal hypersurfaces with essentially optimal regularity in any closed Riemannian manifold.

The goal of the present paper is to provide a PDE-based alternative to the latter approach to the
anisotropic min-max construction. More precisely, we develop an anisotropic version of the isotropic
Allen–Cahn min-max construction by Guaraco [32]. Let (Mn, g) be a closed Riemannian manifold with
n ≥ 2. We consider a smooth even function

F : UT (M) → (0,∞), F (x, v) = F (x,−v),

defined on the unit tangent bundle, and extend F 1-homogeneously to the tangent bundle:

F : TM → [0,∞), F (x, λv) = λF (x, v) for all λ ≥ 0, (x, v) ∈ TM.

We assume that F is uniformly convex in directions orthogonal to the radial one, namely

D2Fx(v)[w,w] ≥ λ|w|2 for v ∈ UTx(M) and w ∈ TxM, w ⊥ v,

for all x ∈ M , where Fx denotes the restriction of F to TxM . The anisotropic surface area of an embedded
hypersurface Σn−1 ⊂ Mn is defined by

F(Σ) :=

∫
Σ

F (x, νx) dHn−1
g (x),

and the anisotropic Allen–Cahn energy of a function u : M → R by

Eε(u) :=

∫
M

[
ε
F (x,∇u(x))2

2
+

W (u(x))

ε

]
d volg(x).

All the relevant assumptions on the double-well potential W will be recalled in (2.5)–(2.6) in Section 3.
The energy functional Eε has been recently investigated by Cicalese, Nagase, and Pisante [16], and the
associated parabolic equation has been the subject of an extensive literature [27, 28, 31, 37, 42]. Bouchitté

[12] proved in a more general framework that Eε Γ-converges to cW · F , where cW :=
∫ 1

−1

√
2W . We

provide a shorter proof of this Γ-convergence in Theorem 4.1, tailored for Eε. We also remark that
in recent years there has been a growing literature on the Γ-convergence to anisotropic perimeters of
heterogeneous variants of the Allen–Cahn energy functional in a periodic medium [15, 17, 29].

On the contrary, nothing was known in the literature for the convergence of stable (or bounded-
Morse-index) critical points for Eε to anisotropic minimal hypersurfaces, as ε → 0; actually, as explained
in the body of the paper, in order to have a C2 functional we need to perturb F slightly in the varia-
tional construction, although ultimately we still obtain critical points for the original Eε. Establishing
this convergence is a crucial step to extend the isotropic min-max construction of Guaraco [32] to the
anisotropic Allen–Cahn framework. The main obstruction is the lack of a suitable monotonicity formula
in the anisotropic setting [3], which makes it a challenging task to prove that the limiting varifold has
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no diffuse part, and in particular that it is rectifiable. For the isotropic Allen–Cahn functional, the
monotonicity formula is deduced by a celebrated gradient bound proved by Modica [43]. Our first main
contribution is the following anisotropic version of Modica’s bound (see Theorem 5.1 for the details).

Theorem 1.1. Let u : M → [−1, 1] be a critical point of Eε. Then

εF 2(∇u)

2
≤ W (u)

ε
+ C(Mn, g, F ). (1.2)

Compared to the isotropic counterpart, its proof is much more delicate due to the appearance of
additional terms when the Euler–Lagrange equation is differentiated, which need to be controlled by
exploiting convexity and homogeneity of F at various places. An additional challenge is the lack of
effective bounds on the Hessian D2u away from {∇u = 0}, as globally u is guaranteed to belong only
to C1,α for some α ∈ (0, 1); terms involving the Hessian naturally appear in the setting of inherently
non-autonomous integrands F on closed manifolds.

Theorem 1.1 is somewhat surprising: in the isotropic Allen–Cahn case, the validity of (1.2) implies
the monotonicity formula [34, 33], which is known to fail in the anisotropic setting [3]. Hence, while (1.2)
remains valid, it no longer entails monotonicity. Nonetheless, Theorem 1.1 serves as a key ingredient in
proving our main result.

Theorem 1.2. There exists a nontrivial F -stationary integral (n − 1)-varifold V in M , whose weight
cW ∥V ∥ arises as the limit, as ε → 0, of the energy densities

eε(uε) :=
ε

2
F (∇uε)

2 +
1

ε
W (uε)

of suitable critical points uε of Eε, constructed via a min-max procedure.

Remark 1.3. While we exhibit such V from the simplest mountain-pass construction, the analysis
contained in the present paper applies to any min-max scheme. We conjecture that, in fact, the energy
density of any sequence (uε) of critical points with bounded energy concentrates along an integral F -
stationary varifold as ε → 0, up to a subsequence, regardless of stability conditions.

While we do not attempt to develop any regularity theory beyond integrality of V , we hope to do
so in a future work, exploiting once again the stability of uε. It would also be interesting to investigate
analogues in codimension two or higher, e.g. by devising appropriate anisotropic versions of [50].

Below, we briefly discuss the proof strategy of Theorem 1.2, which is obtained combining Proposition
3.5 with Theorem 7.2 and Theorem 7.10.

First of all, we construct a family of min-max solutions (uε) satisfying uniform (in ε) lower and upper
bounds of Eε(uε) and with Morse index ≤ 1 (up to a regularizing approximation of F ); see Proposition
3.5. Hence, the energy densities of uε will subconverge in the sense of measures to a finite Radon measure
µ on M .

To encode the geometry of the level sets of uε, we introduce the (n− 1)-varifolds Ṽε in (6.6), which
heuristically are weighted averages of the level sets of uε. The weight measure ∥Ṽε∥(M) can be bounded
above (up to a constant) with E(uε), and hence we can extract a subsequential limit Ṽ0 (as ε → 0) with
∥Ṽ0∥ ≤ Cµ. Moreover, using the Morse index bound of (the approximations of) uε, we are also able to
deduce a local bound on the isotropic first variation of Ṽ0 away from a finite set S: see Corollary 6.6. To
this aim, we derive a diffuse version of the stability inequality for anisotropic minimal hypersurfaces, stated
in Theorem 6.4. This result parallels those obtained in the isotropic case by Padilla and Tonegawa [47]
and Tonegawa [58], although in our setting the PDE degenerates at points where ∇uε = 0, as F 2 is not
C2 at the zero section (unless F is a quadratic norm). To handle this, we perform our estimates first for
suitable smooth approximations of F 2 (the same ones used to regularize Eε) and then pass to the limit.

By means of the Modica-type estimate (1.2) in Theorem 1.1 and another application of stability,
we can also control the weight ∥Ṽ0∥ from below with µ on M \ S and, more importantly, we can prove
that Ṽ0 and µ are rectifiable: see Theorem 6.7. A crucial ingredient in the proof of Theorem 6.7 is to
show that the upper density Θn−1,∗(∥Ṽ0∥, x) > 0 for ∥Ṽ0∥-a.e. x. This, combined with the local bound
on the isotropic first variation of Ṽ0, provides the rectifiability of Ṽ0 and hence of µ on M \S, by Allard’s
rectifiability theorem [2, Section 5].
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Our next step involves extracting an F -stationary varifold V and, as a byproduct of the analysis,
showing that µ is a rectifiable measure on all M , as stated in Theorem 7.2. This is achieved by analyzing
the stress-energy tensor Tε of uε defined in (7.2), and proving its convergence as ε → 0 to a tensor-
valued measure T0 whose divergence is controlled. A careful analysis of the directions of invariance of
the tangent measures of T0 provides the desired rectifiability of µ, with an argument in the spirit of [20].
Also, writing dµ = θ d(Hn−1 Σ), where Σ ⊂ M is a rectifiable Borel set with σ-finite Hn−1 measure and
θ : Σ → (0,∞), we show that the (n− 1)-dimensional varifold

dV (x, ν) :=
θ(x)

F (x, νx)
δνx

(ν)⊗ d(Hn−1 Σ)(x)

is rectifiable and F -stationary, where νx ⊥ TxΣ is the unit normal.

Our candidate varifold claimed in Theorem 1.2 is c−1
W V : we are just left to prove that θ(x)

cWF (x,νx)

is an integer for Hn−1-a.e. x ∈ Σ. This is done by a one-dimensional slicing argument in the normal
directions to Σ. Fix a generic point x0 ∈ Σ and assume νx = en in a chart. On small cylinders of
the form Bn−1

ε (x0) × (−r, r), one rescales the functions uε to obtain limit profiles defined on Euclidean
cylinders with almost flat metric and almost autonomous integrand Fx0

. Using the convergence of stress-
energy tensors, we show in (7.12) the smallness of the tangential gradient ∂xi

uε for i < n in an L2 sense,
that is, the fact that uε is almost one-dimensional. Such smallness, combined with the Modica-type
inequality (1.2), is then proved to imply that Eε(uε) is close to (F (x0, en) times) a multiple of the energy

cW =
∫ 1

−1

√
2W of the heteroclinical solution, unless uε is essentially constant: see Lemma 7.8. From

this, we deduce that along almost every normal line the energy of uε on that line converges to a multiple

of cWF (x0, en). This in turn implies that θ(x0)
cWF (x,νx0 )

is an integer, as asserted in Theorem 7.10.
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StG “ANGEVA,” project number: 101076411. Alessandro Pigati was funded by the European Research
Council (ERC), through StG “MAGNETIC,” project number: 101165368. Views and opinions expressed
are however those of the authors only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

2 Preliminaries

2.1 Terminology

Throughout the paper, we fix a smooth closed (i.e., compact and without boundary) n-dimensional
Riemannian manifold (Mn, g) with n ≥ 2. We note that the fixed background Riemannian metric plays
essentially no role in what follows, since it can be absorbed into the integrand. It is however useful in
order to fix a background volume form and to identify n-dimensional planes with their normals.

We assume the reader to be familiar with the standard notions in geometric measure theory [53],
and we adopt the following notation and conventions.

• UT (M): the unit tangent bundle of M , namely,

UT (M) := {(x, v) ∈ TM : ∥v∥gx = 1}.

• Gn−1(M): the unoriented hyperplane bundle of M , namely,

Gn−1(M) := {(x, T ) : x ∈ M, T is an (n− 1)-dimensional linear subspace of TxM}.

By means of the background metric, we can identify Gn−1(M) with UT (M)/ ∼, where we have set
the equivalence relation (x, v) ∼ (x,−v).

• ∂∗E: the reduced boundary of a Caccioppoli set E.

• V(M) = Vn−1(M
n): the space of (n− 1)-varifolds on M , namely, the space of nonnegative Radon

measure on Gn−1(M).
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• JKK: the integral varifold of multiplicity one associated with an (n − 1)-rectifiable set K with
Hn−1(K) < ∞.

• ∥V ∥: the weight of V ∈ V(M), i.e., the Radon measure on M associated with V .

2.2 Anisotropic energies

In the sequel, an anisotropic integrand will be a smooth function F : Gn−1(M) → (0,∞). Note that,
according to the identification above, we can consider it as a function F : UT (M) → (0,∞), which is
an even function in the second variable. When no confusion arises, we will often switch between these
viewpoints without further comment. Also, for the fixed background metric g, we will just use the symbol
|v| for |v|gx =

√
gx(v, v) and Hn−1 for Hn−1

g . It will also be useful to extend F 1-homogeneously in the
second variable as

F (x, v) = |v|F
(
x,

v

|v|

)
, F (x, 0) = 0.

We will always assume this extension has been made whenever we consider derivatives of F .
We assume that F is uniformly convex in directions orthogonal to the radial direction, namely

D2Fx(v)[w,w] ≥ λ|w|2 for v ∈ UTx(M) and w ∈ TxM, w ⊥ v

at all points x ∈ M , where Fx denotes the restriction of F to TxM . Note that, by 1-homogeneity of F ,
the uniform convexity assumption gives

D2Fx(v)[w,w] ≥ λ
|w|2

|v|
for v ∈ TxM \ {0} and w ∈ TxM, w ⊥ v (2.1)

and the 2-homogeneous function F 2 is automatically uniformly convex, namely

D2(F 2
x ) ≥ 2λgx on TxM \ {0} (2.2)

in the sense of quadratic forms at each point x ∈ M , up to possibly decreasing λ > 0. Possibly further
decreasing λ ∈ (0, 1), we can also assume that

λ|v| ≤ Fx(v) ≤
|v|
λ

for all v ∈ TxM. (2.3)

For a finite perimeter set E, we denote the anisotropic perimeter of E by

F(E) :=

∫
∂∗E

F (x, νx) dHn−1(x),

where here νx denotes the exterior measure-theoretic normal of E. Actually, the assumption that F is
even implies that the sign of the unit normal νx is irrelevant.

For a varifold V ∈ V(M), we define its F -anisotropic energy, and respectively its localized energy to
a Borel subset U ⊂ M , as

F(V ) :=

∫
Gn−1(M)

F (x, T ) dV (x, T ), and respectively F(V ;U) :=

∫
Gn−1(U)

F (x, T ) dV (x, T ),

where Gn−1(U) is the restriction of the Grassmannian bundle to U . Note that, by the identification of the
(n− 1)-dimensional Grassmanian with the unit sphere, we can equivalently think an (n− 1)-dimensional
varifold as a measure on UT (M) invariant under reflection (x, v) 7→ (x,−v). In that case we will write

F(V ) =

∫
UT (M)

F (x, ν) dV (x, ν).

The first variation of the F -anisotropic energy is defined as

δFV (X) :=
d

dt

∣∣∣
t=0

F ((φt)#V )
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where V ∈ V(M), X ∈ C1(M,TM), and φt is the flow of X (i.e., dφt

dt = X(φt) and φ0 = idM ). Referring
to [20] for the general expression, here we record that when M = Rn+1 and F (x, ν) is autonomous, i.e.,
independent of the spatial variable x (so that we can view it as an even function Rn+1 → R), we have
the following formula:

δFV (X) =

∫
UT (M)

[F (ν) divX − ⟨DF (ν), DX⊤ν⟩] dV (x, ν)

=

∫
UT (M)

⟨F (ν)I − ν ⊗DF (ν), DX⟩ dV (x, ν),

(2.4)

where DX⊤ is the transpose of DX. For the general formula of δFV (X), one needs to add a term which
depends on DxF (see [20]). Back to the case of closed M , a varifold V ∈ V(M) is said to have bounded
F -anisotropic first variation if there exists C > 0 such that for all X ∈ C1(M,TM)

|δFV (X)| ≤ C∥X∥L∞ .

Equivalently, an (n− 1)-varifold V ∈ V(M) has bounded F -anisotropic first variation if δFV is a (TM -
valued) Radon measure. We will say that V is F -stationary if δFV ≡ 0. In the isotropic setting
Fx(v) = |v|, we will simply write δV to denote the first variation of a varifold V .

2.3 Anisotropic Allen–Cahn

We now generalize the Allen–Cahn energy to the anisotropic setting by letting

Eε(u) :=

∫
M

[
ε
F (x,∇u(x))2

2
+

W (u(x))

ε

]
d volg(x),

where W is a fixed double-well potential vanishing at ±1; we assume that W : R → [0,∞) is smooth with

W > 0 on R \ {±1}, W (±1) = 0, W ′′(±1) > 0, (
√
W )′′ ≤ −c < 0 on (−1, 1), (2.5)

as well as

−Cs ≤ W ′(s) < 0 on (−∞,−1), 0 < W ′(s) ≤ Cs on (1,∞), cs2 ≤ W (s) ≤ Cs2 on R\ [−2, 2], (2.6)

for two constants c, C > 0. Two standard choices are W (s) = (1−s2)2

4 or W (s) = 1 + cos(πs), suitably
modified outside of the interval [−1, 1]. The requirements (2.6) on R \ [−1, 1] are actually irrelevant in
the construction of critical points u, since we can always modify W on this set in order to satisfy them,
and the latter will imply that |u| ≤ 1.

We will denote by

eε(u(x)) := ε
F (x,∇u(x))2

2
+

W (u(x))

ε
(2.7)

the energy density of u : M → R with respect to Eε.
We observe that, although F 2 is smooth away from the zero section of TM , it is in general only C1

on TM . Indeed, if F 2
x is C2 at 0, then by Taylor expansion there exists a symmetric matrix Q such that

F 2
x (v) = ⟨Qv, v⟩+ o(|v|2).

From the 2-homogeneity of F 2
x we obtain

F 2
x (v) = lim

t→0

F 2
x (tv)

t2
= ⟨Qv, v⟩.

We deduce that F 2
x is C2 if and only if Fx is the Euclidean norm up to linear changes of coordinates.

Having a C1 functional will be enough for first-order considerations and in particular to check the Palais–
Smale condition. However, to give precise meaning to stability (or to Morse index bounds) of critical
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points, it will be useful to consider smooth approximations Fδ converging smoothly to F away from the
zero section of TM , as δ → 0; see also Remark 3.2 below.

To this aim, for each δ ∈ (0, 1), we define for every x ∈ M

Gδ(x, v) := (F 2
x ∗ ηδ)(v)− (F 2

x ∗ ηδ)(0) and Fδ(x, v) :=
√
Gδ(x, v),

where ηδ is the standard radial mollifier supported in the ball Bδ(0) ⊂ TxM ∼= Rn (using the metric g
for the latter identification). Note that Gδ(x, v) ≥ 0 as it is convex and even in v, which forces v = 0
to be the minimum point of Gδ(x, ·). Hence, F 2

δ is smooth, F 2
δ → F 2 in C1

loc(TM) as δ → 0, and for all
δ ∈ (0, 1)

Fδ satisfies (2.2)–(2.3), with a smaller λ′ > 0 uniform in δ in place of λ. (2.8)

In fact, the validity of (2.3) for Fδ, namely (λ′|v|)2 ≤ Gδ(x, v) ≤ (|v|/λ′)2, is immediate to check for
fixed δ (if |v| ≥ 2 it follows from (2.3) for F , while near the origin it follows from (2.2) and smoothness
of Gδ(x, ·)), and its uniformity follows from the fact that Gδ(x, v) = δ2G1(x, v/δ). As an immediate
consequence of (2.2), the differential of (Fδ)

2
x is monotone, i.e.,

⟨D(Fδ)
2
x(v)−D(Fδ)

2
x(w), v − w⟩ ≥ 2λ′|v − w|2. (2.9)

We define the anisotropic Allen-Cahn energy associated with Fδ as follows:

Eε,δ(u) :=

∫
M

[
ε
Fδ(x,∇u(x))2

2
+

W (u(x))

ε

]
d volg .

As in (2.7), we denote by

eε,δ(u) := ε
Fδ(x,∇u(x))2

2
+

W (u(x))

ε

the energy density of u : M → R with respect to Eε,δ.

3 Existence of nontrivial solutions via min-max

The main purpose of this section is to check the Palais–Smale condition for the functional Eε,δ and to
deduce the existence of nontrivial critical points for Eε.

Proposition 3.1. The functional Eε,δ is finite and of class C2 on H1(M), with

DEε,δ(u)[v] =

∫
M

[
ε

2
D(Fδ)

2
x(∇u)[∇v] +

1

ε
W ′(u)v

]
,

D2Eε,δ(u)[v, w] =

∫
M

[
ε

2
D2(Fδ)

2
x(∇u)[∇v,∇w] +

1

ε
W ′′(u)vw

]
.

Moreover, it satisfies the Palais–Smale condition: if uk ∈ H1(M) is a sequence such that Eε,δ(uk) is
bounded uniformly in k and DEε,δ(uk) → 0 strongly in H1(M) (note that DEε,δ(uk) ∈ H1(M)∗ ∼=
H1(M)), then (uk) admits a strongly converging subsequence.

Proof. The finiteness of Eε,δ follows from the quadratic growth of W , while the C2 regularity and the
formulas for its derivatives are standard calculations. Since by (2.6) and (2.8)

(Fδ)
2
x(∇u) ≥ λ′|∇u|2, W (u) ≥ c|u|2 − C,

given a sequence (uk) as in the statement, we immediately deduce that it is bounded in H1(M); by the
Rellich–Kondrachov compactness theorem, there exists u ∈ H1(M) such that uk converges to u, weakly
in H1(M) and strongly in L2(M), along a subsequence. We observe that

lim
k→∞

DEε,δ(u)[uk − u] = lim
k→∞

∫
M

[
ε

2
D(Fδ)

2
x(∇u)[∇uk −∇u] +

1

ε
W ′(u)(uk − u)

]
= 0, (3.2)
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where for the first term on the right-hand side we use that D(Fδ)
2
x(∇u) ∈ L2 (as |D(Fδ)

2
x(v)| ≤ C|v|)

and ∇uk −∇u ⇀ 0 in L2, while for the second term we use that |W ′(u)| ≤ C|u|+ C ∈ L2 by (2.6) and
uk → u strongly in L2.

Since DEε,δ(uk) → 0 strongly in H1 and uk is bounded in H1 uniformly in k, we deduce that

lim
k→∞

DEε,δ(uk)[uk − u] = 0

and hence
DEε,δ(uk)[uk − u]−DEε,δ(u)[uk − u] → 0. (3.3)

Arguing again as for (3.2), we have W ′(uk)(uk − u) → 0 in L1, hence we deduce that∫
M

[D(Fδ)
2
x(∇uk)[∇uk −∇u]−D(Fδ)

2
x(∇u)[∇uk −∇u]] → 0.

Using (2.9), this implies that ∫
M

|∇uk −∇u|2 → 0,

and hence uk → u strongly in H1, as desired.

Remark 3.2. The original functional Eε is of class C1 and the previous proof still applies to show that
Eε satisfies the Palais–Smale condition. On the other hand, Eε cannot be used to give an immediate
meaning to stability or to a bound on the Morse index of critical points.

Proposition 3.3. Any critical point u of Eε,δ is smooth and satisfies |u| ≤ 1. Also, there exists α ∈ (0, 1)
depending only on F such that, for every family of critical points (uε,δ)δ∈(0,1) for the perturbed functionals
Eε,δ with supδ Eε,δ(uε,δ) < ∞, along a subsequence uε,δ converges in C1,α(M) as δ → 0 to a critical point

uε = lim
δ→0

uε,δ ∈ C1,α(M)

for Eε, with Eε(uε) = limδ→0 Eε,δ(uε,δ). Moreover, uε is smooth on the open set {|∇uε| ≠ 0}.

Proof. For each u = uε,δ the Euler–Lagrange equation for the functional Eε,δ reads

div(a(∇u)) = ε−2W ′(u), (3.4)

where in local coordinates a(∇u) = gij∂i((Fδ)
2
x)(∇u)∂j . Note that the vector field a is Lipschitz and, by

(2.9), a is also monotone, in the sense that

⟨a(v)− a(w), v − w⟩ ≥ λ′|v − w|2, for all v, w ∈ TxM.

The bound u ≤ 1 readily follows by testing the integral form of (3.4) with φ := (u − 1)+ and using the
strict inequality 0 < W ′ on (1,∞) in (2.6). The bound u ≥ −1 is obtained analogously. The fact that
u is smooth follows by expanding (3.4) into a linear second-order elliptic PDE, using the fact that F 2

δ is
smooth.

We can apply the results of [36, Chapter 4] to the PDE (3.4) in divergence form to get the uniform
bound

∥uε,δ∥C1,α ≤ C,

where C may depend on ε and the total energy Eε,δ(uε,δ), but not on δ, as supδ Eε,δ(uε,δ) < ∞. By
Arzelà–Ascoli, we deduce the existence of a subsequential limit uε in C1,α, up to slightly decreasing α.
The limit uε is thus a critical point of Eε. The smoothness of uε on {∇uε ̸= 0} follows by standard
Schauder theory, using that F is smooth away from the zero section of TM .

Remark 3.4. In fact, any critical point uε of Eε is C
1,α, as one can see as follows: for a fixed small ball B,

we consider a minimizer uε,δ of Eε,δ on B, with trace equal to uε|∂B , and deduce that ∥uε,δ∥C1,α(B′) ≤ C
on a smaller concentric ball B′. As δ → 0, any subsequential limit in H1(B) must coincide with uε, as
shown by the uniqueness result in [36, Section 4], showing that uε is C1,α on B′, and hence on M .
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We are now ready to construct nontrivial critical points for Eε, satisfying uniform upper and lower
bounds on the energy, together with a stability property. By (2.8) and (2.3), we deduce that the isotropic
Allen–Cahn energy

Ẽε(u) :=

∫
M

[
ε
|∇u|2

2
+

W (u)

ε

]
satisfies

(λ′)2Ẽε(u) ≤ Eε,δ(u) ≤ (λ′)−2Ẽε(u), for all u ∈ H1(M). (3.5)

Letting
Γ := {γ : [−1, 1] → H1(M) : γ continuous, γ(−1) ≡ −1, γ(1) ≡ 1}

and defining the mountain-pass values

cε,δ := inf
γ∈Γ

max
t∈[−1,1]

Eε,δ(γ(t)), c̃ε,δ := inf
γ∈Γ

max
t∈[−1,1]

Ẽε(γ(t))

as in [32], we deduce from [32, Proposition 5.2] that

0 < lim inf
ε→0

c̃ε ≤ lim sup
ε→0

c̃ε < ∞.

Combining this with (3.5), we conclude that there exist 0 < β ≤ β′ and a small ε0 > 0 such that

β ≤ cε,δ ≤ β′ for all δ ∈ (0, 1), ε ∈ (0, ε0).

We can now deduce the following.

Proposition 3.5. For ε ∈ (0, ε0) there exists a critical point uε for Eε, with

Eε(uε) ∈ [β, β′].

Moreover, uε is a limit in C1,α(M) of critical points uε,δ for Eε,δ with Morse index ≤ 1, along a sequence
δ → 0 depending on ε.

Proof. The existence of critical points uε,δ with energy in [β, β′] and Morse index ≤ 1 follows from classical
min-max theory on Banach spaces (see, e.g., [30, Chapter 10]). The convergence along a subsequence to
a critical point for Eε now follows from Proposition 3.3.

The main contribution of the present work is to show that, in such a situation (and even for more
general min-max problems), the energy density of uε concentrates along an integral F -stationary varifold.

4 Γ-convergence of Eε to F
As a preliminary result, in fact not needed in the next sections, we prove in this section that Eε Γ-

converges to cW · F , where cW :=
∫ 1

−1

√
2W is a positive constant depending only on W . This was

first proved by Bouchitté [12] in a more general framework. We provide a shorter proof in Theorem 4.1,
tailored to Eε. In the following we denote by 1S the indicator function of a set S, i.e., 1S = 1 on S and
1S = 0 on M \ S.
Theorem 4.1. Given a sequence εk → 0 and maps uk ∈ H1(M) with lim infk→∞ Eεk(uk) < ∞, there
exists a finite perimeter set S ⊆ M such that

uk → 1S − 1M\S

pointwise a.e. and in L2(M) up to a subsequence, as well as

cW · F(S) ≤ lim inf
k→∞

Eεk(uk).

Conversely, given a finite perimeter set S ⊆ M , there exists a family of smooth maps (uε)ε>0 with
|uε| ≤ 1,

uε → 1S − 1M\S

pointwise a.e. and in Lp(M) for all p < ∞, and

Eε(uε) → cW · F(S).
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Proof. Given a sequence (εk, uk) as in the statement, we will write ε and uε in place of εk and uk, with
a slight abuse of notation. Up to a subsequence, we can assume that the lim inf is a limit. Also, letting
vε := min{max{uε,−2}, 2}, note that by (2.6) we have

Eε(vε) ≤ Eε(uε),

∫
M

|uε − vε|2 ≤
∫
{|uε|>2}

|uε|2 ≤ C

∫
M

W (uε) ≤ Cε.

Thus, we can assume without loss of generality that |uε| ≤ 2, up to replacing uε with vε.
Since |∇uε| ≤ λ−1Fx(∇uε), by Cauchy–Schwarz we have∫

M

√
2W (uε)|∇uε| ≤ λ−1

∫
M

√
2W (uε)Fx(∇uε) ≤ λ−1Eε(uε) ≤ C

for some constant C > 0 independent of ε. Thus, letting H(t) :=
∫ t

0

√
2W (s) ds and wε := H(uε), we

have a uniform BV bound: ∫
M

(|wε|+ |∇wε|) ≤ C.

By the compact embedding BV (M) ↪→ L1(M), up to a subsequence we can find w0 ∈ BV (M) such that
wε → w0 in L1 and pointwise a.e., and thus also in L2(M), as |wε| ≤ 2.

Since H : R → R is continuous and bijective and wε → w0 pointwise a.e., we have

uε = H−1(wε) → H−1(w0) =: u0 pointwise a.e.,

and the limit u0 takes values in ±1 a.e. since∫
M

W (u0) ≤ lim inf
ε→0

W (uε) = lim
ε→0

O(ε) = 0.

Moreover, S := {u0 = 1} = {w0 = H(1)} is a set of finite perimeter, as its indicator function is precisely
w0−H(−1)

H(1)−H(−1) ∈ BV (M). The desired bound on the F-perimeter follows easily from the convexity of F at

each x ∈ M : indeed, a straightforward adaptation of [10, Theorem 2.38] to the Riemannian case gives∫
M

Fx

(
∇w0

|∇w0|

)
d|∇w0| ≤ lim inf

ε→0

∫
M

Fx(∇wε)

= lim inf
ε→0

∫
M

H ′(uε)Fx(∇uε)

= lim inf
ε→0

∫
M

√
2W (uε)Fx(∇uε)

≤ lim inf
ε→0

Eε(uε).

This gives the desired conclusion, since

∇1S = ∇ w0 −H(−1)

H(1)−H(−1)
=

∇w0

H(1)−H(−1)
=

∇w0

cW

and hence

F(S) =

∫
∂∗S

Fx(νx) dHn−1(x) =
1

cW

∫
M

Fx

(
∇w0

|∇w0|

)
d|∇w0|.

Conversely, given a set S ⊆ M of finite perimeter, by [10, Theorem 3.42] we can find a sequence of
smooth open sets Sk such that

Hn(Sk∆S) → 0, Per(Sk) → Per(S),

where Per denotes the isotropic perimeter. Thus, by Reshetnyak’s continuity principle [10, Theorem
2.39], we have the convergence of F-perimeters:∫

∂Sk

Fx(νx) dHn−1(x) →
∫
∂∗S

Fx(νx) dHn−1(x).
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Thus, to prove the existence of a recovery sequence, we can just consider the case where S is a smooth
open set; the conclusion then follows by a standard diagonal argument. In this case, we consider the
one-dimensional heteroclinic solution U : R → R such that

U ′ =
√
2W (U), U(0) = 0, lim

t→±∞
U(t) = ±1

and we let

Uγ(t) :=



−1 for t ≤ −2γ

U(γt/(2γ + t)) for t ∈ (−2γ,−γ]

U(t) for t ∈ [−γ, γ]

U(γt/(2γ − t)) for t ∈ [γ, 2γ)

1 for t ≥ 2γ.

Using the exponential decay of U ′ and of W (U) at infinity, it is easy to check that, as γ → ∞, we have∫
R\[−γ,γ]

[(U ′)2/2 +W (U)] = O(e−cγ),

∫ γ

−γ

[(U ′)2/2 +W (U)] =

∫ γ

−γ

√
2W (U)U ′ → cW .

Then, taking δ > 0 small and writing Bδ(∂S) as a disjoint union of geodesics of the form

{ℓp(t) := expp(tνp) | t ∈ (−δ, δ)}

as p ranges in ∂S, we can define

uε,γ(ℓp(t)) := Uγ

(
t

εFp(νp)

)
.

As long as 2γ · εmaxp∈∂S Fp(νp) < δ, we can extend this to a smooth map uε,γ : M → [−1, 1] by
uε,γ := −1 on S \Bδ(∂S) and uε,γ := 1 on (M \ S) \Bδ(∂S). We observe that

∇uε,γ(ℓp(t)) = U ′
γ

(
t

εFp(νp)

)
ℓ′p(t)

εFp(νp)
+O(|t|/ε) = U ′

γ

(
t

εFp(νp)

)
ℓ′p(t)

εFp(νp)
+O(γ),

where the error term comes from differentiation of F ◦ ν at the nearest-point projection p; note that
|U ′

γ | ≤ C and that both sides vanish when |t| > 2γεFp(νp). Moreover,

|∇uε,γ |(ℓp(t)) ≤ Cε−1e−cγ for γεFp(νp) < |t| < δ

and similarly
W (uε,γ)(ℓp(t)) ≤ Ce−cγ for γεFp(νp) < |t| < δ.

Thus, we have ∫
{γεFp(νp)<|t|<δ}

[εFℓp(t)(∇uε,γ)
2/2 + ε−1W (uε,γ)](ℓp(t)) dt = O(e−cγ),

for a possibly different c > 0, as the integrand is nonzero only on an interval of size O(γε). Hence,

Eε(uε,γ) = (1 +O(δ))

∫
∂S

∫
{|t|<γεFp(νp)}

[εFℓp(t)(∇uε,γ)
2/2 + ε−1W (uε,γ)](ℓp(t)) dt dHn−1(p) +O(e−cγ).

Since

Fℓp(t)(∇uε,γ(ℓp(t))) = (1 +O(δ))ε−1U ′
γ

(
t

εFp(νp)

)
+O(γ)

by the previous expansion, we deduce that

Eε(uε,γ) = (1 +O(δ))

∫
∂S

∫
{|t|<γεFp(νp)}

[
1

2ε
U ′
γ

(
t

εFp(νp)

)2

+
1

ε
W (Uγ)

(
t

εFp(νp)

)]
dt dHn−1(p)

+O(γ2ε) +O(e−cγ),
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as long as γε < 1. By a simple change of variables, we get

Eε(uε,γ) = (1 +O(δ))

∫
∂S

Fp(νp) dHn−1(p) ·
∫ γ

−γ

[(U ′
γ)

2/2 +W (Uγ)] +O(γ2ε) +O(e−cγ).

This converges to F(S) as we let ε → 0, then γ → ∞ and δ → 0. By a diagonal argument, the conclusion
follows.

5 A generalization of Modica’s bound

The following pointwise bound for critical points u of the isotropic Allen–Cahn

ε
|∇u|2

2
≤ W (u)

ε

was first proved by Modica [43] in the Euclidean setting. This is the fundamental tool used in deriving
a sharp monotonicity formula in the isotropic case [34, 33].

In the anisotropic setting, we obtain an analogous bound; as expected, it no longer yields a mono-
tonicity formula. Nonetheless, it will be a crucial ingredient in the proof of rectifiability of the limit of
the energy densities.

From now on up to the end of the paper, given a map u : M → R, when evaluating F (x,∇u(x))
with a slight abuse of notation we will look at ∇u as a vector field in the tangent bundle ∇u : M → TM ,
and use the compact expression F (∇u) in place of F (·,∇u(·)).

Theorem 5.1. Letting u : M → [−1, 1] be a critical point of Eε, we have

F (∇u) ≤ ε−1
√

2W (u) + C,

where C depends only on Mn, g and F . As a consequence,

εF 2(∇u)

2
≤ W (u)

ε
+ C

for a possibly different C = C(Mn, g, F ).

Proof. Recall that, by Proposition 3.3 and Remark 3.4, away from {∇u = 0}, u is smooth and we can
expand the Euler–Lagrange equation (3.4) as

Aij∂iju = ε−2W ′(u) +O(∇u),

where the coefficients Aij(x) are essentially the second derivatives of F 2
x/2 at ∇u; more precisely, in any

coordinate chart we have

Aij = giℓgjm∂ℓm(F 2/2)(∇u) = giℓgjm[F (∇u)∂ℓmF (∇u) + ∂ℓF (∇u)∂mF (∇u)],

where when differentiating F and F 2 we use the convention that ∂kF denotes the partial derivative along
∂k = ∂

∂xk ∈ TxM of Fx = F |TxM , at any given x ∈ M (and similarly for higher-order derivatives and for
F 2). The error term is a function G(x,∇u), with G(x, v) smooth away from {v = 0} and 1-homogeneous

in v, so that | ∂
α+βG

∂xα∂vβ | ≤ Cα,β |v|1−|β|.
We would like to show that

F (∇u)− ε−1
√
2W (u) ≤ Λ

everywhere, where Λ > 0 will be chosen later. To do this, consider a maximum point x̂ for the difference

ζ := F (∇u)− ε−1
√

2W (u),

and assume by contradiction that ζ(x̂) > Λ, so that in particular ∇u(x̂) ̸= 0, and thus u is smooth
around x̂, as well as |u(x̂)| < 1. We now choose a coordinate system centered at x̂, with gij(0) = δij and
∂kgij(0) = 0, as well as

∇u(0) = |∇u(0)|en.
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Since Aij is positive definite, we have

Aij∂ij [F (∇u)− ε
√
2W (u)](x̂) = Aij∂ijζ(x̂) ≤ 0.

We now compute that at x̂ = 0 we have

∂ij [F (∇u)− ε−1
√

2W (u)] = ∂i[g
kℓ∂kF (∇u)∂jℓu− ε−1(

√
2W )′(u)∂ju+O(∇u)]

= ∂kℓF (∇u)∂iℓu∂jku+ ∂kF (∇u)∂ijku− ε−1(
√
2W )′(u)∂iju

− ε−1(
√
2W )′′(u)∂iu∂ju+O(∇u) +O(D2u),

where the error terms come from differentiating F in the spatial variable at least once.
Once we multiply by Aij and sum over i, j, we get

I +Aij∂kF (∇u)∂ijku− ε−3 W ′(u)2√
2W (u)

− ε−1(
√
2W )′′(u)F 2(∇u) ≤ O(ε−1∇u) +O(D2u), (5.1)

where we omit the sum over i, j and we set

I := Aij∂kℓF (∇u)∂iℓu∂jku

and we used the Euler–Lagrange equation and the fact that

Aij∂iu∂ju = D2(F 2/2)(∇u)[∇u,∇u] = F 2(∇u),

since F 2 is 2-homogeneous.
We rewrite the second term of (5.1) as

∂k(A
ij∂iju)∂kF (∇u)− ∂kA

ij∂kF (∇u)∂iju

= ε−2W ′′(u)∂ku∂kF (∇u)− ∂ijℓ(F
2/2)(∇u)∂kℓu∂kF (∇u)∂ij(u) +O(∇u) +O(D2u),

where we used again the Euler–Lagrange equation and we expanded ∂kA
ij using the chain rule. Since F

is 1-homogeneous, at x̂ we have
∂ku∂kF (∇u) = F (∇u).

Moreover, since ∇ζ(x̂) = 0, at x̂ we have

∂kℓu∂kF (∇u) = ∂ℓ[F (∇u)] +O(∇u) = ε−1∂ℓ
√

2W (u) +O(∇u) = ε−1(
√
2W )′(u)∂ℓu+O(∇u),

giving

∂ijℓ(F
2/2)(∇u)∂kℓu∂kF (∇u)∂ij(u) = ε−1(

√
2W )′(u)∂ijℓ(F

2/2)(∇u)∂ℓu∂ij(u) +O(D2u),

thanks to the fact that ∂ijℓ(F
2/2) is (−1)-homogeneous, so that |∂ijℓ(F 2/2)(∇u)| ≤ C|∇u|−1. Also,

since ∂ij(F
2/2) is 0-homogeneous, we have

∂ijℓ(F
2/2)(∇u)∂ℓu = 0.

In summary, at x̂ we get

Aij∂kF (∇u)∂ijku = ε−2W ′′(u)F (∇u) +O(D2u).

Thus, (5.1) becomes

I + ε−2W ′′(u)F (∇u)− ε−3 W ′(u)2√
2W (u)

− ε−1(
√
2W )′′(u)F 2(∇u) ≤ O(ε−1∇u) +O(D2u).
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Now I is nonnegative, since it is the trace of the product of two positive semidefinite matrices; in
fact, by (2.1) and the fact that D2F (v)[v, ·] = 0 for v ̸= 0 (by 0-homogeneity of DFx), we have

I := Aij∂kℓF (∇u)∂iℓu∂jku

= tr((D2F )(D2uAD2u))

≥ λ

|∇u|
tr((I − e∗n ⊗ e∗n)(D

2uAD2u))

≥ λ2

|∇u|
tr((I − e∗n ⊗ e∗n)(D

2u)2)

≥ λ2

|∇u|

n∑
i=1

n−1∑
j=1

|∂iju|2,

where we repeatedly used the fact that tr(AB) ≥ tr(A′B′) if A ≥ A′ ≥ 0 and B ≥ B′ ≥ 0. Moreover, by
the Euler–Lagrange equation, the lower bound Ann ≥ λ, and the estimate |W ′| ≤ C

√
W (asW ′′(±1) > 0),

we have
|∂nnu| ≤ C

∑
(i,j) ̸=(n,n)

|∂iju|+O(∇u) + Cε−2
√

W (u). (5.2)

By the assumption that ε−1
√

W (u) < F (∇u) at x̂, the estimate (5.2) in turn implies that at x̂

|∂nnu| ≤ C
∑

(i,j)̸=(n,n)

|∂iju|+O(ε−1∇u).

Thus, by Cauchy’s inequality, we can absorb the term O(D2u), getting

I +O(D2u) ≥ −C|∇u| − Cε−1|∇u| ≥ −Cε−1F (∇u)

at x̂, where C depends on the implied constant in O(D2u). We deduce that

ε−2W ′′(u)F (∇u)− ε−3 W ′(u)2√
2W (u)

− ε−1(
√
2W )′′(u)F 2(∇u) ≤ Cε−1F (∇u). (5.3)

Since W ′′ = (
√
2W )′′ ·

√
2W + (W ′)2

2W , we can rewrite (5.3) as

−ε−1(
√
2W )′′(u)F (∇u)[F (∇u)− ε−1

√
2W (u)] + ε−2 (W

′)2

2W
[F (∇u)− ε−1

√
2W (u)] ≤ −I +O(ε−1∇u)

at x̂; recalling that −(
√
2W )′′ ≥ c > 0 by (2.5), we reach

cε−1F (∇u)[F (∇u)− ε−1
√
2W (u)] + ε−2 (W

′)2

2W
[F (∇u)− ε−1

√
2W (u)] ≤ Cε−1F (∇u).

This contradicts the fact that F (∇u)− ε−1
√

2W (u) > Λ, once we take Λ large enough that cΛ ≥ C.

6 Uniform bounds for stable solutions

In this section we derive bounds on the second fundamental form of level sets for stable solutions uε,δ

with respect to Eε,δ and consequently for limits uε thereof. Moreover we obtain lower density bounds
for the energy. Since F 2 is not of class C2, in many statements we will replace it with the perturbed
integrands F 2

δ already considered earlier, in order to make sense of stability. Let us start with a simple
observation.
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Proposition 6.1. There exists ρ = ρ(Mn, g, F ) > 0 large enough such that the following holds. Given
x0 ∈ M , we identify Tx0

M ∼= Rn isometrically, so that the restriction (Fδ)x0
= Fδ|Tx0M

gives an

autonomous integrand F δ : Rn → [0,∞). If a constant u ∈ [−1, 1] is a stable critical point for

E1,δ(u) :=

∫
Bρ(0)

[F δ(∇u)2/2 +W (u)]

on the Euclidean ball Bρ(0) ⊂ Rn, then u ∈ {−1, 1}.

Proof. Indeed, assume by contradiction that u0 ∈ (−1, 1). For any η ∈ C1
c (Bρ(0)), stability gives∫

Bρ(0)

[D2(F
2

δ/2)(0)[∇η,∇η] +W ′′(u)η2] ≥ 0.

Since W ′(u) = W ′(±1) = 0 and W ′′(±1) > 0, we must have |u| ≤ 1− c for some c > 0. Also, using again
the fact that W ′(u) = 0, we have

W ′′(u) = 2(
√
W )′′(u)

√
W (u).

Using (2.5), we see that −W ′′(u) ≥ c for a possibly different c > 0. We deduce that

c

∫
Bρ

η2 ≤
∫
Bρ

D2(F
2

δ/2)(0)[∇η,∇η] ≤ C

∫
Bρ

|∇η|2 (6.1)

for all η ∈ C1
c (Bρ). This is impossible once we take ρ > 0 large enough.

The following are useful consequences.

Lemma 6.2. Given γ > 0, there exist constants c > 0 and ε0 > 0, depending on γ and (Mn, g, F ), such
that ∫

Bρε(p)

√
2W (u)|∇u| ≥ cεn−1

whenever |u(p)| ≤ 1− γ, for any stable critical point u : Bρε(p) → R of Eε,δ, provided that ε ∈ (0, ε0).

Proof. Arguing by contradiction, dilating the domain by a factor ε−1, assume that∫
B

(ε)
ρ

√
2W (ũε)|∇ũε| → 0

for a sequence of rescaled functions ũε, defined on rescaled geodesic balls B
(ε)
ρ and stably critical for

E1,δε , for some δε ∈ (0, 1). Since ε → 0, the rescaled metrics converge to the Euclidean one.

Since uε is uniformly C1,α on B
(ε)
ρ′ , for any ρ′ ∈ (0, ρ) (see Proposition 3.3 and its proof), once we

identify each B
(ε)
ρ with the Euclidean ball Bρ(0), these solutions converge in C1

loc, along a subsequence, to
a critical point ũ0 : Bρ(0) → [−1, 1] for E1,δ0 , where δ0 := limε→0 δε ∈ [0, 1]. Here the limit energy E1,δ0

involves the autonomous integrand Fp0
, where p0 = limε→0 pε. Also, |ũ0(0)| = limε→0 |uε(pε)| ≤ 1 − γ

and ∫
Bρ(0)

√
2W (ũ0)|∇ũ0| = 0,

so that ∇ũ0 vanishes on the open set {ũ0 ∈ (−1, 1)}. We deduce that ũ0 is a constant value in [−1 +
γ, 1 − γ]. If δ0 > 0, then ũ0 is also stable and we can immediately apply Proposition 6.1 to reach a
contradiction.

If δ0 = 0, we can still derive an inequality like (6.1): namely, for ε small enough, depending on
spt(η), we can write

c

∫
B

(ε)
ρ

η2 ≤ C

∫
B

(ε)
ρ

|∇η|2,

by exploiting the stability of ũε and using the fact that W ′′(ũε) → W ′′(ũ0) ≤ −c < 0 locally uniformly.
In the limit we get c

∫
Bρ

η2 ≤ C
∫
Bρ

|∇η|2, for all η ∈ C1
c (Bρ), which is again impossible by our choice of

ρ in the proof of Proposition 6.1, making (6.1) fail.
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Lemma 6.3. There exist constants c > 0 and ε0 > 0, depending on (Mn, g, F ), such that∫
B2r(p)

εFδ(∇u)2 ≥ c

∫
Br(p)

W (u)

ε

for any stable critical point u : B2r(p) → R of Eε,δ, provided that ρε < min{r, ε0}.

Proof. Arguing by contradiction, assume that a stable solution uε satisfies the reverse inequality for
arbitrarily small c, ε > 0. Since we can cover Br(p) by a family of balls Bρε(x) ⊆ B2r(p) with bounded
overlap, we can find a sequence of stable solutions uε (with ε → 0) and points xε ∈ M such that∫

B2ρε(xε)

εF (∇uε)
2 < cε

∫
Bρε(xε)

W (uε)

ε
, (6.2)

with cε → 0.
We can rescale uε to functions ũε, defined on rescaled geodesic balls B

(ε)
2ρ converging to the Euclidean

ball B2ρ(0). As in the previous proof, we have ũε → ũ0 in C1
loc up to a subsequence. Since∫

B
(ε)
2ρ

|∇ũε|2 ≤ C

∫
B

(ε)
2ρ

F (∇ũε)
2 < C · cε

∫
B

(ε)
ρ

W (ũε) → 0,

in the limit we deduce that ũ0 is constant on B2ρ(0).
If uε is critical and stable for Eε,δε with δ0 := limε→0 δε > 0, then ũ0 is critical and stable for E1,δ0 ,

so that Proposition 6.1 gives ũ0 ∈ {±1}; if instead δ0 = 0, we can reach the same conclusion by arguing
exactly as in the previous proof.

Now, recalling that W ′′(±1) > 0, we can fix γ ∈ (0, 1) such that

− sgn(s)W ′(s)(1− |s|) ≥ 4c(1− |s|)2 ≥ (1− s2)2 for |s| ∈ [1− γ, 1],

while, for a possibly different c > 0, we also have

c(1− s2)2 ≤ W (s) ≤ C(1− s2)2 for |s| ≤ 1.

Since |ũ0| = 1, we have |ũε| ∈ [1− γ, 1] on B
(ε)
3ρ/2 eventually.

Let us take a cut-off function φε ∈ C1
c (B

(ε)
3ρ/2), equal to 1 on B

(ε)
ρ and with |∇φε| ≤ 4ρ−1. Assuming

for instance that ũε ≥ 1 − γ on the ball B
(ε)
3ρ/2 and testing the Euler–Lagrange equation (3.4) with

φ2
ε(1− ũε), we find

−
∫
B

(ε)
2ρ

φ2
εW

′(ũε)(1− ũε) =

∫
B

(ε)
2ρ

⟨aε(∇ũε),∇(φ2
ε(1− ũε))⟩,

for suitable aε : TM → TM with |aε(v)| ≤ C|v|. Applying Young’s inequality, we deduce that

−
∫
B

(ε)
2ρ

φ2
εW

′(ũε)(1− ũε) ≤ C(σ)

∫
B

(ε)
2ρ

|∇ũε|2 + σ

∫
B

(ε)
2ρ

φ2
ε(1− ũε)

2

for an arbitrarily small σ > 0. Using the fact that ũε ∈ [1− γ, 1] on the support of φε, we deduce that

c

∫
B

(ε)
2ρ

φ2
ε(1− ũ2

ε)
2 ≤ C(σ)

∫
B

(ε)
2ρ

|∇ũε|2 + σ

∫
B

(ε)
2ρ

φ2
ε(1− ũε)

2,

and thus, taking σ := c/2, we get ∫
B

(ε)
2ρ

φ2
ε(1− ũ2

ε)
2 ≤ C

∫
B

(ε)
2ρ

|∇ũε|2,
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or alternatively ∫
B

(ε)
2ρ

φ2
εW (ũε)

2 ≤ C

∫
B

(ε)
2ρ

F (∇ũε)
2.

Thus, we have ∫
B

(ε)
ρ

W (ũε)
2 ≤ C

∫
B

(ε)
2ρ

F (∇ũε)
2,

which contradicts (6.2). The case ũε ∈ [−1,−1 + γ] is analogous.

We record here a diffuse version of the stability inequality for F-stationary hypersurfaces, similar to
the one obtained for the isotropic Allen–Cahn [47], first for stable critical points of Eε,δ. We will then
let δ → 0 to derive a consequence for critical points uε of Eε which are limits uε = limδ→0 uε,δ of stable
critical points of Eε,δ.

Theorem 6.4. Assume that u is a stable critical point for Eε,δ on an open set U ⊆ M . Then we have∫
U

φ2| IIu |2 · εFδ(∇u)2 ≤ C(φ)

∫
U

eε,δ(u),

where IIu(x) denotes the second fundamental form of the level set {u = u(x)} if ∇u(x) ̸= 0, and it is set
to be zero on {∇u = 0}.

Proof. Since uδ is stable on U , for any φ ∈ C2
c (U) a straightforward computation shows that∫

U

[
Aij

δ ∂iφ∂jφ+
W ′′(uδ)

ε2
φ2

]
≥ 0,

where as above Aij
δ = giℓgjm∂ℓm(F 2

δ /2)(∇u), and ∂ℓm(F 2
δ /2) denotes the second derivative of (F 2

δ /2)|TxM

along ∂ℓ, ∂m ∈ TxM , at any given x ∈ M .
Since |∇u| is Lipschitz, by a standard approximation argument we can plug φ|duδ| in place of φ,

obtaining∫
U

[
φ2

(
Aij

δ ∂i|∇u|∂j |∇u|+ W ′′(u)

ε2
|∇u|2

)
+Aij

δ ∂iφ∂jφ|∇u|2 + 2Aij
δ φ|∇u|∂iφ∂j |∇u|

]
≥ 0. (6.3)

Next, testing criticality with φ2∆u, we have∫
U

[
gij∂i(F

2
δ /2)(∇u)∂j(φ

2∆u) +
W ′(u)

ε2
φ2∆u

]
= 0.

Writing ∂j(φ
2∆u) = φ2gkℓ∂kjℓu + φ[O(∇u) + O(D2u)], with implied constants depending on φ, and

noting that
∂k[∂i(F

2
δ /2)(∇u)] = gpq∂ip(F

2
δ /2)(∇u)∂qku,

after an integration by parts and relabeling of indices we obtain∫
U

[
φ2Aij

δ g
kℓ∂iku∂jℓu+ φ2W

′′(u)

ε2
|∇u|2 + ε−2⟨∇(φ2),∇(W (u))⟩

]
=

∫
U

φ[O(|∇u|2) +O(∇u)O(D2u)],

and hence∫
U

[
φ2Aij

δ g
kℓ∂iku∂jℓu+ φ2W

′′(u)

ε2
|∇u|2

]
=

∫
U

[ε−1 ·O(eε(u)) + φ ·O(∇u)O(D2u)]. (6.4)

Subtracting (6.3) from (6.4), we get∫
U

φ2Aij
δ [g

kℓ∂iku∂jℓu− ∂i|∇u|∂j |∇u|] ≤ C(φ)

∫
U

[ε−1eε(u) + φ|∇u||D2u|].

17



We now absorb the last error term: fixing a point p ∈ M where ∇u(p) ̸= 0 and choosing a chart centered
at p, with gij(p) = δij , ∂kgij(p) = 0, and ∇u(p) = |∇u(p)|∂n, as in (5.2) we observe that

|∂nnu(p)| ≤ C
∑

(i,j)̸=(n,n)

|∂iju|,

while the integrand in the left-hand side is equal to φ2 times

Aij
δ [∂iku∂jku− ∂inu∂jnu] ≥ λ′

n∑
i=1

n−1∑
k=1

|∂iku|2.

On the other hand, the same term equals Aij
δ ∂iku∂jku ≥ λ′ ∑n

i,k=1 |∂iku|2 at a.e. point where |∇u| = 0.
Thus, by Cauchy’s inequality, we reach the bound∫

φ2Aij
δ [g

kℓ∂iku∂jℓu− ∂i|∇u|∂j |∇u|] ≤ C(φ)

∫
U

ε−1eε(u), (6.5)

for a possibly larger C(φ).
Let Aδ denote the section of TM ⊗ TM with components Aij

δ (in a coordinate chart), which (using
the metric g) we can recast as a positive definite (1, 1)-tensor Aδ ≥ λ′I. On {∇u ̸= 0}, letting ν := ∇u

|∇u| ,

we observe that the integrand on the left-hand side can be written more compactly as

φ2 tr((HAδH)(g − ν∗ ⊗ ν∗)) ≥ λ′φ2 tr(H2(g − ν∗ ⊗ ν∗)), H := D2u.

Given a point p and selecting a coordinate chart as above, writing ei := ∂i, for i = 1, . . . , n− 1 we have

| IIu(ei)|2 =

n−1∑
j=1

|⟨∂iν, ej⟩|2 = |∂iν|2

at p, as the tangent space of the level set is spanned by {e1, . . . , en−1}, while en = ν. Moreover

∂iν =
H(ei)−H(ei, ν)ν

|∇u|
,

so that for all j = 1, . . . , n− 1 we have

⟨∂iν, ej⟩ =
H(ei, ej)

|∇u|
.

Thus,

| IIu |2 =

n−1∑
i,j=1

∣∣∣∣H(ei, ej)

|∇u|

∣∣∣∣2 ≤ tr(H2(g − ν∗ ⊗ ν∗))

|∇u|2
.

We deduce that ∫
U

φ2| IIu |2|∇u|2 ≤ Cφ2 tr((HAδH)(g − ν∗ ⊗ ν∗)).

The claim now follows from (6.5).

Now, given a critical point uε for the energy Eε, we define the (n− 1)-dimensional varifold Ṽε to be
the measure on the Grassmannian bundle G := Gn−1(M) given by

Ṽε(f) :=

∫
{∇uε ̸=0}

√
2W (uε)|∇uε| · f(Puε) d volg, (6.6)

for any f ∈ C0(G), where Puε(x) := (∇uε(x))
⊥ ∈ G is the tangent plane to the level set {uε = uε(x)} at

x. Here we make a slight abuse of notation: we write f(Puε(x)) in place of f(x, Puε(x)).
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Remark 6.5. If almost all level sets {uε = λ} are regular then, viewing them as the (n − 1)-varifolds
J{uε = λ}K, we have

Ṽε =

∫ 1

−1

√
2W (λ) · J{uε = λ}K dλ,

by the coarea formula. In other words, in this case Ṽε is simply a weighted average of the level sets of uε.

Further, given a sequence of critical points (uε) with ε → 0 and

lim inf
ε→0

Eε(uε) < ∞, (6.7)

we can assume that the lim inf is a limit (up to a subsequence) and define the measure

dµ = lim
ε→0

eε(uε) d volg,

namely µ is the limit of the energy densities in duality with C0(M), up to a subsequence.

Corollary 6.6. Assuming (6.7), up to a subsequence we can extract a limit varifold Ṽ0, with weight

∥Ṽ0∥ ≤ Cµ.

If moreover each uε = limδ→0 uε,δ, for a suitable sequence (uε,δ)δ of critical points for Eε,δ with Morse
index ≤ m independently of ε, δ, then there exists a finite set of points S, with #S ≤ m, such that any
p ̸∈ S admits a neighborhood U where the isotropic first variation δṼ0 satisfies

|δṼ0|(U) ≤ C(U).

The sequence δ = δk → 0 used in the limit uε = limδ→0 uε,δ is allowed to depend on ε. In the last
part of the statement, C(U) denotes a finite constant which may depend on all data (in particular, on
U).

Proof. The total weight of Ṽε on an open set U ⊆ M equals

∥Ṽε∥ =

∫
U

√
2W (uε)|∇uε| ≤ C

∫
U

eε(uε),

by Cauchy–Schwarz and the bound |∇uε|2 ≤ λ−2F (∇uε)
2, showing the first claim.

Now assume that uε = limδ→0 uε,δ and that each uε,δ is stable on U . Then, recalling that the

convergence is in C1,α(M) and that the integrand defining Ṽε contains the weight |∇u|, which vanishes
on the complement of {∇u ̸= 0}, it is straightforward to check that in the sense of varifolds

Ṽε = lim
δ→0

Ṽε,δ.

Now, since uε,δ is smooth, we can apply Remark 6.5 to say that Ṽε,δ is a weighted average of its level
sets. By subadditivity of the first variation, we have

|δṼε,δ|(U) ≤
∫ 1

−1

√
2W (λ) · |δJ{uε,δ = λ}K|(U) dλ

=

∫ 1

−1

√
2W (λ)

∫
{uε,δ=λ}∩U

|Huε,δ
| dHn−1 dλ

≤ C

∫
U

| IIuε,δ
|
√
2W (uε,δ)|∇uε,δ|,

where we denoted by Huε,δ
the mean curvature of the level set and used again the coarea formula. Since

trivially ∫
M

ε−1W (uε,δ) ≤ Eε,δ(uε,δ) ≤ C,
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from Theorem 6.4 and Cauchy–Schwarz we get

|δṼε,δ|(U) ≤ C(U).

By lower semicontinuity of the first variation, we deduce that

|δṼε|(U) ≤ lim inf
δ→0

|δṼε,δ|(U) ≤ C(U), (6.8)

and thus
|δṼ0|(U) ≤ lim inf

ε→0
|δṼε|(U) ≤ C(U).

The conclusion is standard: for every ε, δ, let Sε,δ,r be the set of points p such that uε,δ is unstable
on Br(p). By Vitali’s covering lemma, there exists a subcollection S′

ε,δ,r such that the balls Br(p) with
p ∈ S′

ε,δ,r are disjoint, giving in particular #S′
ε,δ,r ≤ m, and such that uε,δ is stable on Br(q) unless

q ∈
⋃

p∈S′
ε,δ,r

B5r(p). The desired set is obtained by taking a limit of S′
ε,δ,r in the Hausdorff topology as

δ → 0, then as ε → 0, and finally as r → 0 (along subsequences).

We are now in a position to prove the following. In fact, later on we will just use the consequence
(6.10), even if the rectifiability of Ṽ0 will simplify the argument. Later, Ṽ0 will be replaced by a more
appropriate varifold V , directly tied to the anisotropic first variation; the latter will be shown to be (cW
times) integer rectifiable on all of M .

Theorem 6.7. On M \ S we have
cµ ≤ ∥Ṽ0∥ ≤ Cµ

and the density of Ṽ0 satisfies

Θn−1(∥Ṽ0∥, x) := lim
r→0

∥Ṽ0∥(Br(x))

rn−1
∈ (0,∞) (6.9)

at ∥Ṽ0∥-almost every x ∈ M \ S (or equivalently at µ-a.e. x ∈ M \ S), and hence Ṽ0 is rectifiable on
M \ S. As a consequence, µ is a rectifiable measure on M \ S and

0 < Θn−1
∗ (µ, x) ≤ Θn−1,∗(µ, x) < ∞ for µ-a.e. x ∈ M \ S, (6.10)

where Θn−1
∗ (µ, x) := lim infr→0

µ(Br(x))
rn−1 and Θn−1,∗(µ, x) := lim supr→0

µ(Br(x))
rn−1 .

Proof. While the upper bound ∥Ṽ0∥ ≤ Cµ was already obtained (on all of M), we claim that the lower
bound ∥Ṽ0∥ ≥ cµ on M \ S follows from (6.9). Indeed, given p ̸∈ S, let us fix a ball B2r(p) ⊆ U , where
U is the neighborhood given by the previous result. First of all, by Theorem 5.1, we have

∥Ṽε∥(B2r(p)) ≥ c

∫
B2r(p)

√
2W (uε)F (∇uε) ≥

∫
B2r(p)

[cεF (∇u)2 − CεF (∇u)] ≥ c

∫
B2r(p)

εF (∇u)2 − Crn,

thanks to the uniform C1 bound F (∇uε) ≤ Cε−1, which again follows from Theorem 5.1.
By Lemma 6.3, which applies since uε,δ is stable on U by construction (for ε, and in turn δ, small

enough), we deduce that

∥Ṽε∥(B2r(p)) ≥ c

∫
Br(p)

eε(uε)− Crn,

and hence in the limit ε → 0 we get ∥Ṽ0∥(B2r(p)) ≥ cµ(Br(p))− Crn. Approximating r from below, we
deduce

∥Ṽ0∥(B2r(p)) ≥ cµ(Br(p))− Crn.

Assuming that ∥Ṽ0∥(Br(p)) ≥ c(p)rn−1 for any r > 0 small enough, we can then find r > 0 as small as
we want and such that

∥Ṽ0∥(B2r(p)) ≥ c(p)rn−1, ∥Ṽ0∥(Br(p)) ≥ 4−n∥Ṽ0∥(B2r(p)).
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We then have rn = o(∥Ṽ0∥(Br(p))), and thus

∥Ṽ0∥(Br(p)) ≥ 4−n∥Ṽ0∥(B2r(p)) ≥ cµ(Br(p)),

from which the bound ∥Ṽ0∥ ≥ cµ follows, thanks to Besicovitch’s differentiation theorem.
To show the second part of the statement, it suffices to show that Θn−1,∗(∥Ṽ0∥, x) > 0 for ∥Ṽ0∥-a.e.

x: indeed, we already proved in Corollary 6.6 that the varifold Ṽ0 has locally bounded (isotropic) first
variation in M \ S, so that here its rectifiability follows by Allard’s classical rectifiability criterion [2,
Section 5], which gives (6.9). Finally, (6.10) is now clear on M \ S.

To check that Θn−1,∗(∥Ṽ0∥, x) > 0 for ∥Ṽ0∥-a.e. x, let us fix U as above, and fix U ′ ⊂ U and r0 > 0
such that B2r0(x) ⊆ U for all x ∈ U ′. Given γ > 0, we let Gε,γ denote the set of points x ∈ U ′ such that

|uε(x)| ≤ 1− 2γ, |δṼε|(Br(x)) ≤
∥Ṽε∥(Br(x))

γ
(6.11)

for all r ∈ (0, r0). Since |δṼε|(U) ≤ C(U) by (6.8), a simple application of Besicovitch’s covering lemma
gives

∥Ṽε∥(U ′ \ Gε,γ) ≤ C(U)γ +

∫
U ′∩{|uε|>1−2γ}

√
2W (uε)|∇uε|.

We claim that the last term vanishes in the limit ε, γ → 0. Indeed, testing the Euler–Lagrange equation
(3.4) with λ− uε we have∫

M

ε−1W ′(uε)(λ− uε) ≤ C

∫
M

ε|∇uε|2 ≤ CEε(uε) ≤ C;

choosing λ ∈ (−1, 1) to be the maximum point of W |[−1,1] (recall that
√
W is assumed to be strictly

concave on [−1, 1]), we have (λ− s)W ′(s) ≥ 0 for all s ∈ [−1, 1], and actually

(λ− s)W ′(s) ≥ −c sgn(s)W ′(s) ≥ c
√

W (s) for |s| ∈ [1− 2γ, 1]

for γ > 0 small enough, as W ′′(±1) > 0. We infer that∫
{|uε|>1−2γ}

ε−1
√
W (uε) ≤ C,

and thus, since
√
W (s) ≤ C(1− |s|) on [−1, 1] (again as W ′′(±1) > 0),∫

{|uε|>1−2γ}
ε−1W (uε) ≤ Cγ. (6.12)

By Theorem 5.1 and the last two bounds, we have shown that∫
{|uε|>1−2γ}

√
2W (uε)|∇uε| ≤ C

∫
{|uε|>1−2γ}

[ε−1W (uε) +
√

W (uε)] ≤ Cγ + Cε.

In summary, we deduce that there exists a small γ0 > 0 such that

∥Ṽε∥(U ′ \ Gε,γ) ≤ C(U)(γ + ε)

for all γ ∈ (0, γ0) and ε > 0 small.
Up to a subsequence, let G0,γ denote the Hausdorff limit of the closures Gε,γ , along a subsequence

ε → 0 depending on γ ∈ (0, γ0). We claim that

Θn−1(∥Ṽ0∥, x) > 0

at each x ∈ G0,γ . Indeed, thanks to (6.11), we can apply [53, Theorem 17.6] to the varifold Ṽε with α = 1;
note that here we use geodesic balls rather than Euclidean ones, but the proof still carries through. Hence
we obtain

∥Ṽε∥(Br(x))

rn−1
≥ c(γ)

∥Ṽε∥(Bρε(x))

(ρε)n−1
≥ c(γ) > 0
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for any x ∈ Gε,γ and r ∈ (ρε, r0), thanks to Lemma 6.2, which applies as Bρε(x) ⊆ U and |uε,δ(x)| ≤ 1−γ
for δ small enough, by (6.11). Thus, we also have

∥Ṽ0∥(Br(x))

rn−1
≥ c(γ) > 0

for any x ∈ G0,γ . Finally, we have

∥Ṽ0∥(U ′ \ G0,γ) ≤ lim inf
ε→0

∥Ṽε∥(U ′ \ Gε,γ) ≤ C(U)γ.

Since ∥Ṽ0∥ has positive density at all points in
⋃

γ∈(0,γ0)
G0,γ and we can cover M \ S with countably

many such U ′, the statement follows. Note that the subsequence ε → 0 defining G0,γ depends on γ, but
this is irrelevant.

7 Stress-energy tensor and integrality of the limit varifold

Given uε : M → R critical for Eε, a straightforward computation using inner variations shows that, for
any vector field X ∈ C1(M,TM), denoting by DX the (1, 1)-tensor given by the Levi-Civita connection,
we have ∫

M

⟨Tε, DX⟩ =
∫
M

O(ε|∇u|2|X|), (7.1)

where Tε is the stress-energy tensor, namely the (1, 1)-tensor given by

Tε := eε(uε)I − ε∇uε ⊗D(F 2/2)(∇uε), (7.2)

with D(F 2/2)(∇uε) ∈ T ∗
xM denoting the differential of F 2

x/2 = (F 2/2)|TxM (viewed as a function
TxM → R) at ∇u(x), for any given x ∈ M ; the error term comes from the fact that F 2

x depends on x.
In the sequel, it is useful to consider the map

CF (ν) := I − ν ⊗DF (ν)

F (ν)
,

where ν ∈ TM is a unit vector. We observe that

Tε = [eε(uε)− εF (∇uε)
2]I + εF (∇uε)

2CF (νε), νε :=
∇uε

|∇uε|
on {∇uε ̸= 0},

while we let νε := 0 and CF (νε) := 0 on {∇uε = 0}. We have the trivial bound

|Tε| ≤ Ceε(uε).

Assuming (6.7), let T0 be a limit of the measures Tε d volg, up to a subsequence.

Proposition 7.1. The limit T0 has the form

dT0 = ((1− λ)I + λA) dµ+ dξ,

where λ : M → [0, 1] and the measure ξ satisfies |ξ| ≤ C volg, while for µ-a.e. x the tensor A(x) belongs
to the (compact) convex hull

Cx := co({CF (ν) : ν ∈ TxM, |ν| = 1}).

Proof. Indeed, we have
Tε = [(1− λε)I + λεCF (νε)]eε(uε) + ξε,

where

λε := min

{
εF (∇uε)

2

eε(uε)
, 1

}
∈ [0, 1] (7.3)
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and defined to be zero on {eε(uε) = 0}, and

ξε = −(εF (∇uε)
2 − eε(uε))

+I + (εF (∇uε)
2 − eε(uε))

+CF (νε).

Crucially, by the generalization of Modica’s bound, namely Theorem 5.1, we have εF (∇uε)
2−eε(uε) ≤ C

pointwise, and thus
|ξε| ≤ C.

Since (1− λε)I + λεCF (νε) ∈ co({I} ∪ Cx) at any given x ∈ M , it follows that

dT0 = B dµ+ dξ,

where ξ is the limit of ξε d volg and B(x) ∈ co({I} ∪ Cx) a.e., as desired.

Theorem 7.2. Assuming that uε = limδ→0 uε,δ is a limit of critical points for Eε,δ with Morse index
≤ m, then the measures T0 and µ are rectifiable. In fact, we have

λ = 0, A(x) = CF (νx)

for a suitable unit vector νx ∈ TxM , at µ-a.e. x ∈ M . Furthermore, writing dµ = θ d(Hn−1 Σ) for
a suitable rectifiable Borel set Σ ⊂ M with σ-finite Hn−1 measure and θ : Σ → (0,∞), the (n − 1)-
dimensional varifold

dV (x, ν⊥) :=
θ(x)

F (νx)
δνx(ν)⊗ d(Hn−1 Σ)(x)

is rectifiable and F -stationary, and νx is Hn−1-a.e. the unit normal to Σ (unique up to sign).

It follows from the formula for V that its anisotropic energy is

F(V ) = µ(M), F(V ;U) = µ(U) for all U ⊆ M Borel.

Proof. We observe that µ-a.e. x ∈ M is an approximate continuity point of λ and A, and moreover by
Theorem 6.7 satisfies

0 < Θn−1
∗ (µ, x) ≤ Θn−1,∗(µ, x) < ∞, (7.4)

provided that x ̸∈ S. In this case, thanks to Proposition 7.1, any blow-up T̃0 of T0 at any such point
x0 ∈ M will be of the form

dT̃0 = B dµ̃,

where

B = (1− λ0)I + λ0

∫
Sn−1

CFx0
(ν) dα(ν) (7.5)

is a constant matrix given by a suitable λ0 ∈ [0, 1] and a probability measure α on Sn−1, and µ̃ is a
blow-up of µ at x0. Indeed, ξ disappears in the blow-up, as |ξ|(Br(x0)) = o(rn−1) = o(µ(Br(x0))),
thanks to the fact that µ(Br(x0)) ≥ crn−1 for r small. Note that a blow-up defined on Rn exists also
when x0 ∈ S, in which case µ̃ = δ0.

As guaranteed by (7.4) (or by µ̃ = δ0), the measure µ̃ cannot be a constant multiple of the Lebesgue
measure on Tx0M

∼= Rn, as Θn−1
∗ (µ̃, 0) > 0. On the other hand, (7.1) implies

|⟨T0, DX⟩| ≤ C

∫
M

|X| dµ;

given Y ∈ C1
c (Rn,Rn), we can plug X(p) :=

∑n
i=1 Y

i(r−1 exp−1
x0

(p))ei(p), extended to zero outside the
domain of exp−1

x0
, for a fixed orthonormal frame {ei}ni=1 defined near x0 inducing the chosen identification

Tx0
M ∼= Rn. Letting r → 0, we deduce that

⟨T̃0, DY ⟩ = 0 for all Y ∈ C1
c (Rn,Rn).

Taking Y of the form Y = φv, we then see that µ̃ is invariant along B⊤v. Since µ̃ is not a multiple
of the Lebesgue measure, we deduce that

ker(B) ̸= {0}.
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Let then ν0 ∈ ker(B) be a unit vector. Recalling (7.5), we see that

0 = ⟨DFx0
(ν0), Bν0⟩ = (1− λ0)Fx0

(ν0) + λ0

∫
Sn−1

⟨DFx0
(ν0), CFx0

(ν)ν0⟩ dα(ν). (7.6)

By 1-homogeneity and convexity of Fx0
, we have that

DFx0
(ν)[ν] = F (ν), DFx0

(ν)[ν′] = Fx0
(ν) +DFx0

(ν)[ν′ − ν] ≤ Fx0
(ν′)

and, since F is even, it also holds that |DFx0
(ν)[ν0]| ≤ Fx0

(ν0) and |DFx0
(ν0)[ν]| ≤ Fx0

(ν). Hence, we
obtain that

⟨DFx0
(ν0), CFx0

(ν)ν0⟩ = Fx0
(ν0)−

DFx0
(ν)[ν0]

F (ν)
DFx0

(ν0)[ν] ≥ 0. (7.7)

Plugging (7.7) in (7.6), we deduce that λ0 = 1. Moreover, since Fx0
is strictly convex along non-radial

directions, (7.7) can be an equality only when ν = ±ν0.
Thus, α is concentrated on {±ν0} so that, using again that F is even, we obtain

B = A(x0) = I − ν0 ⊗DFx0
(ν0)

F (x0)
.

For the same reason, ker(B(x0)) = span{ν0} and thus the image of B⊤ is ν⊥0 . Hence, µ̃ is invariant along
the hyperplane ν⊥0 .

We cannot have x0 ∈ S, since otherwise we would have µ̃ = δ0, a contradiction with the invariance of
µ̃ along ν⊥0 . Hence, µ(S) = 0 and the conclusion follows from the rectifiability of µ proved in Theorem 6.7,
since for generic x0 any blow-up must be a constant multiple of Hn−1 νΣ(x0)

⊥, yielding ν0 = ±νΣ(x0).
The F -stationarity of V is equivalent to the fact that T0 is divergence-free.

Remark 7.3. The previous proof generalizes the atomic condition found in [20, Definition 1.1], which in
codimension one characterizes convex integrands F that are strictly convex along non-radial directions:
see [20, Theorem 1.3]. In fact, we could avoid appealing to the rectifiability of ∥Ṽ0∥ and rely just on
(6.10): once we reach λ0 = 0, the rectifiability of µ follows from [20, Lemma 2.2].

Remark 7.4. We observe that

lim
ε→0

∫
M

(εF (∇uε)
2 − eε(uε))

+ = lim
ε→0

∫
M

(
ε

2
F (∇uε)

2 − 1

ε
W (uε)

)+

= 0. (7.8)

Indeed, any weak limit υ of the integrand (as a measure) satisfies υ ≤ Cµ, as well as υ ≤ C volg by
Theorem 5.1. Since the measures µ and volg are mutually singular, we deduce that υ = 0 and hence
(7.8). In particular, we also have

ξ = 0.

Remark 7.5. Recalling the definition of λε from (7.3), on the compact set

Ĝ := {co({I} ∪ Cx) | x ∈ M}

we can consider the positive measures

dVε(x, Z) := δBε(x)(Z)eε(uε)(x) d volg(x),

where

Bε(x) := (1− λε(x))I + λε(x)CF (νε(x)) =
Tε(x)− ξε(x)

eε(uε)(x)

(the last equality holding on {eε(uε) > 0}), and a subsequential limit V0. Letting π : Ĝ → M denote the
canonical projection and considering the disintegration of dV0(x, Z) = αx(Z)⊗ dµ(x) with respect to π,
let V ′

0 denote the Ĝ-valued measure on M given by replacing each probability measure αx with its center
of mass, namely

dV ′
0(x) := Zx dµ(x), Zx :=

∫
π−1(x)

Z dαx(Z).
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It is straightforward to check that, if we have a sequence of measures Wk ⇀ W∞ in Ĝ, then W ′
k ⇀ W ′

∞.
In particular, since Vε ⇀ V0 and V ′

ε = (Tε − ξε) d volg ⇀ T0 as ξε ⇀ 0 by Remark 7.4, we deduce that
V ′
0 = T0. Exactly the same argument used in the previous proof then shows that the disintegration αx

of V0 consists of a Dirac mass at µ-a.e. x ∈ M , i.e., V0 = V up to identifying CF (ν) with ν⊥.

We are now left to prove that c−1
W V is actually an integral varifold, or equivalently

θ(x)

cWF (νx)
∈ N, for ∥V ∥ − a.e. x,

where we recall that cW =
∫ 1

−1

√
2W (t) dt.

We can fix a µ-generic point x0, so that we can assume x0 ̸∈ S as µ(S) = 0, (6.10) holds at x0, and
µ has an approximate tangent plane at x0; as seen in the previous proof, we can also assume that µ and
T0 blow up to

θ · Hn−1 ν⊥, θCFx0
(ν) · Hn−1 ν⊥,

respectively, where ν = νx0
and θ = θ(x0). Further, by (7.8) and (6.12) we have

lim sup
ε→0

∫
{|uε|>1−2γ}

eε(uε) ≤ lim sup
ε→0

∫
{|uε|>1−2γ}

2W (uε) + lim sup
ε→0

∫
M

(
ε

2
F (∇uε)

2 − 1

ε
W (uε)

)+

≤ Cγ.

Hence, an application of Besicovitch’s covering lemma shows that, for a constant C which may depend
on the point x0, we can also assume that

lim sup
ε→0

∫
Br(x0)∩{|uε|≥1−γ}

eε(uε) ≤ Cγµ(Br(x0)) ≤ Cγrn−1 for all r ∈ (0, 1). (7.9)

We choose coordinates so that x0 = 0 and the weak tangent plane is (θ times)

P := {x ∈ Rn : xn = 0}.

By a diagonal argument, we can replace (uε) with a sequence of critical points, defined on larger and
larger balls BRε(0) endowed with metrics gε converging to the Euclidean one and integrands F ε → Fx0 ,
such that

eε(uε) dx ⇀ θ dHn−1 P,

as well as
Tε dx ⇀ θCFx0

(en) dHn−1 P.

Remark 7.6. Since the new sequence uε is obtained by rescaling a sequence of critical points on a closed
manifold, the pointwise bound (1.2) still holds. Actually, we have

εF (∇uε)
2/2 ≤ ε−1W (uε) + cε, cε → 0, (7.10)

since if the new uε is obtained by rescaling a function uε′ from the original sequence then the constant
C in (1.2) becomes Cε′/ε = C/ρ, where ρ is the (larger and larger) dilation factor.

Moreover, using (7.9) and another diagonal argument, we can even assume that

lim sup
ε→0

∫
B10(0)∩{|uε|≥1−γ}

eε(uε) ≤ Cγ (7.11)

for any γ ∈ {2−k | k ∈ N}, and hence for all γ ∈ (0, 1).
Let η > 0 and Sε := {|νε − en| > η}, where νε =

∇uε

|∇uε| is defined using the metric gε, while |νε − en|
is computed using the Euclidean metric. Then Remark 7.5, namely the fact that

δBε(x)(Z)eε(uε)(x) d volg(x) = dVε(x, Z) ⇀ dV0(x, Z) = δCFx0
(en)(Z) d(θHn−1 P )(x),
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gives ∫
B10(0)∩Sε

eε(uε) = Vε(π
−1(B10(0) ∩ Sε)) → 0.

On the other hand, on B10(0) \ Sε we have |∂iuε| ≤ Cη|∇uε| ≤ CηF (∇uε) for i < n. Hence, for all
i = 1, . . . , n− 1 we have

lim sup
ε→0

∫
B10(0)

ε|∂iuε|2 ≤ lim sup
ε→0

∫
B10(0)∩Sε

ε|∂iuε|2 + lim sup
ε→0

∫
B10(0)\Sε

ε|∂iuε|2 ≤ Cη2
∫

εF 2(∇uε),

so that

lim
ε→0

∫
B10(0)

ε|∂iuε|2 = 0. (7.12)

Let us fix a nonnegative cut-off function χ ∈ C1
c ((−1, 1)), equal to 1 on (−1/2, 1/2).

Lemma 7.7. There exist Borel sets Eε ⊂ Bn−1
1 (0) such that

Ln−1(Eε) → 0

and, for any sequence of points pε ∈ Bn−1
1 (0) \ Eε,∫

{pε}×[−1,1]

χ(xn)eε(uε(pε, x
n)) dxn → θ.

Proof. We test (7.1) with a vector field of the form χφej , where φ ∈ C1
c (B

n−1
1 (0)) and j = 1, . . . , n− 1.

We get ∫
Bn−1

1 (0)

eε(ui)∂j(χφ) =

∫
Bn−1

1 (0)

ε∂juεD(F 2/2)(∇uε)[∇φ] + o(∥∇φ∥C0),

where the error term comes from the ambient metric gε, which converges to the Euclidean one as ε → 0,
and the error term in (7.1), which is also negligible in the limit ε → 0, as F ε converges to the autonomous
integrand Fx0

. By (7.12), letting

fε(x
1, . . . , xn−1) :=

∫ 1

−1

χ(xn)eε(uε(x
1, . . . , xn)) dxn

be the integral on the slice, we then have∣∣∣∣∣
∫
Bn−1

1 (0)

fε∂jφ

∣∣∣∣∣ ≤ σε∥∇φ∥C0

for a vanishing sequence σε → 0, as ε → 0. The conclusion then follows from Allard’s strong constancy
lemma [5, Theorem 1.(4)], once we recall that

fε dx ⇀ θ dx

as measures on Bn−1
1 (0).

We have the following simple result in Rn, for autonomous F .

Lemma 7.8. Given Λ > 0 and γ ∈ (0, 1), there exists δ(Λ, γ, F ) > 0 such that either

|u| ≥ 1− Cγ on {0} × (−R,R)

or the energy on the slice

1

F (en)

∫
{0}×(−R,R)

e1(u) ∈
⋃

k∈N\{0}

(kcW − Ckγ2, kcW + Ckγ2) (7.13)
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for any critical point
u : Bn−1

1 (0)× (−R,R) → R

of the energy E1, provided that R ∈ (0,Λ], |u| ≤ 1, F (∇u)2 ≤ W (u) + γ2,

lim
t→±R

|u(0, t)| ∈ [1− γ, 1],

and ∫
Bn−1

1 (0)×(−R,R)

n−1∑
j=1

|∂ju|2 ≤ δ.

In other words, if u is almost constant along the first n− 1 coordinate directions, then its energy is

close to (F (en) times) a multiple of the energy cW =
∫ 1

−1

√
2W of the heteroclinical solution, unless u

is essentially constant. In the statement, C is a universal constant depending just on W , on which the
other constants tacitly depend as well.

Proof. Assuming for every δ > 0 we have a counterexample uδ : Bn−1
1 (0)× (−Rδ, Rδ) → R, in the limit

δ → 0 (up to a subsequence) we get a one-dimensional function u(x) = U(xn) critical for E1, defined on
Bn−1

1 (0)× (−R,R) for a limiting R = limδ→0 Rδ ∈ [0,Λ]; we can assume that R > 0 since otherwise the
first conclusion for uδ trivially holds, thanks to the Lipschitz bound on uδ (implied by the assumption
F (∇uδ)2 ≤ W (uδ) + γ2).

Note that we can pass to the limit the Euler–Lagrange equation (3.4) and also

lim
δ→0

∫
{0}×(−Rδ,Rδ)

e1(u
δ) =

∫
{0}×(−R,R)

e1(u),

thanks to the same Lipschitz bound and Proposition 3.3, which upgrades it to convergence in C1,α
loc . Since

u is one-dimensional, it is smooth and satisfies

U : (−R,R) → R, F 2(en)U
′′ = W ′(U).

Thus, ξ := F 2(en)(U
′)2/2 − W (U) is constant; actually, it is bounded by Cγ2 in absolute value: this

follows from the uniform convergence uδ → u and from equicontinuity, which give

lim
t→±R

|u(0, t)| = lim
δ→0

lim
t→±Rδ

|uδ(0, t)| ∈ [1− γ, 1]

and thus limt→±R W (u)(0, t) ≤ Cγ2, as well as the fact that F (∇u)2 ≤ W (u) + γ2.
The solution U can be extended to all of R and, by classical theory of Newtonian systems (viewing

−W (U) as the potential energy), its extension is periodic if ξ < 0, constant or heteroclinic if ξ = 0 (i.e.,
either U ≡ ±1 or it is monotone, with limits ±1 at infinity), or divergent if ξ > 0 (i.e., goes to ±∞
at infinity, since U ′ = ±

√
2W (U)+2ξ

F (en)
with constant sign; recall that the right-hand side is ≃ ±|U | for

|U | ≥ 2). Here we are assuming that γ is small enough, so that the steady state in (−1, 1), corresponding
to the maximum point for W |(−1,1), is not one of the possibilities.

In the second and third cases, U is monotone; applying the elementary inequality 0 ≤ a+b−2
√
ab ≤

|a− b| with a := F 2(en)(U
′)2/2 and b := W (U), we see that∫
{0}×(−R,R)

e1(u) =

∫ R

−R

F (en)
√
2W (U)|U ′|+O(γ2), (7.14)

from which the claim follows: either |U | ≥ 1 − γ or (7.13) holds with k = 1, thanks to a simple change
of variables and the boundary condition |U(±R)| ∈ [1− γ, 1].

If instead we are in the first case where ξ < 0, then we can divide [−R,R] into N ≥ 1 consecutive
intervals [tj , tj+1] where U is monotone, for j = 0, . . . , N − 1, such that t0 = −R, tN = R, and

U(tj) ∈ W−1(−ξ) for all j = 1, . . . , N − 1
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(as U ′(tj) = 0 and hence ξ = −W (U(tj)) for these j). Using again (7.14) and writing∫ R

−R

F (en)
√

2W (U)|U ′| =
N−1∑
j=0

∫ tj+1

tj

F (en)
√
2W (U)|U ′|,

the claim follows again from the monotonicity of U on each interval, together with the fact that U(tj) ∈
W−1(−ξ) forces |U(tj)| ∈ [1− Cγ, 1], as −ξ ∈ [0, Cγ2] and W is nearly quadratic around ±1. Thus, the
claim must also hold for uδ eventually, a contradiction.

Remark 7.9. Clearly, the same also holds on a small geodesic ball in M , rescaled to have unit size.
Indeed, on such rescaled ball, the metric is close to the Euclidean one and F is almost autonomous.

We are finally ready to prove integrality of the limit varifold V built in Theorem 7.2, which reduces
to the following statement thanks to the blow-up reduction.

Theorem 7.10. We have θ
Fx0

(en)
∈ cWN.

Proof. Let us fix γ ∈ (0, 1) small and recall that, since by assumption the limit of the energy densities is
supported on P , we have ∫

B10(0)

(1− χ(xn))eε(uε)(x) dx → 0. (7.15)

Using the previous bounds, we can find pε ∈ Bn−1
1 (0) such that∫ 1

−1

(1− χ(t))eε(uε)(pε, t) dt → 0,

thanks to (7.15), as well as ∫ 1

−1

χ(t)eε(uε)(pε, t) dt → θ

by virtue of Lemma 7.7,

1

εn−1

∫
Bn−1

ε (pε)×[−1,1]

n−1∑
j=1

|∂juε|2 → 0 (7.16)

by (7.12) and the standard weak-(1, 1) maximal bound, and finally

lim sup
ε→0

∫ 1

−1

1[1−C0γ,1](|uε|(pε, t))eε(uε)(pε, t) dt ≤ Cγ (7.17)

thanks to (7.11), where C0 := C is the constant appearing in Lemma 7.8.

We write {t ∈ (−1, 1) : |uε|(pε, t) < 1 − γ} =
⋃Nε

j=1 Ij as a union of disjoint open intervals. Since
W (uε) ≥ c(γ) > 0 on {|uε| < 1− γ}, we have

∑
j

|Ij | ≤ C(γ)

∫ 1

−1

W (uε)(pε, t) dt ≤ C(γ)

∫ 1

−1

εe1(pε, t) dt ≤ C(γ)ε =: Λε.

This implies that, for ε small enough, χ(t) vanishes for t ∈ I0 ∪ IN ; in order to study

θ = lim
ε→0

∫ 1

−1

χ(t)eε(uε)(pε, t) dt = lim
ε→0

∫ 1

−1

eε(uε)(pε, t) dt,

we can then look at the intermediate intervals Ij for j = 1, . . . , N − 1. We can now apply Lemma 7.8
(and Remark 7.9) to each of the cylinders

Bn−1
ε (pε)× Ij , j ∈ {1, . . . , N − 1},
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dilated by a factor ε−1, so that the dilated function becomes critical for E1. The assumptions of this
lemma hold eventually, thanks to the bound ε−1|Ij | ≤ Λ, the bound (7.10), the fact that

|uε(pε, t)| ∈ [1− γ, 1] for t ∈ ∂Ij ,

and (7.16).
We deduce that either |uε(pε, t)| ∈ [1− C0γ, 1] for all t ∈ Ij or

1

Fx0(en)

∫
Ij

eε(uε)(pε, t) ∈
⋃

k∈N\{0}

(kcW − Ckγ2, kcW + Ckγ2).

In particular, in the second case we have 1
Fx0

(en)

∫
Ij
eε(uε)(pε, t) ≥ cW /2 (provided γ is small enough).

Since the energy on the full slice {pε} × [−1, 1] is at most 2θ, we deduce that there is an upper bound C
for the number of such intervals of the second kind, independent of γ.

Recalling (7.17), we arrive at

1

Fx0
(en)

∫ 1

−1

eε(uε)(pε, t) dt =
1

Fx0
(en)

∫
[−1,1]\(I0∪IN )

eε(uε)(pε, t) dt = nεcW +O(γ),

for some nε ∈ N, with an implied constant independent of ε, γ. Since

θ

Fx0(en)
= lim

ε→0

1

Fx0(en)

∫ 1

−1

eε(uε)(pε, t) dt = lim
ε→0

nεcW +O(γ),

we obtain that the distance of θ
Fx0

(en)
from cWN is bounded by O(γ). Since γ was arbitrary, we reach

the conclusion.
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